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Abstract
The safe linear bandit problem (SLB) is an online approach to linear programming with unknown

objective and unknown roundwise constraints, under stochastic bandit feedback of rewards and
safety risks of actions. We study the tradeoffs between efficacy and smooth safety costs of SLBs
over polytopes, and the role of aggressive doubly-optimistic play in avoiding the strong assumptions
made by extant pessimistic-optimistic approaches.

We first elucidate an inherent hardness in SLBs due the lack of knowledge of constraints: there
exist ‘easy’ instances, for which suboptimal extreme points have large ‘gaps’, but on which SLB
methods must still incur Ω(

√
T ) regret or safety violations, due to an inability to resolve unknown

optima to arbitrary precision. We then analyse a natural doubly-optimistic strategy for the safe
linear bandit problem, DOSS, which uses optimistic estimates of both reward and safety risks to
select actions, and show that despite the lack of knowledge of constraints or feasible points, DOSS
simultaneously obtains tight instance-dependent O(log2 T ) bounds on efficacy regret, and Õ(

√
T )

bounds on safety violations, thus attaining near Pareto-optimality. Further, when safety is demanded
to a finite precision, violations improve to O(log2 T ). These results rely on a novel dual analysis of
linear bandits: we argue that DOSS proceeds by activating noisy versions of at least d constraints
in each round, which allows us to separately analyse rounds where a ‘poor’ set of constraints is
activated, and rounds where ‘good’ sets of constraints are activated. The costs in the former are
controlled toO(log2 T ) by developing new dual notions of gaps, based on global sensitivity analyses
of linear programs, that quantify the suboptimality of each such set of constraints. The latter costs
are controlled to O(1) by explicitly analysing the solutions of optimistic play.
Keywords: Safety; Linear Bandits; Optimism in Online Learning.

1. Introduction

The Safe Linear Bandit (SLB) problem: Consider a linear program max θ⊤x : Ax ≤ α where
the feasible set S := {Ax ≤ α} is known to be a nonempty bounded polytope in Rd, but neither
the objective θ ∈ Rd, nor the constraint matrix A ∈ Rm×d are completely known a priori, and no
action known a priori to be safe (i.e., feasible) is available. Instead, a learner sequentially picks
actions xt, with the goal of choosing xt that are effective and safe in each round. Learning is enabled
through stochastic bandit feedback in the form of a reward signal Rt = ⟨θ, xt⟩+wR

t and a risk signal
St : E[St|xt] = Axt + wS

t where (wR
t , w

S
t ) is a noise process.

Ideally, we would explore only in S, but since we do not know it (or any safe point) to start
with, some safety violation must necessarily occur over the course of learning. It is natural in many
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applications to penalise such violation ‘softly’. With this view, we measure the performance of the
learner over T rounds through the efficacy regret, ET , and the net safety violation ST defined as

ET :=
∑
t≤T

⟨θ, x∗ − xt⟩)+ and ST :=
∑
t≤T

(max
i

⟨ai, xt⟩ − αi)+, (1)

where (z)+ := max(z, 0), and x∗ is the constrained optimum. These same ℓ1 metrics were proposed
in the finite-armed setting by Efroni et al. (2020) and Chen et al. (2022). The main structural property
that makes ET ,ST pertinent in the roundwise scenario is that they accumulate only the positive
parts of the roundwise inefficiency or safety violation. Indeed, since ET sums over (⟨θ, x∗ − xt⟩)+,
playing any xt with better reward than x∗ leads to no decrease in it, and instead it increases ST since
such an xt must be infeasible. Conversely, since ST sums the largest roundwise violations, playing
a safe but under-effective xt increases ET but does not reduce ST . Thus, the only way to make
both ET and ST small is to ensure that most xts are near-safe and near-optimal. We note that the
choice of the linear penalty on violations above is just out of convenience: any penalty of the form
f(maxi(⟨ai, xt⟩ − αi)+), where f smoothly decays to 0 near 0+, is amenable to our analysis (§G).
Motivating Examples. The interplay of unknown rewards and constraints is a common feature
of application domains of bandits. In drug trials, one needs to balance the efficacy of a treatment
regimen with its risk of various side-effects (i.e., the probabilities that it induces harmful side-effects);
in crowdsourcing, one must balance the cost of completing tasks with the quality of the resulting
work; and recommmender systems must balance the click-rate of suggestions with their effects on
engagement (such as watch-time or revisiting rates). In such cases, we must enforce the constraint
in each round, e.g., completing one task well does not license us to be sloppy on the next. Further,
it is nontrivial to find a feasible starting point, since, e.g., this requires knowing worker quality
distributions a priori, or knowing which compounds balance the side-effects of active compounds
a priori. Nevertheless, soft enforcement is meaningful, e.g., if the risk of a side-effect is slightly
over α, this only leads to a slight increase in overall numbers of adverse effects realised; and a slight
reduction in the mean watch-time is an acceptable price for learning. Thus strong control on ST

ensures that in the long run, the system performs arbitrarily close to safety.
Soft Roundwise Enforcement over Polytopes. We focus on understanding what performance
can be achieved while ensuring that ST = o(T ). At the first glance, one expects control of the
form max(ET ,ST ) = Õ(

√
T ), which indeed follows from standard techniques (§4). However, this

question is most interesting in a refined sense: since we are work over a polytopal domain,1 prior
work on linear bandits tells us that if S were known, one can derive instance-dependent bounds of
O(log2 T ) on ET ,ST (e.g. Abbasi-Yadkori et al., 2011). This paper is concerned with the question

Over polytopal domains, is it possible to attain instance-dependent polylogarith-
mic bounds on ET and ST without knowing S in advance?

Our Contributions approach this by studying the efficacy-safety tradeoffs for SLBs, and by analysing
a natural doubly-optimistic method for the same. Concretely, we show that

• Simultaneous logarithmic control on ET and ST is impossible. We show that for any SLB
algorithm, there exists an instance with large ‘gaps’ on which the algorithm incurs max(ET ,ST ) =
Ω(

√
T ). The key property of these instances is the large, i.e., Ω(1) gap, and due to this gap each

1. While obvious, let us explicitly note here that the problem over polytopal domains is of significant importance, since
this corresponds to the ubiquitous questions of linear programming.
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Figure 1: THE CHALLENGE, AND OUR APPROACH. Left. The usual primal view of linear bandits over polytopes breaks
down, since noisy estimates of the unknown A induce a continuum of potential locations for extreme points (red blobs).
Right Taking a dual linear programming view, we can identify extreme points as arising by saturating d independent
constraints. We generalise this view by showing that DOSS plays by saturating noisy versions of d constraints. Poor play
can arise from picking the wrong set of constraints (blue), or using a poor estimate for the right set of constraints (red).

instance could be solved max(ET ,ST ) = O(log2 T ) if the feasible set S were known (§5).
However, a polynomial lower bound arises since the lack of knowledge of S induces a ‘precision
barrier,’ that is, the fact that no method can locate effective and safe actions to precision better
than t−1/2 after t rounds of play. This same barrier also renders the standard primal approach of
analysing polytopal linear bandits via their extreme points ineffective for SLBs(Fig. 1, left). We
further note that the constructed instances are simple enough to embed into any nontrivial set of
SLB instances, making the result generic rather than specific to the particular situation we study.

• Nevertheless, doubly-optimistic (DO) methods can attain ET = O(log2 T ) and ST =
Õ(

√
T ). Specifically, we show that these bounds are attained by the DO method DOSS (§3.2),

which generalises the finite-armed approach of Efroni et al. (2020) and Chen et al. (2022), and has
been studied for aggregate enforcement (see below) by Agrawal and Devanur (2014). DOSS builds
an ‘optimistic’ estimate S̃t of S, and selects actions optimistically over the same. Since these
bounds match our lower bounds up to polylog-factors, DOSS is near-Pareto-optimal for SLBs.

• The aforementioned precision barrier is the sole obstruction to logarithmic bounds. We
argue that in important special cases, DOSS, with either no or mild changes, attains max(ET ,ST ) =
O(log2 T ). The key property of such settings is an innate way to avoid having to identify good
primal actions to arbitrary precision, illustrating that this is the key obstruction in SLBs.

Technical novelty of the paper lies in the analysis of DOSS. Since the primal approach for obtaining
polylog regret in linear bandits fails, we instead approach the problem through a novel dual analysis,
that exploits the fact that extreme points of polytopes can be dually viewed as points saturating d
constraints (Fig. 1, right). We show that this view generalises, i.e., DOSS picks actions by saturating
a noisy version of d constraints. This allows us to break the analysis into two threads
a)a combinatorial identification problem of whether the ‘right’ set of constraints is saturated, and
b) whether effective points are played when the ‘optimal’ sets of constraints are saturated.
The efficacy loss due to the former is controlled to O(log2 T ) by developing a novel notion of ‘dual
gap’ associated with each ‘poor’ set of constraints, which arise via a global LP sensitivity analysis
approach. The second issue is handled via a careful analysis of optimistic play to argue that under
mild nondegeneracy assumptions, it cannot play ineffective actions when saturating the ‘optimal’ set
of constraints, which controls the efficacy loss due to such play to O(1).

Related Work We briefly describe the two main lines of work on constrained bandits (also see §A).
Hard Roundwise Enforcement. Instead of the soft sense we study, one can demand roundwise
enforcement in a hard sense, requiring that with high probability (whp), the constraints always be
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met, i.e., whp, St = 0. Since this is clearly not possible without knowing a safe point to start with,
methods along these lines usually assume a priori knowledge of a point xs in the interior of S , i.e.,
with positive safety margin M s := −maxi(⟨ai, xs⟩ − αi). Given the knowledge of (xs,M s), recent
lines of work (Amani et al., 2019; Moradipari et al., 2021; Pacchiano et al., 2021; Afsharrad et al.,
2023; Hutchinson et al., 2023; Varma et al., 2023; Pacchiano et al., 2024) have proposed various
‘pessimistic-optimisic’ (PO) methods for the SLB problem,2 which operate by exploring in the
vicinity of xs, and build pessimistic estimates of S, over which they act optimistically. While such
methods attain the strong safety guarantee of ST = 0 whp, the associated costs are significant: (i) the
knowledge of (xs,M s) is nontrivial to obtain, and the costs of obtaining the same are not accounted
for in this literature,3 and (ii) the resulting efficacy bounds, ET = O(d

√
T/M s), quantitatively

depend on this safety margin.4

Aggregate Enforcement. Instead of roundwise metrics, aggregate constraint enforcement aims
to control RT =

∑
⟨θ, x∗ − xt⟩ and AT =

∑
t≤T maxi(⟨ai, xt⟩ − αi) (e.g. Badanidiyuru et al.,

2013, 2014; Agrawal and Devanur, 2014, 2016; Agrawal et al., 2016). The key difference from the
roundwise setting is that there is no nonlinearity in the roundwise penalties in RT ,AT . This small
change drastically affects allowable behaviour for such problems, e.g., we can ensure AT = o(T )
while alternating between playing ‘very unsafe’ and ‘very safe’ actions, since the negative costs of the
latter cancel the positive costs of the former, but this would instead incur ST = Ω(T ). Of course, AT

is an inappropriate metric for safety contexts, e.g., treating one patient unsafely cannot be balanced
by assigning a placebo to the next. We note that while the analysis of Agrawal and Devanur (2014)
can be extended to show (ET ,ST ) = Õ(

√
T ), we go much beyond this basic observation through

our the finer grained upper bounds of (log2 T, Õ(
√
T ), as well as our instance-wise obstructions,

which are both novel. We also note that most of the literature on aggregate enforcement explicitly
assumes that x = 0 is safe, and that the entries of A are positive, which we do not need. Aggregate
enforcement remains an active area of research, e.g., ‘Conservative bandits’ (e.g. Wu et al., 2016)
enforce properties of the form At = O(

√
t) for most t, and Liu et al. (2021) show that given a

Slater parameter, one can enforce At ≤ 0 for all t large enough. We also note that most work on
constrained MDPs is of this flavour (e.g. Vaswani et al., 2022, and references therein).

2. Problem Setup

For naturals a ≤ b, let [a : b] := {a, . . . , b}. ⟨·, ·⟩ and ∥ · ∥ denote the inner-product and ℓ2-norm
in Rd respectively, and for a matrix V ≻ 0, ∥z∥V :=

√
⟨z, V z⟩. For a p × q matrix M , and a set

S ⊂ [1 : p], M(S) denotes the |S| × q submatrix of M preserving rows indexed in S.
Setting. An instance of polytopal SLB problem is parameterised by an a polytopal region X =
{Bx ≤ β} ⊂ Rd, a known constraint level vector α ∈ RU , and latent objective θ ∈ Rd and constraint
matrix A ∈ RU×d, which define the principal LP of relevance. Here, the constraints {Bx ≤ β}

2. and also safe MDPs (e.g. Turchetta et al., 2016; Wachi and Sui, 2020; Bernasconi et al., 2022; Vaswani et al., 2022)
3. Note that the need for a safety margin may make even seemingly simple settings challenging. E.g., if x is the amount

of different drugs assigned to a treatment, one may think that the ‘no-treatment’ drug cocktail x = 0 is always ‘safe’,
and can serve as xs. However, in treatment regimens, it is common that any dose of compound 1 must be accompanied
by a proportional dose of compound 2 to manage the side-effects induced by compount 1, i.e, the constraint may be of
the form ⟨(a1,−a2), x⟩ ≤ 0, in which case x = 0 has no safety margin, and so is unusable for PO methods.

4. We also include a simulation study in §8 that indicates that the safety violations of DOSS are considerably better
behaved than the efficacy costs of the PO method SAFE-LTS (Moradipari et al., 2021).
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should be thought of as arising from pre-determined hard limits on x.5 For notational succinctness,
we will embed these constraints into (A,α) by extending A to lie in Rm×d for m = U +K, and
setting the last K rows of A to B, and similarly augment α to include β. We shall often need the
notation 1U = (1, · · · , 1, 0, · · · , 0), with U ones, which indicates the unknown constraints. With
this notation, the principal LP of interest is maxx∈X ⟨θ, x⟩ : Ax ≤ α.
Play. The problem proceeds in rounds, indexed by t. For each t, we choose an xt ∈ X ,
and receive reward feedback rt and safety feedback {sit}i∈[1:U ] that satisfy rt = ⟨θ, xt⟩ + wR

t

and sit = ⟨ai, xt⟩+ wS,i
t , where the various wts are each subGaussian noise processes, which

need not be independent across i. The information set of the learner at time t is Ht−1 :=
{(xτ , rτ , {siτ}i∈[1:U ])τ<t}, and xt must be adapted to the filtration induced by Ht−1.
Metrics. We will control the Efficacy Regret and Net Safety Violation (1). We reiterate that these
have pertinence to the SLB setting because they penalise only the positive parts of roundwise costs.
Assumptions. We conclude by noting standard assumptions due to Abbasi-Yadkori et al. (2011).

1. Boundedness: ∥θ∥ ≤ 1, ∥ai∥ ≤ 1 for all i, and X ⊂ {∥x∥ ≤ 1} is a bounded polytope.
2. SubGaussian Noise: ∀t, wt := (wR

t , {w
S,i
t }i∈[1:U ]) is conditionally centred and 1-subGaussian

given Ft := σ(Ht−1, xt), i.e., ∀t,E[wt|Ft] = 0, ∀λ,E[exp(λ⊤wt)|Ft] ≤ exp(∥λ∥2/2).
All subsequent results should be taken to hold only under the above. See §B.1 for more details.

