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Abstract

Parameter-efficient fine-tuning (PEFT) has attracted sig-

nificant attention due to the growth of pre-trained model

sizes and the need to fine-tune (FT) them for superior down-

stream performance. Despite a surge in new PEFT meth-

ods, a systematic study to understand their performance

and suitable application scenarios is lacking, leaving ques-

tions like “when to apply PEFT” and “which method to

use” largely unanswered, especially in visual recognition.

In this paper, we conduct a unifying empirical study of rep-

resentative PEFT methods with Vision Transformers. We

systematically tune their hyperparameters to fairly compare

their accuracy on downstream tasks. Our study offers a

practical user guide and unveils several new insights. First,

if tuned carefully, different PEFT methods achieve similar

accuracy in the low-shot benchmark VTAB-1K. This includes

simple approaches like FT the bias terms that were reported

inferior. Second, despite similar accuracy, we find that PEFT

methods make different mistakes and high-confidence predic-

tions, likely due to their different inductive biases. Such an

inconsistency (or complementarity) opens up the opportunity

for ensemble methods, and we make preliminary attempts

at this. Third, going beyond the commonly used low-shot

tasks, we find that PEFT is also useful in many-shot regimes,

achieving comparable or better accuracy than full FT while

using significantly fewer parameters. Lastly, we investigate

PEFT’s ability to preserve a pre-trained model’s robustness

to distribution shifts (e.g., CLIP). Perhaps not surprisingly,

PEFT approaches outperform full FT alone. However, with

weight-space ensembles, full FT can better balance target

distribution and distribution shift performance, suggesting a

future research direction for robust PEFT1.

1. Introduction

Pre-training and then fine-tuning (FT) has become the stan-

dard practice to tackle visual recognition problems [9]. The

1https://github.com/OSU-MLB/ViT_PEFT_Vision.

community-wide enthusiasm for open-sourcing has made it

possible to access large, powerful pre-trained models learned

from a gigantic amount of data, e.g., ImageNet-21K [79]

or LAION-5B [81]. More research focus has thus been on

how to FT such large models [101]. Among existing efforts,

parameter-efficient transfer learning (PEFT), has attracted

increasing attention lately [17, 28]. Instead of FT the whole

model (i.e., full FT) or the last fully connected layer (i.e.,

linear probing), PEFT approaches seek to update or insert

a relatively small number of parameters to the pre-trained

model [99]. Doing so has several noticeable advantages.

First, as named, PEFT is parameter-efficient. For one down-

stream task (e.g., recognizing bird species or car brands), it

only needs to learn and store a tiny fraction of parameters on

top of the pre-trained model. Second, accuracy-wise, PEFT

has been shown to consistently outperform linear probing

and often beat full FT, as reported on the commonly used

low-shot image classification benchmark VTAB-1K [104].

To date, a plethora of PEFT approaches have been pro-

posed, bringing in inspiring ideas and promising results.

Along with this come several excellent surveys that sum-

marize existing PEFT approaches [17, 99, 101]. Yet, a sys-

tematic understanding of the PEFT paradigm seems still

missing. For example, with so many PEFT approaches, there

is a lack of unifying references for when and how to apply

them. Though superior accuracy was reported on the low-

shot benchmark VTAB-1K, there is not much discussion on

how PEFT approaches achieve it. Does it result from PEFT’s

ability to promote transferability or prevent over-fitting? The

current evaluation also raises the question of whether PEFT

is useful beyond a low-shot scenario. Last but not least, be-

sides superior accuracy, do existing PEFT approaches offer

different, ideally, complementary information?

Attempting to answer these questions, we conduct a

unifying empirical study of representative PEFT methods

for Vision Transformers [19], including Low-Rank Adap-

tation (LoRA) [37], Visual Prompt Tuning (VPT) [42],

Adapter [36], and ten other approaches. We systematically

tune their hyperparameters to fairly compare their accu-

racy on the low-shot benchmark VTAB-1K. This includes
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14845



(a) Accuracy gain vs. linear probing on VTAB-1K (19 tasks) (b) Prediction overlaps (5K most confident) (c) Target distribution vs. distribution shifts

Figure 1. Highlights of our insights. (a) Downstream accuracy: with proper implementation and fair tuning, different PEFT methods

achieve similar accuracy (•-•: the range from the most to the least accurate methods) and consistently outperform linear probing (×) and full

FT (') on VTAB-1K. (b) Diverse predictions: despite reaching similar downstream performance, different PEFT methods produce diverse

predictions. This opens new opportunities for ensemble approaches and other learning paradigms (e.g. semi-supervised learning) that can

exploit the prediction discrepancies. (c) Distribution shift accuracy: FT a CLIP ViT-B/16, known for its generalizability across domains,

with PEFT on ImageNet-1K (100 samples/class) better preserves the distribution shift accuracy (Y-axis, averaged across ImageNet-(V2, S,

R, A) than full FT, evidenced by the ? points. Interestingly, weight-space ensembles (WiSE) [96] is applicable between PEFT’s FT model

and the pre-trained model ('), but not as effective as applying it to the fully FT model. Details are in section 3, section 4 and section 7.

learning rate, weight decay, and method-specific parame-

ters like the PEFT module sizes. Besides VTAB-1K, we

examine PEFT methods on full-size downstream datasets

such as CIFAR-100 [49], RESISC for remote sensing [12],

and Clevr-Distance for depth classification [45, 104]. We

also conduct a study on ImageNet [15] and its variants with

domain shifts [25, 34, 35, 78] for robustness evaluation.

