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Abstract

Numerous geo-foundation models have been pre-trained recently
on plentiful unlabeled Earth imagery datasets by self-supervised
learning, and they have been demonstrated to enhance performance
in downstream supervised geospatial tasks such as flood extent
mapping. However, these approaches generally ignore the terrain
data that are readily available in the format of digital elevation
model (DEM) from sources such as USGS’s 3D Elevation Program
(3DEP). On the other hand, a few works have shown that elevation
guidance can improve the performance of flood extent mapping on
conventional models trained from scratch. This is intuitive since in
natural disaster events such as flooding, landslide and avalanche,
the floodwater, loose earth or snow moves downhill.

In this work, we explore the use of DEM data in geo-foundation
models by introducing EvaMAE, a Masked Autoencoder (MAE)
architecture that integrates elevation data for pre-training. Differ-
ent strategies for incorporating DEM data are studied including
convolution- and cross-attention-based approaches. We also explore
the use of ControlNet to integrate DEM data during fine-tuning.
Extensive experiments on downstream tasks such as flood and land-
slide segmentations demonstrate that (i) incorporating DEM data
is helpful in both the pre-training and the fine-tuning stages, that
(ii) the best-performing model for pre-training uses cross-attention
to combine DEM and RGB features in both the MAE encoder and de-
coder, and that (iii) the best-performing model for fine-tuning uses
ControlNet to incorporate DEM data. We also release a new large-
scale annotated flood mapping dataset called EvaFlood used in our
model training. All our code, pre-trained models, and the EvaFlood
dataset are available at https://github.com/saugatadhikari/EvaMAE.
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1 Introduction

High-resolution Earth imagery is now widely accessible from agen-
cies such as NOAA (National Oceanic and Atmospheric Administra-
tion), USGS (United States Geological Survey), and NASA (National
Aeronautics and Space Administration), as well as commercial plat-
forms like Google Earth and Maxar. These aerial and satellite images
support critical applications ranging from environmental monitor-
ing to disaster response. Optical satellites (e.g., Sentinel-2, Landsat
9, Maxar WorldView-3) use passive sensors to capture reflected
sunlight across multispectral bands (e.g., visible, infrared), enabling
high-resolution analysis but failing under cloud cover or at night.
In contrast, SAR! satellites (e.g., Sentinel-1, ALOS-2) employ active
radar to emit microwaves, penetrating clouds and vegetation for
all-weather/day-night imaging — though with lower resolution
and less intuitive grayscale backscatter outputs. NOAA National
Geodetic Survey (NGS) also provides Emergency Response Imagery
(ERI) [2] for rapid post-disaster damage assessment, which is col-
lected using specialized aircraft to capture high-resolution photos of
disaster-affected areas, with RGB cameras and precise geotagging.

Besides the above spectral data, the USGS 3D Elevation Program
(3DEP) also collects high-precision terrain data in the format of dig-
ital elevation model (DEM) collected via airborne LiDAR. In other
words, we can accompany each pixel in a geotagged Earth image
with its elevation to reconstruct a 3D view for free. As we have
demonstrated in our prior works FloodTrace [15] and ALFA [5] on
flood annotation, this 3D view is more intuitive to humans, enabling
more accurate and productive data annotations (e.g., flood maps
over Earth imagery). As modern neural computer vision models
mimic human vision capabilities, we expect the integration of DEM
would improve their model performance on Earth imagery, espe-
cially for tasks such as detecting terrain-sensitive disaster events

ISAR means synthetic aperture radar
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such as flooding, landslide and avalanche, where the floodwater,
loose earth or snow move downbhill under gravitational forces.

This has been confirmed by our prior work, EvaNet [37], which
extends the U-Net model for flood segmentation by integrating
DEM data to the design of both the network architecture and the
loss function, and has achieved much superior performance than the
U-Net baseline. DEM data have also been used by our prior graphical
models for accurate flood segmentation by encoding the fact that
floodwater moves downbhill into directed conditional dependency
edges between adjacent pixel pairs [3, 20-22, 26, 27, 35, 36, 44].
However, these models are trained from scratch, but Earth imagery
with ground-truth flood map annotations is scarce, limiting the
segmentation accuracy and model generalizability.

Foundation models have emerged as a potential solution, which
are pre-trained on large unlabeled datasets through self-supervision,
and then fine-tuned for various downstream tasks with small la-
beled datasets. Numerous geo-foundation models have been pre-
trained recently on the abundant unlabeled Earth imagery datasets,
and they have been demonstrated to enhance performance on down-
stream supervised geospatial tasks. For example, a popular anno-
tated dataset for flood mapping is Sen1Floods11 [10] which was
curated by a startup called ‘Cloud to Street’ (now Floodbase) but
it is very small. The geo-foundation model, Prithvi [24], when
fine-tuned on Sen1Floods11, achieves an IoU score of 82.99% on the
water class, while the original water IoU score in [10] is only 24.21%.
However, the existing geo-foundation models generally ignore the
terrain (i.e., DEM) data, which are ‘free’ to collect and utilize.

In this paper, we explore how to effectively integrate this ‘free’
DEM data source into the pre-training and fine-tuning stages of a
geo-foundation model. Following the existing geo-foundation mod-
els, we adopt the Masked Autoencoder (MAE) [19] architecture for
pre-training where the input patches of an Earth image are partially
masked for reconstruction, using a ViT[14]-based encoder and a
ViT-based decoder. We consider only RGB for spectral channels,
since the multi-spectral and multi-sensor extension techniques to be
reviewed in Section 2 are orthogonal to our DEM integration meth-
ods, so can be easily incorporated. We call our elevation-integrated
MAE models as EvaMAE, and three approaches of integrating DEM
data are explored: (1) treating elevation map as an additional input
channel beyond RGB (EvaMAE-Channel), (2) passing elevation map
through a convolutional layer and then adding the elevation fea-
tures with the RGB features patch by patch at both the encoder and
the decoder (EvaMAE-Conv), and (3) using cross-attention to fuse
the elevation features of all patches with the RGB features of input
patches at both the encoder and the decoder (EvaMAE-CrossAttn).

