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Abstract

Diffusion models exhibit excellent sample qual-

ity, but existing guidance methods often require

additional model training or are limited to spe-

cific tasks. We revisit guidance in diffusion

models from the perspective of variational infer-

ence and control, introducing Diffusion Trajec-

tory Matching (DTM) that enables guiding pre-

trained diffusion trajectories to satisfy a termi-

nal cost. DTM unifies a broad class of guid-

ance methods and enables novel instantiations.

We introduce a new method within this frame-

work that achieves state-of-the-art results on sev-

eral linear, non-linear, and blind inverse prob-

lems without requiring additional model training

or specificity to pixel or latent space diffusion

models. Our code will be available at https:

//github.com/czi-ai/oc-guidance.

1. Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,

2020; Song et al., 2020) and related families (Lipman et al.,

2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023)

exhibit excellent synthesis quality in large-scale generative

modeling applications. Additionally, due to their principled

design, these models exhibit great potential in serving as

powerful generative priors for downstream tasks (Daras

et al., 2024).

Consequently, guidance in diffusion models has received

significant interest. However, the dominant approaches to

classifier guidance (Dhariwal & Nichol, 2021) and classifier-

free guidance (Ho & Salimans, 2021) require training addi-

tional models or retraining diffusion models for each condi-

tioning task at hand, or are based on simplistic assumptions

detrimental to sample quality (Kawar et al., 2022; Chung

et al., 2022a; Song et al., 2023; Pandey et al., 2024b).
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A trained diffusion model can be viewed as a steerable

stochastic system that follows learned dynamics. By mod-

ifying its inputs, we can guide it in the spirit of stochastic

optimal control — aiming to reach desired terminal states

(e.g., matching a guidance signal) while staying close to its

native trajectory distribution. This intuition motivates our

formulation of classifier guidance as a variational control

problem (Kappen, 2008). Inspired by Control as Inference

frameworks (Kappen et al., 2012; Levine, 2018), we model

guided diffusion as a controlled Markov process, where

control signals are treated as variational parameters. We

then apply variational inference to optimize these controls,

ensuring that generated samples satisfy terminal constraints

without straying far from the unconditional sample mani-

fold (see Fig. 1a). We refer to this framework as Diffusion

Trajectory Matching (DTM).

Recent work on steering diffusion models has already incor-

porated ideas from optimal control (Huang et al., 2024; Rout

et al., 2025). However, these works focus on a restricted

class of control problems. This obscures the available de-

sign choices revealed through our novel framework. Indeed,

we find that DTM generalizes and explicitly contains a large

class of prior work on guidance. We demonstrate the util-

ity of this generalization by introducing a new sampling

algorithm that seamlessly integrates with state-of-the-art

diffusion model samplers like DDIM (Song et al., 2021a)

and adapts well to diverse downstream tasks.

To summarize, we make the following contributions:

• We propose Diffusion Trajectory Matching (DTM),

a generalized framework for training-free guidance

based on a variational control perspective. DTM sub-

sumes many existing and novel guidance methods.

• We instantiate our framework as Non-linear Diffusion

Trajectory Matching (NDTM), which can be readily

integrated with samplers like DDIM.

• We show that NDTM outperforms previous state-of-

the-art baselines for solving challenging and diverse

inverse problems with pretrained pixel-space (see Fig.

1) diffusion models. Furthermore, NDTM can be ex-

tended trivially to latent-space diffusion models like

Stable Diffusion (Rombach et al., 2022) for tasks like

style guidance (see Fig. 3).
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2. Background

Diffusion Models. Given a perturbation kernel p(xt|x0) =
N (µtx0, Ã

2
t Id), diffusion models (Sohl-Dickstein et al.,

2015; Ho et al., 2020) invert the noising process by learning

a corresponding reverse process parameterized as,

Q : q(x0:T−1|xT ) =
∏

t

q(xt−1|xt). (1)

The reverse diffusion posterior is specified as q(xt−1|xt) =
N (µθ(xt, t), Ã

2
t Id) where µθ(., .) is learned via score

matching (Hyvärinen & Dayan, 2005; Vincent, 2011; Song

& Ermon, 2019). Analogously continuous-time diffusion

models (Song et al., 2020; Karras et al., 2022) assume that

a forward process

dxt = f(t)xt dt+ g(t) dwt, t * [0, T ], (2)

with an drift f(t) and diffusion coefficients g(t) and stan-

dard Wiener process wt, converts data x0 * R
d into noise

xT . A reverse SDE specifies how data is generated from

noise (Anderson, 1982; Song et al., 2020),

dxt =
[
f(t)xt 2 g(t)2'xt

log pt(xt)
]
dt+g(t)dw̄t, (3)

which involves the score 'xt
log pt(xt) of the marginal

distribution over xt at time t. The score is intractable to

compute and is approximated using a parametric estimator

sθ(xt, t), trained using denoising score matching.

Classifier Guidance in Diffusion Models. Given a pre-

trained diffusion model sθ(xt, t), it is often desirable to

guide the diffusion process conditioned on input y. Conse-

quently, the conditional diffusion dynamics read

dxt =
[
f(t)xt2g(t)2'xt

log p(xt|y)
]
dt+g(t)dw̄t. (4)

In classifier guidance (Dhariwal & Nichol, 2021), the condi-

tional score can be decomposed as

'xt
log p(xt|y) = sθ(xt, t) + Ät'xt

log p(y|xt). (5)

where Ät is the guidance weight. The noisy likelihood

score is often estimated by training a noise-conditioned

estimator. It is also common to estimate this likelihood via

p(y|xt) =
∫
p(x0|xt)p(y|x0)dx0. For example, Diffusion

Posterior Sampling (DPS) (Chung et al., 2022a) approxi-

mates the diffusion posterior as, p(x0|xt) = ¶(E[x0|xt]),
where E[x0|xt] is Tweedie’s estimate of the posterior at

xt (Efron, 2011). This approximation of the diffusion pos-

terior in DPS results in a high sampling budget and high

sensitivity to the gradient weight Ät. More expressive ap-

proximations (Song et al., 2023; Pandey et al., 2024b) result

in specificity to linear inverse problems and thus cannot be

extended to latent-space diffusion models trivially. We refer

to Daras et al. (2024) for an in-depth discussion on explicit

approximations of the diffusion posterior. We will show in

Section 3.4 that classifier guidance in diffusion models is a

special case of our proposed framework. Next, we discuss

our proposed framework, which generalizes to diverse tasks

like inverse problems and style-guided generation without

specificity to pixel or latent-space diffusion models.

3. Guidance with Diffusion Trajectory

Matching (DTM)

We now propose a novel framework based on variational

control for guidance in diffusion models. Our framework

can be directly applied to pretrained diffusion models with-

out requiring model retraining. For the remainder of our

discussion, we restrict our attention to diffusion models and

discuss an extension to flow-matching (Lipman et al., 2023)

in Appendix A.3.

In the following, we first formulate guidance in discrete-time

diffusion models as a variational optimal control problem

(Section 3.1) following Kappen et al. (2012), which we

refer to as Diffusion Trajectory Matching (DTM). We then

present specific parameterizations of DTM in Section 3.2,

which we work out as a guidance algorithm in Section 3.3.

