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Abstract

Deep, overparameterized regression models are no-
torious for their tendency to overfit. This problem
is exacerbated in heteroskedastic models, which
predict both mean and residual noise for each data
point. At one extreme, these models fit all train-
ing data perfectly, eliminating residual noise en-
tirely; at the other, they overfit the residual noise
while predicting a constant, uninformative mean.
We observe a lack of middle ground, suggest-
ing a phase transition dependent on model reg-
ularization strength. Empirical verification sup-
ports this conjecture by fitting numerous models
with varying mean and variance regularization. To
explain the transition, we develop a theoretical
framework based on a statistical field theory, yield-
ing qualitative agreement with experiments. As a
practical consequence, our analysis simplifies hy-
perparameter tuning from a two-dimensional to
a one-dimensional search, substantially reducing
the computational burden. Experiments on diverse
datasets, including UCI datasets and the large-scale
ClimSim climate dataset, demonstrate significantly
improved performance in various calibration tasks.

1 INTRODUCTION

Homoskedastic regression models assume constant (e.g.,
Gaussian) output noise and amount to learning a function
f () that tries to predict the most likely target y for input .
In contrast, heteroskedastic models assume that the output
noise may depend on the input features x as well, and try
to learn a conditional distribution p(y|z) with non-uniform
variance. The promise of this approach is to assign different
importances to training data and to train models that “know
where they fail” [Skafte et al., 2019, Fortuin et al., 2022].

Unfortunately, overparameterized heteroskedastic regres-

sion models (e.g., based on deep neural networks) are prone
to extreme forms of overfitting [Lakshminarayanan et al.,
2017, Nix and Weigend, 1994]. On the one hand, the mean
model is flexible enough to fit every training datum’s target
perfectly, while the standard deviation network learns to
maximize the likelihood by shrinking the predicted standard
deviations to zero. On the other hand, just the tiniest amount
of regularization on the mean network will make the model
prefer a constant solution. Such a flat prediction results from
the standard deviation network’s ability to explain all resid-
uals as random noise, thus overfitting the data’s empirical
prediction residuals. Fig. 1 shows both types of overfitting.

While several practical solutions to learning overparameter-
ized heteroskedastic regression models have been proposed
[Skafte et al., 2019, Stirn and Knowles, 2020, Seitzer et al.,
2022, Stirn et al., 2023, Immer et al., 2023], no comprehen-
sive theoretical study of the failure of these methods has
been offered so far. We conjecture this is because overpa-
rameterized models have attracted the most attention only
in the past few years, while most classical statistics have
focused on under-parameterized (e.g., linear) regression
models where such problems cannot occur [Huber, 1967,
Astivia and Zumbo, 2019].

This paper provides a theoretical analysis of the failure of
heteroskedastic regression models in the overparameterized
limit. To this end, it borrows a tool that abstracts away from
any details of the involved neural network architectures:
classical field theory from statistical mechanics [Landau
and Lifshitz, 2013, Altland and Simons, 2010]. Via our
field-theoretical description, we can recover the optimized
heteroskedastic regressors as solutions to partial differential
equations that can be derived from a variational principle.
These equations can in turn be solved numerically by opti-
mizing the field theory’s free energy functional.

Our analysis results in a two-dimensional phase diagram,
representing the coarse-grained behavior of heteroskedas-
tic noise models for every parameter configuration. Each
of the two dimensions corresponds to a different level of



regularization of either the mean or standard deviation net-
work. As encountered in many complex physical systems,
the field theory unveils phase transitions, i.e., sudden and
discontinuous changes in certain observables (metrics of
interest) that characterize the model, such as the smoothness
of its mean prediction network, upon small changes in the
regularization strengths. In particular, we find a sharp phase
boundary between the two types of behavior outlined in the
first paragraph, at weak regularization.

Our contributions are as follows:

* We provide a unified theoretical description of overparam-
eterized heteroskedastic regression models, which general-
izes across different models and architectures, drawing on
tools from statistical mechanics and variational calculus.

¢ In this framework, we derive a field theory (FT), which
can explain the observed types of overfitting in these models
and describe phase transitions between them. We show
qualitative agreement of our FT with experiments, both on
simulated and real-world regression tasks.

* As a practical consequence of our analysis, we dramat-
ically reduce the search space over hyperparameters by
eliminating one parameter. This reduces the number of hy-
perparameters from two to one, empirically resulting in
well-calibrated models. We demonstrate the benefits of our
approach on a large-scale climate modeling example.

2 PITFALLS OF OVERPARAMETERIZED
HETEROSKEDASTIC REGRESSION

Heteroskedastic Regression Consider the setting in
which we have a collection of independent data points
D = {(w;,y;)}Y, with covariates z; € X C R? drawn
from some distribution x; ~ p(z) and response values
y; € Y = R normally distributed with unique mean y; and
precision (inverse-variance) A; > 0 (i.e., y; ~ N (ui, Ay)).
We assume to be in a heteroskedastic setting, in which A;
need not equal A; for ¢ # j. Finally, we assume both the
mean and standard deviation of y; to be explainable via x;:

yilzi ~ N(u(xi), Aw;)) fori =1,....N (1)

with continuous functions ¢ : X - Rand A : X — Ryg.
In a modeling setting, learning A can be seen as directly
estimating and quantifying the aleatoric (data) uncertainty.

Overparameterized Neural Networks There exist many
options for modeling y and A. Of particular interest to many
is representing each of these functions as neural networks
[Nix and Weigend, 1994]—specifically ones that are overpa-
rameterized. These models are well-known universal func-
tion approximators, which makes them great choices for
estimating the true functions x and A [Hornik, 1991].

Let the mean network fig : X — R and precision net-
work Ay : X — R be arbitrary depth, overparameterized

feed-forward neural networks parameterized by 6 and ¢ re-
spectively. For a given input z;, these networks collectively
represent a corresponding predictive distribution for y;:

P(yil i) == N(yis fro(3), Ag(;)). (2)

Pitfalls of MLE Our assumed form of data naturally sug-
gests training iy and A¢, or rather learning 6 and ¢, by
minimizing the cross-entropy between the joint data dis-
tribution p := p(z,y) = p(y | «)p(x) and the induced
predictive distribution p := p(y | z)p(x). This objective is
defined as
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where c is a constant with respect to 6 and ¢. This expec-
tation is often approximated using a Monte Carlo (MC)
estimate with IV samples, yielding the following tractable
objective function:

1 - .
L£(0,0) = i D Bo(w)(w:)® —log Ag(zi),  (4)
i=1

where 7(x;) = [ig(x;) — y;. Minimizing this cross-entropy
objective function with respect to parameters 6 and ¢ us-
ing data samples is synonymous with maximum likelihood
estimation (MLE).