3. A Doubly Optimistic Algorithm for Safe Linear Bandits

As previously discussed, our main method of interest is the natural approach of playing optimistically
from an optimistic permissible set (Agrawal and Devanur, 2014; Efroni et al., 2020; Chen et al.,
2022). We summarise the method, and establish key notation that is used throughout.

3.1. Confidence Sets and Noise Scales

We take the standard approach (Abbasi-Yadkori et al., 2011). Let the matrix X1:t = [x1, . . . , xt]
⊤

and the vectors R1:t = [r1, . . . , rt]
⊤, Si

1:t = [si1, . . . , s
i
t]
⊤ arise by stacking the actions and feedback.

The 1-regularised least squares (RLS) estimate of θ, ai using Ht−1 is

θ̂t = (X⊤
1:tX1:t + λI)−1X⊤

1:tR1:t, âit = (X⊤
1:tX1:t + λI)−1X⊤

1:tS
i
1:t..

Of course, if i ∈ [U + 1 : m], then we do not need to estimate i, and we shall just set âit = ai

instead. We will collate the âits into a matrix Ât row-wise. Let us define the signal strength as Vt :=∑
s≤t xsx

⊤
s +I, and for δ ∈ (0, 1), them-confidence radius as

√
ωt(δ) = 1+

√
1
2 log

(U+1)
√

detVt−1

δ .
The main results are based on the following two concepts, which we explicitly delineate.
Definition 1 For any time t, the RLS confidence sets are

Cθ
t (δ) := {θ̃ : ∥θ̃− θ̂t∥Vt−1 ≤

√
ωt(δ)} and Ct(δ) := {Ã : ∀ rows i, ∥ãi − âit∥Vt−1 ≤

√
ωt(δ)1U},

and the local noise scale is ρt(x; δ) := 2
√
ωt(δ)∥x∥V −1

t−1
.

The key properties we need are due to Abbasi-Yadkori et al. (2011), and are summarised below, and
proved in §B.2. We will often drop the dependence of Ci

t(δ),Ct(δ), and ρt(x; δ) on δ.

Lemma 2 The confidence sets are consistent, i.e., P
(
∀t, θ ∈ Cθ

t (δ), A ∈ Ct(δ)
)
≥ 1− δ. Further,

under consistency, the noise scale ρt(x; δ) at any x ∈ X satisfies ∀x ∈ X ,
∀Ã ∈ Ct(δ), |(Ã−A)x| ≤ ρt(x; δ)1U , and ∀θ̃ ∈ Cθ

t (δ), |⟨θ̃ − θ, x⟩| ≤ ρt(x; δ).

5. e.g., known box constraints in crowdsourcing account for maximum worker capacity, and nonnegativity of work.
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Finally, for any sequence {xt},
∑

s≤t ρs(xs)
2 = O(d2 log2 t) and

∑
s≤t ρs(xs) = Õ(

√
d2t).

3.2. Doubly-Optimistic Safe Selection

We describe the method, DOSS (Algorithm 1). The key construction herein is the optimistic permissi-
ble set of points x that are safe according to at least one choice of constraints in Ct:

S̃t(δ) := {x : ∃Ã ∈ Ct(δ) s.t. Ãx ≤ α}. (2)

Algorithm 1 Doubly-Optimistic
Safe Selection (DOSS) (δ)

Input: δ ∈ (0, 1)
for t = 1, 2, · · · do

Construct S̃t(δ) as in (2).
Optimize (3) and play xt.
Observe rt,xt , {sit,xt

}
Update X,R, {Si}, V, C

end for

The set S̃t consists of all actions that may plausibly be safe
given Ht. The arm xt is selected optimistically from S̃t as

(θ̃t, xt) ∈ argmax{⟨θ̃, x⟩ : θ̃ ∈ Cθ
t (δ), x ∈ S̃t(δ)} (3)

The optimistic construction of the permissible set is the main
distinction between the DO and PO approaches (§1), which in-
stead work with the pessimistic set Πt := {x : ∀Ã ∈ Ct, Ãx ≤
α} ⊂ S whp. Instead, S̃t(δ) ⊃ S whp. Of course, since the
known constraints in A are enforced, S̃t(δ) ⊂ X .

4. Warm Up: Polynomial Bounds on Regret and Safety Cost, and Going Beyond

An immediate application of the approach of Abbasi-Yadkori et al. (2011) yields the following basic
result, establishing that DOSS is a reasonable procedure.

Theorem 3 The actions {xt} of DOSS(δ) yield, whp, ET = Õ(
√
d2T ), and ST = Õ(

√
d2T ).

Proof Sketch. By Lemma 2, ∀t, θ ∈ Cθ
t , A ∈ Ct whp, and so x∗ ∈ S̃t(δ) whp. Thus, (3) ensures

⟨θ̃, xt⟩ ≥ ⟨θ, x∗⟩. But, by the noise-scale characterisation in Lemma 2, ⟨θ̃, xt⟩ ≤ ⟨θ, xt⟩+ ρt(xt),
and so ⟨θ, x∗−xt⟩ ≤ ρt(xt). On the other hand, since xt ∈ S̃t, there exists some Ã ∈ S̃t : Ãxt ≤ α.
But again α ≥ Ãxt ≥ Axt − ρt(xt)1U , and so maxi(⟨ai, x⟩ − αi)+ ≤ ρt(xt) Consequently,
ET ≤

∑
t≤T ρt(xt), and ST ≤

∑
t≤T ρt(xt), and the bound follows from Lemma 2.

Polytopes to Break Through
√
T? The above result holds in fact holds over any convex domain

without change. However, our domain of interest is linear programming, i.e., S and X are polytopes,
and thus is much more structured. Indeed, for linear bandits with known S, optimistic play yields
instance-dependent logarithmic regret bounds for large T (Abbasi-Yadkori et al., 2011). Such results
rely on the observation that if S is known, any action that an optimistic method takes lies in the finite
set of extreme points of S. Therefore, ∃∆ > 0 such that for any suboptimal xt, ⟨θ, x∗ − xt⟩ ≥ ∆,
and which directly leads to regret bounds of O(log2(T )/∆).6

This raises the natural question: can we also attain logarithmic bounds on (ET ,ST ) when some
of the constraints are unknown? Answering this will occupy us for the remainder of this paper.

5. Impossibility of Simultaneous Logarithmic Bounds on Both Efficacy and Safety

The question we raised in §4 needs a little care to formulate: since we do not know S, it is
unreasonable to expect bounds that scale only with the optimality gap of actions, since unsafe points

6. The key trick is that RT ≤
∑

ρt(xt)1{ρt(xt) ≥ ∆} ≤
∑

ρt(xt)
2/∆.
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outside of S must also be eliminated. We can account for this by also considering the spurious
extreme points induced by the bounding polytope X , and consider

E := {extreme points of S} ∪ {extreme points of X}.

Now, E is again a finite set, and for any x ∈ E \ {x∗}, either x is feasible but suboptimal, in which
case ⟨θ, x∗ − x⟩ > 0 or it is infeasible, in which case maxi(⟨ai, x⟩ − αi) > 0. Let us say that an
instance is ∆-well separated if the smallest such lower bound is at least ∆. Then note that if we
knew E , then it is easy to obtain O(∆−1 log2 T ) bounds using the technique described in §4. The
refined question of interest is: can we always attain logarithmic efficacy regret and safety violations
for well-separated SLB instances? Surprisingly, the answer to this is negative, as we show in §F.1.

Theorem 4 For every SLB algorithm, there exists a 1/8-well-separated instance on which the
algorithm must incur max(E[ET ],E[ST ]) = Ω(

√
T ).

(1 + κ)x/2 ≤ 1/4

(1− κ)x/2 ≤ 1/4

θ0 1

Figure 2: An obstruction to logarithmic bounds
in safe linear bandits.

Proof Sketch. The obstruction is illustrated in Figure 2. We
study the 1D problem maxx under the known constraints
0 ≤ x ≤ 1, reward parameter θ = 1, and the unknown
constraint ax ≤ 1/4. Consider the case a ∈ {(1±κ)/2}
for κ ≤ 1/4. For these instances, E = {0, 1, 1/2(1±κ)},
and the last point is optimal. Further, 0 is at least (2(1±
κ))−1 ≥ 2/5-inefficient, and 1 violates the constraint by
(1±2κ)/4 ≥ 1

8 , and so either instance is 1/8-well-separated.
But, no matter the xts, we cannot estimate a to error better than 1/

√
t, and so we cannot eliminate

either of 1±κ/2 if t < 1
κ2 . Now, if the truth were a = (1−κ)/2, playing xt < 2/1−κ2 incurs inefficacy

≥ 2κ, and conversely if a = (1+κ)/2, playing xt ≥ 2/1−κ2 violates safety by 2κ. Thus, at least one of
E

(1+κ)/2
T and S

(1−κ)/2
T must be Ω(κ ·min(T, κ−2)). The bound follows by choosing κ = 1/

√
T . □

Impossibility of instance-dependent simultaneous logarithmic bounds. We highlight that the
above lower bound scales as

√
T despite constant order separation in the instance. This stands in

sharp contrast to existing minimax lower bounds for standard bandits (e.g. Shamir, 2015), which set
∆ ∼ T−1/2 to show Ω(

√
T ) bounds. The barrier to logarithmic control in SLBs is more fundamental,

and comes from an inability to refine the precise location of the optimal point, rather than because
there are suboptimal points in the noiseless problem that have small gaps. In other words, the issue
is one of precision rather than one of hardness in the underlying LP, and this makes it impossible
to be both very efficient and very safe on all instances. We further observe that the construction is
extremely simple, and thus can embed into essentially any class of instances (e.g., by revealing a line
that the optimum lies on), and so this issue is pervasive, rather than limited to specific hard cases.

Nevertheless, the result does not preclude that one of ET ,ST is small. In fact, although they need
the extra information (xs,M s), we can view PO schemes as saturating this bound, since they achieve
ET = Õ(

√
T ),ST = 0. We shall show in the subsequent that the DO method DOSS saturates the

bound as well, attaining ET = O(log2 T ),ST = Õ(
√
T ), without this extra information.

A dual view, and our approach. From an analytic point of view, the failure to improve on
√
T

bounds can be seen as a breaking down of the assertion that in polytopal domains, optimistic methods
play on the finite set of extreme points of the polytope. Indeed, in the SLB scenario, the polytope is
not known, and these extreme points are effectively smeared out into sets of diameter Ω(t−1/2) due
to estimation errors in Ât. Thus, the primal approach to analysing polytopes breaks down.
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As described in §1, our resolution to this issue lies in the dual view of extreme points of a polytope
as points that activate exactly d independent constraints. Due to this, we can view optimism with
known S as activating some d constraints of {Ax ≤ α}. This view generalises: we show that there
exists some Ã ∈ Ct such that under DOSS, xt activates at least d constraints of SÃ := {Ãx ≤ α}.
Naturally, such a set of constraints is a ‘poor’ choice if saturating these constraints for {Ax ≤ α}
yields poor or infeasible points. The key idea is that if I is ‘poor’, then the only way DOSS would
prefer to activate noisy versions of the constraints in I is if the noise-scale ρt(xt) is large.

This sets up a two-step attack to control ET . First, we use the dual argument above to study a
‘combinatorial identification’ question of whether DOSS finds the ‘right’ set of constraints to saturate.
This is addressed by developing new dual notions of gaps for sets of constraints, which arise by an
approach reminiscent of the global sensitivity analysis of LPs (Bertsimas and Tsitsiklis, 1997, Ch.5),
and is the subject of §6. Secondly, even if the ‘right’ set of constraints are activated, DOSS may play
ineffectively due to noisy estimation of Ã. Standard arguments (such as §4) only yield a

√
T control

on this. Instead, we show that due to the optimism of (3), if t ≥ d then activating any ‘optimal’ set
of constraints yields xt : ⟨θ, xt − x∗⟩ > 0, which controls efficacy loss due to such play to O(1).
This argument is elementary, but involved, and entails a careful analysis of the structure of (3) when
optimal constraints are activated, as developed in §7, and §E.1.

6. Structural Behaviour of DOSS, and Noise-Scale Lower Bounds

We proceed to formally define basic index sets, as well as the gaps associated with these index sets,
which lead lead to the key consequence that DOSS does not play ‘suboptimal’ index sets too often.

6.1. Basic Index Sets

We begin by formalising ‘sets of constraints’, and ‘activation’ as mentioned in §5.
Definition 5 An index set I is a subset of [1 : m]. Such a set is I is called a basic index set (BIS) if
|I| = d. The set of points that activate an index set I is defined as X I := {x ∈ S : A(I)x = α(I)}.
Notice that we demand that activating points are feasible, i.e., X I ⊂ S. The set X I may be empty, or
a singleton, or an affine segment. We shall find the following linear-algebraic terminology useful.

Definition 6 A BIS I is called (i) feasible if X I ̸= ∅ and infeasible otherwise; (ii) suboptimal if
x∗ ̸∈ X I and optimal otherwise; (iii) full rank if the row vectors of A(I) span Rd.

θ

a
1

a
2

a
3

a
4

Figure 3: Illustration of Ex. 7.
The black lines represent the
known constraints, the red line is
the unknown constraint, and the
blue line is the locus of optimality.

Example 7 To illustrate these definitions, consider the LP

maxx1 + 2x2 : x2 ≤ 1/2︸ ︷︷ ︸
unknown

, x1 ≥ x2, x1 ≤ 1, x2 ≥ 0︸ ︷︷ ︸
known

.

Foregoing normalisation for clarity, we have m = 4, U = 1 and the
parameters θ = (1, 2), a1 = (0, 1), a2 = (−1, 1), a3 = (1, 0), a4 =
(0,−1), α = (0.5, 0, 1, 0). There are

(
4
2

)
= 6 basic index sets,

I1 = {1, 2}, I2 = {1, 3}, I3 = {1, 4},
I4 = {2, 3}, I5 = {2, 4}, I6 = {3, 4}.

Of these, I2 is optimal, and the rest suboptimal, with x∗ = (1, 1/2); I3
is rank-deficient while the rest are full-rank; I3 and I4 are infeasible, while the rest are feasible.

8
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Noisy Activation. For SLBs, instead of the true constraint matrix A, DOSS must work with noisy
estimates of it, the Ãs. We extend the notion of BIS activation to handle this fuzziness in constraints.

Definition 8 The set of points that noisily activates a BIS I at time t is

X̃ I
t := {x ∈ S̃t : ∃Ã ∈ Ct, Ã(I)x = α(I)}.

Note that X̃ I
t ⊂ S̃t ⊂ X . The main structural result is the following observation.

Proposition 9 The actions of DOSS must noisily activate at least one BIS, i.e. ∀t, ∃It : xt ∈ X̃ It
t .

If xt noisily activates the BIS I at time t, we shall say that I is played at time t. Note that more
than one BIS may be played at a time (since xt can lie in the intersection of many X̃ I

t s).