Lastly, in Appendix A.2, we transfer the DTM framework

to continuous-time diffusion models (Song et al., 2020) and

recover prior work in guidance in diffusion models.

3.1. Variational Control for Diffusion Guidance

The idea of our guidance framework is to take a controlled

deviation from the unguided diffusion trajectory implied by

Eq. (1) in Section 2, which we repeat for convenience:

Q : q(x0:T−1|xT ) =
∏

t

q(xt−1|xt). (6)

To steer the trajectory towards a target state fulfilling exter-

nal constraints, we introduce a control signal ut at every

time t. This yields the following guided dynamics for a

given initial state xT :

P : p(x0:T−1|xT ,u1:T ) =
∏

t

p(xt−1|xt,ut). (7)

While we model the guided dynamics as Markovian due to

convenience, non-Markovian approximations are also possi-

ble (Li et al., 2021). Given a set of external constraints, the

task is to determine the variational control ut. Consequently,

following Kappen et al. (2012), we can pose this problem

as a stochastic optimal control problem with the terminal

and transient costs formulated as,

C(xT ,u1:T ) = wT Ex0∼p[Φ(x0)]
︸ ︷︷ ︸

Terminal Cost Cte

+DKL(P ' Q)
︸ ︷︷ ︸

Transient Cost Ctr

. (8)

The terminal cost in Eq. (8) encodes desirable constraints

on the final guided state while the transient cost ensures
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Figure 1. Our method guides diffusion sampling to fulfill external constraints. To this end, we optimize the local direction u
∗

t via

external constraints while respecting the original trajectory, see Eq. (11) (left, center). This recovers more accurate reconstructions

across tasks compared to classical guidance methods: Nonlinear deblurring (Right). Our method accurately captures most details, while

competing methods introduce artifacts in the generated reconstructions.

that the guided trajectory does not deviate strongly from

the unguided trajectory, so that the final guided state x0 lies

near the image manifold. The two losses are traded by a

scalar wT .

Choice of Terminal Cost. The terminal cost in Eq. (8) en-

codes desirable constraints on the final guided state. For in-

stance, Φ(x0) ? 2 log p(y|x0) could be the log-likelihood

of a probabilistic classifier for class-conditional generation

or the degradation process for solving inverse problems

(see Section 5 for exact form of terminal costs for different

tasks). For instance, Huang et al. (2024) adapts guidance

for a non-differentiable terminal cost using a path integral

control (Kappen, 2005) formulation. While an interesting

direction for further work, we only assume that the terminal

cost is differentiable for now.

Choice of Divergence. We use the KL-Divergence as it

decomposes over individual timesteps,

Ctr =
∑

t

Ext

[
DKL(p(xt−1|xt,ut) ' q(xt−1|xt))

]
. (9)

Note that other divergence measures can be useful depend-

ing on the specific form of the diffusion posterior (Nachmani

et al., 2021; Zhou et al., 2023; Pandey et al., 2025; Holderri-

eth et al., 2025).

Simplifications. The proposed loss in Eq. (8) is generic and

principled, but is difficult to jointly optimize for all controls

u1:T due to the need to backpropagate through the entire

diffusion trajectory. To avoid this computational overhead,

we make several simplifications that make the objective

computationally tractable. We justify the validity of the

modifications through our empirical results in Section 5.

First, we optimize ut in a greedy manner, that is at any

time t in the diffusion process we optimize ut, assuming

that the remaining steps t 2 1, . . . , 1 are unguided. After

optimizing for ut, we sample from the optimized posterior

xt−1 > p(xt−1|xt,u
∗
t ) and iterate. When the variational

control of ut is flexible enough, suboptimal greedy choices

early in the trajectory can be compensated for later.

Second, we evaluate the terminal cost at the current expected

final guided state via Tweedie’s Formula for E[x0|xt,ut]:

Cte = Ex0
[Φ(x0)] j Φ(E[x0|xt,ut]) = Φ(x̂t

0) (10)

where we have approximated p(x0|xt,ut) j ¶(x0 2 x̂t
0).

Diffusion Trajectory Matching (DTM). Together, the op-

timization problem to solve at time t given a position xt

reads:

C(ut) = wTΦ(x̂
t
0) +DKL(p(xt−1|xt,ut) ' q(xt−1|xt)) .

(11)

We refer to Eq. (11) as Diffusion Trajectory Matching

(DTM).
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Algorithm 1 NDTM (DDIM). Sampling proceeds by infer-

ring the control (shaded) followed by sampling from the

guided posterior (shaded) at any time t

1: Input: Optimization Steps: N, Guidance: µ, Pretrained

denoiser: ÷θ(., .), Timestep schedule: {t}Tj=0, DDIM

Coefficients: ³t, Ãt, Loss Weights: Ät, »t, wT

2: Initialization: xT > N (0, Id)
3: for t = T to 1 do

4: u
(0)
t = 0

5: êuncond ± ÷θ(xt, t)

6: for i = 0 to N 2 1 do

7: ê
(i)
control ± ÷θ(xt + µu

(i)
t , t)

8: x̂
(i)
0 ± E[x0|xt + µu

(i)
t ]

9: Cscore = Ä2t

∥
∥
∥êuncond 2 ê

(i)
control

∥
∥
∥

2

2

10: Ccontrol = »2
t'ut'22

11: Cterminal = wTΦ(x̂
(i)
0 )

12: C(i)t ± Cscore + Ccontrol + Cterminal

13: u
(i+1)
t ± Update(u

(i)
t ,'ut

C(i)t )

14: end for

15: xt−1 ± DDIM(xt + µu∗
t , t)

16: end for

17: return x0

Continuous-Time Variants. To apply DTM to continuous-

time diffusion and flow matching, we adapt the transient

costs Ctr. We call the following Continuous-Time Diffusion

Trajectory Matching, derived for continuous-time diffusion

(Song et al., 2020) in Appendix A.2:

Ctr =
g(t)2

2
Ext

[∥
∥sθ(xt, t)2 sθ(xt,ut, t)

∥
∥
2

2

]

. (12)

Similarly, for flow matching (Lipman et al., 2023; Liu et al.,

2023; Albergo et al., 2023), we refer to this as Flow Trajec-

tory Matching (FTM), see Appendix A.3:

Ctr = 'vθ(xt, t)2 vθ(xt,ut, t)'2. (13)

Next, we present a specific parameterization of our frame-

work and its instantiation using standard diffusion models.