We summarize our key findings and analyses as follows:

Representative PEFT methods perform similarly on

VTAB-1K, when properly implemented and tuned (Fig-

ure 1a). This includes methods previously considered less ef-

fective, such as BitFit [103], which FT only the bias terms of

the frozen backbone. Methods originally proposed for NLP,

like Adapter [36] and LoRA [37] also exhibit impressive

performance when their bottleneck dimensions are carefully

tuned. Among all the hyperparameters, we find the drop path

rate [38] particularly important. Ignoring it (i.e., setting it to

0) significantly degrades the performance, potentially due to

over-fitting. Overall, PEFT methods consistently outperform

linear probing and full FT on all 19 image classification tasks

(with 1, 000 training samples) in VTAB-1K.

While similarly accurate on average, PEFT approaches

make different predictions (Figure 1b). The above finding

seems daunting: if existing PEFT approaches all perform

similarly in terms of accuracy, do we learn anything useful

beyond a single approach? This is particularly worrisome

given that they FT the same backbone using the same down-

stream data. Fortunately, our analysis shows that different

PEFT methods learn differently from the same data, result-

ing in diverse prediction errors and confidence. We attribute

this to their inductive bias differences [70] — they explic-

itly specify different parameters to be updated or inserted.

This opens up the door to leverage their discrepancy for

improvement, e.g., through ensemble methods [16, 110] or

co-training [6, 8] and we provide preliminary studies.

PEFT is also effective in many-shot regimes. We extend

PEFT beyond low-shot regime and find it effective even

with ample downstream training data — PEFT can be on

par or surpass full FT. This suggests that adjusting only a

fraction of parameters in a suitably pre-trained backbone

(e.g., pre-trained on ImageNet-21K [19]) could already offer

a sufficient capacity [105] to reach a performant hypothesis

for downstream tasks.

PEFT appears more robust than full FT to distribution

shifts, but WiSE overturns this advantage (Figure 1c). We

also assess PEFT’s robustness to distribution shifts, follow-

ing [96]. We consider a CLIP backbone [75], known for its

superior generalizability to distribution shifts, and FT it with

PEFT on ImageNet-1K. We found that PEFT retains CLIP’s

generalizability (e.g., to samples from ImageNet-(V2, S, R,

A)) better than full FT. This may not be surprising. What

is interesting is that the weight-space ensembles (WiSE) be-

tween the FT and pre-trained models [96] is compatible with

PEFT as well to further improve the robustness without sac-

rificing the target accuracy. To the best of our knowledge, we

are the first to explore WiSE for PEFT. Nevertheless, full FT

with WiSE can achieve even higher accuracy in both down-

stream and distribution shift data than PEFT, suggesting a

further research direction in robust PEFT.

What lead to PEFT’s success? We attempt to answer this

fundamental question by analyzing the findings in our study.

On VTAB-1K with 19 tasks, we identify two scenarios: (1)

in certain tasks, full FT outperforms linear probing, sug-

gesting the need to update the backbone; (2) in other tasks,

linear probing outperforms full FT, suggesting either the

backbone is good enough or updating it risks over-fitting.

14846



The superior accuracy of PEFT in both scenarios suggests

that PEFT acts as an effective regularizer during low-shot

training. Still using VTAB but with ample training data,

we find that for scenario (1) tasks, PEFT performs similarly

with full FT, suggesting that its regularization role does not

impede model learning from abundant data. For scenario

(2) tasks, PEFT can surprisingly still outperform full FT,

indicating that it effectively transfers (or preserves) crucial

pre-trained knowledge that full FT may discard. Overall,

PEFT succeeds as a high-capacity learner equipped with

an effective regularizer.

Contributions. Instead of chasing the leaderboard, we sys-

tematically scrutinize existing methods via a unifying study.

Our contribution is thus not a technical novelty, but: (1) a

systematic framework for reproducible evaluations of PEFT

methods; (2) a set of empirical recommendations on when

and how to use PEFT methods for practitioners (section 3,

section 5); (3) new insights for future research including

leveraging PEFT’s prediction differences (section 4) and

exploring robust fine-tuning (section 7).