Inspired by the design of ControlNet [45] in pre-trained text-to-
image diffusion models, in our fine-tuning stage, we also explore a
similar design to condition the downstream tasks on the elevation
map which we find to improve the downstream model performance.

To verify the effectiveness of our EvaMAE models, we consider
two semantic segmentation tasks: (1) flood extent mapping and
(2) landslide segmentation. For flood extent mapping, while we
can directly pre-train models with Earth imagery datasets used
by existing geo-foundation models, these datasets do not cover
much imagery from flooding events. Therefore, we have curated a
dataset of high-resolution aerial imagery from NOAA’s Emergency
Response Imagery (ERI) from various hurricane and flooding events
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covering a total area of 17,055.83 km?. Our EvaMAE models are
first pre-trained on this unlabeled dataset before being fine-tuned.

We also annotated a subset of Earth imagery from NOAA ERI
with flood maps for the purpose of fine-tuning in our downstream
flood segmentation task, which covers an area of 3630.78 km?. This
accurate flood map annotation is made possible with our 3D annota-
tion tool FloodTrace [15], which improves annotation productivity
by using elevation-guided BFS for automated label derivation® [4].
However, the annotating process is still time-consuming, so we can
only afford to annotate a subset of images from NOAA ERIL

We have released both the pre-training and annotated datasets ac-
companied with their elevation maps, collectively called EvaFlood,
at https://github.com/saugatadhikari/EvaMAE.

For landslide segmentation, while we do not find good aerial
imagery datasets on landslide, Landslide4Sense [1] is probably
the largest annotated satellite imagery dataset on landslide and
is adopted for fine-tuning. Each image has size 128 X 128 and 14
bands, and we only take the RGB and DEM bands for fine-tuning.
The landslide detection rate is expected to be low? in this diffi-
cult task since our models are pre-trained on our EvaFlood dataset
and have not seen landslide events before, and images in Land-
slide4Sense have a much lower resolution and keeping only 4 out
of the 14 bands loses information. Nevertheless, we show that inte-
grating DEM increases the landslide detection rate a lot compared
with using RGB only, indicating that our pre-trained models can
generalize to unseen scenarios where DEM data are again helpful.

The main contributions of this paper are summarized as follows:

o This is the first work that comprehensively investigate how
to effectively integrate the ‘free’ DEM data source into the
training of a geo-foundation model. Positive results are ob-
served which advocate the utilization of DEM data in the
training of future geo-foundation models.

o Three approaches are proposed to integrate DEM data into
the pre-training stage of a geo-foundation model, using
convolution- and cross-attention-based designs. The cross-
attention-based design, EvaMAE-CrossAttn, is found to be
the most effective and clearly improves performance when
compared with a baseline without using DEM.

o We explore the use of ControlNet to condition the fine-tuning
stage on the DEM data, and obtain positive results which
advocate the use of DEM data in geo-foundation model fine-
tuning, especially for terrain-sensitive disaster events.

o We curated a high-quality dataset, EvaFlood, for DEM-enhanced
training of geo-foundation model under flooding scenes, in-
cluding components for both pre-training and fine-tuning.

e Extensive experiments have been conducted which verify
that the ‘right’ way of integrating DEM which we have dis-
covered (i.e., EvaMAE-CrossAttn for pre-training, and Con-
trolNet for fine-tuning) can both obtain better recovery of

2When an annotator marks an individual pixel p as flooded, the label propagates to
nearby pixels with lower elevations by ‘pit-filling” BFS stopping when reaching pixels
with elevation higher than that of p. When an annotator marks an individual pixel
as dry, the label propagates to nearby pixels by ‘hill-climbing’ BFS stopping when
reaching pixels with elevation starting to drop.

3We expect the performance to be much better if annotated aerial imagery datasets
on landslide are available for fine-tuning, or if we train the geo-foundation models to
take all bands of satellite imagery.
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Figure 1: Illustration of MAE (Ignoring the Elevation Map) and EvaMAE-Channel

umasked patches, and achieve better results on downstream
flood and landslide segmentation tasks.

The rest of this paper is organized as follows. Section 2 first re-
views the preliminaries and related work on geo-foundation models.
Section 3 then presents our model design, and Section 4 reports our
experiments. Finally, we conclude this paper in Section 5.

2 Preliminaries and Related Work

In this section, we first briefly review ViT [14] and MAE [19] that
are basic components of modern geo-foundation models. We then
review the many recently proposed geo-foundation models.

2.1 ViT and MAE

The Vision Transformer (ViT) [14] adapts the Transformer model,
originally developed for NLP, to computer vision tasks. ViT splits
an input image into fixed-size (typically 16X16) non-overlapping
patches, linearly embeds them into patch tokens, and processes
them with a standard Transformer encoder. By leveraging self-
attention mechanisms, ViT captures global dependencies across the
entire image, overcoming the locality limitations of ConvNets. Swin
Transformer [30] further enhances the efficiency by introducing
locality and hierarchy to ViTs: self-attention is conducted only
within each local window, and windows are shifted after each layer
to enable cross-window communication; also, patch merging is
used to reduce resolution, enabling multi-scale feature extraction.
The Masked Autoencoder (MAE) [19] is a self-supervised learn-
ing framework designed to efficiently pre-train ViTs by reconstruct-
ing masked portions of input images. Figure 1 illustrates the MAE
architecture (let us ignore the elevation map for now), where an
input image is first partitioned into patches of size 16 X 16. MAE
randomly masks a high proportion (e.g., 75%) of the image patches,
and flattens each unmasked patch into a 1024-dimensional em-
bedding by a learnable linear projection. These embeddings for
visible patches are then inputted into the ViT encoder to emit their
1024-dimensional feature vectors (i.e., latent representations).
While the ViT encoder takes only 25% unmasked patch tokens
as the input, the ViT decoder takes all image patches as its input, so
it has to be lightweight. The input embeddings to the decoder are
512-dimensional, where visible patches pass their feature vectors
emitted by the encoder through a learnable linear projection to
obtain 512-dimensional embeddings, while masked patches use

a learnable embedding for the special [MASK] token. The patch
embeddings emitted by the decoder are then converted back to
16 X 16 patches using a learnable linear projection.