Unfortunately, given an infinitely flexible model, this objec-
tive function is ill-posed. Our first observation is that, for
any non-zero A¢, we can find a solution for the parameters
¢ in the absence of any regularization since the first term
in Eq. (4) is minimized when A¢ — 0, while the second
term is minimized when A¢ — 00. However, the interplay
between ¢ and 6 leads to divergences in the absence of any
regularization on 6. Without such regularization, the mean
function fig will estimate y perfectly (or rather to arbitrary
precision) for at least a single data point (z;, y;). Once this
happens, the residual for this input fig(x;) — y; approaches
zero, and the implicit regularization for A¢ vanishes, leading
A¢ (x;) to diverge to infinity. Intuitively, the model becomes
infinitely (over-)confident in its prediction for this data point.
Once training has reached this point, the objective function
becomes completely unstable due to effectively containing
a term whose limit naively yields co — co.!

!Note that this is predicated on the model being flexible enough
to allow for large changes in predictions jig () and A4 (z) after
iteratively updating parameters 6 and ¢ while allowing for minimal
changes in neighboring predictions (i.e., jig(x') and A, (z') for
some z’ € X such that 0 < ||z — z'|| < €).



Figure 1: Visualization of a typical phase diagram in p —  regularization space for a heteroskedastic regression model (left).
Solid and dotted lines indicate sharp and smooth transitions in model behavior respectively. Example model mean fits shown
in red (with pointwise + standard deviation in orange) from the FT for each key phase (middle and right).

Regularization Even though f\¢ is implicitly regularized
in the standard cross-entropy loss as mentioned earlier, we
posit that additional regularization on A¢, or rather ¢, is
required to avoid this instability. It can be tempting to think
that one must regularize 6 in order to avoid overfitting. And
while this is generally true, the objective function £ will still
be unstable so long as at least one input x; yields a perfect
prediction (i.e.,y; = fig(x;)). This situation is still fairly
likely to occur even in the most regularized mean predictors
and cannot be avoided, especially if {y;} is zero-centered.

To prevent this from happening, we can include Ly penalty
terms for both # and ¢ in our loss function:

Lap(0,0) = L(0,0) +all0]l3 + BlI0l, )

where «, 8 > 0 are penalty coefficients. Intuitively, the
primary purpose of regularizing 6 is to prevent the mean
predictions from overfitting while the goal of regularizing ¢
is to provide stability and control complexity in the predicted
aleatoric uncertainty. As @ — oo, the network models a
constant mean and, symmetrically, as 5 — oo the network
models a constant standard deviation. That is, we effectively
arrive at a homoskedastic regime as 3 — 00.?

Reparameterized Regularization We introduce an alter-
native parameterization of the regularization coefficients:

Ly~(0,0) = pLO,0) + p [I0]15 +lll13] . (©6)

where we restrict p,y € (0,1) and define p := 1 — p and
7 := 1 — ~y. This parameterization is one-to-one with the
«, B parameterization (with « = vp/p and 8 = 7p/p) and
it can be shown that Vg 4L, , < Vg 4L, g, thus minimiz-
ing one objective is equivalent to minimizing the other. Be-
cause p and +y are bounded we are able to completely cover

>This is under the assumption that either the networks have
an unpenalized bias term in the final layer or that the data is
standardized to have zero mean and unit variance.

the space of regularization combinations by searching over
(0,1)? whereas in the «, 3 parameterization «, 3 € Rsq
are unbounded. Now, p determines the relative importance
between the likelihood and the total regularization imposed
on both networks. On the other hand, v weights the propor-
tion of total regularization between the mean and precision
networks. Here, p = 1 corresponds to the MLE objective
while p — 0 could be interpreted as converging to the mode
of the prior in a Bayesian setting. Fixing v = 1 leads to
an unregularized precision function while choosing v = 0
results in an unregularized mean function.

Qualitative Description of Phases Model solutions
across the space of p and v hyperparameters exhibit dif-
ferent traits and behaviors. Similar to physical systems, this
can be described as a collection of typical states or phases
that make up a phase diagram as a whole. We find that
these phase diagrams are typically consistent in shape across
datasets and methodologies. Fig. 1 shows an example phase
diagram along with model fits coming from specific (p, )
pairings. We argue that there are five primary regions of
interest and qualitatively characterize them as follows:

* Region U;: Both the mean and precision functions are
heavily regularized. The likelihood is so lowly weighted it
is as if the model had not seen the data. Regardless of the -
value, the likelihood plays a minor role in the objective. The
mean and standard deviation functions are constant through
zero and 1 (the values they were initialized to).

¢ Region Uy: The mean function is still heavily regularized
and tends to be flat, underfitting the data as in Region Uj.
Despite the constant mean function, the precision function
can still accommodate the residuals.

* Region O;: The mean is heavily overfit and the residuals
and corresponding standard deviations essentially vanish.
Increasing p — 1 yields true MLE fits (right side of the



Table 1: FT Limiting Cases. We provide intuition for Prop. 1 and match the limits to the phase diagram regions in Fig. 1.

Regularization Outcome

p—1,7€l0,1]

This is equivalent to MLE. Approaching p = 1, we observe overfit mean solutions (see Oy and Oy
in Fig. 1) across all «y. In theory, at p = 1, there is a contradiction implying no solution should exist.

p— 0,7 €(0,1)

The objective is dominated by the regularizers—the data is completely ignored. This corresponds
with region U;. In theory, the optimal solution at p = 0 is for both i, A to be constant (flat) functions.

p€(0,1),y—1

All regularization is placed on the mean function, leading to underfit mean. However, the precision
is unregularized and the residuals are perfectly matched. This is the top row of the phase diagrams.

p€(0,1),y—0

The mean is unregularized and the precision is strongly regularized. These fits are characterized by
severe overfitting and can be found along the bottom row of the phase diagrams.

phase diagram). This portion of the phase exists across a
wide range of y-values. Low values of ~ restrict the flexibil-
ity of the precision function, but due to the overfitting in the
mean, the flexibility is not needed to fit the residuals.

* Region Oyy: The mean function does not overfit due to reg-
ularization, leaving large residuals for the lowly regularized
precision function to overfit onto. The predicted standard
deviation matches each residual perfectly.

¢ Region S: The mean and precision functions adapt to the
data without overfitting. We conjecture that solutions in this
region will provide the best generalization.

3 THEORETIC CONSIDERATIONS

We proceed to develop a theoretical description of the inter-
play between regularization strengths and resulting model
behavior that captures the limiting behavior of heteroskedas-
tic neural networks in the completely overparameterized
regime. This tool allows us to analytically study edge cases
of combinations of regularization strengths and find nec-
essary conditions any pair of optimal mean and standard
deviation functions must satisfy, agnostic of any specific
model architecture. Furthermore, numerical solutions to our
field theory, explained below, show good qualitative agree-
ment with practical neural network implementations.

