SAFE PERMISSIONLESS CONSENSUS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Youer Pu

August 2024

© 2024 Youer Pu
ALL RIGHTS RESERVED

SAFE PERMISSIONLESS CONSENSUS
Youer Pu, Ph.D.
Cornell University 2024

Nakamoto’s consensus protocol, known for operating in a permissionless model
where nodes can join and leave without notice. However, it guarantees agree-
ment only probabilistically. Is this weaker guarantee a necessary concession to
the severe demands of supporting a permissionless model? This thesis shows
that it is not with the Sandglass and Gorilla Sandglass protocols.

Sandglass emerges as the first permissionless consensus algorithm that
transcends Nakamoto’s probabilistic limitations by guaranteeing deterministic
agreement and termination with probability 1, under general omission failures.
It operates under a hybrid synchronous communication model, where, despite
the unknown number and dynamic participation of nodes, a majority are con-
sistently correct and synchronously connected.

Further building on the framework of Sandglass, Gorilla Sandglass is the
tirst Byzantine fault-tolerant consensus protocol that preserves deterministic
agreement and termination with probability 1 within the same synchronous
model adopted by Nakamoto. Gorilla addresses the limitations of Sandglass,
which only tolerates benign failures, by extending its robustness to include
Byzantine failures. We prove the correctness of Gorilla by mapping executions
that would violate agreement or termination in Gorilla to executions in Sand-
glass, where we know such violations are impossible. Establishing termination
proves particularly interesting, as the mapping requires reasoning about infinite

executions and their probabilities.

BIOGRAPHICAL SKETCH

Youer Pu is a PhD candidate in Computer Science at Cornell University. She
earned her Bachelor’s degree in Computer Science from Shanghai Jiao Tong
University in 2014. Afterward, she began her PhD studies at the University
of Texas at Austin, where she spent two years before transferring to Cornell to

continue her research.

1ii

To the days I thought the proofs were wrong and the nights I thought the

proofs were correct.

iv

ACKNOWLEDGEMENTS

Pursuing a PhD has been an incredible journey filled with challenges. With-
out the companionship and support of those around me, nothing would have
been possible or meaningful.

First and foremost, I extend my deepest appreciation to my advisor, Lorenzo
Alvisi. My PhD journey would never have begun if Lorenzo had not visited
Shanghai Jiao Tong University in the summer of 2012. It has been an honor to
work with such a dedicated researcher who consistently strives to do the right
thing. Lorenzo’s kindness, support, and boundless energy have lifted my spirits
countless times throughout this journey.

I am also profoundly grateful to my collaborator and committee member,
Ittay Eyal. During the most challenging months, our weekly meetings have
been the ballast that I hold on to. Thank you for being both a battle companion
and a true friend.

I extend my heartfelt thanks to my collaborators, Natacha Crooks and Ali
Farahbakhsh. With Natacha, I joyfully began my PhD journey, and with Alj, I
happily concluded it. Thank you both for all the intellectual joy. Doing research
with you has been both a fortune and an honor. You have filled our research
experience with precious, golden moments that I will cherish for a very long
time.

I sincerely appreciate all my friends who offered earnest support during this
journey. Special thanks to Peihan Miao, Yue Guo, Yun Liu, Qiuhan Ding, Xiaot-
ing Qi, and Lilin Lin. Your late-night messages and unwavering support helped
me persevere. You are my strongest fortress, shielding me from any hardship
and giving me the strength to face another battle. I am also grateful to Yige

Hu, Yuming Sheng, Yuting Yang, Yawen Fang, Tianze Shi, and Yunhe Liu. This

journey is much more joyful with your companionship.
Finally, I want to thank my parents for their patience and support through
all my highs and lows. I also thank my entire family for always believing in me.

If earning a PhD is an honor, hope I have made you proud.

vi

TABLE OF CONTENTS

Biographical Sketch| L

D

1

2 Background

2.1

Consensus protocols| L

2.2

Nakamoto’s blockchain protocol

2.3

Nakamoto’s protocol: a traditional Consensus perspective

2.4

Ben-Or’s classic consensus protocol|

2.5

Reframing Ben-Or’s consensus protocol in terms of priority|

2.6

Verifiable Delay Function|

3 Sand
B.1]

B.2.1 Selecting the Threshold

I'T!

ness: TVIOW] . . v v o o o e e e e e e e e e

3.1

The Scaffolding|

632

Agreement|. Lo oL

4 Gorilla Sandglass
4.1 Modell

421

Comparing Sandglass and Gorilla|

4.3.1

The Main Story, and How it Fails|

432 ANewBeginning|.,

433 TAveness|

Rel

Work

nclusi

vii

|A Correctness Of Sandglass|

A.1 Validity

A2 Scaffolding
A3 Agreement|

A4 Terminationl e

IB__Gorilla Correctness|

[B.1 Sandglas

sPlus

[B.1.2 Sandglassis CorrectinSM+.