Patch embeddings at the inputs of both the encoder and the
decoder are added with 2D positional embeddings (particularly im-
portant for the encoder as the unmasked patches are sparse), where
the positional embedding of a patch is obtained by concatenating
the conventional 1D sinusoidal positional embeddings individu-
ally computed for height and width. MAE is trained to recover the
masked patches by minimizing the mean squared error (MSE).

2.2 Geo-Foundation Models

Numerous geo-foundation models have been proposed in recent
year, and we review them next by discussing their techniques
on adding contrastive loss, multi-spectral, multi-scale and multi-
sensor support, and methods for better patch masking, orientation-
awareness, and efficiency enhancement. We remark that those tech-
niques are orthogonal to the topic of DEM integration that we focus
on, and can be easily integrated as needed.

There are two strategies for self-supervision during the pre-
training of geo-foundation models: contrastive learning (CL) and
masked image modeling (MIM) [43].

Self-Supervision by CL. Contrastive learning (CL) pre-trains an
image encoder such as MoCo-v2 [11] to emit embeddings that pull
augmentations of the same image closer and to push apart represen-
tations of two different images, using the well-known InfoNCE [40]
loss. SeCo [32] also encourages the representation to be invari-
ant to seasonal changes by using images at the same location but
separated by approximately 3 months as positive samples, while
CaCo [31] further enforces sensitivity to permanent, long-term
changes (e.g., urban development) by pushing apart images at the
same location if a long-term change is estimated between them
(GMM clustering over feature differences is used to find two clus-
ters ‘change’ and ‘no change’). Both SeCo and CaCo sample images
around cities to reduce redundancy (i.e., oceans and forests with
low variability). Ayush et al. [8] further improves the performance
of self-supervised learning by utilizing the geo-coordinates of geo-
tagged remote sensing datasets. The coordinates are clustered into
k areas, and an area prediction head is added to make the represen-
tation geography-aware. MATTER [6] uses contrastive learning to
learn material and texture representations that stay consistent over
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time, using specialized network designs. The learned representa-
tions are effective in downstream tasks such as change detection
and semantic segmentation. Note that the reconstruction loss of
MAE as in our EvaMAE models can be easily combined with a
contrastive loss as in [7, 16, 39], and is orthogonal to our focus on
how DEM data can integrate with the MAE network architecture.

Self-Supervision by MIM. Most recent geo-foundation models,
instead, follow the MAE architecture that uses masked image mod-
eling (MIM) for self-supervision to reconstruct the masked patches.
Prithvi [24] captures the temporal nature of satellite imagery (i.e., a
region is scanned multiple times by a satellite over time, generating
a tensor with a time dimension) by designing a 3D positional en-
coding for its patches which is computed by concatenating the 1D
sinusoidal positional embeddings individually computed for height,
width, and time. The MAE encoder input contains all the patches
along the time dimension. Since we focus on non-recurrent disaster
events in downstream tasks, we ignore the temporal dimension
which is orthogonal to our focus on DEM data integration.

Multi-Spectral Support. Since spectral bands have different wave-
lengths and spatial resolution, SatMAE [12] proposes to further
group the spectral bands into different channel groups to generate
finer tokens, and to expand the positional encoding to also include
the spectral encoding. To better exploit local spectral continuity
and generalize to variable band counts, S2MAE [28] and Spectral-
GPT [23] partitions a 3D cube-shaped spectral image into non-
overlapping 3D tensor tokens along both the spatial and spectral
dimensions. They also support more flexible masking schemes than
SatMAE’s group mask design, so that different channels in a group
can be masked differently. In this work, we only consider aerial
imagery with RGB channels as a clean setting to study the methods
and effect of DEM data integration. In fact, our aerial imagery has
such high resolution that flooded areas are easily identifiable even
to the naked eye. Moreover, [9] finds that using additional bands
may even reduce performance on segmentation tasks.

Multi-Scale Support. Ground Sample Distance (GSD) measures
the spatial resolution, denoting the physical distance between two
adjacent pixels. Realizing that objects of interest can vary across
wide spatial resolutions, Scale-MAE [34] introduces a GSD-aware
positional embedding to also encode the scale information, and
it decodes the masked image through a bandpass filter to recon-
struct both low and residual high frequency images. Noman et
al. [33] argue that Scale-MAE can only work with RGB channels,
but multi-spectral images (e.g., from Sentinel-2) can have different
GSD resolutions for different channels. SatMAE++ [33] takes input
image at different scale levels, and feeds the image at the lowest
scale level to SatMAE. The reconstructed output from SatMAE is
then utilized by upsampling blocks to reconstruct higher-scale lev-
els. Cross-Scale MAE [39] further enhance MIM with contrastive
learning to enforce cross-scale consistency. For each image, it gen-
erates an additional image of lower GSD for the same site (e.g., by
cropping and rescaling), and pass both images through a siamese
MAE network. Contrastive loss is applied to the encoder output
to pull the two images closer, and a prediction loss is added to the
decoder output to let the embeddings from the lower GSD pre-
dict the embeddings of the original image. In our work, images in
our EvaFlood dataset has the same high resolution so multi-scale
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support is not needed for flood segmentation, but the landslide
images have a much lower resolution so the multi-scale techniques
reviewed here may be used to further improve the performance of
landslide segmentation, which we leave as a future work.

Multi-Sensor Support. msGFM [18] incorporates four sensor
modalities in pre-training: RGB images, Sentinel-2, SAR and DSM.
Each sensor has its own patch embedding layer adapted to its num-
ber of channels, but the learned embeddings of all modalities are
integrated through the same encoder to learn joint representations.
Each sensor has its own decoder to predict its masked patches from
the encoded representations of itself or of another paired modality
for the same geo-location. CROMA [16] and OmniSat [7] further
applies cross-attention between different sensor modalities to learn
joint representations, and they combine reconstruction loss with
contrastive loss to pull representations of the same image patch
of different sensor modalities closer while pushing apart different
image patches. SkySense [17] is purely based on contrastive learn-
ing without MIM. It uses a factorized encoder to extract spatial
features from each sensor modality and then fuse them to capture
a multi-modal spatiotemporal representation. Contrastive learning
is then used to pull together features of multi-grained samples (e.g.,
pixel- and image-level) at the same geo-location.

