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Review 

Elevated CO2, nutrition dilution, and shifts in Earth’s 
insect abundance
Ellen AR Welti1 and Michael Kaspari2

Declining insect populations are concerning, given the 

numerous ecosystem services provided by insects. Here, we 

examine yet another threat to global insect populations — 

nutrient dilution, the reduction in noncarbon essential nutrients 

in plant tissues. The rise of atmospheric CO2, and subsequent 

‘global greening’, is a major driver of nutrient dilution. As plant 

nutrient concentrations are already low compared to animal 

tissues, further reductions can be detrimental to herbivore 

,tness, resulting in increased development times, smaller 

intraspeci,c body sizes, reduced reproduction, and reduced 

population sizes. By altering herbivore populations and traits, 

nutrient dilution can ramify up trophic levels. Conservation of 

Earth’s biodiversity will require not just protection of habitat, but 

reductions in anthropogenic alterations to biogeochemical 

cycles, including the carbon cycle.
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Introduction
The commercial use of fossil fuels for energy began in 
the early 1800s, rising from levels consistently below 
300 ppm for the previous 20 million years [1] to 
> 420 ppm today [2]. Given that emissions have yet to 
peak [3], Earth is likely to continue to face numerous 
consequences of humanity’s ongoing combustion of 
fossil fuels. But what are the consequences? The phrase 
‘climate change’ emphasizes the warming temperatures, 
altered patterns in precipitation, and increasing intensity 

of storms that are becoming ever more severe across the 
globe [4]. Rising sea levels and ocean acidi-cation are 
further frightening outcomes [5]. We examine yet an-
other effect that is not directly visible to the human 
observer and far less studied — nutrient dilution — the 
reduction in the concentrations of essential elements in 
plant tissues that can result from carbon fertilization due 
to increasing levels of atmospheric CO2 [6,7].

These reductions in noncarbon elements are bad news 
for the plant consumer. Human de-ciencies in iron, ni-
trogen, and zinc are all expected to increase over the 
next few decades in response to elevated CO2 (eCO2) 
[8]. Nutrient dilution also has repercussions for Earth’s 
insects with variable -tness predictions expected among 
taxa, trait groups, and under different habitat conditions. 
Altered herbivore populations and traits are further ex-
pected to have repercussions for higher trophic levels 
but responses of predators and parasitoid to eCO2 have 
rarely been empirically tested. Here, we examine re-
percussions of increasing levels of atmospheric CO2 on 
plant nutrient concentrations and the expected con-
sequences for these shifts across plant and insect 
food webs.

How does eCO2 affect plants?
Increases in CO2 are expected to have effects on plants 
from cellular to community levels of organization. 
Individually, plants under eCO2 increase photosynthesis 
and growth [9] and vary in phenology [10]. They are also 
built differently, exhibiting increased levels of carbon- 
based herbivore defenses, including structural carbon- 
based defenses, phenolics [11], and leaf toughness [12]
but decreased nitrogen-based secondary compounds 
[13]. Plant communities under eCO2 can experience 
shifts toward greater dominance of invasives, crop weeds 
[14], fast growers, nitrogen -xers, angiosperms over 
gymnosperms [13], woody plants over grasses [15], C3 
over C4 grasses [16], and prevalence of speci-c taxa such 
as poison ivy [17].

Rising atmospheric CO2 can further cause reductions in 
the concentrations of noncarbon elements in plant tis-
sues (e.g. nitrogen, phosphorus, potassium, magnesium, 
iron, and zinc). When plants under CO2 fertilization 
displace these elements that are essential for life with 
more carbohydrates, this can result in nutrient dilution. 
Other hypotheses for the mechanism behind this ubi-
quitous plant response to eCO2 have also been proposed 
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(Box 1). Early studies reporting reduction in plant tissue 
nutrients with eCO2 came from crop systems [7,18] and 
have since been veri-ed by meta-analyses [6,13,19–21]
and long-term studies [22,23]. Plant tissue carbon is also 
affected by eCO2, with increases in starch and total 
nonstructural carbon, especially for slow-growing plants, 
and decreases in structural carbon [12,13]. Such shifts in 
nutrient concentrations of plants, including availability 
of nitrogen, carbon, and other macro- and micro-nu-
trients — occurring at the global scale — have large 
potential to reshape Earth’s food webs [7].