3.2. Non-linear Diffusion Trajectory Matching (NDTM)

In the context of Gaussian diffusion models (Ho et al., 2020;

Song et al., 2020; Karras et al., 2022), the unguided diffusion

posterior is often parameterized as,

q(xt−1|xt) = N (µθ(xt, t), Ã
2
t Id) (14)

In analogy to how the unguided diffusion denoising process

q is parameterized, we define our controlled process p as

p(xt−1|xt,ut) = N (µθ(xt,ut, t), Ã
2
t Id). (15)

From a practical standpoint, since unconditional score

models are usually parameterized using neural networks

with an input noisy state and a timestep embedding, we

further parameterize the posterior mean µθ(xt,ut, t) =
µθ(f(xt,ut, t), t), where the aggregation function f :
R

d × R
d × R ³ R

d combines the noisy state xt and the

control ut appropriately. In this work, we choose an addi-

tive form of f = xt + µut where µ is the guidance weight

used to update the current noisy state xt in the direction of

the control signal ut. We leave exploring other aggregation

functions as future work. Moreover, in practice, we sample

from a single diffusion trajectory and therefore omit the

expectation in Eq. (11). Consequently, the control cost in

Eq. (11) can be simplified as,

C(ut) = 'µθ(xt + µut, t)2 µθ(xt, t)
∥
∥
2

2
+ wTΦ(x̂

t
0).

(16)

Due to the non-linear dependence of the guided posterior on

the control signal ut, we refer to the transient cost specifica-

tion in Eq. 16 as Non-Linear Diffusion Trajectory Matching

(NDTM). We will show in Section 3.4 that linear control

can be formulated as a special case of this parameterization,

yielding classifier guidance. Next, we instantiate the NDTM

objective practically.

3.3. Specific Instantiations

Here, we present a simplified form of the NDTM objective

in the context of DDIM (Song et al., 2021a).

Proposition 3.1. For the diffusion posterior parameteriza-

tion in DDIM (Song et al., 2021a), the NDTM objective in

Eq. 16 has the following tractable upper bound (see proof

in Appendix A.1),

C(ut) f »2
t

∥
∥ut

∥
∥
2

2
+Ä2t

∥
∥÷θ(x̄t, t)2÷θ(xt, t)

∥
∥
2

2
+wTΦ(x̂

t
0),

(17)

where x̄t = xt+µut is the guided state and the coefficients

»t =
γ
√
αt−1√
αt

and Ät =
√

12 ³t−1 2 Ã2
t 2
:

αt−1(1−αt)√
αt

are time-dependent scalars.

The coefficients ³t and Ãt are specific to DDIM (see Ap-

pendix A.1 for more details). Intuitively, the simplified

NDTM loss in Eq. (17) measures the deviation between

the guided and unguided dynamics, penalizing the magni-

tude of the control signal ut (first term) and deviations in

the noise predictions (second term). On the contrary, the

terminal loss ensures that the expected final guided state

satisfies the external constraints. Therefore, the first two

terms in Eq. (17) act as regularizers on the control signal

ut. In Appendix A.2, we derive this simplification also for

continuous-time diffusion models. Lastly, it is worth noting

that the control loss in Eq. 17 can be generalized as,

C(ut) = wc

∥
∥ut

∥
∥
2

2
+ws

∥
∥÷θ(x̄t, t)2÷θ(xt, t)

∥
∥
2

2
+wTΦ(x̂

t
0)

(18)
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In this work, unless specified otherwise, we set ws = Ä2t ,

wc = »2
t . However, exploring alternative weighting sched-

ules for different loss terms can be an interesting direction

for further work.

Putting it all together. To summarize, at each diffusion

time step t, we estimate the control signal ut by minimizing

the cost C(ut) (for instance Eq. (17) for DDIM). This iter-

ative optimization allows the model to dynamically adjust

the control to best align the trajectory with the desired ter-

minal cost while minimizing deviations with the unguided

diffusion trajectory. Finally, we sample from the guided

posterior p(xt−1|xt,u
∗
t ). We provide a visual illustration

of the NDTM algorithm in Fig. 1a and its pseudocode

implementation in Algorithm 1.

3.4. Connection to Existing Guidance Mechanisms

In this section, we rigorously establish a connection between

optimal control and classifier guidance: Our variational

formulation in Section 3.1 captures existing approaches.

We derive this result in the continuous-time variant, as this

allows for a closed-form solution of the control problem.

In particular, let us choose a linear parameterization of the

guided score in Eq. (12), that is sθ(xt,ut, t) = sθ(xt, t) +
ut. Then, the transient cost reduces to:

Ctr =

∫

'ut'2dt. (19)

This is exactly the case of the well-established Path Integral

Control (Kappen, 2005; 2008). The solution of this optimal

control problem in Eq. (8) reads (Kappen, 2008, Eq. (34)):

u∗
t = g(t)wT'xt

logEp(x0|xt)[exp(2Φ(x0))]. (20)

Notably, if the terminal cost takes the form of a classi-

fier likelihood Φ(x0) ? 2 log p(y|x0), it can be shown

(Huang et al., 2024) that the optimal control simplifies

to classifier guidance (Dhariwal & Nichol, 2021): u∗
t =

g(t)wT'xt
p(y|xt). This puts a large class of methods

approximating the expectation over the posterior p(x0|xt)
(Chung et al., 2022a; Song et al., 2023; Pandey et al., 2024b;

Huang et al., 2024) into perspective: In terms of our DTM

framework, they perform optimal control with a linear con-

trol mechanism (i.e. control added linearly to the score

function). Empirically, we will see in Section 5 that our

generalization to non-linear control provides significant per-

formance improvements.

4. Related Work

Conditional Diffusion Models. In general, the conditional

score 'xt
log p(xt|y) needed for guided sampling can be

learned during training (Saharia et al., 2022; Podell et al.,

2024; Rombach et al., 2022) or approximated during infer-

ence (see Daras et al. (2024) for a detailed review).

Here, we focus on training-free guidance during inference.

In this context, there has been some recent progress in ap-

proximating the noisy likelihood score (see Eq. 5) by ap-

proximating the diffusion posterior p(x0|xt). For instance,

DPS (Chung et al., 2022a) approximates the diffusion poste-

rior by a Dirac distribution centered on Tweedie’s estimate

(Efron, 2011). This has the advantage that the guidance can

be adapted to linear and non-linear tasks alike. However,

due to a crude approximation, DPS converges very slowly

and, in our observation, could be unstable for certain tasks

(see Table 1). Consequently, some recent work (Yu et al.,

2023; Bansal et al., 2024) adds a correction term on top of

the DPS update rule to better satisfy the constraints. MPGD

(He et al., 2024) attempts to alleviate some of these issues

by leveraging the manifold hypothesis. In contrast, our pro-

posed method instead directly estimates the guided posterior

at each sampling step, thus sidestepping the limitations of

DPS in the first place.

It is worth noting that our method resembles DCPS (Janati

et al., 2024), which adopts a similar approach of learning a

series of potentials to sample from the final posterior. How-

ever, DCPS involves an additional overhead of Langevin

Monte Carlo sampling in addition to the posterior optimiza-

tion step. Moreover, the control perspective adopted in this

work helps contextualize prior work in guidance within our

framework (see Section 3.4), which is lacking in DCPS.

Some recent methods like TFG (Ye et al., 2024) also pro-

pose general frameworks for guidance in diffusion models.

However, our proposed method does not fit within their

framework.

