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ABSTRACT

Generative models can now produce photorealistic synthetic data which is virtually
indistinguishable from the real data used to train it. This is a significant evolution
over previous models which could produce reasonable facsimiles of the training
data, but ones which could be visually distinguished from the training data by
human evaluation. Recent work on OOD detection has raised doubts that generative
model likelihoods are optimal OOD detectors due to issues involving likelihood
misestimation, entropy in the generative process, and typicality. We speculate
that generative OOD detectors also failed because their models focused on the
pixels rather than the semantic content of the data, leading to failures in near-OOD
cases where the pixels may be similar but the information content is significantly
different. We hypothesize that estimating typical sets using self-supervised learners
leads to better OOD detectors. We introduce a novel approach that leverages
representation learning, and informative summary statistics based on manifold
estimation, to address all of the aforementioned issues. Our method outperforms
other unsupervised approaches and achieves state-of-the art performance on well-
established challenging benchmarks, and new synthetic data detection tasks.

1 INTRODUCTION

In the past decade, deep learning has made significant strides, primarily due to the availability of
large-scale annotated datasets (Deng et al., 2009) used in supervised learning and the emergence of
self-supervised learning utilizing vast web-scale crawled open data (Schuhmann et al., 2022; Gao
et al., 2020; Sharma et al., 2018; Radford et al., 2021b). The transition from large-scale annotated
datasets to self-supervised learning was driven by the expensive and labor-intensive nature of creating
these datasets and yet the concerns surrounding data usage rights persist (He et al., 2022b; Carlini
et al., 2021; Huang et al., 2022). Recent advancements have led to the development of generative
models that excel in generating highly realistic and detailed synthetic images (Stein et al., 2024).
In this paper, we investigate identifying out-of-distribution (OOD) data and generated synthetic
data created using large-scale pre-trained generative models, commonly referred to as “foundation
models”(Bommasani et al., 2021).

Broadly speaking, data encountered during deployment that was not sampled from the distribution
used to generate training data is considered OOD. OOD data represents a challenge to safe deployment
of predictive models because they can make confident incorrect predictions, leading to actions which
could have negative outcomes. Foundation models complicate the traditional definition of OOD
slightly. These models are trained on extensive and diverse datasets, making the data generating
process, and thus possible OOD inputs difficult to specify cleanly. Despite its diversity, the data
generating process only samples a small portion of the input space, leaving many potential subspaces
open for OOD contamination. This contamination can erode the calibration of predictive models
trained using the foundation model as a base, representing a significant hazard for safe model
deployment.

Predictive model failures due to OOD inputs can be understood through the lens of typicality. The
concept of typicality arises from information theory and codifies the difference between likelihood
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from a generative process, and the probability of generating a sample from that process with a
particular likelihood. In low dimensions these two are generally equivalent, but this is often not the
case in high dimensions (Nalisnick et al., 2019; Choi et al., 2018). The asymptotic equipartition
property asserts that most of the probability mass of a distribution is contained in the region of
high typicality, referred to as the "typical set" of a distribution (Cover, 1999). Thus, OOD inputs
confound predictive models because the model has no incentive to make calibrated predictions on
this data, since any errors in the predictive model for OOD inputs do not contribute to the risk to
the hypothesized model, which is being minimized via training. At the same time, the atypicality of
OOD data presents a potential way to identify them (Nalisnick et al., 2020; Morningstar et al., 2021),
and thus avoid making risky predictions.

Measuring typicality directly is challenging because one cannot typically query the probability of
an observed datum under the (unknown) data generating process. This has led many prior works to
propose using generative models to approximate the process and use it to measure the probability, and
therefore test the typicality of the input. However, Zhang et al. (2021) and Caterini & Loaiza-Ganem
(2022) have pointed out challenges in this approach that arise due to likelihood misestimation, which
can cause OOD inputs to have likelihoods under the generative model that are consistent with ID
data.

In this paper, we hypothesize that many of the shortcomings with typicality-based approaches could
be addressed using statistics which tune to the semantic content of the data. We propose to leverage
self-supervised representations, which extract semantic information while discarding many potential
confounding features (e.g. textures, backgrounds). Our specific contributions are:

1. Forte, a novel framework combining diverse representation learning techniques (CLIP,
ViT-MSN, and DINOv2) for typicality estimation, uses both parametric (GMM) and non-
parametric (KDE, OCSVM) density-based methods to detect atypical samples, i.e., out-of-
distribution (OOD) and synthetic images generated by foundation models. Forte requires
no class labels, exposure to OOD data during training, or restrictions on the architecture of
generative models.

2. A set of per-point summary statistics (precision, recall, density, and coverage) that effectively
capture the “probability distribution of the representations” using reference and unseen test
samples in the feature space, enabling more nuanced anomaly detection.

3. Extensive experiments demonstrating Forte’s superior performance compared to state-of-the-
art supervised and unsupervised baselines on various OOD detection tasks, and synthetic
image detection, including photorealistic images generated by advanced techniques like
Stable Diffusion.

4. Insights into the limitations of relying solely on statistical tests and distribution-level metrics
for assessing the similarity between real and synthetic data, highlighting the effectiveness of
our proposed per-point summary statistics and anomaly detection framework.

2 RELATED WORKS

In discriminative machine learning, the assumption that inference data mirrors the training data
distribution is foundational, yet often flawed. The occurrence of out-of-distribution (OOD) inputs
can lead to misleadingly confident but incorrect predictions by models, posing significant reliability
and safety concerns. Large neural networks are vulnerable to adversarial perturbations (Szegedy
et al., 2013) and poor calibration (Guo et al., 2017), necessitating OOD detection. OOD detection
methods are either supervised, using labels and examples to calibrate models or train them to identify
OOD data (Liang et al., 2018; Hendrycks et al., 2019b; Meinke & Hein, 2020; Dhamija et al., 2018),
or unsupervised, employing generative models to approximate the training data density q(X) and
determine prediction reliability via q(Y |X), assuming OOD inputs have lower probability (Bishop,
1994).

Unsupervised OOD detection methods typically use generative models to measure the likelihood
of the data. (Bishop, 1994) assumed low likelihood would be observed on OOD data, but this may
fail in high dimensionality (Choi et al., 2018; Nalisnick et al., 2019; Hendrycks et al., 2019b; Serrà
et al., 2019). Fixes include using WAIC (Choi et al., 2018), likelihood ratios (Ren et al., 2019), or
typicality tests (Nalisnick et al., 2019), but these have limitations associated with high dimensional
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Figure 1: Visualization of Precision, Recall, Density, and Coverage metrics for reference and test
samples in a 2D feature space, with nearest neighbour k=1. Precision is depicted by blue circles
around reference samples, recall by red circles around test samples, density by solid teal circles
around reference samples, and coverage by green circles around test samples.

likelihoods. Morningstar et al. (2021) proposed the Density of States Estimator (DoSE). Inspired by
principles from statistical physics, it leverages multiple summary statistics from generative models to
distinguish between in-distribution and OOD data.

Supervised OOD detection leverages labeled in-distribution and/or known OOD data. Techniques
include using VIB rate (Alemi et al., 2018), calibrating predictions with ODIN (Liang et al., 2018) or
its generalization (Hsu et al., 2020), ensembling classifiers (Lakshminarayanan et al., 2017), training
with OOD examples to encourage uniform confidence (Hendrycks et al., 2019b), adversarial attacks
to lower confidence near training data (Stutz et al., 2019), visual concept networks to model human
understandable features in graphs (Ganguly et al., 2024) and fitting Gaussian mixtures to latent
representations (Meinke & Hein, 2020). While effective, these methods require labels or specific
outliers.

Generative model assessment can be done over four categories as shown by Stein et al. (2024):
ranking, fidelity, diversity, and memorization. Ranking metrics include FD (Heusel et al., 2017),
which measures the Wasserstein-2 distance between real and generated distributions; FD∞ (Chong
& Forsyth, 2020), which removes bias due to finite sample size; sFID (Nash et al., 2021), which
uses a spatial representation; KD (Bińkowski et al., 2018), a proper distance between distributions;
IS (Salimans et al., 2016), which evaluates label entropy and distribution; and FLS (Jiralerspong
et al., 2023), a density estimation method. Fidelity and diversity are measured using precision, recall
(Sajjadi et al., 2018; Kynkäänniemi et al., 2019b), density, coverage (Naeem et al., 2020a), rarity
score (Han et al., 2022), and Vendi score (Friedman & Dieng, 2022), which quantify the quality
and variety of generated samples. Memorization is quantified using AuthPct (Alaa et al., 2022),
CT score (Meehan et al., 2020), FLS-POG (Jiralerspong et al., 2023), and memorization ratio with
calibrated l2 distance (Somepalli et al., 2022), which detect overfitting and copying of training data.
These metrics can be computed in various supervised (including Inception-V3 (Szegedy et al., 2016))
and self-supervised representation spaces, including self-supervised model families like contrastive
(SimCLRv2 Chen et al. (2020)), self-distillation (DINOv2 Oquab et al. (2023a)), canonical correlation
analysis (SwAV Caron et al. (2020)), masked image modelling (MAE He et al. (2022a), data2vec
Baevski et al. (2022)), DreamSim Fu et al. (2023), and language-image (CLIP Radford et al. (2021a),
sometimes using the OpenCLIP implementation Ilharco et al. (2021) trained on DataComp-1B Gadre
et al. (2023)).

