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Abstract

Continuous time Markov chains are commonly used as models for the stochastic
behavior of chemical reaction networks. More precisely, these Stochastic Chemical
Reaction Networks (SCRNs) are frequently used to gain a mechanistic under-
standing of how chemical reaction rate parameters impact the stochastic behavior
of these systems. One property of interest is mean first passage times (MFPTs)
between states. However, deriving explicit formulas for MFPTs can be highly
complex. In order to address this problem, we first introduce the concept of
coclique level structure and develop theorems to determine whether certain
SCRNs have this feature by studying associated graphs. Additionally, we develop
an algorithm to identify, under specific assumptions, all possible coclique level
structures associated with a given SCRN. Finally, we demonstrate how the pres-
ence of such a structure in a SCRN allows us to derive closed form formulas for
both upper and lower bounds for the MFPTs. Our methods can be applied to
SCRNs taking values in a generic finite state space and can also be applied to
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models with non-mass-action kinetics. We illustrate our results with examples
from the biological areas of epigenetics, neurobiology and ecology.

Keywords: continuous time Markov chain, model reduction, coclique level structure,
mean first passage times.

MSC Classification: 92C40 , 92C42 , 60J28

1 Introduction

1.1 Overview

Stochastic Chemical Reaction Networks (SCRNs) are a class of continuous time
Markov chain models used to describe the stochastic dynamics of a chemical system
undergoing a series of reactions that change the numbers of molecules of a finite set
of species over time. These models can be used to conduct theoretical studies in dif-
ferent biological areas such as chromatin regulation (see, for instance, [5]), enzymatic
kinetics (see, for instance, [13]), and intracellular viral kinetics (see, for instance, [19]
and [12]).

Formulas for mean first passage times (MFPTs) between states of the Markov chains
are helpful in studying the stochastic behavior. However, while calculating an explicit
formula is relatively straightforward for certain one-dimensional models, such as birth-
death processes (see SI - Section S.3), this typically becomes significantly more difficult
for higher-dimensional SCRNs. A potential approach to compute MFPTs involves
matrix inversion techniques [4]. While this method can, in principle, lead to closed-form
expressions, it becomes algebraically complex when symbolic parameter dependencies
are retained, even for moderate system sizes. As the system size grows, the dimension
of the matrix to be inverted increases, leading to higher computational costs and
even more complex expressions. In this case, fixing parameter values can help reduce
the computational burden, but this also reduces information about how parameters
influence the MFPT.

The inability to obtain an explicit analytical expression for the MFPT poses a
challenge because having one allows for a clear understanding of how reaction rate
parameters affect certain stochastic behavior of the system. One possible approach to
overcome and study the effect of parameter variations on system dynamics, without
calculating explicit formulae, is to exploit comparison theorems for stochastic processes
(see, for instance, [8]). However, this would require applying the theorem, if applicable,
to a fixed parameter or combination of parameters of interest, thereby increasing the
complexity of the study compared to having an analytical formula that can be directly
analyzed.

In this paper, we first introduce the concept of coclique level structure and develop
theorems to determine whether certain SCRNs have this feature by studying associ-
ated graphs. We also develop an algorithm to identify, under specific assumptions, all
possible coclique level structures associated with such SCRNs. Then, we demonstrate
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how the presence of such a structure in a SCRN allows us to derive closed form for-
mulas for both upper and lower bounds for MFPTs. We apply the theoretical tools
developed in this paper to multiple examples to illustrate how they can be used to
determine coclique level structures, to derive formulas for upper and lower bounds for
the MFPTs, and then to understand how key biological parameters affect the stochas-
tic behavior of the system. While our focus is on SCRNs, our definition of coclique
level structure is for associated continuous time Markov chains with state spaces that
are finite subsets of the non-negative integer orthant and in which the set of all pos-
sible transition vectors is finite as well. Consequently, our approach potentially has
broader applications to other models that have similar characteristics to SCRNs.

The structure of the paper is the following: we first introduce some background on
SCRNs and mean first passage times (Section 2). We then introduce the notion of
coclique level structure (Section 3) and describe the main theoretical tools developed
in this paper (Section 4). Finally, we apply our results to multiple examples (Section
5) and present some concluding remarks (Section 6).

1.2 Related work

In this paper, we introduce the concept of coclique level structure for suitable SCRNs,
which will be a partition of the finite state space of an associated continuous time
Markov chain, in which the sets in the partition are level sets of a linear function L
on the state space and they are cocliques in the sense of graph theory [14, 20], i.e.,
there are no direct transitions between states within a set in the partition. To the
best of our knowledge, this concept of coclique level structure has not been previously
used to derive a reduced stochastic process. Here, we apply the function L to a con-
tinuous time Markov chain, and analyze the result to estimate MFPTs for SCRNs.
Previous theoretical tools developed to evaluate upper and lower bounds for MFPTs
are mostly suitable for computational studies [11] and often focus on specific models,
such as imprecise birth-death chains [16] or population continuous time Markov chains
[2]. In contrast to these existing works, the theoretical tools that we develop enable
the derivation of closed form formulas for MFPT bounds, making them suitable for
analytical analysis.

1.3 Terminology and Notation

Denote the set of integers by Z. For an integer d g 2, we denote by Z
d the set of

d-dimensional vectors with entries in Z. Denote by Z+ = {0, 1, 2, . . .}, the set of non-
negative integers. For an integer d g 2, we denote by Z

d
+ the set of d-dimensional

vectors with entries in Z+. We denote by 0, respectively, 1, a vector of any dimension
where all entries are 0’s, respectively, 1’s. The size of 0 or 1 will be understood from
the context. The set of real numbers will be denoted by R, R+ = [0,∞), and d-
dimensional Euclidean space will be denoted by R

d for d g 2. For integers m,n g 1,
the set of m × n matrices with real-valued entries will be denoted by R

m×n. For a
matrix A ∈ R

m×n, we denote the kernel of A by ker(A) := {u ∈ R
n : Au = 0}. Vectors

are column vectors unless indicated otherwise and a superscript of T will denote the
transpose of a vector or matrix.
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2 Stochastic Chemical Reaction Networks (SCRNs)

In this section, we provide basic definitions for a class of continuous time Markov
chains called Stochastic Chemical Reaction Networks (SCRNs). The reader is referred
to Anderson & Kurtz [1] for a more in depth introduction to this subject. The models
considered in our examples will be SCRNs and the state space of all of our models
will be finite.

We assume there is a finite non-empty set S = {S1, . . . , Sd} of d species, and a
finite non-empty set R ¦ Z

d
+ × Z

d
+ that represents chemical reactions. We assume

that (w,w) /∈ R for every w ∈ Z
d
+. The set S represents d different molecular species

in a system subject to reactions R which change the number of molecules of some
species. For each (v−, v+) ∈ R, the d-dimensional vector v− (the reactant vector)
counts how many molecules of each species are consumed in the reaction, while v+

(the product vector) counts how many molecules of each species are produced. The
associated reaction is usually written as

d
∑

i=1

(v−)iSi −→
d
∑

i=1

(v+)iSi. (2.1)

To avoid the use of unnecessary species, we will assume that for each 1 f i f d, there
exists a vector w = (w1, . . . , wd)

T ∈ Z
d
+ with wi > 0 such that (w, v) or (v, w) is in R

for some v ∈ Z
d
+, i.e., each species is either a reactant or a product in some reaction.

The net change in the quantity of molecules of each species due to a reaction (v−, v+) ∈
R is described by v+−v− and it is called the associated reaction vector. We denote
the set of reaction vectors by V := {v ∈ Z

d : v = v+ − v− for some (v−, v+) ∈ R}; we
let n := |V|, the size of V; and we enumerate the members of V as {v1, . . . , vn}. Note
that V does not contain the zero vector because R has no elements of the form (w,w).
Different reactions might have the same reaction vector. For each vk ∈ V we consider
the set Rvk

:= {(v−, v+) ∈ R : vk = v+ − v−}. The matrix S ∈ R
d×n whose columns

are the elements in V will be called the stoichiometric matrix1. In addition, we
define a conservation vector m (if there is one) as a d-dimensional non-zero vector
such that mTS = 0 and we say that the conservation vector is unique if m is unique,
up to multiplication by a scalar.

Consider sets of species S and reactions R, a non-empty set X ¦ Z
d
+, and a

collection of functions Λ = {Λ(v−,v+) : X −→ R+}(v−,v+)∈R such that for each x ∈ X
and (v−, v+) ∈ R, if x+v+−v− /∈ X , then Λ(v−,v+)(x) = 0. Now, for 1 f k f n, define

Υk(x) :=
∑

(v−,v+)∈Rvk

Λ(v−,v+)(x). (2.2)

Note that for each x ∈ X and 1 f k f n, if x+vk /∈ X , then Υk(x) = 0. The functions
{Λ(v−,v+) : X −→ R+}(v−,v+)∈R are called propensity or intensity functions. A
common form for the propensity functions is the following, which is associated with

1In this stoichiometric matrix, there are no duplicate reaction vectors. This parallels combining reaction
intensity functions associated with the same reaction vector as in (2.2).
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mass action kinetics:

Λ(v−,v+)(x) = »(v−,v+)

d
∏

i=1

(xi)(v−)i , (2.3)

where {»(v−,v+)}(v−,v+)∈R are non-negative constants and for m, ℓ ∈ Z+, the quantity
(m)ℓ is the falling factorial, i.e., (m)0 := 1 and (m)ℓ := m(m− 1) . . . (m− ℓ+ 1).

A stochastic chemical reaction network (SCRN) (associated with
(S ,R,X ,Λ)) is a continuous time Markov chain X with state space X and
infinitesimal generator Q given for x, y ∈ X by

Qx,y =











Υk(x) if y − x = vk for some 1 f k f n,

−
∑n

k=1 Υk(x) if y = x,

0 otherwise.

(2.4)

If a SCRN associated with (S ,R,X ,Λ) has a conservation vector m ̸= 0 and
mTX(0) = xtot for some integer xtot g 0, then mTX(t) = xtot for every t g 0.
Consequently, we can reduce the dimension of the continuous time Markov chain
describing the system by one. In this paper, we will initially be considering SCRNs
for which m = (1, . . . , 1)T is a conservation vector. Then, the projected process
qX = (X1, . . . , Xd−1)

T is again a continuous time Markov chain with finite state space
qX = {(x1, . . . , xd−1)

T ∈ Z
d−1
+ : (x1, . . . , xd−1, xtot −

∑d−1
i=1 xi)

T ∈ X}. We denote its

infinitesimal generator by qQ. We will assume that | qX| > 1. Let B be a nonempty

subset of qX such that B ̸= qX , and let

ÄB := inf{t g 0 : qX(t) ∈ B}. (2.5)

Then, the mean first passage time (MFPT) (for qX) from x ∈ qX to B can be
defined as

hx,B = E[ÄB | qX(0) = x]. (2.6)

If B = {y} for some y ∈ qX , we use the notation hx,y := hx,{y}. After considering this
simple projection first, later on in Section 4.4, we will consider the situation where
there are p > 1 linearly independent conservation vectors for a SCRN. Then, we can
reduce the dimension of the Markov chain X by p, in which case we also denote the
projected process by qX, its state space by qX ¢ Z

d−p
+ and its infinitesimal generator

by qQ. The mean first passage time for qX is then defined by (2.5)–(2.6).

3 Coclique level structure for SCRNs

In this section, we define the notion of coclique level structure for SCRNs and
introduce some useful assumptions, definitions, and lemmas that we use in this paper.

First, consider a SCRN, as defined in Section 2, and assume the following:
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Assumption 3.1. Assume that d g 2. For each v ∈ V = {v1, . . . , vn}, the entries of
the reaction vector v consist of d − 2 zeros, a single one and a single minus one, in
any order.

When satisfied, this assumption implies that the net change in the number of species
stemming from a reaction consists of consuming one molecule of a given species to
produce a molecule of a different species. For example, when d = 3, reactions satisfying
this assumption include S1 −→ S2 and S1 + S3 −→ S2 + S3, both of which have
associated reaction vector (−1, 1, 0)T .

We consider a directed graph G associated with a SCRN satisfying Assumption 3.1,
in which the vertices represent the species of the system (we will label these vertices
1, . . . , d or S1, . . . , Sd) and the directed edges between vertices represent the reaction
vectors {v1, . . . , vn}. In this graph, an edge ek = (i, j), with k ∈ {1, 2, . . . , n} and i ̸= j,
exists if and only if there is a reaction vector vk ∈ V where vk(i) = −1, vk(j) = 1,
vk(ℓ) = 0 for ℓ /∈ {i, j}. Note that, if we have two edges ek = (i, j) and ek′ = (j, i),
with i ̸= j, then vk = −vk′ .

Before introducing the definition of coclique level structure, we provide some useful
definitions and lemmas that we will use in this section. Given the directed graph G, a
coclique is a non-empty set of vertices such that any two vertices in the set do not
have a direct edge between them. The graph G is bipartite if the vertex set can be
partitioned into two non-empty cocliques. The directed graph G is weakly connected
if the underlying undirected graph is connected. Note that this implies n g d− 1. In
this section, we will focus on SCRNs whose associated graphs G are weakly connected,
and we will prove results for such SCRNs in Sections 4.1–4.3.

For a SCRN whose associated graph G is not weakly connected, we can decompose
G into finitely many disjoint weakly connected components. Each of the weakly
connected components of G is a weakly connected graph and there are no edges between
different weakly connected components. In Section 4.4, we will show how to leverage
the results in Sections 4.1–4.3 for the single weakly connected component case to treat
the general case where G is a finite disjoint union of weakly connected components.
Lemma 3.1. Consider a SCRN satisfying Assumption 3.1 with d g 2 species, S =
{S1, . . . , Sd}, and n reaction vectors, V = {v1, . . . , vn}. Assume that the associated
graph G is weakly connected. Then, the rank of the associated stoichiometric matrix
S, whose columns are given by the elements of V, is equal to d − 1. Furthermore,
(1, . . . , 1)T is the unique (up to scalar multiplication) conservation vector associated
with the stoichiometric matrix S.