More recent work (Kawar et al., 2022; Wang et al., 2023;

Song et al., 2023; Pandey et al., 2024b; Pokle et al., 2024;

Boys et al., 2024) relies on expressive approximations of

the diffusion posterior. While this can result in accurate

guidance and faster sampling, a large proportion of these

methods are limited to linear inverse problems, which fur-

ther limits their application to pixel space diffusion models.

In contrast, our method can be adapted to generic inverse

problems and is thus agnostic to the diffusion model archi-

tecture. Lastly, another line of work in inverse problems

approximates the data posterior p(x0|y) using variational

inference (Blei et al., 2017; Zhang et al., 2018a). For in-

stance, RED-diff (Mardani et al., 2024) proposes to learn an

unimodal approximation to the data posterior by leveraging

a diffusion prior. However, this can be too restrictive in

practice and comes at the expense of blurry samples. We

refer interested readers to Daras et al. (2024) for a more

detailed review of training-free methods for solving inverse

problems in diffusion models.

Optimal Control for Diffusion Models. There has been

some recent interest in exploring connections between

stochastic optimal control and diffusion models (Berner
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et al., 2024). Chen et al. (2024) leverages ideas from control

theory for designing efficient diffusion models with straight-

line trajectories in augmented spaces (Pandey & Mandt,

2023). Since our guided sampler can be used with any pre-

trained diffusion models, our approach is complementary

to this line of work. More recently, SCG (Huang et al.,

2024) leverages ideas from path integral control to design

guidance schemes with non-differentiable constraints. In

contrast, we only focus on differentiable terminal costs, and

extending our framework to non-differentiable costs could

be an important direction for future work. Lastly, Rout et al.

(2025) propose RB-Modulation, a method based on control

theory for personalization using diffusion models. Interest-

ingly, while RB-Modulation is primarily inspired by a class

of tractable problems in control theory, it is a special case

of our framework in the limit of ws = 0, wc = 0 and µ = 1.

Therefore, our proposed framework is more flexible.

5. Experiments

While our method serves as a general framework for guid-

ance in diffusion models, here, we focus on solving inverse

problems and style-guided generation. Through both quan-

titative and qualitative results, we demonstrate that our ap-

proach outperforms recent state-of-the-art baselines across

these tasks using pretrained diffusion models. Lastly, we

emphasize key design parameters of our proposed method

as ablations. We defer all implementation details to App. B.

Problem Setup and Terminal Costs: For inverse problems,

given a corruption model A and a noisy measurement y *
Rd the goal is to recover the unknown sample x0 > pdata,

from the degradation y = A(x0) + Ãyz, z > N (0, Id).
For linear inverse problems, y = Ax0. In the case where

only the functional form of the degradation operator A is

known but its parameters are not, the problem is known as

Blind Inverse Problem. For inverse problems, we consider

the following form of the terminal cost Φ(x̂t
0) in Eq. 17,

Φ(x̂t
0) = 'y 2A(x̂t

0)'22 (21)

where x̂t
0 is the Tweedies estimate at any given time t. We

also consider the task of style guidance with Stable Diffu-

sion, where the goal is to generate samples adhering to a

specific prompt and a reference style image. More specifi-

cally, given a reference style image r, a pretrained feature

extractor (like CLIP) F , a pretrained decoder D such that

x̂t
0 = D(ẑt0), we define Φ(x̂t

0) as,

Φ(x̂t
0) = 'G(F(r))2 G(F(x̂t

0))'2F (22)

where G denotes the Gram-matrix operation and '.'F de-

notes the Frobenius norm. Note that prompt adherence is

achieved via the pretrained Stable Diffusion model.

Models and Datasets: For inverse problems, we conduct

experiments on the FFHQ (256× 256) (Karras et al., 2019)

Table 1. Comparisons on noisy Non-linear Deblur. NDTM out-

performs competing baselines by a significant margin. Bold: best.

FFHQ (256 × 256) ImageNet (256 × 256)

Method LPIPS↓ FID ³ KID ³ LPIPS↓ FID ³ KID ³
DPS 0.752 249.01 0.139 0.888 346.82 0.2186

RED-diff 0.362 64.57 0.036 0.416 78.07 0.0224

MPGD 0.636 113.98 0.086 0.832 148.96 0.085

RB-Modulation 0.064 19.92 0.0032 0.249 47.60 0.0078

NDTM (ours) 0.046 14.198 0.0004 0.163 34.31 0.0032

and ImageNet (256× 256) (Deng et al., 2009) datasets, us-

ing a held-out validation set of 1, 000 samples from each.

For FFHQ, we use the pre-trained model provided by Chung

et al. (2022a), and for ImageNet, we use the unconditional

pre-trained checkpoint from OpenAI (Dhariwal & Nichol,

2021). For style guidance, following MPGD (He et al.,

2024), we randomly generate 1k (prompt, image) pairs us-

ing images from WikiArt (Saleh & Elgammal, 2015) and

prompts from PartiPrompt (Yu et al., 2022). We use the

pre-trained CLIP encoder and Stable Diffusion 1.4 models

as the feature extractor F and diffusion model, respectively.

Tasks and Metrics: For inverse problems, we consider ran-

dom inpainting, super-resolution, and non-linear deblurring.

Additionally, we consider blind image deblurring (BID)

task where we additionally infer the deblurring kernel k

along with the final reconstruction. We set the noise level

Ãy = 0.01 for all inverse problems.

For quantitative evaluation on inverse problems, we report

metrics optimized for perceptual quality, including Learned

Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,

2018b), Fréchet Inception Distance (FID) (Heusel et al.,

2017), and Kernel Inception Distance (KID) (Bińkowski

et al., 2018). For completeness, recovery metrics like the

Peak Signal-to-Noise Ratio (PSNR) are provided in Ap-

pendix C. With the exception of BID (for which we use

100 images), we evaluate all other inverse problems on 1k

images. For style guidance, following prior work Yu et al.

(2023); He et al. (2024), we report the CLIP score (which

measures prompt adherence) and the Style Score (which

measures style adherence) on 1k text and image pairs.

5.1. Inverse Problems

We first evaluate the proposed NDTM sampler against com-

peting baselines for non-linear, blind, and linear inverse

problems. We provide all hyperparameter details for our

method and competing baselines in Appendix B.

Non-Linear Deblurring. We consider non-linear deblur-

ring with the same setup as in Chung et al. (2022a). For

this task, we compare against DPS (Chung et al., 2022a),

RED-Diff (Mardani et al., 2024), MPGD (He et al., 2024),

6
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Table 2. NDTM performs on-par/better than competing baselines on noisy linear inverse problems. Missing entries indicate unstable

performance after multiple tuning attempts Bold: best.

