

ScienceDirect

Review

Elevated CO₂, nutrition dilution, and shifts in Earth's insect abundance

Ellen AR Welti¹ and Michael Kaspari²

Declining insect populations are concerning, given the numerous ecosystem services provided by insects. Here, we examine yet another threat to global insect populations — nutrient dilution, the reduction in noncarbon essential nutrients in plant tissues. The rise of atmospheric CO₂, and subsequent 'global greening', is a major driver of nutrient dilution. As plant nutrient concentrations are already low compared to animal tissues, further reductions can be detrimental to herbivore fitness, resulting in increased development times, smaller intraspecific body sizes, reduced reproduction, and reduced population sizes. By altering herbivore populations and traits, nutrient dilution can ramify up trophic levels. Conservation of Earth's biodiversity will require not just protection of habitat, but reductions in anthropogenic alterations to biogeochemical cycles, including the carbon cycle.

Addresses

¹ Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630 USA ² School of Biological Sciences, University of Oklahoma, Norman, OK 73019. USA

Corresponding author: Welti, Ellen AR (weltie@si.edu)

Current Opinion in Insect Science 2024, 65:101255

This review comes from a themed issue on Global Change Biology

Edited by Toke Høye and Eliza Grames

For complete overview about the section, refer "Global change Biology (2024)"

Available online 30 August 2024

https://doi.org/10.1016/j.cois.2024.101255

2214–5745/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Introduction

The commercial use of fossil fuels for energy began in the early 1800s, rising from levels consistently below 300 ppm for the previous 20 million years [1] to > 420 ppm today [2]. Given that emissions have yet to peak [3], Earth is likely to continue to face numerous consequences of humanity's ongoing combustion of fossil fuels. But what are the consequences? The phrase 'climate change' emphasizes the warming temperatures, altered patterns in precipitation, and increasing intensity

of storms that are becoming ever more severe across the globe [4]. Rising sea levels and ocean acidification are further frightening outcomes [5]. We examine yet another effect that is not directly visible to the human observer and far less studied — nutrient dilution — the reduction in the concentrations of essential elements in plant tissues that can result from carbon fertilization due to increasing levels of atmospheric CO₂ [6,7].

These reductions in noncarbon elements are bad news for the plant consumer. Human deficiencies in iron, nitrogen, and zinc are all expected to increase over the next few decades in response to elevated CO₂ (eCO₂) [8]. Nutrient dilution also has repercussions for Earth's insects with variable fitness predictions expected among taxa, trait groups, and under different habitat conditions. Altered herbivore populations and traits are further expected to have repercussions for higher trophic levels but responses of predators and parasitoid to eCO₂ have rarely been empirically tested. Here, we examine repercussions of increasing levels of atmospheric CO₂ on plant nutrient concentrations and the expected consequences for these shifts across plant and insect food webs.

How does eCO₂ affect plants?

Increases in CO₂ are expected to have effects on plants from cellular to community levels of organization. Individually, plants under eCO₂ increase photosynthesis and growth [9] and vary in phenology [10]. They are also built differently, exhibiting increased levels of carbon-based herbivore defenses, including structural carbon-based defenses, phenolics [11], and leaf toughness [12] but decreased nitrogen-based secondary compounds [13]. Plant communities under eCO₂ can experience shifts toward greater dominance of invasives, crop weeds [14], fast growers, nitrogen fixers, angiosperms over gymnosperms [13], woody plants over grasses [15], C3 over C4 grasses [16], and prevalence of specific taxa such as poison ivy [17].

Rising atmospheric CO_2 can further cause reductions in the concentrations of noncarbon elements in plant tissues (e.g. nitrogen, phosphorus, potassium, magnesium, iron, and zinc). When plants under CO_2 fertilization displace these elements that are essential for life with more carbohydrates, this can result in nutrient dilution. Other hypotheses for the mechanism behind this ubiquitous plant response to eCO_2 have also been proposed

Box 1 Why does eCO₂ reduce plant nutrient concentrations?.

Reductions in the elemental concentrations of plant tissues under increasing atmospheric CO₂ may be a response of H1.1) nutrient dilution — i.e. increased growth of plants resulting in the reduction of concentrations of essential elements in plant tissues. CO2 fertilization can generate nutrient dilution of noncarbon elements, assuming it generates growth and the availability of other elements for uptake remains constant [29]. Additionally, several other hypotheses for reductions in plant tissue elemental concentrations have been proposed. None of these hypotheses are mutually exclusive to nutrient dilution via additional plant growth.