The proof of Lemma 3.1 is given in SI - Section S.1.
Remark 3.1. If each vertex in G is regarded as a species and each edge in G is regarded
as a reaction, then G can be interpreted as a chemical reaction network in the sense of
Feinberg [10] (where the complexes in this network are simply the species). For this,
one can determine its deficiency ¶ = d − ℓ − s, where d is the number of complexes
(which is the number of species in this case), ℓ is the number of weakly connected
components in G and s is the rank of the stoichiometric matrix S associated with G.
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One can see by Lemma 3.1 that, when G is weakly connected, the chemical reaction
network associated with G has deficiency zero2.

Under the assumptions of Lemma 3.1, we can introduce a projected continuous
time Markov chain qX = { qX(t) : t g 0} in which the state qx represents the number
of molecules of the first d−1 species, that is, qx = (x1, . . . , xd−1)

T . Note that the choice
to express xd as a function of the other xi with i ∈ {1, . . . , d − 1} is without loss of
generality, since the labeling of the species can always be reordered so that the species
chosen to be expressed as a function of the others is the last one. The process qX is a
continuous time Markov chain defined on the finite state space

qX :=







qx = (x1, . . . , xd−1)
T ∈ Z

d−1
+ :

(

x1, . . . , xd−1, xtot −
d−1
∑

i=1

xi

)T

∈ X







¢
{

qx = (x1, . . . , xd−1)
T ∈ Z

d−1
+ : x1 + · · ·+ xd−1 f xtot

}

,

(3.1)

where xtot =
∑d

i=1 Xi(0). We will assume that | qX| > 1, and the infinitesimal generator

of qX will be denoted by qQ.
We now introduce the definitions of coclique level function and coclique level struc-

ture. A coclique level function for qX is a linear function L : Zd−1 → Z such that
for each k = 1, . . . , n,

L(qvk) ∈ {−1,+1}, (3.2)

where qvk ∈ Z
d−1 is the vector obtained from vk by removing the last element. If such

an L exists, it can be written as

L(x) = bTx for x ∈ Z
d−1 and some b ∈ Z

d−1, (3.3)

where, upon partitioning the set of edges of the associated graph G into two disjoint
subsets E+ = {ek : L(qvk) = 1} and E− = {ek : L(qvk) = −1} (where one of these may
be empty), the vector b = (b1, . . . , bd−1)

T solves the system of equations

d−1
∑

i=1

biqvk(i) =

{

+1 if ek ∈ E+

−1 if ek ∈ E−
for k = 1, . . . , n. (3.4)

Finally, for a coclique level function L, the (ordered) partition {Lℓ, . . . ,Lu}, with

Lz := {x ∈ qX : L(x) = z} for z = ℓ, ℓ+ 1, . . . , u− 1, u, (3.5)

is called a coclique level structure for qX, with

ℓ = min{L(x) : x ∈ qX}, u = max{L(x) : x ∈ qX}. (3.6)

2If one starts with the chemical reactions associated with a SCRN, for example as in (5.1), one can form
the associated complex-reaction graph, also known as the Feinberg-Horn-Jackson graph, and compute the
deficiency associated with that graph. This graph need not be the same as our graph G, and its deficiency
need not necessarily be zero, for example as in (5.1).
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The sets Lℓ, . . . ,Lu are cocliques in the Markov chain graph for qX which consists of
states of qX with edges given by {(qx, qx+ qvk) : k = 1, . . . , n, qx ∈ qX, qx+ qvk ∈ qX}.
Lemma 3.2. Consider a SCRN satisfying the assumptions in Lemma 3.1. If we parti-
tion the set of the edges of the associated graph G into two disjoint subsets E+ and E−,
where one of these may be empty, then, for this partition {E+, E−}, the system (3.4)
admits either zero or one solution, and the solution, if one exists, has integer entries.

Proof. Let qS ∈ Z
(d−1)×n be the first (d − 1) rows of the stoichiometric matrix S

associated with the SCRN. Then, the system (3.4) can be re-written in matrix-vector
form as

qST b = w, (3.7)

where wk is +1 or −1 depending on whether ek ∈ E+ or ek ∈ E−, respectively, where
k = 1, . . . , n. By Lemma 3.1, we know that ker(ST ) = span{1}, and thus the last row
of S is a linear combination of the first (d− 1) rows of S. This means that removing

the last row of S does not affect its rank, and thus rank
(

qST
)

= d− 1. Hence, if w is

in the range of qST the system (3.4) admits a unique solution, while if it is not in the
range, the system does not admit a solution.

Suppose that (3.4) admits a solution b ∈ R
d−1. Since G is weakly connected, there

is an edge connecting the vertex d with another vertex in G, say vertex i. This means
that there exists vk ∈ V such that vk(i) = −vk(d) ∈ {−1, 1} and vk(ℓ) = 0 for
ℓ ∈ {1, 2, . . . , d − 1} \ {i}. Then, since b ∈ R

d−1 solves the kth equation of (3.4), we
have that |bi| = 1, which means bi ∈ Z. Using similar logic, for a vertex j /∈ {i, d} in
G such that there is an edge between j and {i, d}, we have that either |bi − bj | = 1 or
|bj | = 1, and thus bj ∈ Z. Since G is weakly-connected and has finitely many vertices,
we can iteratively show that all of the entries of b have integer values.

We use the following example to illustrate our theory in a simple context before
giving more complex examples in Section 5.
Example 3.1. Consider the following SCRN with mass action kinetics, involving
three species and two irreversible reactions:

1○ Z
³

−−→ W, 2○ W
´

−−→ Y, (3.8)

in which ³, ´ > 0. The diagram of this SCRN is shown in Figure 1(a). Let the species
vector be x = (nW, nY, nZ), where nW, nY, nZ denote the number of molecules of
species W, Y, Z, respectively. The total number of molecules in this system is con-
served, that is, nZ+nW+nY = Ntot. The reaction vectors associated with this SCRN
are v1 = (1, 0,−1)T and v2 = (−1, 1, 0)T . Then, Assumption 3.1 is satisfied, and the
associated graph G is shown in Figure 1(b), which is weakly connected. By Lemma
3.1, our SCRN has a unique conservation vector m = (1, 1, 1)T , and then we can intro-

duce a projected continuous time Markov chain qX = {(X1(t), X2(t))
T : t g 0}, which

keeps track of (nW, nY) through time. Since the total number of molecules Ntot is con-

served, the state space is qX = {qx = (x1, x2)
T ∈ Z

2
+ : x1 + x2 f Ntot}. The potential

one-step transitions for qX from x ∈ qX are illustrated in Figure 1(c) (for Ntot = 2),
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Fig. 1: Three-species cascade motif: reaction diagram, graph G and associated
Markov chain (Example 3.1). (a) Chemical reaction system diagram. The numbers on the
arrows correspond to the reactions associated with the arrows as described in (3.8) in the main
text. (b) Graph G associated with the chemical reaction system in panel (a). (c) State space

and transitions for the projected continuous time Markov chain qX = {(X1(t), X2(t))
T : t ≥

0}, which keeps track of (nW, nY) through time. Here, we consider Ntot = 2 and we use dots to
represent the states, and red double-ended arrows to represent transitions in both directions.
Additionally, we use shades of blue to distinguish the level to which each state belongs. The
function L(x1, x2) associated with the coclique level structure is L(x1, x2) = x1 + 2x2. The

rates associated with the one-step transitions for the projected Markov chain qX are given in
(3.10).

where the associated transition vectors are

qv1 = (1, 0)T , qv2 = (−1, 1)T , (3.9)

and the infinitesimal transition rates are

qQqx,qx+qv1
= f1(qx) = ³(Ntot − (x1 + x2)), qQqx,qx+qv2 = f2(qx) = ´x1. (3.10)

We now determine a coclique level function and the associated coclique level struc-
ture for the projected Markov chain qX. To this end, consider the partition of the edge
set given by E+ = {e1, e2}, E− = ∅. According to Lemma 3.2, since G is weakly con-
nected, and Assumption 3.1 is satisfied, the system of equations (3.4) admits either
zero or one solution. In this case, solving the system of equations

b1 = 1, −b1 + b2 = 1

yields the unique solution b = (b1, b2)
T = (1, 2)T . Therefore, the function L(x1, x2) =

x1 +2x2 is a coclique level function for qX. The corresponding coclique level structure
is the (ordered) partition {Lℓ, . . . ,Lu} of the state space qX , where each level set is

defined as Lz :=
{

x ∈ qX : L(x) = z
}

, z = ℓ, . . . , u, with ℓ = min{L(x) : x ∈ qX} = 0

and u = max{L(x) : x ∈ qX} = 2Ntot.
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It is important to note that this is only one possible coclique level structure for qX.
In the next section (Section 4), we develop theoretical tools to identify all possible
coclique level structures for SCRNs satisfying Assumption 3.1.

4 Main Results

In Sections 4.1–4.3, we develop theoretical tools for SCRNs satisfying Assumption 3.1
and whose associated graph G is weakly connected, and in Section 4.4, we relax the
latter condition and consider the case where G does not need to be weakly connected.
More precisely, in Section 4.1, we introduce a theorem to determine all of the pos-

sible coclique level functions associated with SCRNs satisfying Assumption 3.1 and
with G weakly connected. We then derive theoretical tools to determine when a pro-
jected continuous time Markov chain associated with a SCRN admits a coclique level
function by studying the structure of the graph G associated with the SCRN. Addi-
tionally, we develop an algorithm to find, under certain assumptions, all of the possible
coclique level functions associated with these SCRNs (see Section 4.2). We derive ana-
lytical formulas for upper and lower bounds on MFPTs for SCRNs having this type of
structure (see Section 4.3). In Section 4.4, we generalize these results to study SCRNs
that satisfy Assumption 3.1 and whose associated graph G does not need to be weakly
connected. We apply our results to several examples in Section 5.

4.1 Existence and characterization of coclique level structures

In the first theorem in this section, we show that if (3.4) admits a solution, then there

is a coclique level function for qX. Moreover, all coclique level functions for qX can be
obtained in this way.
Theorem 4.1. Consider a SCRN satisfying Assumption 3.1. Assume that the asso-
ciated graph G is weakly connected. The set of all coclique level functions for qX is the
set of all functions of the form (3.3), where b = (b1, . . . , bd−1)

T ∈ Z
d−1 is a solution

of the system (3.4) for some partition {E+, E−} of the edge set of G (and one of E+
and E− may be empty).

Proof. Let L be a coclique level function for qX. Then, by Section 3, L has the form
(3.3), where b ∈ Z

d−1 satisfies (3.4) with E+ = {ek : L(qvk) = 1} and E− = {ek :
L(qvk) = −1}. Conversely, suppose that b is a solution of the system (3.4) for some
partition {E+, E−} of the edge set of G (where E+ or E− may be empty). Then, b ∈ Z

d−1

by Lemma 3.2, and with L(x) = bTx for all x ∈ Z
d−1, L satisfies (3.2). Thus, L is a

coclique level function for qX.

Remark 4.1. For a given partition {E+, E−} of the edge set of G, if the system (3.4)
has a solution, then by Lemma 3.2, it has a unique solution. Furthermore, if we switch
the labels of the two subsets, i.e., E+ becomes E− and vice versa, the function L is
replaced by −L, and the sets in the partition {Lℓ, . . . ,Lu} remain the same but the
order is reversed. Therefore, we may consider the coclique level structures associated
with L and −L to be the same.
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Application to Example 3.1: Consider the SCRN introduced in (3.8), with associ-
ated graph G shown in Figure 1(b). As previously mentioned, by applying Lemma 3.1,
we know that this SCRN has a unique conservation vector m = (1, 1, 1)T . This allows

us to introduce a projected continuous time Markov chain qX = {(X1(t), X2(t))
T : t g

0}, which keeps track of (nW, nY) through time, with transition vectors and associated
rates given in (3.9) and (3.10), respectively.

Given that Assumption 3.1 is satisfied and the associated graph G is weakly con-
nected, we can use Theorem 4.1 to determine all of the coclique level structures for qX.
To this end, consider all of the possible partitions {E+, E−} of edges of G that could
allow us to determine a coclique level structure. These partitions are the following:

E+ = {e1, e2}, E− = ∅ and E+ = {e1}, E− = {e2}. (4.1)

We did not consider the partition E+ = ∅, E− = {e1, e2} or the partition E+ =
{e2}, E− = {e1} because, as explained in Remark 4.1, the associated functions L
would be the opposite of the ones obtained for the partitions considered above and the
resulting coclique level structures are considered to be the same. For each partition,
the system of equations in (3.4) has a unique solution, these being (b1, b2)

T = (1, 2)T

and (b1, b2)
T = (1, 0)T , respectively. Then, by applying Theorem 4.1, we can conclude

that the projected Markov chain qX has two coclique level structures, with associated
coclique level functions L(x1, x2) = x1 + 2x2 and L(x1, x2) = x1, respectively.

Now, we characterize when there exists a coclique level function for qX, assuming
Assumption 3.1 and the associated graph G is weakly connected (see Theorem 4.3).
In the course of this, we show how to derive a simple coclique level function, when
one exists, which exploits bipartite structure of G. There can be other coclique level
functions and we can use Theorem 4.1 above to identify all possible coclique level
functions.

