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Abstract

Parameter-efficient fine-tuning (PEFT) has attracted sig-
nificant attention due to the growth of pre-trained model
sizes and the need to fine-tune (FT) them for superior down-
stream performance. Despite a surge in new PEFT meth-
ods, a systematic study to understand their performance
and suitable application scenarios is lacking, leaving ques-
tions like “when to apply PEFT” and “which method to
use” largely unanswered, especially in visual recognition.
In this paper, we conduct a unifying empirical study of rep-
resentative PEFT methods with Vision Transformers. We
systematically tune their hyperparameters to fairly compare
their accuracy on downstream tasks. Our study offers a
practical user guide and unveils several new insights. First,
if tuned carefully, different PEFT methods achieve similar
accuracy in the low-shot benchmark VTAB-1K. This includes
simple approaches like FT the bias terms that were reported
inferior. Second, despite similar accuracy, we find that PEFT
methods make different mistakes and high-confidence predic-
tions, likely due to their different inductive biases. Such an
inconsistency (or complementarity) opens up the opportunity
for ensemble methods, and we make preliminary attempts
at this. Third, going beyond the commonly used low-shot
tasks, we find that PEFT is also useful in many-shot regimes,
achieving comparable or better accuracy than full FT while
using significantly fewer parameters. Lastly, we investigate
PEFT’s ability to preserve a pre-trained model’s robustness
to distribution shifts (e.g., CLIP). Perhaps not surprisingly,
PEFT approaches outperform full FT alone. However, with
weight-space ensembles, full FT can better balance target
distribution and distribution shift performance, suggesting a
future research direction for robust PEFT'.

1. Introduction

Pre-training and then fine-tuning (FT) has become the stan-
dard practice to tackle visual recognition problems [9]. The

lhttps ://github.com/0OSU-MLB/ViT_PEFT_Vision.

community-wide enthusiasm for open-sourcing has made it
possible to access large, powerful pre-trained models learned
from a gigantic amount of data, e.g., ImageNet-21K [79]
or LAION-5B [81]. More research focus has thus been on
how to FT such large models [101]. Among existing efforts,
parameter-efficient transfer learning (PEFT), has attracted
increasing attention lately [17, 28]. Instead of FT the whole
model (i.e., full FT) or the last fully connected layer (i.e.,
linear probing), PEFT approaches seek to update or insert
a relatively small number of parameters to the pre-trained
model [99]. Doing so has several noticeable advantages.
First, as named, PEFT is parameter-efficient. For one down-
stream task (e.g., recognizing bird species or car brands), it
only needs to learn and store a tiny fraction of parameters on
top of the pre-trained model. Second, accuracy-wise, PEFT
has been shown to consistently outperform linear probing
and often beat full FT, as reported on the commonly used
low-shot image classification benchmark VTAB-1K [104].

To date, a plethora of PEFT approaches have been pro-
posed, bringing in inspiring ideas and promising results.
Along with this come several excellent surveys that sum-
marize existing PEFT approaches [17, 99, 101]. Yet, a sys-
tematic understanding of the PEFT paradigm seems still
missing. For example, with so many PEFT approaches, there
is a lack of unifying references for when and how to apply
them. Though superior accuracy was reported on the low-
shot benchmark VTAB-1K, there is not much discussion on
how PEFT approaches achieve it. Does it result from PEFT’s
ability to promote transferability or prevent over-fitting? The
current evaluation also raises the question of whether PEFT
is useful beyond a low-shot scenario. Last but not least, be-
sides superior accuracy, do existing PEFT approaches offer
different, ideally, complementary information?

Attempting to answer these questions, we conduct a
unifying empirical study of representative PEFT methods
for Vision Transformers [19], including Low-Rank Adap-
tation (LoRA) [37], Visual Prompt Tuning (VPT) [42],
Adapter [36], and fen other approaches. We systematically
tune their hyperparameters to fairly compare their accu-
racy on the low-shot benchmark VTAB-1K. This includes
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(a) Accuracy gain vs. linear probing on VTAB-1K (19 tasks) (b) Prediction overlaps (5K most confident) (c) Target distribution vs. distribution shifts

Figure 1. Highlights of our insights. (a) Downstream accuracy: with proper implementation and fair tuning, different PEFT methods
achieve similar accuracy (e-e: the range from the most to the least accurate methods) and consistently outperform linear probing (x) and full
FT (M) on VTAB-1K. (b) Diverse predictions: despite reaching similar downstream performance, different PEFT methods produce diverse
predictions. This opens new opportunities for ensemble approaches and other learning paradigms (e.g. semi-supervised learning) that can
exploit the prediction discrepancies. (c¢) Distribution shift accuracy: FT a CLIP ViT-B/16, known for its generalizability across domains,
with PEFT on ImageNet-1K (100 samples/class) better preserves the distribution shift accuracy (Y-axis, averaged across ImageNet-(V2, S,