Three hypotheses suggest mechanisms of plant physiology, predicting that plants under eCO₂: H1.2) have less demand for other nutrients due to reductions in RuBisCo levels, resulting in increased leaf C:N [65], H1.3) reduce photorespiration, inhibiting assimilation of some soil nutrients [66], and may also H1.4) reduce the amount of time that stomata are open, reducing uptake of nutrients due to reduced transpiration flux [67] and further suggesting effects on global water balances [68].

Two hypotheses implicate additional anthropogenic effects on plant quality: H1.5) Selection for high-yielding crop genotypes has unwittingly selected for nutrient-poor varieties [69]. This is unlikely a full explanation of the phenomenon of plant tissue nutrient concentration declines, given these are also occurring in natural systems [23,28,29] and in eCO₂ experiments [70]. H1.6) Reductions in atmospheric deposition of nitrogen due to reduced use of nitrogen fertilizers and air quality regulations within specific global geographies and are causing reduced concentrations of plant tissue nitrogen concentrations [71]. However, this hypothesis does not account for reductions in other nutrients [6,29], nor does it fully account for reductions in plant tissue nitrogen concentrations [72].

Finally, H1.7) eCO₂ may reduce litter decomposition rates, reducing the flow at which nutrients are recycled back into the system [73]. This scenario could be catalyzed by other mechanisms causing reductions in forage guality and resulting in a positive feedback loop toward continuous declines.

(Box 1). Early studies reporting reduction in plant tissue nutrients with eCO₂ came from crop systems [7,18] and have since been verified by meta-analyses [6,13,19-21] and long-term studies [22,23]. Plant tissue carbon is also affected by eCO2, with increases in starch and total nonstructural carbon, especially for slow-growing plants, and decreases in structural carbon [12,13]. Such shifts in nutrient concentrations of plants, including availability of nitrogen, carbon, and other macro- and micro-nutrients — occurring at the global scale — have large potential to reshape Earth's food webs [7].

Which plants are exhibiting nutrient dilution and where?

Declines in essential elements in response to increasing atmospheric CO₂ vary in magnitude with plant taxa, geographies, and ecosystem type. Across taxa, C₄ grasses may not have as large of declines in nutrient concentrations as C₃ grasses [24]. Legumes, with their symbiotic nitrogen-fixing rhizobium bacteria, exhibit reduced declines in tissue nitrogen concentrations under eCO₂ [6], including leguminous trees [21]. Across abiotic geographies, plant tissues reflect environmental nutrient availability, especially soil nutrient gradients [25]. Plant consumers are more likely to be limited by a given essential nutrient in times and places where that nutrient is in short supply, such as in areas with old soils, inland geographies, and flat topographies [26]. This is further magnified for nutrients that cannot be stored in the body, such as cobalt and sodium [26]. Across ecosystem type, systems under annual production cycles such as temperate grasslands may exhibit greater nutrient dilution as a greater proportion of standing green plant biomass production represents recent growth. However, evidence of long-term nutrient dilution is ubiquitous,

spanning croplands [27], grasslands [22,23,28], forests [29], and even marine systems [30].

Herbivore responses

The assimilation of elemental building blocks into food webs starts with primary producers. As primary producers are generally nonmobile, adaptations including modular growth/senescence, dormancy, and the ability to turn off DNA repair, allow them to survive under variable conditions and result in reduced but highly variable nutrient concentrations in their tissue compared with homeostatic animals [31]. Herbivores face the challenge of building their own tissues from this often low-quality food source and can be limited by a number of essential elements [32], many of which are diluted in plant tissues with CO₂ fertilization [6].

In a meta-analysis of insect herbivore responses to eCO₂, herbivores declined in growth rate (-4.5%) and pupal and adult weight (-5.5%) and increased in consumption rate (+14%) and development time (+3.5%) [13]. However, not all herbivores respond the same, and herbivore abundance responses are particularly variable [13]. For example, phloem feeders consuming plants under eCO₂ have reduced development times and increased fecundity and abundances, whereas folivores exhibit increased development times and decreased fecundity. Chewing herbivores decline under eCO₂ with the most studied order of Lepidoptera averaging severe (-65%) reductions in abundance, especially within leafminers [13,33].

Why do phloem feeders do better under eCO₂? Benefits may be related to their endosymbionts or changes in the quantity and/or quality of plant carbon, but few studies have evaluated changes in the chemistry of phloem. Alternatively, sap feeders may have more access to essential nutrients through consuming dynamic phloem and their efficient filtering abilities, whereas chewing herbivores must consume more nutritionally static tissues and have no mechanism to excrete excess carbon [7].