Assume the SCRN satisfies Assumption 3.1 and its associated graph G is weakly
connected. Consider a weakly directed cycle c in G, i.e., a directed subgraph of G
whose underlying undirected graph is a cycle. We abbreviate weakly directed cycle
as wd-cycle3. Choose an orientation for the cycle. Then, define the vector ϑc ∈ Z

n

associated with the wd-cycle c such that for k = 1, . . . , n,

ϑc(k) =































+1 if ek is part of the wd-cycle and ek is in

the direction of the orientation of the wd-cycle,

−1 if ek is part of the wd-cycle and ek is in

the opposite direction of the orientation of the wd-cycle,

0 if ek is not part of the wd-cycle.

(4.2)

Theorem 4.2. Consider a SCRN satisfying Assumption 3.1 and assume its associated
graph G is weakly connected. Let C be the set of all wd-cycles in G. For each c ∈ C, we
have ϑc ∈ ker(S). Furthermore, given a partition {E+, E−} of the edge set of G (where

3Note that we allow two vertices connected by edges e and the reverse of e to be a wd-cycle.
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one of E+, E− may be empty), we can define a vector w such that wk = +1 if ek ∈ E+
and wk = −1 if ek ∈ E−. Then, if wTϑc ̸= 0 for some c ∈ C, the system (3.4) does
not admit a solution b ∈ Z

d−1.

Proof. The ith entry of the vector Sϑc represents the amount of species Si con-
sumed/produced after all the reactions associated with the wd-cycle c are triggered,
where the signs in ϑc ensure that the edges are followed in the direction of the chosen
orientation. Since c is a wd-cycle and Assumption 3.1 is satisfied, Sϑc = 0 and then
ϑc ∈ ker(S).

Since qST is ST without the last column, we have that range(qST ) ¦ range(ST ) =
ker(S)§. Since ϑc ∈ ker(S) for each c ∈ C, we have that span{ϑc : c ∈ C} ¢ ker(S).

It follows that if wTϑc ̸= 0 for some c ∈ C, then w /∈ ker(S)§ § range(qST ), and thus
(3.4) does not admit a solution.

Corollary 4.1. Consider a SCRN satisfying Assumption 3.1 and assume its asso-
ciated graph G is weakly connected. Suppose {E+, E−} is a partition of the edge set
of G (where one of E+ and E− can be empty). If there are vk, vk′ ∈ V such that
vk = −vk′ and the edges associated with them, ek and ek′ , belong to the same subset
E+ or E−, then (3.4) does not admit a solution b ∈ Z

d−1, and so there is no coclique
level structure for this partition.

Proof. Suppose that ek, ek′ ∈ E+ have the properties described. Consider the wd-cycle
c given by ek and ek′ , with corresponding vector ϑc. Then, ϑc(ℓ) = 0 for ℓ /∈ {k, k′}
and, depending on the orientation of the cycle, ϑc(k) = ϑc(k

′) = +1 or ϑc(k) =
ϑc(k

′) = −1. Then, since both the edges belong to E+, we have w, defined as in (3.7),
to be such that w(k) = w(k′) = 1 and w(ℓ) = 0 for ℓ /∈ {k, k′}. This implies that
|wTϑc| = 2 ̸= 0. Then, the result follows from Theorem 4.2. Similar reasoning can be
used for the case where ek, ek′ ∈ E−.

Remark 4.2. Based on the results of Corollary 4.1, given a partition {E+, E−}, we
can obtain a coclique level function only if edges ek and ek′ associated with vk, vk′ ∈ V
such that vk = −vk′ belong to different members of the partition. If this property
holds, then the equation (3.4) associated with vk is the opposite of the one associated
with vk′ . This implies that the two equations are providing the same information.
Thus, in order to solve system (3.4) and reduce the computational cost, we can just

write the system for pV, in which pV ¦ V is a maximal set of reaction vectors such that,
for any vk, vk′ ∈ pV, vk ̸= −vk′ .

Finally, we introduce a theorem demonstrating that for a SCRN satisfying Assump-
tion 3.1 and having a weakly connected graph G, there is a coclique level structure for
qX if and only if G is bipartite.
Theorem 4.3. Consider a SCRN satisfying Assumption 3.1 and suppose the associ-
ated graph G is weakly connected. If the graph G is bipartite, then there exists a coclique
level function for the projected continuous time Markov chain qX. In this case, by rela-
beling vertices if necessary, there are two disjoint, non-empty cocliques of vertices in
G, B = {1, . . . , ī} and C = {̄i+ 1, . . . , d}, and then

L(qx) = L(x1, . . . , xī, xī+1, . . . , xd−1) = x1 + · · ·+ xī (4.3)
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defines a coclique level function for qX. If the graph G is not bipartite, there is no
coclique level structure for qX.

Proof. We start by assuming the graph G is bipartite, and show there exists a coclique
level function for the projected continuous time Markov chain qX as described in the
theorem. Suppose G is bipartite. By relabeling vertices if necessary, there are sets B
and C as described in the theorem. Let E+ = {ek = (i, j) : vk ∈ V , i ∈ C and j ∈ B}
and E− = {ek = (i, j) : vk ∈ V, i ∈ B and j ∈ C}. Note that this {E+, E−} is a
partition of the edge set of G where one of E+ or E− could be empty. Let b ∈ Z

d−1

be the vector where the first ī entries are 1 and the remaining d − 1 − ī entries are
zero and define L(x) = bTx for x ∈ Z

d−1. Since G is bipartite and B and C are two
cocliques, each reaction corresponds either to an edge from a vertex in C to a vertex
in B or an edge from a vertex in B to a vertex in C. In particular, when a reaction
vk ∈ V is triggered, if ek ∈ E+ then L(qvk) = +1 and if ek ∈ E− then L(qvk) = −1.

Thus, L satisfies (3.2) and is a coclique level function for qX.
Now suppose the graph G is not bipartite. Then G contains at least one odd wd-

cycle, codd (see Theorem 5.1 on page 27 of [21]). Consider the vector ϑcodd associated
with this cycle. By definition, ϑcodd has all of its entries equal to zero except for an odd
number of entries, associated with the edges in the wd-cycle codd, which take values
in {−1,+1}. For any partition {E+, E−} of the edge set of G (where one of E+ or E−
may be empty), and for w as in (3.7), the product wTϑcodd will result in a sum of an
odd number of terms, each of which is +1 or −1, and thus the sum can never be equal
to zero. By Theorem 4.2, this implies that the system (3.4) does not admit a solution.

By Theorem 4.1, there cannot be a coclique level function for qX.

Application to Example 3.1: Consider the SCRN introduced in (3.8), with asso-
ciated graph G shown in Figure 1(b). Earlier, we showed how, by applying Theorem

4.1, one can determine all of the coclique level functions for qX. On the other hand, by
inspecting G, it is also possible to note that the graph is bipartite, and thus we can
apply Theorem 4.3 to directly identify one of its coclique level functions. Specifically,
the two disjoint, non-empty cocliques of vertices in G are B = {1} and C = {2, 3},

and then L(x) = x1 defines a coclique level function for qX.

4.2 Algorithm to determine all coclique level functions
associated with a SCRN satisfying Assumption 3.1 and
whose associated graph G is weakly connected

Based on the results given in Theorems 4.1 and 4.3, given a SCRN satisfying Assump-
tion 3.1 and assuming that G is weakly connected, we can obtain an algorithm that
allows us to find all of the coclique level functions for the projected continuous time
Markov chain qX associated with the SCRN. The steps of the algorithm are described
in Figure 2. The first step of the algorithm involves checking whether a graph is bipar-
tite. The reader may refer to Section 3.4 in Kleinberg and Tardos [15] for a discussion
about a Breadth-First Search implementation to check whether a graph is bipartite,
whose run time is linear in terms of the number of vertices in the graph (or, in our
case, the number of species in the SCRN).
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As a second step, the algorithm requires selecting a subset pV ¦ V defined as a
maximal set of reaction vectors such that vk ̸= −vi for any vk, vi ∈ pV. It is important
to note that, once such a subset is identified, the specific ordering of the vectors in pV
does not affect the outcome of the algorithm. Moreover, the choice of pV is uniquely
determined up to the direction of the vectors and ensures that all directions allowed
by the reactions are considered.

Fig. 2: Key steps of the algorithm for identifying all coclique level functions for
the projected continuous time Markov chain qX associated with a SCRN under
Assumption 3.1 and assuming that G is weakly connected.

Remark 4.3. Note that the algorithm described here is for a specific ordering of the
species associated with our specification of the SCRN.

4.3 Using coclique level structure to bound MFPTs

As mentioned in the introduction, obtaining an explicit analytical expression for the
mean first passage time (MFPT) for one-dimensional birth-death processes is relatively
straightforward by using the formula (S.3) (see SI - Section S.3). However, it is typically
very complicated to obtain an explicit expression for the MFPT for more complex
Markov chains, especially in dimension greater than one. In this section, we will show
how to obtain closed form formulas for upper and lower bounds for the MFPTs of
continuous time Markov chains qX associated with SCRNs having a coclique level
structure.

To this end, consider the projected continuous time Markov chain qX with finite state
space qX ¦ Z

d−1
+ , associated with a SCRN satisfying Assumption 3.1 and for which
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G is weakly connected (as defined in Section 3), and having infinitesimal generator
qQ. Suppose qX has a coclique level function L : Zd−1 → Z, defined as in (3.2), with

(ordered) partition {Lℓ,Lℓ+1, . . . ,Lu−1,Lu} of qX , defined as in (3.5) and where ℓ < u.

Given such a coclique level structure for qX, we will determine analytical expressions
for upper and lower bounds for both the MFPT for qX from Lℓ to Lu and the MFPT
for qX from Lu to Lℓ. We first focus on the MFPT from Lℓ to Lu.

Let
G+ := {k : L(qvk) = 1} and G− := {k : L(qvk) = −1}.

For ℓ < u, ℓ f z f u and qx ∈ Lz, define the “rate of increase” ¼z(qx) and the “rate of
decrease” µz(qx) as follows:

¼z(qx) =
∑

k∈G+

qQqx,qx+qvk , µz(qx) =
∑

k∈G−

qQqx,qx+qvk .

Then, for each z ∈ {ℓ, ℓ+ 1, . . . , u− 1, u}, let

¼M
z = max

qx∈Lz

¼z(qx), ¼m
z = min

qx∈Lz

¼z(qx), µM
z = max

qx∈Lz

µz(qx), µm
z = min

qx∈Lz

µz(qx).

(4.4)
We will define continuous time Markov chains X̆ and “X with the same state space as
qX. For ℓ f z f u and qx ∈ Lz, let

G+(qx) = {k ∈ G+ : qx+ qvk ∈ qX} and G−(qx) = {k ∈ G− : qx+ qvk ∈ qX}. (4.5)

We assume that G+(qx) : qx ∈ X \ Lu are all non-empty sets when G+ is non-empty,
and G−(qx) : qx ∈ X \ Lℓ are all non-empty sets when G− is non-empty. Note that
G+(qx) is empty when qx ∈ Lu and G−(qx) is empty when qx ∈ Lℓ. Then, we define the
infinitesimal generator Q̆ for X̆ such that the only positive entries of Q̆ are given by

Q̆qx,qx+qvk
=

¼M
z

|G+(qx)|
for k ∈ G+(qx) and Q̆qx,qx+qvk

=
µm
z

|G−(qx)|
for k ∈ G−(qx),

for ℓ f z f u and qx ∈ Lz. Similarly, we define the infinitesimal generator “Q for “X
such that the only positive entries of “Q are given by

“Qqx,qx+qvk
=

¼m
z

|G+(qx)|
for k ∈ G+(qx) and “Qqx,qx+qvk

=
µM
z

|G−(qx)|
for k ∈ G−(qx),

for ℓ f z f u and qx ∈ Lz.
Then, by the comparison theorems, i.e., Theorems 3.3 and 3.4 in [8] (see SI - Section

S.4), using the matrix A equal to bT (associated with the coclique level function

L), we have that for qx, x̆ and “x in Lℓ, we can realize qX and X̆ with infinitesimal

generators qQ and Q̆ (resp. qX and “X with infinitesimal generators qQ and “Q) on the

same probability space such that L( qX) f L(X̆), qX(0) = qx, X̆(0) = x̆ a.s. (resp.

L( “X) f L( qX), “X(0) = “x, qX(0) = qx a.s.). Then, for qÄu = inf{t g 0 : qX(t) ∈ Lu} =
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inf{t g 0 : L( qX(t)) = u}, Ä̆u = inf{t g 0 : X̆(t) ∈ Lu} = inf{t g 0 : L(X̆(t)) = u},
and “Äu = inf{t g 0 : “X(t) ∈ Lu} = inf{t g 0 : L( “X(t)) = u}, we have

Ex̆[Ä̆u] f Eqx[qÄu] f E“x[“Äu]. (4.6)

By the choice of the rates for X̆ and “X, we have that L(X̆) and L( “X) are continuous
time Markov chains. In fact, they are simple birth-death processes. It follows that the
upper and lower bounds in (4.6) can be explicitly evaluated. For the lower bound,
suppose that ¼M

z is positive for ℓ f z f u−1. We replace ¼i with ¼M
z and µi with µm

z ,
respectively, in formula (S.8), to obtain

Ex̆[Ä̆u] = h̆ℓ,u =
1

¼M
u−1

+

u−2
∑

i=ℓ

1

¼M
i

(

1 +

u−1
∑

j=i+1

µm
i+1 . . . µ

m
j

¼M
i+1 . . . ¼

M
j

)

. (4.7)

For the upper bound, suppose that ¼m
z is positive for ℓ f z f u − 1. We replace ¼i

with ¼m
z and µi with µM

z , respectively, in formula (S.8), to obtain

E“x[“Äu] = “hℓ,u =
1

¼m
u−1

+

u−2
∑

i=ℓ

1

¼m
i

(

1 +

u−1
∑

j=i+1

µM
i+1 . . . µ

M
j

¼m
i+1 . . . ¼

m
j

)

. (4.8)

With a similar procedure, we can obtain lower and upper bounds for the MFPT
for qX from Lu to Lℓ. In particular, for qÄℓ = inf{t g 0 : qX(t) ∈ Lℓ} = inf{t g 0 :

L( qX(t)) = ℓ} and qx ∈ Lu, we have

“hu,ℓ f Eqx[qÄℓ] f h̆u,ℓ (4.9)

in which

“hu,ℓ =
1

µM
ℓ+1

+

u
∑

i=ℓ+2

1

µM
i



1 +

i−1
∑

j=ℓ+1

¼m
j . . . ¼m

i−1

µM
j . . . µM

i−1



 , (4.10)

h̆u,ℓ =
1

µm
ℓ+1

+

u
∑

i=ℓ+2

1

µm
i



1 +

i−1
∑

j=ℓ+1

¼M
j . . . ¼M

i−1

µm
j . . . µm

i−1



 , (4.11)

provided that, for (4.10), µM
z is positive for ℓ+1 f z f u, and for (4.11), µm

z is positive
for ℓ+ 1 f z f u.

