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Abstract
The advancement of AI has revolutionized digital agriculture, en-
abling processing of diverse data types from sensor tabular data to
drone imagery. This supports applications like nitrogen fertilizer
management and residue cover estimation.

Meanwhile, the complexity of AI deployment creates an urgent
need for democratized AI as cyberinfrastructure (CI). HARVEST-
2.0 provides a framework for end-to-end farm localizedmodel train-
ing and deployment services. It supports multi-scenario deploy-
ment online, offline, and real-time across the compute continuum,
making digital agriculture by and for those who work the land.

Flexible deployment enables diverse applications but complicates
model selection due to the accuracy latency trade off. In this work,
we evaluate theHARVEST inference pipeline acrossmodels, datasets,
and platforms. We demonstrate how elaborate selected hyperpa-
rameters can improve throughput under latency constraints, and
highlight the benefits of GPU-accelerated data preprocessing. To-
gether, Our findings offer performance insights to guide application-
specific tuning.

CCS Concepts
• Applied computing → Agriculture; • Computing method-
ologies→ Artificial intelligence; • Computer systems organiza-
tion→ Architectures.
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1 Introduction
In recent years, Artificial Intelligence (AI) has achieved significant
success across various domains. With the emergence of Convolu-
tional Neural Networks (CNNs) and Transformer-basedmodels, AI
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has expanded its capabilities from single image or sensor inputs to
multi-modal inputs, including tabular data, image-text pairs, process-
based data, text data, and audio. AI-accelerated digital agriculture
has now sparked the fourth agricultural revolution.

However, while digital agriculture represents a technological ad-
vancement, its implementation has encountered resistance and ex-
acerbated existing inequalities [12]. Valuable agricultural data are
frequently controlled by private companies, restricting access for
farmers. Producers face pressure to purchase costly technologies
to maintain competitive yields, with smallholders especially at risk
of being left behind due to limited access to knowledge and local-
ized AI models. Regional variations in land data further limit the
effectiveness of digital tools without model adaptation capabilities.

To address these challenges, the Intelligent Cyberinfrastructure
with Computational Learning in the Environment (ICICLE) [4] project
aims to transform today’s AI landscape from a narrow set of priv-
ileged disciplines to democratized cyberinfrastructure. ICICLE de-
mocratizes AI through workforce development, auditable work-
flows, and co-designed infrastructure, ensuring data integrity, pri-
vacy, and explainability—making digital agriculture by and for those
who work the land. This enables a range of agricultural applica-
tions including nitrogen fertilizer management, residue cover esti-
mation, soil aggregate size estimation, and pest detection [13].

Figure 1: High-level overview of the HARVEST-2.0 framework.

HARVEST-2.0 [6], as shown in Fig. 1, serves as the framework
developed under the ICICLE project to drive these applications.
It provides farmers with an end-to-end AI training and deploy-
ment platform, enabling landholders to easily train localized AI
models with their own data.The framework encompasses data pre-
processing, distributed model training, cloud or edge-based infer-
ence, and result visualization components, covering the entire AI
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model lifecycle while enabling agile deployment with fast train-
ing times. Developed with privacy and data ownership priorities,
combined with semi-supervised learning techniques, this frame-
workmitigates the time and expert effort required for labeling chal-
lenges [29].

HARVEST supports deployment across the compute continuum,
allowing end users to tailor inference to specific application scenar-
ios. A single training process enables deployment on both edge and
cloud systems—inference can run in the cloud with high through-
put after unified preprocessing, or be performed on edge devices
in the field for low-latency results supporting real-time decisions.

However, this flexibility introduces the challenge of selecting
the appropriatemodel for each deployment context, requiring care-
ful balance of accuracy-latency trade-offs. To address this chal-
lenge, thiswork thoroughly evaluates theHARVEST inference pipeline
across multiple models and datasets on both edge and cloud plat-
forms, with the objective of better understanding the pipeline and
providing end users with guidance for application-specific tuning.

2 Inference Deployment Scenarios
2.1 Digital Agriculture Applications
Machine learning (ML) has proven effective for extracting patterns
and conducting analysis from multimodal data, becoming widely
adopted in agriculture to improve farming profitability and sus-
tainability.

For commonly used image data, Convolutional Neural Networks
(CNNs), such as ResNet [15], arewidely applicable to various down-
stream tasks, including applications already supported by theHAR-
VEST framework: residue cover on soil surface estimation, corn
borer detection, and leaf aphid detection.