3 FORTE: A FRAMEWORK FOR OOD DETECTION USING PER-POINT
METRICS

In this section, we introduce Forte, a novel framework that combines diverse representation learning
techniques with per-point summary statistics and non-parametric density estimation models to detect
out-of-distribution (OOD) and synthetic data.
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3.1 PROBLEM SETUP

We start with a dataset X = {xr
i }mi=1 that comes from a true but unknown distribution p, where

each xi ∈ Rd is sampled independently and identically from p. In the context of out-of-distribution
detection, we consider that the unseen data {xg

j}nj=1 might come from a mix of the true distribution p
and an unknown confounding distribution p̃ (which can be from an OOD benchmark or synthetic
data generated using a model such as Stable Diffusion). The mixed distribution is denoted by
X̀ ∼ αp(X̀) + (1 − α)p̃(X̀), where α is an unknown mixing parameter. Since both α and p̃ are
unknown, we cannot directly obtain samples from p̃ or make any assumptions about α and p̃. The
goal of OOD detection is to develop a decision rule to determine when the input data X̀ is atypical.

We build on Density of States Estimation (DoSE; Morningstar et al., 2021), which is the SoTA
unsupervised method that addresses the OOD detection problem. The first step in DoSE is to create a
summary statistic Tn that can help evaluate new, unseen data. Some examples of Tn are the negative
log-likelihood of X , the L2 distance between X and the sample mean, or the maximum likelihood
estimate of a joint distribution q(Y |X, θn). To determine when the input data X̀ is atypical, DoSE
models the distribution of T values in the training data and uses the density to score the typicality of
inputs based on the measured values of their statistics. While DoSE gives a valuable mechanism by
which one can determine the typicality of a particular input, it does not identify which statistics are
informative. DoSE further limited its focus to likelihood-based generative models, which Caterini &
Loaiza-Ganem (2022) showed may be suboptimal for OOD detection.

3.2 CREATING GENERALIZED NOVEL SUMMARY STATISTICS

We propose the following per-point metrics, novelly adopted to OOD detection from previous work
in manifold estimation inside representation spaces by Naeem et al. (2020b) and Kynkäänniemi et al.
(2019a) for capturing different facets of the generated samples. Let 1(·) be the indicator function,
S({xr

i }mi=1) =
⋃m

i=1 B(xr
i ,NNDk(x

r
i )), where B(x, r) is a Euclidean ball centered at x with radius

r, and NNDk(x
r
i ) is the distance between xr

i and its k-th nearest neighbor in {xr
i }mi=1, excluding

itself.

1. Precision per point is a binary statistic that indicates whether each test point is within the
nearest neighbor distance of any reference point:

precision(j)pp = 1
(
xg
j ∈ S({xr

i }mi=1)
)
. (1)

A high overall precision indicates that the test samples are closely aligned, and similar to
the reference data distribution.

2. Recall per point is computed for each test point by counting the number of reference points
within its nearest neighbor distance and dividing by the total number of reference points:

recall(j)pp =
1

m

m∑
i=1

1
(
xr
i ∈ B(xg

j ,NNDk(x
g
j ))
)
. (2)

A high recall implies that the test distribution collectively covers a significant portion of
the reference data distribution, i.e. that the test distribution contains diverse samples that
represent the different regions of the reference data distribution.

3. Density per point is computed for each test point by counting the number of reference
points for which it is within that points nearest neighbor distance and dividing by the product
of k and the total number of reference points:

density(j)pp =
1

km

m∑
i=1

1
(
xg
j ∈ B(xr

i ,NNDk(x
r
i ))
)
. (3)

A test point with high density suggests that it is located in a region of high probability density
in the reference data distribution, i.e. it captures the underlying density of the reference
data. Density per point essentially measures the expected likelihood of test points against
the reference manifold, providing a more informative measure than the binary precision per
point.
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4. Coverage per point is computed for each test point by checking if its distance to the nearest
reference point is less than its own nearest neighbor distance:

coverage(j)pp = 1
(
min
i
(d(xg

j , x
r
i )) < NNDk(x

g
j )
)
. (4)

High coverage indicates that the test samples are well-distributed and cover the support of the
reference data distribution. Coverage per point effectively improves upon the original recall
metric by building manifolds around reference points, making it more robust to outliers in
the test data and computationally efficient.

These per-point metrics serve as summary statistics that capture local geometric properties of the data
manifold in the feature space. They enable us to model the distribution of in-distribution (ID) data
and identify out-of-distribution (OOD) samples effectively. We extract representations from reference
and test images using CLIP Radford et al. (2021b), which learns to map images and text into a shared
latent space, self-supervised models Gui et al. (2023) like ViT-MSN Assran et al. (2022), which
predicts similarity between masked views of the same image, and DiNo v2 Oquab et al. (2023a),
which distills knowledge from a teacher to a student network. Combining representations from these
diverse models captures distinct aspects of the data via different manifolds and improves robustness
of our anomaly detection approach, as we observe later in Table 3.

3.3 DEVELOP DECISION RULE

We use the summary statistics to develop an non-parametric density estimator as an anomaly detection
model. First, we generate feature vectors for the reference data using self-supervised learning methods.
We split the data into three parts: one-third for held-out testing, one-third as the reference distribution,
and one-third as a test distribution that is drawn from the reference distribution. We calculate summary
statistics for the second and third to understand what these statistics look like when the test data
matches the real data (i.e. P d

= Q). We train One-Class SVM (Schölkopf et al., 2001), Gaussian
Kernel Density Estimation (Parzen, 1962), and Gaussian Mixture Model (Reynolds et al., 2009)
on the reference summary statistics. These models learn a decision boundary enclosing the typical
set of the reference data distribution. We then test the models’ ability to distinguish between a
mix of held-out test and reference features by comparing their atypicality i.e. summary statistics to
the reference distribution. By evaluating the models’ performance on the test set, we assess their
effectiveness in detecting OOD samples and distinguishing real from synthetic data distributions.

To assess the performance of the anomaly detection models, using an unseen part of the training
real distribution and the generated data distribution, we use Area Under the Receiver Operating
Characteristic Curve (AUROC), which measures the ability of the model to discriminate between
normal and anomalous points across different decision thresholds, and False Positive Rate at 95%
True Positive Rate (FPR@95) which indicates the proportion of normal points incorrectly identified
as anomalies when the model correctly identifies 95% of the true anomalies.

Under certain theoretical assumptions, we can justify the effectiveness of our per-point metrics in
distinguishing between in-distribution (ID) and out-of-distribution (OOD) data. Specifically, if the
reference data {xr

j}mj=1 and the test data {xg
i }ni=1 are drawn from Gaussian distributions with the

same covariance but different means (with a significant mean difference), the expected values of these
metrics differ markedly between ID and OOD samples. For ID data, the expected per-point precision
and coverage approximate 1− e−k, the expected per-point recall is roughly k/m, and the expected
per-point density is close to 1. In contrast, for OOD data, these expected values are near zero due
to the large mean difference, which causes the test samples to fall outside the typical regions of the
reference distribution. This substantial disparity provides a strong theoretical foundation for using
these metrics as effective summary statistics for OOD detection. By computing these metrics for test
samples and comparing them to the expected ID values, we can effectively identify anomalous data
points. A detailed proof and further explanations are provided in the Appendix C.

4 EXPERIMENTS

Unsupervised Baselines : We train an ensemble of deep generative models on in-distribution data,
validate on a heldout set to ensure no memorization, and compute DoSE scores on in-distribution
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and OOD test sets. We measure OOD identification performance and compare against several
unsupervised baselines: single-sided threshold (Bishop, 1994), single-sample typicality test (TT)
(Nalisnick et al., 2019), Watanabe-Akaike Information Criterion (WAIC) (Choi et al., 2018), and
likelihood ratio method (LLR) (Ren et al., 2019). Given the best demonstrated unsupervised OOD
detection results were in (Morningstar et al., 2021), we stick to using Glow models (Kingma &
Dhariwal, 2018), where we use summary statistics: log-likelihood, log-probability of the latent
variable, and log-determinant of the Jacobian between input and transformed spaces.

Supervised Baselines: We also compare our approach against state-of-the-art methods in out-of-
distribution (OOD) detection literature, selecting the best reported results on established benchmarks,
regardless of the model architecture or techniques employed. Specifically, we consider results from
NNGuide (Park et al., 2023), Virtual Logit Matching (Wang et al., 2022), and OpenOOD v1.5 (Zhang
et al., 2024a). For OpenOOD v1.5, we select the top-performing entries from the leaderboard, which
utilize a Vision Transformer (ViT-B) trained with cross-entropy loss, along with Maximum Logit
Score (MLS) (Hendrycks et al., 2019a) and Relative Mahalanobis Distance Score (RMDS) (Ren
et al., 2021) for OOD detection. To explore the potential of foundation models in OOD detection,
OpenOOD also employs a linear probing of Dinov2 (Oquab et al., 2023b) in conjunction with MLS,
however performance is demonstrated to be poor.

4.1 BASELINE PERFORMANCE FOR SYNTHETIC DATA DISTRIBUTIONS

Distribution Divergence: We compute pairwise distances and divergences between real and gen-
erated feature distributions. First we start with KL Divergence which measures information loss
when approximating P with Q Kullback & Leibler (1951): DKL(P ∥ Q) =

∑
x∈X P (x) log P (x)

Q(x) ,
and JS Divergence which is the symmetric KL divergence variant, comparing distributions with
disjoint support Lin (1991): DJS(P ∥ Q) = 1

2 (DKL(P ∥ M) +DKL(Q ∥ M)) ,M = 1
2 (P + Q).