2. Background

2.1. Large pre-trained models

Building upon networks with millions (or billions) of pa-

rameters and massive training data, large pre-trained models

have led to groundbreaking results in various downstream

tasks [56, 69] and shown emerging capabilities not observed

previously [9, 47, 53]. For example, a Vision Transformer

(ViT) [19] trained with ImageNet-21K (14M images) leads

to consistent gains v.s. a ViT trained with ImageNet-1K

(1.3M images) [19]. ViTs pre-trained with millions of image-

text pairs via a contrastive objective function (e.g., CLIP-

ViT) [13, 75] show an unprecedented zero-shot capability

and robustness to distribution shifts [75]. We focus on the

ImageNet-21K-ViT and CLIP-ViT in this paper.

Vision Transformer (ViT). A ViT contains M Transformer

layers consisting of a multi-head self-attention (MSA) block,

a multi-level perceptron (MLP) block, two Layer Normal-

ization (LN) blocks [4], and two residual links. The m-th

Transformer layer can be formulated as

Z 0

m = MSA(LN (Zm�1)) +Zm�1, (1)

Zm = MLP (LN (Z 0

m)) +Z 0

m, (2)

where Zm�1 is the output of the preceding (m�1)-th Trans-

former layer. Without loss of generality, let us consider a

single-head MSA where the input Z is first projected into

three matrices, Q, K, and V . The output of this block is

then formulated as:

Q = WQZ, K = WKZ, V = WV Z, (3)

V å Softmax(
K>Qp

D
). (4)

2.2. Parameter-Efficient Fine-Tuning (PEFT)

Fine-tuning is arguably the most common way to tailor a

pre-trained model for downstream tasks [89, 96, 111]. As

the size of pre-trained models gets larger, updating and stor-

ing all the parameters for one downstream task becomes

inefficient. PEFT has thus emerged as a promising paradigm.

PEFT was originally developed in NLP [3, 29, 33, 51, 58, 68,

83, 84, 91, 103, 109] and has attracted increasing attention

in vision [11, 42, 43, 55, 59, 107]. Existing approaches can

generally be categorized into four groups: prompt-based,

adapter-based, direct selective tuning, and efficient selec-

tive tuning. We focus on visual recognition and compare

representative PEFT approaches applicable to ViTs.

Prompt-based. Prompt-based method emerged in NLP [54,

57] whose core concept is augmenting the input data with

task-specific prompts. Visual Prompt Tuning (VPT) [42]

adapts such an idea to ViTs. Its deep version (VPT-Deep)

prepends a set of soft prompts to the input tokens of each

Transformer layer (i.e., {Zm}M�1

m=0
) and only optimizes the

prompts during FT. Other representative works in this cate-

gory include [5, 27, 87, 88, 94, 102].

Adapter-based. They typically introduce additional train-

able parameters to a frozen pre-trained model [54]. Ini-

tially developed for domain adaptation [76, 77] and con-

tinual learning [66, 80], they have been extended to adapt

Transformer-based models in NLP and vision [36, 59, 99,

102, 108]. We consider five popular methods. As the first

adapter-based method, Houl. Adapter [36] inserts two

Adapters (a two-layer bottleneck-structured MLP with a

residual link) into each Transformer layer, one after the MSA

block and one after the MLP block. Pfeif. Adapter [74] in-

serts the Adapter solely after the MLP block, shown effective

in recent studies [37]. AdaptFormer [11] adds an Adapter

in parallel with the original MLP block, different from the

sequential design of previous methods. ConvPass [43] in-

serts a convolutional-based Adapter that explicitly encodes

visual inductive biases by performing 2D convolution over

nearby patch tokens. This module is inserted parallel to the

MSA and MLP blocks. RepAdapter [63] introduces lin-

ear Adapters with group-wise transformations [62], placed

sequentially after MSA and MLP.

Direct selective tuning. They selectively update a subset

of parameters of the backbone, striking a balance between

full FT and linear probing. We consider three approaches.

BitFit [103] updates the bias terms, including those in the

patch embeddings projection, the Q/K/V weights, the MLP

and LN blocks. LayerNorm [7] updates the parameters of

the LN blocks. DiffFit [97] updates both the bias terms

and the LN blocks and inserts learnable factors to scale the

features after the MSA and the MLP blocks. Instead of

updating parameters, SSF [55] linearly adapts intermediate

features, motivated by feature modulation [39].

