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Abstract: Real-world household tasks present significant challenges for mobile
manipulation robots. An analysis of existing robotics benchmarks reveals that
successful task performance hinges on three key whole-body control capabilities:
bimanual coordination, stable and precise navigation, and extensive end-effector
reachability. Achieving these capabilities requires careful hardware design, but the
resulting system complexity further complicates visuomotor policy learning. To
address these challenges, we introduce the BEHAVIOR ROBOT SUITE (BRS),
a comprehensive framework for whole-body manipulation in diverse household
tasks. Built on a bimanual, wheeled robot with a 4-DoF torso, BRS integrates a
cost-effective whole-body teleoperation interface for data collection and a novel
algorithm for learning whole-body visuomotor policies. We evaluate BRS on five
challenging household tasks that not only emphasize the three core capabilities
but also introduce additional complexities, such as long-range navigation, in-
teraction with articulated and deformable objects, and manipulation in confined
spaces. We believe that BRS’s integrated robotic embodiment, data collection
interface, and learning framework mark a significant step toward enabling real-
world whole-body manipulation for everyday household tasks. BRS is open-
sourced at behavior-robot-suite.github.io.

Keywords: Whole-Body Manipulation, Mobile Manipulation, Household Tasks

Figure 1: Everyday household activities enabled by BEHAVIOR ROBOT SUITE (BRS), show-
casing its three core capabilities: bimanual coordination (B), stable and accurate navigation
(N), and extensive end-effector reachability (R).
9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.
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Mobile manipulation Humanoid manipulation Stationary manipulation
Simultaneous control of

arms, torso, and mobile base Ë é é é é é é Ë Ë é é é é é é é

In
te

rf
ac

e Bimanual control Ë Ë é Ë Ë é é Ë Ë Ë Ë Ë Ë Ë Ë Ë
Torso control Ë é é é é é é Ë Ë é é é é é é é

Single-operator mobile base control Ë Ë Ë Ë é é é Ë Ë é Ë é é é é é
Untethered mobile base control Ë é Ë Ë Ë é é Ë Ë é Ë é é é é é

Haptic feedback Ë é é é é é é é Ë é é é é é é Ë
Cost(a) f fff ff ff f N.A. N.A. f fff fff f fff fff f f ff

C
ap

ab
ili

tie
s(

b
) Omnidirectional navigation Ë é Ë é Ë é Ë Ë Ë é é é é é é é

Bimanual coordination Ë Ë é Ë Ë é Ë Ë Ë Ë Ë Ë Ë é Ë Ë
Ground-level reach Ë é Ë Ë é é Ë Ë Ë é é é é é é é

Comfortable overhead reach(c) Ë Ë é é é é Ë é é é é é é é é é
Operation in confined spaces Ë é Ë é é é é é é é é é é é é é

Coordinated whole-body manipulation
involving hip, waist, and mobile base Ë é é é é é é é é é é é é é é é

Learning-based method Ë Ë Ë Ë Ë Ë é Ë Ë Ë Ë Ë Ë N.A. Ë Ë

A
lg

or
ith

m Novel algorithm Ë é é é é é é é é é é Ë Ë N.A. é Ë
Autoregressive whole-
body action prediction Ë é é é é é é é é é é é é N.A. é é

Sensory observation modality Colored
point cloud RGB RGB RGB RGB Depth +

semantic seg. RGB-D RGB-D RGB RGB RGB RGB RGB N.A. RGB-D +
tactile RGB

Policy model backbone(d) XF XF UNet UNet XF RNN N.A. MLP/RNN UNet XF RNN XF XF N.A. UNet XF

Open-source everything(e) Ë Ë Ë
Hardware
+ teleop. Teleop. Ë é Teleop. é Ë Ë

Weights
+ finetuning Ë Ë Ë Ë

(a) Interface hardware cost. f: $0− $500 ; ff: $500− $1000 ; fff: $1000+.
(b) We consider robot capabilities that are demonstrated by learned autonomous policies.
(c) Following Panero and Zelnik [27], we use 182.9 cm (72 in) as the maximum height for comfortable overhead reach.
(d) Neural network architecture of the policy backbone. “XF” stands for Transformer.
(e) Everything includes the interface hardware, teleoperation code, algorithm code, and documentation.

Table 1: Comparison of recent real-robot frameworks. BRS is comprehensive, integrating a
unique whole-body control interface JoyLo and a novel algorithm WB-VIMA for learning whole-
body visuomotor policies, demonstrating several unprecedented robotic capabilities.

1 Introduction

Developing versatile and capable robots that can assist in everyday life remains a major challenge
in human-centered robotics research [1–4], with increasing attention on daily household tasks [5–
12]. What key capabilities must a robot develop to achieve all these? To investigate this question,
we analyze activities from BEHAVIOR-1K [8], a human-centered robotics benchmark encompass-
ing 1,000 everyday household tasks, selected and defined by the general public, and instantiated
in ecological and virtual environments. Through this analysis, we identify three essential whole-
body control capabilities for successfully performing these tasks: bimanual coordination, stable
and accurate navigation, and extensive end-effector reachability.

Figure 2: Ecological distributions of
task-relevant objects in daily house-
hold activities. Multiple distinct modes
appear in the vertical distance distribu-
tion, located at 0.09m, 0.49m, 0.94m,
and 1.43m, representing heights at
which objects are typically found.

Tasks such as lifting large, heavy objects require biman-
ual manipulation [28, 29], whereas retrieving objects
throughout a house depends on stable and precise navi-
gation [30–32]. Opening a door while carrying groceries
demands the coordination of both capabilities [33–35].
In addition, everyday objects are distributed across di-
verse locations and heights, requiring robots to adapt their
reach accordingly. To illustrate this, we analyze the spa-
tial distribution of task-relevant household objects in ev-
eryday household tasks and scenes (Fig. 2). Notably, the
multi-modal distribution of vertical distances highlights
the necessity of extensive end-effector reachability, en-
abling a robot to interact with objects across a wide range
of spatial configurations.

How, then, can a robot effectively achieve these capabil-
ities? Carefully designed robotic hardware incorporating
dual arms, a mobile base, and a flexible torso is essen-
tial to enable whole-body manipulation [17]. However,
such designs introduce significant challenges for policy
learning methods, particularly in scaling data collection [36–38] and accurately modeling coor-
dinated whole-body actions. Current systems struggle to address these challenges comprehen-
sively [13, 17, 18, 39–43], highlighting the need for more suitable hardware for household tasks,
more efficient data collection tools, and improved models for whole-body control.
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Figure 3: BRS hardware system. Left: The R1 robot with two 6-DoF arms and a 4-DoF torso
mounted on an omnidirectional mobile base. Right: The JoyLo system, consisting of compact, off-
the-shelf Nintendo Joy-Con controllers mounted at the ends of two kinematic-twin arms. Joy-Con
serves as the interface for controlling the grippers, torso, and mobile base.

We introduce the BEHAVIOR ROBOT SUITE (BRS), a comprehensive framework for learning
whole-body manipulation to tackle diverse real-world household tasks (Fig. 1). BRS addresses
both hardware and learning challenges through two key innovations (Table 1). The first is JoyLo,
a low-cost, whole-body teleoperation interface designed for general applicability, with a concrete
implementation on a wheeled dual-arm manipulator with a flexible torso. The second is the Whole-
Body VIsuoMotor Attention (WB-VIMA) policy, a novel learning algorithm that effectively models
coordinated whole-body actions.

We evaluate BRS on five challenging real-world household tasks in unmodified human living envi-
ronments. The learned WB-VIMA policies demonstrate strong performance, achieving an average
success rate of 88% in short-horizon sub-tasks, and a peak success rate of 93% in long-horizon full
tasks. We believe that BRS’s integrated robotic embodiment, data collection interface, and learn-
ing framework mark a significant step toward real-world whole-body manipulation for everyday
household tasks. BRS is open-sourced at behavior-robot-suite.github.io.

2 JoyLo: Joy-Con on Low-Cost Kinematic-Twin Arms

To enable seamless teleoperation of mobile manipulators with a high degree of freedoms (DoFs)
and facilitate data collection for policy learning, we introduce JoyLo, a cost-effective whole-body
teleoperation interface. As illustrated in Fig. 3, we implement JoyLo on the Galaxea R1 robot,
a wheeled dual-arm manipulator with a 4-DoF torso (Appendix A), following design objectives
detailed as follow. While we provide one specific instantiation of JoyLo, its design principles are
general and can be adapted to similar mobile manipulators.

Efficient Whole-Body Control Whole-body robot teleoperation methods vary widely in accu-
racy, efficiency, applicability, and user experience. At one extreme, kinesthetic teaching enables
precise physical guidance [44–47], but is slow and not easily scalable. At the other extreme,
motion retargeting techniques [18, 48–57] remove physical interaction but face embodiment
mismatches and limited platform applicability. To balance intuitiveness, ease of use, and precision
for manipulation tasks, we propose a puppeteering-based approach using kinematic-twin arms
equipped with thumbsticks for torso and mobile base control. Specifically, we utilize off-the-shelf
Nintendo Joy-Con controllers due to their compact size, integrated thumbsticks, and multiple
functional buttons, which enable rich, customizable functionality. As illustrated in Fig. 3, the
left thumbstick controls mobile base velocity; the right thumbstick adjusts waist and hips; arrow
keys change torso height; triggers operate the grippers. With JoyLo, users can simultaneously
control arm movements, gripper operations, upper-body motions, and mobile base navigation,
enabling efficient whole-body control that is accurate, user-friendly, and scalable. Additionally, the
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Figure 4: WB-VIMA architecture. It autoregressively decodes whole-body actions by leveraging
the hierarchical interdependencies within the embodiment space, and dynamically aggregates multi-
modal observations using self-attention.

kinematic constraints imposed by the leader arms prevent the operator from generating infeasible
or undeployable actions, ensuring smooth and reliable demonstrations.