The Wasserstein Distance on the other hand gives the minimum cost to transform one distribution into
the other Rubner et al. (2000): W (P,Q) = infγ∈Γ(P,Q) E(x, y) ∼ γ[|x− y|],Γ(P,Q): joint distri-
butions with marginals P,Q, while the Bhattacharyya Distance gives the similarity between P and Q,
0 (identical) to ∞ (separated) Bhattacharyya (1943): DB(P,Q) = − ln

(∑
x ∈ X

√
P (x)Q(x)

)
CLIP-based Zero Shot Strong OOD Baseline: To establish baseline performance for detecting
anomalous generated images directly from representations, we split the in-distribution reference
features Xr extracted from any of the feature extraction model (e.g. CLIP) into training Xr

train and
testing Xr

test sets and train all the same non-parametric density estimation models with the same
hyperparameter tuning, including OCCSVM, KDE and GMM. We evaluate each model on a test set
consisting of representations from held-out reference images Xr

test and anomalous images Xg . This
provides an strong initial assessment of how well these models can distinguish between reference and
anomalous data based on, for e.g. the CLIP features.

Statistical Tests: To rigorously compare the real and generated feature distributions, we perform
several statistical tests. The first is the Two-sample Kolmogorov-Smirnov (KS) Test, which is a
non-parametric test that compares the empirical Cumulative Distribution Functions (CDFs) of two
samples. The KS statistic measures the maximum distance between the CDFs, with a corresponding
p-value for the null hypothesis that the samples are drawn from the same distributionMassey Jr
(1951). The Mann-Whitney U Test gives a non-parametric test for whether two independent samples
are drawn from the same distribution. It is based on the ranks of the observations in the combined
sampleMann & Whitney (1947). The Z-test compares the standardized differences between the
means of two samples, assuming they are normally distributed. The Z-score measures the distance
between the sample means in units of standard error Sprinthall (2011). Finally we also calculate
the Anomaly Detection with Local Outlier Factor (LOF) and Isolation Forest (IF): These algorithms
assign anomaly scores to each point based on their local density (LOF) Breunig et al. (2000) or ease
of isolation (IF) Liu et al. (2018) relative to the real data. Higher scores indicate a generated image is
anomalous.

Generative Evaluation Techniques: In line with suggestions from (Stein et al., 2024), we use
the Fréchet distance (FD) and FD∞ computed with the DINOv2 encoder, instead of the inception
network to tell how different the generated images are from the reference set of images. We also use,
the CLIP maximum mean discrepancy (CMMD), which is a distance measure between probability

6



Table 1: Performance comparison between our method and established supervised SoTA methods on various
out-of-distribution (OOD) detection tasks. Our method consistently achieves the best performance across a
range of dataset pairings, particularly outperforming on challenging datasets like NINCO and SSB-Hard. It also
excels at detecting covariate shifted ID datasets. Key configurations include ViT-B trained with Cross Entropy
and the RMDS postprocessor, and DINOv2+MLS, which utilizes training with Linear Probe DINOv2 alongside
the MLS postprocessor. For reliable measurements, Forte is run with 10 random seeds. More comparisons are
provided in Fig. 16

NNGuide ViM ViT-B+CE+RMDS DINOv2+MLS Forte+GMM(Ours)

In-Distr (ImageNet-1k) AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

iNaturalist 99.57 1.83 99.41 2.60 96.10 19.47 98.41 5.64 99.67 ± 00.03 0.64 ± 00.06

Texture 95.82 21.58 95.34 20.31 89.38 37.22 91.82 33.95 98.04 ± 00.10 5.61 ± 00.25

Far-OOD OpenImage-O 92.32 29.57 95.58 16.88 96.73 ± 00.11 11.77 ± 00.57

NINCO 87.31 46.20 88.38 41.02 98.34 ± 00.09 5.18 ± 00.51

Near-OOD SSB-Hard 72.87 84.52 77.28 72.90 94.95 ± 00.17 22.30 ± 01.45

ImageNet-C 82.25 ± 00.16 42.56 ± 02.23

ImageNet-R 93.60 ± 00.66 20.68 ± 01.83

Covariate ID ImageNet-V2 59.28 ± 00.21 90.40 ± 00.34

Table 2: Comparison of performance figures between our method and various un-
supervised baselines for out-of-distribution (OOD) detection tasks, demonstrating
superior performance of our method across all challenging dataset pairings. For
reliable measurements, Forte is run with 10 random seeds. This is presented as a
visualization in Fig.15

Method In-Dist (CIFAR-10) OOD (CIFAR-100) OOD (Celeb-A) OOD (SVHN)

q(X|θn)
AUROC 52.00 91.40 6.50

FPR95 91.67 51.10 100.0

WAIC AUROC 53.20 92.80 14.30
FPR95 90.16 46.04 98.83

TT AUROC 54.80 84.80 87.00
FPR95 92.06 74.00 61.28

LLR AUROC 48.13 80.08 64.21
FPR95 93.44 64.79 76.36

DoSE AUROC 56.90 97.60 97.30
FPR95 91.95 12.82 13.16

Forte+SVM (Ours) AUROC 97.29 ± 00.55 100.00 ± 00.00 99.84 ± 00.05
FPR95 09.08 ± 01.82 0.00 ± 00.00 00.00 ± 00.00

Forte+KDE (Ours) AUROC 94.81 ± 01.22 99.75 ± 00.06 98.37 ± 02.07
FPR95 18.20 ± 03.82 0.06 ± 00.07 07.53 ± 10.77

Forte+GMM (Ours) AUROC 97.63 ± 00.15 100.00 ± 00.00 99.49 ± 00.48
FPR95 09.69 ± 01.08 0.00 ± 00.00 0.00 ± 00.00

distributions that presents benefits over the Fréchet distance. With an appropriate kernel, CMMD
does not assume any specific distribution, unlike the Fréchet distance which assumes multivariate
normal distributions.

5 RESULTS

Tables 1 & 2 present the performance comparison between our proposed methods (Forte+SVM,
Forte+KDE, and Forte+GMM) and various state of the art supervised and unsupervised techniques
for out-of-distribution (OOD) detection techniques. Our methods consistently outperform techniques
across all challenging dataset pairings, demonstrating their effectiveness in detecting OOD samples
without relying on labeled data.

Table 3 presents an ablation study investigating the impact of incorporating multiple representation
learning techniques into the Forte framework, when detecting arbitrary superclasses from the Im-
ageNet1k hierarchy. In this challenging task example, the in-distribution data consists of various
vehicle classes from the ImageNet dataset, such as Ambulance, Beach wagon, Cab, Convertible,
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Table 3: Ablation study investigating the impact of incorporating multiple representation learning
techniques for detecting arbitrary superclasses from the ImageNet1k hierarchy, using Forte+GMM.

In Distribution (Superclass ImageNet 2012) Far OOD Near OOD

AUROC FPR95 AUROC FPR95

Forte (CLIP) 99.42 00.04 88.84 61.04

Forte (MSN) 99.13 00.39 82.63 77.53

Forte (DINOv2) 99.79 00.03 86.97 79.25

Forte (CLIP+MSN) 99.96 00.02 90.00 30.77
Forte (CLIP+DINOv2) 99.98 00.01 91.35 26.89
Forte (DINOv2+MSN) 99.97 00.00 88.71 31.65
Forte (all 3) 100.00 00.01 91.17 28.91

Jeep, Limousine, Minivan, Model t, Racer, and Sportscar. The out-of-distribution data is divided
into two categories: Near OOD, which includes other utility vehicle classes like fire engine, garbage
truck, pickup, tow truck, trailer truck, minivan, moving van, and police van; and Far OOD, which
consists of animal classes such as Egyptian cat, Persian cat, Siamese cat, Tabby cat, Tiger cat, Cougar,
Lynx, Cheetah, Jaguar, Leopard, Lion, Snow leopard, and Tiger. Our method is successful in very
challenging near-OOD situations, and becomes more so when using multiple representations. The
combination of all three techniques (CLIP, MSN, and DINOv2) achieves the best overall performance
for both Far OOD detection, and comes a close second in Near OOD detection. These findings
suggest that leveraging diverse SSL representation techniques within the Forte framework can capture
complementary information and enhance the overall OOD detection capabilities.

5.1 PERFORMANCE ON SYNTHETIC DATA DETECTION

To generate synthetic data for assessing distributional robustness, we first employ the Stable
Diffusion Img2Img setting (Rombach et al., 2022), where a diffusion-based model can generate
new images conditioned on an input image and a text prompt. We use the Stable Diffusion 2.0 base
model and generate images with varying strength parameters (0.3, 0.5, 0.7, 0.9, 1.0) to control the
influence of the input image on the generated output, essentially allowing our real distribution to be
prior of controllable strength for the generated distribution. We also use the Stable Diffusion 2.0
text-to-image model to generate new images conditioned on the captions generated by BLIP(Li et al.,
2022) for each real image from the reference distribution. This allows us to create images that are
semantically similar to the real images but with novel compositions and variations. Finally, we also
generate images directly from the class name associated with each real image (e.g., "a photo of a
{monarch butterfly}, in a natural setting"). This provides a baseline for generating images that capture
the essential characteristics of the class without relying on specific input images or captions. The
image generation pipeline is implemented using the Hugging Face Transformers (Wolf et al., 2020)
and Diffusers (von Platen et al., 2022) libraries, which provide high-level APIs for working with
pre-trained models. Examples can be found in Figure 2, Figure 3 & Figure 4.