B.2 Scaffolding

B.3 Safetz| .
B.4 Liveness

[Bibliography|

viil

89
89
91
106
128

143
143
143
144
148
166
169

180

LIST OF FIGURES

41

An execution that cannot be reorganized in GM (a), and how

peeking solves the problem in GM+ (b).|.

69

A1

The structure of the proof is illustrated through the dependen-

cies among its constituent lemmas, corollaries, claims, and ob-

servations. Preparatory results discussed in the Scaffolding sec-

tion are shown in black; red and blue denote facts used in the

proofs of Agreement and Termination, respectively.

iX

90

CHAPTER 1
INTRODUCTION

The publication of Bitcoin’s white paper [46], besides jump-starting an
industry whose market capitalization, according to Forbes [18] was valued
at $2.5T in June 2024, presented the distributed computing community with
a fundamental question [24]: how should the agreement protocol at the core of
Nakamoto’s blockchain construction (henceforth, Nakamoto’s Consensus or NC)
be understood in light of the combination of consensus and state machine repli-
cation [33}52] that the community has studied for over 30 years? The similari-
ties are striking: in both cases, the goal is to create an append-only distributed

ledger that everyone agrees upon, which NC calls a blockchain.

But so are the differences. Unlike traditional consensus algorithms, where
the set of participants n is known and can only be changed by running an ex-
plicit reconfiguration protocol, Nakamoto’s consensus is permissionless: it does
not enforce access control and allows the number and identity of participants
to change without notice. It only assumes that the computing power of the en-
tire system is bounded, which effectively translates to assuming the existence
of an upper bound N on the number of participants; and that, at all times. the

majority of the computing power be controlled by correct participants.

To operate under these much weaker assumptions, NC adopts a new mech-
anism for reaching agreement: since the precise value of n is unknown, NC
forsakes explicit majority voting and relies instead on a Proof of Work (PoW) lot-
tery mechanism [16, 26], designed to drive agreement towards the blockchain
whose construction required the majority of the computational power of all par-

ticipants. With PoW, a process can work for a short while and probabilistically

succeed in solving a puzzle. Finally, whereas traditional consensus protocols
guarantee agreement deterministically, NC can do so only probabilistically; fur-
thermore, that probability approaches 1 only as termination time approaches
infinity. Is settling for these weaker guarantees the inevitable price of running

consensus in a permissionless setting?

Some attempts have been made to settle this question. Lewis-Pye and
Roughgarden showed that deterministic and permissionless consensus cannot
be achieved in a synchronous network in the presence of Byzantine failures [37].
Nonetheless, previous work (§§D has achieved deterministic safety and termina-
tion with probability 1 under different models. Pass et al. propose the Sleepy
Model [48], where participants join and leave (“sleep”); the model assumes a
public key infrastructure (PKI), and guarantees of the consensus protocol pre-
sented for this model are as probabilistic as those of pure proof of work. Mo-
mose et al. [43] guarantee termination only if the set of processes stabilizes.
Malkhi et al. [41] and Losa et al. [19], while leveraging either authenticated chan-

nels or digital signatures, propose a solution with constant expected latency.

However, since the attempts above either limit Byzantine behavior, restrict
how nodes join and leave, or rely on authentication, it is still unclear whether
it is possible to achieve deterministic safety and ensure termination with prob-

ability 1 in a fully permissionless setting without these constraints.

We answer this question in the affirmative by first introducing Sandglass,
a permissionless consensus algorithm that ensures deterministic agreement and
achieves termination with probability 1 within a hybrid-synchronous benign
model. We then build on Sandglass by introducing Gorilla Sandglass, which

extends the same guarantees to a general synchronous Byzantine model.

1.1 Contributions

In summary, this thesis makes the following contributions:

¢ It formalizes Nakamoto’s permissionless protocol in the vocabulary of
traditional consensus. Nakamoto’s blockchain protocol is structured as a
chain of blocks, where each block contains a hash of the content of the pre-
ceding block, thus, in effect, pointing to its immediate predecessor. This
design choice, introduced to protect the integrity of the data stored in the
blockchain, has significant implications on how NC can be understood as

a consensus protocol.