Super-Resolution (4x) Random Inpainting (90%)

FFHQ (256 × 256) Imagenet (256 × 256) FFHQ (256 × 256) Imagenet (256 × 256)

Method LPIPS↓ FID ↓ KID ↓ LPIPS↓ FID ↓ KID ↓ LPIPS↓ FID ↓ KID ↓ LPIPS↓ FID ↓ KID ↓

DPS 0.061 20.61 0.0029 0.195 30.67 0.0021 0.058 20.24 0.0019 0.152 32.56 0.0023
DDRM 0.116 36.13 0.0183 0.325 52.76 0.0151 0.582 167.57 0.1530 0.791 211.66 0.1517

RED-diff 0.151 41.54 0.0179 0.354 51.83 0.0084 0.430 155.49 0.1370 0.633 218.88 0.1531
MPGD 0.119 28.54 0.0032 0.215 37.39 0.0017 0.658 173.28 0.134 0.908 156.44 0.053

C-ΠGDM 0.106 29.61 0.0073 0.270 39.96 0.0024 0.551 137.85 0.1020 - - -
RB-Modulation 0.054 18.22 0.0013 0.211 35.26 0.0032 0.091 25.76 0.0026 0.223 46.30 0.0066

NDTM (ours) 0.054 18.99 0.0019 0.158 28.75 0.0011 0.059 20.11 0.0020 0.149 30.43 0.0018

Table 3. Comparisons on noisy Blind Image Deblurring (BID)

for the FFHQ 256×256 dataset. NDTM outperforms DMPlug

(Wang et al., 2024) by a significant margin while requiring an

order of magnitude less sampling time (reported in minutes/img).

Bold: best. †: N=15, T=200, ζ: N=15, T=400.

Gaussian blur Motion blur

Method LPIPS↓ FID↓ Time↓ LPIPS↓ FID↓ Time↓

DMPlug 0.147 69.36 51.24 0.118 72.85 51.13

NDTM† (Ours) 0.103 55.15 7.17 0.086 49.99 7.17

NDTMζ (Ours) 0.083 47.34 18.07 0.063 38.6 18.13

and RB-Modulation (Rout et al., 2025) (which is a special

case of our method with µt = 1.0, ws = 0, wc = 0). Fig-

ure 1 (Right) illustrates the comparison between competing

baselines and our proposed method, NDTM, on this task.

Qualitatively, we find that DPS is very sensitive to guidance

step size and is usually unstable on this task. Moreover,

while RED-diff does not have stability issues, it is biased

towards generating blurry samples. This is not surprising

given their unimodal approximation to the data posterior

p(x0|y). On the contrary, NDTM generates high-fidelity

reconstructions with a stable sampling process. Similarly,

our quantitative results in Table 1 validate our qualitative

findings as our method outperforms competing baselines on

perceptual quality for both datasets by a significant margin.

Blind Image Deblurring (BID). Next, we extend our frame-

work to blind image deblurring, maintaining the same setup

as DMPlug (Wang et al., 2024). We compare against DM-

Plug, which, to the best of our knowledge, is also the state-

of-the-art method for this task. Interestingly, adapting our

proposed method for blind inverse problems only involves

jointly optimizing the unknown blur kernel parameters along

with the control ut. More specifically, for degradation of the

form y = k 7x0+Ãyz with unknown blurring kernel k, we

update line 11 in Algorithm 1 as Cterminal = wTΦ(x̂
(i)
0 , k(i))

and optimizing for the trainable kernel for each image, as

k(i+1) ± Update(k(i),'kC(i)t ).

NDTM (Ours) DMPlug

G
a
u
s
s
ia
n

M
o
tio

n

Reference Degradation

Figure 2. NDTM outperforms competing baselines on blind im-

age deblurring (BID) with Gaussian (top) and Motion (bottom)

kernels. NDTM accurately captures most details, while competing

methods introduce artifacts in the generated reconstructions.

Figure 2 (Right) illustrates the comparison between DM-

Plug and NDTM adapted for this task. Qualitatively, we

find that while DMPlug can introduce artifacts in generating

reconstructions, NDTM generates high-quality reconstruc-

tions. Table 3 further validates our qualitative findings as our

method outperforms DMPlug on perceptual quality metrics.

More interestingly, while DMPlug is extremely expensive

for a single image, our method outperforms the former on

sample quality by a significant margin while being an order

of magnitude faster (see Table 3). This illustrates that our

sampler has a more efficient way to trade sampling speed

for quality. We present additional results in Appendix C.

Linear Inverse Problems. Lastly, we compare competing

7
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Figure 3. Style Guidance with Stable Diffusion. NDTM (proposed) provides a better tradeoff between Prompt adherence and Style

adherence using Stable Diffusion 1.4. While baselines can introduce random artifacts in generated samples, NDTM preserves sample

quality while exhibiting better style adherence. (Top Panel) Reference Style Images. (Bottom Panel) Samples corresponding to the

reference style images in the Top Panel. The CLIP (Radford et al., 2021) score (higher is better) represents the similarity between the

generated image and the text prompt, indicating prompt adherence. The Style score (lower is better) represents the distance between CLIP

features for the reference style and the generated image, indicating style adherence. We present additional quantitative results in Table 4.

methods on linear inverse problems: (4x) Super-resolution

and Random inpainting with a 90% masking probability. In

addition to the baselines used for the non-linear deblur task,

we also compare against DDRM (Kawar et al., 2022) and

C-ΠGDM (Pandey et al., 2024b). As illustrated in Table 2,

for super-resolution, NDTM outperforms competing base-

lines for both datasets. For random inpainting, our method

performs comparably with DPS on the FFHQ dataset. How-

ever, for a more difficult benchmark like ImageNet, NDTM

outperforms the next best competing baseline, DPS, on this

task. We present additional qualitative results for linear

inverse problems in Appendix C

5.2. Style Guidance

The goal in style guidance is to generate samples that ad-

here to a specified text prompt and the style of a reference

CLIP Score ↑ Style Score ↓

FreeDOM 30.86 508.28
MPGD 30.21 498.85

(Ours) NDTM 31.34 475.62

Table 4. Quantitative comparison between NDTM and other base-

lines on style guidance generation using Stable Diffusion 1.4.

NDTM exhibits better prompt (see CLIP score) and style adher-

ence (see Style Score) over competing baselines.

image. We follow the same setup as MPGD and use a

pretrained Stable Diffusion 1.4 text-to-image model. We

specify the terminal cost for NDTM in Eq. (22) and com-

pare with MPGD (He et al., 2024) and FreeDOM (Yu et al.,

2023) on this task. Figure 3 and Table 4 demonstrate that

NDTM exhibits a better balance between prompt and style

8
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(a) Terminal Weight (wT ) (b) Guidance Weight (γ) (c) Optimization Steps (N) (d) Runtime vs N

Figure 4. Impact of different design choices in NDTM on Distortion (PSNR) and Perception (LPIPS) for the non-linear deblur task. (a,

b) The extent of guidance can be jointly controlled by varying the terminal loss weight (wT ) and the weight (γ). (c, d) Compute vs quality

can be traded off by jointly varying the number of optimization steps (N) and the number of diffusion steps.

adherence over competing baselines.

5.3. Ablation Studies

Next, we analyze the impact of different design choices in

NDTM on the perception (LPIPS) and distortion (PSNR)

quality for the non-linear deblur task on ImageNet.