6.2. Gaps of Suboptimal BISs

We argue that if DOSS noisily activates a suboptimal BIS at t, then the noise scale ρt(xt; δ) must be
large. To show this, we develop two gaps for suboptimal BISs: the feasibility gap and the efficacy
gap, which respectively exploit the permissibility and optimism of xt. Our results will lower bound
ρt(xt; δ) by the larger of these gaps when suboptimal BISs are played. The overall constructions are
essentially via a reduction to global linear programming sensitivity analysis. This is necessary: since
we do not know the constraints in A or θ, perturbations in this matrix (as represented by Ã) may, and
indeed do, cause the optimal x∗ to appear suboptimal.

The basic structure we use is the following localisation of xts played by DOSS, proved in §D.1 as
a simple consequence of Lemma 2. From here onwards, we shall just write ρt instead of ρt(xt; δ).

Lemma 10 For ζ ∈ [0,∞), define the activation polytope of I at scale ζ as

T (ζ; I) := {x : Ax ≤ α+ ζ1U , A(I)x ≥ α(I)− ζ1U (I)}.

If the confidence sets are consistent, and if the action of DOSS at time t, xt, noisily activates the BIS
I, then xt ∈ T (ρt; I), and further, ⟨θ, x∗ − xt⟩ ≤ ρt.

6.2.1. INTUITIVE ILLUSTRATION OF GAPS ζ∗(I4)

ρt

γ(I1)

T (ρt; I1)

Figure 4: Illustration of gaps in Ex. 7.
xI1 is the purple dot, and the activation
polytope T (ρt; I1) is shown in purple,
along with the separation γ(I1). The
spread s(I1) is the inner product of the di-
rection in which T varies and θ. For I4,
the feasibility gap ζ∗(I) is illustrated geo-
metrically in orange.

To expose the key components that allow DOSS to control the
play of suboptimal BISs, we will first consider the feasible,
full-rank, and suboptimal BIS I1 = {1, 2} in Ex. 7. Due to
the full-rank, the constraints of I are activated by a unique
point, xI . Since I is suboptimal, there is a positive ‘efficacy
separation’ between xI and x∗, denoted γ(I) := ⟨θ, x∗ − xI⟩.
In our example, xI1 = (1/2, 1/2), and γ(I1) = 1/2.
Efficacy Gap. Under noisy activation of I , the point xt may
depart from xI , but it cannot go too far. Indeed, by Lemma 10,
xt must lie in the activation polytope T (ρt; I), which is a
skewed ℓ∞-box of scale ρt containing xI . In our example,
T (ρt; I1) = {x : x1 = x2, x2 ∈ 1/2 ± ρt}. This localisa-
tion constrains how large ⟨θ, xt⟩ can be. Indeed, there ex-
ists a constant s(I), which we call the spread of I , such that

9
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maxx∈T (ζ;I)⟨θ, x− xI⟩ ≤ ζs(I). In effect, s(I) is a measure of how well the geometry induced by
I near xI aligns with θ, e.g., for I1, s(I1) is the inner product between θ and (1, 1), the direction
along which T varies.

Thus, ⟨θ, xt⟩ ≤ ⟨θ, xI⟩ + ρts(I). But, since ⟨θ, xI − x∗⟩ = −γ(I), this implies ⟨θ, xt⟩ ≤
⟨θ, x∗⟩− γ(I)+ ρts(I). This lies in tension with Lemma 10, which states that ⟨θ, xt⟩ ≥ ⟨θ, x∗⟩− ρt.
Resolving this tension yields the lower bound ρt ≥ η∗(I) := γ(I)/(1 + s(I)). We call the constant
η∗(I) the efficacy gap of I . For Ex. 7, η∗(I1) = 1/8.

Safety Gap. It is also possible that xt noisily activates an infeasible BIS, such as I4 = {2, 3} in Ex. 7.
In this case, a conflict arises between the inequalities defining the activation polytope T (ζ; I): if I is
infeasible, then T (0; I) = X I = {Ax ≤ α,A(I)x ≥ α(I)} = ∅, and by right-continuity T (ζ; I) is
empty for small ζ. Let us define ζ∗(I) to be the smallest scale at which T (ζ; I) is nonempty. Since
xt ∈ T (ρt; I), it follows that if xt activates a BIS I , then ρt ≥ ζ∗(I). We call ζ∗(I) the safety gap of
I . In Ex. 7, T (ζ; I4) = {x : x1 = 1, x1 = x2, x2 ≤ 1/2 + ζ}, and so ζ∗(I4) = 1/2.

Summary. The above illustrates two basic tensions in selecting suboptimal BISs. If a BIS I
is infeasible, then activating it requires that ρt dominates its safety gap, and if I is feasible but
suboptimal, then activation requires that ρt exceeds its efficacy gap. We formalise this concept below.

6.2.2. FORMAL DEFINITIONS OF THE GAPS

We give a unified treatment of the safety and efficacy gaps by analysing a parameterised LP with
feasible set determined by the local structure induced by a BIS I , as encapsulated in Lemma 10.

Definition 11 For a BIS I , and ζ ≥ 0, the optimistic LP at scale ζ induced by I is defined as
P (ζ; I) := sup{⟨θ, x⟩ : x ∈ T (ζ; I)}, with the convention that sup ∅ = −∞.

Since by Lemma 10, xt lies in T (ρt; I) if it noisily activates I , this yields ⟨θ, xt⟩ ≤ P (ρt; I). So,
the behaviour of P (ζ; I) with ζ let us capture the tensions we illustrated in the previous section.

Definition 12 We define the feasibility gap of a BIS I as

ζ∗(I) := inf{ζ ≥ 0 : P (ζ; I) > −∞}.

We define the efficacy separation of I as γ(I) := ⟨θ, x∗⟩ − P (ζ∗(I); I), and the spread of I as
s(I) := inf{C : ∀ζ ≥ ζ∗(I), P (ζ; I) ≤ P (ζ∗(I)) +C(ζ − ζ∗(I)), which yield the efficacy gap of I ,

η∗(I) =
γ(I) + ζ∗(I)s(I)

1 + s(I)
.

The definitions above concretise the quantities described in §6.2.1. The key consequence of these
definitions is the following ‘noise-scale lower bound on activating poor BISs,’ shown in §D.2.

Lemma 13 For any suboptimal BIS I , max(ζ∗(I), η∗(I)) > 0. Further, under consistency of the
confidence sets, if xt activates a suboptimal BIS I , then ρt(xt; δ) ≥ max(ζ∗(I), η∗(I)).

Note here that the noise-scale needed to play I is driven by the larger of the efficacy and safety gap
at I . This is natural: these quantities measure the ‘extent’ of infeasibility or inefficacy of I , and thus
the larger one determines the rate at which evidence of the suboptimality of I is accumulated.

10
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6.3. Gap of the Problem, and Controlling the Play of Suboptimal BISs

In light of Lemma 13, the following is natural.

Definition 14 The gap of an SLB instance is defined as Γ := minI max(ζ∗(I), η∗(I)).

The main result of this section shows that Γ−2 bounds how often suboptimal BISs are played.

Theorem 15 Let {xt} denote the actions of DOSS(δ) on an SLB instance. Then, with probability at
least 1− δ, if at any time t, xt noisily activates a suboptimal BIS, then ρt(xt; δ) > Γ. Further, the
total number of times suboptimal BISs are played is bounded as∑

t

1{∃suboptimal BIS I : xt ∈ X̃ I
t } = O

(
Γ−2

(
d2 log2 T + d log(T ) log(U/δ)

))
.

This result, shown in §D.3, implies that most of the time, DOSS plays actions such that the noisy
constraints they activate are precisely those that x∗ saturates. In other words, while the method
may not be able to locate x∗ itself with precision better than O(1/

√
t), it can identify the binding

constraints, and, most of the time, the actions of DOSS focus on activating these constraints.

7. Controlling Efficacy Regret and Total Safety Violation

We now come to the main results of the paper. The previous section tells us that suboptimal BISs
cannot be played too often, effectively controlling a ‘dual’ type of regret. We proceed to translate
these results into bounds on the ‘primal’ quantities ET and ST . This requires us to account for the
times when only optimal BISs (I such that x∗ ∈ I) are played. We can control the behaviour of such
times under the following weak nondegeneracy condition at the optimum.

Assumption 16 Every optimal BIS (i.e., I : x∗ ∈ X I ) is full-rank. Further, the noise wS
t is generic

in the sense that the probability that it lies in any subspace of less than d dimensions is zero.

Note that the condition does not require the uniqueness of the optimum. Instead, nondegeneracy
is demanded in the sense that any size d subset of all the constraints that x∗ saturates constitutes a
full rank BIS. The effect of this is to mainly exclude pathologies, such as the case in R2 where two
identical constraints are placed on the system, and both pass through the optimum (i.e., (ai, αi) =
c(aj , αj) for some pair i, j). Notice that in standard linear programmming, such constraints would
be eliminated during pre-processing, which we cannot do since we do not know all of the constraints.
Nevertheless, since the constraints represent limitations on different safety scores, it is unlikely in
practice that these would be linearly dependent. Further, note that Assumption 16 allows x∗ to be
degenerate in the sense that it may lie on many more than d constraints. Of course, the genericity of
noise is a standard condition, and can be met by adding an arbitrarily small continuous noise to the
feedback. The main utility of this assumption is the following result, which is argued in §E.1.

Lemma 17 Under assumption 16, if the confidence sets are consistent, t ≥ d+1, and the action xt
of DOSS(δ) is that xt only noisily activates the optimal BIS, then ⟨θ, xt⟩ ≥ ⟨θ, x∗⟩.
In other words, when only the optimal BISs are played, the action xt cannot be ineffective! The
proof relies on using the optimal BIS I to construct a ‘localised’ program that the solutions (θ̃t, xt)
and witness Ãt of (3) must also optimise. The assumption is used to make this part effective, and
in general the same holds if θ ∈ row-span(A(I)). The final statement then follows through an
elementary, but involved, analysis of structure of optimal solutions of this localised program.

Coupling the above with Theorem 15 yields our main result, shown in §E.2

11
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Theorem 18 Under assumption 16, w.p. ≥ 1− δ, the actions of DOSS(δ) yield

ET = O
(
Γ−1(d2 log2 T + d log T log(U/δ))

)
, and ST = Õ

(√
d2T (log2 T + log T log(U/δ))

)
.

In light of Theorem 4, we see that up to polylog factors, DOSS saturates the lower bound, with a bias
towards minimising the efficacy regret. While the gain in efficacy performance over PO methods is
evident, we again stress the advantage in terms of the lack of prior knowledge of a safe ball in X . We
further note that the costs scale logarithmically with the number of unknown constraints, U .
Tightness of Dependence on Γ. Exploiting a subtle reduction of safe Multi-Armed Bandits problems
to SLB problems, we show in §F.2 that the inverse dependence on Γ is necessary.

Theorem 19 Fix a c ∈ (0, 1). For any Γ ≤ 1/16, and any method that ensures that in every SLB
instance, max(ET ,ST ) = O(T 1−c), there exists an instance of the SLB problem with gap at least
Γ, such that lim inf max(E[ET ],E[ST ])

log T ≥ c/108 · Γ−1.

7.1. Improved Safety Performance Under Tolerance

While Theorem 18 is tight in terms of ST , given that it achieves polylogarithmic ET , the polynomial
dependence can nevertheless be considered prohibitive. To improve upon this, we study three
concrete scenarios in which this dependence may be improved. At the core, each of these cases
relaxes the SLB problem so that the precision barrier discussed in §5 does not arise, thus illustrating
that this condition is the sole obstruction to polylogarithmic control on ST .
Finite Precision Slack in Constraint Levels As a first pass, we may allow for a finite amount of viola-
tion of constraints without any penalty, e.g., through the ε-precision metric S ε

T :=
∑

t≤T maxi(⟨ai, x⟩−
αi)+1{∃i : ⟨ai, x⟩ − αi > ε}. Such a relaxation is quite pertinent in scenarios such as drug trials or
engineering design applications (where ε can be set to a small factor of αi) or if the αi are estimated
values7 (where ε can be the error level in these estimates). In this context, we show in §E.3.1 that
Theorem 20 With probability at least 1− δ, DOSS(δ) ensures that simultaneously for every ε > 0

ET = O
(
Γ−1d2 log2 T

)
and ST = O

(
ε−1d2 log2 T

)
.

The main point of interest in the result above is that it holds simultaneously for every value of ε.
Indeed, DOSS does not need ε as a parameter, and it only arises in the analysis. This means that the
method adapts to the precision requirements of the domain at hand. Note further that setting ε = T−c

for c > 1/2 yields
∑

t≤T (maxi⟨ai, xt⟩ − αi − T−c)+ = Õ(T 1−c), i.e., as T ↗ ∞, DOSS rapidly
converges towards feasibility, and gains over Theorem 18 are realised with decaying precision slack.

Finite Precision in Constraint Parameters Rather than treating the precision in the constraint levels,
it may be possible that the constraint parameters are restricted to a finite grid. Generically, such a
structure arises in settings modeled as integer programs (up to a unit factor), and particular examples
include drug discovery (e.g. Radhakrishnan and Tidor, 2008), where constraints indicate requirements
that a compound binds to certain receptors, and so are naturally binary. We can formalise this by
specifying a finite set P which describes the ‘grid’ that A must lie in. Naturally, we can modify DOSS

to exploit this by restricting the construction of S̃t(δ) in (2) to Ã ∈ CP
t = Ct ∩P. We argue in §E.3.2

that this change implicitly introduces a finite set of possible actions when only optimal BISs are
activated, which in turn yields the following result.

7. this is quite common: process and measurement variations mean that an exact threshold for the quality of components
necessary to ensure safe behaviour is not known, and must usually be fixed empirically.
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Theorem 21 If the constraint parameters lie in a finite precision set, then there exists a constant π >
0 such that w.p. ≥ 1− δ, the actions of DOSS(δ) satisfy max(ET ,ST ) = O(min(Γ, π)−1d2 log2 T ).

Finite Action Spaces Finally, if we instead consider the commonly studied case of only having
a finite number of possible actions (Abbasi-Yadkori et al., 2011; Dani et al., 2008; Agrawal and
Devanur, 2016), then the issues of primal precision do not arise, since we do not need to exactly know
the constraints in order to exactly locate any action. If we simply define ∆ = minX max(⟨θ, x∗ −
x⟩,maxi(⟨ai, x⟩ − αi)+), then merely employing the techniques described in §4 yields (see§E.3.3)

Proposition 22 Over finite actions spaces, with probability at least 1− δ, the actions of DOSS(δ)
ensure that max(ET ,ST ) = O(∆−1d2 log2 T ).

8. Simulations

We verify the theoretical study above with simulations over Example 7, and study the relative
performance of DOSS and the optimistic-pessimistic method Safe-LTS Moradipari et al. (2021).
These implementations are based on the following relaxation of Algorithm 1.
Computationally Feasible Relaxation A well-known barrier to implementing Algorithm 1 is that
even if all constraints were known, the program (3) is non-convex (Dani et al., 2008). In our case,
this is further complicated by the fact that the set S̃t needs to be determined. Following Dani et al.
(2008), we approach these issues by constructing box confidence sets, i.e.,

Ct,1 := {Ã : ∀i, ∥(ãi − âi)V
1/2
t ∥1 ≤

√
dβt}.