Efficient selective tuning. Instead of directly updating pa-
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Linear 78.1 86.6 65.7 98.9 89.3 41.5 53.2 72.5 83.1 90.0 74.9 74.6 80.6 37.5 35.1 36.5 64.6 16.2 29.4 17.3 23.7 32.5 61.9 0

Full 62.4 89.9 61.9 97.4 85.8 88.9 36.8 76.7 81.6 88.1 81.6 73.6 81.2 56.2 60.9 48.2 77.9 68.5 46.6 31.0 28.3 52.2 70.0 85.8

VPT-Shallow 80.2 88.7 67.9 99.1 89.6 77.0 54.2 79.4 81.8 90.3 77.2 74.4 80.9 42.2 52.4 38 66.5 52.4 43.1 15.2 23.2 41.6 67.3 0.07

VPT-Deep 84.8 91.5 69.4 99.1 91.0 85.6 54.7 81.8 86.4 94.9 84.2 73.9 84.9 79.3 62.4 48.5 77.9 80.3 56.4 33.2 43.8 60.2 75.6 0.43

BitFit 86.5 90.5 70.3 98.9 91.0 91.2 54.2 82.6 86.7 95.0 85.3 75.5 85.6 77.2 63.2 51.2 79.2 78.6 53.9 30.1 34.7 58.5 75.6 0.1

DiffFit 86.3 90.2 71.2 99.2 91.7 91.2 56.1 83.2 85.8 94.1 80.9 75.2 84.0 80.1 63.4 50.9 81.0 77.8 52.8 30.7 35.5 59.0 75.4 0.14

LayerNorm 86.0 89.7 72.2 99.1 91.4 90.0 56.1 83.0 84.7 93.8 83.0 75.2 84.2 77.5 62.2 49.9 78.1 78.0 52.1 24.3 34.4 57.1 74.7 0.04

SSF 86.6 89.8 68.8 99.1 91.4 91.2 56.5 82.8 86.1 94.5 83.2 74.8 84.7 80.1 63.6 53.0 81.4 85.6 52.1 31.9 37.2 60.6 76.0 0.21

Pfeif. Adapter 86.3 91.5 72.1 99.2 91.4 88.5 55.7 83.0 86.2 95.5 85.3 76.2 85.8 83.1 65.2 51.4 80.2 83.3 56.6 33.8 41.1 61.8 76.9 0.67

Houl. Adapter 84.3 92.1 72.3 98 91.7 90.0 55.4 83.2 88.7 95.3 86.5 75.2 86.4 82.9 63.6 53.8 79.6 84.4 54.3 34.2 44.3 62.1 77.2 0.77

AdaptFormer 85.8 91.8 70.5 99.2 91.8 89.4 56.7 83.2 86.8 95.0 86.5 76.3 86.2 82.9 64.1 52.8 80.0 84.7 53.0 33.0 41.4 61.5 76.9 0.46

RepAdapter 86.0 92.5 69.1 99.1 90.9 90.9 55.4 82.9 86.9 95.3 86.0 75.4 85.9 82.5 63.5 51.4 80.2 85.4 52.1 35.7 41.7 61.6 76.8 0.53

Convpass 85.0 92.1 72.0 99.3 91.3 90.8 55.9 83.5 87.7 95.8 85.9 75.9 86.3 82.3 65.2 53.8 78.1 86.5 55.3 38.6 45.1 63.1 77.6 0.49

LoRA 85.7 92.6 69.8 99.1 90.5 88.5 55.5 82.6 87.5 94.9 85.9 75.7 86.0 82.9 63.9 51.8 79.9 86.6 47.2 33.4 42.5 61.0 76.5 0.55

FacT_TT 85.8 91.8 71.5 99.3 91.1 90.8 55.9 83.4 87.7 94.9 85.0 75.6 85.8 83.0 64.0 49.0 79.3 85.8 53.1 32.8 43.7 61.3 76.8 0.13

FacT_TK 86.2 92.5 71.8 99.1 90.1 91.2 56.2 83.4 85.8 95.5 86.0 75.7 85.8 82.7 65.1 51.5 78.9 86.7 53.1 27.8 40.8 60.8 76.6 0.23

Relative Std Dev 0.81 1.13 1.78 0.34 0.54 1.82 1.24 0.54 1.20 0.59 1.95 0.83 0.94 2.67 1.50 3.22 1.37 4.11 4.46 11.02 9.30 2.70 1.09 -

Table 1. PEFT methods performances on VTAB-1K (19 tasks from 3 groups) by TOP-1 ACCURACY. Based on the results across PEFT,

linear probing, and full FT, we identify two task groups (purple and orange), as discussed in section 6.

rameters, these methods learns additive residuals (e.g., ∆W )

to the original parameters (e.g., W ). By injecting a low-rank

constraint to the residuals, this category effectively reduces

the learnable parameters. LoRA [37], arguably the most

well-known approach, parameterizes the residuals by low-

rank decomposition to update the weights. Concretely, to

update a W 2 R
DåD matrix, LoRA learns Wdown 2 R

råD

and Wup 2 R
Dår with r ' D, and forms the additive resid-

ual by ∆W = WupWdown 2 R
DåD. FacT [44] extends

the idea of matrix decomposition into tensor decomposition.

It stacks the DåD learnable matrices in all the Transformer

layers into a 3D tensor and learns an additive residual pa-

rameterized by Tensor-Train (TT) [72] and Tucker (TK) [14]

formulations. More detailed summary of ViT and a survey

of PEFT methods can be found in Appendix B.