Field Theory Having discussed the effects of regulariza-
tion on a heteroskedastic model on a qualitative level, we ask
the following questions: How much do these effects depend
on any particular neural network architecture? Can we de-
scribe some of these effects on the function level, i.e., without
resorting to neural networks? To address these questions,
we will establish field theories from statistical mechanics.

Field theories are statistical descriptions of random func-
tions, rather than discrete or continuous random vari-
ables [Altland and Simons, 2010]. A field is a function
assigning spatial coordinates to scalar values or vectors.
Examples of physical fields are electric charge densities,

water surfaces, or vector fields such as magnetic fields. Low-
energy configurations of fields can display recurring patterns
(e.g., waves) or undergo phase transitions (e.g., magnetism)
upon varying model parameters. Since we can think of a
function as an infinite-dimensional vector, field theory re-
quires the usage of functional analysis over plain calculus.
For example, we frequently ask for the field that minimizes
a free energy functional that we obtain by calculating a
functional derivative that we set to zero. The advantage to
moving to a function-space description is that all details
about neural architectures are abstracted away as long as the
neural network is sufficiently over-parameterized.

Firstly, we propose abstracting the neural networks /iy and
A4 with nonparametric, twice-differentiable functions /i and
A respectively. Since these functions no longer depend on
parameters, we cannot use Lo penalties. A somewhat compa-
rable substitute is to directly penalize the output “complex-
ity” of the models, which can be measured via the Dirichlet
energy: a [ p(x)||Vji()|3dz and 8 [ p(a)||VA ()| 3da.
Note that these specific penalizations induce similar lim-
iting behaviors for resulting solutions (i.e., o, 8 — 0 im-
plies overfitting while — oo implies constant functions). In
the case where iy and A¢ are linear models, this gradient
penalty is equivalent to an Lo penalty. Further, networks
trained with an Ly weight regularization have empirically
been found to have lower geometric complexity, a variant of
Dirichlet energy [Dherin et al., 2022]. We also implement
neural networks with geometric complexity regularization
and present those results in Appendix E.

Using the assumptions outlined above and the same reparam-
eterization of («, 8) to (p,~y) as with the neural networks,
the cross-entropy objective can be interpreted as an action
functional of a corresponding two-dimensional FT,

ﬁpn(ﬂaﬁ)<—L/;p(x)pjgzﬁyllﬁlogﬁ(ylm)dy @)
+p(@)p [HIVa@) + HIVA@)I3] dz,

where p(y | ) = N(y | i(z), A(z)). This description as-
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Figure 2: Array plot of metrics (rows) across different data or fitting techniques (columns). Leftmost column: results from
our field theory (FT); remaining columns: results from fitting neural networks to data (data sets refer to test splits). Averaged
results of six runs are shown. Intermediate ticks mark v = 0.5 and p = 0.5 on the lower-left plot. Our FT aligns qualitatively
well with empirical phase diagrams, with consistent phase transitions across models and datasets.

sumes a continuous data density p(x), a continuous distribu-
tion over regression noise p(y | ), and continuous functions
fi(z) and A(z) whose behavior we would like to study as a
function of varying the regularizers p and ~.

One can view the indexed set y(-) = {y(z)}zex as a
stochastic process (specifically a white noise process scaled
by true precision A(z) and shifted by true mean p(z)). We
are interested in the statistical properties of the field theory
for any given realization of this stochastic process, y(x), and
ideally, we would average over multiple draws. However,
for computational convenience, we restrict our attention to
a single sample. This simplification is equivalent to con-
sidering a specific dataset and similar in spirit to fitting
a heteroskedastic model to real data. This approximation
yields the following simplified FT,

Lonluh) = [ plop|5A@H0? - Floo)| ©

+ (@) [YIVi@)|; + 7IVA@)3] do,

where 7(z) := [i(z) — y(z). We are primarily interested
in solutions /i* and A* that minimize the FT £, .,(ji, A)
as these are roughly analogous to models iy and A¢ that
minimize penalized cross-entropy L, (6, ¢). We can gain
insights into these solutions by taking functional derivatives

of the FT with respect to /i and A and setting them to zero.

The result of this procedure are stationary conditions in the

form of partial differential equations for i* and A*:

A * Ak _ E A:&* (ZE)
an P (z2)? = 1 E_AA*(I)
¢ 7@ A*(z) Y p(x) ®

where 7* () = fi*(z) — y(«) and A is the Laplace operator
[Engel and Dreizler, 2011]. Note that these equalities hold
true almost everywhere (a.e.) with respect to p(x).

Interestingly, both resulting relationships include a regular-
ization coefficient divided by the density of x. Intuitively,
while the functions as a whole have a global level of reg-
ularization dictated by p or +, locally this regularization
strength is augmented proportional to how likely the input
is. This means that areas of high density in x permit more
complexity, while less likely regions are constrained to pro-
duce simpler outputs. Similarly, since A/ and AA measure
the curvature of these functions, we see that p and ~y directly
impact the complexity of A and p, as we expect.

Numerically Solving the FT Since the stationary condi-
tions in Eq. (9) are too complex to be solved analytically,
we discretize and minimize the FT to arrive at approximate
solutions—in theory, we can do so to arbitrary precision. Let
{z:}N5 be a set of D fixed points in X that we assume are
evenly spaced. Define [i, K, ij to be N p-dimensional vectors
where for each i, i; := j(z;),A; == A(zi),y: = y(;).
We solve for the optimal i and X using the discretized



approximation to Eq. (8) via gradient based optimization
methods:

. Lo
Ly (i, A) = ZP[ )2—210gAi]
+5 [vHVﬁillg +AIVAIB], (o)

and numerically approximate the gradients of /i, A by finite-
difference methods [Fornberg, 1988].

FT Insights The pair of constraints in Eq. (9) allow us
to glean useful insights into the resulting regularized solu-
tions by looking at edge cases of specific combinations of
p and ~ values. We summarize the theoretical properties
of the limiting cases of p and ~ approaching extreme val-
ues in the proposition below and in Table 1. Please refer to
Appendix A.2 for the proofs of these claims.

Proposition 1. Under the assumptions of our FT (see
above), the following properties hold: (i) in the absence
of regularization (p = 1), there are no solutions to the FT;
(ii) in the absence of data (p = 0), there is no unique solu-
tion to the FT; and (iii) in order for there to exist a solution
to the FT there must be regularization on the mean function.

These limiting cases match our intuition conveyed ear-
lier that also apply to the neural network context. Further-
more, if we assume that there do exist valid solutions for
v, p € (0,1), it follows that the solutions should either un-
dergo sharp transitions or smooth cross-overs between the
behaviors described in the limiting cases when varying the
regularization strengths. Section 4 shows that, empirically,
these phase diagrams resemble Fig. 1. We leave the analyti-
cal justification for the types of boundaries and their shapes
and placement in the phase diagram for future work.