R, A) than

, evidenced by the % points. Interestingly, weight-space ensembles (WiSE) [96] is applicable between PEFT’s FT model

and the pre-trained model (M), but not as effective as applying it to the fully FT model. Details are in section 3, section 4 and section 7.

learning rate, weight decay, and method-specific parame-
ters like the PEFT module sizes. Besides VTAB-1K, we
examine PEFT methods on full-size downstream datasets
such as CIFAR-100 [49], RESISC for remote sensing [ 2],
and Clevr-Distance for depth classification [45, 104]. We
also conduct a study on ImageNet [15] and its variants with
domain shifts [25, 34, 35, 78] for robustness evaluation.

We summarize our key findings and analyses as follows:

Representative PEFT methods perform similarly on
VTAB-1K, when properly implemented and tuned (Fig-
ure la). This includes methods previously considered less ef-
fective, such as BitFit [103], which FT only the bias terms of
the frozen backbone. Methods originally proposed for NLP,
like Adapter [36] and LoRA [37] also exhibit impressive
performance when their bottleneck dimensions are carefully
tuned. Among all the hyperparameters, we find the drop path
rate [38] particularly important. Ignoring it (i.e., setting it to
0) significantly degrades the performance, potentially due to
over-fitting. Overall, PEFT methods consistently outperform
linear probing and full FT on all 19 image classification tasks
(with 1,000 training samples) in VTAB-1K.

While similarly accurate on average, PEFT approaches
make different predictions (Figure 1b). The above finding
seems daunting: if existing PEFT approaches all perform
similarly in terms of accuracy, do we learn anything useful
beyond a single approach? This is particularly worrisome
given that they FT the same backbone using the same down-
stream data. Fortunately, our analysis shows that different
PEFT methods learn differently from the same data, result-
ing in diverse prediction errors and confidence. We attribute
this to their inductive bias differences [70] — they explic-
itly specify different parameters to be updated or inserted.
This opens up the door to leverage their discrepancy for

improvement, e.g., through ensemble methods [16, 110] or
co-training [6, 8] and we provide preliminary studies.
PEFT is also effective in many-shot regimes. We extend
PEFT beyond low-shot regime and find it effective even
with ample downstream training data — PEFT can be on
par or surpass full FT. This suggests that adjusting only a
fraction of parameters in a suitably pre-trained backbone
(e.g., pre-trained on ImageNet-21K [19]) could already offer
a sufficient capacity [105] to reach a performant hypothesis
for downstream tasks.

PEFT appears more robust than full FT to distribution
shifts, but WiSE overturns this advantage (Figure 1c). We
also assess PEFT’s robustness to distribution shifts, follow-
ing [96]. We consider a CLIP backbone [75], known for its
superior generalizability to distribution shifts, and FT it with
PEFT on ImageNet-1K. We found that PEFT retains CLIP’s
generalizability (e.g., to samples from ImageNet-(V2, S, R,
A)) better than full FT. This may not be surprising. What
is interesting is that the weight-space ensembles (WiSE) be-
tween the FT and pre-trained models [96] is compatible with
PEFT as well to further improve the robustness without sac-
rificing the target accuracy. To the best of our knowledge, we
are the first to explore WiSE for PEFT. Nevertheless, full FT
with WiSE can achieve even higher accuracy in both down-
stream and distribution shift data than PEFT, suggesting a
further research direction in robust PEFT.

What lead to PEFT’s success? We attempt to answer this
fundamental question by analyzing the findings in our study.
On VTAB-1K with 19 tasks, we identify two scenarios: (1)
in certain tasks, full FT outperforms linear probing, sug-
gesting the need to update the backbone; (2) in other tasks,
linear probing outperforms full FT, suggesting either the
backbone is good enough or updating it risks over-fitting.
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The superior accuracy of PEFT in both scenarios suggests
that PEFT acts as an effective regularizer during low-shot
training. Still using VTAB but with ample training data,
we find that for scenario (1) tasks, PEFT performs similarly
with full FT, suggesting that its regularization role does not
impede model learning from abundant data. For scenario
(2) tasks, PEFT can surprisingly still outperform full FT,
indicating that it effectively transfers (or preserves) crucial
pre-trained knowledge that full FT may discard. Overall,
PEFT succeeds as a high-capacity learner equipped with
an effective regularizer.