But chewing herbivores are hardly a monolithic group and vary greatly in nutrient needs. Within grasshoppers. optimal diets can range from needing nearly double protein versus carbohydrates (Melanoplus femurrbrum) to 2.5 times more carbohydrates than protein (Schistocerca cancellata) [34,35]. Locusts are generally more carbohydrate limited compared with other chewing insect herbivores, including other grasshoppers, and eCO₂ is predicted to promote increasing locust outbreaks [36]. In addition to taxonomic variation, body size can affect nutritional needs. Smaller insect herbivores have greater concentrations of nutrients per unit mass, both interspecifically [37,38] and in earlier ontologies [36,39]. This means smaller herbivores ceterus paribus require more protein-rich food than larger herbivores and may be less able to adapt to reduced concentrations of nitrogen [26]. Finally, specialist herbivores are more negatively affected by nutrient dilution than generalists with the ability to host-switch to more nutrient-dense plant taxa [13].

The abiotic drivers of temperature, precipitation, and biogeochemistry interact in ways we are just discovering (Kaspari and Welti 2024). Herbivore protein limitation can both increase [40] and decrease [41] with rising temperatures. Herbivores may be more limited by carbohydrates in dry conditions [36] and more protein limited in wet habitats [42], suggesting greater potential for nutrient dilution effects on herbivore populations with increasing moisture and plant biomass. Other aspects of the herbivore environment are also worthy of study. Both pathogen infection [43] and predation pressure [44] can generate herbivore diet switches to more carbohydrate-rich food sources, suggesting topdown controls may mediate responses to nutrient dilution. Similarly, it seems plausible that herbivores, as predators of N-defended plants, could benefit from reductions in secondary compounds under eCO2 could benefit herbivores. In sum, Earth's enormous diversity of insect herbivores — ontogenetically and within and between species — likely combine to generate a variety of responses to eCO₂-induced nutrient dilution (Figure 1).

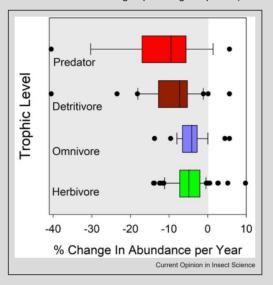
Consequences across the food chain

Not just herbivores, but decomposers, and coprophagous insects — especially those that specialize on herbivore feces and carcasses — are likely to face similar declines in noncarbon essential nutrient concentrations in their food sources under eCO2. Reduced populations of decomposers and coprophagous insects are additionally troubling as this can decrease nutrient cycling rates, creating a positive feedback loop toward increasingly lower nutrient availability.

Consequences for pollinators are likely mixed: plants under eCO₂ have reduced protein concentrations [23] but may increase nectar production [45] and increase nectar concentrations of glucose and fructose [46]. Insect visitation rates to flowers may also increase under eCO₂, potentially benefiting plants in the form of increased pollination and seed set [10]. We predict that predacious Hymenoptera, like wasps, that build colonies from nectar and animal prey will be less impacted by eCO₂ than bees that do so on a purely plant-based diet of nectar and pollen.

While omnivores, predators, scavengers, and parasitoids consume higher quality food and are not likely to be directly limited by altered plant quality, indirect effects due to altered populations and traits of their prey may affect their populations. For example, omnivorous ants may benefit from increased sugar availability from farmed aphids; one study found aphids grown on plants under eCO₂ exhibited a tripling of their production of honeydew, which doubled the frequency of visits by tending ants [47]. Increased development times of herbivores may increase the time window where vulnerable life stages are susceptible to parasitoids and predation. However, reductions in herbivore populations can result in reductions in populations of higher trophic levels through a 'dilution' of prey availability in space [48]. Differences in rates of insect declines by trophic level are explored in Box 2.

How do herbivores deal with nutrient mismatch?


Fitness costs due to differences in nutrient densities in food and consumer requirements decrease as interactions move up the food web, with primary consumers likely to face the greatest nutrient mismatches of consumer guilds [49]. Herbivores can deploy several strategies to cope with variation in nutrient availability in relation to their needs. Strategies include:

- 1) movement, from patch selection to migration, to locate higher quality food,
- 2) diet switching, from selecting different parts of the same plant [50] to including scavenging and omnivory for 'herbivores' and detritivores,
- 3) using variation in microclimate to alter optimal digestion of particular nutrients [41],
- 4) compensatory consumption [7],
- 5) symbiosis with microbiota for increased extraction of nutrients from food.