Which plants are exhibiting nutrient dilution 
and where?
Declines in essential elements in response to increasing 
atmospheric CO2 vary in magnitude with plant taxa, 
geographies, and ecosystem type. Across taxa, C4 grasses 
may not have as large of declines in nutrient con-
centrations as C3 grasses [24]. Legumes, with their 
symbiotic nitrogen--xing rhizobium bacteria, exhibit 
reduced declines in tissue nitrogen concentrations under 
eCO2 [6], including leguminous trees [21]. Across abiotic 
geographies, plant tissues reCect environmental nutrient 
availability, especially soil nutrient gradients [25]. Plant 
consumers are more likely to be limited by a given es-
sential nutrient in times and places where that nutrient 
is in short supply, such as in areas with old soils, inland 
geographies, and Cat topographies [26]. This is further 
magni-ed for nutrients that cannot be stored in the 
body, such as cobalt and sodium [26]. Across ecosystem 
type, systems under annual production cycles such as 
temperate grasslands may exhibit greater nutrient dilu-
tion as a greater proportion of standing green plant bio-
mass production represents recent growth. However, 
evidence of long-term nutrient dilution is ubiquitous, 

spanning croplands [27], grasslands [22,23,28], forests 
[29], and even marine systems [30].

Herbivore responses
The assimilation of elemental building blocks into food 
webs starts with primary producers. As primary produ-
cers are generally nonmobile, adaptations including 
modular growth/senescence, dormancy, and the ability 
to turn off DNA repair, allow them to survive under 
variable conditions and result in reduced but highly 
variable nutrient concentrations in their tissue compared 
with homeostatic animals [31]. Herbivores face the 
challenge of building their own tissues from this often 
low-quality food source and can be limited by a number 
of essential elements [32], many of which are diluted in 
plant tissues with CO2 fertilization [6].

In a meta-analysis of insect herbivore responses to eCO2, 
herbivores declined in growth rate (−4.5%) and pupal 
and adult weight (−5.5%) and increased in consumption 
rate (+14%) and development time (+3.5%) [13]. How-
ever, not all herbivores respond the same, and herbivore 
abundance responses are particularly variable [13]. For 
example, phloem feeders consuming plants under eCO2 

have reduced development times and increased fe-
cundity and abundances, whereas folivores exhibit in-
creased development times and decreased fecundity. 
Chewing herbivores decline under eCO2 with the most 
studied order of Lepidoptera averaging severe (−65%) 
reductions in abundance, especially within leafmi-
ners [13,33].

Why do phloem feeders do better under eCO2? Bene-ts 
may be related to their endosymbionts or changes in the 
quantity and/or quality of plant carbon, but few studies 
have evaluated changes in the chemistry of phloem. 

Box 1 Why does eCO2 reduce plant nutrient concentrations?.  

Reductions in the elemental concentrations of plant tissues under increasing atmospheric CO2 may be a response of H1.1) nutrient dilution — i.e. 

increased growth of plants resulting in the reduction of concentrations of essential elements in plant tissues. CO2 fertilization can generate nutrient 

dilution of noncarbon elements, assuming it generates growth and the availability of other elements for uptake remains constant [29]. Additionally, 

several other hypotheses for reductions in plant tissue elemental concentrations have been proposed. None of these hypotheses are mutually 

exclusive to nutrient dilution via additional plant growth.

Three hypotheses suggest mechanisms of plant physiology, predicting that plants under eCO2: H1.2) have less demand for other nutrients due to 

reductions in RuBisCo levels, resulting in increased leaf C:N [65], H1.3) reduce photorespiration, inhibiting assimilation of some soil nutrients [66], 

and may also H1.4) reduce the amount of time that stomata are open, reducing uptake of nutrients due to reduced transpiration Jux [67] and further 

suggesting effects on global water balances [68].