4 EXPERIMENTS

The main focus of our experiments is to visualize the phase
transitions in two-dimensional phase diagrams and iden-
tify summary statistics ("observables") that display them.
We establish that these properties are independent of any
particular neural network architecture by showing qualita-
tive agreement with the field theory. Finally, through this
exploratory analysis we discovered a method for finding
well-suited combinations of (p, v)-regularization strengths
that reduces a two-dimensional hyperparameter search to
one-dimension, allowing for the efficient identification of
heteroskedastic model fits that neither over- nor underfit.

Modeling Choices We chose jig, A¢ to be fully-connected
networks with three hidden layers of 128 nodes and leaky
ReLU activation functions. The first half of training was
only spent on fitting jig, while in the second half of training,

both fip and A¢ were jointly learned. This improves stability,
since the precision is a dependent on the mean fig, and is
similar in spirit to ideas presented in Skafte et al. [2019].
Complete training details can be found in Appendix B.2.

Datasets We analyze the effects of regularization on sev-
eral one-dimensional simulated datasets, standardized ver-
sions of the Concrete [ Yeh, 2007], Housing [Harrison and
Rubinfeld, 1978], Power [Tiifekci, 2014], and Yacht [Ger-
ritsma, 1981] regression datasets from the UC Irvine Ma-
chine Learning Repository [Kelly et al.], and a scalar quan-
tity from the ClimSim dataset [ Yu et al., 2023]. We fit neural
networks to the simulated and real-world data and addition-
ally solve our FT for the simulated data. Detailed descrip-
tions of the data are included in Appendix B.1. We present
the results for a simulated sinusoidal (Sine) dataset as well
as the four UCI regression datasets and have results for the
other simulated datasets in Appendix B.S5.

4.1 QUALITATIVE ANALYSIS

Our qualitative analysis aims at understanding architecture-
independent aspects of heteroskedastic regression upon vary-
ing the regularization strength on the mean and variance
functions, resulting in the observation of phase transitions.

Metrics of Interest We are interested in how well-
calibrated the resulting models are as well as how expressive
the learned functions are. We compute two types of metrics
on our experiments to summarize these properties. Firstly,
we consider the mean squared error (MSE). We measure this
quantity between predicted mean fig(x;) and target y;, as
well as between predicted standard deviation (A~/2(z;))
and absolute residual |fig(x;) — y;|. If the mean and stan-
dard deviation are well-fit to the data, both of these values
should be low. We opt for A~z MSE due to its similarities
to variance calibration [Skafte et al., 2019] and expected
normalized calibration error [Levi et al., 2022]. Secondly,
we evaluate the Dirichlet energy for the FT and its discrete
analogue, geometric complexity [Dherin et al., 2022], for
neural networks of the learned fig, A¢, i, K. As previously
mentioned, the Dirichlet energy of a function f is defined as
/ X p(z HV f(2)||3 dx. Meanwhile, geometric complexity is

-1 Zi:l ||V f()||3. Each quantity captures how expres-
sive a learned function is, with more expressive functions
yielding a higher value and is analogous (or equivalent) to
the quantity we penalize in the FT setting.

Plot Interpretation We present summaries of the fitted
models in grids with p on the z-axis and vy on the y-axis
in Fig. 2. The far right column (y = 1) corresponds to
MLE solutions. The main focus is on qualitative traits of fits
under different levels of regularization and how they behave
in a relative sense, rather than a focus on absolute values.
Fig. 3 show the summary statistics along the slice where



Table 2: Comparison of a deep heteroskedastic regression model with diagonal regularization search with 5-NLL [Seitzer
et al., 2022] and two conformal prediction implementations. For details on the selection criteria of the heteroskedastic model
see Appendix D.2. The final two columns are comparisons against models selected in the same way as in our suggestion,
but trained on half of the data in a split conformal fashion. The third column has uniform bandwidth (homoskedastic)
assumptions while the fourth column has a locally adaptive [Lei et al., 2018] (heteroskedastic) bandwidth. Possibly due to
the reduced training size, performance suffers. In a conformal setting the "standard deviation" does not have an obvious
analogue. We calibrate the bandwidths to be set to the 0.682 quantile because + 1 standard deviation covers ~ 68.2%
of a standard normal distribution. Lowest mean value of for each quantity is bolded. We report the average and standard
deviations of y- and A~2-MSE across six runs on test data.

Dataset Metric ‘ Heteroskedastic B-NLL Conformal  Conformal (local)
Sine 1 MSE 0.80 £ 0.00 0.69 +£0.05 0.54 +0.09 0.82 £0.00
A~ 2MSE 0.80 = 0.00 0.52+0.07 0.36+0.13 0.33 £0.00
Concrete wMSE 0.11 £0.02 0.55+0.30 0.27+£0.01 0.80 £ 0.00
A~2MSE 0.30+£0.51 1.09£0.20  0.09 £ 0.00 0.43 +£0.00
Housing u MSE 1.22 £0.00 0.32+0.05 0.31+0.00 0.31 £ 0.00
A~ 2MSE 0.76 £ 0.00 0.88+0.03 0.13+0.00 0.14 £ 0.00
Power 1 MSE 0.04 +0.01 0.09+£0.01 0.18+0.00 0.19 £0.00
A" 2MSE 0.03 +0.01 0.31+0.37 0.03+0.00 0.03 +0.00
Yacht wMSE 0.01 £ 0.01 0.01 +£0.01 0.04 £0.00 0.84 £ 0.00
A~2MSE 0.01 +0.01 1.33+£0.02 0.01 +0.00 0.49 +£0.00
Solar Flux u MSE 0.29 +£0.00 0.38+0.00 0.05+0.00 0.33 £0.00
A~ 2MSE 0.12£0.00 0.32+0.00 0.01+0.00 0.37+0.01

p = 1 —~. Zero on these plots corresponds to the upper left
corner while one corresponds to the lower right corner. We
provide model fits arranged in grids of the same orientation
for the field theory and neural networks on the Sine dataset
in Figs. 10 and 11.

Observation 1: Our metrics show sharp phase transitions
upon varying p,, as in a physical system.

Fig. 2 and Fig. 3 show a sharp transition, both leading to
worsening and improving performance when moving along
the minor diagonal. In totality, across all metrics, the five
regions are apparent. But not all of the regions in Fig. 1
appear in the heatmaps of each metric. For example, region
Oy does not always appear in the metrics related to the
mean. When using neural networks to approximate p and A,
there are sharper boundaries between phases than in the FT’s
numerical solutions. The boundary between Uy and Oy is
sharply observed in the plots of [ ||Vu(x)||3 dz. However,
in terms of p MSE, a smoother transition (i.e., region .S) is
visible.

Observation 2: The FT insights and observed phases are
consistent with the numerically solved FT and the results
from fitting neural networks. Thus, our results are not tied
to a specific architecture or dataset.