Box 2 Insect declines magnify through the food web.

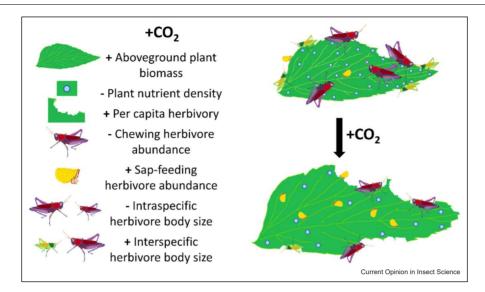
Herbivores uptake life's elemental building blocks from plant tissues and concentrate them in their flesh, passing this improved food quality onto their predators and beyond. Under nutrient dilution, this suggests two scenarios based on the balance of bottom-up and top-down forces regulating herbivore populations [74]. *H2.1*) 'Bottom-up' predicts that nutrient dilution-caused declines in herbivore populations ramify upward to decrease predator abundance, whose rarity further puts them at risk of local extirpation [75]. *H2.2*) 'Rock and a Hard Place' predicts herbivore declines will be higher, as they suffer from the consequences of malnourishment, longer development times, and the increasing susceptibility to predation that results.

The van Klink synthesis on global insect declines [76] gives an early clue of a strong bottom-up effect of herbivore declines on food webs (Fig. i). When each of the 130 insect families (12 007 species) for which species data are available are assigned to trophic groups [77] — herbivores, predators, omnivores (mix of plants and animals), and detritivores (dead plants and animals and the microbes that colonize them) — families of predatory insects have over twice the annual decline rate of the two groups eating live plants (General Linear Model, p < 0.001).

The magnitude of decline (% change per year) across 130 insect families varies with their diet. Data summarized from Ref. [76] with diet records compiled at the family level from a total of 12 007 records. Box and whisker plot reflect the median, 25 and 75th percentiles, 10th and 90th percentiles, and outlier points. The gray zone represents families that are declining in abundance over time.

- 6) nutrient storage, including storage in the body or external caching [37], and
- 7) taking a direct fitness hit such as through reductions in growth or reproduction [51].

Some of these strategies may allow persistence of herbivore taxa under increasing CO_2 and subsequent reductions in essential elements such as nitrogen. However, strategies can be evolutionarily constrained and can come with fitness costs, resulting in reductions in herbivore populations [7].


Open questions

While it is established that eCO₂ alters plant nutrient concentrations [6] with clear implications for insect herbivores [13], long-term, distributed networks of studies that combine plant chemistry and consumer responses remain rare (US LTER sites can provide an exception) [28]. Such long-term studies require investment that take years to pay off in unique temporal signatures. Spatially, eCO₂ field experiments such as FACE have 1–30 m diameter footprints, adequate for

plants and soils, but inadequate for mobile herbivores. For example, under eCO₂, herbivory is known to increase [13], but in small-scale field experiments, eCO₂ may be observed to reduce chewing insect herbivory as insects vacate these patches of less desirable forage [52].

Further unexplored topics include responses of predators, parasitoids, and plants to changes in herbivore populations, traits, and life histories. Herbivore-relevant compounds are rarely measured in studies of eCO2 effects focusing on insects, including structural and nonstructural carbons, plant toughness, and plant-defensive compounds. These responses are likely co-occurring with other effects of eCO₂, complicating predictions. For example, tannins, which can increase with eCO₂ [13], can reduce nitrogen use efficiency through binding proteins [53], magnifying the effects of decreased nutrient availability. Finally, as global change is multivariate, more work is needed to test for interactions between nutrient dilution and other global change drivers [54]. For example, co-occurrent increases in eCO₂ and temperature may either offset plant nutrient density

Figure 1

Plant and insect herbivore responses to eCO₂. Rising CO₂ can increase aboveground plant biomass through carbon fertilization, leading to declines in the densities of other essential elements (i.e. nutrient dilution). Altered nutrient availability in plant tissues and phloem is detrimental to chewing herbivores but can benefit sap-feeding herbivores. Reduced forage quality can reduce individual body size of developing insect herbivores but may also have the highest fitness costs for the smaller herbivores interspecifically, as smaller taxa generally use and require diets containing higher nutrient concentrations in comparison to larger herbivore taxa.

declines [55] or not [56], and carbohydrate availability can constrain insect thermal maxima [57].