2.3. Related work and comparison

The community-wide enthusiasm for PEFT has led to multi-

ple survey articles [28, 99, 101]. Meanwhile, several empiri-

cal and theoretical studies were presented, mostly based on

NLP tasks, attempting to provide a holistic understanding.

[29, 67] provided unified views to methodologically connect

PEFT methods. [10, 17, 31] and [32, 98] empirically com-

pared PEFT methods on NLP and vision tasks, respectively,

while [22] offered a theoretical stability and generalization

analysis. Accuracy-wise, [10, 17, 31] found that PEFT is

robust to over-fitting and quite effective in NLP tasks un-

der low-data regimes. This is, however, not the case for

vision tasks: [32] showed that representative PEFT methods

like LoRA and Adapter can’t consistently outperform either

full FT or linear probing. In terms of why PEFT works,

[22] framed PEFT as sparse fine-tuning and showed that it

imposes a regularization by controlling stability; [17, 32]

framed PEFT as (subspace) optimization; [17] further dis-

cussed the theoretical principle inspired by optimal control.

Our study strengthens and complements the above studies

and offers new insights. First, we compared over ten PEFT

methods and carefully tuned the hyperparameters, aiming

to accurately assess each method’s performance. This is

particularly crucial for the vision community, where com-

prehensive references are still limited, and simpler methods

like BitFit have often been deemed inferior, while other ap-

proaches have shown discrepancies compared to NLP studies.

Second, we go beyond a competition perspective to investi-

gate a complementary perspective of PEFT approaches. We

show that different PEFT approaches offer effective base

learners for model ensembles. Third, we go beyond down-

stream accuracy to investigate PEFT’s effectiveness in main-

taining out-of-distribution robustness. Finally, we analyze

both low-shot and many-shot settings, revealing distinct pat-

terns among PEFT, full FT, and linear probing, extending

the understanding of PEFT.

3. PEFT Methods in Low-Shots Regime

Pre-trained models are meant to ease downstream appli-

cations. One representative scenario is low-shot learning:

supervised FT of the pre-trained model with a small number

of samples per class. Indeed, low-shot learning has been

widely used to evaluate PEFT performance.

Dataset. VTAB-1K [104] consists of 19 classification tasks

from three groups. Natural comprises natural images cap-

tured with standard cameras. Specialized contains images

captured by specialist equipment for remote sensing and

medical purposes. Structured evaluates scene structure

comprehension, including object counting and depth esti-

mation. Following [104], we split the 1000 training image
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Figure 2. Ranking frequency of 15 methods (14 PEFT + linear probing) for three groups in VTAB-1K. Element (i, j) is the number of

times method i ranks jth in each group. Methods are ordered by mean ranks (in brackets). The parameters column shows the # of trainable

parameters in millions. More details are in Appendix C.

80/20 for hyperparameter tuning. The reported TOP-1 AC-

CURACY is obtained after training over the 1000 images and

evaluating on the original test set.

Methods. We consider linear probing, full FT, and 14 PEFT

methods: 2 prompt-based [42], 5 adapter-based [11, 36, 43,

63, 74], 4 direct selective [7, 55, 97, 103], and 3 efficient

selective [37, 44]. Please refer to subsection 2.2 and Ap-

pendix B for details.

Setup. We employ the ViT-B/16 [19] pre-trained on

ImageNet-21K [15] as the backbone. The prediction head is

randomly initialized for each dataset. We systematically tune

1) learning rate, 2) weight decay, and 3) method-specifics

like the PEFT parameter sizes, which are often left intact in

previous studies. We set a cap for PEFT size ÿ 1.5% of ViT-

B/16. We also turn the drop path rate [38] on (0.1) or off (0).

A detailed experiment setup is provided in Appendix A, and

more experiment results, including DINOv2 [71] and larger

backbones (ViT-L and ViT-H), are provided in Appendix C.

Results. As shown in Figure 1a and Table 1, PEFT meth-

ods generally outperform both linear probing and full FT

across datasets. Additionally, with proper implementation

and fair hyperparameter tuning, we surprisingly found that

most PEFT methods perform similarly as the relative stan-

dard deviations (divided by the means) in all three groups

are quite low. Simple methods (e.g., Bitfit) and PEFT meth-

ods originally proposed for NLP (e.g., LoRA and Adapter),

which were previously reported as inferior due to unopti-

mized implementations and hyperparameter tuning, now

demonstrate competitive performance with SOTA visual

PEFT methods. To understand the relative advantages of

different approaches, we provide the ranking frequency of

PEFT methods across different groups in Figure 2, where

the element (i, j) in each ranking matrix represents the fre-

quency that method i ranks jth in each group. Methods are

ordered by their mean ranks (in brackets), and the param-

eters column indicates the number of trainable parameters

in millions. In natural group, simpler methods with fewer

trainable parameters—such as DiffFit and Fact-TT—offer a

cost-effective solution without compromising performance.