Contributions. Instead of chasing the leaderboard, we sys-
tematically scrutinize existing methods via a unifying study.
Our contribution is thus not a technical novelty, but: (1) a
systematic framework for reproducible evaluations of PEFT
methods; (2) a set of empirical recommendations on when
and how to use PEFT methods for practitioners (section 3,
section 5); (3) new insights for future research including
leveraging PEFT’s prediction differences (section 4) and
exploring robust fine-tuning (section 7).

2. Background

2.1. Large pre-trained models

Building upon networks with millions (or billions) of pa-
rameters and massive training data, large pre-trained models
have led to groundbreaking results in various downstream
tasks [56, 69] and shown emerging capabilities not observed
previously [9, 47, 53]. For example, a Vision Transformer
(ViT) [19] trained with ImageNet-21K (14M images) leads
to consistent gains v.s. a ViT trained with ImageNet-1K
(1.3M images) [19]. ViTs pre-trained with millions of image-
text pairs via a contrastive objective function (e.g., CLIP-
ViT) [13, 75] show an unprecedented zero-shot capability
and robustness to distribution shifts [75]. We focus on the
ImageNet-21K-ViT and CLIP-ViT in this paper.

Vision Transformer (ViT). A ViT contains M Transformer
layers consisting of a multi-head self-attention (MSA) block,
a multi-level perceptron (MLP) block, two Layer Normal-
ization (LN) blocks [4], and two residual links. The m-th
Transformer layer can be formulated as

ey
(@)

Z! =MSA (LN (Zp-1)) + Zp_1,
Z,, =MLP (LN (Z.)) + Z.,,

where Z,,,_1 is the output of the preceding (m — 1)-th Trans-
former layer. Without loss of generality, let us consider a
single-head MSA where the input Z is first projected into
three matrices, Q, K, and V. The output of this block is
then formulated as:

Q=WyZ, K=WgZ, V=WyZ,
KTQ)
vD "

3
“

V' x Softmax(
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2.2. Parameter-Efficient Fine-Tuning (PEFT)

Fine-tuning is arguably the most common way to tailor a
pre-trained model for downstream tasks [89, 96, 111]. As
the size of pre-trained models gets larger, updating and stor-
ing all the parameters for one downstream task becomes
inefficient. PEFT has thus emerged as a promising paradigm.
PEFT was originally developed in NLP [3, 29, 33, 51, 58, 68,
83, 84,91, 103, 109] and has attracted increasing attention
in vision [11, 42, 43, 55, 59, 107]. Existing approaches can
generally be categorized into four groups: prompt-based,
adapter-based, direct selective tuning, and efficient selec-
tive tuning. We focus on visual recognition and compare
representative PEFT approaches applicable to ViTs.
Prompt-based. Prompt-based method emerged in NLP [54,
57] whose core concept is augmenting the input data with
task-specific prompts. Visual Prompt Tuning (VPT) [42]
adapts such an idea to ViTs. Its deep version (VPT-Deep)
prepends a set of soft prompts to the input tokens of each
Transformer layer (i.e., {Z,, %:—01) and only optimizes the
prompts during FT. Other representative works in this cate-
gory include [5, 27, 87, 88, 94, 102].

Adapter-based. They typically introduce additional train-
able parameters to a frozen pre-trained model [54]. Ini-
tially developed for domain adaptation [76, 77] and con-
tinual learning [66, 80], they have been extended to adapt
Transformer-based models in NLP and vision [36, 59, 99,
102, 108]. We consider five popular methods. As the first
adapter-based method, Houl. Adapter [36] inserts two
Adapters (a two-layer bottleneck-structured MLP with a
residual link) into each Transformer layer, one after the MSA
block and one after the MLP block. Pfeif. Adapter [74] in-
serts the Adapter solely after the MLP block, shown effective
in recent studies [37]. AdaptFormer [11] adds an Adapter
in parallel with the original MLP block, different from the
sequential design of previous methods. ConvPass [43] in-
serts a convolutional-based Adapter that explicitly encodes
visual inductive biases by performing 2D convolution over
nearby patch tokens. This module is inserted parallel to the
MSA and MLP blocks. RepAdapter [63] introduces lin-
ear Adapters with group-wise transformations [62], placed
sequentially after MSA and MLP.

Direct selective tuning. They selectively update a subset
of parameters of the backbone, striking a balance between
full FT and linear probing. We consider three approaches.
BitFit [103] updates the bias terms, including those in the
patch embeddings projection, the Q/K/V weights, the MLP
and LN blocks. LayerNorm [7] updates the parameters of
the LN blocks. DiffFit [97] updates both the bias terms
and the LN blocks and inserts learnable factors to scale the
features after the MSA and the MLP blocks. Instead of
updating parameters, SSF [55] linearly adapts intermediate
features, motivated by feature modulation [39].