Impact of Guidance. Since the terminal cost weight wT

and the parameter µ affect the optimization of the varia-

tional control parameters ut, we analyze their impact on

sample quality. From Fig. 4a, we observe that increasing

the terminal weight wT leads to an improvement in both

perceptual and distortion quality. However, in the limit of

wT ³> (i.e., where the regularization terms in Eq. 17 can

be ignored), the perceptual quality degrades, which high-

lights the importance of the transient cost in our framework.

Similarly, increasing µ also leads to an improved sample

quality. However, a large µ can also lead to overshooting.

Impact of Optimization Steps. It is common to trade sam-

ple quality for the number of sampling steps in diffusion

models. Interestingly, NDTM provides a complementary

axis to achieve this tradeoff in the form of adjusting the

number of optimization steps per diffusion update. We illus-

trate this in Fig. 4(b), where for a fixed sampling budget of

50 diffusion steps, NDTM can achieve better reconstruction

quality by increasing the number of optimization steps (N).

However, since the runtime increases linearly as N grows

(see Figure 4(d)), a practical choice depends on the avail-

able compute. We find that for this task, N=2 provides a

favorable tradeoff between sampling time and quality and,

therefore, use it for state-of-the-art comparisons on the Ima-

geNet dataset in Table 1.

Control Visualizations We visualize the optimal controls

u∗
t in Figure 5. We observe a hierarchical refinement of

image features over time. More specifically, the control

inference captures global structure at the start of diffusion

sampling and gradually refines local details (like edges),

thereby encoding high-frequency information at later steps.

Figure 5. The optimal variational controls hierarchically refine

image features over time. (Top Row) Non-Linear Deblur (Bottom

Row) Random Inpainting. (Left to Right) We visualize optimal

controls at different times t0 > t1 > t2 > t3 in diffusion sam-

pling, progressively capturing coarse to fine details.

6. Conclusion

Our proposed framework offers a principled way to guide a

pretrained diffusion model while respecting an external cost

through the lens of variational optimal control. Our empiri-

cal results suggest that optimizing each diffusion step allows

for more flexibility in guidance compared to commonly used

approximations of the diffusion posterior.

While our method adapts well to diverse tasks, there remain

several interesting directions for future work. First, a more

thorough theoretical investigation into the optimization dy-

namics of the proposed method and integration with existing

methods for fast diffusion sampling (Pandey et al., 2024a)

could help alleviate the sampling costs of our method. Sec-

ond, our method is only one instantiation of our framework,

leaving ample room for exploration in investigating novel

variational parameterizations and refining cost functions

which could further enhance the flexibility of our approach.

Lastly, in a broader sense, our work gives another example

of the intricate connections between test-time adaptation

of diffusion models and Bayesian inference; this view may

enable future generative models to perform more complex

inference tasks such as hierarchical modeling, and quantify-

ing their uncertainty (Jazbec et al., 2025).
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A. Proofs

A.1. Simplification of the NDTM Objective for DDIM

We restate the theoretical result for convenience.

Proposition A.1. For the diffusion posterior parameterization in Song et al. (2021a), the objective in Eq. 16 can be

simplified as (see proof in Appendix A.1),

C f »2
t

∥
∥ut

∥
∥
2

2
+ Ä2t

∥
∥÷θ(x̄t, t)2 ÷θ(xt, t)

∥
∥
2

2
+ wTΦ(x̂

t
0). (23)

where x̄t = xt + µut is the guided state and the coefficients »t =
γ
√
αt−1√
αt

and Ät =
√

12 ³t−1 2 Ã2
t 2
:

αt−1(1−αt)√
αt

are

time-dependent scalars.

Proof. In the case of DDIM (Song et al., 2021a), the diffusion posterior is parameterized as (Eqn. 12 in Song et al. (2021a)),

µθ(xt, t) =

:
³t−1:
³t

xt +
[√

12 ³t−1 2 Ã2
t 2

√

³t−1(12 ³t):
³t

]

︸ ︷︷ ︸
=τt

÷θ(xt, t). (24)

where the diffusion noising process is parameterized as p(xt|x0) = N (
:
³tx0, (12 ³t)Id) and ÷θ(xt, t) is a pretrained

denoiser which models E[÷|xt] and intuitively predicts the amount of noise added to x0 for a given noisy state xt at time t.

Additionally, for notational convenience, we denote the coefficient of the denoiser in Eq. 24 as Ät. Following Song et al.

(2021a), the coefficient Ã is further defined as,

Ãt =

√

(12 ³t−1)

(12 ³t)

(

12 ³t

³t−1

)

(25)

It follows that,

µθ(xt, t) =

:
³t−1:
³t

xt + Ät÷θ(xt, t) (26)

µθ(xt + µut, t) =
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³t

(xt + µut) + Ät÷θ(xt + µut, t) (27)

=
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µ
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³t
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=κt

ut + Ät÷θ(xt + µut, t) (28)

where we denote the coefficient of the control signal ut in the above equation as »t for notational convenience. Consequently,

the NDTM cost in Eq. 16 can be simplified for the DDIM posterior parameterization in Eq. 24 as,

C =
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where (i) follows from the triangle inequality. This completes the proof.

A.2. Continuous-Time Diffusion Trajectory Matching

Analogous to the discrete case, we represent unguided diffusion dynamics using the following continuous-time reverse

diffusion dynamics (Anderson, 1982; Song et al., 2020),

dxt =
[

f(t)xt 2 g(t)2sθ(xt, t)
]

dt+ g(t)dwt, (32)
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where sθ(xt, t) is a pretrained score network. Similarly, we parameterize the guided continuous dynamics by inserting the

control non-linearly into the score function follows,

dxt =
[

f(t)xt 2 g(t)2sθ(xt,ut, t)
]

dt+ g(t)dwt. (33)

Denote the unguided path measure as u(x(T ³ 0)) and the guided path measure as µ(x(T ³ 0)|u(T ³ 0)).

Then, the optimal control problem reads, in analogy to Eq. (8):

C(xT ,u(T ³ 0)) = wT Eµ[Φ(x0)]
︸ ︷︷ ︸

Terminal Cost Cte

+DKL(µ(x(T ³ 0)|xT ,u(T ³ 0)) ' ¿(x(T ³ 0)|xT ))
︸ ︷︷ ︸

Transient Cost Ctr

. (34)

By (Song et al., 2021b, Theorem 1 in Appendix A) (which follows from an application of Girsanov’s Theorem), the transient

cost reads:

Ctr = DKL(µ(x(T ³ 0)|xT ,u(T ³ 0)) ' ¿(x(T ³ 0)|xT )) (35)

=
1

2

∫

g(t)2Eµ'sθ(xt,ut, t)2 sθ(xt, t)'2dt. (36)

Taking the approximation that the control signal is optimized greedily, we find Eq. (12).

A.3. Extension to Flow Matching Models

For continuous flow matching models (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) with a vector

field vθ(xt, t),
dxt = vθ(xt, t)dt, (37)

we insert the control signal into the dynamics through an additional dependence of the velocity field:

dxt

dt
= vθ(xt,ut, t). (38)

Since flow matching uses the squared loss, it is natural to regularize deviation from the unguided trajectory in terms of the

velocity field:

Ctr =

∫

'vθ(xt,ut, t)2 vθ(xt, t)'2dt (39)

B. Implementation Details

In this section, we include practical implementation details for the results presented in Section 5.