Vision Transformers (ViTs) [11] have emerged as successors to
CNNs, bringing the powerful Transformer architecture—which achieved
remarkable success in Natural Language Processing—into image
recognition. ViTs offer enhanced semantic understanding capabil-
ities for agricultural applications.

These vision-based models are often deployed with Unmanned
Aerial Systems (UAS) or ground vehicles to analyze pixel-level in-
put from onboard cameras. Notable examples include the Mineral
Rover [1], which traversed agricultural fields to collect high-quality
images of individual plants. Combinedwith complementary datasets,
this platform provided valuable insights into plant growth patterns
and environmental interactions

Beyond vision-based approaches, with the rise of ChatGPT [7],
text-based large language models (LLM) have gained widespread
recognition. These models have significantly lowered barriers to
accessing domain-specific agricultural knowledge, promoting knowl-
edge dissemination and improving accessibility for farmers and re-
searchers. Large Language Models (LLMs) offer new paradigms for
text-based data analysis in agriculture. LLMs trained specifically
on agricultural knowledge, such as AgroLLM [25], combined with
Retrieval-Augmented Generation (RAG), can provide more special-
ized and contextually relevant answers than general-purpose LLMs.

Vision-Language Models (VLMs) such as Molmo [9] enable in-
teractive analysis of plant diseases directly from combined image
and text inputs, greatly extending ML model capabilities and mak-
ing expert knowledgemore accessible to practitioners. Beyond this,

the exploration of additional modalities continues to grow. Gadi-
raju et al.[14] demonstrated joint prediction using spatial, spectral,
and temporal data for crop type identification, and growing re-
search on data-driven agricultural systems leveraging diverse sen-
sor inputs underscores the potential ofmultimodal approaches [26].

Figure 2: Overview of Dataflow Across Deployment Scenarios

2.2 Deployment Scenarios
The diverse digital agriculture applications mentioned above pose
significant challenges to the design and support of inference pipelines.
Tuning the HARVEST inference process for different scenarios is
the central focus of this characterization study. Based on the re-
quirements for data processing, the nature of the compute plat-
form, and how results are utilized, we broadly categorize deploy-
ment scenarios into the following three:

2.2.1 Online Inference. Online inference provides streaming in-
ference services for target applications. Data is processed and re-
turned in real time upon being uploaded to the compute platform
(either edge or cloud), enabling inference on demand. Under online
inference, real-time latency is traded off for high throughput. This
setup presents challenges for data transmission, especially when
transmitting large image data to the cloud. It would be beneficial
to leverage advanced wireless capabilities to enable real-time data
collection and transmission.

2.2.2 Offline Inference. Unlike online inference, offline inference
is performed after a batch of data has been collected. It is suit-
able for non-time-sensitive tasks, such as field-by-field processing.
With full data availability, this approach allows for more extensive
preprocessing before AI inference—ideal for applications requiring
image stitching or orthomosaic generation from UAS or satellite
imagery. As shown in Fig. 3a, the workflow at the Northwest Agri-
cultural Research Station [28] demonstrates this approach: drone
images are first stitched using OpenDroneMap [3], followed by
tiling and offline processing via the HARVEST inference pipeline,
ultimately generating fine-grained heatmaps and other visual out-
puts.

2.2.3 Real-Time Inference. For on-the-fly decision-making—such
as device actions triggered by inference results, similar to autonomous
driving in agricultural contexts—real-time inference on edge de-
vices offers a rapid-response solution. This mode prioritizes low
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(a) Drone Based Offline Inference Example

(b) Ground Vehicle Based Real-time Inference Example

Figure 3: Illustrations of Different HARVEST Inference Scenarios

latency. From raw image preprocessing to ML model output, the
entire pipeline must operate within strict time constraints. Given
the limited compute, memory, and energy resources on edge plat-
forms, optimizing the end-to-end pipeline under such constraints
becomes a key focus of this characterization study.

3 The HARVEST Inference Pipeline
TheHARVEST inference pipeline follows amodular design that de-
couples the frontend—which handles diverse task requests—from
the backend, which executes model inference. The frontend is re-
sponsible for transmitting or locally reading input data and gener-
ating requests to the backend.

The backend hosts model instances, each dedicated to a specific
inference task. For example, a trained ViT model for residue cover
estimation at the Northwest Agricultural Research Station.

