
Published as a conference paper at ICLR 2025

MINI-BATCH CORESETS FOR MEMORY-EFFICIENT
LANGUAGE MODEL TRAINING ON DATA MIXTURES

Dang Nguyen Wenhan Yang Rathul Anand Yu Yang Baharan Mirzasoleiman
{dangnth, hangeryang18, rathul, yuyang, baharan}@cs.ucla.edu
Computer Science Department, UCLA

ABSTRACT

Training with larger mini-batches improves the convergence rate and can yield
superior performance. However, training with large mini-batches becomes pro-
hibitive for Large Language Models (LLMs), due to the large GPU memory re-
quirement. To address this problem, an effective approach is finding small mini-
batch coresets that closely match the gradient of larger mini-batches. However,
this approach becomes infeasible and ineffective for LLMs, due to the highly im-
balanced mixture of sources in language data, use of the Adam optimizer, and the
very large gradient dimensionality of LLMs. In this work, we address the above
challenges by proposing Coresets for Training LLMs (CoLM). First, we show that
mini-batch coresets found by gradient matching do not contain representative ex-
amples of the small sources w.h.p., and thus including all examples of the small
sources in the mini-batch coresets is crucial for optimal performance. Second,
we normalize the gradients by their historical exponential to find mini-batch core-
sets for training with Adam. Finally, we leverage zeroth-order methods to find
smooth gradient of the last V -projection matrix and sparsify it to keep the dimen-
sions with the largest normalized gradient magnitude. We apply CoLM to fine-
tuning Phi-2, Phi-3, Zephyr, and Llama-3 models with LoRA on MathInstruct and
SuperGLUE benchmark. Remarkably, CoLM reduces the memory requirement
of fine-tuning by 2x and even outperforms training with 4x larger mini-batches.
Moreover, CoLM seamlessly integrates with existing memory-efficient training
methods like LoRA, further reducing the memory requirements of training LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in a variety of tasks, ranging
from machine translation to conversational AI. However, pretraining and fine-tuning LLMs with
billions of parameters requires a large amount of compute and GPU memory, not only to store
the parameters but also to compute gradients and optimizer states (e.g., momentum and historical
gradients in Adam). For example, full finetuning a relatively small LLM, such as Phi-2 with 2.7B
parameters, using a batch size of 128 requires at least 44 GB of GPU memory. The large memory
requirement makes it prohibitive to train such models with larger batch sizes, which effectively
improves the convergence and can improve performance. This raises a key question: can we train

LLMs with smaller mini-batches and get the benefits of training with larger batch sizes?

To address this problem, many memory-efficient techniques have been recently proposed, mainly
to enable efficient fine-tuning of pretrained language models. At a high level, such methods aim
to find a smaller set of parameters (Adelman et al., 2021), or find low-rank (Hu et al., 2021; Zhao
et al., 2024b) or quantized (Dettmers et al., 2022) weights or optimizer states to train the model
in a memory-efficient manner. There have also been efforts to adapt gradient-free optimization for
training LLMs (Malladi et al., 2023). Yet, most memory-efficient techniques cannot achieve a com-
parable performance to training the full model parameters, or considerably increase the training time.

In this work, we address the above problem from the data perspective. Specifically, we target find-
ing smaller mini-batches of examples that simulate or outperform training with larger mini-batches.
If this can be done, it directly improves the convergence rate of training or fine-tuning with mini-
batch stochastic gradient methods, and can yield superior performance. To achieve this, an effective

1

Published as a conference paper at ICLR 2025

approach is to find smaller mini-batches that closely capture the gradient of large random batches
(Yang et al., 2023). Smaller mini-batches (coresets) selected by this approach are medoids (cen-
troids) of the data in gradient space, weighted by their corresponding cluster size (Mirzasoleiman
et al., 2020). Despite its promise on classification tasks, this approach is infeasible and ineffective
for pre-training or fine-tuning LLMs, as we discuss below.

Firstly, language data is often a mixture of highly imbalanced sources (e.g. categories or types of
instructions). In this case, we show that smaller mini-batch coresets do not contain representative
examples from the small sources, and obtain poor performance. Secondly, Adam is the standard op-
timizer for training LLMs, and small mini-batches that capture the vanilla gradient of larger batches
are not optimal for training with Adam. Finally, the very large dimensionality of the LLM gradients
makes pairwise distances vacuous and the medoids cannot be found accurately. These challenges
make finding mini-batch coresets for training LLMs inherently much more challenging to address.

In this work,we propose Coresets for Training LLMs(CoLM) by making the following contributions:
• First, we show that w.h.p. mini-batch coresets only contain medoids of the big sources with

a large-enough number of samples. Thus, examples selected via gradient matching from small
sources are not representative and do not benefit learning other examples in their sources. There-
fore, it is crucial to include all examples of the small sources in the mini-batch coresets. Besides,
to enhance learning small sources, we weight all examples in the mini-batch coresets uniformly.

• Next, to find mini-batch coresets for training with Adam, we normalize gradients by their histor-
ical exponential average, where the historical terms are only calculated for examples in the big
sources. We find medoids of the big sources based on their normalized gradients.

• Finally, to enable finding medoids in the very high-dimensional gradient space, we use zeroth-
order methods to find smooth gradient of the last V -projection matrix in a memory-efficient
way, and sparsify it via a source-wise mask, which keeps dimensions with the largest normalized
gradient magnitude. We use ω1 distance between sparse gradients to find medoids of big sources.

• We evaluate CoLM on the challenging task of mathematical problem-solving, by fine-tuning
Phi-2, Phi-3 (Li et al., 2023b), Zephyr (Tunstall et al., 2023), and Llama-3 models (Dubey et al.,
2024) using LoRA on the MathInstruct dataset (Yue et al., 2023) containing 14 highly imbal-
anced sources. Additionally, we apply CoLM to datasets in SuperGLUE benchmark (Wang
et al., 2019), where we find sources by clustering the model’s hidden states during the training.
Remarkably, CoLM reduces the memory requirement of fine-tuning by 2x and even outperforms
training with 4x larger random mini-batches. Compare to mini-batch of the same size, CoLM
outperforms by up to 7.1% and 20% on several in- and out-domain tasks.

Notably, our approach can be easily stacked with LoRA, and other memory-efficient training meth-
ods to further reduce the memory requirements of training LLMs, as we confirm in our experiments.

2 RELATED WORK

Memory-efficient training of LLMs. To address the large memory requirements of training LLMs,
several methods have been recently proposed. LoRA (Hu et al., 2021) freezes the pre-trained model
weights and trains two low-rank adaptor weight matrices to adapt the weights of each layer. How-
ever, LoRA suffers from a performance drop compared to training with full-rank matrices. To im-
prove upon this, several variations of LoRA (Liu et al., 2024; Renduchintala et al., 2023; Xia et al.,
2024b) have been proposed. Besides, GaLore (Zhao et al., 2024b) proposed to reduce the mem-
ory cost of optimizer states by calculating the gradients and projecting them into a low-rank space.
However, the above approaches also lead to increased computational costs.

Another line of methods approximate backpropagation by sparsifying gradients (Frantar and Alis-
tarh, 2023), subsampling the computational graph (Adelman et al., 2021), gradient check-pointing
(Chen et al., 2016), and quantization of weights and optimizer states (Dettmers et al., 2022).
However, these approaches can incur large approximation errors and cause performance drops.
Zeroth-order gradient approximation has also been used for memory-efficient training (Malladi
et al., 2023). However, this approach cannot reach a comparable performance to normal training.

Our method can be easily stacked with existing memory-efficient methods to improve convergence
and further reduce memory requirements.

2

Published as a conference paper at ICLR 2025

Data selection for training LLMs. Data selection for training LLMs has garnered significant at-
tention due to its potential to enhance model performance while reducing computational costs. For
pre-training, examples with middle perplexity rankings are shown beneficial (Marion et al., 2023).
Clustering based on embeddings of a pretrained model and sampling from the clusters to drop re-
dundancies has been also investigated (Tirumala et al., 2024).

For fine-tuning, training on manually crafted high-quality instruction/response pairs has shown
highly effective (Zhou et al., 2023a). Building on this observation, data selection using LLMs such
as ChatGPT or training on textbooks is proposed (Eldan and Li, 2023; Li et al., 2023c; Chen et al.,
2024; Li et al., 2023a), and metrics such as diversity (Bukharin and Zhao, 2023; Du et al., 2023),
difficulty (Bhatt et al., 2024; Marion et al., 2023; Zhou et al., 2023b), and completion length (Zhao
et al., 2024a) are shown relevant. Given a high-quality validation set, using influence functions to
select the most beneficial subsets of fine-tuning data has been also explored (Xia et al., 2024a). How-
ever, a high-quality validation set is not always available (e.g. for MathInstruct). Existing methods
select data in a one-shot manner before fine-tuning, and either require access to another open LLM
or a large preprocessing time to fine-tune the original or a proxy LLM on the target data.