Application to Example 3.1: Consider the SCRN introduced in (3.8), with associ-
ated graph G shown in Figure 1(b). We seek lower and upper bounds for the MFPT
from nZ = Ntot to nY = Ntot. To this end, let us consider the coclique level function
L(x1, x2) = x1+2x2 previously identified. The coclique level structure associated with

it can be written as Lℓ, . . . ,Lu, with Lz := {x ∈ qX : L(x1, x2) = x1 + 2x2 = z} for
z = ℓ, . . . , u, and ℓ = 0, u = 2Ntot. This coclique level structure is such that (0, 0)T

(i.e., nZ = Ntot) is the only state belonging to Lℓ and (0,Ntot)
T (i.e., nY = Ntot) is the
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only state belonging to Lu (Figure 1(c)). This feature is critical in order to determine
good lower and upper bounds for the MFPT from nZ = Ntot to nY = Ntot.

Now,
G+ = {1, 2} and G− = ∅. (4.12)

The rate of increase ¼z(qx) and the rate of decrease µz(qx) can be written as

¼z(qx) = f1(qx) + f2(qx) and µz(qx) = 0, (4.13)

with f1(qx), f2(qx) defined in (3.10).
The two continuous time Markov chains, X̆ and “X, are defined on the same state

space as qX, with infinitesimal generators Q̆ and “Q, respectively, such that, for z ∈

{ℓ, ℓ+1, . . . , u−1, u} and qx ∈ Lz, Q̆qx,qx+qvk
=

¼M
z

|G+(qx)| for k ∈ G+(qx), “Qqx,qx+qvk
=

¼m
z

|G+(qx)|

for k ∈ G+(qx), with ¼M
z = maxqx∈Lz

¼z(qx) and ¼m
z = minqx∈Lz

¼z(qx), as defined in
(4.4), and G+(qx) defined as in (4.5) where G+ is given in (4.12). Note that in this
example, G− = ∅.

Then, as described in Section 4.3, we obtain analytical expressions for lower and
upper bounds for the MFPT for qX from nZ = Ntot to nY = Ntot as

h̆ℓ,u =
1

¼M
ℓ

+
1

¼M
ℓ+1

+ · · ·+
1

¼M
u−2

+
1

¼M
u−1

, “hℓ,u =
1

¼m
ℓ

+
1

¼m
ℓ+1

+ · · ·+
1

¼m
u−2

+
1

¼m
u−1

,

respectively. Given that ¼M
z = maxqx∈Lz

(³(Ntot − (x1 + x2)) + ´x1) and ¼m
z =

minqx∈Lz
(³(Ntot − (x1 + x2)) + ´x1), where the functions being maximized and min-

imized are increasing in ³, respectively ´, we see that the lower and upper bounds
h̆ℓ,u and “hℓ,u decrease as either of the rate constants ³ or ´ increases.

For this example, due to the simplicity of the SCRN considered, it is also possible to
derive a compact analytical expression for the MFPT. Each of the Ntot molecules acts
independently and must undergo one Z → W transition and one W → Y transition
to be converted from Z to Y. The time for one molecule of Z to be converted to Y is
the sum of two independent exponential random variables with parameters ³ and ´,
respectively, which has a hypoexponential distribution with distribution function

F (x) = (F1 ∗ F2)(x) =

∫ x

0

(1− e−³(x−y))´e−´ydy =

∫ x

0

(1− e−´(x−y))³e−³ydy,

for x > 0 where F1 and F2 are distribution functions for exponential random vari-
ables with parameters ³ and ´, respectively. The MFPT we desire is the mean of the
maximum of Ntot such independent hypoexponential random variables, which is given
by
∫∞

0
(1 − F (x)Ntot)dx. Observe that for fixed ´ > 0 and 0 < y < x, 1 − e−³(x−y)

is increasing with ³, and then F (x) is increasing with ³. Thus, the MFPT decreases
with increasing ³. Similarly, for fixed ³ > 0, we have that the MFPT decreases with
increasing ´.

Overall, this formulation explicitly gives the dependence of the MFPT on the rate
constants ³ and ´, and is fully consistent with the monotonic behavior that was
observed through our study of its bounds.
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4.4 Generalization to the non-weakly-connected case

In this section, we will consider SCRNs satisfying Assumption 3.1 and whose associated
graphs do not necessarily have to be weakly connected. In this case, the graph G
associated with a SCRN can be decomposed into finitely many weakly connected
components, and we use p to denote the number of weakly connected components in
G. For each q = 1, . . . , p, we use Gq to denote the qth weakly connected component of
G and use dq to denote the number of vertices in Gq.
Example 4.1. Consider a SCRN with four species (S1, S2, S3, S4) and the following
three reactions under mass-action kinetics:

1○ S1
»1−−→ S2, 2○ S2

»2−−→ S1, 3○ S3
»3−−→ S4, (4.14)

where the reaction rate constants »1, »2, »3 are positive. The associated graph G can
be represented as follows:

(1) S1
e1−á¾−
e2

S2, (2) S3
e3−→ S4.

In this case, G has two weakly connected components. The dynamics of {S1, S2} evolve
independently from those of {S3, S4}, and we can analyze the two subsystems indepen-
dently. We will show, at the end of this section, how one can study the whole system
by studying each subsystem independently.
Example 4.2. For a reaction edge ek lying in some weakly connected component of
G, the infinitesimal rate Υk may depend on the quantities of some species where the
graph vertices for those species may be in other weakly connected components of G.
For example, consider the following SCRN under mass-action kinetics:

1○ S1 + S4
»1−−→ S2 + S4, 3○ S3

»3−−→ S4,

2○ S2 + S5
»2−−→ S1 + S5, 4○ S4

»4−−→ S3,
(4.15)

where the reaction rate constants »1, »2, »3, »4 are positive. The diagram of this SCRN
is shown in Figure 3(a) and the associated graph G is shown in Figure 3(b). As a
convention, we keep species S5 even though its quantity is conserved over time, and
the vertex representing S5 in G is in its own weakly connected component. Here, G
has three weakly connected components. The dynamics of {S1, S2} do depend on the
varying quantity of S4, where S4 is in a different weakly connected component from
that of {S1, S2}. In this case, we cannot analyze the first two subsystems independently.

Now, for a SCRN satisfying Assumption 3.1 and whose associated graph G has p
weakly connected components, we shall and do relabel the species so that j ∈ {1, . . . , d}

belongs to the qth weakly connected component of G if and only if
∑q−1

q′=1 dq′ < j f
∑q

q′=1 dq′ where a sum over an empty set is considered to be 0. With this relabeling,

for a state x ∈ X , 1 f q f p and 1 f i f dq, we shall use xq
i to denote the
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Fig. 3: Example of a SCRN whose associated graph G is not weakly connected
(Example 4.2). (a) Chemical reaction system diagram. The numbers on the arrows corre-
spond to the reactions associated with the arrows as described in (4.15) in the main text. (b)
Graph G associated with the chemical reaction system in panel (a). (c) State space and tran-

sitions of the projected continuous time Markov chain qX = {(X1(t), X3(t))
T : t ≥ 0}, which

keeps track of (nS1
, nS3

) through time. Here, we consider N1 = 2, N2 = 3 and we use dots to
represent the states, and red double-ended (single-ended) arrows to represent transitions in
both directions (in a single direction). Additionally, we use shades of blue to distinguish the
level to which each state belongs. The function L associated with the coclique level structure
is L(x1, x3) = x1 + x3. On the right-hand side of the panel, we show the rates associated

with the one-step transitions for the projected Markov chain qX. Note that, given an initial
condition, the quantity of species S5 does not change over time and we denote this conserved
quantity by N3.

(

i+
∑q−1

q′=1 dq′
)th

entry of x. In other words, we have

x = (x1, . . . , xp)T ∈ Z
d
+ where xq = (xq

1, . . . , x
q
dq
)T ∈ Z

dq

+ for q = 1, . . . , p. (4.16)

For q = 1, . . . , p, each vertex in Gq corresponds to a species and each edge in Gq corre-
sponds to a reaction, and in this sense, there is a stoichiometric matrix Sq associated
with Gq. Since there is no edge between different weakly connected components of G,
the stoichiometric matrix S associated with the SCRN has the form4

S =







S1 0 0

0
. . . 0

0 0 Sp






. (4.17)

By applying Lemma 3.1 to each weakly connected component of G, we can show
that the rank of the stoichiometric matrix S is d − p (which also implies that the
chemical reaction network associated with G, in the manner described in Remark 3.1,
has deficiency zero) and there are p linearly independent conservation vectors for this

4Here, Sq is a dq × rq matrix, where rq is the number of edges in Gq . A component Gq of G consisting
of one vertex has no edges and the associated Sq is degenerate.
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SCRN. As a result, we shall consider a projected continuous time Markov chain
qX = { qX(t) : t g 0} in which the state qx ∈ qX ¢ Z

d−p
+ tracks, for each q = 1, . . . , p, the

number of molecules of each species in Gq, except for the last species in Gq, that is,

qx = (qx1, . . . , qxp)T where qxq = (xq
1, . . . , x

q
dq−1)

T for q = 1, . . . , p. (4.18)

Here, we slightly abuse notation, where qxq is a zero-dimensional vector if |Gq| = 1.
Note that the choice to express xq

dq
as a function of xq

i : 1 f i f dq − 1 is without loss
of generality, since the species can always be relabeled so that a species chosen to be
expressed as a function of the others is the last one. The process qX is a continuous
time Markov chain5 defined on the finite state space

qX :=







qx = (xq
i )1fifdq−1,1fqfp ∈ Z

d−p
+ :

(xq
i )1fifdq,1fqfp ∈ X where xq

dq
= xq

tot −

dq−1
∑

i=1

xq
i for q = 1, . . . , p







¢
{

qx = (xq
i )1fifdq−1,1fqfp ∈ Z

d−p
+ : xq

1 + · · ·+ xq
dq−1 f xq

tot for q = 1, . . . , p
}

,

where xq
tot =

∑dq

i=1 X
q
i (0) for each q = 1, . . . , p. We will assume that | qX| > 1, and the

infinitesimal generator of qX will be denoted by qQ.
A coclique level function for qX is a linear function L : Zd−p → Z such that for

each k = 1, . . . , n,
L(qvk) ∈ {−1,+1}, (4.19)

where qvk ∈ Z
d−p is the vector obtained from vk by removing the last element in each

of the weakly connected components in G, in a similar manner to how we obtain (4.18)
from (4.16). If such an L exists, it can be written as

L(x) = bTx for x ∈ Z
d−p and some b ∈ Z

d−p, (4.20)

where, upon partitioning the set of edges of the associated graph G into two disjoint
subsets E+ = {ek : L(qvk) = 1} and E− = {ek : L(qvk) = −1} (where one of these may
be empty), the vector b = (b1, . . . , bd−p)

T solves the system of equations

d−p
∑

i=1

biqvk(i) =

{

+1 if ek ∈ E+

−1 if ek ∈ E−
for k = 1, . . . , n. (4.21)

For a coclique level function L, a coclique level structure for qX can be defined
similar to that in the case where G is weakly connected.

5With this reduction, coordinates corresponding to graph components consisting of a single vertex are

removed, although the transition rates of the Markov chain |X may depend on the constant amount of any
species associated with such an isolated vertex.
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Now, we are going to characterize all coclique level structures for qX. In the following
theorem, if the qth weakly connected component Gq of G has more than one vertex, i.e.,
|Gq| > 1, then we will consider a SCRN that consists of all the species and reactions
associated with this weakly connected component. If |Gq| = 1, then qxq is a zero-
dimensional vector and we do not need to consider this weakly connected component
when constructing coclique level functions as in (4.22).

Theorem 4.4. Consider a SCRN satisfying Assumption 3.1 and | qX| > 1. A coclique

level function for the projected continuous time Markov chain qX exists if and only if
for every weakly connected component Gq of the associated graph G satisfying |Gq| > 1
where q ∈ {1, . . . , p}, an associated coclique level function exists. The set of all coclique

level functions for qX is the set of all functions of the form

L(qx) = L(qx1, . . . , qxp) =
∑

q=1,...,p:
|Gq|>1

Lq(qxq) (4.22)

where Lq : Zdq−1 → Z is a coclique level function associated with Gq for q = 1, . . . , p
and |Gq| > 1. In particular, a coclique level function for qX exists if and only if G is
bipartite.

The proof of Theorem 4.4 can be found in SI - Section S.2. For this, we can break
down the problem to look at each weakly connected component separately, which is
made possible by the block structure of the stoichiometric matrix shown in (4.17).