Efficient selective tuning. Instead of directly updating pa-



Natural Specialized Structured
£ g
g B 8 z | E z s 2
=l =l 7 =

- = = 3 >} n S o = =) Q 3 B T = A
% 5 5 z 5 = = B |5 o B8 B 2 § 6 2 B =
L 128 @ 5 g @ @, 85| 8 S & £ | s = B & L |L ' g g | 2
| 5 2 s 1 8 g e Z = 1 8 3 3 S a a ] o | g b ]
8 B8 &8 £ 8 & 4|8 &4 @ 2 |0 @ BB g8 2 2 f£|&|6&
Method | = | = = = I = © =
Linear 78.1 866 657 989 893 415 532 1725|8301 900 749 7461 80.6 | 375 351 365 646 162 294 173 237 1325|619 | 0
Full 624 899 619 974 858 889 368 : 76.7 | 81.6 88.1 8l.6 73.6 : 812 | 562 609 482 779 685 466 31.0 283 : 5221700 | 85.8
VPT-Shallow 80.2 887 679 99.1 89.6 77.0 542 : 794 | 81.8 90.3 772 744 : 809 | 422 524 38 66.5 524 43.1 15.2 23.2 : 41.6 | 67.3 | 0.07
VPT-Deep 848 915 694 99.1 91.0 856 547 ! 81.8 | 864 949 842 739 1849|793 624 485 779 803 564 332 438 1602|756 | 043
BitFit 86.5 905 703 989 91.0 912 542 : 82.6 | 86.7 950 853 755 : 856 | 772 632 512 792 786 539 301 347 : 585 | 756 | 0.1
DiffFit 863 902 712 992 917 912 56.1 832|858 941 809 752,840 |80.1 634 509 810 778 528 307 355,590 ]| 754 0.14
LayerNorm 86.0 89.7 722 99.1 914 90.0 56.1 : 83.0 | 847 938 83.0 752 : 842 | 775 622 499 781 780 521 243 344 : 57.1 | 74.7 | 0.04
SSF 86.6 898 688 99.1 914 912 565 828 |86.1 945 832 748 847|801 636 530 814 856 521 319 372,606 | 760 | 0.21
Pfeif. Adapter 863 91.5 721 992 914 885 557 : 83.0 | 862 955 853 762 : 858 | 83.1 652 514 802 833 56.6 338 411 : 61.8 | 76.9 | 0.67
Houl. Adapter 843 921 723 98 91.7 90.0 554 : 832 | 887 953 865 752 : 864 | 829 63.6 53.8 79.6 844 543 342 443 : 62.1 | 77.2 | 0.77
AdaptFormer 858 91.8 705 992 918 894 56.7 832|868 950 865 763,862 | 829 641 528 800 847 53.0 33.0 414,615 769 | 046
RepAdapter 86.0 925 69.1 99.1 909 909 554 : 829 | 869 953 86.0 754 : 859 | 825 635 514 802 854 521 357 417 : 61.6 | 76.8 | 0.53
Convpass 850 921 720 993 913 908 559 835|877 958 859 759,863 |823 652 538 781 865 553 386 451,631 | 776|049
LoRA 857 926 698 99.1 905 885 555826 | 875 949 859 757 1860|829 639 518 799 866 472 334 425,610 | 765 | 0.55
FacT_TT 858 918 715 993 91.1 908 559 : 834 | 877 949 850 75.6 : 858 | 83.0 640 49.0 793 858 53.1 328 437 : 61.3 | 76.8 | 0.13
FacT_TK 862 925 71.8 99.1 90.1 912 562 834|858 955 860 757,858 |87 651 515 789 867 53.1 278 408,608 | 76.6 | 0.23

Relative Std Dev | 0.81 113 178 034 054 1.82 124054 | 120 059 195 083 1094 | 267 150 322 137 411 446 1102 930 1 270 | 1.09

Table 1. PEFT methods performances on VTAB-1K (19 tasks from 3 groups) by TOP-1 ACCURACY. Based on the results across PEFT,

linear probing, and full FT, we identify two task groups ( an

rameters, these methods learns additive residuals (e.g., AW')
to the original parameters (e.g., W). By injecting a low-rank
constraint to the residuals, this category effectively reduces
the learnable parameters. LoRA [37], arguably the most
well-known approach, parameterizes the residuals by low-
rank decomposition to update the weights. Concretely, to
update a W € RP*P matrix, LoRA learns Wygy, € R™*P
and W, € RP*" with r < D, and forms the additive resid-
ual by AW = W ,Woun € RP*D_ FacT [44] extends
the idea of matrix decomposition into tensor decomposition.
It stacks the D x D learnable matrices in all the Transformer
layers into a 3D tensor and learns an additive residual pa-
rameterized by Tensor-Train (TT) [72] and Tucker (TK) [14]
formulations. More detailed summary of ViT and a survey
of PEFT methods can be found in Appendix B.