Intuitively, NC can be seen as running multiple instances of consensus,
with the blockchain playing the role of the consensus ledger. This intu-
ition, however, misses a key difference. When running traditional (re-
peated) consensus to fill a ledger, each of the consensus decisions needed
to fill the ledger is independent of the others; not so in NC, where each

new ledger entry must point back to all the entries that precede it.

Therefore, a more nuanced interpretation of NC as a consensus protocol
is needed. As detailed in Chapter [2, we argue that adding a new block b
in NC involves more than just starting a new instance of consensus to fill
the next entry of the ledger; it also, implicitly, results in proposing (again),
the blocks in the chain that b belongs to for the instances of consensus that

determine the content of the earlier entries of the ledger.

The process of proposing also differs from traditional consensus protocols,
where it typically involves explicit message exchanges. In Nakamoto’s

blockchain protocol, participants communicate only sporadically, remain-

ing largely passive and silent unless they possess a valid proof of work.
However, as we explain in Chapter 2, even though participants do not
explicitly send proposal values, the mining work they quietly perform ef-

fectively amounts to proposing in all ongoing consensus instances.

Indeed, although NC is not typically understood as a round-based pro-
tocol, we argue that the addition of a new block to the chain can be seen
not just as the beginning of a new consensus instance, but as the start of
a new round for all the consensus instances responsible for deciding the
previous blocks in the chain. Thus, the “longest-chain wins” mechanism
is more than just a simple rule for extending the chain; it plays a crucial

role in signaling the progress of consensus.

It exposes the connection between PoW and a voting mechanism that

can be implemented via message passing.

Once we frame Nakamoto’s blockchain protocol through the lens of con-
sensus, we can begin to unravel the role that PoW plays in facilitating

consensus.

In NC, receiving a longer chain signals that a participant has successfully
found a valid PoW. On the other hand, we have argued above that accept-
ing a longer chain in NC should be interpreted, in traditional consensus

terms, as entering a new round of consensus.

Typically, for a consensus participant to advance to a new round, some
condition must hold. In a synchronous system, that condition may be
the passage of a certain amount of time (the round’s length); in an asyn-
chronous system, it may be the receipt of messages from a quorum. In
our context, then, a natural question arises: when looking at NC from the

perspective of a traditional, round-based consensus protocol, what is the

equivalent of receiving a valid PoW to enable a participant to move from

one round to the next?

This dissertation answers this question by introducing a novel approach
that expresses the work a participant performs to solve a cryptographic
puzzle in terms of messages sent by the participant; as a result, it becomes
possible to express the expected total amount of work needed for a group
of participants to solve a cryptographic puzzle (i.e., the PoW’s difficulty) as

a threshold of messages that need to be generated and received.

Although the idea of requiring the receipt of a threshold of messages (typ-
ically, one message from a majority of participants) to regulate passage
from one round to the next is common in asynchronous consensus proto-
cols, the approach we propose departs from it in significant ways. Specif-
ically, since we aim to develop a permissionless consensus protocol, in
which the number of participants is unknown and can change at all times,
it becomes impossible to condition progress on the receipt of a message
from a majority of participants: there is no way to know what that major-

ity, at any time, is!

Instead, our approach requires each participant, while executing in a
round, to continuously send and receive messages. Progress to the next
round occurs only after receiving a threshold of messages that is inde-
pendent of the number of participants currently in the system, but only

depends on the upper bound N on the number of participants.

This novel approach suggests a new way to leverage the assumption that
a majority of computing power is in the hands of correct participants:
those who do not receive messages from a majority will inevitably take

more time to reach the threshold than those who do, and thus start losing

ground on them. And, unlike PoW, who can only give probabilistic guar-
antees that the majority of correct nodes will be first to generate a block
(move to a new round), this mechanism does not allow participants that
have fallen behind to recover lost ground through a sequence of strokes of

luck.

It introduces Sandglass, the first protocol that achieves deterministic
agreement in a permissionless setting under hybrid synchrony. Sand-
glass is a novel protocol that achieves deterministic agreement in a permis-
sionless setting. It draws inspiration from both Nakamoto’s Proof of Work
(PoW) mechanism and Ben-Or’s classic consensus protocol [5]. Sandglass
operates within a hybrid synchronous network model and assumes a be-

nign failure model.

