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Abstract

Diffusion models exhibit excellent sample qual-
ity, but existing guidance methods often require
additional model training or are limited to spe-
cific tasks. We revisit guidance in diffusion
models from the perspective of variational infer-
ence and control, introducing Diffusion Trajec-
tory Matching (DTM) that enables guiding pre-
trained diffusion trajectories to satisfy a termi-
nal cost. DTM unifies a broad class of guid-
ance methods and enables novel instantiations.
We introduce a new method within this frame-
work that achieves state-of-the-art results on sev-
eral linear, non-linear, and blind inverse prob-
lems without requiring additional model training
or specificity to pixel or latent space diffusion
models. Our code will be available at https:
//github.com/czi-ai/oc—guidance.

1. Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020) and related families (Lipman et al.,
2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023)
exhibit excellent synthesis quality in large-scale generative
modeling applications. Additionally, due to their principled
design, these models exhibit great potential in serving as
powerful generative priors for downstream tasks (Daras
etal., 2024).

Consequently, guidance in diffusion models has received
significant interest. However, the dominant approaches to
classifier guidance (Dhariwal & Nichol, 2021) and classifier-
free guidance (Ho & Salimans, 2021) require training addi-
tional models or retraining diffusion models for each condi-
tioning task at hand, or are based on simplistic assumptions
detrimental to sample quality (Kawar et al., 2022; Chung
et al., 2022a; Song et al., 2023; Pandey et al., 2024b).
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A trained diffusion model can be viewed as a steerable
stochastic system that follows learned dynamics. By mod-
ifying its inputs, we can guide it in the spirit of stochastic
optimal control — aiming to reach desired terminal states
(e.g., matching a guidance signal) while staying close to its
native trajectory distribution. This intuition motivates our
formulation of classifier guidance as a variational control
problem (Kappen, 2008). Inspired by Control as Inference
frameworks (Kappen et al., 2012; Levine, 2018), we model
guided diffusion as a controlled Markov process, where
control signals are treated as variational parameters. We
then apply variational inference to optimize these controls,
ensuring that generated samples satisfy terminal constraints
without straying far from the unconditional sample mani-
fold (see Fig. 1a). We refer to this framework as Diffusion
Trajectory Matching (DTM).

Recent work on steering diffusion models has already incor-
porated ideas from optimal control (Huang et al., 2024; Rout
et al., 2025). However, these works focus on a restricted
class of control problems. This obscures the available de-
sign choices revealed through our novel framework. Indeed,
we find that DTM generalizes and explicitly contains a large
class of prior work on guidance. We demonstrate the util-
ity of this generalization by introducing a new sampling
algorithm that seamlessly integrates with state-of-the-art
diffusion model samplers like DDIM (Song et al., 2021a)
and adapts well to diverse downstream tasks.

To summarize, we make the following contributions:

* We propose Diffusion Trajectory Matching (DTM),
a generalized framework for training-free guidance
based on a variational control perspective. DTM sub-
sumes many existing and novel guidance methods.

* We instantiate our framework as Non-linear Diffusion
Trajectory Matching (NDTM), which can be readily
integrated with samplers like DDIM.

* We show that NDTM outperforms previous state-of-
the-art baselines for solving challenging and diverse
inverse problems with pretrained pixel-space (see Fig.
1) diffusion models. Furthermore, NDTM can be ex-
tended trivially to latent-space diffusion models like
Stable Diffusion (Rombach et al., 2022) for tasks like
style guidance (see Fig. 3).
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2. Background

Diffusion Models. Given a perturbation kernel p(x;|x¢) =
N (usxo,021,), diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020) invert the noising process by learning
a corresponding reverse process parameterized as,

Q: g(xor—1lxr) = [ alxe—1lxs). ey
¢

The reverse diffusion posterior is specified as q(x;—1|x:) =
N (po(x¢,t),021;) where pg(.,.) is learned via score
matching (Hyvérinen & Dayan, 2005; Vincent, 2011; Song
& Ermon, 2019). Analogously continuous-time diffusion
models (Song et al., 2020; Karras et al., 2022) assume that
a forward process

dx; = f(t)x; dt + g(t) dwy, t€[0,T], 2)
with an drift f(¢) and diffusion coefficients ¢(¢) and stan-
dard Wiener process wy, converts data xg € R< into noise
x7. A reverse SDE specifies how data is generated from
noise (Anderson, 1982; Song et al., 2020),

dx; = [f(t)x¢ — g(1)*Vy, log pi(x¢)| dt+g(t)dwy, (3)

which involves the score Vi, logp;(x;) of the marginal
distribution over x; at time t. The score is intractable to
compute and is approximated using a parametric estimator
8¢ (x¢, 1), trained using denoising score matching.

Classifier Guidance in Diffusion Models. Given a pre-
trained diffusion model sy (x:,1), it is often desirable to
guide the diffusion process conditioned on input y. Conse-
quently, the conditional diffusion dynamics read

dx; = [f(£)x¢ — g(t)* Vi, log p(x¢|y)] dt + g (t)dwby. (4)

In classifier guidance (Dhariwal & Nichol, 2021), the condi-
tional score can be decomposed as

Vi, logp(xtly) = se(x¢,t) + p: Vi, logp(ylx¢).  (5)

where p; is the guidance weight. The noisy likelihood
score is often estimated by training a noise-conditioned
estimator. It is also common to estimate this likelihood via
p(y|x;) = [ p(xo|x:)p(y|x0)dxo. For example, Diffusion
Posterior Sampling (DPS) (Chung et al., 2022a) approxi-
mates the diffusion posterior as, p(xg|x;) = 0(E[xq|x¢]),
where E[xg|x;] is Tweedie’s estimate of the posterior at
x¢ (Efron, 2011). This approximation of the diffusion pos-
terior in DPS results in a high sampling budget and high
sensitivity to the gradient weight p,. More expressive ap-
proximations (Song et al., 2023; Pandey et al., 2024b) result
in specificity to linear inverse problems and thus cannot be
extended to latent-space diffusion models trivially. We refer
to Daras et al. (2024) for an in-depth discussion on explicit

approximations of the diffusion posterior. We will show in
Section 3.4 that classifier guidance in diffusion models is a
special case of our proposed framework. Next, we discuss
our proposed framework, which generalizes to diverse tasks
like inverse problems and style-guided generation without
specificity to pixel or latent-space diffusion models.

3. Guidance with Diffusion Trajectory
Matching (DTM)

We now propose a novel framework based on variational
control for guidance in diffusion models. Our framework
can be directly applied to pretrained diffusion models with-
out requiring model retraining. For the remainder of our
discussion, we restrict our attention to diffusion models and
discuss an extension to flow-matching (Lipman et al., 2023)
in Appendix A.3.