We study data selection from a different perspective, i.e. by selecting small mini-batches that match
the performance of training with larger mini-batches. As baselines, we adapt several one-shot
methods based on loss (Jiang et al., 2019), gradient norm (Katharopoulos and Fleuret, 2018), middle
perplexity (Marion et al., 2023), completion length (Zhao et al., 2024a), confidence, and hidden-state
centrality (Bhatt et al., 2024) to iteratively select small mini-batches from larger random batches.

3 PRELIMINARY: MATCHING GRADIENT OF LARGE BATCHES

Consider training a machine learning model on a dataset indexed by V , by minimizing the loss
function L(εεε) = Ei→V [Li(εεε)]. Mini-batch SGD with learning rate ϑ iteratively updates the model
parameters as εεεt+1 = εεεt → ϑ gMt,t, where gMt,t = Ei→Mt [gi,t] is the gradient of a mini-batch Mt

of random examples, and gi,t = ↑Li(εεεt). As long as the mini-batch size b = |Mt| is not too large,
the convergence rate of mini-batch SGD directly scales with a factor of 1/b. Formally, for a non-
convex L-gradient Lipschitz loss, mini-batch SGD with a small enough ϑ will visit an ϖ-stationary
point w.h.p. at least once in the following number of iterations (Ghadimi and Lan, 2013):

Õ

(
L(L(εεε0)→ L

↑)

ϖ2

(
1 +

ϱ
2

bϖ2

))
, (1)

where Ei→V [(gi,. → gV,.)2] ↓ ϱ
2 is the variance of the individual gradients.

To improve the convergence of mini-batch SGD with mini-batch b, one can iteratively find weighted
subsets (mini-batch coresets) of size b that closely match the gradients of large random batches ML

t
of size r>b (Yang et al., 2023). As the mini-batch coresets have a similar gradient to large batches,
they have a smaller variance of ϱ2

/r. Thus, they improve the convergence of mini-batch SGD by
r/b. The mini-batch coresets found by gradient matching are medoids (centroids) of the larger batch
in the gradient space, weighted by their corresponding cluster size, and can be found by maximizing
a monotone submodular1 function via the greedy algorithm (Mirzasoleiman et al., 2020):

St
↑
↔ argmax

S↓ML
t ,|S|↔b

∑

i→ML
t

max
s→S

[C → ↗gi,t → gs,t↗], (2)

where C is a big constant. To find subsets efficiently, gradient of the loss w.r.t the input to the last
layer of the model (which best captures the variation of gradient norm (Katharopoulos and Fleuret,
2018)) is commonly used (Mirzasoleiman et al., 2020; Pooladzandi et al., 2022; Yang et al., 2023).

4 COLM: MINI-BATCH CORESETS FOR TRAINING LLMS

Despite its success of image classification tasks (Yang et al., 2023), the above gradient matching
formulation performs poorly for training LLMs, due to the following reasons:

1A set function F : 2V → R+ is submodular if F (e|S) = F (S ↑ {e})↓ F (S) ↔ F (T ↑ {e})↓ F (T),
for any S ↗ T ↗ V and e ↘ V \ T . F is monotone if for all S ≃ T , F (S) ⇐ F (T).

3

Published as a conference paper at ICLR 2025

Figure 1: A toy imbalance data. (Left) Full data V with two big (blue, green) and one small sources
(purple). k = 3 medoids of the data are shown in red. (Middle & right) Two random samples of the
data, with their corresponding k = 3 medoids. The ς

ω-neighborhoods of big sources are dense and
thus medoids of random samples contain central examples of the big sources. However, the medoids
of random sample do not necessarily contain central examples of the small source.

• Highly Imbalanced Language Data. Language data often contain highly imbalanced sources
(e.g. categories or types of instructions). For example, the ratio of the largest to smallest source
size in the MathInstruct data is 300. Here, subsets found by gradient matching do not contain
representative examples (medoids) of the small sources and yield suboptimal performance.

• Adam optimizer. Adam (Kingma and Ba, 2014) is the commonly used optimizer for language
tasks. Adam scales each gradient dimension to speed up learning along flatter dimensions and
slow down learning along sharper ones. Matching the vanilla gradient of large batches yields
suboptimal performance when training with Adam.

• Very Large Gradient Dimensionality. Finding medoids via Eq. (2) requires calculating pair-
wise distances between per-example gradients. But, in the very high-dimensional gradient
space of LLMs, distances become vacuous. Even the last layer is too high-dimensional to find
medoids accurately. For instance, the dimensionality of the last V -projection matrix of Phi-2 is
6.5M when training the full parameters and 327K (matrix B) when using LoRA with rank 128.

Next, we will discuss how we address each of the above challenges.

4.1 DEALING WITH THE IMBALANCED LANGUAGE DATA

First, we address the challenge of dealing with language data containing highly imbalanced mixture
of sources. Our key observation is that larger random batches contain many examples from the
big sources. Thus, mini-batch coresets selected via gradient matching contain central examples of
the big source. In this case, training on the coresets benefits learning other examples in the big
sources. On the other hand, small sources have a few examples in the large batches. Hence, the
mini-batch coresets do not contain central examples of the small sources. In this case, training on
the coresets does not benefit learning other examples from small sources. This implies that one
cannot reliably select representative examples of small sources from the larger batches. Indeed, for
optimal performance, it is crucial to train on all examples of small sources in the larger batches.

Next, we formalize this problem. Consider a dataset V containing Q sources, i.e., V = {V1 ↘

· · · ↘ VQ}. Suppose gradients of examples in source Vq at iteration t are drawn from an underlying
infinite set, according to an unknown probability distribution. Let At

q be the set of k medoids of
the infinite set, such that around each i ↔ A

t
q there is a neighborhood of radius at least ς↑, where

the probability density is at least φ at all points, for some constants ς
↑, φ. This implies that the

medoids are from reasonably dense and therefore representative regions of the gradient space. Let
us consider g : R ≃ R, to be the volume of a ball of radius ς centered at a point in the metric
space. The following theorem shows that for a large enough source that is randomly partitioned into
m parts, there are many examples from the dense neighborhoods in every partition.

Theorem 4.1. Let examples in Vq be partitioned into m parts. A number of examples |Vq| ⇐

2km log(km/ε)
ϑg(ϖ) , where ς ↓ ς

ω
, is suffice to (1) have at least km log(km/↼) elements in the

ς-neighborhood of each i ↔ A
t
q and (2) have each partition contain elements from all k ς-

neighborhoods with probability at least (1→ ↼) for a small ↼ > 0.

4

Published as a conference paper at ICLR 2025

Next, we show that the medoids of every partition are central examples from the dense neighbor-
hoods of the (infinite) data, with a high probability. That is, they are in ς-neighborhood of At

q .

Theorem 4.2. Let ↼, ϖ > 0 and let nq = |Vq| and n0 be an integer such that for nq ⇐ n0 we have

nq

ln(nq)
⇐

mk
ϱ2 . If nq ⇐ max

(
n0,

m log(2m/ε)
ϱ2

)
, with a probability of at least 1 → ↼, medoids found

by the greedy algorithm from every partition are in ς-neighborhoods of each i ↔ A
t
q .

Note that in every large random batch, there is a part of every source Vq , with expected number of
examples |Vq|/|V |. Hence, the above theorems imply that for small sources without a large-enough
sample size, coresets found by gradient matching do not necessarily contain their central examples.
Hence, training on them yields a poor performance on small sources. Fig 1 shows an illustration.

Coresets for Imbalanced Data. Consider a data V = {V1 ↘ · · · ↘ Vp ↘ Vp+1 ↘ · · ·VQ}, with
p small and Q → p large sources. For a dataset with c sources, we regard small sources as those
with less than |V |/c examples. To learn the small sources, we include all of their examples from
the large batch in the small mini-batch coreset. That is, St

s = {v ↔ M
L
t |v ↔ ↘i→[p]Vi}. But, for

every big source Vq where q ↔ {p + 1, · · · , Q}, we apply the greedy algorithm to its examples
in the larger batch V

t
q = {v ↔ M

L
t |v ↔ Vq} and add its medoids S

t
q ↔ V

t
q to the small mini-

batch coreset, where bq = |S
t
q| is proportional to the number of examples from Vq in M

L
t , i.e.,

bq = (b→|S
t
s|).|V

t
q |/(|M

L
t |→|S

t
s|). The mini-batch coreset at step t is St = {S

t
s↘ S

t
p+1↘· · ·↘S

t
Q}.