Fréchet Distance (FD), FD∞, and CMMD scores provide insights into the distribution shift
between real and synthetic images, with generated images moving further away from the real
distribution as diffusion strength increases. However, these distribution-level statistics do not provide
information about individual images within the distribution, necessitating an OOD detection strategy.
Tables 4 & 7 compare the performance of Forte+GMM against a strong CLIP-based baseline on
the Golden Retriever and Volleyball classes from ImageNet. For the well-represented Golden
Retriever class, Forte+GMM consistently outperforms the baseline across all image generation
settings, achieving near-perfect AUROC scores and low FPR95 values for Img2Img with strength
parameters 0.9 and 1.0, Caption-based, and Class-based image generation. Lower performance at
lower strengths is due to images being too similar to the real distribution. The Volleyball class, part
of Hard ImageNet (Moayeri et al., 2022), focuses on classes with strong spurious cues. Volleyballs
rarely occur alone in ImageNet images, and generating images without appropriate priors results in
mode collapse (see Figure 4). Forte+GMM surpasses the CLIP-based baseline in all image generation
scenarios, with notable improvements for Img2Img with higher strength parameters, Caption-based,
and Class-based image generation (AUROC scores > 97%, FPR95 values < 6%).
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Table 4: Performance comparison of Forte+GMM against a CLIP-based baseline, and Gen Eval
methods for detecting synthetic images of Golden Retrievers generated using various techniques.

FD FD∞ CMMD Score Baseline Model CLIP Forte+GMM

AUROC FPR95 AUROC FPR95

Img2Img S=0.3 453.63 418.22 0.52 61.19 86.27 68.28 ± 02.14 68.07 ± 05.56

Img2Img S=0.5 648.97 624.01 0.64 59.49 86.27 82.93 ± 02.50 46.80 ± 10.68

Img2Img S=0.7 762.17 735.42 0.64 61.23 86.36 94.19 ± 01.85 24.90 ± 12.99

Img2Img S=0.9 845.96 819.06 0.66 59.05 88.87 97.59 ± 01.23 14.41 ± 13.55

Img2Img S=1.0 891.39 870.17 0.73 60.15 89.23 98.11 ± 00.75 06.09 ± 05.72

Caption-based 575.18 546.42 0.90 80.71 71.54 96.77 ± 01.14 18.90 ± 14.38

Class-based 1,065.96 1,048.18 1.07 75.73 82.23 98.26 ± 01.12 10.22 ± 13.04

Tables 6 & 7 compare various statistical measures for assessing the similarity between distributions
of real and generated images across different image generation methods. The results are shown for
the Golden Retriever and Volleyball classes. For both classes, the statistical tests fail to provide clear
and consistent indications of distributional differences between real and generated images. Z-scores
are close to zero, suggesting no significant difference in means, while K-S test and Mann-Whitney U
test p-values are inconsistent across generation methods. LOF and IF scores show limited variation
and struggle to identify anomalies in the generated images. JSD, KLD, Wasserstein distance, and
Mahalanobis distance do not exhibit clear trends as generation strength increases, making it difficult
to draw meaningful conclusions about distributional similarity. To add to this problem, JSD and KLD
are not defined for any distribution of representations apart from MSN embeddings. Bhattacharya
distances are not defined on any representation, indicating no overlap. These results highlight the
limitations of relying solely on statistical tests comparing representations of new points to the original
distribution, as they often fail to capture subtle distributional differences between real and generated
images, particularly when generated images are highly realistic. The inconsistencies and lack of clear
trends underscore the need for more sophisticated approaches, such as the proposed Forte+GMM
framework, which leverages diverse feature extraction techniques and anomaly detection algorithms
to effectively detect synthetic images.

5.2 PERFORMANCE ON MEDICAL IMAGE DATASETS

Magnetic resonance imaging (MRI) datasets and models present a unique challenge in a high stakes
scenario, making robust out-of-distribution (OOD) detection paramount. These datasets, typically
acquired under specific study protocols, suffer from batch effects that hinder model generalization
even when changes in protocols are minute (Horng, 2023). The problem is exacerbated by dataset
homogeneity within studies and limited dataset sizes in clinical applications, making it impractical
to train separate models for each batch. Subtle distribution shifts between datasets of the same
subject matter, though not immediately apparent to human observers, can significantly impact model
performance. While data augmentation and harmonization methods have been explored (Hu et al.,
2023), existing metrics for detecting distribution drift and assessing harmonization effectiveness
are limited. Our work proposes deploying Forte as a more robust metric to address this gap by
effectively differentiating between datasets that may appear similar but have crucial distributional
differences. Using public datasets like FastMRI Zbontar et al. (2018); Knoll et al. (2020) and the
Osteoarthritis Initiative (OAI) Nevitt et al. (2006), we simulate realistic scenarios where models
trained on one dataset (treated as in-distribution) are confronted with another (considered OOD).
Table 5 demonstrates the effectiveness of Forte in differentiating the datasets. In other tests over
closed-source but real-world hospital data, we observe similar near perfect performance, suggesting
that Forte can have zero-shot applications in a variety of other sensitive domains.

6 DISCUSSION

While just using precision and density as summary statistics would lead Forte to be considered single-
sample tests, recall and coverage make our framework a two-sample test, as they take into account
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Table 5: Out-of-distribution (OOD) detection using Forte, applied to medical
image datasets. Strong performance by Forte suggests the presence of batch
effects and a need for data harmonization. Refer to Appendix E for more
details on the FastMRI and OAI datasets. For reliable estimation, performance
is measured over 10 random seeds.

Method Metric In-Dist: FastMRI NoFS FastMRI FS FastMRI FS
OOD: OAI TSE OAI T1 OAI MPR

Forte+SVM (Ours) AUROC 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
FPR95 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

Forte+KDE (Ours) AUROC 97.97 ± 5.63 95.98 ± 7.84 95.99 ± 7.86
FPR95 9.49 ± 26.76 19.75 ± 39.10 19.77 ± 39.31

Forte+GMM (Ours) AUROC 99.95 ± 0.13 99.91 ± 0.16 99.91 ± 0.17
FPR95 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

the relationship between each synthetic image and the entire set of real images. This also allows us to
better understand the behavior of the generated images in relation to the real data distribution. This
is usually not a problem in production, and benchmarks, since when you check whether a sample
is out of distribution, you usually sample from the mixture probability distribution of in and out of
distribution, which is what we really use here. Prior work has also operated in this paradigm, i.e. two
sample OOD test such as the typicality test (Nalisnick et al., 2019).

When selecting non-parametric density estimators to model typicality, it is important to consider
the manifold properties. We observe that GMM excels with clustered data, especially with a bigger
number of gaussians when operating with data from multiple possible classes, while KDE struggles
with sharp density variations. OCSVM is robust to outliers and performs well in high-dimensional
spaces, making it suitable for cohesive normal data.

DoSE (Morningstar et al., 2021) pioneered chaining multiple summary statistics for typicality
measurement, using ID sample distributions to construct typicality estimators rather than direct
statistic values. While groundbreaking, DoSE’s reliance on generative model likelihoods proved
problematic, as subsequent work (Caterini & Loaiza-Ganem, 2022; Zhang et al., 2021) showed
these can be unreliable for OOD detection. Our approach addresses these limitations through four
key improvements: (1) utilizing self-supervised representations to capture semantic features, (2)
incorporating manifold estimation to account for local topology, (3) unifying typicality scoring and
downstream prediction models to minimize deployment overhead, and (4) eliminating additional
model training requirements. These advances yield substantial empirical gains. While building
upon DoSE’s fundamental statistical machinery, our modifications dramatically enhance practical
performance.

7 CONCLUSION

Our work underscores the importance of developing robust methods for detecting out-of-distribution
(OOD) data and synthetic images generated by foundation models. The proposed Forte framework
combines diverse representation learning techniques, non-parametric density estimators, and novel
per-point summary statistics, demonstrating far superior performance compared to state-of-the-art
baselines across various OOD detection tasks and synthetic image detection tasks. The experimental
results not only showcase the effectiveness of Forte but also reveal the limitations of relying solely on
statistical tests and distribution-level metrics for assessing the similarity between real and synthetic
data. We hope that as generative models continue to advance, strong test frameworks like Forte will
play a crucial role in maintaining the reliability of ML systems by detecting deviating data, unsafe
distributions, distribution shifts, and anomalous samples, ultimately contributing to the development
of more robust and trustworthy AI applications in the era of foundation models.
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A APPENDIX: SYNTHETIC DATA SAMPLES

Figure 2: Synthetic images generated for the class "ambulance" using various techniques. Row (a)
shows real images, while rows (b) to (f) display Img2Img generated images with strength parameters
0.3, 0.5, 0.7, 0.9, and 1.0, respectively. Row (g) presents images generated using caption descriptions
of the real images in row (a), and row (h) shows images generated solely based on the classname.
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Figure 3: Synthetic images generated for the class "golden retriever" using different techniques.
Row (a) shows real images, while rows (b) to (f) display Img2Img generated images with strength
parameters 0.3, 0.5, 0.7, 0.9, and 1.0, respectively. Row (g) presents images generated using caption
descriptions of the real images in row (a), and row (h) shows images generated solely based on the
classname.
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Figure 4: Synthetic images generated for the class "volleyball" using various techniques. Row
(a) shows real images, while rows (b) and (c) display Img2Img generated images with strength
parameters 0.3, 0.5 respectively. Row (d) presents images generated using caption descriptions of the
real images in row (a), and row (e) shows images generated solely based on the classname. Row (e)
exhibits mode collapse properties.
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Figure 5: PCA of Golden Retriever Images in CLIP space. We can clearly observe that the distribution
of real images is most diverse, whereas the "classname" based generated images are least diverse.
We also see a progression of images tending towards the modes of the distribution with increasing
strengths allotted to the diffusion process.