Note that msGFM is the only geo-foundation model considering
elevation map (i.e., DSM), it simply treats DSM the same as other
modalities (e.g., RGB) for joint encoding by self-attentions and for
cross-modal prediction. We argue that the elevation map should be
treated differently since it is available for free as a condition to im-
prove image reconstruction and downstream predictions, so there is
no need waste model capacity to reconstruct elevation maps. More-
over, using more than one transformer layer (with self-attention) to
encode the elevation map is detrimental to the model performance
(see Section 3), while it is favorable for spectral modalities.

Improvements to the MAE Framework. While objects in natural
images are generally oriented upward due to gravity, those in Earth
imagery can appear in various orientations from a bird’s-eye view.
To make the representations rotation-invariant, MA3E [29] crops an
area of patches and randomly rotates the area content. Both rotated
patches and other patches are separately masked with a ratio of 75%,
and the unmasked patches are passed to an MAE to reconstruct
the original image. Angle embeddings are added to the patches
of the rotated crop to prompt the model, and optimal transport
is used to assign similar original image patches to each patch in
the rotated crop. RVSA [42] adapts the plain ViTs with isotropic
structures using a learnable rotation mechanism, by proposing a
rotated varied-size window attention to replace the original full
attention in transformers, which also reduces the computational
cost. Since many patch tokens in Earth Imagery are repetitive (e.g.,
oceans and forests), to reduce the cost of self-attention (quadratic
to the number of tokens), LeMeViT [25] uses a small number of
learnable meta tokens to compress the image information. Self-
attention among image tokens are replaced by dual cross-attention
between image tokens and meta tokens, which significantly reduces
the computational cost. Finally, RingMo [38] proposes to better
capture small and dense objects by a new patch incomplete mask
(PIMask) strategy that randomly reserve some pixels in masked
patches, but all patches need to be inputted to the encoder. Since
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our EvaMAE models are also MAE-based, these improvements can
be easily integrated to our models.

3 Methodology

We next describe our explored architectures for elevation-integrated
MAE pre-training, including: (1) DEM as an additional input chan-
nel (EvaMAE-Channel), (2) convolution-based DEM integration
(EvaMAE-Conv), and (3) cross-attention-based DEM integration
(EvaMAE-CrossAttn). Besides, we also explore their fine-tuning
versions that use ControlNet [45] to condition on DEM, denoted
by ControlNet-Channel, -Conv, and -CrossAttn, respectively.

3.1 EvaMAE-Channel

Refer to Figure 1 on Page 3 again, but now also consider the eleva-
tion map. In EvaMAE-Channel, we simply treat the elevation map
as an additional input channel. Recall that in the ‘flatten’ operation,
a linear projection f(.) is applied to convert each patch into an
embedding, to be inputted as a token to the ViT encoder. When only
RGB patches are considered, each patch has size 16 X 16 X 3 which
is flattened into a 768-dimensional vector and then passed through
a 768 x 1024 dense layer* f.(.) to obtain its 1024-dimensional to-
ken embedding. Now since EvaMAE-Channel uses the additional
DEM channel, each patch has size 16 X 16 X 4, so it is flattened
into a 1024-dimensional vector. Therefore, the dense layer f;(.) for
patch-to-token embedding mapping is now 1024 X 1024.

Note that we follow the typical MAE architecture as used by
SatMAE [12], where in Figure 1, the input image has size 224 x 224,
leading to 14 X 14 = 196 patches. The ViT encoder has L = 24
transformer layers and an embedding dimension of 1024. Since the
ViT decoder takes more tokens as input, to keep computational cost
tractable, it has 8 transformer layers and an embedding dimension
of 512. All transformer layers use multi-headed self-attention with
16 parallel attention heads.

3.2 EvaMAE-Conv

Figure 2 shows the network architecture of EvaMAE-Conv, where
we treat the elevation map E as a separate branch to be patchified,
with its token embeddings then added to those of the input image
X. To capture the local elevation cues (e.g., downhill directions), we

4Implementation-wise, f; (.) is realized as a 16 x 16 convolutional layer with stride
= 16 operating on the entire input image. The convolutional kernel parameters exactly
match weights of the dense layer when input patches are viewed as flattened vectors.

first pass E through a 3x3 convolution (with replicate padding and
padding size = 1) before patchification.

Let the token embedding of an image patch (after adding its
positional embedding) be p, and let the token embedding of its
corresponding DEM patch be p¢, then we obtain the fused patch
embedding p to be inputted to the MAE encoder by computing

Pr =P +a(pe),

where o is the sigmoid function that adds non-linearity and reg-
ulates the added values from the DEM branch to be within (0, 1).
We also tested a version without taking o (i.e, pf = p + pe), but
it leads to a slightly lower segmentation performance. We denote
this variant as EvaMAE-Conv ™. Inspired by EvaNet [37], we also
explored the use of GLU (gated linear unit) [13] for feature fusion
by computing py = p ® o(pe) where ® is the element-wise multi-
plication, but the performance drops significantly so we excluded
this model. We believe this is because MAE does not work well
with GLU-fused embeddings as the input tokens, in contrast to
convolutional encoder-decoder networks like EvaNet.

Note that the DEM patch embeddings are fused to the inputs of
both the ViT encoder and the decoder, with the difference that the
encoder only takes the unmasked patches while the decoder takes
all patches (masked image patches are replaced with the [MASK]
token, but fused with the embeddings of their paired DEM patches).

3.3 EvaMAE-CrossAttn

Figure 3 shows the network architecture of EvaMAE-CrossAttn,
where the Earth image X and the elevation map E are passed
through separate branches for patchifying, embedding, and then
ViT encoding. Unlike the image branch, the elevation branch copes
with all DEM patches without masking, and only one ViT> layer is
used in the encoder (instead of L layers for the image branch).