We note that sources are mostly separable based on their gradients. Thus, one subset can be found
from all examples of big sources in the larger batch. However, selecting subsets separately yields a
slightly better performance, as we show in our experiments. Finally, to ensure learning various big
and small groups at a more uniform speed, we assign uniform weights to all the selected examples.
For datasets such as MathInstruct, the sources are labeled in the training data. For datasets without
specified sources, we cluster the hidden state of the model to find sources during fine-tuning.

The following theorem shows that the small mini-batch coresets have a smaller variance compared
to random mini-batches of the same size. Therefore, they guarantee superior convergence rate.
Theorem 4.3 (Variance reduction). Let the number of outliers which do not belong to any k dense

areas be ↽. Let ςu > ς
ω

be the largest distance from an outlier to any centroids. Assume that all the

selected samples S
t
q belong to the dense areas. The variance of the mini-batch coresets of size b is

smaller than the variance of the random subset of size b by up to
ς
m (ςu →ς

ω)(2ςω + ς
m (ςu →ς

ω)).

4.2 FINDING CORESETS FOR TRAINING WITH ADAM OPTIMIZER

Next, we address finding mini-batch coresets for training with Adam optimizer. Adam adapts the
learning rate across dimensions by scaling the gradient updates by square roots of exponential mov-
ing averages of squared past gradients. In doing so, it reduces the learning rate across sharp dimen-
sions and increases the learning rate across flatter dimensions to improve convergence. Formally,

mmmt =
φ1mmmt↗1 + (1→ φ1)gt

1→ φt
1

, vvvt =
φ2vvvt↗1 + (1→ φ2)g2

t

1→ φt
2

, εεεt = εεεt↗1 → ϑ
mmmt

ϖ+
⇒
vvvt

. (3)

For selecting mini-batch coresets for training with Adam, matching the vanilla gradient is not
enough. To do so, we normalize every gradient dimension by the exponential average of its his-
torical values. Additionally, as we only select medoids of big sources, we calculate the historical
terms mmm,vvv only based on the big groups’ gradients, which we denote by m̂mm, v̂vv. This allows a more
precise selection of the subsets, as we also confirm in our experiments. Formally, we select the
medoids of the normalized gradients of big sources, by solving the following submodular facility
location function:

S
q
t
↑
↔ argmax

S↓V t
q ,|S|↔bq

∑

i→V t
q

max
s→S

[C → ↗
m̂mmt,i

ϖ+
√
v̂vvi,t

→
m̂mmt,s

ϖ+
√
v̂vvs,t

↗]. (4)

The very high dimensional gradient of LLMs makes solving Eq. (4) prohibitively expensive. Be-
sides, in such a high dimensional space, pair-wise distances become vacuous. Next, we discuss
lowering the gradient dimensionality to find medoids of big sources more accurately.

5

Published as a conference paper at ICLR 2025

4.3 FINDING LOWER-DIMENSIONAL GRADIENT ESTIMATES

The very high-dimensional gradients of LLMs are very noisy. To find smoother lower dimensional
gradients in a memory efficient manner, we use zeroth-order methods to calculate the gradient of the
last V -projection matrix, and then sparsify it to lower its dimensionality. The V -projections matrix
allows finding higher-quality subsets, as we will confirm in our experiments. Notably, this approach
stacks well with memory-efficient training methods such as LoRA, as we will confirm empirically.

Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992) is a zeroth-order tech-
nique that estimates the gradient as:

ĝ =
L(εεε + ϖzzz)→ L(εεε → ϖzzz)

2ϖ
zzz ⇑ zzzzzz

Tg, (5)

where zzz ↔ Rd is a random vector with zzz ⇓ N (0, IIId), and d is the number of model parameters and
ϖ is the perturbation scale. As ϖ ≃ 0, the SPSA estimate provides a rank-1 reconstruction of the
gradient, and this is smoother than the actual gradient calculated with backpropation. SPSA requires
two forward passes through the model to compute the gradient estimate.

Estimating the Last V -Projection Gradient. To get the gradient of the last V -projection matrix for
example i, instead of perturbing all the parameters, we sample random perturbations for parameters
corresponding to the last (LoRA) V -projection in the perturbation vector zzz, and use zero for the
other entries:

ĝvp
i,t =

Li(εεεt + ϖzzzvp)→ Li(εεεt → ϖzzzvp)

2ϖ
zzzvp, (6)

where zzzvp ↔ Rdvp with zzz = [000d↗dvp , zzzvp] and zzzvp ⇓ N (0, IIIdvp), and dvp is the dimensionality of
the flattened last V -projection matrix. Eq. (6) can be calculated very efficiently in just one forward
pass. To do so, we first make a forward pass to get the activations XXXL↗1 of the penultimate layer
of the model. Then, we perturb the last-layer parameters twice to calculate ĝvp

i,t based on the pre-
calculated XXXL↗1. The time of getting the lower dimensional last-layer gradients will be dominated
by the time of computing XXXL↗1, and the cost of the second step is negligible. To minimize the
memory requirement, one can follow (Malladi et al., 2023) to use a fix seed to generate the same
perturbation zzzvp multiple times. Hence, the memory overhead is also negligible.

We use the zeroth-order gradient estimates in Eq. (6) to calculate normalized gradients m̂mmt, v̂vvt for the
big sources. Nevertheless, these gradients are still too high-dimensional to find medoids accurately.

Sparsifying the Last-layer Normalized Gradient Estimates for Adam. To further reduce the
gradient dimensionality, we sparsify the normalized V -projection gradients. The subsets are selected
for each big source separately. Thus, for every big source q, we find dimensions that best preserve
the normalized gradient norm of its examples V t

q ⇔ M
L
t in the larger random batch. The normalized

gradient norm to the first order indicates how much each gradient update achieves a loss reduction:

!L(εεε) = lim
ϱ↘0

L(εεε + ϖmmm/(ϖ+
⇒
vvvt))→ L(εεε)

ϖ
= (

mmm

ϖ+
⇒
vvv
)T

mmm

ϖ+
⇒
vvv
. (7)

Dimensions that best preserve the normalized gradient norm are those with the largest magnitude.
Therefore, for every big source, we sparsify the normalized zeroth-order gradient m̂mmt/(ϖ+

⇒
v̂vvt) of

the last (LoRA) V -projection by a mask vector M t
q , which has 1 for the top h parameters with the

largest magnitudes and 0 elsewhere.

Using ω1 distance in high dimensions. We calculate the pair-wise normalized gradient dissimilarity
between sparsified gradients using ω1 distance, which is preferable to Euclidean distance in high
dimensions (Aggarwal et al., 2001). The medoids for each big source are found by solving:

S
t
q
↑
↔ argmax

S↓V t
q ,|S|↔ki

∑

i→V t
q

max
s→S

[C → ↗
m̂mmt,i

ϖ+
√
v̂vvt,i

↖M
t
q →

m̂mmt,s

ϖ+
√
v̂vvt,s

↖M
t
q↗1]. (8)

In our experiments, we show that selecting as small as 0.7% of the (LoRA) last layer gradient
dimensions enables finding high-quality subsets efficiently. Additionally, we show that compared
to random projection (Johnson, 1984), this approach enables finding higher-quality subsets and is
orders of magnitude faster in practice.

The pseudo-code of CoLM is illustrated in Alg. 1 in Appendix B.

6

Published as a conference paper at ICLR 2025

Table 1: Accuracies (↙) on in-domain and out-of-domain datasets when fine-tuning Phi-2 with LoRA
on the MathInstruct for 1K iterations. One-shot selection techniques (CL, GN, LC, FL, MP) are
adapted to select small mini-batches on the fly. CoLM with batch size (bs = 64) outperforms all
the baselines. Notably, CoLM even outperforms fine-tuning with bs = 256, while using 45% less
memory, and achieves similar performance to fine-tuning for 2K iterations with bs = 128.