Suppose the projected continuous time Markov chain qX with finite state space
qX ¦ Z

d−p
+ has a coclique level function L : Zd−p → Z, defined as in (4.19), with

coclique level structure Lℓ,Lℓ+1, . . . ,Lu−1,Lu defined as in (3.5)–(3.6) with ℓ < u.
Similar to the reasoning in Remark 4.1, for a coclique level function L as in (4.22),
the sets Lℓ, . . . ,Lu in the coclique level structures associated with L and −L are the
same, while the orderings of those sets in the two coclique level structure partitions
are opposite. As a convention, we consider the coclique level structures associated with
L and −L to be the same. Similar to the discussion in Section 4.3, we can determine
analytical expressions for upper and lower bounds for both the MFPT for qX from Lℓ

to Lu and the MFPT for qX from Lu to Lℓ.

Application to Example 4.1: In this example, G has two weakly connected com-
ponents, and m1 = (1, 1, 0, 0)T and m2 = (0, 0, 1, 1)T are two linearly independent
conservation vectors for this system. Therefore, we can consider a projected continuous
time Markov chain qX = {(X1(t), X3(t))

T : t g 0}, which tracks the number of S1 and

S3 through time. The state space for qX is {(x1, x3)
T ∈ Z

2
+ : 0 f x1 f N1, 0 f x3 f

N2}, where N1 = X1(0)+X2(0) and N2 = X3(0)+X4(0). We shall use Theorem 4.4 to

identify all of the coclique level structures for qX. For the first weakly connected com-
ponent G1 of G, the only possible partitions of edges of G1 are E1

+ = {e2}, E
1
− = {e1}

and E1
+ = {e1}, E

1
− = {e2}, by Remark 4.2 and the fact that reactions 1○ and 2○

are a pair of reversible reactions. One then can verify that L1(qx1) = x1
1 = x1 and

L1(qx1) = −x1
1 = −x1 are the two coclique level functions associated with G1. Similarly,

L2(qx2) = x2
1 = x3 and L2(qx2) = −x2

1 = −x3 are the only coclique level functions asso-

ciated with G2. By Theorem 4.4, the coclique level functions for qX are L(qx) = x1+x3,
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L(qx) = x1 − x3, L(qx) = −x1 + x3 and L(qx) = −x1 − x3, where the first two give the

two distinct coclique level structures for qX by similar reasoning to that in Remark 4.1.
Because the dynamics of {S1, S2} evolve independently from those of {S3, S4}, we

can choose to analyze the two subsystems independently. For example, qX1 = {X1(t) :
t g 0} is itself a continuous time Markov chain that tracks the number of S1 and
we have shown that L1(qx1) = x1

1 = x1 is a coclique level function associated with

G1. Thus, we may study the MFPT from qX1 = 0 to qX1 = N1. However, it is not
possible to study this MFPT using a coclique function for the whole system, because
L(qx) = x1 is not a coclique level function for qX. In conclusion, when the dynamics of
each subsystem in the SCRN evolve independently, it is beneficial to apply our theory
in Sections 4.1–4.3 to each subsystem separately.
Application to Example 4.2: In this example, G has three weakly connected com-
ponents, and m1 = (1, 1, 0, 0, 0)T , m2 = (0, 0, 1, 1, 0)T and m3 = (0, 0, 0, 0, 1)T are
three linearly independent conservation vectors for this system. Therefore, we can con-
sider a projected continuous time Markov chain qX = {(X1(t), X3(t))

T : t g 0}, which

tracks the number of S1 and S3 through time (Figure 3(c)). The state space for qX
is {(x1, x3)

T ∈ Z
2
+ : 0 f x1 f N1, 0 f x3 f N2}, where N1 = X1(0) + X2(0) and

N2 = X3(0) +X4(0). Note that, given an initial condition, the quantity of species S5
does not change over time and we shall denote this conserved quantity by N3. Accord-
ingly, the trivial dynamics of the system associated with the third weakly connected
component of G is omitted in the projected chain qX. Similar to the previous example,
we can use Theorem 4.4 to identify all of the coclique level structures for qX, which are
the coclique level structures associated with the coclique level functions L(qx) = x1+x3

and L(qx) = x1 − x3.
As an example, we can use the coclique level structure associated with the coclique

level function L(qx) = x1 + x3 to bound the MFPT from qx = (x1, x3)
T = (N1,N2)

T to
(0, 0)T above and below by (4.10) and (4.11), respectively, where the parameters in
these two expressions are given by ℓ = 0, u = N1 +N2 and for ℓ f z f u,

¼m
z = min

0fx1fN1,
0fx3fN2,
x1+x3=z

(»2(N1 − x1)N3 + »4(N2 − x3)) ,

¼M
z = max

0fx1fN1,
0fx3fN2,
x1+x3=z

(»2(N1 − x1)N3 + »4(N2 − x3)) ,

µm
z = min

0fx1fN1,
0fx3fN2,
x1+x3=z

(»1x1(N2 − x3) + »3x3) , µM
z = max

0fx1fN1,
0fx3fN2,
x1+x3=z

(»1x1(N2 − x3) + »3x3) ,

in which one can verify that µM
z g µm

z > 0 for each 1 f z f N1 +N2.

5 Examples

In this section, we consider three examples and study their stochastic behavior, in
terms of MFPT, by exploiting the theoretical tools developed in this paper. The exam-
ples come from biological areas of epigenetics, neurobiology and ecology [3, 5, 17].
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All the continuous time Markov chains associated with the SCRNs considered in our
examples have a finite state space.

5.1 Chromatin modification circuit including only histone
modifications

Epigenetic regulation is the modification of the DNA structure, due to chromatin
modifications, that determines if a gene is active or repressed. Various chromatin mod-
ifications affect the structure of DNA. In this example, we will consider only histone
modifications, while in the next one, we will study a more complex model including also
DNA methylation. More precisely, in this example we analyze a well-established model
for a histone modification circuit [5, 6, 9], which involves three species: unmodified
nucleosome, denoted by D; nucleosome modified with repressive histone modifications,
denoted by DR; nucleosome modified with activating histone modifications, denoted
by DA. In this model, each histone modification catalyzes its own establishment on
unmodified nucleosomes and catalyzes the erasure of the opposite modification [5, 9].
The quantity of each species is denoted by nD, nDR and nDA , respectively. Their sum
remains constant, i.e., nD + nDR + nDA = Dtot, where Dtot denotes the total number
of nucleosomes within the gene. Then, the chemical reaction system, whose diagram
is shown in Figure 4(a), can be written as

1○ D
kA
W0 + kA

W−−−−−−−→ DA
, 2○ D+DA kA

M−−→ DA +DA
, 3○ DA ¶ + k̄A

E−−−−−→ D,

4○ DA +DR kA
E−−→ D+DR

, 5○ D
kR
W0 + kR

W−−−−−−−→ DR
, 6○ D+DR kR

M−−→ DR +DR
,

7○ DR ¶ + k̄R
E−−−−−→ D, 8○ DR +DA kR

E−−→ D+DA
,

(5.1)

in which kAW0, k
A
W , kAM , ¶, k̄AE , k

A
E , k

R
W0, k

R
W , kRM , k̄RE , k

R
E > 0. The expression of the reac-

tion rate constants is because we combined reactions sharing the same reactants and

products. Now, denoting the reaction volume by V , let us introduce ε :=
¶+k̄A

E

kA
M

(Dtot/V )
=

¶A
kA
M

(Dtot/V )
, with ¶A := ¶+ k̄AE , and µ :=

kR
E

kA
E

. Furthermore, let us consider the constant

b̃ such that µb̃ = ¶R
¶A

, where ¶R := ¶ + k̄RE . Then, ¶R = ¶Aµb̃ = ε
kA
MDtot

V µb̃.
Considering x = (nDR , nDA , nD), the reaction vectors associated with (5.1) are v1 =

(0, 1,−1)T , v2 = (0,−1, 1)T , v3 = (1, 0,−1)T , and v4 = (−1, 0, 1)T . By examining
them, it is possible to verify that Assumption 3.1 is satisfied. The graph G associated
with the chemical reaction system (5.1) can then be represented as in Figure 4(b).

By inspecting G, one can verify that the underlying undirected graph is connected
and that G is bipartite. By Lemma 3.1, our SCRN has a unique conservation vector
m = (1, 1, 1)T and then we can introduce a projected continuous time Markov chain
qX = {(X1(t), X2(t))

T : t g 0}, which keeps track of (nDR , nDA) through time. Since

the total number of nucleosomes Dtot is conserved, the state space is qX = {qx =

(x1, x2)
T ∈ Z

2
+ : x1 + x2 f Dtot}. The potential one-step transitions for qX from

x ∈ qX are shown in Figure 4(c), where the associated transition vectors are qv1 =
−qv2 = (0, 1)T and qv3 = −qv4 = (1, 0)T , and the infinitesimal transition rates (in which
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Fig. 4: Chromatin modification circuit including only histone modifications:
reaction diagram, graph G and associated Markov chain. (a) Chemical reaction sys-
tem diagram. The numbers on the arrows correspond to the reactions associated with the
arrows as described in (5.1) in the main text. (b) Graph G associated with the chemical reac-
tion system in panel (a). (c) State space and transitions of the projected continuous time

Markov chain qX = {(X1(t), X2(t))
T : t ≥ 0}, which keeps track of (nDR , nDA) through time.

Here, we consider Dtot = 3 and we use dots to represent the states, and red double-ended
arrows to represent transitions in both directions. Additionally, we use shades of blue to dis-
tinguish the level to which each state belongs. The function L associated with the coclique
level structure is L(x1, x2) = x1 − x2. The rates associated with the one-step transitions for

the projected Markov chain qX are given in (5.2).

we assume mass-action kinetics with the usual rate constant volume scaling) are

qQqx,qx+qv1
= fA(qx) = (Dtot − (x1 + x2))

(

kAW0 + kAW +
kAM
V

x2

)

,

qQqx,qx+qv2 = gA(qx) = x2

(

ε
kAM
V

Dtot + x1
kAE
V

)

,

qQqx,qx+qv3 = fR(qx) = (Dtot − (x1 + x2))

(

kRW0 + kRW +
kRM
V

x1

)

,

qQqx,qx+qv4
= gR(qx) = x1µ

(

ε
kAM
V

Dtotb̃+ x2
kAE
V

)

.

(5.2)

Let us now focus on determining explicit analytical expressions for upper and lower
bounds of MFPTs. To this end, let us apply Theorem 4.1 to determine the coclique
level structures for qX. We can apply the theorem because Assumption 3.1 is satisfied
and the associated graph G is weakly connected.

Consider all of the possible partitions {E+, E−} of edges of G that could allow us to
determine a coclique level structure. These partitions are the following:

E+ = {e1, e3}, E− = {e2, e4} and E+ = {e2, e3}, E− = {e1, e4}. (5.3)
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We did not consider the partition E+ = {e2, e4}, E− = {e1, e3} or the partition E+ =
{e1, e4}, E− = {e2, e3} because, as explained in Remark 4.1, the associated functions L
would be the opposite of the ones obtained for the partitions considered above and the
resulting coclique level structures are considered to be the same. Furthermore, we did
not consider the partitions in which two edges in the same element of a partition are
associated with two reaction vectors qvk, qvk′ ∈ V such that qvk = −qvk′ , because, as stated
in Corollary 4.1, these partitions would not lead to a coclique level structure. For each
partition, the system of equations in (3.4) has a unique solution, these being (b1, b2)

T =
(1, 1)T and (b1, b2)

T = (1,−1)T , respectively. Then, by applying Theorem 4.1, we

can conclude that the projected Markov chain qX has two coclique level structures
associated with coclique level functions L(x1, x2) = x1 + x2 and L(x1, x2) = x1 − x2.

Let us consider the coclique level function L(x1, x2) = x1 − x2. The coclique level

structure associated with it can be written as Lℓ, . . . ,Lu, with Lz := {x ∈ qX :
L(x1, x2) = x1 − x2 = z} for z = ℓ, . . . , u, with ℓ = −Dtot and u = Dtot. This
coclique level structure is such that a = (0,Dtot)

T is the only state belonging to Lℓ and
r = (Dtot, 0)

T is the only state belonging to Lu (see Figure 4(c)). As shown below, this
feature of the coclique level structure is critical in order to determine lower and upper
bounds for ha,r, the MFPT from a to r, and hr,a, the MFPT from r to a, and this is
the reason why we consider the coclique level structure associated with the function
L(x1, x2) = x1 −x2 and not the one associated with the function L(x1, x2) = x1 +x2.

Let us now determine the lower and upper bounds for the MFPT from a to r, and
vice versa, following the approach described in the previous section. In particular, here
we have

G+ = {2, 3} and G− = {1, 4}, (5.4)

and the rate of increase ¼z(qx) and the rate of decrease µz(qx) can be written as

¼z(qx) = fR(qx) + gA(qx) and µz(qx) = fA(qx) + gR(qx), (5.5)

with fR(qx), gA(qx), fA(qx), gR(qx) defined in (5.2). The two continuous time Markov

chains X̆ and “X, defined on the same state space as qX have infinitesimal generators
Q̆ and “Q, respectively, such that, for z ∈ {ℓ, ℓ+1, . . . , u−1, u} and qx ∈ Lz, Q̆qx,qx+qvk

=
¼M
z

|G+(qx)| for k ∈ G+(qx), Q̆qx,qx+qvk
=

µm
z

|G−(qx)| for k ∈ G−(qx), “Qqx,qx+qvk
=

¼m
z

|G+(qx)| for

k ∈ G+(qx), and “Qqx,qx+qvk
=

µM
z

|G−(qx)| for k ∈ G−(qx), with ¼M
z , ¼m

z , µM
z , and µm

z defined

as in (4.4), and non-empty G+(qx) and G−(qx) defined as in (4.5) where G+ and G−

are given in (5.4).

Then, as described in Section 4.3, we can compare the Markov chain qX with X̆ and
“X, separately, to conclude that

h̆ℓ,u f ha,r f “hℓ,u and “hu,ℓ f hr,a f h̆u,ℓ (5.6)

where h̆ℓ,u, “hℓ,u, “hu,ℓ, and h̆u,ℓ can be written as in (4.7), (4.8), (4.10), and (4.11),
respectively, with the quantities in (4.4) replaced by those in (5.5).