Note from Figure 3 that we use only one ViT (i.e., Transformer)
layer for DEM since our experiments reveal that using more than
one layer actually reduces the performance, most likely because
the information in DEM (e.g., downbhill directions) is much simpler
than that in images, so using more Transformer layers is an overkill
and backfires based on the principle of Occam’s razor.

After the ViT encoding, we then use standard cross-attention
operation to fuse the information of DEM patches into the image
patches. As the red module in Figure 3 shows, the cross-attention

SWe use the terms ‘ViT layer’ and ‘transformer layer’ interchangeably, since we are
using transformer layers with patch tokens
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Figure 4: The Network Architecture of EvaMAE-CrossViT (Using Cross-ViT Blocks)

emits new image patch embeddings X’ by computing the embed-
ding of each image patch p as the weighted sum of the ‘value’
embeddings of DEM patches, where the weight of each DEM patch
Pe is computed as the inner product between the ‘query’ embedding
of p and the ‘key’ embedding of p.. Here, ‘query’ embeddings are
computed by a dense layer over image path embeddings, and ‘key’
and ‘value’ embeddings are computed by two separate dense layers
over DEM patch embeddings, as in standard Transformer [41].

In the actual implementation, we use multi-headed cross-attention
with 8 attention heads for the cross-attention blocks.

The image patch embeddings after cross-attention are then de-
masked (i.e., by using [MASK] for masked patches) and passed
through the ViT decoder, and the decoded image patch embed-
dings are then fused with the encoded DEM patches again via
cross-attention before being used to reconstruct the image patches.

Note that we use full DEM data without masking when taking
cross-attention with image patches for feature fusion at the outputs
of both ViT encoder and decoder, since DEM data are available as
a context to condition upon, rather than the target of reconstruc-
tion/decoding as with X. The cost introduced by the DEM source is
light though, since it is only passed through one transformer layer
for encoding, and two cross-attention layers for feature fusion.

We also explore an alternative approach to taking cross-attention
for feature fusion, by using full Transformer layer rather than only
the cross-attention operation, as illustrated by the two blue ‘Cross-
ViT’ blocks in Figure 4. This added model capacity is found to

improve the performance of our flood segmentation task. We call
this variant of EvaMAE-CrossAttn as EvaMAE-CrossViT.

3.4 Fine-Tuning Methods

Once our EvaMAE models are pre-trained, we only use the encoder
during the fine-tuning stage for downstream segmentation tasks,
which takes an Earth image X and its corresponding elevation map
E as its inputs, and outputs 196 patch embeddings (since we use
images of size 224 X 224, which leads to 14 X 14 = 196 patches of size
16 X 16) each with 1024 dimensions, denoted by X’ € R196%1024,

As the right part of Figure 5 shows, we use a convolution-based
decoder to decode X’ back to a tensor Y € R224%X224XN where N
is the number of classes and Y[i][j] € RN is the logit score vector
for pixel p = (i, j). In our flood (resp. landslide) segmentation task,
N = 2 since a pixel is either in or not in the flooding (resp. landslide)
area. As Figure 5 shows, X’ is first reshaped to a tensor of size 14 X
141024, and then upsampled by four 2x 2 transposed convolutions
(with a stride of 2), each doubling the width, height and reducing the
number of channels by half. Finally, a 1 X 1 convolution is applied
to reduce the number of channels from 64 to the desired number
of classes N, and pixel-wise cross-entropy loss is applied to the
resulting tensor to fine-tune our models with the supervision of
the ground-truth flood/landslide annotations.

In the above basic fine-tuning method, the parameters of both the
convolutional decoder and the EvaMAE encoder are updated during
fine-tuning. An alternative way is to use ControlNet [45] originally
proposed for text-to-image diffusion models. In this approach, we
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Figure 5: The Decoder for Fine-Tuning & Additional ControlNet Module

incorporate a new ControlNet module as shown by the dotted
rectangle at the lower-left corner of Figure 5.

Specifically, we lock (freeze) the parameter of the original Eva-
MAE encoder and simultaneously clone it to a trainable copy with
parameters O.. The trainable copy takes the elevation map as an
external condition that is convolved and then added to the image
input. Here, the locked parameters preserve the well pre-trained
model with plentiful Earth images, while the trainable copy reuses
this pre-trained model to establish a deep, robust, and strong back-
bone for handling diverse input conditions.

The trainable copy is connected to the locked model with zero
convolution layers, where a zero convolution layer isa 1 X 1 con-
volution with both weight and bias initialized to zeros. To build
up a ControlNet, we use two instances of zero convolutions with
parameters ©1 and O3, respectively. The output of the ControlNet
is then added to that of the locked EvaMAE encoder.

In the first training step, since O3 is initialized to zero, it adds
nothing to the output of EvaMAE encoder, so harmful noise cannot
influence the hidden states of the neural network layers in the
trainable copy when the training starts. Moreover, since ©1 is
initialized to zero, the trainable copy also receives only the input
image; it is thus fully functional and retains the capabilities of
the pre-trained EvaMAE encoder allowing it to serve as a strong
backbone for further learning.

In this ControlNet-based method, fine-tuning updates the pa-
rameters of the convolutional decoder as well as O, ©,1 and ©,5.

4 Experiments

We now report our comprehensive experimental study. We will first
describe the datasets and experimental setup that we use, followed
by the experimental results on pre-training and fine-tuning.

4.1 Datasets and Experimental Setup

Datasets. We obtain high-resolution aerial imagery from NOAA
ERI during different storm events for both pre-training and flood
segmentation fine-tuning [2]. For all the aerial images collected,
we also obtain the corresponding DEM data using Google Earth
Engine API which provides public access to 10-meter resolution
elevation maps through the USGS 3D Elevation Program (3DEP).

Originally, all the aerial images are 0.3 m X 0.3 m in resolution
and the DEM data are 10 m X 10 m. We resampled both of them
into a resolution of 2 m X 2 m for alignment, which is fine enough
for the purpose of flood/landslide mapping.