B APPENDIX: BASELINES STATISTICAL TESTS

Table 6: Comparison of statistical measures for assessing distribution similarity across different image
generation methods. The table presents results for various statistical tests and metrics, including Z-score,
Kolmogorov-Smirnov (K-S) test, Mann-Whitney U test, Local Outlier Factor (LOF), Isolation Forest (IF),
and Wasserstein distance. The image generation methods evaluated include Img2Img with varying strength
parameters (S=0.3, 0.5, 0.7, 0.9, 1.0), caption-based generation, and class-based generation for Golden
Retrievers. KL Divergence and Jensen Shannon Divergence were calculated on MSN embeddings, since CLIP
embeddings had no overlap.

Z-Score K-S Test M-W U-Test LOF IF JSD (MSN) KLD (MSN) Wass Mahalanobis

stat p-val stat p-val

Img2Img S=0.3 -1.17e-9 4.17e-3 3.30e-4 1.27e+11 6.64e-1 31.11% 6.11% 2.75e-3 3.47e-3 5.52e-3 4.38e+1

Img2Img S=0.5 4.82e-9 4.72e-3 2.91e-5 2.76e+10 2.15e-3 27.82% 5.97% -1.81e-3 -2.08e-3 6.49e-3 4.78e+1

Img2Img S=0.7 3.89e-9 4.20e-3 2.93e-4 1.28e+11 2.65e-2 28.67% 6.32% 2.23e-3 2.36e-3 6.16e-3 4.61e+1

Img2Img S=0.9 -4.16e-9 4.43e-3 1.09e-4 1.27e+11 9.20e-2 32.61% 6.92% 7.22e-3 1.02e-2 6.57e-3 4.22e+1

Img2Img S=1.0 7.93e-9 4.58e-3 5.49e-5 1.27e+11 3.44e-1 34.09% 7.10% NaN NaN 6.89e-3 4.02e+1

Caption-based 5.56e-9 1.02e-2 7.56e-23 1.29e+11 1.85e-29 31.83% 6.38% NaN NaN 1.39e-2 4.08e+1

Class-based -2.98e-9 1.17e-2 5.19e-30 1.29e+11 3.26e-40 40.63% 7.73% NaN NaN 1.69e-2 3.43e+1
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(a) Normalized Mahalanobis Distances for gener-
ated distributions vs. real distributions, for the class
"golden retriever".

(b) PRDC Value distributions for golden retrievers, with generated images using Stable Diffusion 2 Base with
strength = 0.3.

Figure 6: Comparison of Mahalanobis Distances and PRDC Value distributions for real and generated
images of golden retrievers.

(a) UMAP of Golden Retriever Images in CLIP space.
(b) UMAP of Volleyball Images. Mode collapse is
clearly observable for classname generated images.

Figure 7: UMAP visualizations of Golden Retriever and Volleyball images in CLIP space, highlighting
mode collapse in classname generated volleyball images.
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Table 7: Comparison of statistical measures for assessing distribution similarity across different image
generation methods using CLIP embeddings. The table presents results for various statistical tests and
metrics, includ- ing Z-score, Kolmogorov-Smirnov (K-S) test, Mann-Whitney U test, Local Outlier Factor
(LOF), Isolation Forest (IF), and Wasserstein distance. The image generation methods evaluated include
Img2Img with varying strength parameters (S=0.3, 0.5, 0.7, 0.9, 1.0), caption-based generation, and
class-based generation for the Volleyball class. KL Divergence and Jensen Shannon Divergence were
calculated on MSN embeddings, since CLIP embeddings had no overlap.

Z-Score K-S Test M-W U-Test LOF IF JSD KLD Wass Mahalanobis

stat p-val stat p-val

Img2Img S=0.3 2.25e-9 4.14e-3 3.47e-4 1.29e+11 1.41e-2 27.89% 4.54% NaN NaN 4.57e-3 4.90e+1

Img2Img S=0.5 -2.15e-9 3.62e-3 2.65e-3 1.30e+11 1.27e-1 22.98% 4.03% -9.28e-3 -7.38e-3 5.75e-3 5.70e+1

Img2Img S=0.7 6.11e-9 7.99e-3 2.16e-14 1.30e+11 1.03e-8 20.73% 3.67% -9.03e-3 -5.14e-3 3.30e-2 1.68e+2

Img2Img S=0.9 1.58e-8 1.13e-2 1.41e-28 1.31e+11 1.09e-16 19.06% 2.59% NaN NaN 1.12e-2 6.66e+1

Img2Img S=1.0 2.06e-9 1.22e-2 6.56e-33 1.31e+11 4.99e-17 19.42% 2.26% NaN NaN 1.23e-2 6.69e+1

Caption-based 6.77e-9 6.91e-3 7.12e-11 1.30e+11 3.46e-10 30.89% 5.27% NaN NaN 7.71e-3 4.51e+1

Class-based -5.63e-9 2.65e-2 2.82e-154 1.32e+11 2.98e-85 36.54% 2.64% NaN NaN 2.18e-2 6.43e+1

C APPENDIX : THEORETICAL PROPERTIES OF PER-POINT PRDC

Theorem C.1. Under the following assumptions:

1. Feature Space: X = RD, where D is the dimensionality.

2. In-Distribution (ID) Data:

• Training Set: X train
ID = {x1, . . . ,xNtrain} with xi ∼ N (µID, σ

2I).
• Test Set: X test

ID = {x′
1, . . . ,x

′
Ntest

} with x′
i ∼ N (µID, σ

2I).

3. Out-of-Distribution (OOD) Data:

• Test Set: XOOD = {x′′
1 , . . . ,x

′′
NOOD

} with x′′
i ∼ N (µOOD, σ

2I), where ∆ = ∥µID −
µOOD∥ ≫ 0.

4. Distance Function: Euclidean distance d(x,y) = ∥x− y∥2.

5. k-Nearest Neighbors: For a point x, NNk(x) denotes its k-nearest neighbors in X train
ID .

Using previous definitions of Per-Point PRDC Metrics:

1. Precision per point (P(x′)):

P(x′) = I
[

min
x∈X train

ID

d(x′,x) ≤ rk(x)

]
,

where rk(x) is the distance from x to its k-th nearest neighbor in X train
ID .

2. Recall per point (R(x′)):

R(x′) =
1

Ntrain

∑
x∈X train

ID

I [d(x′,x) ≤ rk(x
′)] .

3. Density per point (D(x′)):

D(x′) =
1

kNtrain

∑
x∈X train

ID

I [d(x′,x) ≤ rk(x)] .
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4. Coverage per point (C(x′)):

C(x′) = I
[

min
x∈X train

ID

d(x′,x) ≤ rk(x
′)

]
,

where rk(x
′) is the distance from x′ to its k-th nearest neighbor in X train

ID .

Then, the expected values and variances of these per-point PRDC metrics are:

• For ID Test Samples (x′ ∈ X test
ID ):

1. Expected Precision per point:

E[P(x′)] ≈ 1− e−k.

2. Expected Recall per point:

E[R(x′)] ≈ k

Ntrain
.

3. Expected Density per point:
E[D(x′)] ≈ 1.

4. Expected Coverage per point:

E[C(x′)] ≈ 1− e−k.

• For OOD Samples (x′′ ∈ XOOD):

1. Expected Precision, Recall, Density, and Coverage per point are all approximately zero

• Variances:

1. Precision and Coverage per point:

Var[P(x′)] = E[P(x′)] (1− E[P(x′)]) .

2. Recall per point:

Var[R(x′)] ≈ E[R(x′)] (1− E[R(x′)])

Ntrain
.

3. Density per point

Var[D(x′)] ≈ E[D(x′)] (1− E[D(x′)])

k
.

Proof. Let us first clarify some assumptions and notation, specific to this proof for clarity.

1. Feature Space: X = RD.

2. ID Data Distribution: N (µID, σ
2I).

3. OOD Data Distribution: N (µOOD, σ
2I), with the mean difference ∆ = ∥µID−µOOD∥ ≫ 0.

4. Sample Sizes:

(a) Ntrain: Number of ID training samples.
(b) Ntest: Number of ID test samples.
(c) NOOD: Number of OOD samples.

5. Distance Function: d(x,y) = ∥x− y∥2.

6. k-Nearest Neighbor Distances:

(a) rk(x): Distance from x to its k-th nearest neighbor in X train
ID .

(b) rk(x
′): Distance from x′ to its k-th nearest neighbor in X train

ID .
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Calculating Distribution of Distances

Distance Between ID Samples

Let x,y ∼ N (µID, σ
2I). The difference x− y ∼ N (0, 2σ2I).

The squared distance d2(x,y) is the sum of D squared normal variables :

d2(x,y) =
D∑
i=1

(xi − yi)
2.

where, each (xi − yi) is ∼ N (0, 2σ2). Therefore, d2(x,y)
2σ2 ∼ χ2

D, i.e. follows a chi-squared
distribution with D degrees of freedom.