In the following, we first formulate guidance in discrete-time
diffusion models as a variational optimal control problem
(Section 3.1) following Kappen et al. (2012), which we
refer to as Diffusion Trajectory Matching (DTM). We then
present specific parameterizations of DTM in Section 3.2,
which we work out as a guidance algorithm in Section 3.3.
Lastly, in Appendix A.2, we transfer the DTM framework
to continuous-time diffusion models (Song et al., 2020) and
recover prior work in guidance in diffusion models.

3.1. Variational Control for Diffusion Guidance

The idea of our guidance framework is to take a controlled
deviation from the unguided diffusion trajectory implied by
Eq. (1) in Section 2, which we repeat for convenience:

Q: g(xor—1lxr) = [ [ alxe—1lxs). 6)
t

To steer the trajectory towards a target state fulfilling exter-
nal constraints, we introduce a control signal u, at every
time t. This yields the following guided dynamics for a
given initial state x:

P p(xor—1|x7, ur.7) = Hp(Xt—1|Xt,llt)- 7
t

While we model the guided dynamics as Markovian due to
convenience, non-Markovian approximations are also possi-
ble (Li et al., 2021). Given a set of external constraints, the
task is to determine the variational control u;. Consequently,
following Kappen et al. (2012), we can pose this problem
as a stochastic optimal control problem with the terminal
and transient costs formulated as,

C(xr,ur.r) = wr Exyp[P(x0)] + DxL(P || Q). (8)

Transient Cost Cy,

Terminal Cost Cye

The terminal cost in Eq. (8) encodes desirable constraints
on the final guided state while the transient cost ensures
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Figure 1. Our method guides diffusion sampling to fulfill external constraints. To this end, we optimize the local direction u; via
external constraints while respecting the original trajectory, see Eq. (11) (left, center). This recovers more accurate reconstructions
across tasks compared to classical guidance methods: Nonlinear deblurring (Right). Our method accurately captures most details, while
competing methods introduce artifacts in the generated reconstructions.

that the guided trajectory does not deviate strongly from
the unguided trajectory, so that the final guided state xg lies
near the image manifold. The two losses are traded by a
scalar wr.

Choice of Terminal Cost. The terminal cost in Eq. (8) en-
codes desirable constraints on the final guided state. For in-
stance, ®(x0) x — log p(y|xo) could be the log-likelihood
of a probabilistic classifier for class-conditional generation
or the degradation process for solving inverse problems
(see Section 5 for exact form of terminal costs for different
tasks). For instance, Huang et al. (2024) adapts guidance
for a non-differentiable terminal cost using a path integral
control (Kappen, 2005) formulation. While an interesting
direction for further work, we only assume that the terminal
cost is differentiable for now.

Choice of Divergence. We use the KL-Divergence as it
decomposes over individual timesteps,

Co = ZExt [Dxr (p(xe—1]%e,we) | g(xe-11%4)) | (9)
t

Note that other divergence measures can be useful depend-
ing on the specific form of the diffusion posterior (Nachmani
et al., 2021; Zhou et al., 2023; Pandey et al., 2025; Holderri-
eth et al., 2025).

Simplifications. The proposed loss in Eq. (8) is generic and

principled, but is difficult to jointly optimize for all controls
u;.7 due to the need to backpropagate through the entire
diffusion trajectory. To avoid this computational overhead,
we make several simplifications that make the objective
computationally tractable. We justify the validity of the
modifications through our empirical results in Section 5.

First, we optimize u; in a greedy manner, that is at any
time ¢ in the diffusion process we optimize u;, assuming
that the remaining steps ¢ — 1, ..., 1 are unguided. After
optimizing for u;, we sample from the optimized posterior
X¢—1 ~ p(x¢—1|Xt,uf) and iterate. When the variational
control of uy is flexible enough, suboptimal greedy choices
early in the trajectory can be compensated for later.

Second, we evaluate the terminal cost at the current expected
final guided state via Tweedie’s Formula for E[xq|x¢, ug]:

Cie = By [0 (x0)] & (Efxo ], uy]) = @ (%) (10)
where we have approximated p(xo|x;, uz) ~ 6(xo — X§).

Diffusion Trajectory Matching (DTM). Together, the op-
timization problem to solve at time ¢ given a position x;
reads:

Cug) = wr®(%p) + Dxu(p(xe—1]xe, we) || g(xi-1]%4)) -

(11
We refer to Eq. (11) as Diffusion Trajectory Matching
(DTM).



Variational Control for Guidance in Diffusion Models

Algorithm 1 NDTM (DDIM). Sampling proceeds by infer-
ring the control ( ) followed by sampling from the
guided posterior (shaded) at any time ¢

1: Input: Optimization Steps: N, Guidance: ~y, Pretrained
denoiser: €g(.,.), Timestep schedule: {t}7_,, DDIM
Coefficients: oy, oy, Loss Weights: 7, k¢, wr

2: Initialization: x ~ N(0, 1)
3: fort =T to1ldo
4: uto) =0
5: émeond < €p (Xt7 t)
6: fori=0to N —1do
T el colxi+yul’, )
8: %) + Elxolx; + yuf’]

2
9: Cscore = Tt2 HeunCOﬂd Agézmol 9
10: Ccontrol = Kt ||ut||2 )
11: Cterminal = wT@(f{Ol )
12: Ct( Z‘) &= Cywre T+ Castizal + Cterminal'
13: uy“) «— Update(ugz), Vuth@)
14:  end for

15 x4_1 < DDIM(x; + yuj,t)

16: end for
17: return xg

Continuous-Time Variants. To apply DTM to continuous-
time diffusion and flow matching, we adapt the transient
costs Cy. We call the following Continuous-Time Diffusion
Trajectory Matching, derived for continuous-time diffusion
(Song et al., 2020) in Appendix A.2:

£)2

Co — 9(2)
Similarly, for flow matching (Lipman et al., 2023; Liu et al.,
2023; Albergo et al., 2023), we refer to this as Flow Trajec-
tory Matching (FTM), see Appendix A.3:

Ex, [Hse(Xt,t)—se(xt,ut,t)Hﬂ, (12)

Co = |[vo(x4, ) — vo(xs, ue, 1) (13)

Next, we present a specific parameterization of our frame-
work and its instantiation using standard diffusion models.

3.2. Non-linear Diffusion Trajectory Matching (NDTM)

In the context of Gaussian diffusion models (Ho et al., 2020;
Song et al., 2020; Karras et al., 2022), the unguided diffusion
posterior is often parameterized as,

= N(po(x¢,t), 07 1,)

In analogy to how the unguided diffusion denoising process
q is parameterized, we define our controlled process p as

:N(HO(Xt7Ut7t),O'§Id). (]5)

Q(Xt—l\Xt) (14)

P(Xt71|Xt7 U—t)

From a practical standpoint, since unconditional score
models are usually parameterized using neural networks
with an input noisy state and a timestep embedding, we
further parameterize the posterior mean fug(x, us, t) =
po(f(x¢,ug,t),t), where the aggregation function f :
R? x R? x R — R combines the noisy state x; and the
control u, appropriately. In this work, we choose an addi-
tive form of f = x; + yu; where + is the guidance weight
used to update the current noisy state x; in the direction of
the control signal u;. We leave exploring other aggregation
functions as future work. Moreover, in practice, we sample
from a single diffusion trajectory and therefore omit the
expectation in Eq. (11). Consequently, the control cost in
Eq. (11) can be simplified as,

— po(xe, )| + wrd(Xh).
(16)

Due to the non-linear dependence of the guided posterior on
the control signal u,, we refer to the transient cost specifica-
tion in Eq. 16 as Non-Linear Diffusion Trajectory Matching
(NDTM). We will show in Section 3.4 that linear control
can be formulated as a special case of this parameterization,
yielding classifier guidance. Next, we instantiate the NDTM
objective practically.