Table 1: Data Statistics of Pre-Training Datasets

‘ Coverage (km?)

#
Event {lmages} | Training | Validation |  Total

Midwest US. Flooding 2015 | 23,622 | 3793.90 | 947.12 | 4741.03
Hurricane Matthew 2016 | 13,581 | 2177.04 | 54872 | 2725.76
Hurricane Harvey 2017 16,386 2625.61 663.13 3288.74
Hurricane Michael 2018 31,391 | 504811 | 125219 | 6300.30
Total | 84980 | 13,644.66 | 3411.17 | 17,055.83

Table 2: Fine-Tuning Data Statistics for Flood Segmentation

Coverage (km?) ‘ Total Annotations (%)

Event
ven ‘ Training ‘ Test ‘ Total | %Flood | %Dry | %Annotated
Hurricane Matthew 2016 | 245.02 | 241.89 | 486.91 | 3538 | 40.83 76.18
Louisiana Flooding 2016 | 126.65 | 47.76 | 174.41 | 34.19 | 47.69 81.88
Hurricane Harvey 2017 | 2695.44 | 373.43 | 3068.87 | 43.45 | 2837 71.82
Total | 3067.11 | 663.08 | 3730.19 | 41.97 | 30.89 |  72.86

Table 1 shows the flooding-related ERI events used for pre-
training and their corresponding area of imagery coverage. Each
image has size 224 X 224 and there are 84,980 images in total. For
each event, we selected 80% of the data for training and 20% for
validation (i.e., convergence check). In terms of spatial coverage,
the pre-training data covers a total of 17,055.83 square kilometers
(km?) among which 13,644.66 km? (80%) are used for training.

Table 2 shows the statistics of our datasets on flooding-related
ERI events used for fine-tuning in our flood segmentation task.
For each ERI event, we have a few large images with different
sizes that are collected from non-overlapping locations: Hurricane
Matthew has 9 images, Louisiana Flooding has 11 images, and
Hurricane Harvey has 101 images, with a total of 121 images. We
randomly selected 90% of these images for training and 10% for test,
so we have 109 images in the training set and 12 images in the test
set. Specifically, Hurricane Matthew has 4 images in the test set,
Louisiana Flooding has 1, and Hurricane Harvey has 7. Note that
imagery from Louisiana Flooding is not used during pre-training,
while the two largest datasets used for pre-training are not used in
fine-tuning, which assists in evaluating the model generalizability.

In terms of spatial coverage, the fine-tuning data covers a total
of 3730.19 km? among which 3067.11 km? (82.14%) are used for
training and 663.08 km? (17.86%) are for test. The ground-truth
flood maps of these images are annotated using the 3D visualization
tool, FloodTrace [15], which is a time-consuming process taking
about 4 months. Some pixels are not annotated as either ‘flooded’
or ‘dry’ since they are ambiguous covered by tree canopy and their
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Table 3: Data Statistics for Landslide Segmentation

Data ‘ Image Size ‘ #{Images} ‘ Coverage (km?) ‘ %Landslide ‘ %Background

128 x 128
224 x 224

4599
2767

7535.00
4533.45

2.25
3.74

97.75
96.26

Raw
Processed

labels cannot be automatically inferred by elevation-guided BFS.
These pixels are excluded in loss computation and prediction IoU
evaluation. We have released our dataset, EvaFlood, along with our
code at https://github.com/saugatadhikari/EvaMAE.

For landslide segmentation, we use the multi-sensor satellite im-
agery dataset, Landslide4Sense [1], which covers landslide-affected
areas around the world from 2015 through 2021. Each image is a
composite of 14 bands for which we only use the RGB and DEM
channels, and the spatial resolutions of both RGB and DEM are
10 m X 10 m. The dataset is fully annotated where each pixel is
either ‘landslide’ or ‘background’.

As shown in Table 3, in the original data (denoted by ‘Raw’),
background (non-landslide) pixels dominate landslide pixels and
only 2.25% pixels are landslide ones. We preprocess the data to
drop images that only contain background pixels, which boost the
fraction of landslide pixels to 3.74% as shown in Table 3. Since
our models are pre-trained on input images of size 224 X 224, we
upsample each image and their label map from 128 128 to 224 x224.
Out of the 2767 images, 2231 ( 80%) are used for training and 536
(20%) are used for test. In terms of spatial coverage, the preprocessed
dataset covers a total of 4,533.45 km? among which 3,655.27 km?
are used for training and 878.18 km? are used for test.

Experimental Setup. We conduct all model pre-training exper-
iments on a distributed cluster of 10 nodes, each with 4 NVIDIA
A100 GPUs, so a total of 40 GPUs. Model fine-tuning is conducted
on a single node with all its 4 A100 GPUs. The machines are from
the Polaris supercomputer at the Argonne National Laboratory.
Following [12], RGB images are normalized using the mean and
standard deviation over the entire dataset along each channels
using Z-score normalization; and following [37], DEM data are
normalized over the entire dataset using min-max normalization.
We have described the model architecture and most hyperpa-
rameters of EvaMAE models in Section 3, and we now provide
additional information. In Figure 5, the first zero convolution layer
is a 1 X 1 convolution with 1 input channel (for DEM) and 3 output
channels (to allow addition with RGB). The second zero convolu-
tion layer has 1024 channels for both the input and the output (to
allow addition with the EvaMAE encoder’s output embeddings).
For pre-training our EvaMAE models, we use a learning rate
of 1.5 x 1073, a batch size of 8, and a masking ratio of 75%. The
pre-trained parameters of SatMAE (the model version for RGB im-
agery) are used for initialization which were pre-trained for 800
epochs, and we continue pre-training for 50 more epochs on our pre-
training datasets that have been summarized in Table 1. Following
SatMAE [12], our pre-training uses the AdamW optimizer, a cosine
decay learning rate scheduler, and standard augmentations (Ran-
domResizedCrop and RandomHorizontalFlip). For fine-tuning in
both our flood and landslide segmentation tasks, we use a learning
rate of 107> and a batch size of 32. We train for 30 epochs, and 20%
images are randomly held out for validation.
The above numbers of epochs are selected to ensure that the
training in both pre-training and fine-tuning stages converge.
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Table 4: Pre-Training Time on 40 A100 GPUs