Method In-domain Out-domain Avg All
GSM8K MATH NumGLUE Avg SVAMP Math. SimulEq Avg

Pretrained 52.9 16.4 35.0 34.8 67.9 31.9 28.8 42.9 38.8

FT (bs=64) 66.5±0.8 28.4±0.3 50.2±0.9 48.3±0.2 79.2±0.4 52.4±0.8 24.1±1.5 51.9±0.2 50.1±0.2

CL 56.1±3.2 26.4±0.5 32.9±3.2 38.5±2.2 33.3±4.9 46.9±4.9 11.9±3.2 30.7±2.8 34.6±2.5

BL 58.0±0.5 21.1±0.5 43.7±2.0 40.9±0.8 77.1±0.7 38.0±4.4 18.4±0.6 44.5±1.3 42.7±1.0

GN 65.0±1.2 24.9±1.0 45.5±1.2 45.1±1.1 76.7±1.3 42.9±2.7 16.8±2.3 45.5±2.0 45.3±1.6

LC 59.3±0.9 24.0±0.7 48.0±0.5 43.8±0.4 79.5±0.8 45.9±0.3 23.6±2.6 49.7±1.1 46.7±0.7

FL 68.0±1.1 29.2±0.3 51.4±1.3 49.5±0.7 80.4±0.3 55.6±1.2 30.5±2.5 55.5±1.3 52.5±1.0

MP 65.3±0.2 28.4±0.2 54.6±1.6 49.4±0.5 79.8±0.9 53.6±1.0 36.6±3.0 56.7±0.9 53.0±0.7

CoLM (Ours) 68.4±0.3 29.8±0.4 57.3±0.4 51.9±0.3 80.2±1.0 59.8±1.1 44.1±2.8 61.4±1.6 56.6±0.9

FT (bs=128) 67.4±0.5 28.8±0.3 53.2±1.2 49.8±0.5 80.4±1.3 55.6±0.4 29.9±2.4 55.3±1.0 52.6±0.6

FT (bs=256) 67.5±0.1 29.6±0.2 58.3±1.2 51.8±0.4 79.8±1.1 56.3±0.7 40.5±2.1 58.9±1.2 55.3±0.5

FT (bs=128) 2K 67.7±0.8 30.3±0.4 58.4±0.8 52.1±0.3 79.5±0.4 57.9±0.5 45.5±0.7 60.9±0.4 56.5±0.3

5 EXPERIMENTS

In this section, we evaluate the performance of CoLM, for fine-tuning LLMs, by comparing the
performance, memory requirement, and wall-clock training time of training with small and large
random mini-batches, with that of our method. In addition, we conduct an ablation study showing
the effectiveness of different design choices of CoLM. We further demonstrate the effectiveness of
CoLM in the pre-training setting in Appendix F.

5.1 SETTINGS

Training datasets. We use the MathInstruct (Yue et al., 2023) dataset which consists of about
260K instruction tuning examples, curated from 14 highly imbalanced open-source math datasets,
with broad coverage of mathematical fields and a wide range of difficulty levels. The ratio of the
largest to smallest source in MathInstruct is almost 300, and the distribution of sources can be found
in Fig 4a in the Appendix. For datasets without specific sources, we use three datasets from the
SuperGLUE benchmark (Wang et al., 2019) for the classification task: SST-2, CB, and MultiRC.

Models. We utilize the Phi-2, Phi-3 (Li et al., 2023b), Zephyr (Tunstall et al., 2023), and Llama-3
models (Dubey et al., 2024).

Training details. We use LoRA with a rank of 128, alpha of 512, and dropout rate of 0.05. For Phi
models, we apply LoRA to all attention matrices (i.e. QKV proj) and two fully connected layers
while for Zephyr, we apply LoRA to all attention matrices (i.e. QKVO proj). All experiments are
run on 4 NVIDIA A40 GPUs. We repeat each experiment three times.

Baselines. We compare CoLM with normal fine-tuning (FT) using small and large batch sizes and
an online selection method called Big Loss (BL) (Jiang et al., 2019). In addition, we adapt one-
shot selection techniques, including Grad Norm (GN) (Katharopoulos and Fleuret, 2018), Middle
Perplexity (MP) (Marion et al., 2023), Completion Length (CL) (Zhao et al., 2024a), Least Confi-
dence (LC), and selecting centroids of the model’s hidden state by maximizing submodular facility
location (FL) (Bhatt et al., 2024), to select small mini-batches from larger ones during fine-tuning.

Evaluation datasets. Following (Yue et al., 2023), we use a variety of popular datasets across
both in-domain and out-of-domain datasets. The in-domain datasets include GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), and NumGLUE (Mishra et al., 2022). For the out-of-domain
datasets, we include SVAMP (Patel et al., 2021), Mathematics (Davies et al., 2021), and SimulEq
(Koncel-Kedziorski et al., 2016).

Additional training details and evaluation metrics are specified in Appendix C.

5.2 MAIN RESULTS: MATHINSTRUCT

CoLM achieves a superior performance. Table 1 shows the in-distribution and out-of-distribution
accuracies of fine-tuning Phi-2 with LoRA on the MathInstruct dataset for 1K iterations. First, we

7

Published as a conference paper at ICLR 2025

(a) Different LLMs (b) Changing mini-batch size (c) Memory usage vs batch size

Figure 2: (a) CoLM with bs = 64 (from 128) outperforms fine-tuning different models with bs = 64
and bs = 128 by a large margin; (b) CoLM improves the performance of training with different batch
sizes. The size of each circle is proportional to the training time of the corresponding method. (c)
CoLM reduces memory consumption, with reduction increasing as the batch size grows.

(a) Time vs Accuracy vs Memory (b) Variance of mini-batch grads (c) Convergence rate

Figure 3: Fine-tuning Phi-2 on MathInstruct. (a) Wall-clock time (including the time for CoLM’s
selection), memory consumption, and performance of fine-tuning. CoLM outperforms normal fine-
tuning for 1K iterations with bs = 128 (256), while being 1.3x (2.7x) faster and consuming 20%
(45%) less memory, respectively; (b) CoLM has a smaller variance than random mini-batches of the
same size; (c) CoLM converges much faster than normal fine-tuning (FT).

see that using a larger mini-batch size improves the performance, which is consistent with the the-
oretical results in Eq. (1). Besides, we note that training for 1K steps with a mini-batch size of 64,
128, 256 corresponds to training on 25%, 50% and 100% of the data, respectively. Remarkably,
training on only 25% of the data with CoLM with bs = 64 (selected from 128) outperforms all the
baselines and achieves a similar performance to fine-tuning for 2K iterations with bs = 128. Interest-
ingly, training for 1K iterations with CoLM using bs = 64 even outperforms training with bs = 256.

CoLM improves the performance of different models and batch sizes. Figure 2a shows that
CoLM significantly outperforms normal fine-tuning across 6 different model architectures. Specifi-
cally, fine-tuning Phi-3 for 4K iterations using CoLM with bs = 64 outperforms normal fine-tuning
for 4K iterations with bs = 64 and bs = 128 by 5% and 4.2%. Notably, for better-performing models,
CoLM provides more performance improvement. This confirms its applicability to state-of-the-art
architectures. Fig. 2b shows that CoLM improves the performance of different batch sizes, including
bs = 32, bs = 64, and bs = 128, without significantly increasing the training time.

CoLM effectively reduces the Activation Memory. The memory required for training an LLM
can be decomposed into three parts: activation memory + weight memory + optimizer state mem-
ory. Memory efficient methods often reduce the weight or optimizer-state memory. For example,
LoRA reduces the optimizer state memory but slightly increases the weight and activation memory
by adding low-rank matrices. Orthogonal to such methods, CoLM effectively reduces the activation
memory by reducing the batch size. Hence, stacked with memory-efficient methods such as LoRA
and gradient accumulation, it can further reduce the memory, particularly when batch size is large.
In that scenario, the activation memory dominates the optimizer state and weight memory. Figure 2c
shows the memory usage of normal fine-tuning and CoLM with half the batch size. Notably, for total
bs = 2048, CoLM (bs = 1024) requires almost 2x less memory than fine-tuning with bs=2048. A
larger batch size is useful in particular for pre-training. Our experiments in Appendix F, confirm the
benefits of CoLM to pre-training. Furthermore, while memory efficient methods harm the perfor-
mance, CoLM effectively improves the performance over training with larger batches. A detailed
analysis of memory overhead of our method can be found in Appendix E.