C(uy) = [|po(x¢ + yuy, t)

3.3. Specific Instantiations

Here, we present a simplified form of the NDTM objective
in the context of DDIM (Song et al., 2021a).

Proposition 3.1. For the diffusion posterior parameteriza-
tion in DDIM (Song et al., 2021a), the NDTM objective in
Eq. 16 has the following tractable upper bound (see proof
in Appendix A.1),

2 _ 2 .
Cluy) < A7 [welf,+77 [[en(Xes t) —eo (30, 1) ||, +wr @ (%),
17)
where X; = X¢ + YU, is the guided state and the coefficients

Y/ @—1 \/17 Vear—1(1—oy) 1 (1—cw)
— — 0
r t—1 t

are time-dependent scalars.

Kt = and Ty =

The coefficients o, and oy are specific to DDIM (see Ap-
pendix A.l for more details). Intuitively, the simplified
NDTM loss in Eq. (17) measures the deviation between
the guided and unguided dynamics, penalizing the magni-
tude of the control signal u, (first term) and deviations in
the noise predictions (second term). On the contrary, the
terminal loss ensures that the expected final guided state
satisfies the external constraints. Therefore, the first two
terms in Eq. (17) act as regularizers on the control signal
uy. In Appendix A.2, we derive this simplification also for
continuous-time diffusion models. Lastly, it is worth noting
that the control loss in Eq. 17 can be generalized as,

Clur) = we|[u| 2 +ws|Jea (e, t) — o (e, 0) |2+ wr P (X))
(18)
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In this work, unless specified otherwise, we set ws = TE,
w,. = k2. However, exploring alternative weighting sched-
ules for different loss terms can be an interesting direction
for further work.

Putting it all together. To summarize, at each diffusion
time step ¢, we estimate the control signal u; by minimizing
the cost C(u;) (for instance Eq. (17) for DDIM). This iter-
ative optimization allows the model to dynamically adjust
the control to best align the trajectory with the desired ter-
minal cost while minimizing deviations with the unguided
diffusion trajectory. Finally, we sample from the guided
posterior p(x;_1|x¢, u;). We provide a visual illustration
of the NDTM algorithm in Fig. la and its pseudocode
implementation in Algorithm 1.

3.4. Connection to Existing Guidance Mechanisms

In this section, we rigorously establish a connection between
optimal control and classifier guidance: Our variational
formulation in Section 3.1 captures existing approaches.
‘We derive this result in the continuous-time variant, as this
allows for a closed-form solution of the control problem.

In particular, let us choose a linear parameterization of the
guided score in Eq. (12), that is sg(x¢, us, t) = se(x¢,t) +
u;. Then, the transient cost reduces to:

Ce = / [Jug||*dt. (19)

This is exactly the case of the well-established Path Integral
Control (Kappen, 2005; 2008). The solution of this optimal
control problem in Eq. (8) reads (Kappen, 2008, Eq. (34)):

u; = g(t)wrVx, log By, x,) [exp(—P(x0))].  (20)

Notably, if the terminal cost takes the form of a classi-
fier likelihood ®(xg) o —logp(y|xo), it can be shown
(Huang et al., 2024) that the optimal control simplifies
to classifier guidance (Dhariwal & Nichol, 2021): u; =
g()wrVx,p(y|x¢). This puts a large class of methods
approximating the expectation over the posterior p(xo|x;)
(Chung et al., 2022a; Song et al., 2023; Pandey et al., 2024b;
Huang et al., 2024) into perspective: In terms of our DTM
framework, they perform optimal control with a linear con-
trol mechanism (i.e. control added linearly to the score
function). Empirically, we will see in Section 5 that our
generalization to non-linear control provides significant per-
formance improvements.

4. Related Work

Conditional Diffusion Models. In general, the conditional
score Vy, log p(x:|y) needed for guided sampling can be
learned during training (Saharia et al., 2022; Podell et al.,
2024; Rombach et al., 2022) or approximated during infer-
ence (see Daras et al. (2024) for a detailed review).

Here, we focus on training-free guidance during inference.
In this context, there has been some recent progress in ap-
proximating the noisy likelihood score (see Eq. 5) by ap-
proximating the diffusion posterior p(xg|x:). For instance,
DPS (Chung et al., 2022a) approximates the diffusion poste-
rior by a Dirac distribution centered on Tweedie’s estimate
(Efron, 2011). This has the advantage that the guidance can
be adapted to linear and non-linear tasks alike. However,
due to a crude approximation, DPS converges very slowly
and, in our observation, could be unstable for certain tasks
(see Table 1). Consequently, some recent work (Yu et al.,
2023; Bansal et al., 2024) adds a correction term on top of
the DPS update rule to better satisfy the constraints. MPGD
(He et al., 2024) attempts to alleviate some of these issues
by leveraging the manifold hypothesis. In contrast, our pro-
posed method instead directly estimates the guided posterior
at each sampling step, thus sidestepping the limitations of
DPS in the first place.

It is worth noting that our method resembles DCPS (Janati
et al., 2024), which adopts a similar approach of learning a
series of potentials to sample from the final posterior. How-
ever, DCPS involves an additional overhead of Langevin
Monte Carlo sampling in addition to the posterior optimiza-
tion step. Moreover, the control perspective adopted in this
work helps contextualize prior work in guidance within our
framework (see Section 3.4), which is lacking in DCPS.
Some recent methods like TFG (Ye et al., 2024) also pro-
pose general frameworks for guidance in diffusion models.
However, our proposed method does not fit within their
framework.

More recent work (Kawar et al., 2022; Wang et al., 2023;
Song et al., 2023; Pandey et al., 2024b; Pokle et al., 2024;
Boys et al., 2024) relies on expressive approximations of
the diffusion posterior. While this can result in accurate
guidance and faster sampling, a large proportion of these
methods are limited to linear inverse problems, which fur-
ther limits their application to pixel space diffusion models.
In contrast, our method can be adapted to generic inverse
problems and is thus agnostic to the diffusion model archi-
tecture. Lastly, another line of work in inverse problems
approximates the data posterior p(xg|y) using variational
inference (Blei et al., 2017; Zhang et al., 2018a). For in-
stance, RED-diff (Mardani et al., 2024) proposes to learn an
unimodal approximation to the data posterior by leveraging
a diffusion prior. However, this can be too restrictive in
practice and comes at the expense of blurry samples. We
refer interested readers to Daras et al. (2024) for a more
detailed review of training-free methods for solving inverse
problems in diffusion models.