In alignment with our theoretical insights, phases Uy and Oy
exhibit consistent behavior across y-values (vertical slices
in Fig. 2). Qualitatively, we find the same types of phase
diagrams and phase transitions across all considered data

sets. Empirically, we observe that boundaries between re-
gions of interest are similar in shape across datasets but
not quantitatively the same, i.e., phase transitions occur at
differing levels of regularization for different data sets of
different dimensionality.

In the right-hand columns (p — 1), there is near-perfect
matching of the data by the mean function and this is also
visible in the lower rows (y — 0). Within the metrics
we assess, the shapes of the regions vary with regulariza-
tion strength in a similar fashion on all datasets. In the
plots of [ ||[VA(x)||3 dx, the region where A is flatter cov-
ers a larger area compared to the phase diagram showing
J IV ()3 dz. That is, for the same proportion of regular-
ization as the mean, the precision remains flatter.

4.2 QUANTITATIVE ANALYSIS

Our quantitative analysis aims to demonstrate the practical
implications of our qualitative investigations that result in
better calibration properties.

Observation 3: We can search along p = 1 — ~ to find a
well-calibrated (p,~y)-pair from region S.

Our FT indicates that a slice across the minor diagonal of
the phase diagram should always cross the .S region (see
Fig. 1). Fig. 3 show that by searching along this diagonal,
we indeed find a combination of regularization strengths
where both /iy and A, generalize well to held-out test data.



This implies that there is no need to search all of the two-
dimensional space, but only a single slice which reduces the
number of models to fit from O(N?) to O(N), where N is
the number of p and  values that are tested.

Fig. 3 shows that along the minor diagonal the performance
is initially poor, improves, and then drops off again. These
shifts from strong to weak performance are sharp. The regu-
larization pairings that result in optimal performance with
respect to ji- and A~'/2-MSE are near each other along this
diagonal for the real-world test data. As the theory predicts,
the performance becomes highly variable as we approach
the MLE solutions and the FT fails to converge in this region.
In practice, we propose searching along this line to find the
(p,7)-combinations that minimize the p- and A~%-MSEs
and averaging the regularization strengths to fit a model. We
compare models chosen by our diagonal line search to two
heteroskedastic modeling baselines in Appendix D on the
synthetic and UCI datasets as well as a scalar quantity from
the ClimSim dataset [Yu et al., 2023]. We present a subset of
the results below in Table 2. In most cases the model chosen
via the diagonal line search was competitive or better than
the baselines.

5 RELATED WORK

Uncertainty can be divided into epistemic (model) and
aleatoric (data) uncertainty [Hiillermeier and Waegeman,
2021], the latter of which can be further divided into ho-
moskedastic (constant over input space) and heteroskedastic
(varies over input space). Handling heteroskedastic noise
historically has been and continues to be an active area of
research in statistics [Huber, 1967, Eubank and Thomas,
1993, Le et al., 2005, Uyanto, 2022] and machine learning
[Abdar et al., 2021], but is less common in deep learning
[Kendall and Gal, 2017, Fortuin et al., 2022], probably due
to pathologies that we analyze in this work. Heteroskedastic
noise modeling can be interpreted as reweighting the impor-
tance of datapoints during training time, which Wang et al.
[2017] and Mandt et al. [2016] show to be beneficial in the
presence of corrupted data and Khosla et al. [2022] in active
learning.

To the best of our knowledge, Nix and Weigend [1994] were
the first to model a mean and standard deviation function
with neural networks and Gaussian likelihood. Skafte et al.
[2019] suggest changing the optimization loop to train the
mean and standard deviation networks separately, treating
the standard deviations variationally and integrating them
out as Takahashi et al. [2018] does in the context of VAEs,
accounting for the location of the data when sampling, and
setting a predefined global variance when extrapolating.
Stirn and Knowles [2020] also perform amortized VI on the
standard deviations and evaluate their model from the per-
spective of posterior predictive checks. Seitzer et al. [2022]
provide an in-depth analysis of the shortcomings of MLE es-

timation in this setting and adjust the gradients during train-
ing to avoid pathological behavior. Stirn et al. [2023] extend
the idea of splitting mean and standard deviation network
training in a setting where there are several shared layers
to learn a representation before emitting mean and standard
deviation. Finally, Immer et al. [2023] take a Bayesian ap-
proach to the problem and use Laplace approximation on
the marginal likelihood to perform empirical Bayes. This
allows for regularization to be applied through the prior and
for separation of model and data uncertainty. While these
works propose practical solutions, in contrast to our work,
none of them study the theoretical underpinnings of these
pathologies, let alone in a model- or data-agnostic way.

6 CONCLUSION

We have used field-theoretical tools from statistical physics
to derive a nonparametric free energy, which allowed us
to produce analytical insights into the pathologies of deep
heteroskedastic regression. These insights generalize across
models and datasets and provide a theoretical explanation
for the need for carefully tuned regularization in these mod-
els, due to the presence of sharp phase transitions between
pathological solutions.

We have also presented a numerical approximation to this
theory, which empirically agrees with neural network so-
lutions to synthetic and real-world data. Insights from the
theory have informed a method to tune the regularization to
arrive at well-calibrated models more efficiently than would
naively be the case. Finally, we hope that this work will
open an avenue of research for using ideas from theoretical
physics to study the collective effects and nonlinear phe-
nomena frequently encountered in large-scale deep learning
models [Bamler and Mandt, 2018].

Limitations Our FT and subsequent analysis are restricted
to regression problems. From an uncertainty quantification
perspective, the models we discuss only account for the
aleatoric uncertainty. Though our use of regularizers has a
Bayesian interpretation, we are not performing Bayesian in-
ference and do not account for epistemic uncertainty [Papa-
markou et al., 2024]. Solving the FT under a fully Bayesian
framework would result in stochastic PDE solutions. We
leave analysis of this setting to future work. Additionally,
our suggestion to search p = 1 — ~ to find good hyper-
parameter settings appears to be valid, but requires fitting
many models. Ideally, one might hope to use the field theory
directly to find optimal regularization settings for real-world
models, but our numerical approach is currently not accurate
enough for this use case.
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A THEORETICAL DETAILS

A.1 FULL FUNCTIONAL DERIVATIVES

Our FT is:
LonlinB) ~ [ 90| 5A@#2 - F1oA(@)| + p(olp [IVA@IE + IVAWIE] ds

and its functional derivatives are

9L — p(z)pA(z)i(z) — 2pvAp(z
{5,; ZE pA ()P (x) — 2pyAf(x) an

L — vl — ] - 278K (),

where 7(z) = y(x) — fi(x) After setting equal to zero we arrive at

(@) (0 () — (o)) = 22720 0)

A~ % 5- AN (2
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12)

A.2 PROOFS

Proposition 1. Assuming there exists twice differentiable functions j : R* — R, A : R? — R<, the following properties
hold

i In the absence of regularization (p = 1), there are no solutions to the FT.
ii In the absence of data (p = 0), there is no unique solution to the FT.

iii In order for there to exist a solution to the FT there must be regularization on the mean function.