CoLM speeds up training and improves convergence. Fig. 3a compares the wall-clock time
and average performance of CoLM and normal fine-tuning Phi-2, using LoRA. For CoLM, the

8

Published as a conference paper at ICLR 2025

Table 2: Effect of different components in CoLM.
Method In-domain Out-domain Avg

Weighted medoids 48.5±1.1 53.8±0.7 51.1±0.9

Medoids (using cosine distance) 48.7±0.3 54.0±1.6 51.3±0.9

Medoids (using ω1 distance) 48.6±0.3 54.4±0.8 51.5±0.5

Medoids of big sources & keep small sources 50.9±1.0 58.4±0.8 54.6±0.6

Medoids of big sources selected separately & keep small sources 50.6±0.2 59.6±0.9 55.1±0.5

CoLM: Medoids of big sources selected separately for Adam & keep small sources 51.9±0.3 61.4±1.6 56.6±0.9

wall-clock time includes the time for selecting the mini-batches. Remarkably, CoLM with bs = 64
(selected from 128) speeds up training for 2K iterations with bs = 128 and 1K iterations with bs = 256
by 2.7x, while having 20% and 45% less memory requirements and superior performance. Figure 3b
shows that throughout training, the variance of CoLM (bs = 64) gradients is smaller than normal
fine-tuning with bs = 64, which confirms our theoretical results in Sec. 4.1. This yields a faster
convergence compared to random mini-batches of the same size, as shown in Fig 3c. At the same
time, although random bs = 128 has a lower variance than CoLM with bs = 64, the more uniform
speed of learning sources by CoLM enables it to obtain a superior performance. Furthermore, we
show that CoLM yields smaller loss compared to baselines throughout training and achieves the
optimal performance in less training time in Appendix D.

5.3 ABLATION STUDIES

The importance of different components. Tab 2 highlights the importance of different components
in CoLM. Notably, including all examples of the small data sources improves the accuracy signif-
icantly by around 3% on average. This finding well aligns with our analysis in Sec. 4.1. Selecting
subsets separately per source and normalizing gradients for Adam further boost the performance by
0.5% and 1.5%, respectively, justifying our methods in Sections 4.2 and 4.3. Using uniform weights
for selected example slightly improves the performance by 0.4%.

Sparsification criteria for V -projection. Table 3 compares the performance of CoLM for different
sparsification criteria. Keeping parameters with the largest gradient magnitude achieves the best
performance. This result is consistent with that of (Guo et al., 2024), which show that parameters
with the largest gradient magnitude are the most salient. Weight magnitude, a common approach in
network pruning (Han et al., 2015), yields a slightly lower performance than random sparsification.

Sparsity level. Table 4 illustrates the performance of CoLM when changing the dimensionality (h)
of the sparsified gradients. The accuracy peaked at h = 2560, which equals the dimensionality of
the hidden state of Phi-2, and gradually decreases for larger values of h. This result is expected as
gradients in high dimension suffer from the curse of dimensionality, yielding a sub-optimal solution.

Choices of low-dimensional gradient approximations. We compare the usage of sparsified MeZO
gradient in our method with the sparsified actual gradient (via backprop), projected actual gradient,
and low-rank MeZO gradient. For sparsified actual gradient, we apply the same sparsification
technique as our CoLM. For projected actual gradient, we apply a random projection to the actual
gradient and leverage the memory-efficient implementation introduced by Park et al. (2023). For
low-rank MeZO gradient, we use the low-rank projection technique with SVD in GaLore Zhao
et al. (2024b) and adopt their best setting with rank r = 8 and subspace change frequency T = 200.
Table 5 shows that the sparsified MeZO gradient has a clear margin over the other choices of
low-dimensional gradient estimates, highlight the effectiveness of zero-th order gradient and our
sparsification strategy in selecting high-quality subsets.

Choices of layers. We replace the last V -projection layer with the last FC layer and the combination
of the last Q,K, V projections in CoLM. As can be seen in Table 6, using the MeZO gradient of the
last V projection matrix yields a gap of almost 2% compared to other choices of layers.

Completion length. (Zhao et al., 2024a) found that fine-tuning on examples with the longest com-
pletion length improves the performance. Figure 4b in the Appendix shows that CoLM, in contrast,
selects examples with shorter answers (avg length ⇑ 120) than the average completion length of the
data, which is about 130. Nevertheless, CoLM significantly improves over selecting examples with
the longest completion length (avg length ⇑ 210) in random mini-batch as indicated in Table 1.

9

Published as a conference paper at ICLR 2025

Table 3: Effect of the sparsification criteria.
Criteria In-domain Out-domain Avg

random 51.1±0.9 59.6±2.5 55.4±1.7

weight 51.1±0.7 59.6±0.1 55.3±0.3

weight ⇒ grad 51.4±0.3 58.8±1.5 55.1±0.9

grad 51.9±0.3 61.4±1.6 56.6±0.9

Table 4: Effect of the sparsity level.
Dim In-domain Out-domain Avg

1280 50.4±0.8 57.8±1.8 54.1±1.3

2560 51.9±0.3 61.4±1.6 56.6±0.9

5120 51.2±0.1 60.1±0.9 55.7±0.5

10240 51.6±0.5 59.4±0.7 55.5±0.4

Table 5: Comparison between different low-
dimensional gradient approximations.

Approx In-domain Out-domain Avg

Sparsified actual grad 51.0±0.3 58.3±0.3 54.7±0.3

Projected actual grad 50.9±0.5 59.4±0.4 55.2±0.4

Low-rank MeZO grad 51.0±0.2 58.1±0.8 54.6±0.4

Sparsified MeZO grad 51.9±0.3 61.4±1.6 56.6±0.9

Table 6: Comparison between different
choices of layers.

Layer(s) In-domain Out-domain Avg

FC 50.6±0.8 58.4±0.6 54.5±0.1

V proj 51.9±0.3 61.4±1.6 56.6±0.9

QKV projs 51.3±1.0 58.2±1.1 54.7±1.0

Table 7: Accuracies (↙) when fine-tuning Phi-2 with LoRA on three datasets from the SuperGLUE
benchmark for 80 iterations. CoLM with bs = 64 (from 128) effectively improves the performance
of normal fine-tuning with bs = 64. When using clusters found by the fine-tuned model, CoLM
outperforms fine-tuning with bs = 128.

SST-2 CB MultiRC Avg

Pretrained 56.6 45.5 46.3 49.5

FT (bs=64) 91.4±0.2 69.1±1.8 62.0±2.2 74.2±1.4

CoLM (clustering during fine-tuning) 92.3±0.4 73.3±1.7 70.5±3.6 78.7±1.9

CoLM (clustering of the fine-tuned model) 92.4±0.7 77.6±3.7 73.0±3.4 81.0±2.6

FT (bs=128) 92.1±1.0 72.1±0.8 72.6±5.2 78.9±2.3

5.4 DATASETS WITHOUT SPECIFIC SOURCES: SUPERGLUE BENCHMARK

We apply CoLM to fine-tuning Phi-2 with bs = 64 (selected from 128) for 80 iterations on three
classification datasets (SST-2, CB, MultiRC) in the SuperGLUE benchmark. Note that the Super-
GLUE datasets do not have any source information. To find sources, we warm up the model for
20 iterations with bs = 64, and then cluster the model’s hidden states. We consider each cluster as
a source and define small sources as those with less than |V |/c examples, where c is the number
of clusters. We update the clustering four times during fine-tuning. As shown in Table 7, CoLM
outperforms normal fine-tuning with bs = 64 by 4.5% on average. This shows CoLM’s applicability
to datasets without specified sources. Additionally, we find that clusters found by the fine-tuned
model can significantly enhance the results. Compared to updating the clusters during training, us-
ing the clusters by a fine-tuned model improved the performance by 6.8% on average. Compared
to standard fine-tuning with bs = 128, CoLM also improved the performance by 2.1%. To leverage
this, one can fine-tune a smaller proxy model on a smaller random subset of the data and cluster its
hidden states to find sources more accurately, without a large overhead. For SST-2 and MultiRC, we
trained the model on a randomly selected subset of 3,000 examples to find the clusters.

6 CONCLUSION

To simulate training with larger mini-batch sizes with limited memory, an effective approach is to
find small mini-batch coresets that match the gradient of larger random batches. We showed that for
language data with highly imbalanced sources, mini-batch coresets found by gradient matching do
not contain representative examples of the small sources. Thus, one should keep all examples of the
small sources and augment them with examples that match the gradient of big sources in the larger
batch. To enable solving the gradient matching problem effectively, we used techniques from zeroth-
order optimization and model pruning to find lower-dimensional gradient estimates. We also showed
that matching the normalized gradient of larger batches provides superior performance for training
with Adam. Our method, CoLM, outperforms fine-tuning Phi models on MathInstruct with 4x larger
batch size, while being 2.7x faster, and also improves fine-tuning on the SuperGLUE benchmark.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This research was partially supported by the National Science Foundation CAREER Award
2146492, the NSF-Simons AI Institute for Cosmic Origins, and an Okawa Research Award.