Expected and Variance of the Squared Distance:

E[d2(x,y)] = 2σ2D.

Var[d2(x,y)] = (2σ2)2 · 2D = 4σ4(2D) = 8σ4D.

Distance Between ID and OOD Samples

Let x ∼ N (µID, σ
2I) and x′′ ∼ N (µOOD, σ

2I).

• The difference x− x′′ ∼ N (δ, 2σ2I), where δ = µID − µOOD.

• The squared distance follows a non-central chi-squared distribution:

d2(x,x′′)

2σ2
∼ χ2

D (λ) ,

where λ = ∥δ∥2

2σ2 .

• Therefore, the Expected Squared Distance of a non-central chi-squared distribution is:

E[d2(x,x′′)] = 2σ2(D + λ) = 2σ2D +∆2.

• And the Variance of Squared Distance of a non-central chi-squared distribution is

Var[d2(x,x′′)] = 4σ4(2D + 4λ) = 8σ4D + 16σ4λ.

Expected k-Nearest Neighbor Distance rk(x)

• Distances from x to other training samples are i.i.d. and follow the distribution of d(x,y)
as previously defined.

• Empirical CDF of Distances:

F (d) = P (d(x,y) ≤ d) .

• Expected k-th Nearest Neighbor Distance:

1. For large D (number of dimensions in the vector), the chi-squared distribution can be
approximated by a normal distribution:

χ2
D ≈ N (D, 2D) .

2. This yields standard normal statistic

d2

2σ2 −D
√
2D

∼ N (0, 1)

25



3. Since p-value of a test statistic follows a standard uniform distribution under the null
hypothesis:

Φ

(
d2

2σ2 −D
√
2D

)
∼ u(0, 1)

4. If f is a monotonically increasing function of variable X whose kth order statistic in
a sample of size n is X(k), then the kth order statistic of f(X) is f(X(k)) when X is
taken from the sample. Note that Φ is monotonically increasing as it is a CDF, and so

is f(X) =
X2

2σ2 −D
√
2D

on the positive reals which are the domain of rk(x).

5. By definition d(k) = rk(x) for some x. Then if U = Φ

(
d2

2σ2 −D
√
2D

)
is a standard

uniform, its kth order statistic in the sample is

U(k) = Φ

(
(rk(x))

2

2σ2 −D
√
2D

)
6. The kth order statistic of a standard uniform follows a Beta distribution with α = k

and β = n− k + 1:

Φ

(
(rk(x))

2

2σ2 −D
√
2D

)
∼ Beta(k, n− k + 1)

7. Because the expected value of a Beta distribution is α
α+β :

E

[
Φ

(
(rk(x))

2

2σ2 −D
√
2D

)]
=

k

n+ 1

Expected PRDC Metrics for ID Samples

Expected Precision per point (E[P(x′)])

• Definition:
E[P(x′)] = E[ min

x∈Xtrain
ID

P (d(x′,x) ≤ rk(x))] = 1−
∏

x∈X train
ID

(1− E[P (d(x′,x) ≤ rk(x))]) .

• Also:

P (d(x′,x) ≤ rk(x))] = P

(
d(x′,x)2

2σ2 −D
√
2D

≤
(rk(x))

2

2σ2 −D
√
2D

)
= Φ

(
(rk(x))

2

2σ2 −D
√
2D

)
• Probability for a Single Training Sample, using the above Beta distribution formula, is

E [P (d(x′,x) ≤ rk(x))] = E

[
Φ

(
r2k(x)
2σ2 −D
√
2D

)]
=

k

Ntrain + 1

• Expected Precision per point:

Because we are dealing with in-distribution data and p-values are uniformly distributed
under the null hypothesis,

E[P(x′)] = 1−
(
1− k

Ntrain + 1

)Ntrain

≈ 1− e−k.

since,

lim
n→∞

(
1− k

n+ 1

)n

= lim
n→∞

(
1− k

n+1

)n+1

1− k
n+1

=
e−k

1− 0
= e−k
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Expected Recall per point (E[R(x′)])

• Definition:
R(x′) =

1

Ntrain

∑
x∈X train

ID

I [d(x′,x) ≤ rk(x
′)] .

• Understanding rk(x
′): For each x′, rk(x′) is the distance to its k-th nearest neighbor

among the Ntrain training samples. The distances di = d(x′,xi) for i = 1, . . . , Ntrain are
independent and identically distributed (i.i.d.) random variables because x′ and xi are
independent samples from the same distribution.

• Probability that a Training Sample is within rk(x
′): The variable I [d(x′,xi) ≤ rk(x

′)] is
an indicator that is 1 if xi is among the k nearest neighbors of x′ in the training set. The
probability that a particular training sample xi is within the k-nearest neighbors of x′ is:

P (d(x′,xi) ≤ rk(x
′)) =

k

Ntrain

This is since the k nearest neighbors are chosen among Ntrain samples, each training sample
has an equal chance of k

Ntrain
of being among the closest k samples to x′.

E [I [d(x′,xi) ≤ rk(x
′)]] =

k

Ntrain

E[R(x′)] =
1

Ntrain

Ntrain∑
i=1

E [I [d(x′,xi) ≤ rk(x
′)]] =

1

Ntrain
×Ntrain ×

k

Ntrain
=

k

Ntrain

E[R(x′)] =
k

Ntrain

Expected Density per point (E[D(x′)])

• Definition:
D(x′) =

1

k

∑
x∈X train

ID

I [d(x′,x) ≤ rk(x)] .

• Expected Sum, for large N:

E

 ∑
x∈X train

ID

I [d(x′,x) ≤ rk(x)]

 = Ntrain ×
k

Ntrain + 1
≈ k.

• Expected Density per point:

E[D(x′)] ≈ k

k
= 1.

Expected Coverage per point (E[C(x′)])

• Given both x′ and the training samples x are drawn from the same distribution N (µID, σ
2I).

• The minimum distance minxi
d(x′,xi) is the smallest among Ntrain distances drawn from

the chi-squared distribution.

• Distance to k-th Nearest Neighbor rk(x′) is rk(x′) is the k-th order statistic of the distances
d(x′,xi). We are interested in the probability:

P

(
min
xi

d(x′,xi) ≤ rk(x
′)

)
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• Since the minimum distance is always less than or equal to the k-th smallest distance, the
event is always true:

min
xi

d(x′,xi) ≤ rk(x
′)

Therefore:

P

(
min
xi

d(x′,xi) ≤ rk(x
′)

)
= 1

This is because the closest training sample to x′ is by definition among the k-nearest
neighbors used to compute rk(x

′). Therefore:

E[C(x′)] = 1

Expected PRDC Metrics for OOD Samples

• Due to the large distance ∆, the probability that an OOD sample is within rk(x) of any ID
training sample is negligible.

• Therefore:

1. E[P(x′′)] ≈ 0.
2. E[R(x′′)] ≈ 0.
3. E[D(x′′)] ≈ 0.
4. E[C(x′′)] ≈ 0.

Variances of PRDC Metrics

Variance of Precision and Coverage per point

1. Since these are Bernoulli random variables:

Var[P(x′)] = E[P(x′)] (1− E[P(x′)]) = e−k − e−2k.

2. The variance of coverage per point for ID samples is zero. This reflects the certainty that ID
test samples will always satisfy the coverage condition.

Variance of Recall per point

1. Recall per point is an average of Ntrain Bernoulli variables with success probability

p =
k

Ntrain
.

2. Because the sum of Ntrain Bernoulli variables with probability p is a binomial distribution
and we are dividing that sum by Ntrain, the Variance becomes:

Var[R(x′)] =
1

N2
train

×Ntrain × p (1− p) =
p(1− p)

Ntrain
.

Variance of Density per point

• Density per point sums Ntrain Bernoulli variables and divides by k.

• Variance:

Var[D(x′)] =
1

k2
×Ntrain × p (1− p) =

p(1− p)Ntrain

k2
.

• Since p = k
Ntrain+1 , we get:

Var[D(x′)] ≈ 1

k

(
1− k

Ntrain

)
.
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Figure 8: Distribution of PRDC metrics for the scenario where both the training (ID) and test (ID)
data are drawn from the same Gaussian distribution with zero mean. Blue lines represent the ID data,
and red lines represent the OOD data (which is actually the same as ID in this case). The histograms
overlap entirely, indicating identical distributions for all metrics due to the same underlying data.

Figure 9: Distribution of PRDC metrics for the scenario with a moderate shift, where the OOD test
data is generated from a Gaussian distribution with its mean shifted by 0.01 units compared to the
ID data. Blue lines represent the ID data, and red lines represent the moderately shifted OOD data.
The histograms show noticeable differences and partial overlap between ID and OOD distributions,
reflecting the moderate shift in data.

• For large Ntrain, this simplifies to:

Var[D(x′)] ≈ 1

k
.

• For ID samples, per-point Precision and Coverage have expected values close to 1− e−k,
which increases with k.

• Per-point Recall is small when k ≪ Ntrain, with E[R(x′)] ≈ k
Ntrain

.

• Per-point Density is approximately 1 for ID samples, regardless of k.

• For OOD samples, all per-point PRDC metrics are approximately zero due to the large mean
difference ∆.

• Variances depend on k and Ntrain, but are generally small for large datasets.