Optimal Control for Diffusion Models. There has been
some recent interest in exploring connections between
stochastic optimal control and diffusion models (Berner
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et al., 2024). Chen et al. (2024) leverages ideas from control
theory for designing efficient diffusion models with straight-
line trajectories in augmented spaces (Pandey & Mandt,
2023). Since our guided sampler can be used with any pre-
trained diffusion models, our approach is complementary
to this line of work. More recently, SCG (Huang et al.,
2024) leverages ideas from path integral control to design
guidance schemes with non-differentiable constraints. In
contrast, we only focus on differentiable terminal costs, and
extending our framework to non-differentiable costs could
be an important direction for future work. Lastly, Rout et al.
(2025) propose RB-Modulation, a method based on control
theory for personalization using diffusion models. Interest-
ingly, while RB-Modulation is primarily inspired by a class
of tractable problems in control theory, it is a special case
of our framework in the limit of wy = 0, w, = 0 and v = 1.
Therefore, our proposed framework is more flexible.

5. Experiments

While our method serves as a general framework for guid-
ance in diffusion models, here, we focus on solving inverse
problems and style-guided generation. Through both quan-
titative and qualitative results, we demonstrate that our ap-
proach outperforms recent state-of-the-art baselines across
these tasks using pretrained diffusion models. Lastly, we
emphasize key design parameters of our proposed method
as ablations. We defer all implementation details to App. B.

Problem Setup and Terminal Costs: For inverse problems,
given a corruption model .4 and a noisy measurement y €
R4 the goal is to recover the unknown sample Xy ~ Dgata,
from the degradation y = A(xo) + oyz, 2z~ N (0,1).
For linear inverse problems, y = Axq. In the case where
only the functional form of the degradation operator A is
known but its parameters are not, the problem is known as
Blind Inverse Problem. For inverse problems, we consider
the following form of the terminal cost ®(%{) in Eq. 17,

(xf) = [ly — A3 1)

where %}, is the Tweedies estimate at any given time t. We
also consider the task of style guidance with Stable Diffu-
sion, where the goal is to generate samples adhering to a
specific prompt and a reference style image. More specifi-
cally, given a reference style image 7, a pretrained feature
extractor (like CLIP) F, a pretrained decoder D such that
% = D(z}), we define ®(x)) as,

(%) = |G(F(r)) — G(F (%))l (22)

where G denotes the Gram-matrix operation and ||.|| 7 de-
notes the Frobenius norm. Note that prompt adherence is
achieved via the pretrained Stable Diffusion model.

Models and Datasets: For inverse problems, we conduct
experiments on the FFHQ (256 x 256) (Karras et al., 2019)

Table 1. Comparisons on noisy Non-linear Deblur. NDTM out-
performs competing baselines by a significant margin. Bold: best.

FFHQ (256 x 256) ‘ ImageNet (256 x 256)

Method ~ LPIPS| FID| KID| LPIPS| FID| KID
DPS 0752 249.01 0.139 0.888 346.82 0.2186
RED-diff 0362 6457 0036 0416 78.07 0.0224
MPGD 0.636 11398 0.086 0832 14896 0.085
RB-Modulation 0.064 19.92 0.0032 0249 47.60 0.0078
NDTM (ours)  0.046 14.198 0.0004 0.163 34.31 0.0032

and ImageNet (256 x 256) (Deng et al., 2009) datasets, us-
ing a held-out validation set of 1,000 samples from each.
For FFHQ, we use the pre-trained model provided by Chung
et al. (2022a), and for ImageNet, we use the unconditional
pre-trained checkpoint from OpenAl (Dhariwal & Nichol,
2021). For style guidance, following MPGD (He et al.,
2024), we randomly generate 1k (prompt, image) pairs us-
ing images from WikiArt (Saleh & Elgammal, 2015) and
prompts from PartiPrompt (Yu et al., 2022). We use the
pre-trained CLIP encoder and Stable Diffusion 1.4 models
as the feature extractor F and diffusion model, respectively.

Tasks and Metrics: For inverse problems, we consider ran-
dom inpainting, super-resolution, and non-linear deblurring.
Additionally, we consider blind image deblurring (BID)
task where we additionally infer the deblurring kernel k
along with the final reconstruction. We set the noise level
oy = 0.01 for all inverse problems.

For quantitative evaluation on inverse problems, we report
metrics optimized for perceptual quality, including Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018b), Fréchet Inception Distance (FID) (Heusel et al.,
2017), and Kernel Inception Distance (KID) (Birikowski
et al., 2018). For completeness, recovery metrics like the
Peak Signal-to-Noise Ratio (PSNR) are provided in Ap-
pendix C. With the exception of BID (for which we use
100 images), we evaluate all other inverse problems on 1k
images. For style guidance, following prior work Yu et al.
(2023); He et al. (2024), we report the CLIP score (which
measures prompt adherence) and the Style Score (which
measures style adherence) on 1k text and image pairs.

5.1. Inverse Problems

We first evaluate the proposed NDTM sampler against com-
peting baselines for non-linear, blind, and linear inverse
problems. We provide all hyperparameter details for our
method and competing baselines in Appendix B.

Non-Linear Deblurring. We consider non-linear deblur-
ring with the same setup as in Chung et al. (2022a). For
this task, we compare against DPS (Chung et al., 2022a),
RED-Diff (Mardani et al., 2024), MPGD (He et al., 2024),
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Table 2. NDTM performs on-par/better than competing baselines on noisy linear inverse problems. Missing entries indicate unstable
performance after multiple tuning attempts Bold: best.

Super-Resolution (4x)

Random Inpainting (90 %)

FFHQ (256 x 256) | Imagenet (256 x256) |  FFHQ (256 x256) | Imagenet (256 x 256)

Method LPIPS| FID| KID| LPIPS| FID| KID| |LPIPS, FID| KID| LPIPS| FID| KID|
DPS 0.061 20.61 0.0029 0.195 30.67 0.0021| 0.058 2024 0.0019 0.152 32.56 0.0023
DDRM 0.116 36.13 0.0183 0.325 5276 0.0151| 0582 167.57 0.1530 0.791 211.66 0.1517
RED-diff 0.151 4154 00179 0354 51.83 0.0084 | 0430 15549 0.1370 0.633 218.88 0.1531
MPGD 0.119 2854 0.0032 0215 37.39 0.0017| 0.658 17328 0.134 0908 156.44 0.053

C-1IGDM 0.106 29.61 0.0073 0270 39.96 0.0024| 0551 137.85 0.1020 - - -
RB-Modulation  0.054 18.22 0.0013 0211 3526 0.0032| 0.091 2576 0.0026 0223 4630 0.0066
NDTM (ours) ~ 0.054 18.99 0.0019 0.158 2875 0.0011| 0.059 2011 0.0020 0.149 3043 0.0018

Table 3. Comparisons on noisy Blind Image Deblurring (BID)
for the FFHQ 256x256 dataset. NDTM outperforms DMPlug
(Wang et al., 2024) by a significant margin while requiring an
order of magnitude less sampling time (reported in minutes/img).
Bold: best. {: N=15, T=200, ¢: N=15, T=400.