2.3. Related work and comparison

The community-wide enthusiasm for PEFT has led to multi-
ple survey articles [28, 99, 101]. Meanwhile, several empiri-
cal and theoretical studies were presented, mostly based on
NLP tasks, attempting to provide a holistic understanding.
[29, 67] provided unified views to methodologically connect
PEFT methods. [10, 17, 31] and [32, 98] empirically com-
pared PEFT methods on NLP and vision tasks, respectively,
while [22] offered a theoretical stability and generalization
analysis. Accuracy-wise, [10, 17, 31] found that PEFT is
robust to over-fitting and quite effective in NLP tasks un-
der low-data regimes. This is, however, not the case for
vision tasks: [32] showed that representative PEFT methods
like LoRA and Adapter can’t consistently outperform either
full FT or linear probing. In terms of why PEFT works,
[22] framed PEFT as sparse fine-tuning and showed that it
imposes a regularization by controlling stability; [17, 32]

d
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), as discussed in section 6.

framed PEFT as (subspace) optimization; [17] further dis-
cussed the theoretical principle inspired by optimal control.

Our study strengthens and complements the above studies
and offers new insights. First, we compared over fen PEFT
methods and carefully tuned the hyperparameters, aiming
to accurately assess each method’s performance. This is
particularly crucial for the vision community, where com-
prehensive references are still limited, and simpler methods
like BitFit have often been deemed inferior, while other ap-
proaches have shown discrepancies compared to NLP studies.
Second, we go beyond a competition perspective to investi-
gate a complementary perspective of PEFT approaches. We
show that different PEFT approaches offer effective base
learners for model ensembles. Third, we go beyond down-
stream accuracy to investigate PEFT’s effectiveness in main-
taining out-of-distribution robustness. Finally, we analyze
both low-shot and many-shot settings, revealing distinct pat-
terns among PEFT, full FT, and linear probing, extending
the understanding of PEFT.

3. PEFT Methods in Low-Shots Regime

Pre-trained models are meant to ease downstream appli-
cations. One representative scenario is low-shot learning:
supervised FT of the pre-trained model with a small number
of samples per class. Indeed, low-shot learning has been
widely used to evaluate PEFT performance.

Dataset. VTAB-1K [104] consists of 19 classification tasks
from three groups. Natural comprises natural images cap-
tured with standard cameras. Specialized contains images
captured by specialist equipment for remote sensing and
medical purposes. Structured evaluates scene structure
comprehension, including object counting and depth esti-
mation. Following [104], we split the 1000 training image
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Figure 2. Ranking frequency of 15 methods (14 PEFT + linear probing) for three groups in VTAB-1K. Element (i, j) is the number of
times method 4 ranks j*" in each group. Methods are ordered by mean ranks (in brackets). The parameters column shows the # of trainable

parameters in millions. More details are in Appendix C.

80/20 for hyperparameter tuning. The reported TOP-1 AcC-
CURACY is obtained after training over the 1000 images and
evaluating on the original test set.

Methods. We consider linear probing, full FT, and 14 PEFT
methods: 2 prompt-based [42], 5 adapter-based [11, 36, 43,
63, 74], 4 direct selective [7, 55, 97, 103], and 3 efficient
selective [37, 44]. Please refer to subsection 2.2 and Ap-
pendix B for details.

Setup. We employ the ViT-B/16 [19] pre-trained on
ImageNet-21K [15] as the backbone. The prediction head is
randomly initialized for each dataset. We systematically tune
1) learning rate, 2) weight decay, and 3) method-specifics
like the PEFT parameter sizes, which are often left intact in
previous studies. We set a cap for PEFT size < 1.5% of ViT-
B/16. We also turn the drop path rate [38] on (0.1) or off (0).
A detailed experiment setup is provided in Appendix A, and
more experiment results, including DINOv2 [71] and larger
backbones (ViT-L and ViT-H), are provided in Appendix C.