Each model family is paired with its own preprocessing method,
and in some cases, the dataset itself may require task-specific pre-
processing. These preprocessing routines are also encapsulated as
separate backend engine instances. A single request may trigger
multiple backend calls to support different downstream tasks, which
can reuse shared preprocessing steps when applicable.

Backend request orchestration is currently provided by theNVIDIA
Triton Server [21]. Each model instance can be powered by popu-
lar deep learning frameworks like PyTorch [23], TensorFlow [5], or
inference-oriented engines such as vLLM [16] and TensorRT [19].
This allows the backend to support a majority of model formats,
including framework-neutral options like ONNX [22], maximizing
compatibility.

Preprocessing is handled via Torchvision [17], OpenCV [2], GPU-
accelerated frameworks such asNVIDIADALI [20], or customPython

scripts. This backend architecture is also prepared for future scale-
out through different parallelism strategies.

3.1 Inference Workload
As previously described, the latency of an inference request con-
sists of three components: dataset-specific preprocessing, model-
specific preprocessing, and model inference time.

For a given hardware platform, compute capability is typically
expressed as FLOPS (Floating-point Operations Per Second), which
varies by numerical precision and hardware support. Lower-precision
formats like INT8 or FP16 offer faster inference but may reduce ac-
curacy. BF16 or FP16, as used in our experiments, provides a com-
mon balance between speed and accuracy.

Similarly, for a given ML model, the required FLOPs and per-
image memory footprint can be estimated layer-wise. Computa-
tional cost varies by layer type. For instance, attention layers in
Transformer models generally have much higher computational
intensity than CNN layers with comparable parameter counts. Ad-
ditionally, attention layers scale quadratically with respect to input
sequence length, making them less suitable for large image inputs.
Recent work seeks to address this limitation through state-based
architectures such as RWKV [24]. By summing the total FLOPs re-
quired by themodel and dividing by the available hardware FLOPS,
we can estimate the theoretical upper bound on throughput or the
minimum achievable latency for a given batch size.

3.2 Preprocessing Requirements
Compared to the relatively stable model inference latency, prepro-
cessing introduces greater variance due to diverse input formats
and operations.



ICPP Companion ’25, September 08–11, 2025, San Diego, CA, USA Tian Chen, Quentin Anthony, and Dhabaleswar K. Panda

Models require preprocessing consistentwith their training-time
distribution; otherwise, input mismatch may lead to unexpected
outputs. For vision models, such preprocessing often includes im-
age decoding, resizing, cropping, and pixel-wise normalization.The
computational cost scales with image size, and if handled solely by
the CPU, can bottleneck the pipeline. GPU-accelerated preprocess-
ing can potentially help mitigate this bottleneck.

Certain data sources also require task-specific preprocessing. For
example, UAS images may need offline stitching, while raw camera
streams may require perspective transformation. These dependen-
cies collectively determine whether a given application is suitable
for real-time inference.

3.3 Challenges in Application Specific
Optimization

The dynamic nature of the inference pipeline presents significant
challenges for tuning in digital agriculture applications.

Effective optimization begins with clearly defining the target
deployment scenario and platform. For edge deployments, model
size must be considered early in training, as memory and compute
constraints limit both model selection and concurrency.

When considering end-to-end serving—from raw data input all
the way to result output—throughput depends not solely on com-
pute intensity, but also on CPU, I/O, and network subsystems. At
larger scales, distributed deployment introduces added complexity,
making system characterization and tuning even more challeng-
ing.

Table 1: Evaluated Cloud and Edge Platforms

Platform OSC Pitzer
Cluster (V100)

MRI
Cluster (A100)

NVIDIA Jetson
Orin Nano Super

CPU 40 cores 128 cores 6 cores

GPU NVIDIA V100
16GB×2

NVIDIA A100
40GB×2

Ampere architecture based
1024 CUDA cores
32 tensor cores

Memory 384GB 256GB 8GB
Scenario Online, Offline Online, Offline Real-Time
Theory
TFLOPS 112 @FP16 312 @BF16 17 @FP16

Practical
TFLOPS 92.6 236.3 11.4 @BF16

Note:V100 and A100 experiments used only one of the two available GPUs.
Jetson platforms feature CPU and GPU sharing 8GB unified memory and
operate in 25W power mode.