While its round-based structure resembles that of Ben-Or, Sandglass uses
the novel threshold mechanism discussed above to determine when a par-
ticipant can advance to a new round, eliminating the need to know the

number of participants.

In keeping with Ben-Or’s approach to ensuring safety, participants in
Sandglass give priority, when proposing, to the value they have seen being
unanimously proposed in the previous round. In Ben-Or, where progress
to the next round is only possible after receiving a message from a ma-
jority, a participant can decide as soon as it has seen the same unanimous
value being proposed for two consecutive rounds (i.e., the value reaches
priority 2). In Sandglass, where faulty nodes can still make progress with-
out receiving any messages from the correct majority, the priority of a
value must be much higher before it is safe for a process to decide on that

value. As we will see in Chapter [3| this stringent condition is necessary to

ensure that even if faulty nodes temporarily keep pace with correct nodes,

they cannot overturn the decisions of the correct nodes.

It introduces Gorilla Sandglass, the first protocol to achieve determinis-
tic safety and liveness with probability 1 in a permissionless Byzantine
model. Gorilla Sandglass builds on the approach of Sandglass. Sandglass
already defends against attacks such as ignoring messages and strategi-
cally choosing when to send messages to correct nodes. When moving to
the full Byzantine model, the major challenge left becomes controlling the
rate at which Byzantine nodes can send messages. To address this, Gorilla
Sandglass uses Verifiable Delay Functions (VDFs). These functions ensure
that all nodes can only send a message after a verifiable delay has elapsed,

thereby limiting the speed of generating messages.

It introduces novel proof strategies.

In Sandglass The Sandglass proof diverges substantially from the typi-
cal proof style of traditional consensus protocols. In these protocols,
the number of participants is known: this knowledge makes it pos-
sible to enable mechanisms that prevent isolated faulty nodes, those
who only communicate with other faulty nodes (i.e., choose not to
receive messages from correct nodes, who are a majority) from mak-
ing progress. When the number of participants is unknown and can
constantly fluctuate, however, these mechanisms become unfeasible:
any fixed majority threshold may prove either too low to block the
progress of faulty participants (whenever the fluctuating number of
participants grows to twice the threshold or more) or too high to al-
low the progress of correct participants (whenever the number of cor-

rect participants is lower than the threshold).

Instead of outright preventing the progress of isolated faulty nodes,
Sandglass” novel mechanism guarantees that isolated faulty nodes
advance more slowly from round to round than correct nodes — even-
tually, they lag so far behind that they can no longer influence the
values proposed by correct nodes, thereby guaranteeing safety. Ad-
ditionally, the impossibility of relying on quorum intersection adds
complexity to the proof of termination. It becomes necessary to
demonstrate that faulty nodes, which may stubbornly propose con-

flicting values, do not impede the system’s liveness.

In Gorilla Sandglass We prove the correctness of Gorilla Sandglass by
reducing it to Sandglass: we show that any violation of safety and
liveness in Gorilla Sandglass would correspond to one in Sandglass.
Having proved that Sandglass is safe and terminates with probability

1, we then conclude that the same must hold for Gorilla.

To this effect, since both Sandglass and Gorilla executions proceed
over a sequence of steps, we would ideally be able to align at step
boundaries each Gorilla execution with a corresponding Sandglass
execution, in a way that ensures that any violation of safety or live-

ness in Gorilla would also occur in Sandglass.

However, the mapping is far from straightforward. For example, it
becomes necessary to address the possibility that Byzantine nodes
may act across step boundaries, interleaving VDF computations in-
stead of producing one VDF (and hence one message) at a time. A
further novel aspect of the proof comes up when proving termina-
tion — in particular, the challenge consists in proving that if a Gorilla

execution, once it has been aligned to an execution in Sandglass, ter-

minates with probability 1, so does the pre-alignment Gorilla execu-

tion.

1.2 Overview

This thesis is structured as follows: Chapter 2] provides foundational knowl-
edge on Nakamoto’s blockchain protocol alongside Ben-Or’s probabilistic ter-
mination consensus protocol. Chapter [3|presents Sandglass, a novel algorithm
that ensures deterministic safety and termination with probability 1 within a
permissionless context. Chapter |4 introduces Gorilla Sandglass which incorpo-
rates a Verifiable Delay Function (VDF) cryptographic primitive to extend the
safety and liveness guarantees of Sandglass to a synchronous Byzantine model.
Chapter 5| discusses related work, and Chapter |f| concludes the thesis. The full
proof of Sandglass and Gorilla can be found in Appendix |A and Appendix [B,

respectively.