Results. As shown in Figure la and Table 1, PEFT meth-
ods generally outperform both linear probing and full FT
across datasets. Additionally, with proper implementation
and fair hyperparameter tuning, we surprisingly found that
most PEFT methods perform similarly as the relative stan-
dard deviations (divided by the means) in all three groups
are quite low. Simple methods (e.g., Bitfit) and PEFT meth-
ods originally proposed for NLP (e.g., LoRA and Adapter),
which were previously reported as inferior due to unopti-
mized implementations and hyperparameter tuning, now
demonstrate competitive performance with SOTA visual
PEFT methods. To understand the relative advantages of
different approaches, we provide the ranking frequency of
PEFT methods across different groups in Figure 2, where
the element (¢, j) in each ranking matrix represents the fre-
quency that method 7 ranks j*" in each group. Methods are
ordered by their mean ranks (in brackets), and the param-
eters column indicates the number of trainable parameters
in millions. In natural group, simpler methods with fewer
trainable parameters—such as DiffFit and Fact-TT—offer a
cost-effective solution without compromising performance.
Conversely, in specialized and structured groups, methods

with more parameters generally yield better performance.
We hypothesize that this performance discrepancy arises
from the domain similarity between the pre-trained domain
(ImageNet) and the downstream domains. The natural group,
sharing a stronger affinity with ImageNet, allows simpler
methods like BitFit to adjust the features effectively. In con-
trast, the specialized and structured groups necessitate more
complex methods with more trainable parameters to bridge
the domain gap.

Recipes. In low-shot regimes, when the downstream data are
similar to the pre-trained data, simple methods (e.g., DiffFit)
offer solid accuracy with fewer parameters. Conversely, if
there is a substantial domain gap, more complex methods
with more parameters often achieve higher accuracy. Since
low-shot training is especially prone to over-fitting, we rec-
ommend activating a nonzero drop path rate—commonly set
to zero by default—that stochastically drops a Transformer
block per sample [38]. All methods can benefit from such a
randomization-based regularization, as shown in Figure 11
in the Appendix.

4. Different PEFT Approaches Offer Comple-
mentary Information

The previous section demonstrates that all PEFT methods
perform similarly across various domains. Given that dif-
ferent PEFT methods are trained on the same downstream
data using the same backbone and achieve comparable accu-
racy, one might expect them to learn similar knowledge from
the data, resulting in similar predictions. Contrary to this
expectation, our findings below reveal that different PEFT
methods acquire distinct and complementary knowledge
from the same downstream data, even when built upon the
same backbone, leading to diverse predictions.

We start by analyzing their prediction similarity on the
same dataset in VTAB-1K. It is expected that their predic-
tions are similar for datasets with very high accuracy, such
as Flowers102 (avg 99.1%) and Caltech101 (avg 91.4%).
Beyond them, we find that most PEFT methods show di-
verse predictions in other datasets in VTAB-1K. Figure 3a
shows the prediction similarities between 14 PEFT methods
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Figure 4. Ensemble (majority vote) shows consistent gain on most
datasets thanks to the diverse predictions.

in DTD, Retinopathy, and DMLab, which belong to natural,
specialized, and structured groups, respectively. In DTD
and Retinopathy, most methods differ in about 20% of their
predictions, while in DMLab, this difference increases to
approximately 35%, even though they achieve similar ac-
curacies. This prediction diversity may be attributed to the
different inductive biases [70] of PEFT methods — they
explicitly select specific parameters to update or insert dif-
ferent modules at various locations within the model. More
analyses and details are offered in Appendix C.

Such diverse predictions across methods open up the pos-
sibility of leveraging their heterogeneity for further improve-
ment. The most straightforward approach is ensemble [26],
e.g., majority vote over methods. Figure 4 demonstrates the
ensemble performance gain over all the PEFT methods in
each dataset, where we use the worst PEFT method as the
baseline. Thanks to the diverse predictions across methods,
the ensemble can provide consistent gain.

Also, we analyze if PEFT methods make similar cor-
rect predictions for high-confidence samples and similar
mistakes for low-confidence samples. Figure 1b and Fig-
ure 3b show the correct prediction overlap for the SK most
confident samples (per method) and the wrong prediction
overlap for the 5K least confident samples (per method). For
demonstration purposes, we select one method from each
PEFT category (LoRA, Adapter, SSF) and they are FT on

CIFAR-100 in VTAB-1K. Methods within the same cate-
gory also show diverse predictions (Appendix C). Since they
make different predictions in both high and low-confidence
regimes, this paves the way for new possibilities of using
different PEFT methods to generate diverse pseudo-labels
for semi-supervised learning [23, 24, 100], domain adap-
tation [20, 21, 86], and continual learning [60, 64—66, 82].
For example, in semi-supervised learning, we can FT differ-
ent PEFT methods on the labeled data to generate diverse
and accurate pseudo-labels by selecting highly confident
predictions from each PEFT method.

5. PEFT Methods in Many-Shot Regime

Recent works in NLP [10] have indicated that PEFT methods
may not perform as competitively as full FT when data is
abundant. We thus aim to investigate PEFT’s performance
in many-shot regimes by addressing the following questions:
(1) Should we use PEFT or full FT when data is sufficient?
(2) How should we adjust the number of trainable parame-
ters for PEFT methods in many-shot regimes?