4 Experiments
This study was conducted using two cloud platforms and one edge
device, with hardware specifications shown in Tab. 1. The Ohio
Supercomputer Center’s Pitzer Cluster provides scalable and suffi-
cient compute resources for the HARVEST framework, with tests
conducted on its V100 nodes using a single GPU setup. MRI is an
in-house cluster at The Ohio State University that serves as an-
other target deployment platform for the HARVEST framework,
with evaluations conducted on its A100 nodes, also using a sin-
gle GPU setup. Both clusters are capable of supporting online or

offline inference services. The NVIDIA Jetson Nano represents an
edge device that will be installed on ground vehicles connected
directly to GoPro cameras to enable real-time inference in future
deployments.

Since theoretical FLOPS numbers provided by manufacturers
tend to be overly optimistic, we benchmarked practical FLOPS per-
formance over GEMM operations on all three platforms. BF16 was
used on the A100, while FP16 was used on the other two platforms
due to limited support. As shown in the Table 1, the FLOPS effi-
ciency achieved on each platform ranges from 75.74% to 82.68%.
4.0.1 Datasets. In the experiments, we used five different agricul-
tural datasets to represent a variety of downstream tasks. The im-
age size distribution is shown in Fig. 4, where the X-axis repre-
sents total pixels and the Y-axis represents the density of that im-
age size, with the most common image size in each dataset labeled
on top. Among these, CRSA consists of raw camera input feeds
that require dataset-specific preprocessing. Our datasets span a
wide range of image sizes—some have highly uniform dimensions
while others vary significantly—providing coverage for common
use cases in agricultural applications.
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Figure 4: Image Size Distribution Across Different Datasets

4.0.2 Models. The models used in the experiments, along with
their specifications, are shown in Tab. 3. In this experiment, we se-
lected four widely used deep learning models for computer vision,
varying in size and covering both transformer-based and CNN-
based architectures, with eachmodel requiring a specific input size.
Themodels are provided in the platform-neutral ONNX format and
internally converted to the inference-oriented TensorRT format.

The ViT family adopts a transformer-based architecture, and
comparing ViT Small with the CNN-based ResNet50 model, we
observe that despite having a smaller parameter count, ViT ex-
hibits higher computational demand. For transformer-based mod-
els, the majority of computation is consumed by MLP layers, ac-
counting for 81.73% in ViT Tiny, while attention layers account
for 18.23%. In contrast, convolution operations account for 99.5%
of ResNet50’s overall computational intensity.

4.1 Engine Performance
As illustrated in Fig. 5, a substantial gap exists between the Model
FLOPs Utilization (MFU) and the practical upper bound during
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Table 2: Agriculture Datasets Used in The Evaluation

Dataset Classes Samples Image Size Use Case

Plant Village [8] 39 43430 256x256 Plant disease classification
Weed Detection in Soybean [10] 4 10635 Show in Fig. 4a Weed detection in soybeans
Sugar Cane-Spittle Bug [27] 2 10100 Show in Fig. 4b Pest bugs detection

Fruits-360 [18] 81 40998 100x100 Fruits classification

Corn Growth Stage [28] 23 52198 224x224 Corn Growth Stage Classification,
UAS Based

CRSA - 992 3840x2160 Crop Residue Soil Aggregate,
Ground Vehicle based
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Table 3: Model Evaluated and Computational Intensity

Model ViT Tiny ViT Small ViT Base ResNet50

Parameter 5.39M 21.40M 85.80M 25.56M
Archetecture Transformer Based CNN Based
GFLOPs/Image 1.37 5.47 16.86 4.09

Input Size 32×32 32×32 224×224 224×224
Throughput
UpperBound
images/sec

A100 172,508 43,214 14,013 57,775
V100 67,602 16,935 5,491 22,641
Jetson 8,322 2,085 676 2,787

real-world inference. This gap can be narrowed through two pri-
mary mechanisms: increasing batch size, which enhances compu-
tational intensity, and deploying larger models, which similarly im-
proves MFU.

Comparing architectures reveals interesting performance char-
acteristics.While ViT-Small exhibits higher computational demand

than ResNet50 (5.47 vs. 4.09 GFLOPs/image), ResNet achieves su-
periorMFU.This indicates that CNN-based architectures like ResNet
may be better optimized for the tested platform.

However, increasing batch size demonstrates diminishing returns:
MFU improves gradually before eventually plateauing or trigger-
ing out-of-memory (OOM) conditions, particularly on resource-
constrained devices such as the Jetson platform.

Latency represents another critical dimension of throughput,
measuring the time required to process a batch request—essential
for real-time applications. Under ideal conditions, latency scales
linearly with batch size (dashed line in Fig. 6). However, low MFU
at small batch sizes creates an initial nonlinear region (preceding
the solid line), indicating computational underutilization.