Conservation in a world of altered biogeochemistry

Threats to biodiversity span biological hierarchies from organisms to populations, communities, and ecosystems. Addressing the biodiversity crisis will require integrative approaches that span these hierarchies [49]. In particular, while altered biogeochemistry is often listed as a major threat to Earth's planetary boundaries [58], within ecology, it is often studied in the context of abiotic, ecosystem-level change and is less often considered in the context of conservation [59]. However, effects of altered nutrient availability may be particularly relevant for declines in insects that are ubiquitous even within protected areas [60].

At the local scale, efforts to ameliorate altered nutrient availability with the goal of insect conservation are limited. One positive example is the use of riparian buffers around streams to limit diffuse nutrient runoff [61]. A second proposed strategy is the incorporation of species with variable nutrient profiles in seed mixes for restoration [49]. We caution against more direct approaches to 'correct' for altered nutrient availability. For example, the use of mineral licks in wildlife reserves may inflate herbivore populations beyond their carrying capacity [62]. Additionally, while changes in plant biomass and concentrations in carbon and nitrogen under eCO₂ are ameliorated under increased nitrogen availability [13], fertilizer addition has downsides, including creating increasing imbalances in the availability of yet other elements essential for life [26], favoring fastgrowing plants, and the creation of eutrophic conditions with negative downstream effects on insect biodiversity [63].

At national to larger scales, legislation can be an effective tool to reverse biodiversity declines caused by altered nutrient cycles, as has been the case for freshwater macroinvertebrates following regulation of water and air quality in Europe and North America [64]. As a first step, we believe that to slow nutrient dilution and other consequences of eCO₂ — like the acidification of oceans — global action is required to reduce anthropogenic emissions. Until then, the contribution of nutrient dilution to shifts and biodiversity declines of Earth's insects provides yet one more reason why these efforts are increasingly critical.

Data Availability

The authors do not have permission to share data.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by a National Science Foundation, USA grant (DEB-1556280) to MK.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- · of special interest
- of outstanding interest
- Pearson PN, Palmer MR: Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 2000, 406:695-699.
- US Department of Commerce N: Global Monitoring Laboratory -Carbon Cycle Greenhouse Gases; [date unknown].
- Achakulwisut P. Erickson P. Guivarch C. Schaeffer R. Brutschin E. Pye S: Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat Commun 2023,
- Tripathy KP, Mukherjee S, Mishra AK, Mann ME, Williams AP: Climate change will accelerate the high-end risk of compound drought and heatwave events. Proc Natl Acad Sci USA 2023, 120:e2219825120.
- Jiang L-Q, Dunne J, Carter BR, Tjiputra JF, Terhaar J, Sharp JD, Olsen A, Alin S, Bakker DCE, Feely RA, et al.: Global surface ocean acidification indicators from 1750 to 2100. J Asv Model Earth Syst 2023. 15:e2022MS003563.
- Loladze I: Hidden shift of the ionome of plants exposed to elevated CO₂ depletes minerals at the base of human nutrition. eLife 2014, 3:e02245.
- Kaspari M, Welti EAR: Nutrient dilution and the future of herbivore populations. Trends Ecol Evol 2024, in press https:// www.cell.com/trends/ecology-evolution/abstract/S0169-5347(24)

Extensive overview of evidence for the effects of nutrient dilution on animals and predictions of the what, where, and why of future shifts in Earth's food webs.

- Beach RH, Sulser TB, Crimmins A, Cenacchi N, Cole J, Fukagawa NK, Mason-D'Croz D, Myers S, Sarofim MC, Smith M, et al.: Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. Lancet Planet Health 2019, 3:e307-e317.
- Chen C, Riley WJ, Prentice IC, Keenan TF: CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc Natl Acad Sci USA 2022, 119:e2115627119.
- 10. Crowley LM, Sadler JP, Pritchard J, Hayward SAL: Elevated CO2 impacts on plant-pollinator interactions: a systematic review and free air carbon enrichment field study. Insects 2021, 12:512.
- 11. Ryan GD, Rasmussen S, Newman JA: Climate change and tropic interactions. In Plant Communications From an Ecologica Perspective. Edited by Baluška F, Ninkovic V. Springer-Verlag; 2010:179-214.
- 12. Pritchard SG, Rogers HH, Prior SA, Peterson CM: Elevated CO a and plant structure: a review. Glob Change Biol 1999, 5:807-837.
- 13. Robinson EA, Ryan GD, Newman JA: A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. N Phytol 2012, 194:321-336.
- 14. Ziska LH, Blumenthal DM, Franks SJ: Understanding the nexus of rising CO₂, climate change, and evolution in weed biology. Invasive Plant Sci Manag 2019, 12:79-88.
- 15. O'Connor RC, Blumenthal DM, Ocheltree TW, Nippert JB: Elevated CO₂ counteracts effects of water stress on woody rangelandencroaching species. Tree Physiol 2022,, https://academic.oup. com/treephys/advance-article/doi/10.1093/treephys/tpac150/ 6966044.