Conversely, in specialized and structured groups, methods

with more parameters generally yield better performance.

We hypothesize that this performance discrepancy arises

from the domain similarity between the pre-trained domain

(ImageNet) and the downstream domains. The natural group,

sharing a stronger affinity with ImageNet, allows simpler

methods like BitFit to adjust the features effectively. In con-

trast, the specialized and structured groups necessitate more

complex methods with more trainable parameters to bridge

the domain gap.

Recipes. In low-shot regimes, when the downstream data are

similar to the pre-trained data, simple methods (e.g., DiffFit)

offer solid accuracy with fewer parameters. Conversely, if

there is a substantial domain gap, more complex methods

with more parameters often achieve higher accuracy. Since

low-shot training is especially prone to over-fitting, we rec-

ommend activating a nonzero drop path rate—commonly set

to zero by default—that stochastically drops a Transformer

block per sample [38]. All methods can benefit from such a

randomization-based regularization, as shown in Figure 11

in the Appendix.

4. Different PEFT Approaches Offer Comple-

mentary Information

The previous section demonstrates that all PEFT methods

perform similarly across various domains. Given that dif-

ferent PEFT methods are trained on the same downstream

data using the same backbone and achieve comparable accu-

racy, one might expect them to learn similar knowledge from

the data, resulting in similar predictions. Contrary to this

expectation, our findings below reveal that different PEFT

methods acquire distinct and complementary knowledge

from the same downstream data, even when built upon the

same backbone, leading to diverse predictions.

We start by analyzing their prediction similarity on the

same dataset in VTAB-1K. It is expected that their predic-

tions are similar for datasets with very high accuracy, such

as Flowers102 (avg 99.1%) and Caltech101 (avg 91.4%).

Beyond them, we find that most PEFT methods show di-

verse predictions in other datasets in VTAB-1K. Figure 3a

shows the prediction similarities between 14 PEFT methods
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(a) (b)

Figure 3. (a) Prediction similarity analysis: element (i, j) shows the percentage of samples that method i and j predict the same. Although

different methods achieve similar accuracy, they have diverse predictions. (b)The wrong prediction overlaps of LoRA, Adapter, and SSF for

the 5K least confident data. Correct prediction overlaps for the 5K most confident data are shown in Figure 1b. They are FT on CIFAR100

(VTAB-1K). More results for (a) and (b) are in Appendix C.

Figure 4. Ensemble (majority vote) shows consistent gain on most

datasets thanks to the diverse predictions.

in DTD, Retinopathy, and DMLab, which belong to natural,

specialized, and structured groups, respectively. In DTD

and Retinopathy, most methods differ in about 20% of their

predictions, while in DMLab, this difference increases to

approximately 35%, even though they achieve similar ac-

curacies. This prediction diversity may be attributed to the

different inductive biases [70] of PEFT methods — they

explicitly select specific parameters to update or insert dif-

ferent modules at various locations within the model. More

analyses and details are offered in Appendix C.

Such diverse predictions across methods open up the pos-

sibility of leveraging their heterogeneity for further improve-

ment. The most straightforward approach is ensemble [26],

e.g., majority vote over methods. Figure 4 demonstrates the

ensemble performance gain over all the PEFT methods in

each dataset, where we use the worst PEFT method as the

baseline. Thanks to the diverse predictions across methods,

the ensemble can provide consistent gain.

Also, we analyze if PEFT methods make similar cor-

rect predictions for high-confidence samples and similar

mistakes for low-confidence samples. Figure 1b and Fig-

ure 3b show the correct prediction overlap for the 5K most

confident samples (per method) and the wrong prediction

overlap for the 5K least confident samples (per method). For

demonstration purposes, we select one method from each

PEFT category (LoRA, Adapter, SSF) and they are FT on

CIFAR-100 in VTAB-1K. Methods within the same cate-

gory also show diverse predictions (Appendix C). Since they

make different predictions in both high and low-confidence

regimes, this paves the way for new possibilities of using

different PEFT methods to generate diverse pseudo-labels

for semi-supervised learning [23, 24, 100], domain adap-

tation [20, 21, 86], and continual learning [60, 64–66, 82].

For example, in semi-supervised learning, we can FT differ-

ent PEFT methods on the labeled data to generate diverse

and accurate pseudo-labels by selecting highly confident

predictions from each PEFT method.

5. PEFT Methods in Many-Shot Regime

Recent works in NLP [10] have indicated that PEFT methods

may not perform as competitively as full FT when data is

abundant. We thus aim to investigate PEFT’s performance

in many-shot regimes by addressing the following questions:

(1) Should we use PEFT or full FT when data is sufficient?