B.1. Task Details

B.1.1. INVERSE PROBLEMS

Here, we describe the task setup in more detail.

Superresolution (x4): We follow the setup from DPS (Chung et al., 2022a), More specifically,

y > N (y|Lfx, Ã2
yI), (40)

where Sf represents the bicubic downsampling matrix with downsampling factor f . In this work, we fix f to 4 for both

datasets.

Random Inpainting (90%) We use random inpainting with a dropout probability of 0.9 (or 90%). For this task, the forward

model can be specified as,

y > N (y|Mx, Ã2
yId) (41)

where M * {0, 1}d×d is the masking matrix.
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Non-Linear Deblurring We use the non-linear deblurring setup from DPS. More specifically, we use the forward operator

Fφ (modeled using a neural network) for the non-linear deblurring operation. Given pairs of blurred and sharp images,

{xi,yi}, one can train a forward model estimator as (Tran et al., 2021),

×∗ = argmin
φ

'yi 2Fφ(xi,Gφ(xi,yi))'22 (42)

where G extracts the kernel information from the training pairs. At inference, the operator G can instead be replaced by a

Gaussian random vector g. In this case, the inverse problem reduces to recovering xi from yi. In this work, we directly

adopt the default settings from DPS.

Blind Image Deblurring (BID) We directly adopt the setup for blind image deblurring from DMPlug (see Appendix C.4 in

Wang et al. (2024) for more details). More specifically, in the BID task, the goal is to recover the kernel k in addition to the

original signal x0 such that,

y = k 7 x0 + Ãyz (43)

In this work, we adapt the default settings from DMPlug. For BID (Gaussian), the kernel size is 64 × 64 with the standard

deviation set to 3.0. For BID (Motion), the kernel intensity is adjusted to 0.5.

B.1.2. STYLE GUIDANCE WITH STABLE DIFFUSION

In the context of text-to-image models like Stable Diffusion, the goal of style guidance is to generate a sample that

simultaneously adheres well to a given text prompt and style features from a reference image. More specifically, given a

reference style image r, a pretrained feature extractor (like CLIP) F , a pretrained decoder D such that x̂t
0 = D(ẑt0), we

define Φ(x̂t
0) as,

Φ(x̂t
0) = 'G(F(r))2 G(F(x̂t

0))'2F (44)

where G denotes the Gram-matrix operation and '.'F denotes the Frobenius norm. In this formulation, the pretrained

text-to-image diffusion model works as a generative prior, p(x|t), where t is a text prompt embedding, and the goal is to

generate samples from the posterior p(x|r, t)

B.2. Inverse Problems - Task Specific Hyperparameters

Here, we provide a detailed overview of different hyperparameters for the baselines considered in this work for the

inverse problem tasks. We optimize all baselines and our method for the best sample perceptual quality. We use the

official code implementation for RED-Diff (Mardani et al., 2024) at https://github.com/NVlabs/RED-diff,

https://github.com/mandt-lab/c-pigdm, and https://github.com/sun-umn/DMPlug for running

all competing baselines.

B.2.1. DPS (CHUNG ET AL., 2022A)

We adopt the DPS parameters from Mardani et al. (2024). More specifically, we fix the number of diffusion steps to 1000

using the DDIM sampler. We set ¸ = 0.5 for all tasks. Following Chung et al. (2022a), we set,

· =
³

'y 2A(x̂0)'22
(45)

Table 5 illustrates different hyperparameters for DPS on all tasks for the FFHQ and ImageNet datasets.

B.2.2. DDRM (KAWAR ET AL., 2022)

Following Kawar et al. (2022), we fix ¸ = 0.85, ¸b = 1.0, and use the DDIM sampler with the number of diffusion steps set

to 20 across all linear inverse problems.

B.2.3. C-ΠGDM (PANDEY ET AL., 2024B)

We set the number of diffusion steps to 20 for all tasks. It is also common to contract the reverse diffusion sampling for

better sample quality by initializing the noisy state as proposed in Chung et al. (2022b). We denote the start time as Ä . We

re-tune C-ΠGDM for the best perceptual quality for all linear inverse problems. Table 6 illustrates different hyperparameters

for linear inverse problems. We find that C-ΠGDM fails to recover plausible images for the random inpainting task after

numerous tuning attempts.
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Table 5. DPS hyperparameters for different tasks

FFHQ ImageNet

Task ³ ³

Super-Resolution (4x) 1.0 1.0

Random Inpainting (90%) 1.0 1.0

Non-Linear Deblur 0.3 1.0

Table 6. C-ΠGDM hyperparameters used for different tasks. We find

that C-ΠGDM fails to recover plausible images for the random inpaint-

ing task after numerous tuning attempts.

FFHQ ImageNet

Task ¼ w Ä ³ w Ä

Super-Resolution (4x) -0.4 4.0 0.4 -0.4 4.0 0.4

Random Inpainting (90%) - - - - - -

Table 7. RED-Diff hyperparameters used for different tasks.

FFHQ ImageNet

Task lr ¼ lr ¼

Super-Resolution (4x) 0.5 1.0 0.5 0.4

Random Inpainting (90%) 0.5 0.25 0.5 0.25

Non-Linear Deblur 0.5 0.25 0.5 0.25

B.2.4. RED-DIFF (MARDANI ET AL., 2024)

We set Ã0 = 0 with a linear weighting schedule and lr = 0.5, ¼ = 0.25, and perform 50 diffusion steps using the DDIM

sampler for all tasks across the FFHQ and ImageNet datasets. We highlight different hyperparameters in Table 7.

B.2.5. MPGD (HE ET AL., 2024)

Following the optimal settings in He et al. (2024), we use the setting MPGD w/o proj using the DDIM sampler with 100

diffusion steps and guidance scale set to 5.0 for all tasks.

B.2.6. NDTM (OURS)

We use the Adam optimizer (Kingma & Ba, 2017) with default hyperparameters, fixing the learning rate to 0.01 for updating

the control ut across all tasks and fixing the kernel learning rate in the BID task to 0.01. We refer to the loss weighting

scheme in Eq. 16 as "DDIM weighting". Moreover, we use linear decay for the learning rate. We perform 50 diffusion steps

using the DDIM sampler across all datasets and tasks. We tune the guidance weight µ, the number of optimization steps N,

loss weighting (wT , ws, wc), DDIM ¸ and the truncation time Ä (Chung et al., 2022b) for best performance across different

tasks. All these hyperparameters are listed in Table 9.

B.2.7. RB-MODULATION (ROUT ET AL., 2025)

Since RB-Modulation is a special case of NDTM with µ = 1.0 and ws = wc = 0, we re-run NDTM for different tasks with

these settings, keeping all other hyperparameters fixed to report results for RB-Modulation.