Model ‘ Time (min) H Model ‘ Time (min)
SatMAE 20.90 EvaMAE-Conv™ 26.45
SatMAE++ 25.53 EvaMAE-Conv 27.31
Prithvi 8.70 EvaMAE-CrossAttn 40.25

EvaMAE-Channel 26.16 EvaMAE-CrossViT 42.57

Besides our EvaMAE model variants, we also incorporate three
representative geo-foundation models for comparison. (1) SatMAE:
There are multiple versions: multi-temporal, multi-spectral and
RGB only. We use the ‘RGB only’ version and continue training for
50 more epochs on our pre-training datasets. The pre-trained model
is obtained from https://github.com/sustainlab-group/SatMAE. (2) Sat-
MAE-++: There are multiple versions: multi-spectral and RGB only.
We use the ‘RGB only’ version and continue training for 50 more
epochs on our pre-training datasets. The pre-trained model is ob-
tained from https://github.com/techmn/satmae_pp. (3) Prithvi:
The model was originally pre-trained using 6 channels: RGB chan-
nels and Sentinel-2 bands 8A, 11, and 12. Since our EvaFlood dataset
only has RGB channels, we take out the pre-trained weights for
RGB channels only for use. Prithvi was initially pre-trained for
1000 epochs and we continue training for 50 more epochs on
our pre-training datasets. The pre-trained model is obtained from
https://github.com/isaaccorley/prithvi-pytorch.

4.2 Experimental Results on Pre-Training

Table 4 reports the total time of pre-training on our EvaFlood
datasets for the various geo-foundation models we compare with.
We can see that except for Prithvi which takes only 8.7 minutes,
the other models take around 20-40 minutes. This is thanks to the
distributed training with 40 A100 GPUs on Polaris. Compared with
SatMAE, the additional overhead caused by DEM integration is
light, with cross-attention-based methods being more expensive.
Figure 6 shows a visual comparison of the patch reconstruc-
tion performance of the state-of-the-art baseline model SatMAE
and our two EvaMAE variants EvaMAE-Channel and EvaMAE-
CrossViT. Note that as we shall see soon, EvaMAE-CrossViT is
the best-performing model in our downstream flood segmentation
task. In Figure 6, the first row shows 7 example images from our
EvaFlood dataset, the second row shows their masked versions,
and the remaining rows shows the reconstructed images for the
three geo-foundation models. We can see that the reconstruction
quality of EvaMAE-CrossViT is the best and significantly better
than the other two models that contain some artifacts on patch
borders. EvaMAE-Channel is also much better than SatMAE in
terms of the similarity of pixel colors to the original images. This
shows that the integration of DEM data improves the performance
of patch reconstruction during the pre-training stage, and that
cross-attention-based feature fusion is particularly effective.

4.3 Experimental Results on Fine-Tuning

Besides the geo-foundation models, we also train two convolutional
baseline models from scratch, U-Net (with DEM as an additional
channel) and EvaNet, following the default configuration in [37].
These models are trained for 30 epochs on our fine-tuning datasets
that have flood/landslide annotations.


https://github.com/saugatadhikari/EvaMAE
https://github.com/sustainlab-group/SatMAE
https://github.com/techmn/satmae_pp
https://github.com/isaaccorley/prithvi-pytorch

EvaMAE: Elevation-Aware Geo-Foundation Models

EvaMAE-
Channel SatMAE Mask Original Image

EvaMAE-
CrossViT

Figure 6: Visual Comparison of Patch Reconstruction Performance

Table 5: Flood Segmentation Result Comparison (Unit: %)

Model ‘ Flood IoU ‘ Dry IoU ‘ mloU ‘ Time (min)
U-Net 75.92 £0.27 | 63.38 £0.27 | 68.45+0.22 | 22.42+0.43
EvaNet 69.29£1.95 | 70.40 £0.89 | 69.54+1.41 | 24.29+0.21
SatMAE 86.24 +£1.68 | 80.69+1.18 | 83.22+1.36 | 32.04 + 0.56
SatMAE++ 78.34 £0.49 | 68.69+0.31 | 72.89 £0.34 | 30.86 + 0.37
Prithvi 61.43 £4.11 | 54.28 £1.90 | 57.39 +1.88 | 21.43 £ 0.61

EvaMAE-Channel
EvaMAE-Conv™
EvaMAE-Conv
EvaMAE-CrossAttn
EvaMAE-CrossViT

82.58 £2.24 | 74.84+£1.66 | 78.77 £1.89 | 33.25+0.92
85.95+0.22 | 81.07£0.84 | 83.16 £0.46 | 26.26 + 0.64
86.31£1.61 | 81.18+1.48 | 83.45+1.55 | 27.86 £ 0.38
85.54 £0.43 | 80.66 £0.57 | 82.90£0.55 | 33.53 £0.62
89.61£1.13 | 85.52+0.72 | 87.42+0.84 | 35.01 £0.97

ControlNet-Channel 82.26 £0.56 | 73.44 £1.00 | 77.83 £0.76 | 34.28 £0.26
ControlNet-Conv™ 87.47 £1.03 | 83.25+0.99 | 85.11+£0.95 | 29.34 £0.25
ControlNet-Conv 86.84 £0.79 | 81.89 £0.57 | 84.08 £0.49 | 28.90 +0.38
ControlNet-CrossAttn | 80.44 £0.43 | 70.97 £0.24 | 75.57 £ 0.32 | 30.24 +0.31
ControlNet-CrossViT | 89.97 +0.21 | 86.15+0.29 | 87.90 +0.19 | 31.38 £ 0.12

Note that (1) we also fine-tune the geo-foundational models for
30 epochs after pre-training, and that (2) our U-Net and EvaNet
models utilize DEM data though cannot benefit from pre-training,
while baseline geo-foundation models SatMAE, SatMAE++ and
Prithvi do not utilize DEM data but benefits from pre-training.