Gaussian blur |

Motion blur

Method LPIPS| FID] Time| LPIPS| FID| Timel

DMPlug 0.147 6936 5124 0.118 7285 51.13
NDTM! (Ours)  0.103 55.15 7.17 0086 49.99 7.17
NDTMS (Ours) 0.083 47.34 18.07 0.063 38.6 18.13

and RB-Modulation (Rout et al., 2025) (which is a special
case of our method with v, = 1.0, ws, = 0, w, = 0). Fig-
ure 1 (Right) illustrates the comparison between competing
baselines and our proposed method, NDTM, on this task.
Qualitatively, we find that DPS is very sensitive to guidance
step size and is usually unstable on this task. Moreover,
while RED-diff does not have stability issues, it is biased
towards generating blurry samples. This is not surprising
given their unimodal approximation to the data posterior
p(Xo|y). On the contrary, NDTM generates high-fidelity
reconstructions with a stable sampling process. Similarly,
our quantitative results in Table 1 validate our qualitative
findings as our method outperforms competing baselines on
perceptual quality for both datasets by a significant margin.

Blind Image Deblurring (BID). Next, we extend our frame-
work to blind image deblurring, maintaining the same setup
as DMPlug (Wang et al., 2024). We compare against DM-
Plug, which, to the best of our knowledge, is also the state-
of-the-art method for this task. Interestingly, adapting our
proposed method for blind inverse problems only involves
jointly optimizing the unknown blur kernel parameters along
with the control u;. More specifically, for degradation of the
form y = k*xg + o,z with unknown blurring kernel k, we
update line 11 in Algorithm 1 as Ciemina = wr® (%, k®)
and optimizing for the trainable kernel for each image, as
G+ « update(k®, VkCt(i)).

Reference

ueissnen)

uono

Figure 2. NDTM outperforms competing baselines on blind im-
age deblurring (BID) with Gaussian (top) and Motion (bottom)
kernels. NDTM accurately captures most details, while competing
methods introduce artifacts in the generated reconstructions.

Figure 2 (Right) illustrates the comparison between DM-
Plug and NDTM adapted for this task. Qualitatively, we
find that while DMPlug can introduce artifacts in generating
reconstructions, NDTM generates high-quality reconstruc-
tions. Table 3 further validates our qualitative findings as our
method outperforms DMPlug on perceptual quality metrics.
More interestingly, while DMPlug is extremely expensive
for a single image, our method outperforms the former on
sample quality by a significant margin while being an order
of magnitude faster (see Table 3). This illustrates that our
sampler has a more efficient way to trade sampling speed
for quality. We present additional results in Appendix C.

Linear Inverse Problems. Lastly, we compare competing
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Reference Style
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Style: 555.5 CLIP: 32.03 Style: 798.0 CLIP: 27.46 Style: 410.2 CLIP: 32.50 Style: 425.7 CLIP: 29.84 Style: 481.7 CLIP: 31.54  Style: 700.5 CLIP: 31.21

MPGD
[He et al.]

", N : 7 b ’
o i '.". v/_‘_,-/«' T |

Style: 441.7 CLIP: 31.60  Style: 744.5 CLIP: 30.56 Style: 403.7 CLIP: 32.90 Style: 426.7 CLIP: 28.54 Style: 406.7 CLIP: 31.53 Style: 646.0 CLIP: 32.43

s

(Ours) NDTM

Figure 3. Style Guidance with Stable Diffusion. NDTM (proposed) provides a better tradeoft between Prompt adherence and Style
adherence using Stable Diffusion 1.4. While baselines can introduce random artifacts in generated samples, NDTM preserves sample
quality while exhibiting better style adherence. (Top Panel) Reference Style Images. (Bottom Panel) Samples corresponding to the
reference style images in the Top Panel. The CLIP (Radford et al., 2021) score (higher is better) represents the similarity between the
generated image and the text prompt, indicating prompt adherence. The Style score (lower is better) represents the distance between CLIP
features for the reference style and the generated image, indicating style adherence. We present additional quantitative results in Table 4.

methods on linear inverse problems: (4x) Super-resolution
and Random inpainting with a 90% masking probability. In
addition to the baselines used for the non-linear deblur task,
we also compare against DDRM (Kawar et al., 2022) and
C-IIGDM (Pandey et al., 2024b). As illustrated in Table 2,
for super-resolution, NDTM outperforms competing base-
lines for both datasets. For random inpainting, our method
performs comparably with DPS on the FFHQ dataset. How-
ever, for a more difficult benchmark like ImageNet, NDTM
outperforms the next best competing baseline, DPS, on this
task. We present additional qualitative results for linear
inverse problems in Appendix C

5.2. Style Guidance

The goal in style guidance is to generate samples that ad-
here to a specified text prompt and the style of a reference

CLIP Score T Style Score |

FreeDOM 30.86 508.28
MPGD 30.21 498.85
(Ours) NDTM 31.34 475.62

Table 4. Quantitative comparison between NDTM and other base-
lines on style guidance generation using Stable Diffusion 1.4.
NDTM exhibits better prompt (see CLIP score) and style adher-
ence (see Style Score) over competing baselines.

image. We follow the same setup as MPGD and use a
pretrained Stable Diffusion 1.4 text-to-image model. We
specify the terminal cost for NDTM in Eq. (22) and com-
pare with MPGD (He et al., 2024) and FreeDOM (Yu et al.,
2023) on this task. Figure 3 and Table 4 demonstrate that
NDTM exhibits a better balance between prompt and style
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Figure 4. Impact of different design choices in NDTM on Distortion (PSNR) and Perception (LPIPS) for the non-linear deblur task. (a,
b) The extent of guidance can be jointly controlled by varying the terminal loss weight (w7 ) and the weight (). (¢, d) Compute vs quality
can be traded off by jointly varying the number of optimization steps (N) and the number of diffusion steps.

adherence over competing baselines. Degraded to b f2 ts Generated

5.3. Ablation Studies

Next, we analyze the impact of different design choices in
NDTM on the perception (LPIPS) and distortion (PSNR)
quality for the non-linear deblur task on ImageNet.