Rich User Feedback JoyLo enhances teleoperation by providing haptic feedback through bilateral
teleoperation [58, 59] without extra force sensors [60, 61]. The JoyLo arms, kinematically coupled
with the robot arms, act as leaders issuing commands while being regularized by the robot’s joint
positions. Let qJoyLo and qrobot be their respective joint positions; the torques τ applied to the JoyLo
arms are τ = Kp (qrobot − qJoyLo) + Kd(q̇robot − q̇JoyLo) − K, where q̇ denotes joint velocities,
and Kp, Kd, and K are proportional, derivative, and damping gains. This feedback discourages
abrupt user motions and provides proportional resistance when the robot experiences contact.

Low Cost and Easy Accessibility JoyLo is built from 3D-printed links, low-cost Dynamixel
motors, and Joy-Con controllers, totaling under $500. Additionally, its modular design ensures that
all components are replaceable, minimizing downtime and eliminating unnecessary repair costs.
BRS provides an intuitive, real-time controller with Python interfaces for efficient operation.

3 WB-VIMA: Whole-Body VIsuoMotor Attention Policy

This section introduces WB-VIMA, a transformer-based model [62, 63] designed to learn coordi-
nated whole-body actions for mobile manipulation tasks. Trained on data collected through JoyLo,
it autoregressively decodes whole-body actions across the embodiment space and dynamically ag-
gregates multi-modal observations using self-attention (Fig. 4).

Autoregressive Whole-Body Action Decoding In mobile manipulators with multiple articulated
components, small mobile base or torso errors can cause large end-effector deviations. For example,
a 0.17 rad (10◦) knee movement in the R1 robot’s neutral pose (Fig. 3) can shift the end-effector by
up to 0.14m due to error amplification along the kinematic chain, highlighting the need for precise
coordination in whole-body mobile manipulation. To address this issue, we leverage the inher-
ent hierarchy in the robot’s embodiment. Specifically, conditioning upper-body action predictions
on the predicted lower-body actions enables the policy to better model coordinated whole-body
movements. This approach ensures that downstream joints account for upstream motion, reduc-
ing error propagation. The whole-body action decoding follows an autoregressive structure: At
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timestep t, the mobile base trajectory abase ∈ RTa×3 is first predicted using the action readout to-
ken Ea (encoded from observations, detailed later). abase and Ea are then used to predict the torso
trajectory atorso ∈ RTa×4. Finally, abase, atorso, and Ea together predict the arms and grippers’
trajectory aarms ∈ RTa×14. WB-VIMA jointly learns three independent denoising diffusion net-
works [64–66] for the mobile base, torso, and arms, denoted ϵbase, ϵtorso, and ϵarms. Whole-body
actions awhole-body ∈ RTa×21 are autoregressively decoded through iterative denoising:

ak−1
base ∼ N

(
µk

(
akbase, ϵbase

(
akbase|Ea, k

))
, σ2

kI
)
,

ak−1
torso ∼ N

(
µk

(
aktorso, ϵtorso

(
aktorso|a0base,E

a, k
))

, σ2
kI

)
,

ak−1
arms ∼ N

(
µk

(
akarms, ϵarms

(
akarms|a0torso,a

0
base,E

a, k
))

, σ2
kI

)
.

(1)

To achieve efficient inference for high-frequency control, only action readout tokens are used for
whole-body decoding via diffusion, allowing lightweight UNet-based [67] action heads with a heav-
ier transformer backbone for observation encoding. This balances expressivity and latency.

Multi-Modal Observation Attention Observations from multiple modalities are crucial for
autonomous robots in complex environments. In WB-VIMA, egocentric colored point clouds and
robot proprioception (joint positions and mobile base velocities) are fused via a visuomotor attention
network, avoiding overfitting to any single source of information. Concretely, a PointNet [68] en-
codes the point cloud into a point-cloud token Epcd, and an MLP encodes proprioception into a pro-
prioceptive token Eprop. Tokens from current and past To steps, along with action readout tokens Ea,
form a visuomotor sequence: S = [Epcd

t−To+1,E
prop
t−To+1,E

a
t−To+1, . . . ,E

pcd
t ,Eprop

t ,Ea
t] ∈ R3To×E .

S is then processed through causal self-attention, ensuring action tokens attend only to earlier
observations. The final action readout token Ea

t is used for autoregressive whole-body decoding.

Training and Deployment Following Ho et al. [69], WB-VIMA is trained to predict added noise,
minimizing L = MSE(ϵk, ϵθ(·|k)) for each action decoder, with the total loss aggregated across all
three action decoders. Here, ϵk and ϵθ represent the ground-truth and predicted noise. Deployment
uses NVIDIA RTX 4090 GPUs with 0.02 s effective latency. Data is collected at 10Hz with the
robot controller running at 100Hz. A new policy action is issued every 0.1 s and repeated 10 times.

4 Experiments

We conduct experiments to answer the following questions. Q1:What household tasks are enabled
by BRS, and how does WB-VIMA compare to baselines? Q2:How different components contribute
to WB-VIMA’s effectiveness? Q3:How does JoyLo compare to other interfaces in efficiency and
policy learning suitability? Q4:What other insights can be drawn about the system’s capabilities?

Experiment Settings We evaluate BRS on five real-world household tasks (see Fig. 1 and
Appendix D.1 for details), inspired by the everyday activities defined in BEHAVIOR-1K [8].
We collect 100, 103, 98, 138, and 122 trajectories using JoyLo for these long-horizon tasks,
each ranging from 60 s to 210 s. Each task is segmented into multiple sub-tasks (“ST”). During
evaluation, if a sub-task fails, we reset to the start of the next sub-task and continue evaluation.
We also report the end-to-end success rates for entire tasks (“ET”). Baselines include DP3 [70],
RGB-DP [65], and ACT [23]. We additionally report human teleoperation success and policy
safety violations, defined as robot collisions or motor power losses due to excessive force. Each
policy is evaluated 15 times with randomized robot starting position, target object placement,
target object instance, and distractors. Each task covers at least two types of randomization. Task
videos are available at behavior-robot-suite.github.io.

BRS enables various household activities, on which WB-VIMA consistently outperforms
baseline methods (Q1). As shown in Fig. 5, WB-VIMA achieves an average sub-task success
rate of 88%, and average and peak entire-task success rates of 58% and 93%. On contact-rich
sub-tasks involving articulated objects, where human operators often struggle with uncoordinated
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Figure 5: Evaluation results for five household tasks. Left: Initial randomization. Middle: Suc-
cess rates over 15 runs (“ET” = entire task, “ST” = sub-task). Right: Number of safety violations.

whole-body motions—such as opening the toilet cover (ST-2) in “clean the toilet” and opening
the wardrobe (ST-1) in “lay clothes out”—WB-VIMA even outperforms human teleoperation,
suggesting that training on successful demonstrations enables it to learn precise, coordinated
maneuvers for reliably completing such tasks. Moreover, WB-VIMA shows an emergent capability
for completing long-horizon, multi-stage tasks, enabled by the synergy between its multi-modal
observation attention—extracting salient, task-relevant features—and autoregressive whole-body
action decoding—generating coherent actions that rarely lead to out-of-distribution states. Finally,
WB-VIMA maintains a near-zero safety violation rate, which we attribute to its use of colored
point-cloud observations that provide explicit 3D perception and semantic understanding, ensuring
coordinated actions that inherently respect safety constraints.

For end-to-end task success, WB-VIMA achieves 13× and 21× higher success rates than DP3 and
RGB-DP, respectively. For average sub-task performance, it outperforms them by 1.6× and 3.4×.
ACT fails to complete any full tasks and rarely succeeds in sub-tasks. These baselines struggle
because they directly predict flattened 21-DoF actions, ignoring hierarchical dependencies within
the action space. As a result, modeling errors [71] in mobile base or torso predictions cannot be
corrected by arm actions, leading to amplified end-effector drift, pushing the robot into out-of-
distribution states, and eventually resulting in task failures. Uncoordinated whole-body actions also
increase safety violations (Fig. 5), such as DP3 colliding with tables, RGB-DP losing arm power
from excessive force, and ACT hitting doorframes during trash disposal. We also observe that
WB-VIMA and DP3 outperform RGB-DP and ACT, underscoring the importance of explicit 3D
perception in complex environments. Egocentric point clouds provide unified spatial understanding
critical for accurate mobile base navigation. While both WB-VIMA and DP3 leverage point clouds,
only WB-VIMA incorporates task semantic information through color, whereas DP3 often overfits to
proprioception, stitching actions based purely on joint positions without regard to the environment.
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# Safety
Violations Ours No W.B.