These analytical expressions allow us to study the effect of the parameter ε on the
MFPT from a to r (average time to memory loss of the active state) and the MFPT
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from r to a (average time to memory loss of the repressed state). Specifically, given
that the only O(ε) rates are µM

u = µm
u = gR(Dtot, 0) and ¼M

ℓ = ¼m
ℓ = gA(0,Dtot), with

the other rates being O(1), we can conclude that the upper bounds “hℓ,u, h̆u,ℓ and the

lower bounds h̆ℓ,u, “hu,ℓ in (5.6) are all O(ε−1). This implies that the average time to
memory loss of both the repressed and active states are O(ε−1), and as ε approaches
0, the average time to memory loss of both the repressed and active states tends to
infinity.

5.2 Full chromatin modification circuit

In this example, we consider a chromatin modification circuit model that includes
not only histone modifications, but also DNA methylation [5, 7]. The model involves
five species: unmodified nucleosome, denoted by D; nucleosome with CpGme only,
denoted by DR

1 ; nucleosome with H3K9me3 only, denoted by DR
2 ; nucleosome with

both H3K9me3 and CpGme, denoted by DR
12; nucleosome with an activating histone

modification, denoted by DA. In terms of molecular interactions, DNA methylation
catalyzes the establishment of repressive histone modifications (and vice versa), while
enhancing the erasure of activating marks (and vice versa) [5]. The quantity of each
species is denoted by nD, nDA , nDR

1
, nDR

2
, and nDR

12
, respectively. Their sum remains

constant, i.e., nD + nDA + nDR
1
+ nDR

2
+ nDR

12
= Dtot. The chemical reaction system,

whose diagram is shown in Figure 5(a), can be written as

1○ D
kA
W0 + kA

W−−−−−−−→ DA
, 2○ D+DA kA

M−−→ DA +DA
, 3○ DA ¶ + k̄A

E−−−−−→ D,

4○ DA +DR
1

kA
E−−→ D+DR

1 , 5○ DA +DR
12

2 kA
E−−−→ D+DR

12, 6○ DA +DR
2

kA
E−−→ D+DR

2 ,

7○ D
k1
W0 + k1

W−−−−−−−→ DR
1 , 8○ D

k2
W0 + k2

W−−−−−−−→ DR
2 , 9○ DR

2
k1
W0−−−→ DR

12, 10○ DR
1

k2
W0−−−→ DR

12,

11○ D+DR
2

kM−−→ DR
2 +DR

2 , 12○ D+DR
12

kM + k̄M−−−−−−→ DR
2 +DR

12,

13○ DR
1 +DR

2
kM−−→ DR

12 +DR
2 , 14○ DR

1 +DR
12

kM + k̄M−−−−−−→ DR
12 +DR

12, (5.7)

15○ D+DR
2

k
′

M−−→ DR
1 +DR

2 , 16○ D+DR
12

k
′

M−−→ DR
1 +DR

12, 17○ D+DR
1

k̄M−−→ DR
2 +DR

1

18○ DR
2 +DR

2
k
′

M−−→ DR
12 +DR

2 , 19○ DR
2 +DR

12
k
′

M−−→ DR
12 +DR

12,

20○ DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 , 21○ DR

2
¶ + k̄R

E−−−−−→ D, 22○ DR
2 +DA kR

E−−→ D+DA
,

23○ DR
1

¶
′

+ k
′

T−−−−−→ D, 24○ DR
1 +DA k

′
∗

T−−→ D+DA
, 25○ DR

12
¶
′

+ k
′

T−−−−−→ DR
2 ,

26○ DR
12 +DA k

′
∗

T−−→ DR
2 +DA

, 27○ DR
12

¶ + k̄R
E−−−−−→ DR

1 , 28○ DR
12 +DA kR

E−−→ DR
1 +DA

,

in which kAW0, k
A
W , kAM , ¶, k̄AE , k

A
E , k

1
W0, k

1
W , k2W0, k

2
W , k′M , k̄M , kM , ¶′, k′T , k

′∗
T , k̄RE , k

R
E > 0

and the expression of the reaction rate constants is because we combined reactions
sharing the same reactants and products. As we did for Example 5.1, let us introduce

parameters ε =
¶+k̄A

E

kA
M
V

Dtot

and µ =
kR
E

kA
E

, with a constant b̃ such that
¶+k̄R

E

¶+k̄A
E

= b̃µ. Further-

more, since in this model we also have DNA methylation, we also introduce µ′ =
k
′
∗

T

kA
E
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Fig. 5: Full chromatin modification circuit: reaction diagram, graph G and
associated Markov chain. (a) Chemical reaction system diagram. The numbers on the
arrows correspond to the reactions associated with the arrows as described in (5.7) in
the main text. (b) Graph G associated with the chemical reaction system in panel (a).

(c) State space and transitions of the projected continuous time Markov chain qX =
{(X1(t), X2(t), X3(t), X4(t))

T : t ≥ 0}, which keeps track of (nDR
12
, nDA , nDR

1
, nDR

2
) through

time. Here, we consider Dtot = 2 and we use dots to represent the states, and red double-
ended arrows to represent transitions in both directions. Additionally, we use shades of blue
to distinguish the level to which each state belongs. The function L associated with the
coclique level structure is L(x1, x2, x3, x4) = 2x1 − x2 + x3 + x4. The rates associated with

the one-step transitions for the projected Markov chain qX are given in (5.8).

and a constant ´ such that
¶
′

+k
′

T

¶+k̄A
E

= ´µ′. The parameter µ′ quantifies the relative

speed between the erasure rate of DNA methylation and the erasure rate of activating
histone modifications.
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Considering x = (nDR
12
, nDA , nDR

1
, nDR

2
, nD)

T , the reaction vectors associated with

(5.7) are v1 = (0, 1, 0, 0,−1)T , v2 = (0,−1, 0, 0, 1)T , v3 = (0, 0, 1, 0,−1)T , v4 =
(0, 0,−1, 0, 1)T , v5 = (0, 0, 0, 1,−1)T , v6 = (0, 0, 0,−1, 1)T , v7 = (1, 0,−1, 0, 0)T ,
v8 = (−1, 0, 1, 0, 0)T , v9 = (1, 0, 0,−1, 0)T , and v10 = (−1, 0, 0, 1, 0)T . By examin-
ing them, one can verify that Assumption 3.1 is satisfied. The graph G associated
with the chemical reaction system (5.7) can then be represented as in Figure 5(b). As
done for Example 5.1, by inspecting G, one can verify that the underlying undirected
graph is connected and that G is bipartite. By Lemma 3.1, our SCRN has a unique
conservation vector m = (1, . . . , 1)T and we can introduce the projected continuous

time Markov chain qX = {(X1(t), X2(t), X3(t), X4(t))
T : t g 0}, which keeps track of

(nDR
12
, nDA , nDR

1
, nDR

2
) through time. Since the total number of nucleosomes Dtot is con-

served, the state space is qX = {qx = (x1, x2, x3, x4)
T ∈ Z

4
+ : x1+x2+x3+x4 f Dtot}.

The potential one-step transitions for qX from x ∈ qX are shown in Figure 5(c), where
the associated transition vectors are qv1 = −qv2 = (0, 1, 0, 0)T , qv3 = −qv4 = (0, 0, 1, 0)T ,
qv5 = −qv6 = (0, 0, 0, 1)T , qv7 = −qv8 = (1, 0,−1, 0)T , and qv9 = −qv10 = (1, 0, 0,−1)T ,
and the infinitesimal transition rates (in which we assume mass-action kinetics with
the usual rate constant volume scaling) are

qQqx,qx+qv1
= fA(qx) = (Dtot − (x1 + x2 + x3 + x4))

(

k
A
W0 + k

A
W +

kAM
V

x2

)

,

qQqx,qx+qv2
= gA(qx) = x2

(

ε
kAM
V

Dtot +
kAE
V

(x3 + x4 + 2x1)

)

,

qQqx,qx+qv3
= fR1(qx) = (Dtot − (x1 + x2 + x3 + x4))

(

k
1
W0 + k

1
W +

k
′

M

V
(x1 + x4)

)

,

qQqx,qx+qv4
= gR1(qx) = x3µ

′

(

ε
kAM
V

Dtotβ + x2
kAE
V

)

,

qQqx,qx+qv5
= fR2(qx) = (Dtot − (x1 + x2 + x3 + x4))

(

k
2
W0 + k

2
W +

kM
V

(x1 + x4) +
k̄M
V

(x1 + x3)

)

,

Qqx,qx+qv6
= gR2(qx) = x4µ

(

ε
kAM
V

Dtotb̃+ x2
kAE
V

)

, (5.8)

qQqx,qx+qv7
= fR121(qx) = x3

(

k
2
W0 +

kM
V

(x1 + x4) +
k̄M
V

(

x1 +
x3 − 1

2

))

,

qQqx,qx+qv8
= gR121(qx) = x1µ

(

ε
kAM
V

Dtotb+ x2
kAE
V

)

,

qQqx,qx+qv9
= fR122(qx) = x4

(

k
1
W0 +

k
′

M

V

(

x1 +
x4 − 1

2

)

)

,

qQqx,qx+qv10
= gR122(qx) = x1µ

′

(

ε
kAM
V

Dtotβ + x2
kAE
V

)

.

A representation of the Markov chain graph for Dtot = 2 is given in Figure 5(c). We
now focus on determining explicit analytical expressions for upper and lower bounds
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of the MFPT from the active state a = (0,Dtot, 0, 0)
T to the repressed state r =

(Dtot, 0, 0, 0)
T , i.e., ha,r, and vice versa, i.e., hr,a, in order to understand how the

parameters ε and µ′ affect them.
To calculate the MFPT upper and lower bounds, let us first apply Theorem

4.1 in order to determine the coclique level structures for qX. We can apply the
theorem because Assumption 3.1 is satisfied and the associated graph G is weakly
connected. The rank of the stoichiometric matrix S is 4 = d − 1. Now, for this
example, there are several possible partitions {E+, E−} of edges of G that could
allow us to determine a coclique level structure. Let us consider the following one:
E+ = {e2, e3, e5, e7, e9}, E− = {e1, e4, e6, e8, e10}. The reason for this choice is that it is
the only one that, as we will see later, allows us to determine a coclique level structure
in which the active state a = (0,Dtot, 0, 0)

T and the repressed state r = (Dtot, 0, 0, 0)
T

are the two extremum levels. For this partition, the system of equations in (3.4) admits
a unique solution (b1, b2, b3, b4)

T = (2,−1, 1, 1)T .
Then, by applying Theorem 4.1, we can conclude that the projected Markov

chain qX has a coclique level structure associated with the coclique level function
L(x1, x2, x3, x4) = 2x1 − x2 + x3 + x4. This coclique level structure can be written as

Lℓ, . . . ,Lu, with Lz := {x ∈ qX : L(x) = 2x1 − x2 + x3 + x4 = z} for z = ℓ, . . . , u,
with ℓ = −Dtot and u = 2Dtot (Figure 5(c)). This coclique level structure is such that
a = (0,Dtot, 0, 0)

T is the only state belonging to Lℓ and r = (Dtot, 0, 0, 0)
T is the only

state belonging to Lu. Here,

G+ = {2, 3, 5, 7, 9} and G− = {1, 4, 6, 8, 10}, (5.9)

and the rate of increase ¼z(qx) and the rate of decrease µz(qx) can then be written as

¼z(qx) = fR121(qx) + fR122(qx) + gA(qx) + fR1(qx) + fR2(qx),

µz(qx) = fA(qx) + gR121(qx) + gR122(qx) + gR1(qx) + gR2(qx),
(5.10)

respectively, with fR121(qx), fR122(qx), gA(qx), fR1(qx), fR2(qx), fA(qx), gR121(qx), gR122(qx),
gR1(qx), gR2(qx) defined in (5.8).

The two continuous time Markov chains X̆ and “X are defined on the same state
space as qX and have infinitesimal generators Q̆ and “Q, respectively, such that, for

z ∈ {ℓ, ℓ + 1, . . . , u − 1, u} and qx ∈ Lz, Q̆qx,qx+qvk =
¼M
z

|G+(qx)| for k ∈ G+(qx), Q̆qx,qx+qvk =

µm
z

|G−(qx)| for k ∈ G−(qx), “Qqx,qx+qvk
=

¼m
z

|G+(qx)| for k ∈ G+(qx), and “Qqx,qx+qvk =
µM
z

|G−(qx)| for

k ∈ G−(qx), with ¼M
z = maxqx∈Lz

¼z(qx), ¼
m
z = minqx∈Lz

¼z(qx), µ
M
z = maxqx∈Lz

µz(qx),
and µm

z = minqx∈Lz
µz(qx), as defined in (4.4), and non-empty G+(qx) and G−(qx) defined

as in (4.5) where G+ and G− are given in (5.9).

Then, as described in Section 4.3, we can compare the Markov chain qX with X̆ and
“X, separately, to obtain analytical expressions for lower and upper bounds, respec-
tively, for the MFPT ha,r from the fully active state to the fully repressed state:
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h̆ℓ,u =
1

¼M
u−1

+

u−2
∑

i=ℓ

1

¼M
i

(

1 +

u−1
∑

j=i+1

µm
i+1 . . . µ

m
j

¼M
i+1 . . . ¼

M
j

)

,

“hℓ,u =
1

¼m
u−1

+

u−2
∑

i=ℓ

1

¼m
i

(

1 +

u−1
∑

j=i+1

µM
i+1 . . . µ

M
j

¼m
i+1 . . . ¼

m
j

)

,

and expressions for lower and upper bounds for the MFPT hr,a from the fully repressed
state to the fully active state:

“hu,ℓ =
1

µM
ℓ+1

+

u
∑

i=ℓ+2

1

µM
i



1 +

i−1
∑

j=ℓ+1

¼m
j . . . ¼m

i−1

µM
j . . . µM

i−1



 ,

h̆u,ℓ =
1

µm
ℓ+1

+

u
∑

i=ℓ+2

1

µm
i



1 +

i−1
∑

j=ℓ+1

¼M
j . . . ¼M

i−1

µm
j . . . µm

i−1



 .