CHAPTER 2
BACKGROUND

2.1 Consensus protocols

A consensus protocol addresses the challenge of ensuring that a set of nodes,
each starting with an initial value and communicating by sending messages
to one another, arrive at a unanimous, irreversible decision on the same value

despite potential failures.

Formally, consensus is specified in terms of three properties:

Validity: If all initial values are v and a correct node decides, it decides v.
Agreement: If a correct node decides on v, no correct node decides differently.

Termination: Every correct node eventually decides on a value.

Whether consensus can be achieved, and, if so, how and at what cost, de-

pends on timing and failure models [7, 34} 38} 40, 54].

Timing assumptions Consensus protocols can be designed to operate in either

asynchronous or synchronous systems.

In asynchronous systems (i) there is no upper bound on how long it takes
for a message to travel from a correct sender to a correct receiver; (ii) there is
no bound on the relative processing speed of the nodes in the system; and (iii)
the local clocks of these nodes are not synchronized. Any system that is not

asynchronous is synchronous: in these systems, it is easy to structure protocols

10

as a sequence or rounds, each of length A, where A is an upper bound of the
time needed for a message to travel between two correct nodes. A system does
not live in one of these two camps forever. In particular, partially synchronous
systems [15] operate asynchronously until some unknown Global Stabilization

Time (GST), whenceforth they are assumed to behave synchronously.

Failure assumptions A node is considered faulty if it deviates from its specifi-
cation; otherwise, it is correct. There are two fundamental ways in which such

deviations (or faults) can manifest.

Omission faults: A node fails to take actions it is supposed to take. These faults,
which are often referred to as benign, include crashes as well as less clear-
cut situations, such as when a node selectively fails to send or receive some

message.

Commission faults: A node takes actions that it is not supposed to take. These
faults, which are often referred as malicious, include, for example, situa-
tions when a node equivocates when performing a broadcast, sending dis-

tinct messages to different nodes.

The Byzantine failure model [15] allows faulty nodes to experience omission as

well as arbitrary commission failures.

In a synchronous system, consensus can be achieved even in the presence of
Byzantine failures, as long as f, the number of faulty nodes is less than a third

of n, the total number of nodes in the system.

In an asynchronous system, to the contrary, the celebrated FLP impossibility

result [17] establishes a sobering truth: no deterministic protocol can provide a

11

solution to consensus, even if only a single node fails, and only by crashing.

Traditional attempts to sidestep FLP have focused either on strengthening
the model (by equipping each node with sufficiently powerful, if unreliable,
failure detectors [8]) or on weakening the problem (for example, by only guaran-

teeing Termination after GST [35], when the system is no longer asynchronous).

Ben-Or’s protocol [5] introduces a form of weakening particularly relevant
to the rest of this dissertation. By giving nodes the possibility of flipping a coin,
instead of insisting on a purely deterministic solution, this purely asynchronous
protocol guarantees safety (captured by Validity and Agreement) while promis-

ing Termination with probability 1.

2.2 Nakamoto’s blockchain protocol

Nakamoto’s blockchain protocol [46] introduces new and interesting dimen-
sions to the consensus problem. The goal of the protocol is to create the ab-
straction of a shared ledger. The ledger is simply an append-only log for storing
data: new items can only be added to the end of the ledger and no previous item
can be modified. The data recorded in the ledger consists of transactions—these
are typically financial transactions, but, more generally, they are operations that
cause atomic changes to the state whose evolution the ledger tracks. For perfor-
mance reasons, the ledger does not grow at the granularity of individual trans-
actions; rather, an entry of the ledger records a group of transactions batched
in a block, which (hence the name blockchain used to characterize the resulting

ledger).

12

The need for consensus arises from the need to guarantee agreement on

which block is associated with which entry of the ledger.

Model Traditional consensus protocols operate in a controlled environment:
the total number of nodes engaging in consensus is known, and, although up to
f nodes can fail, they cannot otherwise leave or join the protocol at will: partic-
ipation is regulated by some form of trusted authority. Consensus is typically
achieved by having participating nodes vote on their (current) preferred values,
which different protocols then aggregate in their own unique way to produce a

single consensus value.