Action Decoding
No Multi-

Modal Obs. Attn.

Put Items
onto Shelves 0 0 0

Lay Clothes Out 0 0 4

Figure 6: Real-world ablation results
for “put items onto shelves” and “lay
clothes out.”

Synergistic whole-body action prediction and multi-
modal feature extraction are key to WB-VIMA’s
strong performance (Q2). Can models based solely
on explicit 3D perception match WB-VIMA’s perfor-
mance? Ablation studies show they cannot. We evaluate
two WB-VIMA variants: one without autoregressive
whole-body action decoding and one without multi-
modal observation attention. As shown in Fig. 6,
removing either significantly degrades performance.
Tasks like “put items onto shelves” and “open wardrobe”
(ST-1) in “lay clothes out” critically depend on coor-
dinated whole-body actions; removing autoregressive
action decoding leads to up to a 53% performance drop.
Removing multi-modal attention reduces performance
across all tasks, causing the model to ignore visual inputs
and overfit to proprioception. Four collisions are also
observed due to poor visual awareness. The same conclusions hold in a simulated table wiping task
(Fig. 7). Furthermore, starting from a vanilla diffusion policy, we provide a roadmap improving the
model success by progressively adding components: multi-modal observation attention improves by
27% and surpasses ACT; adding autoregressive whole-body action decoding further boosts success
by 45%, culminating in WB-VIMA’s strong final performance.

Figure 7: Simulation ablation results
for “wiping table.” The robot must
wipe toward the goal using whole-body
motions while maintaining continuous
hand contact. Results are averaged over
five runs with 100 rollouts each; error
bars indicate standard deviation.

JoyLo is an efficient, user-friendly interface that
provides high-quality data for policy learning (Q3).
We conducted a user study with 10 participants to
evaluate JoyLo against two IK-based interfaces: VR
controllers [18] and Apple Vision Pro [20, 72]. The
study was performed in the OmniGibson simulator [8] on
the “clean house after a wild party” task, with random-
ized interface exposure to eliminate bias. We measured
success rate, completion time, replay success rate,
and singularity ratio across entire tasks and sub-tasks.
Replay success measures the open-loop execution of
collected robot trajectories, where higher values indicate
higher-quality, verified data that allows imitation learning
policies to better model trajectories [15, 16, 73–75].
Further setup details are provided in Appendix D.4.

As shown in Fig. 8, JoyLo achieves the highest success
rate and fastest completion time across all interfaces. It
delivers a 5× higher task success rate and 23% shorter
median completion time than VR controllers, while no
participants completed the entire task with Apple Vi-
sion Pro. JoyLo particularly excels at articulated object
manipulation (e.g., 67% higher success in “open dish-
washer” (ST-2) than VR controllers), enabling users to
generate smooth and accurate actions, which is consistent
with findings that leader-follower arm control improves
fine-grained manipulation [23]. It also significantly reduces sub-task times (e.g., 71% faster naviga-
tion and 67% faster bowl picking) compared to Apple Vision Pro, whose reliance on head movement
for mobile base control leads to poor coordination and tracking [16]. Moreover, JoyLo provides the
highest data quality, achieving the lowest singularity ratio (78% and 85% lower than VR controllers
and Apple Vision Pro, respectively) and consistently replaying successful trajectories. Unlike IK-
based methods that suffer from suboptimal IK solutions and jerky motions, JoyLo’s direct joint map-
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ping and kinematic-twin arm constraints ensure smooth, stable whole-body teleoperation. In user
surveys (Fig. A.4), all participants rated JoyLo the most user-friendly. Although 70% of participants
initially believed IK-based interfaces would be more intuitive, after the study they unanimously pre-
ferred JoyLo. This shift underscores a key distinction between tabletop data collection and mobile
whole-body manipulation: while IK-based methods may suffice for static setups, they struggle to
effectively control the mobile base and torso, making high-quality data collection much harder in
mobile manipulation settings.

Figure 8: User study results. “S.R.” is success
rate. “ET Comp. Time” and “ST Comp. Time”
refer to entire and sub-task completion times.

Coordinated torso and mobile base move-
ments enhance maneuverability beyond
stationary arms (Q4). As shown in Fig. 9,
coordinated whole-body movements are criti-
cal for tasks involving heavy articulated object
interactions, such as “open the door” (ST-3) in
“take trash outside” and “open the dishwasher”
(ST-2) in “clean house after a wild party.” To
open a door, the robot bends its hip forward
while advancing the base to generate enough
inertia; to open a dishwasher, it moves the base
backward, using its whole body to pull the door
open smoothly. Without hip or base movement,
both objects remain closed and the arm joint effort would surge, generating excessive force that is po-
tentially harmful to the hardware. Additional emergent behaviors such as failure recovery are show-
cased in videos on behavior-robot-suite.github.io, demonstrating WB-VIMA’s robustness.

5 Related Work

Robots for Everyday Household Activities Daily household activities have become a major focus for
human-centered robotics [1–4, 29], with efforts mainly in: 1) defining benchmarks [5–12, 76–83],
and 2) building robotic systems, usually with learning-based methods, to automate tasks [13, 14,
16, 17, 43, 84–97]. Unlike field [98], rescue [99], or surgical robots [100], household robots must
generalize across diverse, complex home environments. Prior works typically address either data
collection or policy learning separately (Table 1). In contrast, BRS offers a synergistic framework
combining a low-cost, whole-body interface for data collection and a general, competent algorithm
for whole-body visuomotor policy learning. Moreover, many household tasks require bimanual
coordination and extensive end-effector reachability. Prior systems often rely on a single arm and
lifting bodies [39, 80, 92], whereas BRS unleashes the mobile manipulation capabilities to perform
broader real-world household tasks.

Low-Cost Hardware for Robot Learning Cost-effective hardware has accelerated robot learning, in-
cluding: 1) low-cost robots—arms [23], hands [101–103], mobile manipulators [13, 14, 17, 43, 84],
and humanoids [104–110]; 2) teleoperation interfaces—puppeteering devices [16, 23, 24, 111], ex-
oskeletons [15, 74, 112], and AR/VR devices [18, 20, 113]; and 3) wearable or portable data col-
lection devices [75, 114–119]. Our JoyLo falls under teleoperation interfaces, providing a cost-
effective, whole-body solution for mobile, dual-arm robots with torsos. Unlike prior interfaces for
stationary arms [24, 74] or mobile bases without independent torso control [13, 16], JoyLo enables
efficient, untethered teleoperation of dual-arm mobile manipulators without needing a second opera-
tor. Additionally, compared to common puppeteering devices [24], JoyLo offers rich haptic feedback
via bilateral teleoperation without requiring force sensors [60, 61] or extra real-robot arms [120].

Learning Whole-Body Manipulation Whole-body manipulation uses the full robot body, includ-
ing arms [13, 28, 29, 121, 122], torso [123–126], and base [42, 43, 92, 127–132], to interact with
objects. Traditional approaches rely on motion planning [97, 124, 125, 133–137], while recent
learning-based methods use reinforcement learning [13, 40, 42, 92, 127, 129–132, 138–142], be-
havior cloning [13, 14, 20, 94, 143–147], or large pretrained models [41, 89, 91, 128, 148–150].
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Figure 9: Coordinated torso and mobile base movements enhance maneuverability. WB-VIMA
policies use the hip and mobile base to open a door and dishwasher; if the torso or mobile base is
locked, opening fails and arm joint effort surges, risking hardware damage.

Our WB-VIMA introduces a novel algorithm for learning whole-body manipulation on a high-DoF,
wheeled, dual-arm robot with a torso. Unlike prior methods that ignore action hierarchy [13, 14, 144]
or embodiment interdependencies [40, 130, 139], WB-VIMA explicitly models them through au-
toregressive whole-body action decoding, enabling coordinated policies for challenging real-world
tasks. Additionally, WB-VIMA dynamically fuses multi-modal observations via visuomotor atten-
tion, extracting salient task-relevant information, which prior works [94, 131, 146] often neglect.

6 Conclusion

This paper presents BRS, a holistic framework for learning whole-body manipulation to tackle di-
verse real-world household tasks. We identify three core capabilities essential for household activi-
ties: bimanual coordination, stable navigation, and extensive end-effector reachability. Achieving
these with learning-based methods requires overcoming challenges in both data and modeling. BRS
addresses them through two innovations: 1) JoyLo, a cost-effective whole-body interface for effi-
cient data collection, and 2) WB-VIMA, a novel algorithm that leverages embodiment hierarchy
and models interdependent whole-body actions. The BRS system demonstrates strong performance
across real-world household tasks with unmodified objects in natural, unstructured environments,
marking a step toward greater autonomy and reliability in household robotics.

7 Limitations

While BRS demonstrates strong performance across real-world household tasks, several limitations
remain. In this section, we discuss limiting assumptions, analyze failure modes (Fig. 10), and sug-
gest directions for future work.

Mismatched camera field of view between robot and operator. During data collection with
JoyLo, the operator observes the robot from a third-person perspective using their own vision. To
collect data efficiently, they must position themselves to maintain a clear view of the workspace
without appearing in the robot’s field of view. Additionally, the operator must ensure that target
objects are visible to the robot’s cameras; otherwise, the resulting data will be partially observable,
complicating policy training. Future work could incorporate active perception [20, 151, 152] so that
the operator sees exactly what the robot sees.