Since ∥ · ∥2 ≤ ∥ · ∥1 ≤
√
d∥ · ∥2,Ct,1 ⊂ Ct. Further, due to the same equivalence, the ℓ2-based

analysis persists, up to a blowup of
√
d in ρt, and thus running DOSS with Ct,1 worsens our bounds

from (d2 log2 T,
√
d2T ) to (d3 log2 T,

√
d3T ).

The main advantage of Ct,1 lies in the fact that the box-confidence sets are polytopes. Due
to this, the Ãt that are active for the optimistic action xt must lie at the extreme points of these
sets. Since each set has only 2d extreme points, this allows us to determine xt by solving (2d)U+1

convex programs, which is computationally feasible so long as U is small. Of course, this complexity
remains painfully slow as U grows. Finding versions of DOSS that are computationally practical for
a large number of unknown constraints remains an interesting open problem.
Setting. We implement DOSS on with the L∞ relaxation above on the instance of Example 7 over
the horizon T = 104, and with the parameters λ = 2, δ = 1/(4T ) = 2.5 × 10−5. The noise in
observations is independent and Gaussian, with variance 0.1. Notice that for this instance, Γ = 1/8.
Behaviour of DOSS. Our main observation is that DOSS is very effective, and has well-controlled
violations. Figure 5 shows the efficacy regret Et and both the arbitrary precision safety violations St

and the finite precision safety violations S ε
t for the value ε = 0.05 = 2Γ/5. The simulations validate

our main claims of strong efficacy regret control, and well-behaved growth of safety violations.
Indeed, observe that the efficacy regret is essentially zero over most of the runs (with rare runs rising
to E104 ≈ 100). This property arises since DOSS very rarely plays suboptimal BISs (see the following
discussion and Figure 6), and when it plays the optimal BIS, it plays a ‘over-efficient’ but unsafe
point. Further, the extent of the lack of safety of the actions chosen by DOSS is well-controlled, as
seen in the behaviour of ST . The finite precision regret shows even stronger control, with growth
essentially halted at t ≈ 5000, validating the analysis underlying Theorem 18.
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Figure 5: Efficacy Regret and Safety Violation of DOSS . We plot averages and one standard deviation confidence
regions over 30 runs for ET (left) and both St and S 0.05

t (right). We also plot the upper bounds we show in the latter to
contextualise the observations. Observe that the efficacy regret is marginal: the mean is essentially 0, and the variance
limited. Further, observe that the growth of the net safety violation St is well-controlled, and lies far below the bounds of
§7. Further, the finite precision violations show a strong flattening, as is expected from Theorem 18.
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Figure 6: Suboptimal BIS activation by DOSS

in the instance of Example 7. Observe that such
activation is very rare, typically far less than 1%
of the times, and the growth is essentially flat.

DOSS rarely activates suboptimal index sets. In Figure 6,
we plot the number of times that DOSS noisily activates
a suboptimal BIS, i.e., any index set other than I2 =
{1, 3}. The main observation is that this occurs very rarely:
indeed, over the horizon of 104, most runs do not activate
suboptimal BISs more than 100 times. This is far below
the upper bound of Theorem 15.
DOSS compares favourably to PO methods In §H, we re-
port the behaviour of the PO method safe-LTS (Moradipari
et al., 2021) on the same instance. Our key observation is
that the efficacy regret of safe-LTS increases much faster
than the safety-violations of DOSS, indicating that the
safe-LTS type methods expands their safe sets towards
optimality slowly, while DOSS contracts towards safety
much faster. Indeed while the safety-violation of DOSS at T = 104 is about 800, the efficacy violation
of safe-LTS at the same time scale is 3000, indicating that it is at least 0.25-separated from the
boundary of S even at T = 104.

9. Discussion

The SLB problem is inherently challenging due to the roundwise enforcement of constraints. Our
works offers new, and refined insights into both the hardness of the problem through our instance-
dependent superlogarithmic lower bound, and to the effectiveness of doubly-optimistic methods for
the same through our strong control on ET . In the process, we developed a new dual viewpoint of
the SLB problem, by developing gaps for sets of constraints, which we believe is a conceptually
important tool for such problems. Of course, a number of interesting questions remain open, e.g., are
there computationally efficient ways to implement doubly-optimistic strategies for large U ; or if one
can design methods that attain the strong safety guarantees of PO methods, but without making the
strong assumptions of prior knowledge of safe points. We believe that tackling these challenges is
key to the effective use of bandit feedback in practical scenarios.
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Appendix A. Related Work on Pure Exploration.

While we study the regret formulation, work on constrained bandits has naturally also appeared in the
pure exploration setting. The typical such paper aims to recover arms that are both nearly-safe and
nearly-optimal, in a PAC sense. Katz-Samuels and Scott (2019) study this quesiton for finite-armed
bandits, and Wang et al. (2022) extend this study under a structured multi-armed bandit setting where
each arm has a continuous parameter that must be selected, and monotonically affects reward and
safety of the arm. Most pertinently, Camilleri et al. (2022); Carlsson et al. (2023) study best feasible
arm identifaction in the linear bandit setting with the same structure as us, although they assume
that the set of possible actions is finite and known a priori. It is interesting to note that even in the
identification setting, where safety is not enforced during learning, methods that can identify good
arms quickly can only give guarantees of safety up to a given precision. This complements our
observations in the regret setting.

Appendix B. On the Assumptions, and Background on Online Linear Regression

We give an expanded discussion of the standard assumptions made in §2, and discuss a standard
result from online linear regression controlling

∑
∥xt∥V −1

t−1
that is key to our analysis.

B.1. A closer look at the assumptions

The assumptions made in the main text are slightly simplified version of standard assumptions from
the literature on linear bandits.
Boundedness. The boundedness assumption has two parts: firstly that the underlying parameters are
bounded, i.e., ∥θ∥, ∥ai∥ ≤ 1 and secondly we assume that the domain is bounded, i.e., ∥x∥ ≤ 1 for
all x ∈ X = {Bx ≤ β}.

The bounded domain assumption is used chiefly to ensure that the underlying optimisation
problem of interest has finite value. Quantitatively, this may be replaced with a generic bound
∥x∥ ≤ L instead without appreciably changing the study. The principal way this affects DOSS

is via the choice of the regulariser: instead of setting Vt = (I +
∑
xsx

⊤
s ), this requires us to set

Vt = λI +
∑
xsx

⊤
s for some λ > L2. Concretely, the validity of of appropriate modification of

Lemma 2 to handle general regularisation requires using

√
ωt(δ;λ) =

√
1

2
log

(
(U + 1) det(Vt)1/2 det(λI)−1/2

δ

)
+ λ1/2

for a λ that λ ≥ maxt ∥xt∥2, which may be ensured by setting λ ≥ L2. The main paper simplifies
this notational clutter by just setting λ = 1 and assuming ∥x∥ ≤ 1. A second aspect that is affected
by the quantity L is that the upper bound of Lemma 23 would read log(1 + TL2/λd) instead of
log(1 + T/d), which mildly affects some logarithmic terms in the regret bounds (and in fact no
bound reported in the main text needs modification if we set λ ≥ L2 and assume that L ≤ d).

The assumption of bounded parameters is largely without loss of generality - indeed, if we had
a bound ∥θ∥,maxi ∥ai∥ ≤ S instead, the only change required is that the confidence set radius ωt

would need to be set as √
ωt(δ;λ, S) =

√
ωt(δ;λ) + (S − 1)

√
λ,
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i.e., only the additive
√
λ term in

√
ωt above would need adjustment. We note that in general, the

norm bounds on the various ai and θ need not agree, and it is in fact possible to adapt to their norms
without prior knowledge of the same, by setting distinct ωi

ts for each ai, and using the techniques of
the recent work of Gales et al. (2022).
SubGaussianity. While the subGaussianity condition can also be relaxed (for instance, linear
bandits with heavy tailed noise have been studied (Shao et al., 2018)), it yields significant technical
convenience whilst remaining quite a generic setting. In the assumption, we concretely assume that
the noise is conditionally 1-subGaussian. This may be relaxed to conditionally R-subGaussian. This
too can be handled with a small change in ωt to

√
ωt(δ;λ,R) = R

√
1

2
log

(
(U + 1) det(Vt)1/2 det(λI)−1/2

δ

)
+ λ1/2.

This change is somewhat stronger than the corresponding change induced by altering ∥θ∥ and ∥ai∥,
since the scaling is now applied to the first term of ωt, which grows with t unlike the constant

√
λ

penalty.
Overall Confidence Radius with General Parameters. To sum up, under the generic conditions
∥x∥ ≤ L, ∥θ∥ ≤ S, ∥ai∥ ≤ S, and R-subGaussianity of {γit}, the entirety of our following analysis
will go through, but with the blown up confidence radii

√
ωt(δ;λ, L, S,R) = R

√
1

2
log

(
(U + 1) det(Vt)1/2 det(λI)−1/2

δ

)
+ Sλ1/2,

and under the condition λ ≥ L2. This results in roughly an increase in the regret bounds of a factor
of at most max(R,S), along with a potential increase in the logarithmic terms to log(1 + TL2/δ)
instead of log(1 + T/δ). For the remainder of our analysis, we shall stick to the default parameters
R = S = L = λ = 1.

B.2. Quantitative Bounds from the Theory of Online Linear Regression

We conclude the preliminaries with the following generic statement, which holds due to a couple
of applications of the matrix-determinant lemma. The result is standard - see the discussions of
Abbasi-Yadkori et al. (2011, Lemma 11) for historical discussions.

Lemma 23 Let {xt} be the actions of DOSS. Suppose that for all t, ∥xt∥ ≤ 1, and let λ ≥ 1. Then
for any T ,

T∑
t=1

∥xt∥2V −1
t−1

≤ 3

2
log

(
det(VT )

det(λI)

)
≤ 3

2
d log

(
1 +

T

λd

)
.

Proof of Lemma 23. First notice that since Vt = Vt−1 + xtx
⊤
t , by the matrix-determinant lemma,

det(Vt) = det(Vt−1) det(I + V
−1/2
t−1 xtx

T
t (V

−1/2
t−1 )⊤ = det(Vt−1)(1 + ∥xt∥2V −1

t−1
),

and induction yields
det(VT ) = det(λI)

∏
(1 + ∥xt∥2V −1

t−1
).
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where we have used that V0 = λI.
Now, notice that since Vt−1 ≻ λI for each t, it follows that ∥xt∥2V −1

t−1

≤ ∥xt∥2/λ ≤ 1. But for

z ∈ [0, 1], z ≤ 3
2 log(1 + z), which implies that∑

∥xt∥2V −1
t−1

≤ 3

2

∑
log(1 + ∥xt∥2V −1

t−1
) =

3

2
log

det(VT )

det(λI)
.

Finally, note that since VT is positive definite, by an application of the AM-GM inequality,
det(VT ) ≤ (trace(VT )/d)

d, and further, trace(VT ) = dλ+
∑

t ∥xt∥22 ≤ dλ+T. Further observing
that det(λI) = λd, we conclude that

log
det(VT )

det(V )
≤ d log

(dλ+ T )/d

λ
= d log

(
1 +

T

dλ

)
.

An immediate consequence of the above is the following pair of observations which we shall use
frequently.

Lemma 24 Let {xt} be the actions of DOSS run with the parameters λ, δ. For every T > 0,∑
t≤T

ρt(xt; δ)
2 ≤ 3d2 log2

(
1 +

T

λd

)
+ 6d log

(
1 +

T

λd

)(
log

U + 1

δ
+ 2λ

)
, (4)

∑
t≤T

ρt(xt; δ) ≤ d
√
3T log

(
1 +

log T

dλ

)
+

√
3dT log

(
1 +

T

λd

)(√
2λ+

√
log

U + 1

δ

)
. (5)

These bounds supply the core bounds needed to convert the control we develop on ρt in §6.3
and §7 into control on ET and ST . Observe that the main terms in the above results do not show
dependence on the failure probability parameter δ.

Proof of Lemma 24. Recall that ρt(xt; δ) = 2
√
ωt(δ) · ∥xt∥V −1

t−1
. Further observe that ωt is an

increasing function of t. Immediately by Lemma 23,∑
ρ2t ≤ 4ωT (δ)

∑
∥xt∥2V −1

t−1
≤ 6dωT (δ) log

(
1 +

T

dλ

)
.

Further, once again applying Lemma 23, and noting that (
√
u+

√
v)2 ≤ 2u+ 2v,

√
ωT (δ) =

√
λ+

√
1

2
log

(U + 1)

δ
+

1

4
log

det(VT )

det(λI)

=⇒ ωT (δ) ≤ 2λ+ log
(U + 1)

δ
+
d

2
log

(
1 +

T

λd

)
.

Multiplying these two bounds controls
∑
ρ2t .

Further, by the Cauchy-Schwarz inequality,

T∑
t=1

ρt ≤
√
T ·

√√√√ T∑
t=1

ρ2t .
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The bound (5) follows upon applying the bound on
∑
ρ2t above, and then using the trivial relation√

u+ v ≤
√
u+

√
v.

Finally, let us argue that the quantity ρt(xt; δ) indeed controls the noise scale of the problem by
showing Lemma 2.

Proof of Lemma 2. We refer to the proof of Abbasi-Yadkori et al. (2011, Thm. 2) for the consis-
tency, and observe only that the factor (U + 1)/δ enters our confidence radius

√
ωt(d) by hitting

their analysis with the union bound to ensure concentration over the unknown objective and over the
U unknown constraints simultaneously. Of course, the factor of 1U arises in the definition of C since
each known constraint is already ‘estimated’ exactly by setting âit = ai for i ∈ [U + 1 : U +K].

To show that the noise scale limits the deviations ⟨θ̃ − θ, x⟩, observe that under the assumption
of consistency, θ ∈ Cθ

t . Therefore

|⟨θ̃ − θ, x⟩| ≤ |⟨θ̃ − θ̂, x⟩|+ |⟨θ − θ̂, x⟩|.

By exploiting the positive definiteness of Vt−1 and the Cauchy-Schwarz inequality, we can further
observe that

|⟨θ − θ̂, x⟩| = |⟨(θ − θ̂)V
1/2
t−1 , V

−1/2
t−1 x⟩| ≤ ∥θ − θ̂∥Vt−1 · ∥x∥V −1

t−1
.

Running the same calculation of θ̃ and adding the bounds, we conclude that

|⟨θ̃ − θ, x⟩| ≤ (∥θ − θ̂∥Vt−1 + ∥θ̃ − θ̂∥Vt−1)∥x∥V −1
t−1

But both θ, θ̃ ∈ Cθ
t , which by definitions means that their Vt−1-norm distance from θ̂ is bounded

by
√
ωt(δ). The claim is immediate upon recalling that ρt(x; δ) := 2

√
ωt(δ)∥x∥V −1

t−1
.

Of course, the same argument applies to every ãi, and thus to Ã. Again, for known constraints,
the radius of the confidence set is 0, so ãi = âi = ai, and hence the factor of 1U in |(Ã− A)x| ≤
ρt(x; δ)1U .

Finally, the bounds on
∑
ρt(xt; δ) and

∑
ρt(xt; δ)

2 follow directly from Lemma 24.