Note on Assumptions and Approximations

• Independence Assumption: While distances are not strictly independent, the independence
approximation simplifies calculations and is reasonable for large datasets.

• Large D Approximation: Approximations using the normal distribution for the chi-squared
distribution are valid when D is large.

• Small k Relative to Ntrain: The results are most accurate when k ≪ Ntrain.
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Figure 10: Distribution of PRDC metrics for the scenario with a large shift, where the OOD test data
is generated from a Gaussian distribution with its mean shifted by 5 units from the ID data. Blue lines
represent the ID data, and red lines represent the significantly shifted OOD data. The histograms
display minimal overlap, indicating that the PRDC metrics effectively distinguish between the ID and
heavily shifted OOD data.

Figure 11: Line plots showing the mean PRDC metrics—Precision, Recall, Density, and Cover-
age—per data point as a function of the number of samples (N) for varying values of k (number
of nearest neighbors). Each subplot corresponds to one of the PRDC metrics, with different lines
representing k=3, k=5, and k=10. The semi-logarithmic x-axis emphasizes the impact of sample size
on the stability and reliability of the PRDC metrics across different neighborhood sizes. Notice that
in precision and coverage, the variance goes down considerably (theoretically, exponentially) on the
basis of k, supported by our theorem.
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C.1 ROBUSTNESS TO THE CURSE OF DIMENSIONALITY

Intuition: The curse of dimensionality often manifests as the concentration of distances in high-
dimensional spaces. By reducing to four scalar metrics, PRDC sidesteps many of these issues. Let
Xn be uniformly distributed in the n-dimensional unit ball. As n → ∞: max1≤i<j≤k |Xi−Xj |

min1≤i<j≤k |Xi−Xj |
P→ 1

for any fixed k. As the number of dimensions n increases, the ratio of the maximum to minimum
distances between any pair of k points approaches 1 in probability. This means that the distances
between points become almost the same, regardless of their specific locations in the unit ball. This
contributes to why directly using high dimensional representations does not help.

PRDC metrics are not directly affected by this distance concentration, as they capture relative rather
than absolute distances. These metrics provide more meaningful comparisons between datasets,
especially in high-dimensional spaces where traditional distance measures lose their discriminatory
power. By emphasizing relative rather than absolute distances, PRDC metrics are less affected by the
concentration of distances in high-dimensional spaces.

Experiment: We want to understand how increasing the dimensionality of data affects the ability of
PRDC metrics and other measures to distinguish between inliers and outliers.

We use the following methodology for data generation :

• Inliers: For each dimension D ranging from 2 to 200 (in steps of 5), we generate 1000
samples from a D-dimensional standard normal distribution centered at the origin:

xinlier ∼ N (0, ID),

where ID is the D ×D identity matrix.
• We generate 100 samples from a D-dimensional normal distribution centered at µ =
[3, 3, . . . , 3]:

xoutlier ∼ N (31, ID),

where 1 is a vector of ones.

We calculate the PRDC per point metrics, and then the following additional measures :

• Mean Euclidean Distance:

Mean Distance =
1

N

N∑
i=1

∥xi∥2,

where N is the number of inliers.
• Mean Cosine Similarity:

Mean Cosine Similarity =
2

N(N − 1)

∑
i<j

x⊤
i xj

∥xi∥2∥xj∥2
.

• PCA Variance Explained: Sum of variance explained by the first two principal components
obtained from Principal Component Analysis (PCA) on the inliers.

We iterate over each dimension D and:

1. Generate inliers and outliers.
2. Compute PRDC metrics for inliers vs. inliers and inliers vs. outliers.
3. Compute additional measures.
4. Record the results for analysis.

Observations

• Precision: Inliers exhibit high precision across dimensions, indicating that inliers are close
to each other. For outliers, precision decreases with increasing D, and then stabilizes, due to
increased distances in high-dimensional spaces.
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Figure 12: Precision, Recall, Density, and Coverage (PRDC) metrics plotted against the number
of dimensions for Inlier (ID) and Outlier (OOD) datasets. In each subplot, the blue line represents
the average PRDC metric for inliers compared against themselves, while the orange line depicts the
average PRDC metric for outliers compared against inliers. This figure illustrates how increasing
dimensionality impacts the effectiveness of PRDC metrics in distinguishing between inliers and
outliers across different degrees of distributional shift.

(a) Average Euclidean Distance from the Origin
and Average Cosine Similarity among Inliers plot-
ted against the number of dimensions for Inlier (ID)
datasets. The left y-axis (colored in green) shows the
mean Euclidean distance of inliers from the origin,
while the right y-axis (colored in orange) displays the
mean cosine similarity among inliers. This dual-axis
plot highlights how higher dimensionality leads to
increased Euclidean distances and decreased cosine
similarities, reflecting the effects of the curse of di-
mensionality on data geometry.

(b) Total variance explained by the first two Principal
Components (PC1 and PC2) of Inlier (ID) datasets
plotted against the number of dimensions. The blue
line represents the cumulative variance captured by
the first two principal components. As dimensionality
increases, the proportion of variance explained by the
first two components decreases, indicating that data
variance becomes more dispersed across additional
dimensions. This trend underscores the challenges of
dimensionality reduction in high-dimensional spaces,
sidestepped by Forte.
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• Recall: Inliers show higher recall, reflecting better coverage among inliers. Outliers on the
other hand show lower recall, as outliers do not cover the inlier distribution well.

• Density: Inliers demonstrate high density, indicating dense clustering. For outliers, density
decreases with D, showing sparse connections to inliers.

• Coverage: Inliers exhibit high coverage, demonstrating that they effectively cover the inlier
distribution. Outlier coverage decreases with D, indicating poor coverage of inliers by
outliers.

• Mean Euclidean Distance: This metric increases with D for both inliers and outliers, due
to the phenomenon where distances between points in high-dimensional spaces tend to
increase.

• Mean Cosine Similarity: This measure decreases with D, approaching zero for both inliers
and outliers, as random vectors in high dimensions become nearly orthogonal.

• PCA Variance Explained: This metric decreases with D for both inliers and outliers, as
variance is distributed among more components, making it harder to capture significant
variance in the first few components.

C.2 PRDC AS LOCAL TRANSFORMATIONS

A local transformation is a function applied to a vector in a space which depends not only on the
vector itself but also on its neighboring vectors. This allows for contextual dependence, where the
transformation depends on the local environment of the vector, therefore making it sensitive to local
variations and patterns. This also allows the local transformations to be non-linear, allowing for
complex manipulations that are not possible with global linear transformations. This means they can
adapt to regions of the data space, capturing variations and features that might be missed by global
transformations.

These are obviously very powerful, as evidenced by convolution kernels (depending on neighbour
pixels), Graph convolutions, Laplacian smoothing, and wavelet transforms. However, they can be
sensitive to parameters like kernel size, weights, and tuning is important to ensure robustness. PRDC
metrics might look very different at different k values, for example.

C.3 KEY PROPERTIES AND CHARACTERISTICS OF THE FORTE ALGORITHM

At its core, Forte leverages locality, basing its per-point PRDC (Precision, Recall, Density, Coverage)
metrics on local neighborhood structures. This approach makes the algorithm sensitive to local
variations in data distribution. Simultaneously, Forte performs dimensionality reduction, compressing
high-dimensional data (D ≫ 4) into a more manageable R4 space while preserving essential
information for OOD detection. This reduction not only aids in mitigating overfitting but also
improves generalization and computational efficiency.

A key strength of Forte lies in its model-agnostic nature, allowing it to work with any feature extractor
that provides meaningful representations in RD. Self-supervised models like CLIP, ViTMSN, and
DINOv2 are particularly effective in this context due to their rich feature representations. The
algorithm’s non-parametric approach, which avoids assumptions about the data distribution’s form,
contributes to its flexibility and robustness. This is further enhanced by the tunable parameter k
(number of nearest neighbors), which allows for balancing sensitivity to local structures with noise
robustness.

Forte’s effectiveness in OOD detection stems from its ability to capture both density (proximity
of neighbors) and coverage (sample’s position within the support of PID). By focusing on local
neighborhood information, the algorithm can detect subtle discrepancies between in-distribution and
OOD samples, particularly effective when OOD samples reside in low-density regions. The use of
multiple metrics (precision, recall, density, and coverage) provides a holistic view of how each sample
relates to the training data X train

ID , enhancing the algorithm’s discriminative power. The local transform
employed by Forte also confers robustness to feature space variability, an important consideration
when working with different self-supervised learning models. By normalizing differences through a
focus on relative distances within the feature space, Forte maintains consistency across varied feature
representations. Empirical results presented in this paper have comprehensively demonstrated Forte’s
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superior performance compared to traditional methods, showcasing how the combination of powerful
feature extractors and the local transform leads to effective OOD detection.

D APPENDIX : ABLATION STUDY ON ENCODERS

Insight into encoders: The results presented in Table. 3 demonstrate that richer representations
significantly improve OOD detection performance, as evidenced by the ranking of encoders: CLIP >
DINO v2 > MSN when used individually, and CLIP + DINO v2 > CLIP + MSN > DINO v2 + MSN
in the two-model combinations. To further investigate this phenomenon, we conducted additional
experiments. Specifically, we included DeIT with both ViT-B (Base) and ViT-Ti (Tiny) models and
evaluated their OOD detection performance under the settings studied in Tables 2. These results,
show that DeIT-B achieves 0.87 AUROC on CIFAR-100, while DeIT-Ti achieves 0.82 AUROC. This
aligns with our hypothesis that more informative representations are essential for effective OOD
detection. DeIT, trained with an objective approximating supervision, produces less informative
embeddings compared to self-supervised encoders like DINO v2. Similarly, the DeIT-Ti model
performs worse due to its reduced capacity for generating robust representations. We think these
findings provide valuable insights into the utility of different encoders for OOD detection and offer
guidance for practitioners seeking optimal performance.