Two hypotheses implicate additional anthropogenic effects on plant quality: H1.5) Selection for high-yielding crop genotypes has unwittingly 

selected for nutrient-poor varieties [69]. This is unlikely a full explanation of the phenomenon of plant tissue nutrient concentration declines, given 

these are also occurring in natural systems [23,28,29] and in eCO2 experiments [70]. H1.6) Reductions in atmospheric deposition of nitrogen due to 

reduced use of nitrogen fertilizers and air quality regulations within speci,c global geographies and are causing reduced concentrations of plant 

tissue nitrogen concentrations [71]. However, this hypothesis does not account for reductions in other nutrients [6,29], nor does it fully account for 

reductions in plant tissue nitrogen concentrations [72].

Finally, H1.7) eCO2 may reduce litter decomposition rates, reducing the Jow at which nutrients are recycled back into the system [73]. This 

scenario could be catalyzed by other mechanisms causing reductions in forage quality and resulting in a positive feedback loop toward continuous 

declines.
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Alternatively, sap feeders may have more access to es-
sential nutrients through consuming dynamic phloem 
and their ef-cient -ltering abilities, whereas chewing 
herbivores must consume more nutritionally static tis-
sues and have no mechanism to excrete excess 
carbon [7].

But chewing herbivores are hardly a monolithic group 
and vary greatly in nutrient needs. Within grasshoppers, 
optimal diets can range from needing nearly double 
protein versus carbohydrates (Melanoplus femurrbrum) to 
2.5 times more carbohydrates than protein (Schistocerca 

cancellata) [34,35]. Locusts are generally more carbohy-
drate limited compared with other chewing insect her-
bivores, including other grasshoppers, and eCO2 is 
predicted to promote increasing locust outbreaks [36]. In 
addition to taxonomic variation, body size can affect 
nutritional needs. Smaller insect herbivores have greater 
concentrations of nutrients per unit mass, both inter-
speci-cally [37,38] and in earlier ontologies [36,39]. This 
means smaller herbivores ceterus paribus require more 
protein-rich food than larger herbivores and may be less 
able to adapt to reduced concentrations of nitrogen [26]. 
Finally, specialist herbivores are more negatively af-
fected by nutrient dilution than generalists with the 
ability to host-switch to more nutrient-dense plant 
taxa [13].

The abiotic drivers of temperature, precipitation, and 
biogeochemistry interact in ways we are just discovering 
(Kaspari and Welti 2024). Herbivore protein limitation 
can both increase [40] and decrease [41] with rising 
temperatures. Herbivores may be more limited by car-
bohydrates in dry conditions [36] and more protein 
limited in wet habitats [42], suggesting greater potential 
for nutrient dilution effects on herbivore populations 
with increasing moisture and plant biomass. Other as-
pects of the herbivore environment are also worthy of 
study. Both pathogen infection [43] and predation 
pressure [44] can generate herbivore diet switches to 
more carbohydrate-rich food sources, suggesting top- 
down controls may mediate responses to nutrient dilu-
tion. Similarly, it seems plausible that herbivores, as 
predators of N-defended plants, could bene-t from re-
ductions in secondary compounds under eCO2 could 
bene-t herbivores. In sum, Earth’s enormous diversity 
of insect herbivores — ontogenetically and within and 
between species — likely combine to generate a variety 
of responses to eCO2-induced nutrient dilution 
(Figure 1).

Consequences across the food chain
Not just herbivores, but decomposers, and coprophagous 
insects — especially those that specialize on herbivore 
feces and carcasses — are likely to face similar declines 
in noncarbon essential nutrient concentrations in their 

food sources under eCO2. Reduced populations of de-
composers and coprophagous insects are additionally 
troubling as this can decrease nutrient cycling rates, 
creating a positive feedback loop toward increasingly 
lower nutrient availability.