Appendix C. Appendix on the Structural Behaviour of DOSS

This section is devoted to showing the key structural properties of the behaviour of DOSS that we
discussed in §6. In particular, we show the main result of §6.1, namely that any point that DOSS plays
must noisily activate some BIS. To this end, we first characterise the behaviour of DOSS relative to
polytopes contained in the permissible set. Before stating the same, recall that an extreme point of a
polytope (and indeed a closed convex set), is any point that is not contained on a line joining two
other points in the polytope. Further, each extreme point of a polytope in Rd must satisfy at least d
constraints with equality. For a polytope P, we will denote its extreme points as EP .

Lemma 25 Suppose that P is a polytope such that P ⊂ S̃t. If DOSS plays in P, then xt must be an
extreme point of P, i.e., xt ∈ P =⇒ xt ∈ EP .

Let us first argue that the Proposition 9 follows from the above Lemma.
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Proof of Proposition 9. For a choice of Ã ∈ Ct, define the polytope

P(Ã) = {x : Ãx ≤ α}.

Now, observe that
S̃t =

⋃
{Ã∈Ct}

{x : Ãx ≤ α} =
⋃

Ã∈Ct

P(Ã),

i.e., S̃t can be decomposed as a union of polytopes. But then the selected point xt must lie in one of
these polytopes, say P∗.

Now, we have that P∗ ⊂ S̃t, and xt ∈ P∗, and so by Lemma 25, xt must be an extreme point
of P∗. But this implies that there are at least d linearly independent constraints amidst the Ãx ≤ α
that xt activates, i.e., that there exists some I ⊂ [1 : m] such that |I| = d and Ã(I)x = α(I). By
definition, then xt ∈ X̃I

t , showing the claim.

It remains to show the preceding Lemma. Before proceeding, let us comment that the statement
above is intuitively obvious, but appears to be somewhat cumbersome to prove (as the argument
below suggests, although nothing says that a cleaner proof could not be found). Of course, this
statement extends also to the OFUL algorithm, and to our knowledge this has not been directly
argued previously: instead, when working on polytopal domains, typically it is directly stated that it
suffices to play on the extreme points of the polytope.

Proof of Lemma 25. Suppose that xt ∈ P . Then, due to the optimistic choice, there also exists
some θ̃t ∈ C0

t such that
(θ̃t, xt) ∈ argmax

θ̃∈C0
t ,x∈P

⟨θ̃, x⟩.

Notice also that xt is a solution of the linear program maxx∈P⟨θ̃t, x⟩, and so lies on the boundary
of P . Similarly, θ̃t lies on the boundary of C0

t . We need to argue that xt must in fact be an extreme
point of P , i.e., it does not lie in the interior of some face of dimension ≥ 1 of P.

For this, first suppose for the sake of contradiction that xt lies in the interior of some 1-
dimensional face of P , say F . Let u be the direction of variation of F . Then it must hold that
⟨θ̃t, u⟩ = 0, else ⟨θ̃t, xt + εu⟩ would exceed ⟨θ̃t, xt⟩ for some small choice of ε. Now, let us rotate
the domain so that u is directed along one coordinate axis, and project onto the 2D subspace spanned
by the (orthogonal) directions u and θ̃t. Next, rescale the vectors so that both u and θ̃t have norm 1,
and finally translate the polytope so that the uth component of xt is 0. Notice that the projection of
an ellipsoid is an ellipsoid, and so doing the same transformations to Cθ

t−1 produces a 2-dimensional
convex confidence ellipsoid D.

Let us relabel the axes of the resulting system as u1 and u2. In the resulting coordinate system,
θ̃ = (0, 1), and F is a line segment of the form {u1 ∈ [p, q], u2 = r}, where p < 0 < q, r =
⟨θ̃t, xt⟩/∥θ̃t∥ and xt = (0, r). Observe that θ̃t must lie on the boundary of D. We shall argue that
there is some other z ∈ F and some other ϕ ∈ D such that ⟨z, ϕ⟩ > r, which violates the assumption.

We first take the case of r > 0. Observe that if any point of D has u2 coordinate greater than
1, then we immediately have a contradiction, since then for such a point ϕ, ⟨ϕ, xt⟩ > ⟨θ̃t, xt⟩. But,
since θ̃t = (0, 1) ∈ D, it follows that the ellipse D is tangent to u2 = 1. But this means that for
small ε, D must contain points ϕε = (ε, 1 − f(ε)) where 0 ≤ f(ε) = O(ε2). But this implies a
contradiction - indeed, take ε > 0, and consider zε = (ε1/2, r). Then zε ∈ F for small enough ε, and
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⟨zε, ϕε⟩ − r = ε3/2 − rf(ε). Since f(ε) = O(ε2), this is positive for small enough ε, demonstrating
a contradiction.

If r < 0, the same argument can be run mutatis mutandis - nowD must lie above the line u2 = 1,
but still be tangent to it, and we can develop points of the form (ε, 1 + f(ε)) for 0 ≤ f = O(ε2)
in D, and the analogous inner product ⟨zε, ϕε⟩ − r = ε+ rf(ε) which is again positive for small
enough ε.

Finally, we have the case r = 0, wherein xt lies at the origin. But in this case any point in D
of non-zero u1 coordinate serves as a contradiction (since either (p, 0) or (0, q) will yield a positive
inner product).

Together, the above paragraphs imply that xt cannot lie on the interior of an edge of P . But this
argument generalises to the interior of any non-trivial face. Indeed, since θ̃t must be orthogonal to
the affine subspace formed by this face, we can argue that there must be a point in the interior of a
1-D face (that forms a boundary of the larger face) that must also attain the optimal value for ⟨θ̃, x⟩,
and then run the above argument for this point. It follows that xt cannot lie in the interior of any
non-trivial face of P .

The above argument is not restricted to confidence ellipsoids of the form of §3.1, but extends to
any Ct with a smooth and convex boundary. Indeed, this further extends to convex Ct with continuous
boundaries, barring the case where θ̃t is itself the extreme point of a polytope (with large ‘curvature’
at θ̃t). In such a case the property that f(ε) = O(ε2) does not hold, and a more global argument may
be needed. One attack may pass through the use of continuous noise, in which case the confidence
sets would almost surely not produce any extreme points that are orthogonal to the faces of a polytope
(since such directions lie in a union of a finite number of dimension d− 1 affine subspaces, which in
turn is Lebesgue null), and so we may almost surely avoid this disadvantageous case.

Let us also note the following interesting observation that can also be inferred using Lemma 25,
and further characterises the behaviour of doubly-optimistic play.

Proposition 26 Suppose that all confidence sets are valid. Then there exists at least one BIS I that
xt noisily activates, and such that A(I)xt ≥ α(I).

In other words, for at least one BIS, the action xt not only noisily activates it, it further either
activates it or violates all of the true constraints of this BIS. Notice that if the BIS shown to exist
above has at least one unknown constraint, then this basically means that DOSS must violate safety
(since meeting this with equality for the unknown constraint would be rare).

Proof of Proposition 26. Fix xt. We call Ã ∈ Ct a witness for xt if Ãxt ≤ α, i.e., if Ã witnesses
the presence of xt in S̃t. Since xt is the optimistic optimum over the entirety of S̃t, it follows that for
every witness Ã of xt, it holds that xt ∈ argmaxxmaxθ̃∈Cθ

t
⟨θ̃, x⟩ : Ãx ≤ α.

Now, let I0 be all of the constraints that xt noisily activates, and let I≥ := {i ∈ [1 : m] :
⟨ai, xt⟩ ≥ αi}. We claim that |I≥| ≥ d, which suffices to show the claim.

For the sake of contradiction, assume that |I≥| ≤ d − 1. For each i ∈ I0 \ I≥, we have
⟨ai, xt⟩ < αi. Let us form the matrix Ã< formed by taking each of the ith rows in Ã for which
i ∈ I0 \ I≥, and replacing the ãi in the row by ãi< = ai. This matrix remains a witness, since
the resulting Ã< lies in Ct (as we have replaced rows by the rows of A, each of which lie in
the corresponding confidence sets for individual rows), and by definition for each replaced row,
⟨ãi<, xt⟩ < αi, since each such i lies in I0 \ I≥.
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Then xt lies in the interior of the polytope P< := {x : Ã<x ≤ α}, since by construction it
activates at most |I≥| ≤ d− 1 constraints of this matrix. But since Ã< ∈ Ct, it holds that P< ⊂ S̃t,
and thus the algorithm plays in the intrior of a polytope contained in the permissible set, contradicting
Lemma 25. Therefore, our hypothesis is untenable, and |I≥| ≥ d.

Appendix D. Controlling the Play of Suboptimal BISs

We now show the noise scale lower bound, and the subsequent control on the play of suboptimal
BISs as discussed in §6.

D.1. Localising Actions when a BIS is Activated

We show Lemma 10 as a simple consequence of consistency and optimism.

Proof of Lemma 10. Suppose that the confidence sets are consistent, and that xt noisily activates
the BIS I . Since xt is the action of DOSS, it is also permissible. Together, these two properties imply
that there exists some Ã ∈ Ct such that

Ãxt ≤ α

Ã(I)xt = α(I)

But, since Ct is consistent, Lemma 2 yields

Axt − ρt1U ≤ Ãxt ≤ Axt + ρt1U .

The claim follows directly from this, since

α ≥ Ãxt ≥ Axt − ρt1U =⇒ Axt ≤ α+ ρt1U ,

and
α(I) = Ã(I)x ≤ A(I)xt + ρt1U (I) =⇒ A(I)xt ≥ α(I)− ρt1U (I).

Further, due to the optimistic selection of xt, it is a maximiser amongst the permissible set of
maxθ̃∈Cθ

t
⟨θ̃, x⟩. But under consistency, θ ∈ Cθ

t , and x∗ ∈ S̃t. Thus, it follows that if θ̃ is the optimal
choice in the above program, then

⟨θ̃, xt⟩ ≥ ⟨θ, x∗⟩.

But, again using consistency and Lemma 2, it holds that ⟨θ̃, xt⟩ ≤ ⟨θ, xt⟩+ ρt, from which the claim
is forthcoming.

D.2. Proof of Noise Scale Lower Bound and the Positivity of the Gaps of Suboptimal BISs

The argument underlying the proof of the noise-scale lower bound is essentially encapsulated in
§6.2.1, but refined through the use of the LP P (ζ; I). The bulk of the following proofgoes into show-
ing that the gap we define is meaningful, i.e., that if I is a suboptimal BIS, then max(ζ∗(I), η∗(I)) >
0. This essentially boils down to showing that s(I) is finite for feasible BISs.
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Proof of Lemma 13. We will first show that under consistency of the confidence sets, playing a
suboptimal BIS I implies that ρt(xt; δ) ≥ max(ζ∗(I), η∗(I)). Observe that under the assumption of
consistency,

⟨θ, xt⟩ ≤ P (ρt; I),

since xt ∈ T (ρt; I) by Lemma 10. Further, by the final line of Lemma 10, ⟨θ, xt⟩ ≥ ⟨θ, x∗⟩ − ρt.

Since xt ∈ T (ρt; I), this set is nonempty, and therefore by definition ρt ≥ ζ∗(I). Note that if
ζ∗(I) = ∞, we can conclude already, since this means that ρt(xt; δ) ≥ ∞ ≥ max(ζ∗(I), η∗(I)). If
ζ∗(I) <∞, then by the definition of the spread s(I), and the efficacy separation γ(I), we have

P (ρt; I) ≤ P (ζ∗(I); I) + s(I)(ρt − ζ∗(I)) = ⟨θ, x∗⟩ − γ(I) + s(I)(ρt − ζ∗(I)).

But then we conclude that

−ρt ≤ −γ(I) + s(I)(ρt − ζ∗(I)) ⇐⇒ ρt(s(I) + 1) ≥ γ(I) + s(I)ζ∗(I) ⇐⇒ ρt ≥ η∗(I).

Thus, the claim follows.
We now proceed to argue that for any suboptimal BIS I , at least one of ζ∗(I) and η∗(I) is positive.

Fix the BIS I . Note that if ζ∗(I) = ∞, then there is nothing to show. So, suppose ζ∗(I) <∞. By
expanding out the definition of T (ζ; I), the program P is

P (ζ; I) = max
x

⟨θ, x⟩

s.t. Ax ≤ α+ ζ1U

−A(I)x ≤ −α(I) + ζ1U (I).

We recall that this is a linear program, which is of course evident in the above. Since ζ∗(I) < ∞,
the above program is feasible for ζ ≥ ζ∗(I). Further, since X ⊃ T (ζ; I) is a bounded polytope, the
program is finite. Thus strong duality applies to the above program.

Let us introduce dual variables (λ, µ) respectively for the two blocks of constraints. By standard
techniques, the dual program is

D(ζ; I) = min
λ,µ

⟨λ, α+ ζ1U ⟩+ ⟨µ,−α(I) + ζ1U (I)⟩

s.t. A⊤λ−A(I)⊤µ = θ,

λ ≥ 0, µ ≥ 0.

For succinctness, let us write

f(λ, µ) = ⟨λ,1U ⟩+ ⟨µ,1U (I)⟩
g(λ, µ) = ⟨λ, α+ ζ∗(I)1U ⟩+ ⟨µ,−α(I) + ζ∗(I)1U (I)⟩,
h(λ, µ) := A⊤λ−A(I)⊤µ− θ.

Further, let λ = (λ, µ). We can succinctly write the dual as

D(ζ; I) = min
λ

(ζ − ζ∗(I))f(λ) + g(λ) : h(λ) = 0, λ ≥ 0, µ ≥ 0.
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Note that since the primal is bounded and feasible for ζ ≥ ζ∗(I), so is the dual, and by strong
duality D(ζ∗(I); I) = P (ζ∗(I); I). But

D(ζ∗(I); I) = min
λ
g(λ) : h(λ) = 0, λ ≥ 0, µ ≥ 0.

It follows that the set

F := {λ : g(λ) ≤ P (ζ∗(I); I), h(λ) = 0, λ ≥ 0, µ ≥ 0}

is nonempty. Observe that ζ does not appear anywhere in the definition of F .
Let us define the two programs

D′(ζ; I) := min
λ

(ζ − ζ∗(I))f(λ) + g(λ) : λ ∈ F ,

E(I) := min
λ
f(λ) : λ ∈ F

Note that both of the above programs are feasible. As a feasible minimisation program we also
have that E(I) < ∞. Further, since introducing extra constraints cannot decrease the value of a
minimisation program, we note that D(ζ; I) ≤ D′(ζ; I). But observe that since the constraints of
D′(ζ; I) include the requirement that g(λ) ≤ P (ζ∗(I); I), we have for every ζ ≥ ζ∗(I) that

D′(ζ; I) ≤ P (ζ∗(I); I) + min{(ζ − ζ∗(I))f(λ) : λ ∈ F}
= P (ζ∗(I); I) + (ζ − ζ∗(I)) ·min{f(λ) : λ ∈ F}
= P (ζ∗(I); I) + (ζ − ζ∗(I))E(I).