Table 5 shows the performance results (mean + std calculated
from 5 runs) of various models for flood segmentation, where we
report metrics including Flood IoU, Dry IoU, mean IoU (mloU), and
the model training time (for 30 epochs). Here, Flood (resp. Dry) IoU
measures the overlap between the predicted flood (resp. dry area)
extent and the actual flood (resp. dry area) extent, and mloU is their
mean. We can see that the performance of U-Net and EvaNet are
far from SatMAE and EvaMAE models, since they cannot utilize
knowledge from pre-training. The performance of Prithvi is poor
even though it is the fastest model, since it is originally pre-trained
on satellite images rather than RGB ones. While SatMAE++ is not
very competitive since it does not utilize DEM data and our data
is not multi-scale, SatMAE turns out to be quite competitive even
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Figure 8: Landslide4Sense Images

without using DEM data. Our EvaMAE models all produce very
high IoU values thanks to the use of DEM data, with EvaMAE-Conv
slightly beating SatMAE, and EvaMAE-CrossViT beating SatMAE
by a large margin. When using ControlNet approach for fine-tuning,
the performance of EvaMAE-Conv~, EvaMAE-Conv and EvaMAE-
CrossViT are further improved with ControlNet-CrossViT giving
the best performance. A final observation is that we need to use
EvaMAE-CrossViT instead of EvaMAE-CrossAttn to unleash the
power of DEM integration in this downstream task.

To visually observe the model prediction quality, Figure 8 shows
flood extent map predicted by EvaMAE-CrossViT on ERI imagery,
with two regions (a) and (b) highlighted for comparing the predic-
tions from different models. We can see that in Region (a) which
is mostly inundated, U-Net, SatMAE and EvaMAE-Channel still
wrongly predicts some dry ‘holes’ while EvaMAE-Conv and EvaMAE-
CrossViT are able to provide correct predictions. In Region (b)
where only a small piece of highland on the lower-left corner is
dry, EvaMAE-CrossViT is able to predict the remaining area to be
all flooded while the other models predict some wrong dry ‘holes’.

Table 6: Landslide Segmentation Results (Unit: %)

Model ‘ Landslide IoU ‘ Background IoU ‘ mloU ‘ Time (min)

U-Net 10.73 £ 0.31 90.66 + 0.15 50.69+0.13 | 2.28 +0.43
SatMAE 15.22 £ 0.43 97.75 + 0.39 56.49+0.19 | 3.45+0.72
SatMAE++ 11.55 + 1.47 97.89 + 0.26 54.73+£0.73 | 5.01+0.93
Prithvi 0.42 +0.24 98.08 + 0.32 49.25+0.06 | 3.26 +0.21
EvaMAE-Channel 16.29 £ 0.80 98.12 + 0.10 57.21+0.43 | 3.24 +£0.36
EvaMAE-Conv™ 0.08 +0.10 98.51 +0.08 49.30 +0.01 | 4.24+0.32
EvaMAE-Conv 6.02 + 1.57 98.51 + 0.02 52.27 £0.78 | 4.36 £0.57
EvaMAE-CrossAttn 15.72 £ 1.51 98.40 + 0.05 57.06 £0.74 | 4.01 +£0.42
EvaMAE-CrossViT 15.25 + 2.88 98.41 + 0.06 56.84 £1.41 | 4.34+£0.61
ControlNet-Channel 18.23 £ 0.82 97.25 +0.70 57.79£0.27 | 6.42+0.78
ControlNet-Conv™ 2.01+£0.32 98.27 + 0.31 50.14 £0.22 | 6.37 £0.46
ControlNet-Conv 15.41 £ 1.72 98.38 + 0.04 56.90 £0.85 | 6.73 +£0.23
ControlNet-CrossAttn 21.02 £ 0.54 97.82 £ 0.15 59.42 +£0.28 | 6.19+0.27
ControlNet-CrossViT 19.75 £ 1.15 98.03 +0.12 58.89 +0.55 | 6.40 +0.36
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Figure 7: Visual Comparison of the Flood Segmentation Performance

Table 7: Ablation Study on # of ViT Blocks for DEM (Unit: %)

#ViT Blocks | FloodIoU | DryloU | mloU
1 89.61+1.13 | 85.52+0.72 | 87.42+0.84
2 88.61 £1.29 | 84.56 £0.72 | 86.23 = 1.03
3 87.92 £ 1.51 | 84.20 £0.77 | 85.75 = 1.17

Table 6 shows the performance results of various models for land-
slide segmentation, where EvaNet is excluded since it is designed
for flood segmentation only. We can see that the Landslide IoU
is generally low, since Landslide4Sense is low-resolution satellite
imagery rather than high-resolution aerial imagery (see Figure 7),
and the positive samples are limited (i.e., background dominates).
In this difficult task, we observe similar results that SatMAE is still
a competitive model while EvaMAE models are generally better.
The differences are that (1) EvaMAE-Conv~ and EvaMAE-Conv
do not perform well, and (2) EvaMAE-Channel is the best when
ControlNet is not used, and (3) EvaMAE-CrossAttn is better than
EvaMAE-CrossViT, (4) ControlNet improves the performance of
all EvaMAE models with ControlNet-CrossAttn giving the best
performance beating all others by a large margin.

Finally, recall that we only use one transformer layer to encode
DEM data before using the encoded data for feature fusion. Table 7
shows the results of flood segmentation prediction when we vary
the number of transformer layers to encode DEM data as 1, 2 and 3.

We can see that using only one transformer layer to encode DEM
data indeed gives the best performance.

5 Conclusion

We explored various methods to integrate DEM data into the pre-
training and fine-tuning stages of geo-foundation models for Earth
imagery, collectively called EvaMAE models. We found that incor-
porating DEM data is helpful and the most effective when using
cross-attention operations, and DEM conditioning with ControlNet
is helpful during fine-tuning. Our contributions also include the
comprehensive experimental study and comparisons, and a new
flood-related dataset, EvaFlood, for pre-training and fine-tuning.
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