Consequences for pollinators are likely mixed: plants 
under eCO2 have reduced protein concentrations [23]
but may increase nectar production [45] and increase 
nectar concentrations of glucose and fructose [46]. Insect 
visitation rates to Cowers may also increase under eCO2, 
potentially bene-ting plants in the form of increased 
pollination and seed set [10]. We predict that predacious 
Hymenoptera, like wasps, that build colonies from 
nectar and animal prey will be less impacted by eCO2 

than bees that do so on a purely plant-based diet of 
nectar and pollen.

While omnivores, predators, scavengers, and parasitoids 
consume higher quality food and are not likely to be 
directly limited by altered plant quality, indirect effects 
due to altered populations and traits of their prey may 
affect their populations. For example, omnivorous ants 
may bene-t from increased sugar availability from 
farmed aphids; one study found aphids grown on plants 
under eCO2 exhibited a tripling of their production of 
honeydew, which doubled the frequency of visits by 
tending ants [47]. Increased development times of her-
bivores may increase the time window where vulnerable 
life stages are susceptible to parasitoids and predation. 
However, reductions in herbivore populations can result 
in reductions in populations of higher trophic levels 
through a ‘dilution’ of prey availability in space [48]. 
Differences in rates of insect declines by trophic level 
are explored in Box 2.

How do herbivores deal with nutrient 
mismatch?
Fitness costs due to differences in nutrient densities in 
food and consumer requirements decrease as interac-
tions move up the food web, with primary consumers 
likely to face the greatest nutrient mismatches of con-
sumer guilds [49]. Herbivores can deploy several stra-
tegies to cope with variation in nutrient availability in 
relation to their needs. Strategies include: 

1) movement, from patch selection to migration, to lo-
cate higher quality food,

2) diet switching, from selecting different parts of the 
same plant [50] to including scavenging and om-
nivory for ‘herbivores’ and detritivores,

3) using variation in microclimate to alter optimal di-
gestion of particular nutrients [41],

4) compensatory consumption [7],
5) symbiosis with microbiota for increased extraction of 

nutrients from food,
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6) nutrient storage, including storage in the body or 
external caching [37], and

7) taking a direct -tness hit such as through reductions 
in growth or reproduction [51].

Some of these strategies may allow persistence of her-
bivore taxa under increasing CO2 and subsequent re-
ductions in essential elements such as nitrogen. 
However, strategies can be evolutionarily constrained 
and can come with -tness costs, resulting in reductions 
in herbivore populations [7].

Open questions
While it is established that eCO2 alters plant nutrient 
concentrations [6] with clear implications for insect 
herbivores [13], long-term, distributed networks of stu-
dies that combine plant chemistry and consumer re-
sponses remain rare (US LTER sites can provide an 
exception) [28]. Such long-term studies require invest-
ment that take years to pay off in unique temporal sig-
natures. Spatially, eCO2 -eld experiments such as 
FACE have 1–30 m diameter footprints, adequate for 

plants and soils, but inadequate for mobile herbivores. 
For example, under eCO2, herbivory is known to in-
crease [13], but in small-scale -eld experiments, eCO2 

may be observed to reduce chewing insect herbivory as 
insects vacate these patches of less desirable forage [52].

Further unexplored topics include responses of pre-
dators, parasitoids, and plants to changes in herbivore 
populations, traits, and life histories. Herbivore-relevant 
compounds are rarely measured in studies of eCO2 ef-
fects focusing on insects, including structural and non-
structural carbons, plant toughness, and plant-defensive 
compounds. These responses are likely co-occurring 
with other effects of eCO2, complicating predictions. For 
example, tannins, which can increase with eCO2 [13], 
can reduce nitrogen use ef-ciency through binding 
proteins [53], magnifying the effects of decreased nu-
trient availability. Finally, as global change is multi-
variate, more work is needed to test for interactions 
between nutrient dilution and other global change dri-
vers [54]. For example, co-occurrent increases in eCO2 

and temperature may either offset plant nutrient density 

Box 2 Insect declines magnify through the food web.  