Compounding errors in long-horizon, multi-stage tasks. In complex tasks like “clean house
after a wild party,” WB-VIMA experiences compounding errors across multiple sub-tasks and over
long horizons. While sub-task success rates remain high, these accumulated errors can significantly
reduce overall task success. This limitation could be mitigated by learning on human correction
data [19, 71, 93] or integrating model-based task planning [153] to improve robustness over
extended execution.

Imperfect point cloud observations. WB-VIMA relies on point cloud data from onboard
cameras, which can be degraded by lighting conditions or reflective surfaces. For example, policies
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Figure 10: Failure modes in the “take trash outside” task. Left: Failure analysis during data
collection using JoyLo. Right: Failure analysis during autonomous WB-VIMA policy rollouts. “S”
indicates number of successful trials. “F” indicates number of failed trials.

trained on data collected during the day may not generalize well to nighttime environments due
to visual discrepancies. Since our robot is equipped with stereo cameras, future work could
incorporate FoundationStereo [154] to improve point cloud quality.

Robot-specific training data. WB-VIMA is trained on data collected exclusively with the R1
robot. It is intriguing to explore how multi-embodiment data and cross-embodiment transfer can
benefit the training [36, 96, 155–157]. The current dataset may also be insufficient for scene-level
generalization. Future work could integrate large pre-trained models, such as VLA [158–160], to
enhance scene understanding. Finally, it would be valuable to study how whole-body manipulation
can benefit from synthetic data [161–163] or human data [22, 164–166].
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[134] L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space.
The International Journal of Robotics Research, 32(9-10):1194–1227, 2013. doi:10.1177/
0278364913484072. URL https://doi.org/10.1177/0278364913484072.

[135] Q. Huang, K. Tanie, and S. Sugano. Coordinated motion planning for a mobile manipulator
considering stability and manipulation. The International Journal of Robotics Research, 19
(8):732–742, 2000. doi:10.1177/02783640022067139. URL https://doi.org/10.1177/

02783640022067139.

[136] L. Sentis and O. Khatib. A whole-body control framework for humanoids operating in human
environments. In Proceedings 2006 IEEE International Conference on Robotics and Automa-
tion, 2006. ICRA 2006., pages 2641–2648, 2006. doi:10.1109/ROBOT.2006.1642100.

[137] H. Dai, A. Valenzuela, and R. Tedrake. Whole-body motion planning with centroidal dynam-
ics and full kinematics. In 2014 IEEE-RAS International Conference on Humanoid Robots,
pages 295–302, 2014. doi:10.1109/HUMANOIDS.2014.7041375.

[138] D. Honerkamp, T. Welschehold, and A. Valada. N2m2: Learning navigation for arbitrary
mobile manipulation motions in unseen and dynamic environments. IEEE Transactions on
robotics, 2022. doi:10.1109/TRO.2023.3284346.

[139] G. Pan, Q. Ben, Z. Yuan, G. Jiang, Y. Ji, S. Li, J. Pang, H. Liu, and H. Xu. Roboduet: Whole-
body legged loco-manipulation with cross-embodiment deployment. arXiv preprint arXiv:
2403.17367, 2024. URL https://arxiv.org/abs/2403.17367v4.

[140] P. Arm, M. Mittal, H. Kolvenbach, and M. Hutter. Pedipulate: Enabling manipulation skills
using a quadruped robot’s leg. IEEE International Conference on Robotics and Automation,
2024. doi:10.1109/ICRA57147.2024.10611307. URL https://arxiv.org/abs/2402.

10837v1.

[141] X. He, C. Yuan, W. Zhou, R. Yang, D. Held, and X. Wang. Visual manipulation with legs.
In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/

forum?id=E4K3yLQQ7s.

[142] C. Zhang, W. Xiao, T. He, and G. Shi. Wococo: Learning whole-body humanoid control
with sequential contacts. In 8th Annual Conference on Robot Learning, 2024. URL https:

//openreview.net/forum?id=Czs2xH9114.

[143] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan,
K. Hausman, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth,
N. J. Joshi, R. C. Julian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu,
U. Malla, D. Manjunath, I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch,
J. Quiambao, K. Rao, M. Ryoo, G. Salazar, P. R. Sanketi, K. Sayed, J. Singh, S. Son-
takke, A. Stone, C. Tan, H. Tran, V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao,
P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-1: Robotics transformer for real-world con-
trol at scale. Robotics: Science and Systems, 2022. doi:10.48550/arXiv.2212.06817. URL
https://arxiv.org/abs/2212.06817v2.

[144] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn. Humanplus: Humanoid shadowing and
imitation from humans. arXiv preprint arXiv: 2406.10454, 2024. URL https://arxiv.

org/abs/2406.10454v1.

[145] J. Li, Y. Zhu, Y. Xie, Z. Jiang, M. Seo, G. Pavlakos, and Y. Zhu. OKAMI: Teaching humanoid
robots manipulation skills through single video imitation. In 8th Annual Conference on Robot
Learning, 2024. URL https://openreview.net/forum?id=URj5TQTAXM.

22

http://dx.doi.org/10.1109/CDC.1992.371337
http://dx.doi.org/10.1177/0278364913484072
http://dx.doi.org/10.1177/0278364913484072
https://doi.org/10.1177/0278364913484072
http://dx.doi.org/10.1177/02783640022067139
https://doi.org/10.1177/02783640022067139
https://doi.org/10.1177/02783640022067139
http://dx.doi.org/10.1109/ROBOT.2006.1642100
http://dx.doi.org/10.1109/HUMANOIDS.2014.7041375
http://dx.doi.org/10.1109/TRO.2023.3284346
https://arxiv.org/abs/2403.17367v4
http://dx.doi.org/10.1109/ICRA57147.2024.10611307
https://arxiv.org/abs/2402.10837v1
https://arxiv.org/abs/2402.10837v1
https://openreview.net/forum?id=E4K3yLQQ7s
https://openreview.net/forum?id=E4K3yLQQ7s
https://openreview.net/forum?id=Czs2xH9114
https://openreview.net/forum?id=Czs2xH9114
http://dx.doi.org/10.48550/arXiv.2212.06817
https://arxiv.org/abs/2212.06817v2
https://arxiv.org/abs/2406.10454v1
https://arxiv.org/abs/2406.10454v1
https://openreview.net/forum?id=URj5TQTAXM


[146] Y. Ze, Z. Chen, W. Wang, T. Chen, X. He, Y. Yuan, X. B. Peng, and J. Wu. Generalizable hu-
manoid manipulation with improved 3d diffusion policies. arXiv preprint arXiv:2410.10803,
2024.

[147] T. He, Z. Luo, X. He, W. Xiao, C. Zhang, W. Zhang, K. M. Kitani, C. Liu, and G. Shi.
Omnih2o: Universal and dexterous human-to-humanoid whole-body teleoperation and learn-
ing. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/

forum?id=oL1WEZQal8.

[148] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Ir-
pan, E. Jang, R. Julian, D. Kalashnikov, S. Levine, Y. Lu, C. Parada, K. Rao, P. Sermanet,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, M. Yan, N. Brown, M. Ahn, O. Cortes,
N. Sievers, C. Tan, S. Xu, D. Reyes, J. Rettinghouse, J. Quiambao, P. Pastor, L. Luu,
K. Lee, Y. Kuang, S. Jesmonth, N. J. Joshi, K. Jeffrey, R. J. Ruano, J. Hsu, K. Gopalakr-
ishnan, B. David, A. Zeng, and C. K. Fu. Do as I can, not as I say: Grounding lan-
guage in robotic affordances. In K. Liu, D. Kulic, and J. Ichnowski, editors, Conference
on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland, New Zealand, volume
205 of Proceedings of Machine Learning Research, pages 287–318. PMLR, 2022. URL
https://proceedings.mlr.press/v205/ichter23a.html.

[149] M. Xu, P. Huang, W. Yu, S. Liu, X. Zhang, Y. Niu, T. Zhang, F. Xia, J. Tan, and D. Zhao.
Creative robot tool use with large language models. arXiv preprint arXiv: 2310.13065, 2023.

[150] Q. Wu, Z. Fu, X. Cheng, X. Wang, and C. Finn. Helpful doggybot: Open-world object
fetching using legged robots and vision-language models. In arXiv, 2024.

[151] R. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):966–1005, 1988. doi:10.1109/
5.5968.

[152] H. Xiong, X. Xu, J. Wu, Y. Hou, J. Bohg, and S. Song. Vision in action: Learning active
perception from human demonstrations. arXiv preprint arXiv: 2506.15666, 2025.

[153] W. Liu, N. Nie, R. Zhang, J. Mao, and J. Wu. Learning compositional behaviors from
demonstration and language. In 8th Annual Conference on Robot Learning, 2024. URL
https://openreview.net/forum?id=fR1rCXjCQX.

[154] B. Wen, M. Trepte, J. Aribido, J. Kautz, O. Gallo, and S. Birchfield. Foundationstereo: Zero-
shot stereo matching. arXiv preprint arXiv: 2501.09898, 2025.