But, then by strong duality,

P (ζ; I) = D(ζ; I) ≤ P (ζ∗(I); I) + (ζ − ζ∗(I))E(I),

and we conclude that s(I) ≤ max(0, E(I)) <∞.
Now, since s(I) is finite, in order to show that max(ζ∗(I), η∗(I)) > 0, it suffices to argue that for

any suboptimal BIS, max(ζ∗(I), γ(I)) > 0. But observe that if ζ∗(I) = 0, then limζ↘0 P (ζ; I) >
−∞, and due to the right-continuity of P , this implies that P (0; I) > −∞ =⇒ X I ̸= ∅, in other
words, I is a feasible BIS. But if a BIS I is both feasible and suboptimal, then for every x ∈ I, it
must hold that ⟨θ, x⟩ < ⟨θ, x∗⟩, since otherwise I would be optimal. But, since X I = T (0; I) is a
compact set, this means that P (ζ∗(I); I) = P (0; I) < ⟨θ, x∗⟩ ⇐⇒ γ(I) > 0.

D.3. Bounding the Play of Suboptimal BISs

With the above ingredients in place, we show the main result of §6.3.

Proof of Theorem 15. Let us again abbreviate ρt(xt; δ) as ρt. By Lemma 13, if a suboptimal
BIS I is played, then ρt ≥ max(η∗(I), ζ∗(I)). But then any time a suboptimal BIS is played,
ρt ≥ min{max(η∗(I), ζ∗(I)) : I is a suboptimal BISs}, i.e., ρt ≥ Γ.
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Now observe that

T∑
t=1

1{∃suboptimal BIS I : xt ∈ X̃ I
t } ≤

T∑
t=1

1{ρt ≥ Γ}

≤
T∑
t=1

ρ2t
Γ2

1{ρt ≥ Γ}

≤ Γ−2
∑
t≤T

ρ2t ,

where the second inequality is using that if ρt ≥ Γ, then ρt/Γ ≥ 1. Applying Lemma 24 immediately
bounds the above as O

(
d2 log2 T+d log(T ) log(U/δ)

Γ2

)
.

Appendix E. Proofs of Bounds on Efficacy Regret and Safety Violations

We proceed to discuss the proofs of the results of §7.

E.1. The Efficacy of the Actions of DOSS when Activating Optimal BISs

Our first order of business is to argue that playing only optimal BISs leads to actions xt that are
‘over-efficient’, i.e., satisfy ⟨θ, xt⟩ ≥ ⟨θ, x∗⟩. The following basic result is useful in our argument.

Lemma 27 For a BIS I , define KI = I ∩ [U + 1 : m] to be the indices of the known constraints in
I . Under the genericity of noise assumption, for any BIS I such that A(KI) is full row rank, for any
t ≥ d, it holds almost surely that Ât(I) is full rank.

Proof of Lemma 27. Notice that since for any i, the noise in the feedback Si
t is generic, it does

not concentrate in any low-dimensional subspace of Rd. This in turn means that the probability that
any âit lies in a low-dimensional subspace of Rd is exactly zero. The claim follows immediately:
since |I \KI | ≤ d, each âit with probability one does not lie in the span of {âj}j∈I\{i}, and since by
assumption the A(KI) is full rank.

With this in hand, we argue Lemma 17 by exploiting the weak-nondegeneracy condition of
Assumption 16.

Proof of Lemma 17. We need to show that if all of the BISs xt noisily activates are optimal, then
⟨θ, xt⟩ ≥ ⟨θ, x∗⟩, which comprises the bulk of this proof. To this end, let us fix one such BIS, I .

By Assumption 16, we know that {x∗} = X I , and that I is full-rank. Notice that as a result, we
may write

⟨θ, x∗⟩ = max⟨θ, x⟩ : A(I)x = α(I).

Indeed, due to the fact that I is full rank, the latter equality constraints already enforce that x∗ is the
sole feasible point. Further, by strong duality, there exists a choice of vectors µ such that

µ⊤A(I) = θ⊤.
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Due to the optimistic selection rule, and the fact that xt noisily saturates I , it must hold that xt is
a solution to

max
θ̃∈Cθ

t ,Ã∈Ct

max
x

⟨θ̃, x⟩ : Ã(I)x = α(I), Ãx ≤ α,

where the maximisation over Ã is equivalent to optimisitic selection over S̃t = {x : ∃Ã : Ãx ≤ α},
and the equality constraint arises since xt noisily activates I . Now observe that in the optimisation
above, we may restrict attention to Ã such that Ã(I) is full rank. Indeed, if this optimal choice were
rank-deficient, then since the feasible set remains a polytope, there must exist some other constraints
amongst the Ã besides those in I that are activated by xt (since otherwise we would be playing on
the interior of a polytope, and thus violating Lemma 25). By dropping some linearly dependent rows,
this would yield a different index set I ′ that xt activates, and which is not rank-deficient. By the
hypothesis, this index set must also be optimal, and we can run the argument for I ′ instead. But then
note that xt is exactly characterised by the equality conditions imposed by noisily activating the BIS
I , which means that xt is the optimiser of

max
θ̃∈Cθ

t ,Ã∈Ct,

M̃(I,Ã) is full-rank

max
x

⟨θ̃, x⟩ : Ã(I)x = α(I).

Now, let us write Ã = A + δA, θ̃ = θ + δθ, x = x∗ + δx. Further denote the optima as
δθt, δAt, δxt. With this notation, our goal is to show that ⟨θ, δxt⟩ ≥ 0. To this end, observe that
since the program above has the constraint Ã(I)x = α(I) = A(I)x∗ we find that

Ã(I)x = A(I)x∗ + δA(I)x+A(I)δx = α(U) ⇐⇒ A(I)δx = −δA(I)x,

which imply that

⟨θ, δx⟩ = ⟨A⊤µ, δx⟩ = ⟨µ,Aδx⟩ = −⟨µ, δAx⟩

⇐⇒ ⟨θ, δx⟩ =
∑
i∈I

−µi⟨δAi, x⟩ (6)

Thus, we can rewrite the program as

max
x

max
δθ,δA

⟨θ, x∗⟩+ ⟨δθ, x⟩ − ⟨µ, δA(I)x⟩ : Ã(I)x = α(I).

Now, recall that the confidence sets are constructed around the RLS estimates âit and θ̂t, i.e.,

Cθ
t = {θ̃ : {θ̃ − θ̂t∥Vt−1 ≤ ωt}, Ci

t = {ã : ∥ã− âit∥Vt−1 ≤ ωt1
i
U}.

To clearly express the choice of δθ, δA, we define

∆θt = θ̂t − θ,∆ait = âit − ai,∆A = Ât −A

∂θ = θ̃ − θ̂t ∂ai = ãi − âit, ∂A = Ã− Ât.

Observe then that
δθ = ∆θt + ∂θ; δai = ∆ait + ∂ai.
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Further, the decision variables of the program are only the ∂θ and ∂ais, which lie in the set
∥∂θ∥Vt−1 ≤ ωt and ∥∂ai∥Vt−1 ≤ ωt1

i
U . Let us denote UI = I ∩ [1 : U ] and KI = I ∩ [U + 1 : m],

and observe that ∆ai = ∂ai = 0 for i ∈ KI . Incorporating this structure, we can write the program
as

⟨θ, x∗⟩+max
x

max
∂θ,∂A

⟨∆θt, x⟩+−
∑
i∈UI

µi⟨∆ait, x⟩+ ⟨∂θ, x⟩ −
∑
i∈UI

µi⟨∂ai, x⟩.

s.t. ⟨ai +∆ait, x⟩+ ⟨∂ai, x⟩ = αi ∀i ∈ I,

∥∂θ∥Vt−1 ≤ ωt

∥∂ai∥Vt−1 ≤ ωt1
i
U ∀i ∈ I.

But now observe that the optimal choice of ∂θ in the above is exactly ωt/∥x∥V −1
t−1
V −1
t−1x. Indeed,

recall that ∥u∥Vt−1 =
√
u⊤Vt−1u = ∥V 1/2

t−1u∥, and similarly ∥u∥V −1
t−1

= ∥V −1/2
t−1 u∥. By the Cauchy-

Schwarz inequality, ⟨∂θ, x⟩ = ⟨V 1/2
t−1 ∂θ, V

−1/2
t−1 x⟩ ≤ ∥∂θ∥Vt−1∥x∥V −1

t−1
, and this is extremised when

V
1/2
t−1 ∂θ ∝ V

−1/2
t−1 x ⇐⇒ ∂θ ∝ V −1

t−1x. Further, if for a scalar φ, ∂θ = φ · V −1
t−1x, then

∂θ⊤Vt−1∂θ = φ2x⊤V −1
t−1Vt−1V

−1
t−1x = φ2x⊤V −1

t−1x,

or equivalently, ∥φ · V −1
t−1x∥Vt−1 = |φ|∥x∥V −1

t−1
, which means that to obey ∥∂θ∥Vt−1 ≤ ωt, we must

set ∂θ = ± ωt
∥x∥

V −1
t−1

V −1
t−1x, and of these the + solution gives a positive value, and so is optimal.

Further notice that the optimal choice of ∂ai for i ∈ UI must similarly be aligned with V −1
t−1x.

Indeed, write V 1/2
t−1 ∂a

i = ωtσ
iV

−1/2
t−1 x + ψi, where σi is a scalar, and ψi is a vector such that

⟨ψi, V
−1/2
t−1 x⟩ = 0. Then observe that due to the orthogonality,

∥∂ai∥2Vt−1
= ⟨V 1/2

t−1 ∂a
i, V

1/2
t−1 ∂a

i⟩ = ⟨ωtσ
iV

−1/2
t−1 x+ψi, ωtσ

iV
−1/2
t−1 x+ψi⟩ = ω2

t (σ
i)2∥x∥2

V −1
t−1

+∥ψi∥2,

and so the the constraint on ∂ai becomes (ωtσ
i)2∥x∥−1

Vt−1
+ ∥ψi∥2 ≤ ω2

t . But ψi affects neither the
first constraint on ⟨ai +∆ait + ∂ai, x⟩, nor the objective, since

⟨∂ai, x⟩ = ⟨V 1/2
t−1 ∂a

i, V
−1/2
t−1 x⟩ = ⟨ωtσ

iV
−1/2
t−1 x, V

−1/2
t−1 x⟩+ ⟨ψi, V

−1/2
t−1 x⟩ = σi∥x∥2

V −1
t−1
.

This means that dumping any energy into ψi affects neither the constraints nor the objective, so we
can safety set it to zero in the following (in fact, as we shall see below, it must be zero since σi

must saturate). This allows us to considerably simplify the above program: by introducing the real
valued variables σi for i ∈ I , and noting that ∂ai = 0 for i ∈ KI can be achieved by demanding
(σi)2∥x∥V −1

t−1
≤ 0 = 1iU for i ∈ KI , we may rewrite the program above as

⟨θ, x∗⟩+max
x

max
{σi}

⟨∆θt, x⟩ −
∑
i∈UI

µi⟨∆ait, x⟩+ ωt∥x∥V −1
t−1

−
∑
i∈UI

µiσiωt∥x∥2V −1
t−1
.

s.t. ⟨ai +∆ait, x⟩ = αi − ωtσ
i∥x∥2

V −1
t−1

∀i ∈ I,

⟨ai, x⟩ = αi ∀i ∈ KI

(σi)2∥x∥2
V −1
t−1

≤ 1iU ∀i ∈ I.
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Finally, observe that the first pair of constraints can be succinctly written in terms of Ât(U),
giving us the following restatement, where σ is the vector formed by stacking the σis.

⟨θ, x∗⟩+max
x

max
σ

⟨∆θt, x⟩ −
∑
i∈I

µi⟨∆ait, x⟩+ ωt∥x∥V −1
t−1

− ⟨µ, σ⟩ωt∥x∥2V −1
t−1
.

s.t. Ât(I)x = α(I)− ωt∥x∥2V −1
t−1
σ

(σi)2∥x∥2
V −1
t−1

≤ 1iU ∀i ∈ I.

But notice that A(KI) is full row rank by assumption, and thus applying Lemma 27, with
probability one, Ât(I) is full-rank. But this means that every value of σ that meets the final constraint
is feasible for the above program, since we can find an appropriate x by inverting Ât(I). Of course,
then the optimal choice of σi is then −1iU sign(µ

i)/∥x∥V −1
t−1
, telling us that for each i ∈ Ui, the

optimal ∂ai at time t is

∂ait = −1iU sign(µ
i)ωtV

−1
t−1x/∥x∥V −1

t−1
=⇒ µi⟨∂ait, x⟩ = 1iUωt|µi| · ∥x∥V −1

t−1
.

Now, finally, we observe that for each i ∈ UI , and every x, ωt|µi|∥x∥V −1
t−1

− µi⟨∆ait, x⟩ ≥ 0.

Indeed, for i ∈ KI this is trivial since both ∆ait, ∂a
i
t are 0 for such i. For i ∈ UI , since the confidence

sets are consistent, we know that ai ∈ Ci
t ⇐⇒ ∥∆ait∥Vt−1 ≤ ωt. But then

|µi⟨∆ait, x⟩| = |µi||⟨V 1/2
t−1∆a

i
t, V

−1/2
t−1 x⟩∥ ≤ |µi|∥∆ait∥Vt−1∥x∥V −1

t−1
≤ |µi|ωt∥x∥V −1

t−1
.

But now we are in business. Indeed, using (6), we finally have

⟨θ, δxt⟩ =
∑
i∈I

−µi⟨δait, xt⟩ =
∑
i∈I

−µi⟨∂ait, xt⟩ − µi⟨∆ait, xt⟩

=
∑
i∈I

|µi|ωt∥xt∥V −1
t−1

− µi⟨∆ait, xt⟩ ≥ 0,

and we are done.

The role of the non-degeneracy condition Assumption 16 in the above is fairly weak: all we
really need is that xt noisily activates some index set such that the true θ can be expressed via a linear
combination of the true constraint vectors of the index set. In the absence of this, the proof does not
quite work as stated, since it may be the case that some constraints that are needed to express θ are
not noisily activated by xt (although such constraints are activated by x∗). This removes the equality
of the various programs we wrote, and would only leave us with a lower bound (in terms of some of
these active at x∗ but not noisily active at xt constraints, along with the ones above), and it is unclear
if xt must also optimise this lower bound.

Nevertheless, we believe that this requirement is an artefact of our proof strategy: in general,
optimistic play, when it leaks out of the safe set, has a tremendous freedom to activate any noisy
constraints, and the conspiring of a choice of δθ and δA that makes the point suboptimal is severely
constrained due to the presence of a large number of over-efficient actions in the vicinity of the safe
set. Exactly nailing down an argument that cleanly expresses this intuition is an open problem.
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E.2. Proof of the Main Theorem

With all the pieces in place, we proceed to argue our main claim.

Proof of Theorem 18. With probability at least 1− δ, all the confidence sets are consistent. We
assume that this indeed occurs, and argue the claim under this event.

We first split the time horizon into two groups depending on whether xt noisily activates
suboptimal BISs or not by defining

T1 := {t ∈ [d+ 1 : T ] : ∃ a suboptimal BIS I such that xt ∈ X̃ I
t }.

Notice that for t ∈ [d+ 1 : T ] \ T1, xt only activates optimal BISs.
Now, by Lemma 13, for all t ∈ T1, ρt(xt; δ) ≥ Γ, and further by the Lemma 17, for every

t ∈ [d+ 1 : T ] \ T1, it holds that ⟨θ, x∗ − xt⟩ ≤ 0. Finally, we observe that it must hold that for all
times

⟨θ, xt⟩ ≥ ⟨θ, x∗⟩ − ρt(xt; δ).