(2) How should we adjust the number of trainable parame-

ters for PEFT methods in many-shot regimes?

Dataset. We select one representative dataset from each

group in VTAB: (1) CIFAR-100 [49], a natural image dataset

comprising 50K training images across 100 classes; (2) RE-

SISC [12], a remote sensing dataset for scene classification

with 25.2K training samples across 45 classes; and (3) Clevr-

Distance [45, 104], a synthetic image dataset for predicting

the depth of the closest object with 6 depth classes and 70K

samples. The reported results are obtained by training on the

full training set and evaluating on the original test set.

Setup. The model setup mostly follows the VTAB-1K exper-

iment. More details about setup and hyperparameter search

are provided in Appendix A.

Results. In many-shot regimes, with sufficient downstream

data, full FT may catch up and eventually outperform PEFT

methods. However, from Figure 5, we found that even in

many-shot regimes, PEFT can achieve comparable results

with full FT, even just using 2% of fine-tuning parameters.

The performance gain, however, quickly diminishes and
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Figure 5. PEFT accuracy in many-shot regimes, with different parameter sizes (X-axis) on three datasets from different domains. Even

2%-5% trainable parameters allow the models to have sufficient capacity to learn from full data. Details are in Appendix C).

plateaus after 5% of tunable parameters. By comparing

the results on the domain-close CIFAR-100 and domain-

different RESISC and Clevr, we have some further obser-

vations. Downstream tasks with larger domain gaps often

require updating more parameters to achieve high accuracy.

With sufficient downstream data, full FT is less prone to

over-fitting and, indeed, attains a high accuracy. But in-

terestingly, PEFT methods, with only 2%á5% of tunable

parameters, achieve similar accuracy, suggesting that its de-

sign principle does offer sufficient effective capacity for

the model to learn [105]. Downstream tasks with smaller

domain gaps suggest that the pre-trained model had learned

sufficient knowledge about them; full FT thus risks washing

such knowledge away. In fact, we found that PEFT notably

outperforms full FT on CIFAR-100, suggesting it as a more

robust transfer learning algorithm for downstream tasks.

Recipes. In many-shot regimes, PEFT methods with suffi-

cient parameters (2á5%) appear more favorable than full FT

and linear probing. On the one hand, they achieve compara-

ble and even better accuracy than full FT. On the other hand,

the tunable parameters remain manageable. The parameter

efficiency of PEFT also often implies less training GPU

memory usage and training time, making PEFT methods

a favorable alternative in many-shot regimes. For a down-

stream domain that is close to the pre-training domain, PEFT

shows much pronounced transferability. For a downstream

domain that is quite different, the limited tunable parameters

(controversially, 2á5% already amount to a few million)

already allow the model to learn sufficiently.

6. Why Do PEFT Methods Work?2

Putting together section 3 and section 5, we identify two

distinct patterns regarding the performance among linear

probing, full FT, and PEFT. Within 19 VTAB-1K tasks, we

see: (1) Full FT outperforms linear probing. As linear prob-

2Our intention is not to offer a definitive explanation about why PEFT

works. As discussed in subsection 2.3, there is no broadly accepted theory

for PEFT’s success. We hope our empirical findings can support the ongoing

efforts to uncover the fundamental principles behind PEFT.

ing reflects the pre-trained feature quality for downstream

tasks, case (1) suggests the necessity to update the backbone

to close the gap between pre-trained and downstream do-

mains. (2) Linear probing surpasses full FT, suggesting the

pre-trained features are good enough (at least in a low-shot

scenario). Recklessly updating them may risk over-fitting.

Figure 6 (a-b) summarizes the low-shot accuracy comparison

based on the categorization above; each line corresponds to

one task. Linear probing, PEFT, and full FT are located in or-

der, from left to right, to reflect their tunable parameter sizes.

PEFT’s superiority in both cases showcases its capacity to

learn and its regularization role to prevent over-fitting.

We also draw the many-shot accuracy in Figure 6 (c-d)

based on the same categorization: RESISC and Clevr in case

(1) , and CIFAR-100 in case (2) . In the many-shot setting,

full FT consistently outperforms linear probing, which seems

to suggest no more risk of over-fitting. However, on CIFAR-

100 (Figure 6 (d)), we again see a noticeable gap between

PEFT and full FT, just like in Figure 6 (b). Such a concave

shape reminds us of the long-standing under-fitting-over-

fitting curve, suggesting that even with sufficient downstream

data, full FT still risks over-fitting.

Considering PEFT’s comparable performance to full FT

on RESISC and Clevr with large domain gaps, we conclude

that PEFT succeeds as a high-capacity learner equipped

with an effective regularizer. The two roles trade-off well

such that PEFT can excel in both low- and high-similarity

domains under both low-shot and many-shot settings.

7. How Robust are PEFT Methods to Distribu-

tion Shifts?