Dataset. We select one representative dataset from each
group in VTAB: (1) CIFAR-100 [49], a natural image dataset
comprising 50K training images across 100 classes; (2) RE-
SISC [12], a remote sensing dataset for scene classification
with 25.2K training samples across 45 classes; and (3) Clevr-
Distance [45, 104], a synthetic image dataset for predicting
the depth of the closest object with 6 depth classes and 70K
samples. The reported results are obtained by training on the
full training set and evaluating on the original test set.
Setup. The model setup mostly follows the VTAB-1K exper-
iment. More details about setup and hyperparameter search
are provided in Appendix A.

Results. In many-shot regimes, with sufficient downstream
data, full FT may catch up and eventually outperform PEFT
methods. However, from Figure 5, we found that even in
many-shot regimes, PEFT can achieve comparable results
with full FT, even just using 2% of fine-tuning parameters.
The performance gain, however, quickly diminishes and
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Figure 5. PEFT accuracy in many-shot regimes, with different parameter sizes (X-axis) on three datasets from different domains. Even
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plateaus after 5% of tunable parameters. By comparing
the results on the domain-close CIFAR-100 and domain-
different RESISC and Clevr, we have some further obser-
vations. Downstream tasks with larger domain gaps often
require updating more parameters to achieve high accuracy.
With sufficient downstream data, full FT is less prone to
over-fitting and, indeed, attains a high accuracy. But in-
terestingly, PEFT methods, with only 2% ~5% of tunable
parameters, achieve similar accuracy, suggesting that its de-
sign principle does offer sufficient effective capacity for
the model to learn [105]. Downstream tasks with smaller
domain gaps suggest that the pre-trained model had learned
sufficient knowledge about them; full FT thus risks washing
such knowledge away. In fact, we found that PEFT notably
outperforms full FT on CIFAR-100, suggesting it as a more
robust transfer learning algorithm for downstream tasks.
Recipes. In many-shot regimes, PEFT methods with suffi-
cient parameters (2~5%) appear more favorable than full FT
and linear probing. On the one hand, they achieve compara-
ble and even better accuracy than full FT. On the other hand,
the tunable parameters remain manageable. The parameter
efficiency of PEFT also often implies less training GPU
memory usage and training time, making PEFT methods
a favorable alternative in many-shot regimes. For a down-
stream domain that is close to the pre-training domain, PEFT
shows much pronounced transferability. For a downstream
domain that is quite different, the limited tunable parameters
(controversially, 2~5% already amount to a few million)
already allow the model to learn sufficiently.

6. Why Do PEFT Methods Work?’

Putting together section 3 and section 5, we identify two
distinct patterns regarding the performance among linear
probing, full FT, and PEFT. Within 19 VTAB-1K tasks, we
see: (1) Full FT outperforms linear probing. As linear prob-

2Qur intention is not to offer a definitive explanation about why PEFT
works. As discussed in subsection 2.3, there is no broadly accepted theory
for PEFT’s success. We hope our empirical findings can support the ongoing
efforts to uncover the fundamental principles behind PEFT.
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ing reflects the pre-trained feature quality for downstream
tasks, case (1) suggests the necessity to update the backbone
to close the gap between pre-trained and downstream do-
mains. (2) Linear probing surpasses full FT, suggesting the
pre-trained features are good enough (at least in a low-shot
scenario). Recklessly updating them may risk over-fitting.
Figure 6 (a-b) summarizes the low-shot accuracy comparison
based on the categorization above; each line corresponds to
one task. Linear probing, PEFT, and full FT are located in or-
der, from left to right, to reflect their tunable parameter sizes.
PEFT’s superiority in both cases showcases its capacity to
learn and its regularization role to prevent over-fitting.

We also draw the many-shot accuracy in Figure 6 (c-d)
based on the same categorization: RESISC and Clevr in case

(1) , and CIFAR-100 in case (2) . In the many-shot setting,
full FT consistently outperforms linear probing, which seems
to suggest no more risk of over-fitting. However, on CIFAR-
100 (Figure 6 (d)), we again see a noticeable gap between
PEFT and full FT, just like in Figure 6 (b). Such a concave
shape reminds us of the long-standing under-fitting-over-
fitting curve, suggesting that even with sufficient downstream
data, full FT still risks over-fitting.

Considering PEFT’s comparable performance to full FT
on RESISC and Clevr with large domain gaps, we conclude
that PEFT succeeds as a high-capacity learner equipped
with an effective regularizer. The two roles trade-off well
such that PEFT can excel in both low- and high-similarity
domains under both low-shot and many-shot settings.