Impact of Guidance. Since the terminal cost weight wr

and the parameter 7 affect the optimization of the varia-  Fjoyre 5. The optimal variational controls hierarchically refine
tional control parameters u;, we analyze their impact on image features over time. (Top Row) Non-Linear Deblur (Bottom
sample quality. From Fig. 4a, we observe that increasing Row) Random Inpainting. (Left to Right) We visualize optimal
the terminal weight wr leads to an improvement in both controls at different times to > ¢1 > t2 > t3 in diffusion sam-
perceptual and distortion quality. However, in the limit of ~ pling, progressively capturing coarse to fine details.

wp — oo (i.e., where the regularization terms in Eq. 17 can

be ignored), the perceptual quality degrades, which high-

lights the importance of the transient cost in our framework. 6. Conclusion

Similarly, increasing -y also leads to an improved sample

quality. However, a large «y can also lead to overshooting. Our proposed framework offers a principled way to guide a
pretrained diffusion model while respecting an external cost

through the lens of variational optimal control. Our empiri-
cal results suggest that optimizing each diffusion step allows
for more flexibility in guidance compared to commonly used
approximations of the diffusion posterior.

Impact of Optimization Steps. It is common to trade sam-
ple quality for the number of sampling steps in diffusion
models. Interestingly, NDTM provides a complementary
axis to achieve this tradeoff in the form of adjusting the
number of optimization steps per diffusion update. We illus-
trate this in Fig. 4(b), where for a fixed sampling budget of While our method adapts well to diverse tasks, there remain
50 diffusion steps, NDTM can achieve better reconstruction several interesting directions for future work. First, a more
quality by increasing the number of optimization steps (N).  thorough theoretical investigation into the optimization dy-
However, since the runtime increases linearly as N grows ~ namics of the proposed method and integration with existing
(see Figure 4(d)), a practical choice depends on the avail- methods for fast diffusion sampling (Pandey et al., 2024a)
able compute. We find that for this task, N=2 provides a could help alleviate the sampling costs of our method. Sec-
favorable tradeoff between sampling time and quality and, ond, our method is only one instantiation of our framework,

therefore, use it for state-of-the-art comparisons on the Ima-  leaving ample room for exploration in investigating novel
geNet dataset in Table 1. variational parameterizations and refining cost functions

L ) which could further enhance the flexibility of our approach.
Control Visualizations We visualize the optimal controls

u; in Figure 5. We observe a hierarchical refinement of Lastly, in a broader sense, our work gives another example
image features over time. More specifically, the control of the intricate connections between test-time adaptation
inference captures global structure at the start of diffusion of diffusion models and Bayesian inference; this view may
sampling and gradually refines local details (like edges), enable future generative models to perform more complex

thereby encoding high-frequency information at later steps. inference tasks such as hierarchical modeling, and quantify-
ing their uncertainty (Jazbec et al., 2025).
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A. Proofs
A.1. Simplification of the NDTM Objective for DDIM

We restate the theoretical result for convenience.

Proposition A.1. For the diffusion posterior parameterization in Song et al. (2021a), the objective in Eq. 16 can be
simplified as (see proof in Appendix A.1),

C < k2||ui|)? + 72|[ea (Res ) — €0 (0, )2 + wrd(XD). (23)

_ . . . Jai—T a1 (1—
where X; = X; + YW, is the guided state and the coefficients k; = L\/aitl and s = /1 — op_q1 — 0752 — % are

time-dependent scalars.

Proof. In the case of DDIM (Song et al., 2021a), the diffusion posterior is parameterized as (Eqn. 12 in Song et al. (2021a)),

[,l.g(Xt,t) = atzlxt + |:\/ 1-— A1 — 0’? — 'at\l/Lcit_at)} ee(xt7t), (24)

Ja

=T

where the diffusion noising process is parameterized as p(x;|x¢) = N (y/arXo, (1 — o)) and €g(x¢, t) is a pretrained
denoiser which models E[e|x;] and intuitively predicts the amount of noise added to x for a given noisy state x; at time t.
Additionally, for notational convenience, we denote the coefficient of the denoiser in Eq. 24 as 7;. Following Song et al.
(2021a), the coefficient o is further defined as,

o) 2

It follows that,

Qp—1

VO

-1

Vv At

Q1 BEVASTES]

= Xt +

VO VOt

N—_——

=Kt

po(x¢,t) = Xt + Teeg(Xe, t) (26)

Mo (Xi +yuy, t) = (Xt +yu) + Tiea(xe + yuy, t) (27)

u; + Ty€q(x¢ + yuy, t) (28)

where we denote the coefficient of the control signal u; in the above equation as x for notational convenience. Consequently,
the NDTM cost in Eq. 16 can be simplified for the DDIM posterior parameterization in Eq. 24 as,

C = [||mo(xe + vy t) — po(x,)|[; + wrd(xh)] (29)

= [Hntut + 7 (eo (%t + yuy, t) — 69(Xt7t))|‘§ + wﬁb(ié)} (30)

<® ﬁf”utHz + 77 ||eo (e + yug, t) — EG(Xtyt)Hz + wp®(%p) GD

where (7) follows from the triangle inequality. This completes the proof. [

A.2. Continuous-Time Diffusion Trajectory Matching

Analogous to the discrete case, we represent unguided diffusion dynamics using the following continuous-time reverse
diffusion dynamics (Anderson, 1982; Song et al., 2020),

dx; = [f(t)xt — g(t)2sp(x¢, t)|dt + g(t)dw:, (32)
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where sg(xy, ) is a pretrained score network. Similarly, we parameterize the guided continuous dynamics by inserting the
control non-linearly into the score function follows,

dx, = [ 1(t)x0 = g(t)2so(x0w, )] dt + g(t)duor. (33)
Denote the unguided path measure as u(x(7T" — 0)) and the guided path measure as p(x(7" — 0)|u(T — 0)).
Then, the optimal control problem reads, in analogy to Eq. (8):

C(xp, (T = 0)) = wr B, [®(x0)] + Dir.(u(x(T = 0)xr, u(T — 0)) || v(z(T — 0)[x7)) . (34)

Terminal Cost Cye Transient Cost Cy;

By (Song et al., 2021b, Theorem 1 in Appendix A) (which follows from an application of Girsanov’s Theorem), the transient
cost reads:

Ce = Dia, (u((T = 0) e, u(T — 0)) || (x(T — ) (39)
1
- 5 /g(t)QEMHse(Xfm ui, t) - Se(xt? t) H2dt (36)

Taking the approximation that the control signal is optimized greedily, we find Eq. (12).

A.3. Extension to Flow Matching Models

For continuous flow matching models (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) with a vector
field vg (x4, 1),

dx; = vg(xy¢,t)dt, (37)
we insert the control signal into the dynamics through an additional dependence of the velocity field:

d

% = ve(xs,uy, ). (38)

Since flow matching uses the squared loss, it is natural to regularize deviation from the unguided trajectory in terms of the
velocity field:

Ctr :/Hve(xtaut7t) —'Ug(Xt,t)H2dt (39)

B. Implementation Details

In this section, we include practical implementation details for the results presented in Section 5.

B.1. Task Details
B.1.1. INVERSE PROBLEMS
Here, we describe the task setup in more detail.