[155] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
T. Kreiman, C. Xu, J. Luo, Y. L. Tan, P. R. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn,
and S. Levine. Octo: An open-source generalist robot policy. ROBOTICS, 2024. doi:
10.48550/arXiv.2405.12213. URL https://arxiv.org/abs/2405.12213v2.

[156] J. Yang, C. Glossop, A. Bhorkar, D. Shah, Q. Vuong, C. Finn, D. Sadigh, and S. Levine.
Pushing the limits of cross-embodiment learning for manipulation and navigation. Robotics:
Science and Systems, 2024. doi:10.48550/arXiv.2402.19432. URL https://arxiv.org/

abs/2402.19432v1.

[157] R. Doshi, H. R. Walke, O. Mees, S. Dasari, and S. Levine. Scaling cross-embodied learning:
One policy for manipulation, navigation, locomotion and aviation. In 8th Annual Conference
on Robot Learning, 2024. URL https://openreview.net/forum?id=AuJnXGq3AL.

[158] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, K. Choromanski, T. Ding, D. Driess, K. A.
Dubey, C. Finn, P. R. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Haus-
man, A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. J. Joshi, R. C. Julian, D. Kalashnikov,
Y. Kuang, I. Leal, S. Levine, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao, K. Rey-
mann, M. Ryoo, G. Salazar, P. R. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut,

23

https://openreview.net/forum?id=oL1WEZQal8
https://openreview.net/forum?id=oL1WEZQal8
https://proceedings.mlr.press/v205/ichter23a.html
http://dx.doi.org/10.1109/5.5968
http://dx.doi.org/10.1109/5.5968
https://openreview.net/forum?id=fR1rCXjCQX
http://dx.doi.org/10.48550/arXiv.2405.12213
http://dx.doi.org/10.48550/arXiv.2405.12213
https://arxiv.org/abs/2405.12213v2
http://dx.doi.org/10.48550/arXiv.2402.19432
https://arxiv.org/abs/2402.19432v1
https://arxiv.org/abs/2402.19432v1
https://openreview.net/forum?id=AuJnXGq3AL


H. Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, T. Xiao, T. Yu,
and B. Zitkovich. Rt-2: Vision-language-action models transfer web knowledge to robotic
control. Conference on Robot Learning, 2023. doi:10.48550/arXiv.2307.15818. URL
https://arxiv.org/abs/2307.15818v1.

[159] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. P.
Foster, P. R. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine,
P. Liang, and C. Finn. OpenVLA: An open-source vision-language-action model. In 8th
Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?

id=ZMnD6QZAE6.

[160] Z. Xu, H.-T. L. Chiang, Z. Fu, M. G. Jacob, T. Zhang, T.-W. E. Lee, W. Yu, C. Schenck,
D. Rendleman, D. Shah, F. Xia, J. Hsu, J. Hoech, P. Florence, S. Kirmani, S. Singh, V. Sind-
hwani, C. Parada, C. Finn, P. Xu, S. Levine, and J. Tan. Mobility VLA: Multimodal instruc-
tion navigation with long-context VLMs and topological graphs. In 8th Annual Conference
on Robot Learning, 2024. URL https://openreview.net/forum?id=JScswMfEQ0.

[161] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox.
Mimicgen: A data generation system for scalable robot learning using human demonstrations.
arXiv preprint arXiv: 2310.17596, 2023. URL https://arxiv.org/abs/2310.17596v1.

[162] C. R. Garrett, A. Mandlekar, B. Wen, and D. Fox. Skillmimicgen: Automated demonstration
generation for efficient skill learning and deployment. In 8th Annual Conference on Robot
Learning, 2024. URL https://openreview.net/forum?id=YOFrRTDC6d.

[163] C. Li, M. Xu, A. Bahety, H. Yin, Y. Jiang, H. Huang, J. Wong, S. Garlanka, C. Gokmen,
R. Zhang, W. Liu, J. Wu, R. Martı́n-Martı́n, and L. Fei-Fei. Momagen: Generating demon-
strations under soft and hard constraints for multi-step bimanual mobile manipulation. In
RSS 2025 Workshop on Whole-body Control and Bimanual Manipulation: Applications in
Humanoids and Beyond, 2025. URL https://openreview.net/forum?id=4ATOUj1k9n.

[164] S. Kareer, D. Patel, R. Punamiya, P. Mathur, S. Cheng, C. Wang, J. Hoffman, and
D. Xu. Egomimic: Scaling imitation learning via egocentric video. arXiv preprint arXiv:
2410.24221, 2024.

[165] G. Papagiannis, N. D. Palo, P. Vitiello, and E. Johns. R+x: Retrieval and execution from
everyday human videos. arXiv preprint arXiv: 2407.12957, 2024.

[166] K. Grauman, A. Westbury, L. Torresani, K. Kitani, J. Malik, T. Afouras, K. Ashutosh,
V. Baiyya, S. Bansal, B. Boote, E. Byrne, Z. Chavis, J. Chen, F. Cheng, F.-J. Chu, S. Crane,
A. Dasgupta, J. Dong, M. Escobar, C. Forigua, A. Gebreselasie, S. Haresh, J. Huang, M. M.
Islam, S. Jain, R. Khirodkar, D. Kukreja, K. J. Liang, J.-W. Liu, S. Majumder, Y. Mao,
M. Martin, E. Mavroudi, T. Nagarajan, F. Ragusa, S. K. Ramakrishnan, L. Seminara, A. So-
mayazulu, Y. Song, S. Su, Z. Xue, E. Zhang, J. Zhang, A. Castillo, C. Chen, X. Fu, R. Furuta,
C. Gonzalez, P. Gupta, J. Hu, Y. Huang, Y. Huang, W. Khoo, A. Kumar, R. Kuo, S. Lakha-
vani, M. Liu, M. Luo, Z. Luo, B. Meredith, A. Miller, O. Oguntola, X. Pan, P. Peng, S. Pra-
manick, M. Ramazanova, F. Ryan, W. Shan, K. Somasundaram, C. Song, A. Southerland,
M. Tateno, H. Wang, Y. Wang, T. Yagi, M. Yan, X. Yang, Z. Yu, S. C. Zha, C. Zhao, Z. Zhao,
Z. Zhu, J. Zhuo, P. Arbelaez, G. Bertasius, D. Damen, J. Engel, G. M. Farinella, A. Furnari,
B. Ghanem, J. Hoffman, C. Jawahar, R. Newcombe, H. S. Park, J. M. Rehg, Y. Sato, M. Savva,
J. Shi, M. Z. Shou, and M. Wray. Ego-exo4d: Understanding skilled human activity from first-
and third-person perspectives. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 19383–19400, June 2024.

[167] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoreti-
cal Computer Science, 38:293–306, 1985. ISSN 0304-3975. doi:https://doi.org/10.1016/
0304-3975(85)90224-5. URL https://www.sciencedirect.com/science/article/

pii/0304397585902245.

24

http://dx.doi.org/10.48550/arXiv.2307.15818
https://arxiv.org/abs/2307.15818v1
https://openreview.net/forum?id=ZMnD6QZAE6
https://openreview.net/forum?id=ZMnD6QZAE6
https://openreview.net/forum?id=JScswMfEQ0
https://arxiv.org/abs/2310.17596v1
https://openreview.net/forum?id=YOFrRTDC6d
https://openreview.net/forum?id=4ATOUj1k9n
http://dx.doi.org/https://doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/https://doi.org/10.1016/0304-3975(85)90224-5
https://www.sciencedirect.com/science/article/pii/0304397585902245
https://www.sciencedirect.com/science/article/pii/0304397585902245


[168] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[169] M. Han, L. Wang, L. Xiao, H. Zhang, C. Zhang, X. Xu, and J. Zhu. Quickfps: Architec-
ture and algorithm co-design for farthest point sampling in large-scale point clouds. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023.

[170] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

[171] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 8162–8171.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/nichol21a.

html.

[172] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learn-
ing using nonequilibrium thermodynamics. In F. Bach and D. Blei, editors, Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/sohl-dickstein15.html.

[173] N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv: 2002.05202, 2020.

[174] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. Computer
Vision and Pattern Recognition, 2015. doi:10.1109/cvpr.2016.90.

[175] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. International Conference
on Learning Representations, 2017.

[176] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. International Confer-
ence on Learning Representations, 2020.

[177] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. V. Wyk, V. Blukis, A. Millane,
H. Oleynikova, A. Handa, F. Ramos, N. Ratliff, and D. Fox. curobo: Parallelized collision-
free minimum-jerk robot motion generation. arXiv preprint arXiv: 2310.17274, 2023.

25

http://incompleteideas.net/book/the-book-2nd.html
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
http://dx.doi.org/10.1109/cvpr.2016.90


A Robot Hardware Details

This section provides additional hardware details, including robot specifications, onboard sensors
and computing, and the communication scheme.