7. How Robust are PEFT Methods to Distribu-
tion Shifts?

Large pre-trained models such as CLIP [75] have demon-
strated unprecedented zero-shot accuracy across diverse data
distributions. However, recent studies [75, 96] have shown
that FT on downstream data, while significantly boosting
performance on the target distribution, often compromises
the model’s robustness to distribution shifts. Given that
PEFT only updates a limited number of parameters in the
model, we investigate whether PEFT can offer a more robust



- Layer- Houl. Adapt- Rep-
Full BitFit Norm Adapter Former Adapter Convpass LoRA FacT_TK
100-shot ImageNet 75.0 75.27 74.8 75.0 75.6 76.5 76.3 76.6 74.7
Avg. distribution shift Acc | 42.5 | 55.4 (12.9)1 | 55.9 (13.4)7 | 56.9 (14.4)T | 56.1 (13.6)1 | 56.2 (13.7)1 | 54.7 (12.2)1 | 55.9 (13.4)1 | 56.1 (13.6)1

Table 2. The “Avg. distribution shift Acc” denotes the average performance of ImageNet-(V2, S, R, A) evaluated on the CLIP model FT on

ImageNet. (1) indicates the gain over full FT.
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CIFAR in case (2) with enough data, PEFT > full > linear. Within
each figure, left for linear, middle for PEFT, and right for full. More
details are in Appendix C.

Py

alternative to full FT.

Dataset. We use 100-shot ImageNet-1K as our target dis-
tribution, with each class containing 100 images. Follow-
ing [96], we consider 4 natural distribution shifts from Ima-
geNet: ImageNet-V2 [78], a new ImageNet test set collected
with the original labeling protocol; ImageNet-R [34], ren-
ditions for 200 ImageNet classes; ImageNet-S [25], sketch
images for 1K ImageNet classes; ImageNet-A [35], a test
set of natural images misclassified by a ImageNet pre-trained
ResNet-50 [30] for 200 ImageNet classes.

Setup. We focus on the CLIP ViT-B/16 model, which com-
prises a visual encoder and a text encoder, pre-trained via
contrastive learning on image-text pairs. Following [96], we
add an FC layer as the head initialized using the class label
text embedded by the text encoder. Subsequently, we dis-
card the text encoder and apply PEFT methods to the visual
encoder, FT only the PEFT modules and the head. More
details about the CLIP model and experiment setup can be
found in Appendix A.

Results. As shown in Table 2, while some PEFT methods
may not surpass full fine-tuning on the target distribution,
they consistently demonstrate more robust performance on
distribution-shifted data. This robustness can be attributed
to PEFT updating only a small fraction of the parameters,

Retinopathy

89 —— CIFAR-100

thereby preserving the robust features of the foundational
models. Given the similar target distribution performance,
should we blindly use PEFT methods for more robustness?

Weight-space ensembles (WiSE) for PEFT. WiSE [96],
which linearly interpolates the weights of a fully FT model
with those of the original backbone, is a popular approach
for boosting robustness. We explore whether WiSE can also
enhance the robustness of PEFT. To apply WiSE to PEFT, we
first linearly interpolate the prediction head with a mixing co-
efficient . For direct selective tuning methods (e.g. BitFit),
this involves merging the PEFT-tuned parameters and the
original model. Since most Adapter-based methods include
residual connections (Appendix B.2.2), we can adjust their
impact by scaling the adapter modules with .. A similar
approach applies to efficient selective methods (e.g. LoRA)
as they learn additive residuals to the original parameters. To
the best of our knowledge, we are the first to study WiSE for
PEFT. As shown in Figure 1c (more results in Appendix C),
WiSE consistently improves both target and distribution shift
performances of PEFT methods. For Adapter-based meth-
ods, WiSE can be considered feature ensembles, where «
controls how strong the domain-specific features from the
adapter module blend with the domain-agnostic ones from
original backbones. For selective tuning, WiSE functions
similarly to its application in full FT—exploiting the fact that
the fine-tuned parameters remain near the original loss basin,
allowing an ensemble that captures the best of both [2, 40].

Interestingly, even though full FT is generally less robust
than PEFT methods, WiSE elevates full FT’s performance
above that of PEFT on both target distribution and distribu-
tion shift data, which suggests promising research directions
to investigate the underlying mechanism and how to further
improve the robustness of PEFT methods.

8. Conclusion

Instead of chasing the leaderboard, we conduct a unifying
empirical study of PEFT, an emerging topic in the large
model era. We provide an extendable framework for repro-
ducible evaluations of PEFT methods in computer vision.
We also have several new insights and implications, includ-
ing PEFT methods’ complementary expertise, suitable appli-
cation regimes, and robustness to domain shifts. We expect
our study to open new research directions and serve as a
valuable user guide in practice.
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