Superresolution (x4): We follow the setup from DPS (Chung et al., 2022a), More specifically,

y ~N(y|L'x,021), (40)

»Cy

where S7 represents the bicubic downsampling matrix with downsampling factor f. In this work, we fix f to 4 for both
datasets.

Random Inpainting (90%) We use random inpainting with a dropout probability of 0.9 (or 90%). For this task, the forward
model can be specified as,

y ~ N(y|Mz, o 1,) (41)

where M € {0,1}%%4 is the masking matrix.
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Non-Linear Deblurring We use the non-linear deblurring setup from DPS. More specifically, we use the forward operator
F¢ (modeled using a neural network) for the non-linear deblurring operation. Given pairs of blurred and sharp images,
{x;,y;}, one can train a forward model estimator as (Tran et al., 2021),

¢* = arg;nhl ”yz - ~7:¢(wiv gtﬁ(xi’yl'))”% (42)

where G extracts the kernel information from the training pairs. At inference, the operator G can instead be replaced by a
Gaussian random vector g. In this case, the inverse problem reduces to recovering x; from y;. In this work, we directly
adopt the default settings from DPS.

Blind Image Deblurring (BID) We directly adopt the setup for blind image deblurring from DMPlug (see Appendix C.4 in
Wang et al. (2024) for more details). More specifically, in the BID task, the goal is to recover the kernel k in addition to the
original signal xq such that,

y=kxxo+oyz 43)

In this work, we adapt the default settings from DMPIlug. For BID (Gaussian), the kernel size is 64 x 64 with the standard
deviation set to 3.0. For BID (Motion), the kernel intensity is adjusted to 0.5.

B.1.2. STYLE GUIDANCE WITH STABLE DIFFUSION

In the context of text-to-image models like Stable Diffusion, the goal of style guidance is to generate a sample that
simultaneously adheres well to a given text prompt and style features from a reference image. More specifically, given a
reference style image 7, a pretrained feature extractor (like CLIP) F, a pretrained decoder D such that X} = D(z!), we
define ®(x}) as,

(%) = |G(F(r)) — G(F (%))l (44)
where G denotes the Gram-matrix operation and ||.||r denotes the Frobenius norm. In this formulation, the pretrained
text-to-image diffusion model works as a generative prior, p(x|t), where t is a text prompt embedding, and the goal is to
generate samples from the posterior p(x|r, t)

B.2. Inverse Problems - Task Specific Hyperparameters

Here, we provide a detailed overview of different hyperparameters for the baselines considered in this work for the
inverse problem tasks. We optimize all baselines and our method for the best sample perceptual quality. We use the
official code implementation for RED-Diff (Mardani et al., 2024) at https://github.com/NVlabs/RED-diff,
https://github.com/mandt-lab/c-pigdm, and https://github.com/sun-umn/DMP lug for running
all competing baselines.

B.2.1. DPS (CHUNG ET AL., 2022A)

We adopt the DPS parameters from Mardani et al. (2024). More specifically, we fix the number of diffusion steps to 1000
using the DDIM sampler. We set 17 = 0.5 for all tasks. Following Chung et al. (2022a), we set,

8]
= A

Table 5 illustrates different hyperparameters for DPS on all tasks for the FFHQ and ImageNet datasets.

(45)

B.2.2. DDRM (KAWAR ET AL., 2022)

Following Kawar et al. (2022), we fix n = 0.85, 1, = 1.0, and use the DDIM sampler with the number of diffusion steps set
to 20 across all linear inverse problems.

B.2.3. C-IIGDM (PANDEY ET AL., 2024B)

We set the number of diffusion steps to 20 for all tasks. It is also common to contract the reverse diffusion sampling for
better sample quality by initializing the noisy state as proposed in Chung et al. (2022b). We denote the start time as 7. We
re-tune C-IIGDM for the best perceptual quality for all linear inverse problems. Table 6 illustrates different hyperparameters
for linear inverse problems. We find that C-IIGDM fails to recover plausible images for the random inpainting task after
numerous tuning attempts.
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Table 6. C-IIGDM hyperparameters used for different tasks. We find

Table 5. DPS hyperparameters for different tasks that C-IIGDM fails to recover plausible images for the random inpaint-
FFHQ ImageNet ing task after numerous tuning attempts.
Task «a « FFHQ ImageNet
Super-Resolution (4x) 1.0 1.0 Task A w T o w T
Random Inpainting (90%) 1.0 1.0 Super-Resolution (4x)  -04 4.0 04 -04 40 04
Non-Linear Deblur 0.3 1.0

Random Inpainting (90%) - - - - - -

Table 7. RED-Diff hyperparameters used for different tasks.
FFHQ ImageNet
Task Ir A Ir A

Super-Resolution (4x) 05 10 05 04
Random Inpainting (90%) 0.5 0.25 0.5 0.25
Non-Linear Deblur 05 025 05 025

B.2.4. RED-DIFF (MARDANI ET AL., 2024)

We set 0y = 0 with a linear weighting schedule and I = 0.5, A = 0.25, and perform 50 diffusion steps using the DDIM
sampler for all tasks across the FFHQ and ImageNet datasets. We highlight different hyperparameters in Table 7.

B.2.5. MPGD (HE ET AL., 2024)

Following the optimal settings in He et al. (2024), we use the setting MPGD w/o proj using the DDIM sampler with 100
diffusion steps and guidance scale set to 5.0 for all tasks.

B.2.6. NDTM (OURS)

We use the Adam optimizer (Kingma & Ba, 2017) with default hyperparameters, fixing the learning rate to 0.01 for updating
the control u; across all tasks and fixing the kernel learning rate in the BID task to 0.01. We refer to the loss weighting
scheme in Eq. 16 as "DDIM weighting". Moreover, we use linear decay for the learning rate. We perform 50 diffusion steps
using the DDIM sampler across all datasets and tasks. We tune the guidance weight v, the number of optimization steps N,
loss weighting (wr, ws, we), DDIM 7 and the truncation time 7 (Chung et al., 2022b) for best performance across different
tasks. All these hyperparameters are listed in Table 9.

B.2.7. RB-MODULATION (ROUT ET AL., 2025)

Since RB-Modulation is a special case of NDTM with v = 1.0 and ws = w, = 0, we re-run NDTM for different tasks with
these settings, keeping all other hyperparameters fixed to report results for RB-Modulation.