Proof. Without loss of generality, we consider a uniform p(z) and drop it from the equations.



(1) When p = 1 the necessary conditions for an optima are

(i)

(iii)

B

B.1

A*(@) (i (z) — y(2)) = 0
. 13
{m*(x) y(@))? = 1 1
A (@) (i (z) — y(2)) = 0
— {0 ; (14)
{A*(:f)(u*(x) —y(@)? =1
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which is a contradiction and there cannot exist x, A that are solutions.
When p = 0 the integral we seek to maximize is:
Lontidy= [ o [ ptule)togity )iy + 7 [YIVA@IE +7IVA@)E] do (7
= | Vi@ +31vA@)E] da (18)

where we p(y|z) = N(y| i(x), A(z)). Each term in this integral is non-negative, so the minimum value it could be is
zero. Any pair of constant functions p, A will minimize this integral, of which there are infinitely many.

In the («, §)-regularization, it is equivalent to say « > 0 is a necessary condition for there to exist a solution to the FT.
Recall that we seek to minimize

>

Lap(ft, ):Lp(w)(—logﬁ(ylw)+Oé||V/fL(fE)H§+5\|VA(I)I\§)dI

where we p(y|z) = N (y|i(z), A(x)). Suppose a = 0. Then the functional simplifies to

win Lo, A) = min | pla)(~logplule) + 61| VA })dz 19
JIN oA Jx
< uin [ pla) 5 (A (@)? ~ log Al) + p()B] VA 3o (20)
A Jx
:%1(95) /X p(x)%(]\(x)f‘(x)Q—logA(ac))dx (21)

where A is a constant function and #(z:) = y(z) — fi(z). This provides an upper bound on the integral as we are
looking at a restricted class of possible precision functions. Since the precision function is constant the gradient penalty,
HVA(Z‘) ||3, is zero. There is no penalty on /i so it can perfectly pass through every data point and the contribution of
A(z)(fi(x) — y(x))? is zero while — log A(x) can become arbitrarily negative. Thus there is no solution if o = 0.

O

EXPERIMENTAL DETAILS

DATASETS

We chose 64 datapoints in each of the simulated datasets. The generating processes for each simulated dataset is included in
Table 3 and can be seen in Fig. 4. The homoskedastic data is simulated in the same way, but with f(z) = 1. For testing,
we simulate a new dataset of 64 datapoints with the same process. Table 4 summarizes the UCI datasets. We provide a
description of the ClimSim climate data in Appendix D.4.



Cubic

Figure 4: Visualization of heteroskedastic and homoskedastic versions of simulated datasets. Specific details for the
functional form of these can be found in Table 3.

Table 3: Simulated datasets. Each dataset is defined by a true y function and then a noise function f. All data is generated as
p(x) + e(x) where e(z) ~ N(0, f(x)?). After the datasets were generated they were scaled to have mean zero and standard
deviation one. The homoskedastic versions of each dataset fix f(x) = 1. The datasets are shown in Fig. 4.

Dataset Mean (1) Noise Pattern (f) Domain
Sine u(z) = 2sin(4mx) f(x) = sin(67z) + 1.25 z € [0,1]
0.1 forzx < —0.5
Cubic  p(z) =23 flx)= ; igiz 2 {(;8,50’2)0) x € [—1,1]
10 forx > .5
Curve pu(z)=x—222+40523 f(z)=z2+1.5 x € [-1.5,1.5]

Table 4: UCI dataset.

Dataset ~ Train Size Test Size  Input Dimension
Concrete 687 343 8
Housing 337 168 13
Power 6379 3189 4

Yacht 204 102 6




B.2 TRAINING DETAILS

We take 22 values of +, p that range from 1071 up to 1 — 107> on a logit scale for all of the experiments run on neural
networks. The exact values were (p,~y € {0.9999, 0.999, 0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001,
0.00001, 0.000001, 0.0000001, 0.00000001, 0.000000001, 0.0000000001, 0.00000000001}). For the FTs we take 20 values
from 10—6 uptol— 10~ 7 also on a logit scale (p,y € {0.999999, 0.99999, 0.99999, 0.9999, 0.999, 0.99, 0.9, 0.8, 0.7, 0.6,
0.5,0.4,0.3,0.2,0.1,0.01,0.001, 0.0001, 0.00001, 0.000001}). This scaling increases the absolute density of points evaluated
near the extreme cases of 0 and 1 where the theoretical analysis of the FT focused. The ranges differ slightly due to numerical
stability during the fitting. The limiting cases of v, p € {0, 1} were omitted for numerical stability and the ranges of values for
the FTs vs neural networks vary slightly for the same reason. The values of p, v that were taken along the p = 1 —y line were
0,7 €{0.0,1.0x1071 1.0x 1071 1.0x 107, 1.0x 1078, 1.0x 1077, 1.0 x 107, 1.0 x 1072, 1.0 x 10~*, 1.0 x 1073,
0.01,0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30,
0.31,0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52,
0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73,
0.74,0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.99, 0.999, 0.9999, 1.0}.
All experiments were run on Nvidia Quadro RTX 8000 GPUs. Approximately 500 total GPU hours were used across all
experiments.

B.3 METRICS

* Geometric complexity: For the one-dimensional datasets the function is evaluated on a dense grid and then the gradients
are approximated via finite differences and a trapezoidal approximation to the integral is taken. In the case of the FT,
we only assess the function on the solved for, discretized points while with the neural networks we interpolate between
points. For the higher-dimensional UCI datasets the gradients are also numerically approximated in the same way but
only at the points in the train/test sets.

* MSE: In the fully non-parametric, unconstrained setting, the maximum likelihood estimates at each x; are fi(z;) = y(=;)
and A(x;) = (y(z;) — ()2 = A"Y2%(x;) = |y(w;) — p(w;)], serving as motivation for checking these
differences.

Variability over runs The experiments were each run six times with different seeds. The standard deviations over the
metrics displayed in Fig. 2 are shown in Fig. 5. The Sobolev norms show that there is the most variability in the overfitting
regions Oy and parts of Oy;. This indicates that the functions themselves vary across runs. However, when turning to quality
of fits, the MSEs show a different pattern of regions of instability, and Oy has low variability in terms of actual performance.

B.4 FIELD THEORY

For the discretized field theory we take nf, = 4096 evenly spaced points on the interval [—1, 1]. There are two datapoints
placed beyond [—1,1] because the method we use to estimate the gradients requires the datapoints to have left and
right neighbors. These datapoints were not included when computing our metrics. Of these 4096 datapoints 64 were
randomly selected to be used for training neural networks [ig, A¢. The field theory results were consistent across choices of
nge € {256,512,1024,2048,4096}. We present results for n; = 4096 in the main paper. We train for 100000 epochs and
use the Adam optimizer with a basic triangular cycle that scales initial amplitude by half each cycle on the learning rate. The
minimum and maximum learning rates were 0.0005 and 0.01. The cycles were 5000 epochs long. We clip the gradients at
1000. A subset of the fits can be seen in Fig. 10.