As demonstrated in Fig. 6, the red line demarcates the 16.7ms
threshold necessary to sustain 60 queries per second. The inter-
section with near-saturated performance defines an optimal oper-
ating region. On A100 hardware, this requires batch sizes exceed-
ing 16; on V100, batch size 8 suffices. Jetson platforms offer con-
siderably narrower operating margins—particularly for ViT-Tiny,
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whereMFUdeteriorates below batch size 8, complicating the latency-
utilization trade-off.

4.2 Preprocessing Performance
As shown in Fig. 7, we evaluatemultiple preprocessing frameworks
with distinct performance characteristics. PyTorch serves as the
CPU-based baseline, exhibiting varying performance across datasets—
likely attributable to differences in image encoding formats (e.g.,
TIFF vs. JPEG). OpenCV, employed specifically for the CRSAdataset
with heavyCPU-bound operations, demonstrates poor performance
in real-time scenarios and is therefore excluded from further eval-
uation. GPU-accelerated optimization for CPU-bound frameworks
remains planned as future work.

DALI provides GPU-accelerated preprocessing capabilities. The
numerical indicators 224, 96, and 32 represent output resolutions
(e.g., 3×224×224), where larger dimensions require more intensive
transformations. Since image loading and decoding costs remain
constant, smaller output images (e.g., DALI 32) achieve faster pre-
processing speeds. As transformation complexity dominates at higher
resolutions (DALI 96, 224), performance differences across datasets
converge. On the A100, Fruits-360 presents an anomalous outlier
pattern that remains under investigation.

4.3 End-to-End Performance
End-to-end performance provides a comprehensive evaluation of
overall system capability, as illustrated in Fig. 8.

On the A100 platform, larger models such as ViT-Base and ViT-
Small benefit from effective preprocessing-inference latency over-
lap, achieving performance approaching the model engine’s theo-
retical upper bound. Conversely, smallermodels remain preprocessing-
bottlenecked, particularly on platforms with limited preprocessing
capabilities like the V100.

The resource-constrained Jetson platform exhibits inverted per-
formance dynamics. Combined memory consumption from pre-
processing and inference constrains the model engine’s available

batch size, which subsequently restricts concurrent request han-
dling and further degrades performance. ViT-Base, possessing the
highest memory requirements, demonstrates the most severe per-
formance degradation, while remaining models exhibit compara-
ble performance reductions.

5 Conclusion
The proliferation of AI has empowered diverse digital agriculture
applications, enhancing agricultural productivity in unprecedented
ways. However, traditional AI training paradigms often overlook
the highly variable deployment scenarios typical in agriculture,
where models must be fine-tuned on farm-specific datasets and de-
ployed across heterogeneous platforms.

This paper evaluates representative CNNandTransformer-based
models across various sizes and datasets, deployed on both cloud
and edge platforms. Through comprehensive performance charac-
terization, we provide multi-level guidance—from model selection
to end-to-end pipeline optimization—tailored to agricultural AI re-
quirements.

Our analysis reveals a fundamental trade-off between through-
put and batch size, forming a performance roofline constrained
by either compute saturation or memory exhaustion. For smaller
models, moderate batch sizes often suffice to utilize most platform
capability and meet inference requirements. Beyond this thresh-
old, increasing batch size yields diminishing returns, makingmulti-
instance strategies more effective for improving responsiveness.

For high-resolution datasets, preprocessing operations (perspec-
tive transform, resizing, normalization) can become performance
bottlenecks, particularly on resource-constrained edge platforms.
GPU-accelerated preprocessing frameworks likeNVIDIADALI demon-
strate significant speedups over traditional CPU-based pipelines,
substantially enhancing system responsiveness.

Our characterization underscores the necessity of optimizing
the specific dataset-model-platform combination for target appli-
cations, balancing latency requirementswith energy efficiency and
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Figure 8: End-To-End Pipeline Inference Latency AndThroughput For Different Datasets Across Platforms. Upper figure show
request latency, lower show throughput across differentmodel.The largest Batch Size before Out-of-memory (OOM) was used.

memory utilization. Futureworkwill develop comprehensive quan-
titative models for scalable performance prediction and provide
deployment toolkits that enable practitioners to establish perfor-
mance expectations before deployment, ultimately making digital
agriculture more accessible and widely applicable.
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