B.3. Style Guidance Hyperparameters

B.3.1. MPGD (HE ET AL., 2024)

Following He et al. (2024), we use the DDIM sampler with 100 steps and = 1.0 without the time reversal (Lugmayr et al.,
2022) trick for fair comparisons. We set p = 17.5 and the classifier-free guidance scale to 7.5

B.3.2. FREEDOM (YU ET AL., 2023)

Following Yu et al. (2023), we use the DDIM sampler with 100 steps and 1 = 1.0 without the time reversal trick. We use
the classifier-free guidance scale of 5.0
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Table 8. BID hyperparameters for NDTM.
[ FFHQ

Task | N~y i T wr W We
BID (Gaussian) 15 1.0 0.7 1000 50 ddim ddim
BID (Motion) 15 1.0 07 1000 50 ddim ddim

Table 9. NDTM hyperparameters for different tasks.
| FFHQ | ImageNet

Task

N N ol n T wr W We

Super-Resolution (4x) 5 10 07 400 50 ddim ddim | 2 20 0.1 600 50 ddim ddim
2 2
5 2

Y n T wr Ws We

Random Inpainting (90%) 40 02 500 1 0 0 40 00 600 50 ddim ddim
Non-Linear Deblur 50 0.1 400 1 0 0 40 01 600 50 ddim ddim

B.3.3. NDTM

For NDTM, we use the DDIM sampler with 50 steps and = 1.0. We set the control learning rate to 0.002 with the Adam
optimizer. The loss weightings are set to wy = 1.0, w. = 0, ws = 0 with v = 4.0, N = 2 and a classifier-free guidance
scale of 5.0

C. Additional Experimental Results
C.1. Evaluation on Distortion Metrics

In this work, we primarily optimize all competing methods for perceptual quality. However, for completeness, we compare
the performance of our proposed method with other baselines on recovery metrics like PSNR and SSIM. Tables 12 and 13
compare our proposed method, NDTM, with competing baselines for linear and non-linear inverse problems. We find that
NDTM performs on par with other methods for the super-resolution task. However, for random inpainting and non-linear
deblur, NDTM outperforms competing methods in terms of distortion metrics like PSNR. Since NDTM also outperforms
existing baselines in terms of perceptual quality (see Table 2), our method provides a better distortion-perception tradeoff.

C.2. Runtime

Below, we compare different methods in terms of the wall-clock time required for running on a single image for the
superresolution task. From Table 10, we observe that while our method requires an inner optimization loop, it is still faster
than common baselines like DPS and DMPlug (see Table 11).

Table 10. Runtime comparisons for different baselines vs NDTM for super-resolution task on both datasets. The runtime numbers are in
wall-clock time (seconds) and tested on a single RTX A6000 GPU.

FFHQ (256 x 256) ‘ Imagenet (256 x 256)
DPS RED-diff C-IIGDM DDRM NDTM (Ours) ‘ DPS RED-diff C-IIGDM DDRM NDTM (Ours)
Runtime (secs / Img) 199.1 5.8 3.68 1.3 13.6 |399.3 7.1 16.4 2.4 383
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Table 11. Runtime comparisons for DMPlug baseline vs NDTM for blind image deblurring (BID) task on FFHQ dataset. The runtime
numbers are in wall-clock time (minutes) per image and tested on a single RTX A6000 GPU.

Method Gaussian blur \ Motion blur
Time| Time|
DMPlug 51.24 51.13
NDTM' (Ours) 7.17 7.17
NDTM¢ (Ours) 18.07 18.13

Table 12. Comparison between NDTM and existing methods for Linear IPs on distortion metrics like PSNR and SSIM. Missing entries
indicate that the method was unstable for that specific task. Bold: best.

\ Super-Resolution (4x) \ Random Inpainting (90 %)
| FFHQ (256 x 256) | Imagenet (256 x 256) | FFHQ (256 x 256) | Imagenet (256 x 256)
Method | PSNRT  SSIM{ | PSNRT  SSIM | PSNRt  SSIM? | PSNRfT SSIMT
DPS 29.06 0.832 23.61 0.676 27.76 0.832 20.96 0.657
DDRM 30.12 0.864 24.15 0.701 17.34 0.371 15.91 0.257
RED-diff 27.67 0.720 24.06 0.685 20.84 0.581 18.63 0.466
C-IIGDM 27.93 0.773 23.20 0.631 - - - -
MPGD 26.07 0.715 21.83 0.587 11.34 0.076 10.26 0.025
RB-Modulation | 29.12 0.831 23.41 0.674 26.90 0.810 21.31 0.632
NDTM (ours) | 29.06  0.833 | 23.12 0674 | 2803  0.834 | 21.34 0.665

Table 13. NDTM outperforms existing methods for Non-linear deblur on distortion metrics like PSNR and SSIM. Bold: best.
| FFHQ (256 x 256) | ImageNet (256 x 256)

Method | PSNRT  SSIMT | PSNRT SSIM?T
DPS 812 0262 | 667 0.156
RED-diff 2488 0717 | 21.88 0.623
MPGD 1824 0406 | 17.02 0.261
RB-Modulation | 2939  0.846 | 22.11 0.612
NDTM (ours) | 30.64  0.874 | 24.41 0.732
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Original Degraded NDTM (Ours) RED-Diff RB-Modulation

Figure 6. Qualitative comparison between NDTM and top competing baselines (see Table 1) on the Non-Linear Deblurring task for
ImageNet. NDTM better recovers the structure of the image compared to other baselines. Best viewed when zoomed in.
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Original Degradation NDTM (Ours) MPGD Red-Diff RB-Modulation

Figure 7. Qualitative comparison between NDTM and top competing baselines (see Table 1) on the Non-Linear Deblurring task for FFHQ.
NDTM better recovers the structure of the image compared to other baselines. Best viewed when zoomed in.
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. NDTM (Ours) NDTM (Ours)
Orlglnal Degraded (M=15, T=400) (M=15, T=200) DMPlllg

=

Figure 8. Qualitative comparison between NDTM and competing baseline (DMPlug) on the blind image deblurring task (see Table 3).
NDTM better recovers the details and structure of the image compared to the baseline. We find DMPlug introduces noisy artifacts and
blurry images in some samples. Best viewed when zoomed in.
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Original Degraded NDTM (Ours) DPS RED-Diff RB-Modulation

Figure 9. Qualitative comparison between NDTM and top competing baselines (See Table 2) on the Random Inpainting (90%) Task for
ImageNet. NDTM performs better or/par compared to other baselines. Best viewed when zoomed in.
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Original Degradation NDTM (Ours) Red-Diff RB-Modulation DPS

Figure 10. Qualitative comparison between NDTM and top competing baselines (See Table 2) on the Random Inpainting (90%) Task for
FFHQ. NDTM performs better or/par compared to other baselines. Best viewed when zoomed in.
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Original Degraded NDTM (Ours) DPS C-IIGDM RB-Modulation

Figure 11. Qualitative comparison between NDTM and top competing baselines (See Table 2) on 4x super-resolution task for ImageNet.
NDTM performs better or/par compared to other baselines. Best viewed when zoomed in.
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Original Degradation NDTM (Ours) RB-Modulation MPGD C-IIGDM DPS

Figure 12. Qualitative comparison between NDTM and top competing baselines (See Table 2) on 4x super-resolution task for FFHQ.
NDTM performs better or/par compared to other baselines. Best viewed when zoomed in.
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