REFERENCES

Menachem Adelman, Kfir Levy, Ido Hakimi, and Mark Silberstein. Faster neural network training
with approximate tensor operations. Advances in Neural Information Processing Systems, 34:
27877–27889, 2021.

Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising behavior of dis-
tance metrics in high dimensional space. In Database Theory—ICDT 2001: 8th International

Conference London, UK, January 4–6, 2001 Proceedings 8, pages 420–434. Springer, 2001.

Gantavya Bhatt, Yifang Chen, Arnav M Das, Jifan Zhang, Sang T Truong, Stephen Mussmann,
Yinglun Zhu, Jeffrey Bilmes, Simon S Du, Kevin Jamieson, et al. An experimental design
framework for label-efficient supervised finetuning of large language models. arXiv preprint

arXiv:2401.06692, 2024.

Alexander Bukharin and Tuo Zhao. Data diversity matters for robust instruction tuning. arXiv

preprint arXiv:2311.14736, 2023.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
In The Twelfth International Conference on Learning Representations, 2024. URL https:

//openreview.net/forum?id=FdVXgSJhvz.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al. Advancing mathematics
by guiding human intuition with ai. Nature, 600(7887):70–74, 2021.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. Mods: Model-oriented data selection for instruc-
tion tuning. arXiv preprint arXiv:2311.15653, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

11

Published as a conference paper at ICLR 2025

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks

Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint

arXiv:2106.09685, 2021.

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R
Ganger, Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating
deep learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

William B Johnson. Extensions of lipshitz mapping into hilbert space. In Conference modern

analysis and probability, 1984, pages 189–206, 1984.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning
with importance sampling. In International conference on machine learning, pages 2525–2534.
PMLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
MAWPS: A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow,
editors, Proceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 1152–1157, San Diego,
California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136.
URL https://aclanthology.org/N16-1136.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. arXiv preprint arXiv:2308.12032, 2023a.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023b.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023c.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better down-
stream: Implicit bias matters for language models. In International Conference on Machine

Learning, pages 22188–22214. PMLR, 2023.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation.
arXiv:2402.09353, 2024. URL arxiv.org/abs/2402.09353.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information

Processing Systems, 36:53038–53075, 2023.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
When less is more: Investigating data pruning for pretraining llms at scale. arXiv preprint

arXiv:2309.04564, 2023.

12

Published as a conference paper at ICLR 2025

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950–6960.
PMLR, 2020.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta Baral,
and Ashwin Kalyan. NumGLUE: A suite of fundamental yet challenging mathematical reason-
ing tasks. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings

of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 3505–3523, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.246. URL https://aclanthology.org/2022.

acl-long.246.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, pages 2080–
2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for eval-
uating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121, 2018.

Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. Adaptive second order coresets
for data-efficient machine learning. In International Conference on Machine Learning, pages
17848–17869. PMLR, 2022.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint

arXiv:1606.05250, 2016.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhacing parameter effi-
ciency of lora with weight tying. arXiv preprint arXiv:2311.09578, 2023.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI spring symposium series, 2011.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretrain-
ing via document de-duplication and diversification. Advances in Neural Information Processing

Systems, 36, 2024.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Se-
lecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024a.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:2401.04151, 2024b.

Yu Yang, Hao Kang, and Baharan Mirzasoleiman. Towards sustainable learning: Coresets for data-
efficient deep learning. In International Conference on Machine Learning, pages 39314–39330.
PMLR, 2023.

13

Published as a conference paper at ICLR 2025

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint

arXiv:2309.05653, 2023.

Hao Zhao, Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Long is more
for alignment: A simple but tough-to-beat baseline for instruction fine-tuning. arXiv preprint

arXiv:2402.04833, 2024a.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint

arXiv:2403.03507, 2024b.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
LIMA: Less is more for alignment. In Thirty-seventh Conference on Neural Information Process-

ing Systems, 2023a. URL https://openreview.net/forum?id=KBMOKmX2he.

Haotian Zhou, Tingkai Liu, Qianli Ma, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Lobass: Gauging learnability in supervised fine-tuning data. arXiv preprint arXiv:2310.13008,
2023b.

14

Published as a conference paper at ICLR 2025

A VARIANCE REDUCTION BY FACILITY LOCATION

Outline. In this section, we present the proofs for our theoretical results in Section 4.1. Firstly,
we introduce the notations, problem formulation, and all assumptions. Secondly, Theorem 4.1 is
the result of Lemma A.4 and the first part of Lemma A.6. In addition, we provide a bound for the
local optimal solution in Corollary A.7. Thirdly, we prove Theorem 4.2 using Lemma A.8. Finally,
Theorem 4.3 is subsequent to Lemma A.9.

Notations. d(·, ·) : V ∝V ≃ R is the distance between two elements. Nϖ(v) = {w : d(v, w) ↓ ς}

is the set of elements within a distance ς from v, called ς-neighborhood. g(ς) : R ≃ R is the
volume of a ball radius ς centered at a point in the metric space. In RD, we have g(ς) = O(ςD).

Facility Location. For a set V , we solve the k-medoid problem by finding a subset S such that
|S| = k and S minimizes L(S) = 1

|V |
∑

v→V mine→S d(v, e). We can turn L into a monotone
submodular function by using an auxiliary element v0: f(S) = L({v0})→ L(S ↘ {v0}).

Settings. We have a dataset V with n examples in RD which is drawn from an underlying infinite
set, according to some unknown probability distribution. Let A such that |A| = k be the global
optimal solution of the facility location problem in the infinite set.
Assumption A.1 (Data structure). For each ei ↔ A, there is a neighborhood of radius at least ςω,
where the probability is at least φ at all points, for some constant ςω and φ.

It is known that f is decomposable. In other words, f can be written as sum of (non-negative)
monotone submodular functions as follows: f(S) = 1

|V |
∑

v→V fv(S). We define the evaluation of
f restricted to D ⇔ V as follows: fD(S) = 1

|D|
∑

i→D fi(S). Assume that the objective function f

have the following two properties.
Assumption A.2 (Lipschitz property). f : 2V ≃ R is ⇀→Lipschitz. In other words, for equal
sized sets S = {v1, v2, . . . , vk} and S

≃ = {v
≃
1, v

≃
2, . . . , v

≃
k} and for any matching of elements M =

{(v1, v≃1), (v2, v
≃
2), . . . , (vk, v

≃
k)}, the difference between f(S) and f(S≃) is bounded by the total of

distances between respective elements |f(S)→ f(S≃)| ↓ ⇀
∑

i d(vi, v
≃
i).

Assumption A.3 (Bound property). fi is bounded, and without loss of generality 0 ↓ fi(S) ↓ 1
for 1 ↓ i ↓ |V |, S ⇔ V .

The dataset is randomly partition into m large mini-batches {Mj}
m
j=1 of size r = n

m . We denote
the local optimal solution for each Mj as Aj where |Aj | = k. We are showing in the next Lemma
that when the size of the training set is large enough, it has many examples from all the dense areas.

Lemma A.4. A number of elements n ⇐
2km log(km/ε)

ϑg(ϖ) , where ς ↓ ς
ω

suffices to have at least

km log(km/↼) elements in the ς→neighborhood of each ei ↔ A with probability at least (1 - ↼), for

small values of ↼.

Proof. The probability of a random element being in Nϖ(ei) is at least φg(ς). Thus, the expected
number of ς→neighbors of an ei ↔ A is E[|Nϖ(ei)|] ⇐ 2km log(km/↼).

From the Chernoff bound, we have for every t < 0,
P [|Nϖ(ei)| ↓ km log(km/↼)] ↓ E[exp(t ′ |Nϖ(ei)|)] exp(→t ′ km log(km/↼))

↓ exp(t ′ (E[|Nϖ(ei)|]→ km log(km/↼)))

↓ exp(t ′ km log(km/↼)). (9)

Let t = →
1

km in the above equation, we have

P [|Nϖ(ei)| ↓ km log(km/↼)] ↓ exp(→ log(km/↼)) =
↼

km
. (10)

Therefore, the probability that some ei ↔ A does not have a large enough neighborhood is

P [
k⋃

i=1

|Nϖ(ei)| ↓ km log(km/↼)] ↓
k∑

i=1

P [|Nϖ(ei)| ↓ km log(km/↼)]

↓ k
↼

km
=

↼

m
↓ ↼. (11)

15

Published as a conference paper at ICLR 2025

Therefore, with probability at least 1 → ↼, the ς→neighborhood of each element ei ↔ A contains at
least km log(km/↼) elements.