Given that the only O(ε) rates are ¼M
ℓ , ¼m

ℓ , µM
u , µM

u−1, and µm
z : Dtot f z f u, with

the other rates being O(1), we can conclude that both h̆ℓ,u and “hℓ,u are O(ε−1), and
thus the MFPT from a to r (average time to memory loss of the active state) is O(ε−1).

Furthermore, we have “hu,ℓ is O(ε−2) and h̆u,ℓ is O(ε−Dtot), and thus the MFPT from
r to a (average time to memory loss of the repressed state) is at least O(ε−2). In
cases like this, alternative approaches are needed to identify the precise scalings of
MFPTs, such as the method we developed in our recent work [4], which allows us to
show that average time to memory loss of the repressed state is indeed O(ε−2). These
results suggest that decreasing ε extends the memory of both the active and repressed
chromatin states, but with a more pronounced impact on the repressed state. This
difference can be attributed to the cooperation of repressive chromatin marks, i.e.,
DNA methylation and repressive histone modifications, which introduces a structural
bias in the chromatin modification circuit towards a repressed chromatin state.

Let us now determine the effect of µ′, i.e., the parameter quantifying the relative
speed between the DNA methylation erasure rate and the activating histone modifi-
cation erasure rate, on the time to memory loss. Since the rates gR1(qx) and gR121(qx)
are linear in µ′ and are the only transition rates depending on µ′ (see (5.8)), then,
based on the definition in (5.10), µz(qx) increases for lower values of µ′. This implies

that increasing µ′ leads to higher “hℓ,u and h̆ℓ,u and lower h̆u,ℓ and “hu,ℓ. The opposite
happens when µ′ decreases.

5.3 Bi-parallel network motif

In this example, we analyze a bi-parallel network motif, which is a typical building
block found in complex networks [17], such as the neuronal connectivity network of the
nematode Caenorhabditis elegans or food web networks [3, 17]. The model includes
four species, which are J, Y, Z, and W, and the quantity of each species is denoted by
nJ, nY, nZ, and nW, respectively. Their sum remains constant, that is nJ+nY +nZ+
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nW = Stot. Then, the chemical reaction system, whose diagram is shown in Figure
6(a), can be written as

1○ J
k1−−→ Y, 2○ J

k2−−→ Z, 3○ Y
k3−−→ W, 4○ Z

k4−−→ W, (5.11)

in which k1, k2, k3, k4 > 0.
Considering x = (nY, nZ, nW, nJ), the reaction vectors associated with (5.11) are

v1 = (1, 0, 0,−1)T , v2 = (0, 1, 0,−1)T , v3 = (−1, 0, 1, 0)T , and v4 = (0,−1, 1, 0)T . By
examining them, we see that Assumption 3.1 is satisfied. The graph G associated with
the chemical reaction system (5.11) can be represented as in Figure 6(b). By inspecting
G, we see that the underlying undirected graph is connected and that G is bipartite. By
Lemma 3.1, our SCRN has a unique conservation vector m = (1, 1, 1, 1)T and then we

can introduce a projected continuous time Markov chain qX = {(X1(t), X2(t), X3(t))
T :

t g 0}, which keeps track of (nY, nZ, nW) through time. Since Stot is conserved, the

state space is qX = {qx = (x1, x2, x3)
T ∈ Z

3
+ : x1 + x2 + x3 f Stot}. The potential

one-step transitions for qX from x ∈ qX are shown in Figure 6(c), where the associated
transition vectors are qv1 = (1, 0, 0)T , qv2 = (0, 1, 0)T , qv3 = (−1, 0, 1)T , and qv4 =
(0,−1, 1)T , and the infinitesimal transition rates (in which we assume mass-action
kinetics) are

qQqx,qx+qv1 = f1(qx) = k1(Stot − (x1 + x2 + x3)),

qQqx,qx+qv2 = f2(qx) = k2(Stot − (x1 + x2 + x3)),

qQqx,qx+qv3
= f3(qx) = k3x1, qQqx,qx+qv4

= f4(qx) = k4x2.

(5.12)

Let us now focus on determining explicit analytical expressions for upper and lower
bounds of MFPTs. To this end, we apply Theorem 4.1 to determine the coclique level
structures for qX. We can apply the theorem because Assumption 3.1 is satisfied, and
the associated graph G is weakly connected. The rank of the stoichiometric matrix S
is 3 = d− 1.

Now, consider all of the possible partitions {E+, E−} of edges of G that could allow
us to determine a coclique level structure. These partitions are the following:

E+ = {e1, e2, e3, e4}, E− = ∅; E+ = {e1}, E− = {e2, e3, e4};

E+ = {e2}, E− = {e1, e3, e4}; E+ = {e3}, E− = {e1, e2, e4};

E+ = {e4}, E− = {e1, e2, e3}; E+ = {e1, e2}, E− = {e3, e4};

E+ = {e1, e3}, E− = {e2, e4}; E+ = {e1, e4}, E− = {e2, e3}. (5.13)

As was done for Example 5.1, we did not consider the partitions obtained by switching
the labels of the subsets E+, E− in the partitions listed above because, as explained
in Remark 4.1, the associated functions L would be the opposite of the ones obtained
for the partitions considered above. Therefore, the resulting coclique level structures
may be considered to be the same.

For each partition, we can write the system of equations as in (3.4). The only systems
that admit a solution b ∈ Z

3 are the ones associated with the first, sixth, and eighth
partitions. The solutions are (b1, b2, b3)

T = (1, 1, 2)T , (b1, b2, b3)
T = (1, 1, 0)T , and
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Fig. 6: Bi-parallel network motif: reaction diagram, graph G and associated
Markov chain. (a) Chemical reaction system diagram. The numbers on the arrows corre-
spond to the reactions associated with the arrows as described in (5.1) in the main text. (b)
Graph G associated with the chemical reaction system in panel (a). (c) State space and tran-

sitions for the projected continuous time Markov chain qX = {(X1(t), X2(t), X3(t))
T : t ≥ 0},

which keeps track of (nY, nZ, nW) through time. Here, we consider Stot = 2 and we
use dots to represent the states, and red double-ended arrows to represent transitions in
both directions. Additionally, we use shades of blue to distinguish the coclique level to
which each state belongs. The function L(x1, x2, x3) associated with the level structure is
L(x1, x2, x3) = x1 +x2 +2x3. The rates associated with the one-step transitions for the pro-

jected Markov chain qX are given in (5.2).

(b1, b2, b3)
T = (1,−1, 0)T , respectively. Then, by applying Theorem 4.1, we can con-

clude that the projected Markov chain qX has three coclique level structures associated
with the coclique level functions L(x1, x2, x3) = x1+x2+2x3, L(x1, x2, x3) = x1+x2,
and L(x1, x2, x3) = x1 − x2.

We consider the coclique level function L(x1, x2, x3) = x1 + x2 + 2x3. The coclique

level structure associated with it can be written as Lℓ, . . . ,Lu, with Lz := {x ∈ qX :
L(x1, x2, x3) = x1 + x2 + 2x3 = z} for z = ℓ, . . . , u, with ℓ = 0 and u = 2Stot.
This coclique level structure is such that (0, 0, 0)T (i.e., nJ = Stot) is the only state
belonging to Lℓ and (0, 0, Stot)

T (i.e., nW = Stot) is the only state belonging to Lu

(Figure 6(c)). This feature, as shown in the previous examples, is critical in order to
determine good lower and upper bounds for the MFPT from nJ = Stot to nW = Stot.

Let us now determine the lower and upper bounds for the MFPT from nJ = Stot to
nW = Stot. In particular, here we have

G+ = {1, 2, 3, 4} and G− = ∅, (5.14)

and the rate of increase ¼z(qx) and the rate of decrease µz(qx) can be written as

¼z(qx) = f1(qx) + f2(qx) + f3(qx) + f4(qx) and µz(qx) = 0, (5.15)

with f1(qx), f2(qx), f3(qx), f4(qx) defined in (5.12).
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The two continuous time Markov chains X̆ and “X, are defined on the same state
space as qX and have infinitesimal generators Q̆ and “Q, respectively, such that, for

z ∈ {ℓ, ℓ+1, . . . , u−1, u} and qx ∈ Lz, Q̆qx,qx+qvk
=

¼M
z

|G+(qx)| for k ∈ G+(qx) and “Qqx,qx+qvk
=

¼m
z

|G+(qx)| for k ∈ G+(qx), with ¼M
z = maxqx∈Lz

¼z(qx) and ¼m
z = minqx∈Lz

¼z(qx), as defined

in (4.4), and non-empty G+(qx) defined as in (4.5) where G+ is given in (5.14).

Then, as described in Section 4.3, we can compare the Markov chain qX with X̆ and
“X, separately, to obtain analytical expressions for lower and upper bounds for the
MFPT from nJ = Stot to nW = Stot, which can be written as

h̆ℓ,u =
1

¼M
ℓ

+
1

¼M
ℓ+1

+ · · ·+
1

¼M
u−2

+
1

¼M
u−1

, “hℓ,u =
1

¼m
ℓ

+
1

¼m
ℓ+1

+ · · ·+
1

¼m
u−2

+
1

¼m
u−1

,

respectively. Since ¼M
z = maxqx∈Lz

¼z(qx) = maxqx∈Lz
(f1(qx) + f2(qx) + f3(qx) + f4(qx)),

and ¼m
z = minqx∈Lz

¼z(qx) = minqx∈Lz
(f1(qx) + f2(qx) + f3(qx) + f4(qx)), we observe that

lower and upper bounds h̆ℓ,u and “hℓ,u for the MFPT under consideration decrease
as any of the rate constants k1, k2, k3, k4 increases. This result suggests that, if any
reaction associated with either pathway in the bi-parallel network becomes faster, then
the upper and lower bounds for the mean time needed to transform all J into all W
(i.e., the MFPT from nJ = Stot to nW = Stot) decrease.

We note that, by following the same approach used above, these results can be
generalized to any network having two species (J and W) connected by n-parallel
pathways (beyond just two).

6 Conclusion

In this paper, we started by providing a description of Stochastic Chemical Reaction
Networks (SCRNs), which are a class of continuous time Markov chain models com-
monly used to describe the stochastic behavior of chemical reaction systems (Section
2). We then introduced the notion of coclique level structure (Section 3) and devel-
oped theoretical tools for identifying such coclique level structures for continuous time
Markov chains associated with SCRNs, where each reaction involves the consump-
tion of one molecule of a given species and the production of one molecule of another
species, and an associated graph G is weakly connected (Section 4.1). Additionally, we
provided conditions for identifying if a SCRN does or does not admit a coclique level
structure (Section 4.1). Finally, we derived analytical expressions for upper and lower
bounds for MFPTs of SCRNs having a coclique level structure (Section 4.3).

Following this, we provided illustrative examples to demonstrate the utility of our
theoretical tools in studying the stochastic behavior of SCRNs (Section 5). More
precisely, we focused on models describing the main interactions among histone modifi-
cations alone, and in combination with DNA methylation [5], as well as on a bi-parallel
network motif, a typical building block found in complex networks [17]. Through these
examples, we demonstrated that our algorithm for identifying coclique level struc-
tures is easy to apply, and the analytical expressions for upper and lower bounds of
MFPTs obtained with our theoretical tools provide mechanistic insights into how sys-
tem parameters affect the stochastic behavior of SCRNs. This mechanistic insight is
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particularly valuable for applications where it is crucial to understand which biological
parameters must be tuned to modulate system dynamics in a specific manner.

The mathematical results and theoretical tools developed in this paper can be
applied to all stochastic models that meet the considered assumptions. Future work
will be focused on generalizing these results by relaxing some of these assumptions,
such as allowing the Markov chain to have countably many states and allowing SCRNs
to have more than one molecule consumed and produced per reaction. Another valu-
able direction for future work is the implementation of the algorithm introduced in
Section 4.2. While in this paper we focused on providing theoretical guidance, a prac-
tical implementation of the algorithm would broaden the applicability of our approach
and facilitate its integration into simulation pipelines.

Supplementary information. File containing proofs of a supporting lemma and
one theorem, as well as the mathematical derivation of the analytical expression for
the mean first passage times of a one-dimensional finite state birth-death process.
Statements of two theorems from reference [8] are also provided.
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Supplementary Information (SI)

S.1 Proof of Lemma 3.1

Before introducing the proof of Lemma 3.1, we provide some definitions used in the
proof. The degree of a vertex is the number of edges that are incident to the vertex,
where we count both incoming and outgoing edges. A weakly directed tree is a
directed graph whose underlying undirected graph is a tree. Given a directed graph
with d vertices, a weakly directed spanning tree is a subgraph of the graph with
all d vertices and such that it is a weakly directed tree, and it will have d − 1 edges.
We abbreviate weakly directed spanning tree as wd-spanning tree. Please note that a
weakly connected graph G has a wd-spanning tree.

Proof. Consider a wd-spanning tree of the graph G. Let pVst = {pv1, pv2, . . . , pvd−1} denote
the set of d− 1 reaction vectors associated with the wd-spanning tree edges. We first
show that the stoichiometric matrix associated with pVst, Sd,d−1 = [pv1, pv2, . . . , pvd−1] ∈
Z

d×(d−1) has rank d − 1. We prove this by induction. First consider d = 2. In this
case the only possible wd-spanning tree is given by the two vertices and one edge
connecting them. This means that rank(S2,1) = 1. Then, let us assume that the result
is true for any wd-spanning tree with d− 1 vertices (i.e., rank(Sd−1,d−2) = d− 2) for
some d g 3, and consider a wd-spanning tree with d vertices. This wd-spanning tree
always has a degree-one vertex, that we define as vertex 1, and then we can rearrange
the rows and columns of Sd,d−1 so that

Sd,d−1 =

[

±1 0
∗ Sd−1,d−2

]

.