- 16. Pinto H. Sharwood RE. Tissue DT. Ghannoum O: Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO₂. J Exp Bot 2014, **65**:3669-3681
- 17. Mohan JE, Ziska LH, Schlesinger WH, Thomas RB, Sicher RC, George K, Clark JS: Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proc Natl Acad Sci USA 2006, 103:9086-9089.
- 18. Loladze I: Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol Evol 2002, **17**:457-461.
- 19. Cotrufo MF, Ineson P, Scott A: Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Change Biol 1998,
- 20. Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, et al.: Increasing CO₂ threatens human nutrition. Nature 2014, **510**:139-142.
- 21. Mndela M, Tjelele JT, Madakadze IC, Mangwane M, Samuels IM, Muller F, Pule HT: A global meta-analysis of woody plant responses to elevated CO2: implications on biomass, growth, leaf N content, photosynthesis and water relations. Ecol Process 2022, 11:52.
- 22. McLauchlan KK, Ferguson CJ, Wilson IE, Ocheltree TW, Craine JM: Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands. N Phytol 2010, **187**:1135-1145.
- 23. Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB, Clark A, Dukes JS, Loladze I, Polley HW: Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc Biol Sci 2016, 283, https://doi.org/10.1098/rspb.2016.0414 20160414.
- 24. Gojon A, Cassan O, Bach L, Lejay L, Martin A: The decline of plant mineral nutrition under rising CO₂: physiological and molecular aspects of a bad deal. Trends Plant Sci 2023, **28**:185-198.

Review of plant nutrient acquisition and growth responses in a high CO₂

- 25. Kaspari M, de Beurs KM, Welti EAR: How and why plant ionomes vary across North American grasslands and its implications for herbivore abundance. *Ecol* 2021, **102**:e03459.
- 26. Kaspari M: The invisible hand of the periodic table: How micronutrients shape ecology. Annu Rev Ecolo Evol S 2021, **52**:199-219.
- 27. Ebi KL, Anderson CL, Hess JJ, Kim S-H, Loladze I, Neumann RB, Singh D, Ziska L, Wood R: Nutritional quality of crops in a high CO₂ world: an agenda for research and technology development. Environ Res Lett 2021, 16:064045.
- Welti EAR, Roeder KA, de Beurs KM, Joern A, Kaspari M: Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc Natl Acad Sci USA 2020, 117:7271-7275.
- Penuelas J, Fernández-Martínez M, Vallicrosa H, Maspons J, Zuccarini P, Carnicer J, Sanders TGM, Krüger I, Obersteiner M, Janssens IA, et al.: Increasing atmospheric CO₂ concentrations correlate with declining nutritional status of European forests. Commun Biol 2020, 3:1-11.
- 30. Lowman HE, Emery KA, Dugan JE, Miller RJ: Nutritional quality of giant kelp declines due to warming ocean temperatures. Oikos 2022, 2022:e08619, https://doi.org/10.1111/oik.0861

Climate change has reduced the nitrogen concentrations in California kelp by 18% over the past 19 years.

- 31. Demi LM, Taylor BW, Reading BJ, Tordoff MG, Dunn RR: Understanding the evolution of nutritive taste in animals: insights from biological stoichiometry and nutritional geometry. Ecol Evol 2021, 11:8441-8455.
- 32. Prather R, Castillioni K, Kaspari M, Souza L, Prather C, Reihart R, A.R. Welti E: Micronutrients enhance macronutrient effects in a meta-analysis of grassland arthropod abundance. Glob Ecol Biogeogr 2020, 29:2273-2288, https://doi.org/10.1111/geb.13196
- Stiling P, Rossi AM, Hungate B, Dijkstra P, Hinkle CR, Knott WM, Drake B: Decreased leaf-miner abundance in elevated CO2:

- reduced leaf quality and increased parasitoid attack. Ecol Appl 1999. **9**:240-244.
- 34. Talal S, Harrison JF, Farington R, Youngblood JP, Medina HE, Overson R, Cease AJ: Body mass and growth rates predict protein intake across animals. bioRxiv 2023, https://doi.org/10. 101/2023.06.20.545784 2023.06.20.545784,..
- 35. Behmer ST, Joern A: Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc Natl Acad Sci USA 2008,
- Cease AJ: How nutrients mediate the impacts of global change on locust outbreaks. Annu Rev Entomol 2024, 69:527-550 Comprehensive review of an unusually carbon-limited insect taxa locusts — to variation in forage quality.
- 37. Isanta-Navarro J, Prater C, Peoples LM, Loladze I, Phan T, Jeyasingh PD, Church MJ, Kuang Y, Elser JJ: Revisiting the growth rate hypothesis: towards a holistic stoichiometric understanding of growth. Ecol Lett 2022, 25:2324-2339.
- 38. González AL, Céréghino R, Dézerald O, Farjalla VF, Leroy C, Richardson BA, Richardson MJ, Romero GQ, Srivastava DS Ecological mechanisms and phylogeny shape invertebrate stoichiometry: a test using detritus-based communities across Central and South America. Func Ecol 2018, 32:2448-2463.
- 39. Paul A, Frédérich M, Uyttenbroeck R, Hatt S, Malik P, Lebecque S, Hamaidia M, Miazek K, Goffin D, Willems L, et al.: **Grasshoppers** as a food source? A review. Biotechnol Agron Soc Environ 2016.337-352, https://doi.org/10.25518/1780-4507.12974
- 40. Lemoine NP, Shantz AA: Increased temperature causes protein limitation by reducing the efficiency of nitrogen digestion in the ectothermic herbivore Spodoptera exigua. Physio Entomol 2016, 41:143-151.
- 41. Clissold FJ, Coggan N, Simpson SJ: Insect herbivores can choose microclimates to achieve nutritional homeostasis. J Exp Biol 2013, 216:2089-2096.
- 42. Gallego-Zamorano J, de Jonge MMJ, Runge K, Huls SH, Wang J, Huijbregts MAJ, Schipper AM: Context-dependent responses of terrestrial invertebrates to anthropogenic nitrogen enrichment: a meta-analysis. Glob Change Biol 2023, 29:4161-4173.
- 43. Zembrzuski D, Woller DA, Jaronski S, Black LR, Chris Reuter K, Grief D, Beatty A, Overson R, Cease AJ: **Understanding how diet** and temperature affect survival and subsequent sporulation in a major rangeland grasshopper pest, Melanoplus sanguinipes, infected with the entomopathogenic fungus, Metarhizium robertsii. Biol Control 2023, 183:105268.
- 44. McMahon JD, Lashley MA, Brooks CP, Barton BT: Covariance between predation risk and nutritional preferences confounds interpretations of giving-up density experiments. Ecology 2018, 99:1517-1522.
- 45. Lopez-Cubillos S, Hughes L: Effects of elevated carbon dioxide (CO₂) on flowering traits of three horticultural plant species. Aust J Crop Sci 2016, 10:1523-1528.
- Hoover SER, Ladley JJ, Shchepetkina AA, Tisch M, Gieseg SP, Tylianakis JM: Warming, CO₂, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol Lett 2012, **15**:227-234
- 47. Kremer JMM, Nooten SS, Cook JM, Ryalls JMW, Barton CVM, Johnson SN: Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids. J Anim Ecol 2018, **87**:1475-1483.
- 48. Hobbs NT: A general, resource-based explanation for density dependence in populations of large herbivores. Ecol Monogr 2024,e1600, https://doi.org/10.1002/ecm.1600
- Filipiak M, Filipiak ZM: Application of ionomics and ecological stoichiometry in conservation biology: nutrient demand and supply in a changing environment. Biol Conserv 2022,

Review highlighting the benefits of an ecological stochiometric framework for pollinator conservation.

Martin S, Youngentob KN, Clark RG, Foley WJ, Marsh KJ: The distribution and abundance of an unusual resource for koalas