Indeed, due to consistency, both θ and x∗ are feasible choices for the actions of DOSS. Thus,
if some θ̃, xt are chosen instead, then ⟨θ̃, xt⟩ ≥ ⟨θ, x∗⟩. But by Lemma 2, under consistency,
⟨θ, xt⟩ ≥ ⟨θ̃, xt⟩ − ρt(xt; δ), giving the above claim.

We thus have the efficacy control

ET =
∑
t

⟨θ, x∗ − xt⟩+ =
∑
t≤d

⟨θ, x∗ − xt⟩+ +
∑
t∈T1

⟨θ, x∗ − xt⟩+ +
∑
t ̸∈T1

⟨θ, x∗ − xt⟩+

≤ d+
∑
t∈T1

ρt(xt; δ) + 0

≤ d+
∑
t

ρt(xt; δ)1{ρt(xt; δ) ≥ Γ}

≤ d+
∑
t

ρt(xt; δ) ·
ρt(xt; δ)

Γ

= d+
1

Γ

∑
t

ρt(xt; δ)
2,

whence the claimed bound follows upon using Lemma 24. As in §5, we have used the trick that
1{u ≥ v} ≤ u/v for positive v.

To control the safety behaviour, we observe that due to the property that xt ∈ S̃t(δ), there must
exist some witness Ãt ∈ Ct(δ) such that Ãtxt ≤ α. But, again by Lemma 2 that under consistency,
for every i,

⟨ãit, xt⟩ ≥ ⟨ai, xt⟩ − ρt(xt; δ),

which implies that
max

i
⟨ãi, xt⟩ − αi ≤ ρt(xt; δ).

But then
ST =

∑
t≤T

max
i

(⟨ãi, xt⟩ − αi)+ ≤
∑
t≤T

ρt(xt; δ),

and the claim is immediate from Lemma 24. Above, we have used the elementary fact that if u ≤ v
and v > 0, then (u)+ ≤ v.
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We note that the upper bound in Theorem 3 is also immediate from the above argument. The
control on ST can be repeated verbatim, while to control ET , we note that we began by showing that
⟨θ, x∗ − xt⟩ ≤ ρt(xt; δ), so the conclusion of the control on ST above can be repeated verbatim.

E.3. Proofs of Polylogarithmic Safety Violation Claims from §7

Finally, we show the proof of the subsidiary observation from §7.

E.3.1. FINITE PRECISION IN CONSTRAINT LEVELS

The argument relies on the following observation.

Lemma 28 Under consistency, for every ε > 0, t if DOSS(δ) plays an action xt such that
maxi(⟨ai, xt⟩ − αi)+ ≥ ε then ρt(xt; δ) ≥ ε.

Proof. As in the proof of Theorem 18, if the algorithm plays xt, then

∃Ã ∈ Ct(δ) : Ãxt ≤ α.

But, under consistency, by Lemma 2,

Ãxt ≥ Axt − ρt(xt; δ)1U ,

and so for every i,
⟨a, xt⟩ − αi ≤ ⟨ãi, xt⟩+ ρt(xt; δ)− αi ≤ ρt(xt; δ),

and the claim follows by maximising over i.

The above is enough to enable the argument, which goes along the lines of the proof of logarithmic
bounds on ET in Theorem 18.

Proof of Theorem 20. As always, we begin by assuming consistency of the confidence sets, which
occurs with probability at least 1−δ. Observe that the proof of efficacy can be repeated verbatim from
the previous section under consistency. To control the net violations, first recall that by Lemma 28,
∃i : ⟨ai, xt⟩ − αi > ε =⇒ ρt(xt; δ). It thus follows that

S ε
T =

∑
t≤T

(⟨ai, xt⟩ − αi)1{∃i : ⟨ai, xt⟩ − αi > ε}

≤
∑
t≤T

ρt(xt; δ)1{ρt(xt; δ) > ε}

≤
∑

ρt(xt; δ)
2/ε,

and the claim follows from Lemma 24.
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E.3.2. FINITE PRECISION IN CONSTRAINTS

We argue that due to the finite precision in the constraint levels, there exists a minimal error scale for
the problem.

Lemma 29 There exists a constant π > 0 such that if the confidence sets are consistent, and that
the finite-constraint-precision version of DOSS(δ) picks an xt that only activates optimal BISs, but xt
is either infeasible or ineffective, then ρt(xt; δ) ≥ π.

Proof. Let I be an optimal BIS that xt noisily activates. This is again full rank by Assumption 16,
and there exists some Ã ∈ CP

t such that Ã(I)xt = α(I), Ã(I)xt ≤ α. As in the proof of Theorem 18,
we can restrict attention to Ã such that Ã(I) is full-rank, since one such I, Ã must exist.

Since both Ã(I) is full rank, we immediately know that xt = Ã(I)−1α(I). But then, since
there are only a finite number of possible choices for Ã(I) in P, there are only a finite number
of candidate xt. Let us define x(Ã(I)) = Ã(I)−1α(I), and X (I) = {x(Ã(I))}. Since x∗ is
assumed to be the unique optimum, we know that for each x ∈ X (I), it must hold that π(x) :=
max

{
(⟨θ, x∗ − x⟩,maxi(⟨ai, x⟩ − αi)+

}
is strictly positive, which in turn yields that

πI := min
x∈X (I)

π(x) > 0.

Of course, we also conclude then that if xt noisily activates I but is infeasible or suboptimal, then it
must be at least πI -infeasible or πI -suboptimal, which via Lemma 2 and an argument similar to that
in the proof of Lemma 28 yields that ρt(xt; δ) ≥ πI .

Of course, since some optimal full rank BIS must be activated, we conclude that if xt is not the
optimum, then

ρt(xt; δ) ≥ π := min
optimal BISs I

πI ,

and we are done.

Let us note that the argument above is quite crude, in that we simply take a minimum over all
candidates once we establish the finitude of the set of these candidates. A more refined analysis
may recover stronger local behaviour by analysing what types of Ã(I) remain in Ct(δ) once enough
information has been accumulated, and use this to develop notions of gaps for finite-constraint-
precision scenarios that dominate the quantity we have constructed above. We leave this interesting
line of study for future work.

In any case, exploiting the above yields the result.

Proof of Theorem 21. Working along the lines of the proof of Theorem 18 yields control in both
the efficacy and safety costs accumulated over times t for which a suboptimal BIS was activated of
the form O(Γ1d2 log2 T ). Restricting attention then to optimal BISs, by the above, if a suboptimal
or infeasible action xt were picked, then by the above Lemma, ρt(xt; δ) ≥ π. This lets us repeat
the same argument, but now over t for which an optimal BIS was activated, which yields bounds of
O(π−1d2 log2(T )), and the overall costs is bounded by the sum of these two quantities.
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E.3.3. FINITE ACTION SETTING.

Let us specify the setting in a little more detail: we are supplied with a finite set A ⊂ Rd, and in each
round the learner chooses one action xt ∈ A. The linear reward and constraint structures are kept
identical, and x∗ is updated to be the best action in A, i.e.,

x∗ := argmax⟨θ, x⟩ : Ax ≤ α, x ∈ A.

Note that the known constraints are no longer necessary: if they are given, then we may filter A before
play starts. The gap ∆ := minx∈A,x̸=x∗ max(⟨θ, x∗ − x⟩,maxi(⟨ai, x⟩ − αi)+) is non-zero simply
because each suboptimal arm in A must be either infeasible, or ineffective, and the minimisation is
over a finite set.

The result relies on the following observation, which follows straightforwardly from Lemma 2.

Lemma 30 If the confidence sets are consistent, and the modified finite-action version of DOSS

chooses xt ̸= x∗ from A, then ρt ≥ ∆

Proof of Lemma 30. Notice that the basic result Lemma 2 remains valid in this setting. As a
result, if the confidence sets are consistent, then since xt is permissible, there exists Ã ∈ Ct such
that Ãxt ≤ α, and some θ̃ ∈ Cθ

t : ⟨θ̃, x⟩ ≥ ⟨θ, x∗⟩. Further, either there exists i : ⟨ai, xt⟩ ≥ αi +∆
or ⟨θ, x⟩ ≤ ⟨θ, x∗⟩ −∆. But by consistency, ⟨ãi, xt⟩ ≥ ⟨ai, xt⟩ − ρt(xt; δ) and ⟨θ̃, x⟩ ≤ ⟨θ, x⟩ +
ρt(xt; δ), so either case implies ρt(xt; δ) ≥ ∆, which thus must hold.

Proof of Proposition 22. The claim can be shown using Lemma 30 along the lines of the proof of
Theorem 20.

Appendix F. Proofs of Lower Bounds

We conclude by showing the lower bounds claimed in the main text.

F.1. Proof of Polynomial Lower Bound

We argue Theorem 4 by fleshing out the example developed in § 5. The proof uses techniques that
are largely standard in the bandit literature (Lattimore and Szepesvári, 2020, Ch. 24).

Proof of Theorem 4. The instance we consider is

X = [0, 1], θ∗ = 1, a1 = (1± κ)/2, α1 = 1/4, wi
t
i.i.d.∼ N (0, 1), i ∈ {0, 1}

for some κ ∈ (0, 1/4). Note that implicitly, the above has the know constraints −x ≤ 0 and x ≤ 1.
Of course, this one-dimensional construction can be embedded into an arbitrary dimension (for
instance, by taking a very skinny box domain, and only enforcing this single unknown constraint).

In the above case, the optimal feasible solutions are x+ = 1
2(1+κ) , x

− = 1
2(1−κ) for these two

instance respectively. In addition, both of these two instances are at least 1/8−well separated. The
key observation is the indistinguishability of these two instances with ≪ 1/κ2 actions.
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Indeed, let P+,P− be the distributions induced by the two problem instances and the learning al-
gorithm. Since in either case, the noise distribution is standard Gaussian, and the reward distributions
are identical, it follows that

D(P+(rt, s
1
t )∥P−(rt, s

1
t )|xt = x) =

(κx)2

2
≤ κ2

2
,

where we have used standard results about the KL-divergence between two Gaussians. Further,
since actions must be causal, and since the noise is independent, we conclude that over the whole
trajectory,

D(P+(HT )∥P−(HT )) ≤
Tκ2

2
.

Let xav := (x+ + x−)/2 = 1
2(1−κ2)

. Observe that

• if the ground truth is a1 = (1+ κ)/2 and xt ≥ xav, then the algorithm incurs an instantaneous
safety violation of at least (1 + κ)/2 · xav − 1/4 = 1+κ

2 · 1
2(1−κ2)

− 1
4 = κ

4(1−κ) ≥
κ
4 ;

• if the ground truth is a1 = (1 − κ)/2 xt < xav, then the algorithm incurs an instantaneous
efficacy regret of at least 1

2(1−κ) −
1

2(1−κ2)
≥ κ

2

Let A be the event {#{t : xt ≥ xav} ≥ T/2}.Using the Bretagnolle-Huber inequality (Lattimore
and Szepesvári, 2020, Thm. 14.2),

P+(A) + P−(Ac) ≥ 1

2
exp

(
D(P+(HT )∥P−(HT ))

)
≥ 1

2
exp(−Tκ2/2).

Let E −
T denote the efficacy regret incurred by the learner under P− and S +

T denote the safety
violation incurred by the learner under P+. Under the event A, if the true a was (1 + κ)/2, at least
T/2 rounds incurred a safety regret of at least κ/4, and so S +

T ≥ κT/8. Similarly, under Ac, at
least T/2 rounds had zt = −1, implying that E −

T ≥ Tκ/8.
But this implies that

max(E−(E −
T ),E+(S +

T )) ≥ Tκ

8
max(P+(A),P−(Ac)) ≥ Tκ

32
exp(−Tκ2/2).

For T ≥ 16, we may choose κ = 1/
√
T < 1/4 to conclude that in at least one instance, the

safety or efficacy regret incurred must be at least
√
T/(32e1/2) ≥

√
T/64.

F.2. Necessity of Dependence on Gaps.

We conclude the theoretical part of this paper by showing Theorem 19, via a reduction to prior lower
bounds on the safe multi-armed bandit problem (Chen et al., 2022).

The safe MAB problem is parametrised by d arms with mean rewards µk and mean safety risks
νk each. The optimal arm, k∗ has reward µ∗ and the safety risk ny∗ < α. The associated efficacy
and safety gaps are ∆k := (µ∗ − µk)+ and Γk := (νk − α)+. In each round, the leaner is required
to select one arm, and observes bounded signals with the above mean for both the rewards and safety.
Implicitly, this can be thought of as a linear bandit setting, with the known constraints being that x
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lies in a simplex, the reward vector θ, and the constraint vector a. This reduction, however, is not
completely correct: in the safe MAB problem, the actions are required to lie entirely on the corner
points of the simplex, and we are not allowed to play in the interior. While it is standard to view x as
a probability of selecting each arm in a MAB instance, this reduction fails due to the nonlinearity in
our metrics. Indeed, the safe MAB problem considers the metrics

E MAB
T :=

∑
(µ∗ − µAt)+,S

MAB
T :=

∑
(νAt − α)+.

As a result, if the optimum of the SLB problem lies away from the corner points of the simplex, then
the SLB problem can incur low regret, while the corresponding MAB actions would incur linear
regret. Nevertheless, we shall argue below that for carefully designed instances, a low regret in the
linear bandit problem does ensure nontrivial regret in the safe MAB problem.

The main result we shall use is the following, which is a mild variation of Proposition 6 of Chen
et al. (2022), and can be shown using their proof.

Lemma 31 Let f : N → [0,∞) be any function fixed function such that f(T ) ≤ T for all T . If an
algorithm ensures that for every safe MAB instance, suboptimal arms are not played more than f(T )
times in expectation, then for every θ, a, there exists a choice of arm distributions for the safe MAB
instance for which the means are as described, and the number of times each suboptimal arm k is
played is lower bounded in expectation as

E[Nk
T ] ≥

1

(d(µk∥µ∗)1{µk < µ∗}+ d(νk∥α)1{νk > α})
·
(
(1− f(T )/T ) log

T

f(T )
− log(2)

)
,

where d(u∥v) is the KL divergence between Bernoulli laws with means u and v. In particular, these
distributions are simply Bernoulli laws with the above means.

Our argument for the linear bandit proceeds thus. We shall carefully design a safe linear
bandit instance for which we essentially provide multi-armed bandit feedback by using the standard
reduction that each coordinate of xt represents the probability of pulling the corresponding arm. We
shall show that in the selected instance, achieving low linear regret ensures that the MAB regret is
controlled (although to a weaker level). Then exploiting the above lower bound, we shall argue that
the regret of the safe linear bandit cannot be too good, since it would violate the above lower bound.

Proof of Theorem 19. We first carefully describe our main constructions for the SLB and MAB,
form a crude bound that allows us to use Lemma 31, and then refine the analysis to show effective
lower bounds on the SLB regret.