B.3. Style Guidance Hyperparameters

B.3.1. MPGD (HE ET AL., 2024)

Following He et al. (2024), we use the DDIM sampler with 100 steps and ¸ = 1.0 without the time reversal (Lugmayr et al.,

2022) trick for fair comparisons. We set Ä = 17.5 and the classifier-free guidance scale to 7.5

B.3.2. FREEDOM (YU ET AL., 2023)

Following Yu et al. (2023), we use the DDIM sampler with 100 steps and ¸ = 1.0 without the time reversal trick. We use

the classifier-free guidance scale of 5.0
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Table 8. BID hyperparameters for NDTM.

FFHQ

Task N γ η τ wT ws wc

BID (Gaussian) 15 1.0 0.7 1000 50 ddim ddim

BID (Motion) 15 1.0 0.7 1000 50 ddim ddim

Table 9. NDTM hyperparameters for different tasks.

FFHQ ImageNet

Task N γ η τ wT ws wc N γ η τ wT ws wc

Super-Resolution (4x) 5 1.0 0.7 400 50 ddim ddim 2 2.0 0.1 600 50 ddim ddim
Random Inpainting (90%) 2 4.0 0.2 500 1 0 0 2 4.0 0.0 600 50 ddim ddim

Non-Linear Deblur 5 5.0 0.1 400 1 0 0 2 4.0 0.1 600 50 ddim ddim

B.3.3. NDTM

For NDTM, we use the DDIM sampler with 50 steps and ¸ = 1.0. We set the control learning rate to 0.002 with the Adam

optimizer. The loss weightings are set to wT = 1.0, wc = 0, ws = 0 with µ = 4.0, N = 2 and a classifier-free guidance

scale of 5.0

C. Additional Experimental Results

C.1. Evaluation on Distortion Metrics

In this work, we primarily optimize all competing methods for perceptual quality. However, for completeness, we compare

the performance of our proposed method with other baselines on recovery metrics like PSNR and SSIM. Tables 12 and 13

compare our proposed method, NDTM, with competing baselines for linear and non-linear inverse problems. We find that

NDTM performs on par with other methods for the super-resolution task. However, for random inpainting and non-linear

deblur, NDTM outperforms competing methods in terms of distortion metrics like PSNR. Since NDTM also outperforms

existing baselines in terms of perceptual quality (see Table 2), our method provides a better distortion-perception tradeoff.

C.2. Runtime

Below, we compare different methods in terms of the wall-clock time required for running on a single image for the

superresolution task. From Table 10, we observe that while our method requires an inner optimization loop, it is still faster

than common baselines like DPS and DMPlug (see Table 11).

Table 10. Runtime comparisons for different baselines vs NDTM for super-resolution task on both datasets. The runtime numbers are in

wall-clock time (seconds) and tested on a single RTX A6000 GPU.

FFHQ (256× 256) Imagenet (256× 256)

DPS RED-diff C-ΠGDM DDRM NDTM (Ours) DPS RED-diff C-ΠGDM DDRM NDTM (Ours)

Runtime (secs / Img) 199.1 5.8 3.68 1.3 13.6 399.3 7.1 16.4 2.4 38.3
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Table 11. Runtime comparisons for DMPlug baseline vs NDTM for blind image deblurring (BID) task on FFHQ dataset. The runtime

numbers are in wall-clock time (minutes) per image and tested on a single RTX A6000 GPU.

Method Gaussian blur Motion blur

Time↓ Time↓

DMPlug 51.24 51.13

NDTM† (Ours) 7.17 7.17

NDTMζ (Ours) 18.07 18.13

Table 12. Comparison between NDTM and existing methods for Linear IPs on distortion metrics like PSNR and SSIM. Missing entries

indicate that the method was unstable for that specific task. Bold: best.

Super-Resolution (4x) Random Inpainting (90%)

FFHQ (256 × 256) Imagenet (256 × 256) FFHQ (256 × 256) Imagenet (256 × 256)

Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DPS 29.06 0.832 23.61 0.676 27.76 0.832 20.96 0.657
DDRM 30.12 0.864 24.15 0.701 17.34 0.371 15.91 0.257

RED-diff 27.67 0.720 24.06 0.685 20.84 0.581 18.63 0.466
C-ΠGDM 27.93 0.773 23.20 0.631 - - - -

MPGD 26.07 0.715 21.83 0.587 11.34 0.076 10.26 0.025
RB-Modulation 29.12 0.831 23.41 0.674 26.90 0.810 21.31 0.632

NDTM (ours) 29.06 0.833 23.12 0.674 28.03 0.834 21.34 0.665

Table 13. NDTM outperforms existing methods for Non-linear deblur on distortion metrics like PSNR and SSIM. Bold: best.

FFHQ (256 × 256) ImageNet (256 × 256)

Method PSNR↑ SSIM↑ PSNR↑ SSIM↑

DPS 8.12 0.262 6.67 0.156
RED-diff 24.88 0.717 21.88 0.623
MPGD 18.24 0.406 17.02 0.261

RB-Modulation 29.39 0.846 22.11 0.612

NDTM (ours) 30.64 0.874 24.41 0.732
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RED-DiffOriginal Degraded NDTM (Ours) RB-Modulation

Figure 6. Qualitative comparison between NDTM and top competing baselines (see Table 1) on the Non-Linear Deblurring task for

ImageNet. NDTM better recovers the structure of the image compared to other baselines. Best viewed when zoomed in.
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Original RB-ModulationNDTM (Ours) MPGDDegradation Red-Diff

Figure 7. Qualitative comparison between NDTM and top competing baselines (see Table 1) on the Non-Linear Deblurring task for FFHQ.

NDTM better recovers the structure of the image compared to other baselines. Best viewed when zoomed in.
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DMPlugOriginal Degraded
NDTM (Ours)
(M=15, T=400)

NDTM (Ours)
(M=15, T=200)

Figure 8. Qualitative comparison between NDTM and competing baseline (DMPlug) on the blind image deblurring task (see Table 3).

NDTM better recovers the details and structure of the image compared to the baseline. We find DMPlug introduces noisy artifacts and

blurry images in some samples. Best viewed when zoomed in.
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DPSOriginal Degraded NDTM (Ours)

'

RED-Diff RB-Modulation

Figure 9. Qualitative comparison between NDTM and top competing baselines (See Table 2) on the Random Inpainting (90%) Task for

ImageNet. NDTM performs better or/par compared to other baselines. Best viewed when zoomed in.
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Original Degradation NDTM (Ours) Red-Diff RB-Modulation DPS

Figure 10. Qualitative comparison between NDTM and top competing baselines (See Table 2) on the Random Inpainting (90%) Task for

FFHQ. NDTM performs better or/par compared to other baselines. Best viewed when zoomed in.
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DPSOriginal Degraded NDTM (Ours) GDMC- RB-Modulation

Figure 11. Qualitative comparison between NDTM and top competing baselines (See Table 2) on 4x super-resolution task for ImageNet.

NDTM performs better or/par compared to other baselines. Best viewed when zoomed in.
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Original RB-ModulationNDTM (Ours) MPGDDegradation DPSGDMC-

Figure 12. Qualitative comparison between NDTM and top competing baselines (See Table 2) on 4x super-resolution task for FFHQ.

NDTM performs better or/par compared to other baselines. Best viewed when zoomed in.
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