Herbivores uptake life’s elemental building blocks from plant tissues and concentrate them in their Jesh, passing this improved food quality onto 

their predators and beyond. Under nutrient dilution, this suggests two scenarios based on the balance of bottom-up and top-down forces 

regulating herbivore populations [74]. H2.1) ‘Bottom-up’ predicts that nutrient dilution–caused declines in herbivore populations ramify upward to 

decrease predator abundance, whose rarity further puts them at risk of local extirpation [75]. H2.2) ‘Rock and a Hard Place’ predicts herbivore 

declines will be higher, as they suffer from the consequences of malnourishment, longer development times, and the increasing susceptibility to 

predation that results.

The van Klink synthesis on global insect declines [76] gives an early clue of a strong bottom-up effect of herbivore declines on food webs (Fig. i). 

When each of the 130 insect families (12 007 species) for which species data are available are assigned to trophic groups [77] — herbivores, 

predators, omnivores (mix of plants and animals), and detritivores (dead plants and animals and the microbes that colonize them) — families of 

predatory insects have over twice the annual decline rate of the two groups eating live plants (General Linear Model, p  <  0.001). 

The magnitude of decline (% change per year) across 130 insect families varies with their diet. Data summarized from Ref. [76] with diet records 

compiled at the family level from a total of 12 007 records. Box and whisker plot reJect the median, 25 and 75th percentiles, 10th and 90th 

percentiles, and outlier points. The gray zone represents families that are declining in abundance over time.  
.
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declines [55] or not [56], and carbohydrate availability 
can constrain insect thermal maxima [57].

Conservation in a world of altered 
biogeochemistry
Threats to biodiversity span biological hierarchies from 
organisms to populations, communities, and ecosystems. 
Addressing the biodiversity crisis will require integrative 
approaches that span these hierarchies [49]. In particular, 
while altered biogeochemistry is often listed as a major 
threat to Earth’s planetary boundaries [58], within 
ecology, it is often studied in the context of abiotic, 
ecosystem-level change and is less often considered in 
the context of conservation [59]. However, effects of 
altered nutrient availability may be particularly relevant 
for declines in insects that are ubiquitous even within 
protected areas [60].

At the local scale, efforts to ameliorate altered nutrient 
availability with the goal of insect conservation are lim-
ited. One positive example is the use of riparian buffers 
around streams to limit diffuse nutrient runoff [61]. A 
second proposed strategy is the incorporation of species 
with variable nutrient pro-les in seed mixes for re-
storation [49]. We caution against more direct ap-
proaches to ‘correct’ for altered nutrient availability. For 
example, the use of mineral licks in wildlife reserves 
may inCate herbivore populations beyond their carrying 
capacity [62]. Additionally, while changes in plant bio-
mass and concentrations in carbon and nitrogen under 
eCO2 are ameliorated under increased nitrogen 

availability [13], fertilizer addition has downsides, in-
cluding creating increasing imbalances in the availability 
of yet other elements essential for life [26], favoring fast- 
growing plants, and the creation of eutrophic conditions 
with negative downstream effects on insect biodi-
versity [63].

At national to larger scales, legislation can be an effective 
tool to reverse biodiversity declines caused by altered 
nutrient cycles, as has been the case for freshwater 
macroinvertebrates following regulation of water and air 
quality in Europe and North America [64]. As a -rst step, 
we believe that to slow nutrient dilution and other 
consequences of eCO2 — like the acidi-cation of oceans 
— global action is required to reduce anthropogenic 
emissions. Until then, the contribution of nutrient di-
lution to shifts and biodiversity declines of Earth’s in-
sects provides yet one more reason why these efforts are 
increasingly critical.
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Figure 1  

Plant and insect herbivore responses to eCO2. Rising CO2 can increase aboveground plant biomass through carbon fertilization, leading to declines in 

the densities of other essential elements (i.e. nutrient dilution). Altered nutrient availability in plant tissues and phloem is detrimental to chewing 

herbivores but can bene,t sap-feeding herbivores. Reduced forage quality can reduce individual body size of developing insect herbivores but may 

also have the highest ,tness costs for the smaller herbivores interspeci,cally, as smaller taxa generally use and require diets containing higher nutrient 

concentrations in comparison to larger herbivore taxa.  
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