Next, we prove that sampling with replacement guarantees that each mini-batch has elements from
all the dense areas.
Lemma A.5 (Sampling with replacement). If for each ei ↔ A, |Nϖ(ei)| = m log(k/↼), and if Mj

is a mini-batch of size n/m sampling with replacement, then Mj contains elements from all k dense

areas with probability at least (1→ ↼).

Proof. The number of mini-batches Mj does not contain elements from Nϖ(ei) is (n →

m log(k/↼))(n/m). The total number of mini-batches of size n/m is n(n/m). Thus, the probability
of Mj does not contain elements from Nϖ(ei) is (n↗m log(k/ε)

n)(n/m)
⇑ (1 →

1
n

m log(k/ω)
)(n/m) =

exp(→ log(k/↼)) = ↼/k. Therefore, the probability that Mj does not contain elements from all k
dense areas is

P [
k⋃

i=1

|Mj ∞Nϖ(ei)| = 0] ↓
k∑

i=1

P [|Mj ∞Nϖ(ei)| = 0] = ↼. (12)

The above guarantee also holds for sampling without replacement as shown in the following lemma.
Lemma A.6 (Sampling without replacement). If for each ei ↔ A, |Nϖ(ei)| ⇐ km log(km/↼), and

if V is partitioned into m mini-batch M1,M2, . . . ,Mm, then each Mj contains elements from all

the dense areas and |f(A)→ f(Aj)| ↓ ⇀ςk with probability at least (1→ ↼).

Proof. Because |Nϖ(ei)| ⇐ km log(km/↼), we can construct k mutually disjoint subsets {Si}
k
i=1

such that Si ↔ Nϖ(ei) and |Si| = m log(km/↼). Each element in Si goes into a particular Mj

with a probability of 1/m. The probability that a particular Mj does not contain an element in Si

is P [|Mj ∞ Si| = 0] = (1 → 1/m)m log(km/ε) = ε
km . The last equality hold because lim

m↘+⇐
(1 →

1/m)m = exp(→1). The probability that Mj does not intersect with at least one Si is

P [
k⋃

i=1

|Mj ∞ Si| = 0] ↓
k∑

i=1

P [|Mj ∞ Si| = 0] =
↼

m
. (13)

Therefore, the probability that Mj contains elements from every Si is at least 1 →
ε
m . Thus, the

probability that every Mj contains elements from every Si is

P [
m⋂

j=1

(
k⋂

i=1

|Mj ∞ Si| > 0)] =
m∏

j=1

P [
k⋂

i=1

|Mj ∞ Si| > 0] = (1→
↼

m
)m ⇑ 1→ ↼. (14)

Thus, with high probability 1 → ↼, every Mj has a subset Sj such that are |Sj | = |A| = k and
|Sj ∞Nϖ(ei)| > 0 for ei ↔ A. Therefore, f(A)→ f(Aj) ↓ f(A)→ f(Sj) ↓ ⇀ςk.

From Lemmas A.4 and A.6, we have the following corollary

Corollary A.7 (Bound for local optimal solution). For n ⇐
2km log(4km/ε)

ϑg(ε
ϑk) , where

ϱ
φk ↓ ς

ω
, if V is

partitioned into m mini-batches M1,M2, . . . ,Mm, then for sufficiently small values of ↼, we have

|f(A)→ f(Aj)| < ϖ with a probability of at least 1→ ↼.

Lemma A.8 (Bound for local evaluation). Let n0 be an integer such that for n ⇐ n0 we have

n
ln(n) ⇐

mk
ϱ2 . If n ⇐ max

(
n0,

m log(2m/ε)
ϱ2

)
, with a probability of at least 1→ ↼, we can evaluate f

on each mini-batch Mj with a small error of ϖ, i.e., |fMj (S)→ f(S)| < ϖ.

16

Published as a conference paper at ICLR 2025

Proof. Note that each mini-batch has exactly |Mj | = n/m elements. Let us define ⇁j(S) the event
that |fMj (S)→f(S)| < ϖ, for some fixed ϖ < 1 and a fixed S with |S| ↓ k. Note that ⇁j(S) denotes
the event that the empirical mean fMj (S) is close to the true mean. Because f is decomposable,
we have fMj (S) =

1
|Mj |

∑
i→Mj

fj(S) =
∑

i→Mj

fj(S)
|Mj | . Also remember that 0 ↓

fj(S)
|Mj | ↓

1
|Mj | .

Based on the Hoeffding inequality (without replacement) we have

P [¬⇁i(S)] = P [fVi(S)→ f(S) ⇐ ϖ] = P [fVi(S)→ E[fVi(S)] ⇐ ϖ]

↓ 2 exp

(
→

2ϖ2

|Vi|(
1

|Vi| → 0)2

)

= 2 exp(→2ϖ2|Vi|)

= 2 exp(→2nϖ2/m). (15)

Let ⇁i be an event that |fVi(S)→ f(S)| < ϖ for any S such that |S| ↓ k. Note that there are at most
n
k sets of size at most k (because sampling k samples with replacement results in a subset of size at

most k). Hence,

P [¬⇁i] ↓ 2nk exp(→2nϖ2/m) (16)

There are m mini-batches, by the union bound we can conclude that

P [
m⋃

i=1

¬⇁i] ↓
m∑

i=1

P [¬⇁i] ↓ 2mn
k exp(→2nϖ2/m) (17)

The above calculation implies that we need to choose ↼ ⇐ 2mn
k exp(→2nϖ2/m) so that w.h.p

1→ ↼ we can evaluate f locally on each mini-batch. For large n, the function n
ln(n) is an increasing

function, thus, there exists n0 such that for n ⇐ n0, n
ln(n) ⇐

mk
ϱ2 . Then, we choose n as follows

n = max

(
n0,

m log(2m/↼)

ϖ2

)
(18)

For |fVi(S) → f(S)| < ϖ to hold for all subsets S such that |S| ↓ k, the data distribution of Vi

should be similar to that of V . Hence, k-medoids of Vi are in close neighborhood of k-medoids of
V .
Lemma A.9 (Upper bound for the variance). Let the number of outliers which do not belong to any

k dense area be ↽. Let ςu > ς
ω

be the largest distance from an outlier to any centroids. Assume

that all the selected samples Aj belong to the dense areas. The upper bound of the variance of the

local optimal solution Aj is smaller than that of the random subset of size k.

Proof. For each subset S, we use the notation S
c to denote the centroid of this subset. Let ϖj be

the distance between the centroid of a subset Sj of size k to the centroid of A. The variance of the
subset Sj has an upper bound as follow.

Var(Sc
j) = Var(Ac + ϖj)

= Var(ϖj)

↓ E[ϖ2j]. (19)

For each local optimal solution Aj , we know that ϖj ↓ ς
ω. For a random subset Sj of size k, there

is ↽/m outliers and k → (↽/m) examples from the dense areas in the subset on average. Thus, the
distance ϖj is bounded as ϖj ↓ (1 → ς

m)ςω + ς
mςu ⇐ ς

ω. Therefore, the upper bound of a random
subset Sj is larger than that of the select subset Aj .

From the above lemma, we can conclude that
Theorem A.10 (Variance reduction). The variance of the mini-batch coresets of size b is smaller

than the variance of the random subset of size b by up to
ς
m (ςu → ς

ω)(2ςω + ς
m (ςu → ς

ω)).

17

Published as a conference paper at ICLR 2025

Algorithm 1 Coresets for Training LLMs (CoLM) on Imbalanced Language Data

1: Input: εεε ↔ Rd, loss L : Rd
≃ R, step budget T , batch size b, learning rate schedule {ϑt},

small sources {V1, · · · , Vp}, large sources {Vp+1, · · · , VQ}

2: for t = 1, · · · , T do
3: Sample batch Mt ∈ D

4: S
t
s ∋ {v ↔ Mt|v ↔

⋃
i→[p] Vp} // Keep all samples from small sources in the batch

5: for i ↔ {p+ 1, · · · , q} do
6: V

t
i ∋ {v ↔ Mt|v ↔ Vi} // Find all samples from each big source

7: bi ∋ (b→ |S
s
t |).|V

t
i |/(|Mt|→ |S

s
t |) // Calculate the number of selected samples

8: Get the zeroth-order gradient ĝvpi,t of the last (LoRA) V-projection using Eq 6.
9: Calculate the normalized gradient m̂mmt,i

ϱ+
⇒

v̂vvt,i
from historical terms and zeroth-order gradient

ĝ
vp
i,t uisng Eq 3.