SLB Instance. We work with d = 2 with a single unknown constraint. Let θ = (θ1, θ2) and
a1 = (α, a12) be vectors in [0, 1]2 such that θ2 > θ1 > 0, a12 > α > 0 and θ2α < θ1a

1
2. The safe

bandit instance we design is

max⟨θ, x⟩ : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1, ⟨a, x⟩ ≤ α,

where the last constraint is unknown and the rest are known. Let us call the three known constraints
a2, a3, a4. There are 6 BISs, with the associated points and gaps shown in Table 1 below. The only
points meeting the constraints a3 and a4 is (0, 1), which is infeasible. Note that the situation is highly
degenerate at the optimal point is x∗ = (1, 0) and three distinct BISs activate it. Nevertheless, each

36



SAFE LINEAR BANDITS OVER UNKNOWN POLYTOPES

Table 1: Description of BISs in our construction.

BIS Activating Point ζ∗(I) η∗(I)

{1, 2} (0, α/a12) 0 (θ1a
1
2 − αθ2)/(a

1
2 + θ2)

{1, 3} (1, 0) 0 0
{1, 4} (1, 0) 0 0
{2, 3} (0, 0) 0 θ1
{2, 4} (1, 0) 0 0
{3, 4} ∅ a12 − α 0

of these BISs is full rank. Further, since the algorithm ensures that ST and ET are both O(
√
T ) in

general, our discussion below is effective.
The gap of this instance is

Γ := min

(
θ1, a

1
2 − α,

θ1a
1
2 − αθ2

a12 + θ2

)
.

Our construction requires that this is at least Ω(min(θ1, a
1
2 − α)). This can always be ensured,

example, by using the parameterisation θ2 = 2θ1, a
1
2 = 4θ1, α = θ1/2, whence the expressions work

out to

a12 − α = 7θ1/2,
θ1a

1
2 − αθ2

a12 + θ2
= 3θ1/5,

giving us Γ ≥ θ1/2. We further impose the condition 4θ1 < 1/4. Thus, this instance lets us express
every value of Γ < 1/32.

Safe MAB Instance. Let us now describe the associated MAB instance. We work with three
arms of means µ = (1/2 + θ1, 1/2 + θ2, 1/2) and risks (1/2 + α, 1/2 + a12, 1/2). In each case, the
underlying laws are Benoullis with the associated mean, all taken to be independent, which forms
the family of instances that underly Lemma 31. The connection to the linear bandit instance is as
follows: each time we pick (x1, x2), we sample a random variable in {1, 2, 3} according to the pmf
(x1, x2, 1− x1 − x2), pull the corresponding arm, and then supply the resulting rewards and risks
with 1/2 subtracted to the linear bandit instance. Note that this is an unbiased measurement of the
mean for the linear bandit, since

E[R] = x1 · (1/2 + θ1) + x2 · 1/2 + θ2) + x2 · (1/2)− 1/2 = x1θ1 + x2θ2

and similarly for the safety risk. These 1/2 are added to ensure because then the KL divergences
appearing in the bound of Lemma 31 take the form d(1/2∥1/2 + θ1) and d(1/2 + a12∥1/2 + α), and
the arguments are bounded away from 0 and 1, ensuring that the behaviour for small θ1 is quadratic
rather than the potentially worse dependence near 0 and 1. To ensure this good behaviour, we use
that a12 < 1/4, due to which a12 + 1/2 < 13/14 is bounded away from 1, which is the origin of
our condition θ1 ≤ 1/16 in the previous paragraph. The key observation is that in the safe MAB
instance, E[N2

T ] =
∑
xt,2 and E[N3

T ] =
∑

(1− xt,1 − xt,2), where xt,k is the kth component of xt.

Crude Bound. We first show that as long as the algorithm ensures that max(ET ,ST ) = O(T 1−c),
the play of suboptimal arms in the MAB instance is at least Ω(θ−2

1 log T ). Fix θ1 and the above
models. Suppose that the safe linear bandit ensures that ET ≤ g(T ) and ST ≤ g(T ) for every

37



GANGRADE CHEN SALIGRAMA

instance, where g(T ) ≤ T is an arbitrary monotonic function. Let ζ > 0 be a parameter that we will
fix later. Then observe that if the linear bandit instance ever plays a point (x1, x2) such that

⟨a1, x⟩ ≥ α+ ζ or ⟨θ, x⟩ ≤ θ1 − ζ,

then it would incur a point wise cost of at least γ in the round, for either ET or ST . This means
that the number of rounds in which it plays such points is bounded as g(T )/ζ. So, in at least
max(T − g(T )/ζ, 0) rounds, the safe linear bandit instance plays in the region

Pζ := {⟨a1, x⟩ ≤ α+ ζ, ⟨θ, x⟩ ≥ θ1 − ζ, x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}.

Now notice that both x2 and x1 + x2 are upper bounded in this region. Indeed, the corner points of
this region are(
1− ζ

θ 1
, 0

)
,

(
1− ζ

a12 − α
,

ζ

a12 − α

)
,

(
1− ζ

θ1

{
1 +

θ2(θ1 + α)

θ1(θ1a12 − αθ2)

}
,

θ1 + α

θ1a12 − αθ2

ζ

θ1

)
, (1, 0),

and so ensuring that a12 − α, θ1a
1
2 − αθ2 = Ω(θ1), we have

x ∈ Pζ =⇒ x2 ≤ ζ/θ1, (1− x1 − x2) = O(ζ/θ1).

Of course, outside of Pζ , x2 ≤ 1, 1− x1 − x2 ≤ 1. The calculation holds no matter the ζ we chose
so long as ζ ≪ θ1. This means that for every ζ = O(θ1),

E[N2
T ] =

∑
E[xt,2] ≤ O(ζ/θ1)T +

g(T )

ζ

E[N3
T ] =

∑
E[(1− xt,1 − xt,2)] ≤ O(ζ/θ1)T +

g(T )

ζ
,

i.e., we have shown that the safe MAB incurs regret bounds of at most f(T ) = O(ζT ) + g(T )θ1/ζ
for both ET and ST .

Since g(T ) ≤ CT 1−c for some constants C, c, by taking ζ = T−c/2, for large enough t, we thus
have the low-regret bound max(E[E MAB

T ],E[S MAB
T ]) ≤ CT 1−c/2. But then, by Lemma 31, it must

follow that as T → ∞,

E[N2
T ] ≥

1

d(1/2 + 4θ1∥1/2 + θ1/2)

(
(1− o(1))

c

2
log T −O(1)

)
= Ω(θ−2

1 log T ),

or E[N3
T ] ≥

1

d(1/2∥1/2 + θ1)

(
(1− o(1))

c

2
log T −O(1)

)
= Ω(θ−2

1 log T )

To use these bounds effectively, we employ a computer algebra system to argue that8

∀θ1 ≤ 1/16, d(1/2 + 4θ1∥1/2 + θ1/2) ≤ 27θ21, d(1/2∥1/2 + θ1) ≤ 27θ21.

8. Observe that since the divergences considered are minimised to 0 at θ1 = 0, the local behaviour for small θ1 is
quadratic. Further, the function is smooth in θ1. Thus, for large enough K, there exists an interval [0, θ1(K)] such
that for any x in this region, d(1/2 + ux∥1/2 + vx) ≤ Kx2. We simply plugged in various constants for K until we
found that θ1(27) ≥ 1/16.
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Concretely, then the bounds above yield

E[N2
T +N3

T ] ≥
c

27θ21

(
(1− o(1)) log T − 1

c
log(4)

)
,

where the o(1) term is C/T c/2.
Note again that this bound is effective for our case since the method DOSS does achieve

max(ET ,ST ) = Õ(
√
T ) with high probability, in which case we can set c = 1/2 + γ for any

γ > 0 in the above.

Lower Bounds on SLB. Let us now come to showing the claims. We select the instance θ2 =
2θ1, a

1
2 = 4θ1, α = θ1/2. Notice that in this case, the gaps are (θ1, 7θ1/2, 3θ1/5), and so Γ ≥ θ1/2.

Further, θ1a12−αθ2 = 3θ1, and so the claim on Pζ above remains valid for all ζ ≤ θ1, and so against
this instance, the above lower bounds on E[N2

T ] + E[N3
T ].

But, observe that for any choice of x1, x2, it holds that the instantaneous efficacy regret and
safety violations are

(θ1 − θ1x1 − θ2x2)+ = (θ1(1− x1 − x2)− (θ2 − θ1)x2)+ = θ1((1− x1 − x2)− x2)+

(αx1 + a12x2 − α)+ = ((a12 − α)x2 − α(1− x1 − x2))+ =
θ1
2
(7x2 − (1− x1 − x2))+

But notice that the only way both of these quantities are 0 is if x2 ≥ (1− x1 − x2) ≥ 7x2 =⇒
x2 = 1 − x1 − x2 = 0 ⇐⇒ x1 = 1. So, in any round such that x1 ̸= 1, at least one of these
quantities is nonzero. More quantitatively, we have

E[ET ] + E[ST ] ≥
∑

E[(θ1 − θ1xt,1 − θ2xt,2) + (αxt,1 − a12xt,2 − α)]

≥ θ1
∑ 5

2
E[xt,2] +

1

2
E[(1− xt,1 − xt,2)]

≥ θ1
2
(E[N2

T ] + E[N3
T ]) ≥

c(1− o(1)

54θ1
log(T )−O(1),

which yields the result upon recalling that θ1 ≥ Γ ≥ θ1/2.

Appendix G. Alternative Safety Metrics

We briefly investigate the behaviour of alternative safety metrics of the form

S f
T :=

∑
t≤T

f(max
i

(⟨ai, xt⟩ − αi)+),

where f is some increasing h-Hölder continuous map such that limx↘0 f(x) = 0. Note that this
section should be read after the reader is familiar with our typical proof techniques.

Note that due to our assumption that ∥ai∥ ≤ 1, ∥x∥ ≤ 1, it follows that (⟨ai, xt⟩ − αi)+ ≤
2 : since the problem is feasible, and |⟨ai, x∗⟩| ≤ 1, it follows that −1 ≤ Ax∗ ≤ α, and so
⟨ai, x⟩ − αi ≤ 1− (−1). Thus, only the behaviour of f over [0, 2] matters.

Now, since f is Hölder continuous, and f(0+) = 0, its behaviour near 0 is as f(x) ≤ Cxh. In
this case, we may as well study the behaviour of fh := x 7→ xh, which we argue determines the
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lower and upper bounds. Before proceeding, note that we may uniformly bound the noise scale by 2,
since we know that roundwise inefficacy or constraint violation can be at most 2.

Now, for the penalty S h
T =

∑
t≤T (maxi⟨ai, xt⟩ − αi)h+, observe that if h ≥ 2, we can direclty

bound the behaviour of S h
T using

S h
T ≤

∑
ρht (xt; δ) ≤ 2h−2

∑
ρ2t (xt; δ) ≤ 2h−2 ·O(d2 log2 T ).

Thus, the only interesting behaviour is when h < 2.
For h ∈ (0, 2), applying Hölder’s inequality with p = 2/h > 1, we have

S h
T ≤

∑
ρht (xt; δ) ≤

(∑
t

(ρht )
2/h

)h/2

· (
∑

12/(2−h))1−h/2 = T 1−h/2 ·O(dh logh T ).

We now note that modifying the analysis of §5, this rate of safety decay is tight. Indeed, our
construction in that section shows that for t ≤ 1/κ2, one either incurs a roundwise inefficacy of κ or
a roundwise violation of κ. Accounting for the power-cost, we get a lower bound of the form

either ET ≳ κ ·min(κ−2, T ) or S h
T ≳ κh ·min(κ−2, T ).

But again, taking κ = T−1/2, we find that

either ET ≥
√
T or S h

T ≥ T 1−h/2.

Thus, up to polylog terms, the behaviour of DOSS remains tight in terms of the S h
T behaviour,

simultaneously for every h > 0.
Coming back to general smooth losses, we immediately note that the same analysis extends to

any loss that is h-Hölder: using the bound f(x) ≤ Cxh,

S f
T ≤ C

∑
t

ρht (xt; δ),

and the bound follows. This extends to losses f that are smooth in some interval near 0+ of the form
(0, k). For the upper bound, we may decompose the net violation as

S f
T ≤

∑
t

f(ρt)1{ρt > k}+
∑
t

f(ρt)1{ρt ≤ k}.

The latter term can be dealt with as above, since f(x) ≤ Cxh over (0, k), while the former term can
be bounded as ∑

t

f(ρt)1{ρt ≥ k} ≤ ( max
x∈[0,2]

f(x))
∑
t

ρ2t /k
2 = O(k−2d2 log2 T ),

leading to an additive polylogarithmic overhead beyond the main term. The lower bound also
generalises: if on (0, k), f is h-Hölder but not h′-Hölder for any h′ > h, then there exists some
interval (0, k′) over which f/xh remains both lower and upper bounded, and we can employ our
lower bound for S h

T for T ≫ 1/(k′)2.
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Figure 7: Comparing the behaviour of DOSS and safe-LTS on the instance of Example 7. The left
plot shows the raw efficacy regret, while the right plot is the raw safety violations of the two methods,
and each reports means and one-standard deviation confidence regions over 30 runs.. Observe that
the efficacy performance of safe-LTS is extremely poor, indicating that the algorithm is far from
the boundary of the safe set S for most of its runs. In contrast, the violation properties of DOSS are
well-controlled, and almost four times smaller than the efficacy regret of safe-LTS.

Appendix H. Appendix to the Simulations

DOSS Compares Favourably with Pessimistic-Optimistic Methods. To contextualise our method,
we also implement the PO-method safe-LTS due to Moradipari et al. (2021) in the instance of
Example 7. Instead of the optimistic permissible set S̃, safe-LTS constructs a pessimistic set
Πt = {x : ∀Ã ∈ Ct, Ãx ≤ α}. Note that with high probability, all points in Πt must be safe. The
method then selects actions optimistically, in this case by exploiting Thompson sampling. Naturally,
this method requires the knowledge of a safe point with margin to being with, and we supply the
point xs = (0, 0) to the method, which has the (large) margin M s = 1/2.

Figure 7 compares the behaviour of the raw efficacy regret
∑

⟨θ, x∗ − xt⟩ (left) and the raw
safety violation

∑
maxi(⟨ai, xt⟩ − αi) (right) of Safe-LTS and DOSS (since the efficacy regret of

DOSS , and the safety-violations of safe-LTS are both essentially 0, the raw behaviour elucidates
more insight). As expected, safe-LTS suffers from 0 safety regret, since it plays in a pessimistic set.
However, this is accompanied by a large efficacy regret, with the mean of over 7000 at the horizon
T = 104. This arises due to the extreme conservatism of this method, which is evident from its safety
violation property: the method has a strong negative (and decreasing still) violation, indicating that
it continues to play deep in the interior of the domain for large T . Indeed, since over the domain,
⟨a, x⟩ − α ∈ [−0.5, 0.5], and since the violation at T = 104 is roughly −3000, this indicates that
with a nontrivial probability, the method remains at least 0.25-separated from the boundary of the
safe set.

In comparison, observe that the raw efficacy regret of DOSS is negative, but not nearly as far
as the violations of safe-LTS. This indicates that the method is shrinking towards the boundary of
the safe set at a much better rate. Of course, this property is similarly illustrated by the violation
behaviour: this nearly four times smaller than the efficacy regret of safe-LTS, and concentrates
strongly to ≈ 800 at T = 104.
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