Then, Sd−1,d−2 is the stoichiometric matrix associated with the wd-spanning tree
with the vertex 1 and associated edge removed. By the induction hypothesis, we can
conclude that Sd−1,d−2 has rank d− 2, and then rank(Sd,d−1) = d− 1. Since Sd,d−1 is

obtained by removing columns associated with the reaction vectors vk ∈ V \ pVst from
S, this result implies that rank(S) g d− 1.
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Under Assumption 3.1, 1T vk = 0 for k = 1, . . . , n, and thus 1
TS = 0. This means

that 1 ∈ ker(ST ) and then dimker(ST ) g 1. By the rank-nullity theorem (see for
example [3]), we have that rank(S) = rank(ST ) = d − dimker(ST ) f d − 1. Putting
together the results obtained, we can conclude that rank(S) = d− 1.

Furthermore, given that 1
TS = 0 and dimker(ST ) = 1, then 1 is the only (up to

scalar multiplication) conservation vector such that ST
1 = 0.

S.2 Proof of Theorem 4.4

Let qSq ∈ Z
(dq−1)×n be the first (dq − 1) rows of the stoichiometric matrix Sq. Then,

similar to (3.7) and since the stoichiometric matrix for the SCRN has the form (4.17),
the system (4.21) can be re-written in matrix-vector form as













(

qS1
)T

0 0

0
. . . 0

0 0
(

qSp
)T













b = w, (S.1)

which is equivalent to

(

qSq
)T

bq = wq for every q = 1, . . . , p such that |Gq| > 1,

where for q = 1, . . . , p, the vectors bq, wq ∈ Z
dq−1 are the qth entries of b = (b1, . . . , bp)T

and w = (w1, . . . , wp)T , respectively. Note that for q = 1, . . . , p, if |Gq| = 1, then
qSq ∈ Z

(dq−1)×n is a 0 × n matrix, which does not appear in (S.1), and qxq is a zero-
dimensional vector, and so we do not need to consider that component in any coclique
level function, as in (4.22). Consider q = 1, . . . , p such that |Gq| > 1. As noted before
Theorem 4.4, there is a SCRN associated with each Gq. The stoichiometric matrix for

this SCRN is Sq. By Theorem 4.1,
(

qSq
)T

bq = wq has a solution bq ∈ Z
dq−1 if and

only if Lq : Zdq−1 → Z given by Lq(qxq) = (bq)T qxq is a coclique level function for the
SCRN associated with Gq. Thus, L is a coclique level function for the whole SCRN if
and only if

L(qx) = bT qx = (b1, . . . , bp)T (qx1, . . . , qxp) =
∑

q=1,...,p:
|Gq|>1

(bq)
T

qxq =
∑

q=1,...,p:
|Gq|>1

Lq(qxq),

where Lq is a coclique level function for the SCRN associated with Gq where |Gq| > 1.
For each weakly connected component Gq such that |Gq| > 1, by Theorem 4.3, there

exists a coclique level structure for the SCRN associated with Gq if and only if Gq

is bipartite. Since G is bipartite if and only if each Gq with |Gq| > 1 is bipartite, we

conclude that a coclique level function for qX exists if and only if G is bipartite.
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S.3 One-dimensional birth-death process: Mean first passage
time.

Let us consider a one-dimensional irreducible finite state continuous time Markov
chain in which the state space X = {0, 1, . . . ,K} and the off-diagonal entries of the
infinitesimal generator Q are all zero except for the following positive rates:

Qx,x+1 = ¼x if x ∈ {0, . . . ,K − 1},

Qx,x−1 = µx if x ∈ {1, . . . ,K}.
(S.2)

In other words, Q is the infinitesimal generator for a finite state birth-death process.
We will determine an analytical expression for the MFPT from x = K to x = 0

and from x = 0 to x = K for this chain. To this end, it is important to note that
X can be equivalently characterized using holding times with exponential parameters
{qx}x∈X and a transition probability matrix P for the embedded discrete time Markov
chain. More precisely, for each x ∈ X , qx = −Qx,x ̸= 0, since X is irreducible, and for

all x, y ∈ X , Px,x = 0, Px,y =
Qx,y

qx
, for y ̸= x in X . Note that Q = diag(q)(P − I).

Defining B as a nonempty subset of qX such that B ≠ qX and using first step analysis
(see (3.1) in [18]), we obtain that the MFPT from x to B can be written as

hx,B =

{

0 if x ∈ B
1
qx

+
∑

y∈X Px,yhy,B if x ∈ Bc.
(S.3)

Now, let us first focus on the MFPT from x = K to x = 0. In this case B = {0}
and then (S.3) can be rewritten as











h0,0 = 0,

hx,0 = 1
¼x+µx

+ ¼x

¼x+µx
hx+1,0 +

µx

¼x+µx
hx−1,0 if x ∈ {1, . . . ,K − 1},

hK,0 = 1
µK

+ hK−1,0,

(S.4)

where for x, y ∈ X , hx,y = Ex[Äy], Äy = inf{t g 0 : X(t) = y}, X is the continuous time
Markov chain with infinitesimal generator given by (S.2). Now, defining ∆hx,x−1 =
hx,0 − hx−1,0 for x ∈ {1, . . . ,K}, we can rewrite (S.4) in the following way:











h0,0 = 0,

∆hx,x−1 = 1
µx

+ ¼x

µx
∆hx+1,x if x ∈ {1, . . . ,K − 1},

∆hK,K−1 = 1
µK

.

(S.5)

From (S.5), we have an explicit formula for ∆hK,K−1 and any ∆hx,x−1 can be
expressed as a function of ∆hx+1,x. Furthermore, if we sum the ∆hx,x−1 for x =
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1, . . . ,K, we obtain

hK,0 = hK,0 − h0,0 =

K
∑

x=1

(∆hx,x−1) = ∆h1,0 +∆h2,1 + · · ·+∆hK−1,K−2 +∆hK,K−1.

(S.6)
Thus, to evaluate the MFPT from x = K to x = 0, we can calculate ∆hx,x−1 for
x = K,K − 1, . . . , 1 and then sum all of the terms. We then obtain

hK,0 =
1

µK

(

1 +
¼K−1

µK−1
+

¼K−1¼K−2

µK−1µK−2
+ · · ·+

¼K−1 . . . ¼1

µK−1 . . . µ1

)

+
1

µK−1

(

1 +
¼K−2

µK−2
+

¼K−2¼K−3

µK−2µK−3
+ · · ·+

¼K−2 . . . ¼1

µK−2 . . . µ1

)

+ · · ·+
1

µ1

=
1

µ1
+

K
∑

i=2

1

µi

(

1 +

i−1
∑

j=1

¼j . . . ¼i−1

µj . . . µi−1

)

. (S.7)

With a similar procedure, we can obtain the MFPT from x = 0 to x = K. More
precisely, we have

h0,K =
1

¼0

(

1 +
µ1
¼1

+
µ1µ2
¼1¼2

+ · · ·+
µ1 . . . µK−1

¼1 . . . ¼K−1

)

+
1

¼1

(

1 +
µ2
¼2

+
µ2µ3
¼2¼3

+ · · ·+
µ2 . . . µK−1

¼2 . . . ¼K−1

)

+ · · ·+
1

¼K−1

=
1

¼K−1
+

K−2
∑

i=0

1

¼i

(

1 +

K−1
∑

j=i+1

µi+1 . . . µj
¼i+1 . . . ¼j

)

. (S.8)

A more detailed derivation of the h0,K and hK,0 is given in [1].

S.4 Theorems 3.3 and 3.4 from [2]

Let A be an m × d matrix, with no rows identically zero, and and KA = {y ∈ R
d :

Ay g 0}. For x, y ∈ R
d, we say that x ≼A y whenever A(y− x) g 0. For a non-empty

set Γ ¦ X ¦ Z
d
+, we say that a set Γ is increasing in X with respect to ≼A if for

every x ∈ Γ and y ∈ X , x ≼A y implies that y ∈ Γ. Moreover, we say that a set
Γ ¦ X is decreasing in X with respect to ≼A if for every x ∈ Γ and y ∈ X , y ≼A x
implies that y ∈ Γ. Furthermore, for x ∈ R

d, let KA + x = {y ∈ R
d : x ≼A y} and

∂i(KA + x) := {y ∈ KA + x : ïAi•, yð = ïAi•, xð}
6 for each 1 f i f m. We can then

6Here, for convenience of notation, let Ai• denote the row vector corresponding to the i-th row of A, for
1 f i f m. In this article we will adopt the convention of considering the inner product ï·, ·ð as a function
of a row vector in its first entry and as a function of a column vector in the second entry. In particular,
ïAi•, xð =

∑d
k=1

Aikxk.
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characterize the boundary of KA + x as follows:

∂(KA + x) =

m
⋃

i=1

∂i(KA + x). (S.9)

Finally, we introduce the concept of usual stochastic order ≼st for two random variables
Y, Z: we say that Y is smaller than Z in the usual stochastic order, that is, Y ≼st Z,
if FY (t) g FZ(t) for every t ∈ R, where FY and FZ are the cumulative distribution
functions for Y and Z, respectively.

In the following theorem, we consider the set of distinct vectors {¸1, . . . , ¸s} formed
by Avj , for 1 f j f n, where s denotes the cardinality of this set, and we consider the
subsets of indices

Gk := {j : 1 f j f n and Avj = ¸k}, for 1 f k f s.

The following theorem applies even if X is countably infinite, although in this
paper all of our state spaces are finite.

Theorem S.1 (immediate consequence of Theorem 3.3 in [2]7). Consider a
non-empty set X ¦ Z

d
+, a collection of distinct vectors v1, . . . , vn in Z

d \ {0} and
two collections of non-negative (intensity) functions on X , Υ = (Υ1, . . . ,Υn) and
Ῠ = (Ῠ1, . . . , Ῠn) such that if x + vj /∈ X , then Υj(x) = Ῠj(x) = 0, and assume
the associated continuous time Markov chains (with intensity functions given by Υ
and Ῠ, respectively, for the transition directions v1, . . . , vn) do not explode in finite
time. Consider a matrix A ∈ Z

m×d with non-zero rows and suppose that both of the
following conditions hold:

(i) For each 1 f j f n, the vector Avj has entries in {−1, 0, 1} only.
(ii) For each x ∈ X , 1 f i f m and y ∈ ∂i(KA + x) ∩ X we have that

∑

j∈Gk

Ῠj(y) f
∑

j∈Gk

Υj(x), for each k such that ¸ki < 0, (S.10)

and
∑

j∈Gk

Ῠj(y) g
∑

j∈Gk

Υj(x), for each k such that ¸ki > 0. (S.11)

Then, for each pair x◦, x̆◦ ∈ X such that x◦ ≼A x̆◦, there exists a probability space
(Ω,F ,P) with two continuous time Markov chains X = {X(t) : t g 0} and X̆ =
{X̆(t) : t g 0} defined there, each having state space X ¦ Z

d
+, with infinitesimal

generators Q and Q̆, associated with Υ and Ῠ respectively (as in (2.4)), with initial
conditions X(0) = x◦ and X̆(0) = x̆◦ and such that:

P

[

X(t) ≼A X̆(t) for every t g 0
]

= 1. (S.12)

7Compared to Theorem 3.3 in [2], Theorem S.1 includes some additional clarifications inserted in
parentheses to improve clarity and completeness in the context of this paper.
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Theorem S.2 (immediate consequence of Theorem 3.4 in [2]8). Consider a
non-empty set X ¦ Z

d
+, a collection of distinct vectors v1, . . . , vn in Z

d \ {0} and
two collections of non-negative (intensity) functions on X , Υ = (Υ1, . . . ,Υn) and
Ῠ = (Ῠ1, . . . , Ῠn), such that if x + vj /∈ X , then Υj(x) = Ῠj(x) = 0, and assume
the associated continuous time Markov chains (with intensity functions given by Υ
and Ῠ, respectively, for the transition directions v1, . . . , vn) do not explode in finite
time. Consider a matrix A ∈ Z

m×d with non-zero rows and conditions (i) and (ii) in
Theorem S.2 are satisfied.

Let x◦, x̆◦ ∈ X be such that x◦ ≼A x̆◦ and let X = {X(t) : t g 0} and X̆ =
{X̆(t) : t g 0} be two continuous time Markov chains (possibly defined on different
probability spaces), each having state space X ¦ Z

d
+, with infinitesimal generators Q

and Q̆, associated with Υ and Ῠ respectively, and with initial conditions X(0) = x◦

and X̆(0) = x̆◦. For a non-empty set Γ ¦ X , consider TΓ := inf{t g 0 : X(t) ∈ Γ}
and T̆Γ := inf{t g 0 : X̆(t) ∈ Γ}. If Γ is increasing in X with respect to the relation
≼A, then

T̆Γ ≼st TΓ, (S.13)

and the mean first passage time of X̆ from x̆◦ to Γ is dominated by the mean first
passage time of X from x◦ to Γ. If Γ is decreasing in X with respect to the relation
≼A, then

TΓ ≼st T̆Γ, (S.14)

and the mean first passage time of X from x◦ to Γ is dominated by the mean first
passage time of X̆ from x̆◦ to Γ.

The proof of these theorems can be found in Sections 5.3 and 3.3 of [2], respectively.

8Compared to Theorem 3.4 in [2], Theorem S.2 includes some additional clarifications inserted in
parentheses to improve clarity and completeness in the context of this paper.
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