10: Create a mask vector M t
q for top h parameters with largest magnitude.

11: S
t
i ∋ argmaxS↓V t

i ,|S|↔bi

∑
i→V t

i
maxs→S [C → ↗

m̂mmt,i

ϱ+
⇒

v̂vvt,i
↖ M

t
i →

m̂mmt,s

ϱ+
⇒

v̂vvt,s
↖ M

t
i ↗1].

// Solve the submodular facility location optimization problem
12: end for
13: St ∋ {S

t
s ↘ S

t
p+1 ↘ · · · ↘ S

t
q}

14: εεε ∋ εεε → ϑ↑LSt(εεε)

15: end for

B PSEUDO-CODE

Algorithm 1 illustrates the pseudo-code of our CoLM.

C FINE-TUNING SETTINGS

Training datasets. We use the MathInstruct (Yue et al., 2023) dataset for the challenging task of
mathematical reasoning. MathInstruct consists of about 260K instruction tuning examples, curated
from 14 highly imbalanced open-source math datasets, with broad coverage of mathematical fields
and a wide range of difficulty levels. The ratio of the largest to smallest source in MathInstruct is
almost 300, and the distribution of sources can be found in Fig 4a in the Appendix. Fine-tuning on
MathInstruct has shown state-of-the-art performance on a variety of standard math evaluation bench-
marks. For datasets without specific sources, we use three datasets from the SuperGLUE benchmark
(Wang et al., 2019) for the classification task: SST-2, CB, and MultiRC. For CB, we use the full
training dataset, which consists of 250 examples. For SST-2 and MultiRC, we randomly sample
3K examples for fine-tuning. Notably, compared to the 1K example setting used in (Malladi et al.,
2023), we sample more data for datasets with larger sizes because we use a much larger batch size.

Training details. Following the setup used in (Yue et al., 2023), we adopt a training regime with a
learning rate of 2e-5 and a cosine scheduler with a 3% warm-up period, i.e. the learning rate linearly
increases from 0 to 2e-5 over the first 3% of training steps, then follows a cosine decay to 0 at the
end of training. We set a maximum sequence length of 512. For all experiments on MathInstruct,
we standardize the number of gradient steps to correspond to 1K, unless explicitly specified. To
simulate a larger batch size, we have also used a gradient accumulation step of 8 in our experiments.
We use LoRA with a rank of 128, alpha of 512, and dropout rate of 0.05. For Phi models, we apply
LoRA to all attention matrices (i.e. QKV proj) and two fully connected layers while for Zephyr, we
apply LoRA to all attention matrices (i.e. QKVO proj). All experiments are run on 4 NVIDIA A40
GPUs. We repeat each experiment three times.

Evaluation datasets. Following (Yue et al., 2023), we use a variety of popular datasets across
both in-domain and out-of-domain datasets. The in-domain datasets include GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), and NumGLUE (Mishra et al., 2022). For the out-of-domain

18

Published as a conference paper at ICLR 2025

Figure 4: (a) Data distribution of different data sources in MathInstruct. (b) The average completion
length of examples selected by CoLMvs. random examples and longest examples in random batches.

(a) Training loss trajectory (b) Convergence plot

Figure 5: Fine-tuning Phi-2 on MathInstruct. (a) CoLM yields smallest loss throughout the whole
training process; (b) CoLM reaches the optimal performance in less training time.

datasets, we include SVAMP (Patel et al., 2021), Mathematics (Davies et al., 2021), and SimulEq
(Koncel-Kedziorski et al., 2016). These datasets collectively cover a wide range of mathemati-
cal areas such as algebra, probability, number theory, calculus, and geometry. Furthermore, some
questions in these datasets require the application of commonsense, reading comprehension, and
multi-step reasoning. All questions are formatted as open-ended.

Evaluation metric. We use the standard evaluation metric for open-formed questions, exact match,
which measures the model’s accuracy by comparing its generated answers against the correct solu-
tions. For an answer to be considered correct, it must match the reference solution precisely. We
evaluate under the 0-shot setting with a maximum sequence length of 2048 tokens for decoding. The
default prompt is Program-of-Thought (PoT), falling back to Chain-of-Thought (CoT) prompting if
the former does not work (Yue et al., 2023).

Small sources. Figure 4a visualizes the data distribution of the MathInstruct dataset. It can be seen
that the dataset is highly imbalanced with most of the samples belonging to 4 large sources (10 - 13).
Therefore, we use a simple heuristic to consider any data sources whose sizes are below the average
count as small sources.

D ADDITIONAL FINE-TUNING RESULTS

D.1 TRAINING LOSS

For fine-tuning LLMs, downstream performance is generally a better metric than training loss or
perplexity. In addition, perplexity does not always correlate with actual task performance on diverse
downstream tasks Liu et al. (2023). Furthermore, the MathInstruct dataset doesn’t have a held-out
validation set to calculate the perplexity. For completeness, we added the training loss in Figure 5a.
CoLM consistently yields smallest loss throughout the whole training process.

19

Published as a conference paper at ICLR 2025

Table 8: Statistics of pre-training mixture.

Dataset Weight (%) Small/Large

EuroParl 2.8 Small
Github 28.2 Large

HackerNews 5.0 Small
NIH Exporters 3.4 Small
Wikipedia (en) 60.6 Large

Table 9: Downstream acc of pre-trained Llama-60M.

Dataset PT (bs=128) PT (bs=256) CoLM (bs=128)

Squad 25.4 24.8 25.9
WiC 50.2 50.7 51.6

COPA 49.0 52.0 54.0
Avg 41.5 42.5 43.9

Figure 6: Validation perplexity when pre-training Llama-60M on a mixture of the Pile dataset.

D.2 CONVERGENCE PLOT IN TERMS OF TRAINING TIME

To highlight the faster convergence rate of CoLM, we plotted Figure 3c with training time as the
x-axis. Figure 5b still shows that our method converges faster than normal fine-tuning with both
smaller and larger batch sizes.

E MEMORY CONSUMPTION

In all our experiments, we used LoRA and a gradient accumulation step of 8, as 4xA40 GPUs did
not have enough memory to hold bs=128.

Memory overhead for CoLM. The memory overhead of CoLM stems from three main sources
the last layer zeroth-order gradient ĝvpi,t in Eq 6, the historical terms of Adam in Eq 8, and the
pairwise dissimilarity matrix when solving Eq 8. Because with LoRA, the last layer dimension
is 327K and 2560 before and after sparsification and the batch size is 128, the memory overhead
is less than 200MB. When fine-tuning Phi-2 on MathInstruct with 4xA40 GPUs each with 45G
memory (except for bs=256) with LoRA, each GPU can have a maximum device batch-size of 5,
so we trained all models with a gradient accumulation step of 8, with LoRA on 4 GPUs. The total
batch size = num GPUs x device batch size x gradient accumulation step. Figure 3a illustrates that
CoLM (bs=64) outperforms fine-tuning (FT) with bs=256, while requiring 1.8x less memory and
being 2.7x faster. Compared to FT bs=128, CoLM requires 20% less memory, while being 30%
faster, and obtains 4% higher accuracy.

F PRE-TRAINING EXPERIMENTS

Settings. We used Llama-60M, which is also used in Zhao et al. (2024b), on a mixture of datasets
from the Pile dataset Gao et al. (2020). We selected 5 different datasets without copyright in-

fringement including EuroParl, Github, HackerNews, NIH Exporter, and Wikipedia (en). For pre-
processing the dataset, we divide each dataset into 1024-token chunks and the statistics are given in
Table 8 in which weight means the percentage of 1024-token chunks of each dataset in the mixture.
Following Zhao et al. (2024b), we pretrained the model for 10K iterations with a max sequence
length of 1024 on 4 GPUs. We also used a gradient accumulation step of 8 similar to fine-tuning

20

Published as a conference paper at ICLR 2025

experiments. For evaluation, we calculated the perplexity on a held-out validation set. In addition,
we calculated the down-stream accuracy on 3 datasets Squad Rajpurkar (2016), WiC Pilehvar and
Camacho-Collados (2018), and COPA Roemmele et al. (2011).

Validation perplexity. Figure 6 illustrates the validation perplexity of pre-trained models at differ-
ent checkpoints during training. CoLM achieves almost the same perplexity as pre-training with 2x
batch size.

Down-stream performance. Table 9 demonstrates that CoLM improves the downstream accuracy
on all 3 evaluation datasets, yielding an improvement of at least 1.4% on average.

21