B.S SIMULATED DATA WITH NEURAL NETWORKS

For all of the simulated datasets except for Sine we train for 600000 epochs and use the Adam optimizer with a basic
triangular cycle that scales initial amplitude by half each cycle on the learning rate. The minimum and maximum learning
rates were 0.0001 and 0.01. The cycles were 50000 epochs. The first 250000 epochs are only spend on training /iy while the
remaining 350000 epochs are spent training both fig, f\¢. We clip the gradients at 1000. The training for the Sine dataset was
the same, except trained for 2500000 epochs. A subset of the fits for the Sine dataset can be seen in Fig. 11.



Sine (FT)

Figure 5: The standard deviation over the six runs of each metric shown in Fig. 2

B.6 UCI DATA WITH NEURAL NETWORKS

For the concrete, housing and yacht datasets we train for 500000 epochs and use the Adam optimizer with a basic triangular
cycle that scales initial amplitude by half each cycle on the learning rate. The minimum and maximum learning rates were
0.0001 and 0.01. The cycles were 50000 epochs. The first 250000 epochs are only spend on training /iy while the remaining
250000 epochs are spent training both fig, Ad,. Meanwhile on the power dataset, we had to use minibatching due to the size
of the dataset. We used minibatches of 1000 and trained for 50000 total epochs with the first 25000 dedicated solely to fig
and the remainder training both g, A¢. The same cyclic learning rate was used but with cycle length 5000. We clip the
gradients at 1000.

B.7 PRACTICAL SUGGESTION

We can also view the p = 1 — ~y line that we search from the perspective of the «, 8 parameterization of the regularizers. Let
p,7 € (0,1) such that p = 1 — ~. Furthermore, we know that o = %7 and that 8 = 1;pp(1 — 7). If we are interested in
the model settings for (p(t) = ¢,v(t) =1 —t) for t € (0, 1), it then follows that we are equivalently interested in

(@l0).50) = (A0 81 - )
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Figure 6: Same configuration as Fig. 2, except all results here pertain to minimizing the FT on six different synthetic datasets
described in Table 3. Dataset names with an * are the homoskedastic counterparts.

C ADDITIONAL RESULTS

C.1 ALL SYNTHETIC DATASET RESULTS

Both FT and neural networks were fit to the heteroskedastic and homoskedastic synthetic datasets described in Table 3. The
main results for these displayed as phase diagrams of various metrics can be seen in Fig. 6 and Fig. 7 respectively. We
largely see the same trends as were exhibited by the real-world datasets seen in Fig. 2.

C.2 EFFECT OF NEURAL NETWORK SIZE

We used the same training methods to fit models with one and two hidden layers and fit them to the concrete dataset. The
results in the phase diagram were consistent with the other experiments, as can be seen in Fig. 8.

D COMPARISON TO BASELINES

We compare the performance of our diagonal p 4+ v = 1 search against two baselines, 5-NLL [Seitzer et al., 2022] and an
ensemble of six MLE-fit heteroskedastic regression models [Lakshminarayanan et al., 2017]. We use u MSE, A~2 MSE,
and expected calibration error (ECE) to evaluate the models. In all cases lower values are better. Note that the method of
ensembling multiple individual MLE-fit models from Lakshminarayanan et al. [2017] could be implemented on our method
or 3-NLL as well.
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Figure 7: Same configuration as Fig. 2 and Fig. 6, except all results here pertain to training a neural network on six different
synthetic datasets described in Table 3. Dataset names with an * are the homoskedastic counterparts.
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Figure 8: Same configuration as Fig. 2, however, these results pertain all to fitting a neural network of various sizes on the
concrete dataset.

D.1 MODEL ARCHITECTURE

All (individual) models have the same architecture: fully connected neural networks with three hidden layers of 128 nodes
and leaky ReLU activations for the synthetic and UCI datasets and fully connected neural networks with three hidden layers
of 256 nodes for the ClimSim data [Yu et al., 2023]. Note that both baselines model the variance while our approach models
the precision (inverse-variance). In all cases we use a softplus on the final layer of the variance/precision networks to ensure
the output is positive.

For the 5—NLL implementation we take 8 = 0.5 as suggested in Seitzer et al. [2022]. The ensemble method we use fits 6
individual heteroskedastic neural networks and combines their outputs into a mixture distribution that is approximated with
a normal distribution. We do not add in adversarial noise as the authors state it does not make a significant difference. We fit
six /—NLL models and six MLE-ensembles.

D.2 DIAGONAL SELECTION CRITERIA

After conducting our diagonal search we found the model that minimized ;¢ MSE and the model that minimized A~z MSE
on the training data. In some cases these models coincided. We then used the model that was on the midpoint (on a logit
scale) of the p + v = 1 line between these two models to compare. The results are reported in Table 5. In all cases our
method is competitive with or exceeds the performance of these two baselines—particularly on real-world data. Note that our
goal is to show that we are able to find models that model the mean and standard deviation of the data well, that is, lie in our
proposed region S of the phase diagram. We do not claim that this method will always provide optimal model within S.

D.3 TRAINING DETAILS

Training for our method was conducted as described in sections B.2 and B.6 of the appendix.

For the baselines, on all of the simulated datasets we train for 600000 epochs and use the Adam optimizer with a basic



triangular cycle that scales initial amplitude by half each cycle on the learning rate. The minimum and maximum learning
rates were 0.0001 and 0.01. The cycles were 50000 epochs. We clip the gradients at 1000. The same optimization scheme is
performed for the UCI datasets but for 500000 epochs for the Housing, Concrete, and Yacht datasets. The Power dataset was
trained for 50000 epochs with batches of 1000.

D.4 CLIMSIM DATASET

The ClimSim dataset [Yu et al., 2023] is a largescale climate dataset. Its input dimension is 124 and output dimension is 128.
We use all 124 inputs to model a single output, Visible direct solar flux, SOLS [W/ m? ]. We train on 10,091,520 of the
approximately 100 million points for training and we use a randomly selected 7,209 points to evaluate our models.

D.5 DEFICIENCY OF ECE

Shortcomings of ECE (in isolation) are well documented [Kuleshov et al., 2018, Levi et al., 2022, Chung and Neiswanger,
2021]. The main issue with ECE is it measures average calibration, while individual calibration is more desirable. On our
diagonal search we found that often times the models that achieved the best ECE were those that were severely underfit and
belonged to region U;. In Table 5 we see that the MLE-ensemble is able to achieve low scores while being uncompetitive
with respect to the two MSE metrics. The MLE-ensembles were unstable on several of the datasets with respect to the
variance network which is consistent with Proposition 1. In particular this can be seen for the synthetic datasets the A~z
MSE diverges to infinity.