A.1 Robot Platform

We select the Galaxea R1 robot as our platform to meet the three critical capabilities essential for
household tasks: bimanual coordination, stable and precise navigation, and extensive end-effector
reachability. As illustrated in Fig.3, the R1 robot features two 6-DoF arms mounted on a 4-DoF
torso. Each arm is equipped with a parallel jaw gripper and has a maximum payload of 5 kg1, making
it well-suited for manipulating most objects encountered in daily household activities. The torso
incorporates four revolute joints: two for waist rotation and hip bending, and two additional joints
enabling knee-like motions. This design allows the robot to transition smoothly between standing
and squatting positions, enhancing its reachability in household environments. By integrating the
torso into the kinematic chain of the end-effectors, the R1 robot achieves an effective reach range
from ground level to 2m vertically and up to 2.06m horizontally, covering the workspace shown
in Fig. 2. The arms and torso are controlled using joint impedance controllers, with target joint
positions as inputs.

To ensure stable navigation in household environments, the robot’s torso is mounted on an omnidi-
rectional mobile base, capable of moving in any direction on the ground plane at a maximum speed
of 1.5m s−1. Additionally, the base can independently execute yaw rotations at a maximum angular
speed of 3 rad s−1. This mobility is powered by three wheel motors and three steering motors. With
a 30mm ground clearance, the mobile base can traverse most household terrains. It also achieves
horizontal accelerations of up to 2.5m s−2, enhancing maneuverability for tasks that require simul-
taneous movement and manipulation, such as opening doors (Fig. 9). The mobile base is controlled
via velocity commands corresponding to its three degrees of freedom on the ground plane: forward
motion, lateral motion, and yaw rotation.

For perception, we equip the R1 robot with a suite of onboard sensors, including a stereo ZED 2
RGB-D camera as the head camera, two stereo ZED-Mini RGB-D cameras as wrist cameras, and
a RealSense T265 tracking camera for visual odometry. All RGB-D cameras operate at 60Hz,
streaming rectified RGB and depth images. The cameras’ poses are updated at 500Hz via the
robot’s forward kinematics, enabling the effective fusion of sensory data from all three cameras.
This integration supports high-fidelity global and ego-centric 3D perception, such as colored point-
cloud observations. Simultaneously, the visual odometry system operates at 200Hz, providing real-
time velocity and acceleration estimates of the mobile base, which is critical feedback for learning
precise velocity control for the mobile base.

A.2 Hardware Specifications

A.2.1 Arms

The Galaxea R1 robot has two 6-DoF arms, each equipped with a parallel jaw gripper. As shown
in Fig. A.1a, each arm has a 128mm width and a 923mm full reach. The arms are mirrored
on the robot and are controlled via a joint impedance controller, receiving target joint positions
as inputs. We set the following impedance gains: Kp = [140, 200, 120, 20, 20, 20] and Kd =
[10, 50, 5, 1, 1, 0.4]. Each gripper has a stroke range from 0mm (fully closed) to 100mm (fully
open), with a rated gripping force of 100N. The grippers are controlled by specifying a target
opening width, which is converted into the required motor current.

1All numbers related to the robot’s hardware capabilities are based on our testing.
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(a)

(b) (c)

Figure A.1: Robot diagrams. (a): Each arm has six DoFs and a parallel jaw gripper. (b): The torso
features four revolute joints for waist rotation, hip bending, and knee-like motions. (c): The wheeled,
omnidirectional mobile base is equipped with three steering motors and three wheel motors.

A.2.2 Torso

The torso consists of four revolute joints: two joints for waist rotation and hip bending, and two
additional joints for knee-like motions. As shown in Fig. A.1b, the torso has a 340mm width and a
1223mm height (excluding the head) when fully extended. Table A.I lists the motor specifications.

Table A.I: Torso motor specifications.
Parameter Value

Waist Joint Range (Yaw) ± 3.05 rad (175◦)
Hip Joint Range (Pitch) −2.09 rad (−120◦) ∼ 1.83 rad (105◦)

Knee Joint 1 Range −2.79 rad (−160◦) ∼ 2.53 rad (145◦)
Knee Joint 2 Range −1.13 rad (−65◦) ∼ 1.83 rad (105◦)
Rated Motor Torque 108Nm

Maximum Motor Torque 304Nm

A.2.3 Mobile Base

As illustrated in Fig. A.1c, the mobile base is wheeled and omnidirectional, equipped with three
steering motors and three wheel motors. The base can move in any direction on the ground plane
and perform yaw rotations. It is controlled via a velocity controller with 3-DoF inputs corresponding
to forward velocity (x-axis), lateral velocity (y-axis), and rotation velocity (z-axis). Performance
parameters are listed in Table A.II.
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Table A.II: Mobile base specifications.
Parameter Value

Forward Velocity Limit ± 1.5m s−1

Lateral Velocity Limit ± 1.5m s−1

Yaw Rotation Velocity Limit ± 3 rad s−1

Forward Acceleration Limit ± 2.5m s−2

Lateral Acceleration Limit ± 1.0m s−2

Yaw Rotation Acceleration Limit ± 1.0 rad s−2

A.3 Onboard Sensors and Computing

As shown in Fig. 3, the robot is equipped with several onboard sensors: a ZED 2 RGB-D camera
(head camera), two ZED-Mini RGB-D cameras (wrist cameras), and a RealSense T265 tracking
camera (visual odometry). Camera configurations are provided in Table A.III.

Table A.III: Configurations for the ZED RGB-D cameras and RealSense T265 tracking camera.
Parameter Value

RGB-D Cameras

Frequency 60Hz
Image Resolution 1344×376
ZED Depth Mode PERFORMANCE

Head Camera Min Depth 0.2
Head Camera Max Depth 3
Wrist Camera Min Depth 0.1
Wrist Camera Max Depth 1

Tracking Camera

Odometry Frequency 200Hz

Figure A.2: Visualization of the fused, ego-
centric colored point clouds. Left: The colored
point cloud observation, aligned with the robot’s
coordinate frame. Right: The robot’s orientation
and its surrounding environment.

The three RGB-D cameras stream colored
point clouds at 60Hz, obtained from recti-
fied RGB images and aligned depth images.
These point clouds are fused into a common
robot base frame. For each point cloud in
the camera frame Pcamera, where camera ∈
all cameras = {head, left wrist, right wrist},
the transformation from the robot base frame
to camera frames is computed using forward
kinematics at 500Hz. Denote rotation matri-
ces as Rcamera ∈ R3×3 and translations as
tcamera ∈ R3×1, the fused, ego-centric point
cloud Pego-centric is computed as Pego-centric =⋃all cameras

camera Pcamera (Rcamera)
ᵀ
+ (tcamera)

ᵀ.
An example of the fused ego-centric colored point cloud is shown in Fig. A.2. The point cloud is
then spatially cropped and downsampled using farthest point sampling (FPS) [167–169].

The RealSense T265 tracking camera provides 6D velocity and acceleration feedback at 200Hz. It
is mounted on the back of the mobile base using a custom-designed camera mount.

The R1 robot is equipped with an NVIDIA Jetson Orin, dedicated to running cameras and processing
observations at a high rate.
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A.4 Communication Scheme

The robot communicates with a workstation via the Robot Operating System (ROS). Each camera
operates as an individual ROS node. The workstation runs the master ROS node, which subscribes
to robot state nodes and camera nodes, and issues control commands via ROS topics. To reduce
latency, a local area network (LAN) is established between the workstation and the robot.

B JoyLo Details

This section provides details on JoyLo, including its hardware components, controller implementa-
tion, and data collection process.

B.1 Hardware Components

Figure A.3: Individual JoyLo links.

The JoyLo system consists of 3D-printable arm links,
low-cost Dynamixel motors, and off-the-shelf Joy-Con
controllers. The individual arm links are shown in
Fig. A.3. Using a Bambu Lab P1S 3D printer, we printed
two arms in 13 h, consuming 317 g of PLA filament. The
bill of materials is listed in Table A.IV. Once assembled,
we use the official Dynamixel SDK to read motor states
at 400Hz - 500Hz. The Joy-Cons connect to the work-
station via Bluetooth, communicating at 66Hz.

Table A.IV: JoyLo bill of materials.

Item No. Part Name Description Quantity Unit Price ($) Total Price ($) Supplier
1 Dynamixel XL330-M288-T JoyLo arm joint motors 16 23.90 382.40 Dynamixel
2 Nintendo Joy-Con JoyLo hand-held controllers 1 70 70 Nintendo
3 Dynamixel U2D2 USB communication converter for controlling Dynamixel motors 1 32.10 32.10 Dynamixel
4 5V DC Power Supply Power supply for Dynamixel motors 1 <10 <10 Various
5 3D Printer PLA Filament PLA filament for 3D printing JoyLo arm links 1 ∼5 ∼5 Various

Total Cost: ∼$499.5

B.2 Controller Implementation

We provide an intuitive, real-time Python-based controller to operate JoyLo with the R1 robot. As
illustrated in Pseudocode 1, the controller includes a joint impedance controller for the torso and
arms with target joint positions as inputs, and a velocity controller for the mobile base with target
base velocities as inputs. Control commands are converted into waypoints and sent to the robot via
ROS topics at 100Hz, which we find to be sufficient in practice.

To enable bilateral teleoperation of JoyLo arms as discussed in Sec. 2, we implement a joint
impedance controller using current-based control, where force is proportional to motor cur-
rent. We set proportional gains Kp = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5] and derivative gains Kd =
[0.01, 0.01, 0.01, 0.01, 0.01, 0.01]. To ensure sufficient stall torque for load-bearing joints in the
JoyLo arms, such as the shoulder joints, the two low-cost Dynamixel motors are coupled together,
as illustrated in Fig. 3.