Table 8: Comparison of AUROC and FPR95 perfor-
mance figures for Base and Tiny DeIT models across
the tasks in

Model In-Dist OOD Dataset AUROC FPR95

Base-DeIT CIFAR-10 CIFAR-100 0.8712 0.9926
Tiny-DeIT CIFAR-10 CIFAR-100 0.8261 0.9903
Base-DeIT CIFAR-10 SVHN 0.9554 0.4604
Tiny-DeIT CIFAR-10 SVHN 0.9296 0.6195
Base-DeIT CIFAR-10 Celeb-A 0.9871 0.0015
Tiny-DeIT CIFAR-10 Celeb-A 0.9929 0.0007

E APPENDIX: MEDICAL IMAGE DATASETS

In medical imaging research, studies are often done using one in-house dataset. Conclusions and
models drawn from these studies are then applied to new data, with poor results. In particular, MRI
datasets exhibit strong batch effects that prevent them from being in-distribution relative to each other
because some acquisition protocol is bound to be different between them. Moreover, dataset sizes are
severely limited in clinical applications, which means a separate model cannot be trained for each
batch. A single model cannot be robust to all MRI datasets of the same subject matter, even if they
have similar acquisition parameters. Such datasets still carry enough differences to impact model
performance.

To simulate this scenario, two public datasets are used for the experiments in Section 5.2: coronal
knee MRI from FastMRI Zbontar et al. (2018); Knoll et al. (2020) with two subsets and Osteoarthritis
Initiative (OAI) Nevitt et al. (2006) with three subsets. The acquisition parameters, including sequence
and fat suppression are detailed in Table 9 and samples are shown in Figure 14. Treating the FastMRI
dataset as in-distribution and assuming that models have been trained on them, Forte is used to
determine the next course of action when confronted with the OAI dataset: 1) which subsets of the
new dataset can be aligned with the existing subsets / models? 2) To what degree do these subsets
diverge from each other? Using the FastMRI FS subset as in-distribution, the two OAI subsets (OAI
T1 and OAI MPR) are tested for OOD detection. Similarly, the FastMRI NoFS subset is used as
in-distribution and the OAI TSE subset is tested for OOD detection.
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Table 9: Acquisition parameters for MRI, grouped by distributions as used in Section
5.2.

Parameter FastMRI NoFS FastMRI FS OAI TSE OAI T1 OAI MPR

Sequence 2D TSE PD 2D TSE PD 2D TSE T1w 3D FLASH T1w 3D DESS T2w
FOV (mm2) 140 × 140 140 × 140 140 × 140 140 × 140 140 × 140
Matrix size 320 × 320 320 × 320 320 × 320 384 × 384 320 × 320
Slice thickness (mm) 3 3 3 0.7 1.5
TR (ms) 2750–3000 2850–3000 800 9.7 14.7
TE (ms) 27–32 33 9 4.0 4.2
Fat suppression No Yes No Yes Yes

(a) FastMRI FS (b) OAI T1 (c) OAI MPR

(d) FastMRI NoFS (e) OAI TSE

Figure 14: Sample images from five total subsets of the OAI and FastMRI datasets. Fat-suppressed
(a-c) and non fat-suppressed (d,e) subsets tested for OOD.
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F PSEUDOCODE

Algorithm 1 OOD Detection Using Per-Point PRDC Metrics in Forte

Input: Reference data features {xr
j}mj=1

Input: Test data features {xg
i }ni=1

Input: Number of nearest neighbors k
Output: OOD detection performance metrics: AUROC, FPR@95

1: Feature Extraction (Preprocessing):
Use pre-trained models (e.g., CLIP, ViT-MSN, DINOv2) to extract features for both reference

and test data.
Reference features: {xr

j}mj=1

Test features: {xg
i }ni=1

2: Compute Nearest Neighbor Distances:
3: for j = 1 to m do
4: Compute NNDk(x

r
j): distance to its k-th nearest neighbor in {xr

h}mh=1,h̸=j .
5: end for
6: for i = 1 to n do
7: Compute NNDk(x

g
i ): distance to its k-th nearest neighbor in {xg

h}nh=1,h̸=i.
8: end for
9: Compute Per-Point PRDC Metrics for Test Data:

10: for i = 1 to n do
11: Compute per-point metrics for xg

i relative to {xr
j}mj=1:

1. Precision per point:
precision(i)pp = 1

(
xg
i ∈ S({xr

j}mj=1)
)

where S({xr
j}mj=1) =

⋃m
j=1 B

(
xr
j ,NNDk(x

r
j)
)
.

2. Recall per point:

recall(i)pp =
1

m

m∑
j=1

1
(
xr
j ∈ B (xg

i ,NNDk(x
g
i ))
)

3. Density per point:

density(i)pp =
1

km

m∑
j=1

1
(
xg
i ∈ B

(
xr
j ,NNDk(x

r
j)
))

4. Coverage per point:

coverage(i)pp = 1

(
min

j=1,...,m
∥xg

i − xr
j∥ < NNDk(x

g
i )

)
12: Assemble feature vector ϕ(i) =

[
precision(i)pp , recall

(i)
pp , density

(i)
pp , coverage

(i)
pp

]
13: end for
14: Prepare Reference Training and Validation Sets:
15: Split {xr

j}mj=1 into training set {xtrain
j } and validation set {xvalid

j }.
16: Compute Per-Point PRDC Metrics for Reference Training Data:
17: for each xtrain

j do
18: Compute per-point metrics ϕ(j)

ref following similar steps as above, relative to {xtrain
h }mtrain

h=1
19: end for
20: Train Anomaly Detection Models:
21: Use the reference per-point metrics {ϕ(j)

ref } to train unsupervised anomaly detection models:
One-Class SVM (OCSVM), Kernel Density Estimation (KDE), & Gaussian Mixture Model
(GMM).

22: Evaluate Models on Test Data:
23: for i = 1 to n do
24: Compute anomaly scores s(i) for ϕ(i) using the trained models. Use it to assign Ground

Truth Labels, and calculate AUROC & FPR@95
25: end for
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Notes:

• 1(·) is the indicator function, returning 1 if the condition is true, and 0 otherwise.
• B(x, r) denotes a ball (in Euclidean space) centered at x with radius r.
• NNDk(x) is the distance from point x to its k-th nearest neighbor.

• S({xr
j}mj=1) =

⋃m
j=1 B

(
xr
j ,NNDk(x

r
j)
)

represents the union of balls around each refer-
ence point xr

j with radius NNDk(x
r
j).

G COMPARATIVE EVALUATION

To contextualize the strong state-of-the-art performance achieved by Forte, we present the following
infographics showing the evolution of methods and their performance on benchmark tasks.

Figure 15: AUROC performance of various unsupervised OOD detection methods over years for the
CIFAR-10 (In-distribution) and the CIFAR-100(OOD), Celeb-A(OOD) and SVHN(OOD) dataset.
The figure illustrates the progression of anomaly detection techniques, with methods represented
using unique markers and colors.

Figure 16: Comparison of AUROC performance across various supervised out-of-distribution de-
tection methods and datasets from the OpenOOD leaderboard. The figure presents results for five
datasets (NINCO, SSB-Hard, iNaturalist, Textures, and OpenImage-O) with each subplot showcasing
the progression of AUROC scores over the years. Each method is represented with a unique marker
and color. Our method "Forte + GMM" is highlighted for its superior performance, demonstrating
strong state-of-the-art results across all datasets. The x-axis represents the publication year, while the
y-axis denotes the AUROC (%) scores.

H MISCELLANEOUS RELATED WORKS

Data augmentation using generative models, particularly diffusion models, has shown promise
in improving model performance and generalization. Methods include using pretrained models to
generate variations of existing data (Luzi et al., 2022; Sariyildiz et al., 2022), fine-tuning models on
specific subjects or concepts (Gal et al., 2022; 2023; Kawar et al., 2023), and generating synthetic
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datasets for downstream tasks (Shipard et al., 2023; Roy et al., 2022; Packhäuser et al., 2023;
Ghalebikesabi et al., 2023; Zhang et al., 2024b; Trabucco et al., 2023; Karras et al., 2020; Bansal
& Grover, 2023; Akrout et al., 2023). Other notable examples include TransMix Chen et al. (2022)
and MixPro Zhao et al. (2023), which have demonstrated strong performance on the ImageNet
classification task, However, the effectiveness of these methods is lower compared to traditional
data augmentation and retrieval baselines (Zietlow et al., 2022; Azizi et al., 2023; Burg et al., 2023).
Potential biases introduced by synthetic data and the need to detect out-of-distribution generated
samples should be considered when employing these techniques.

The concept of score-based likelihood maximization is fundamental to diffusion models, inherently
guiding the reverse generation process towards maximizing the likelihood. This maximization process
likely pushes the generated images closer to the dominant modes of the distribution Song et al. (2021);
Song & Ermon (2020), which has been discussed but has not been explicitly demonstrated as a failure
mode by Yamaguchi & Fukuda (2023).
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