- (Phascolarctos cinereus) in a sodium-poor environment. PLoS One 2020, 15:e0234515.
- 51. Filipiak M: Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: the ecological stoichiometry of saproxylophagous insects. In Saproxylic Insects. Edited by Ulyshen MD. Springer International Publishing; 2018:429-469.
- 52. Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Berenbaum MR, DeLucia EH: Elevated CO2 reduces leaf damage by insect herbivores in a forest community. N Phytol 2005, 167:207-218.
- 53. Simpson S, Raubenheimer D: The geometric analysis of nutrientallelochemical interactions: a case study using locusts. Ecology 2001. 82:422-439.
- 54. Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT: Climate change alters plant-herbivore interactions. N Phytol 2021, **229**:1894-1910
- 55. Wang J, Hasegawa T, Li L, Lam SK, Zhang X, Liu X, Pan G: Changes in grain protein and amino acids composition of wheat and rice under short-term increased [CO₂] and temperature of canopy air in a paddy from East China. N Phytol 2019, 222:726-734.
- 56. Wei L, Wang W, Zhu J, Wang Z, Wang J, Li C, Zeng Q, Ziska LH: Responses of rice qualitative characteristics to elevated carbon dioxide and higher temperature: implications for global nutrition. J Sci Food Agric 2021, 101:3854-3861.
- 57. Bujan J, Kaspari M: Nutrition modifies critical thermal maximum of a dominant canopy ant. J Insect Physiol 2017, 102:1-6.
- Rockström J, Gupta J, Qin D, Lade SJ, Abrams JF, Andersen LS, Armstrong McKay DI, Bai X, Bala G, Bunn SE, et al.: Safe and just Earth system boundaries. Nature 2023, 619:102-111.
- Parreño MA, Alaux C, Brunet J-L, Buydens L, Filipiak M, Henry M, Keller A, Klein A-M, Kuhlmann M, Leroy C, et al.: Critical links between biodiversity and health in wild bee conservation. Trends Ecol Evol 2022, 37:309-321.
- 60. van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM: Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 2020, 368:417-420.
- 61. Palt M, Hering D, Kail J: Context-specific positive effects of woody riparian vegetation on aquatic invertebrates in rural and urban landscapes. J Appl Ecol 2023, 60:1010-1021.
- **62.** Abraham AJ, Duvall ES, le Roux E, Ganswindt A, Clauss M, Doughty CE, Webster AB: **Anthropogenic supply of nutrients in a** wildlife reserve may compromise conservation success. Biol Conserv 2023, 284:110149.
- 63. David TI, Storkey J, Stevens CJ: Understanding how changing soil nitrogen affects plant-pollinator interactions. Arthropod Plant Inter 2019, 13:671-684.
- **64.** Haase P, Bowler DE, Baker NJ, Bonada N, Domisch S, Garcia Marquez JR, Heino J, Hering D, Jähnig SC, Schmidt-Kloiber A, et al.: The recovery of European freshwater biodiversity has come to a halt. Nature 2023, 620:582-588.
- 65. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR: Elevated CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 2009, 60:2859-2876.
- 66. Bloom AJ, Asensio JSR, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA: CO₂ enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 2012, 93:355-367.
- 67. McGrath JM, Lobell DB: Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO(2) concentrations. Plant Cell Environ 2013, **36**:697-705.
- Vicente-Serrano SM, Miralles DG, McDowell N, Brodribb T, Domínguez-Castro F, Leung R, Koppa A: **The uncertain role of rising atmospheric CO₂ on global plant transpiration**. *Earth Sci* Rev 2022, 230:104055.

- 69. Ziska LH: Rising carbon dioxide and global nutrition: evidence and action needed. Plants 2022, 11:1000.
- In-depth review of the implications of nutrient dilution for human food systems and plant biology.
- Ziska LH, Morris CF, Goins EW: Quantitative and qualitative evaluation of selected wheat varieties released since 1903 to increasing atmospheric carbon dioxide: can yield sensitivity to carbon dioxide be a factor in wheat performance? Glob Change Biol 2004, 10:1810-1819.
- Olff H, Aerts R, Bobbink R, Cornelissen JHC, Erisman JW, Galloway JN, Stevens CJ, Sutton MA, de Vries FT, Wamelink GWW, et al.: Explanations for nitrogen decline. Science 2022, 376:1169-1170.
- 72. Vitousek PM, Cen X, Groffman PM: Has nitrogen availability
 decreased over much of the land surface in the past century? A model-based analysis. Biogeochemistry 2024,793-806, https://doi.org/10.1007/s10533-024-01146-v.

Widespread reductions in nitrogen availability are driven by increasing atmospheric concentrations of CO₂.

- Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, et al.: Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. *BioScience* 2004, 54:731-739.
- 74. Power ME: Top-down and bottom-up forces in food webs: do plants have primacy. *Ecology* 1992, 73:733-746.
- Pimm SL, Jones HL, Diamond J: On the risk of extinction. Am Nat 1988, 132:757-785.
- 76. van Klink R, Bowler DE, Gongalsky KB, Shen M, Swengel SR,
 Chase JM: Disproportionate declines of formerly abundant species underlie insect loss. Nature 2024, 628:359-364.
- Synthesis of insect time series finding strong declines in common taxa.
- Johnson NF, Triplehorn CA: Borror and DeLong's Introduction to the Study of Insects. Cengage Learning; 2004.