B.3 Data Collection

During data collection, the robot operates at 100Hz, while samples are recorded at 10Hz. Func-
tional buttons on the right Joy-Con (Fig. 3) control start, pause, save, and discard actions. Recorded
data includes RGB images, depth images, point clouds, joint states, odometry, and action commands.
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from brs_ctrl.robot_interface import R1Interface

# instantiate the controller
robot = R1Interface (...)
# send a control command
robot.control(

# the torso and arms commands are target joint positions
arm_cmd ={

"left": left_arm_target_q ,
"right": right_arm_target_q ,

},
gripper_cmd ={

"left": left_gripper_target_width ,
"right": left_gripper_target_width ,

},
torso_cmd=torso_target_q ,
# the mobile base commands are target velocities
base_cmd=mobile_base_target_velocity ,

)

Pseudocode 1: Python interface for the R1 robot controller.

C Model Architectures, Policy Training, and Deployment Details

This section provides details on WB-VIMA and baseline model architectures, policy training, and
real-robot deployment.

C.1 Preliminaries

Problem Formulation We formulate robot manipulation as a Markov Decision Process (MDP)
M := (S,A, T , ρ0, R), where s ∈ S represents states, a ∈ A represents actions, T is the transition
function, ρ0 is the initial state distribution, and R is the reward function [170]. A policy πθ,
parameterized by θ, learns the mapping S → A.

Denoising Diffusion for Policy Learning A denoising diffusion probabilistic model
(DDPM) [69, 171, 172] represents the data distribution p(x0) as the reverse denoising pro-
cess of a forward noising process q(xk|xk−1), where Gaussian noise is iteratively applied. Given a
noisy sample xk and timestep k in the forward process, a neural network ϵθ(x

k, k), parameterized
by θ, learns to predict the applied noise ϵ. Starting with a random sample xK ∼ N (0, I), the
reverse denoising process is described as

xk−1 ∼ N
(
µk

(
xk, ϵθ

(
xk, k

))
, σ2

kI
)
, (A.1)

where µk(·) maps the noisy sample xk and the predicted noise ϵθ to the mean of the next distri-
bution, and σ2

k is the variance obtained from a predefined schedule for k = 1, . . . ,K . Recently,
DDPMs have been utilized to model policies πθ, where the denoising network ϵθ(a

k|s, k) is trained
through behavior cloning [64–66].

C.2 WB-VIMA Architecture

C.2.1 Observation Encoder

As introduced in Sec. 3, there are two types of observation tokens: the point-cloud token Epcd and the
proprioceptive token Eprop. A colored point-cloud observation is denoted as Pcolored pcd ∈ RNpcd×6,
where Npcd is the number of points in the point cloud. Each point contains six channels: three
for RGB values and three for spatial coordinates. To encode point-cloud tokens, RGB values are
normalized to [0, 1] by dividing by 255; spatial coordinates are normalized to [−1, 1] by dividing by
task-specific spatial limits; finally, a PointNet encoder [68] processes the point cloud. Proprioceptive

30



observations include the mobile base velocity vmobile base ∈ R3, torso joint positions qtorso ∈ R4, arms
joint positions qarms ∈ R12, and gripper widths qgrippers ∈ R2. These values are concatenated and
processed through an MLP. Model hyperparameters for the PointNet and proprioception MLP are
listed in Table A.V.

Table A.V: Hyperparameters for PointNet and the proprioception MLP.
Hyperparameter Value Hyperparameter Value

PointNet Prop. MLP

Npcd 4096 Input Dim 21
Hidden Dim 256 Hidden Dim 256

Hidden Depth 2 Hidden Depth 3
Output Dim 256 Output Dim 256
Activation GELU Activation ReLU

C.2.2 Multi-Modal Observation Attention

To effectively fuse multi-modal observations, WB-VIMA employs a multi-modal observation at-
tention network—a transformer decoder that applies causal self-attention over the input sequence:
S = [Epcd

t−To+1,E
prop
t−To+1,E

a
t−To+1, . . . ,E

pcd
t ,Eprop

t ,Ea
t] ∈ R3To×E , where To is the observation

window size, E is the token dimension, and Ea represents the action readout token. The transformer
decoder’s hyperparameters are listed in Table A.VI. Action readout tokens are passive and do not
influence the transformer output; they only attend to previous observation tokens to maintain causal-
ity. The final action readout token at time step t, Ea

t , is used for autoregressive whole-body action
decoding. We use an observation window size of To = 2 for all methods.

Table A.VI: Hyperparameters for the transformer decoder used in multi-modal observation
attention.

Hyperparameter Value
Embed Size 256
Num Layers 2
Num Heads 8

Dropout Rate 0.1
Activation GEGLU [173]

C.2.3 Autoregressive Whole-Body Action Decoding

As discussed in Sec. 3, WB-VIMA jointly learns three independent denoising networks for the mo-
bile base, torso, and arms, denoted as ϵbase, ϵtorso, and ϵarms, respectively. Each denoising network is
implemented using a UNet [67], with hyperparameters listed in Table A.VII. The denoising process
follows three sequential steps. First, the mobile base denoising network ϵbase takes the action readout
token Ea as input and predicts future mobile base actions abase ∈ RTa×3. Subsequently, the torso
denoising network ϵtorso takes Ea and abase as input and predicts future torso actions atorso ∈ RTa×4.
Finally, the arms denoising network ϵarms takes Ea, abase, and atorso as input and predicts future arm
and gripper actions aarms ∈ RTa×14. Here Ta is the action prediction horizon, and we use Ta = 8
hereafter. To ensure low-latency inference, denoising starts from the encoded action readout tokens,
meaning the observation encoders and transformer run only once per inference call.

C.3 Baselines Architectures

We provide details on baseline methods DP3 [70], RGB-DP [65], and ACT [23]. DP3 uses the same
PointNet encoder as WB-VIMA (Table A.V), but ignores RGB channels. Proprioceptive features are
processed through the same MLP encoder. Encoded features are concatenated and passed through a
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Table A.VII: Hyperparameters for the UNet models used for denoising.
Hyperparameter Value

Hidden Dim [64,128]
Kernel Size 2

GroupNorm Num Groups 5
Diffusion Step Embd Dim 8

fusion MLP with two hidden layers and 512 hidden units. A UNet denoising network (Table A.VII)
predicts a flattened 21-DoF whole-body action trajectory. RGB-DP is similar to DP3 but uses a
pre-trained ResNet-18 [174] as the vision encoder. The last classification layer is replaced with
a 512-dimensional output layer for policy learning. We use the recommended hyperparameters
provided in Zhao et al. [23] for ACT.

C.4 Policy Training Details

Policies are trained using the AdamW optimizer [175], with hyperparameters in Table A.VIII. 90%
of collected data is used for training, and 10% is reserved for validation. Policies are trained for
equal steps, using the last checkpoint for evaluation. During training, we use the DDPM noise
scheduler [69, 171, 172] with 100 denoising steps. During evaluation and inference, we use the
DDIM noise scheduler [176] with 16 denoising steps. Training is performed using Distributed Data
Parallel (DDP) on NVIDIA GPUs, including RTX A5000, RTX 4090, and A40.

Table A.VIII: Training hyperparameters.
Hyperparameter Value

Learning Rate 7× 10−4

Weight Decay 0.1
Learning Rate Warm Up Steps 1000

Learning Rate Cosine Decay Steps 300,000
Minimal Learning Rate 5× 10−6

C.5 Policies Deployment Details

During deployment, observations from the robot’s onboard sensors are transmitted to a workstation,
where policy inference is performed, and the resulting actions are sent back for execution. To
minimize latency, we implement asynchronous policy inference. Concretely, policy inference runs
continuously in the background. When switching to a new predicted trajectory, the initial few actions
are discarded to compensate for inference latency. This ensures non-blocking execution, preventing
delays caused by observation acquisition and controller execution.

D Task Definition and Evaluation Details

This section provides detailed task definitions, generalization conditions, and evaluation protocols.

D.1 Task Definition

Activity 1 Clean House After a Wild Party (Fig. 1 First Row): Starting in the living room, the robot
navigates to a dishwasher in the kitchen (ST-1) and opens it (ST-2). It then moves to a gaming
table (ST-3) to collect bowls (ST-4). Finally, the robot returns to the dishwasher (ST-5), places the
bowls inside, and closes it (ST-6). Stable and accurate navigation is the most critical capability for
this task. We collect 138 demonstrations, with an average human completion time of 210 s. We
randomize the starting position of the robot, bowl instances and their placements, and distractors on
the table.
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Activity 2 Clean the Toilet (Fig. 1 Second Row): In a restroom, the robot picks up a sponge placed
on a closed toilet (ST-1), opens the toilet cover (ST-2), cleans the seat (ST-3), closes the cover
(ST-4), and wipes it (ST-5). The robot then moves to press the flush button (ST-6). Extensive end-
effector reachability is the most critical capability for this task. We collect 103 demonstrations,
with an average human completion time of 120 s. We randomize the robot starting position, sponge
instances, and placements.