Large pre-trained models such as CLIP [75] have demon-

strated unprecedented zero-shot accuracy across diverse data

distributions. However, recent studies [75, 96] have shown

that FT on downstream data, while significantly boosting

performance on the target distribution, often compromises

the model’s robustness to distribution shifts. Given that

PEFT only updates a limited number of parameters in the

model, we investigate whether PEFT can offer a more robust
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Full BitFit
Layer-

Norm

Houl.

Adapter

Adapt-

Former

Rep-

Adapter
Convpass LoRA FacT_TK

100-shot ImageNet 75.0 75.27 74.8 75.0 75.6 76.5 76.3 76.6 74.7

Avg. distribution shift Acc 42.5 55.4 (12.9)" 55.9 (13.4)" 56.9 (14.4)" 56.1 (13.6)" 56.2 (13.7)" 54.7 (12.2)" 55.9 (13.4)" 56.1 (13.6)"

Table 2. The “Avg. distribution shift Acc” denotes the average performance of ImageNet-(V2, S, R, A) evaluated on the CLIP model FT on

ImageNet. (↑) indicates the gain over full FT.

(a) (b)

(c) (d)

Figure 6. (a): VTAB-1K tasks in case (1), PEFT > full > linear.

(b) VTAB-1K tasks in case (2), PEFT > linear > full. (c) RESISC

& Clevr in case (1) with enough data, PEFT ≈ full > linear. (d)

CIFAR in case (2) with enough data, PEFT > full > linear. Within

each figure, left for linear, middle for PEFT, and right for full. More

details are in Appendix C.

alternative to full FT.

Dataset. We use 100-shot ImageNet-1K as our target dis-

tribution, with each class containing 100 images. Follow-

ing [96], we consider 4 natural distribution shifts from Ima-

geNet: ImageNet-V2 [78], a new ImageNet test set collected

with the original labeling protocol; ImageNet-R [34], ren-

ditions for 200 ImageNet classes; ImageNet-S [25], sketch

images for 1K ImageNet classes; ImageNet-A [35], a test

set of natural images misclassified by a ImageNet pre-trained

ResNet-50 [30] for 200 ImageNet classes.

Setup. We focus on the CLIP ViT-B/16 model, which com-

prises a visual encoder and a text encoder, pre-trained via

contrastive learning on image-text pairs. Following [96], we

add an FC layer as the head initialized using the class label

text embedded by the text encoder. Subsequently, we dis-

card the text encoder and apply PEFT methods to the visual

encoder, FT only the PEFT modules and the head. More

details about the CLIP model and experiment setup can be

found in Appendix A.

Results. As shown in Table 2, while some PEFT methods

may not surpass full fine-tuning on the target distribution,

they consistently demonstrate more robust performance on

distribution-shifted data. This robustness can be attributed

to PEFT updating only a small fraction of the parameters,

thereby preserving the robust features of the foundational

models. Given the similar target distribution performance,

should we blindly use PEFT methods for more robustness?

Weight-space ensembles (WiSE) for PEFT. WiSE [96],

which linearly interpolates the weights of a fully FT model

with those of the original backbone, is a popular approach

for boosting robustness. We explore whether WiSE can also

enhance the robustness of PEFT. To apply WiSE to PEFT, we

first linearly interpolate the prediction head with a mixing co-

efficient α. For direct selective tuning methods (e.g. BitFit),

this involves merging the PEFT-tuned parameters and the

original model. Since most Adapter-based methods include

residual connections (Appendix B.2.2), we can adjust their

impact by scaling the adapter modules with α. A similar

approach applies to efficient selective methods (e.g. LoRA)

as they learn additive residuals to the original parameters. To

the best of our knowledge, we are the first to study WiSE for

PEFT. As shown in Figure 1c (more results in Appendix C),

WiSE consistently improves both target and distribution shift

performances of PEFT methods. For Adapter-based meth-

ods, WiSE can be considered feature ensembles, where α

controls how strong the domain-specific features from the

adapter module blend with the domain-agnostic ones from

original backbones. For selective tuning, WiSE functions

similarly to its application in full FT—exploiting the fact that

the fine-tuned parameters remain near the original loss basin,

allowing an ensemble that captures the best of both [2, 40].

Interestingly, even though full FT is generally less robust

than PEFT methods, WiSE elevates full FT’s performance

above that of PEFT on both target distribution and distribu-

tion shift data, which suggests promising research directions

to investigate the underlying mechanism and how to further

improve the robustness of PEFT methods.

8. Conclusion

Instead of chasing the leaderboard, we conduct a unifying

empirical study of PEFT, an emerging topic in the large

model era. We provide an extendable framework for repro-

ducible evaluations of PEFT methods in computer vision.

We also have several new insights and implications, includ-

ing PEFT methods’ complementary expertise, suitable appli-

cation regimes, and robustness to domain shifts. We expect

our study to open new research directions and serve as a

valuable user guide in practice.
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