E FOURIER FEATURE MAPPINGS AND GEOMETRIC COMPLEXITY

As a preprocessing step we apply Fourier feature mapping Tancik et al. [2020] before passing our data into MLPs. That is,
we map inputs z — ~y(z) where 7(+) is defined as follows

v(z) = [cos(2mbT x),. .., cos(2mb} z)]

and the {b;}%_, are independently sampled from a N/(0, 1) distribution. This method has been shown to allow MLPs to
learn high frequency data and to reduce training time. The motivation for this additional step is to encourage the mean
and precision networks to overfit and hopefully, mimic some of the behaviors of the FT more faithfully. We try this in two
different settings. In the first we add in the Fourier Features layers with an L2 penalty and then again with the Dirichlet
energy/geometric complexity as the regularizer similar in spirit to Hoffman et al. [2019]. Just as in the earlier experiments
we penalize the mean and precision networks separately and weigh the regularizers in the same (p, v)-scheme.

In the case where we penalize the geometric complexity the regularizer now matches exactly the regularizer of the field
theory setting. We find even greater correspondence between results. However, there is a heavy computational burden where
training takes on the order of 10 times slower in wall clock time.

We use 2-layer MLPs with width 128 and set the Fourier features mapping to be 64-dimensional, with o = 2 when sampling
the weights for both the 1 and A networks. We remove one layer from the MLPs (compared to the earlier experiments) to
accommodate the fact that we add in the Fourier feature mapping. We train the models to 128 samples from the generated in
the same way as the Sine dataset with 5000 epochs warmup for the mean network and 150000 epochs total and have batch
size of 32. Despite fewer training epochs than the earlier neural network experiments, we still achieve overfitting behavior.
We use the same set of (y, p)-pairings as in the neural network experiments described in section B.5. Summary plots of -
and A—'/2-MSE as well as Dirichlet energies can be found in Fig. 9. A subset of resulting fits can be seen in Figs. 12 and 13.



Table 5: Comparison of a deep heteroskedastic regression model with diagonal regularization search against two baselines
[Seitzer et al., 2022, Lakshminarayanan et al., 2017]. For details on the selection criteria of the heteroskedastic model see
Appendix D.2. We report the average and standard deviations of expected calibration error (ECE), ;x MSE and A~z MSE
on test data. Lowest mean value for each metric is bolded. In several cases the MLE ensemble failed to properly converge
(yielding inf +nan results when the standard deviation function diverges to infinity). Individually, there are many pitfalls
to using MLE to train heteroskedastic regression models, and it only takes one member of the ensemble to fail to diverge
to yield these results. In particular, note that these numerical issues occur most commonly for the quantities relating to
the standard deviation. This highlights the instability of MLE training in this setting. Note that the method of ensembling
multiple individual MLE-fit models could be performed on our method or S-NLL as well.

Dataset Heteroskedastic B-NLL MLE Ensemble

Metric Seitzer et al. [2022] Lakshminarayanan et al. [2017]
Cubic

ECE 0.2380 + 0.03 0.2385 £ 0.02 0.2411 £0.02

uwMSE 0.2339 £ 0.01 0.1500 + 0.01 1.1809 + 1.88

A=2MSE  0.2397 +0.02 0.1397 £ 0.01 inf + nan
Curve

ECE 0.1804 £ 0.02 0.1754 £ 0.02 0.2432 +0.00

uw MSE 0.4318 £0.12 0.4877 £0.16 1.0067 £ 0.19

A=2MSE  0.4655 £ 0.09 0.4187 + 0.20 inf + nan
Sine

ECE 0.2499 + 0.00 0.2082 + 0.03 0.2313 £ 0.05

uw MSE 0.7968 + 0.00 4.4107 £6.90 0.9716 + 0.06

A"zMSE  0.7968 + 0.00 43524 +6.89 inf % nan
Concrete

ECE 0.2471 £0.01 0.2552 £ 0.00 0.0655 + 0.01

uw MSE 0.1055 + 0.02 0.5461 +0.30 2.2454 + 1.74

A-3*MSE  0.3028 +0.51 1.0867 £ 0.20 1.3 x 10° +1.2 x 10°
Housing

ECE 0.0653 £ 0.00 0.2631 + 0.01 0.1332 £ 0.02

uw MSE 1.2236 £ 0.00 0.3175 £ 0.06 155.4494 + 128.27

A=3*MSE  0.7610 = 0.00 0.8820 + 0.03 218.8269 + 195.38
Power

ECE 0.2233 £ 0.01 0.2370 £ 0.00 0.0285 + 0.01

uw MSE 0.0350 £ 0.01 0.1013 £ 0.01 0.0177 = 0.00

A~3*MSE  0.0343 +0.01 0.3081 £ 0.37 0.0091 + 0.00
Yacht

ECE 0.3038 £ 0.04 0.2882 £ 0.02 0.0463 + 0.02

uw MSE 0.0077 £ 0.01 0.0137 £ 0.01 6.2670 = 13.96

A=:MSE  0.0076 = 0.01 1.3275 £0.02 8.0599 + 19.18
Solar Flux

ECE 0.1503 + 0.00 0.3007 = 0.00 0.1924 + 0.04

uwMSE 0.2887 + 0.00 0.3771 £0.00 1.0067 £ 0.19

A“3MSE  0.1175 +0.00 0.3217 £ 0.00 4.6 x 10° £9.9 x 10°
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Figure 9: Phase diagrams for the field theory (left), and MLPs with Fourier feature mappings with Dirichlet energy
regularization (middle) and L2 regularization (right) fit to the Sine dataset.



Field Theory Fits

Figure 10: Subsample of fits of the field theory. Moving right to left increases p while moving up and down to up increases
v. Training data is shown in orange, the mean function is shown in red, and £ 1 SD is shaded. Note: FT was fit to 4096
datapoints, but here we display a thinned subset of the points for visual clarity.



MLP (L2) Fits
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Figure 11: Subsample of fits of the neural networks on the Sine dataset. Training data is shown in orange, the mean function

is shown in red, and £ 1 SD is shaded. Notice the abrupt phase transition from overfitting to underfitting in the mean
function (in the lower right corner) and similarly in the precision function (in the upper right corner). Moving right to left

increases p while moving up and down to up increases .



Fourier Feature (DE) Fits
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Figure 12: Subsample of fits of neural networks with Fourier Feature layers and Dirichlet energy/geometric complexity
regularization. Training data is shown in orange, the mean function is shown in red, and 4= 1 SD is shaded. Moving right to
left increases p while moving up and down to up increases -y.



Fourier Feature (L.2) Fits
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Figure 13: Subsample of fits of neural networks with Fourier Feature layers and L2 complexity regularization. Training data

is shown in orange, the mean function is shown in red, and &= 1 SD is shaded. Moving right to left increases p while moving
up and down to up increases +y.