Activity 3 Take Trash Outside (Fig. 1 Third Row): The robot navigates to a trash bag in the living
room, picks it up (ST-1), carries it to a closed door (ST-2), opens the door (ST-3), moves outside,
and deposits the trash bag into a trash bin (ST-4). Stable and accurate navigation is the most critical
capability for this task. We collect 122 demonstrations, with an average human completion time of
130 s. We randomize the robot starting position and the placement of the trash bag.

Activity 4 Put Items onto Shelves (Fig. 1 Fourth Row): In a storage room, the robot lifts a box
from the ground (ST-1), moves to a four-level shelf, and places the box on the appropriate level
based on available space (ST-2). Extensive end-effector reachability is the most critical capability
for this task. We collect 100 demonstrations, with an average human completion time of 60 s. We
randomize the robot starting position, box placement, objects inside the box, shelf empty spaces,
and distractors.

Activity 5 Lay Clothes Out (Fig. 1 Fifth Row): In a bedroom, the robot moves to a wardrobe, opens
it (ST-1), picks up a jacket on a hanger (ST-2), lays the jacket on a sofa bed (ST-3), and then returns
to close the wardrobe (ST-4). Bimanual coordination is the most critical capability for this task.
We collect 98 demonstrations, with an average human completion time of 120 s. We randomize the
robot starting position, clothing placements, and clothing instances.

D.2 Policy Evaluation Results

Numerical results from policy evaluation are presented in Tables A.IX, A.X, A.XI, A.XII, and
A.XIII.

D.3 Simulation Ablation Details

We design a simulated table-wiping task in OmniGibson [8] to perform ablation studies. The robot
must use whole-body motions to wipe to a target hand position (marked by the yellow hand in Fig. 7)
while maintaining contact with the table surface. To generate training data, we use cuRobo [177] to
produce 100,000 whole-body trajectories, constraining the motion space by locking the mobile base
and the first two torso joints. To isolate the effects of autoregressive whole-body action decoding
and multi-modal observation attention, we replace camera input with a goal position, treated as a
separate observation modality alongside robot proprioception.

D.4 User Study Details

Figure A.4: Participant demographics and
questionnaire results.

As described in Sec. 4, we conducted a user
study with 10 participants to compare JoyLo
against two alternative interfaces: VR con-
trollers [18] and Apple Vision Pro [20, 72]. The
study was conducted in the OmniGibson simu-
lator [8] on the task “clean house after a wild
party.” To provide equal depth perception, par-
ticipants wore a Meta Quest 3 headset while us-
ing both JoyLo and VR controllers. To elimi-
nate bias, participants were exposed to the three
interfaces in a randomized order. Each partici-
pant had a 10-minute practice session for each
interface before beginning the formal evaluation. A successful task rollout is shown in Fig. A.6.
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Figure A.5: GUI for annotating user study roll-
outs.

After the sessions, rollouts were manually seg-
mented, and task and sub-task completions
were annotated using a GUI (Fig. A.5). For VR
controllers and Apple Vision Pro, which use
inverse kinematics (IK) based on end-effector
poses, singular configurations were identified
when the Jacobian matrix’s condition number
exceeded a set threshold. For JoyLo, which di-
rectly controls joints, excessive joint velocities
were used as an indicator of singular or near-
singular configurations. The post-session sur-
vey questions sent to participants are listed be-
low:

Q1: Do you have prior data collection experience in robot learning? [Yes/No]
Q2: Before the session, which device did you expect to be the most user-friendly? [VR/Apple

Vision Pro/JoyLo]
Q3: After the session, which device did you find to be the most user-friendly? [VR/Apple

Vision Pro/JoyLo]
Q4: Did physically holding JoyLo arms help with data collection? [Yes/No]
Q5: Did using thumbsticks for torso and mobile base movement improve control? [Yes/No]

Figure A.6: Successful task completion by a participant. The robot navigates to a dishwasher and
opens it, moves to a table to collect teacups, returns to the dishwasher, places the teacups inside, and
closes it.
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Table A.IX: Numerical evaluation results for the task “clean house after a wild party.” Success
rates are shown as percentages. Values in parentheses indicate the number of successful trials out of
the total trials.

ET ST-1 ST-2 ST-3 ST-4 ST-5 ST-6 Safety Violations

Human Teleop. 68%
(50/73)

100%
(73/73)

93%
(69/74)

100%
(69/69)

89%
(64/72)

94%
(60/64)

88%
(53/60) N/A

Ours 40%
(6/15)

100%
(15/15)

80%
(12/15)

80%
(12/15)

73%
(11/15)

93%
(14/15)

93%
(14/15) 0

DP3 [70] 0%
(0/15)

80%
(12/15)

7%
(1/15)

27%
(4 / 15)

7%
(1/15)

33%
(5/15)

40%
(6/15) 13

RGB-DP [65] 0%
(0/15)

93%
(14/15)

0%
(0/15)

0%
(0/15)

7%
(1/15)

7%
(1/15)

20%
(3/15) 2

ACT [23] 0%
(0/15)

80%
(12/15)

0%
(0/15)

0%
(0/15)

0%
(0/15)

0%
(0/15)

0%
(0/15) 2

Table A.X: Numerical evaluation results for the task “clean the toilet.” Success rates are shown
as percentages. Values in parentheses indicate the number of successful trials out of the total trials.

ET ST-1 ST-2 ST-3 ST-4 ST-5 ST-6 Safety Violations

Human Teleop. 61%
(100/164)

91%
(150/164)

72%
(106/148)

99%
(104/105)

100%
(103/103)

98%
(102/104)

98%
(100/102) N/A

Ours 53%
(8/15)

100%
(15/15)

80%
(12/15)

100%
(15/15)

100%
(15/15)

100%
(15/15)

73%
(11/15) 0

DP3 [70] 0%
(0/15)

100%
(15/15)

47%
(7/15)

93%
(14/15)

0%
(0/15)

13%
(2/15)

0%
(0/15) 0

RGB-DP [65] 0%
(0/15)

93%
(14/15)

13%
(2/15)

7%
(1/15)

7%
(1/15)

0%
(0/15)

20%
(3/15) 2

ACT [23] 0%
(0/15)

20%
(3/15)

0%
(0/15)

0%
(0/15)

0%
(0/15)

0%
(0/15)

0%
(0/15) 0

Table A.XI: Numerical evaluation results for the task “take trash outside.” Success rates are
shown as percentages. Values in parentheses indicate the number of successful trials out of the total
trials.

ET ST-1 ST-2 ST-3 ST-4 Safety Violations

Human Teleop. 76%
(96/127)

91%
(116/128)

100%
(124/124)

85%
(106/125)

100%
(115/115) N/A

Ours 53%
(8/15)

80%
(12/15)

100%
(15/15)

87%
(13/15)

87%
(13/15) 1

DP3 [70] 0%
(0/15)

60%
(9/15)

53%
(8/15)

20%
(3/15)

7%
(1/15) 9

RGB-DP [65] 0%
(0/15)

20%
(3/15)

7%
(1/15)

7%
(1/15)

7%
(1/15) 3

ACT [23] 0%
(0/15)

0%
(0/15)

0%
(0/15)

0%
(0/15)

0%
(0/15) 5
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Table A.XII: Numerical evaluation results for the task “put items onto shelf.” Success rates are
shown as percentages. Values in parentheses indicate the number of successful trials out of the total
trials.

ET ST-1 ST-2 Safety Violations

Human Teleop. 89%
(93/104)

90%
(94/104)

100%
(93/93) N/A

Ours 93%
(14/15)

93%
(14/15)

100%
(15/15) 0

DP3 [70] 20%
(3/15)

27%
(4/15)

47%
(7/15) 0

RGB-DP [65] 13%
(2/15)

20%
(3/15)

40%
(6/15) 0

ACT [23] 0%
(0/15)

0%
(0/15)

33%
(5/15) 1

Ours w/o W.B. Action Denoising 40%
(6/15)

40%
(6/15)

60%
(9/15) 0

Ours w/o Multi-Modal Obs. Attn. 13%
(2/15)

33%
(5/15)

40%
(6/15) 0

Table A.XIII: Numerical evaluation results for the task “lay clothes out.” Success rates are shown
as percentages. Values in parentheses indicate the number of successful trials out of the total trials.

ET ST-1 ST-2 ST-3 ST-4 Safety Violations

Human Teleop. 50%
(54/108)

56%
(60/108)

93%
(56/60)

96%
(54/56)

100%
(54/54) N/A

Ours 53%
(8/15)

87%
(13/15)

93%
(14/15)

80%
(12/15)

60%
(9/15) 0

DP3 [70] 0%
(0/15)

13%
(2/15)

13%
(2/15)

27%
(4/15)

27%
(4/15) 7

RGB-DP [65] 0%
(0/8)

13%
(1/8)

25%
(2/8)

13%
(1/8)

13%
(1/8) 3

ACT [23] 0%
(0/15)

0%
(0/15)

0%
(0/15)

0%
(0/15)

0%
(0/15) 1

Ours w/o W.B. Action Denoising 13%
(2/15)

33%
(5/15)

73%
(11/15)

73%
(11/15)

67%
(10/15) 0

Ours w/o Multi-Modal Obs. Attn. 0%
(0/15)

33%
(5/15)

40%
(6/15)

47%
(7/15)

13%
(2/15) 4
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