Nakamoto’s protocol departs drastically from this traditional setting. It aims
to support fully permissionless participation. No authority controls who is al-
lowed to read from, verify the contents of, or append a new entry to the ledger.
Thus, the number of participating nodes is unknown, and nodes can join and

leave the protocol at will. [

There are, however, assumptions that Nakamoto’s protocol does depend on
for correctness. First, the network must be synchronous [21, 31, 47]. Second,
there must exist a known upper bound on the amount of computational re-
sources that can, at any time, be used towards running the protocol [47]. Note
that, under the assumption that all participating nodes have identical compu-
tational power, this is equivalent to assuming a known upper bound on the
maximum number of nodes that can, at any point, be participating in the proto-

col. Without this assumption, an unbounded increase in computational power

!Nakamoto’s requirement that a majority of the system’s computational power be controlled
by correct nodes does, indirectly, pose some limit on a node’s freedom to change its membership
status.

13

could lead to multiple participants solving the puzzle simultaneously, resulting
in divergent chains that prevent the system from achieving consensus. We re-
mark that assuming the existence of this upper bound says nothing about the
specific amount of computational power (or, similarly, about the number of par-
ticipants) used in running the protocol at any specific time, except that it is no
larger than the upper bound. Third, correct nodes should, at all times, control a
majority of the computational power used in running the protocol " Finally, all
nodes have access to a random oracle which, for any given input, produces a

unique value taken from a uniformly random distribution.

Protocol Nakamoto’s protocol addresses two main concerns in constructing a

blockchain.

The first is to ensure the blockchain’s integrity: once a block has been added
to the blockchain, it should not be possible to alter its content without the tam-
pering being detected. Thus, every block added to the ledger after the very first
block (referred to as the genesis block), stores a cryptographic hash of the previ-
ous block, which serves both as a backward pointer and as a guarantee of that

block’s integrity.

The second concern is more immediately tied to consensus. In a fully per-
missionless setting, nothing prevents a single party from participating in the
consensus protocol using arbitrarily many identities [50]; thus, traditional con-
sensus schemes that assign each participant equal voting rights can be easily

subverted by a party bent on obtaining a specific consensus outcome.

2Recent studies suggest that correct nodes should actually enjoy a slightly wider margin than
the smallest of majorities for correctness to hold.

14

Nakamoto solves this problem by choosing as the consensus value the one
proposed by whoever is able to solve a Proof-of-Work (POW) puzzle (described

below).

The nodes that compete to solve the puzzle are called miners. Each of them
keeps a local version of the blockchain and attempts to extend it with a new
block NB that contains (i) a set of transactions and (i) a pointer to the last block

in its local version of the blockchain.

To succeed, the miner needs to solve a puzzle. Specifically, for other correct
nodes to consider NB as successfully added to the blockchain, the miner needs
to find a value (the presumptive solution) such that, once NB (which includes
a set of transactions and a backward pointer to a previous block) and the pre-
sumptive solution are given together as input to the random oracle, the value

produced in output is lower than a given threshold.

The only known method to find a solution to this puzzle is through brute
force, i.e. by trying random values. Once a miner succeeds, they broadcast their
extended chain. If a node receives a longer chain than its current one, it adopts

this new chain — this mechanism is referred to as the longest-chain-wins rule.

A block is deemed decided once it is followed in the blockchain by a confir-
mation threshold of T additional blocks. In Bitcoin, the cryptocurrency that relies
on Nakamoto’s blockchain protocol, the threshold consists of five blocks. At this
threshold, the likelihood that Byzantine nodes, even if they constitute up to 10%
of the computing power, will be able to alter the chain to exclude a confirmed

block reduces to below 0.4% [23].

15

Correctness The protocol probabilistically ensures agreement on an ever-
growing prefix of the chain. The chance of Byzantine nodes outpacing correct
nodes to “rewrite history” by producing a longer chain depends on their chance
to be faster at finding PoW solutions; since there is no faster way than brute force
to find a solution, that chance is proportional to the computing power they con-
trol. Here is where Nakamoto’s assumption that correct nodes control a major-
ity of computational power plays a crucial role: because of it, correct nodes are
more likely to find PoW solutions faster than Byzantine nodes bent on rewriting
history. As more blocks are added behind a block in a correct node’s chain, the
likelihood that Byzantine nodes can produce a longer alternative chain dimin-

ishes, solidifying the block’s permanence in the correct chains.

However, this level of assurance still falls short of a deterministic guaran-
tee: there always exists a probability, albeit small, that attackers might succeed
in overriding a given blockchain by producing a longer alternative chain. Fur-
thermore, for any protocol that terminates after a finite number of steps, that

probability is not 0.

2.3 Nakamoto’s protocol: a traditional Consensus perspective

In this section, we aim to interpret the entire process of a Nakamoto Consensus

(NC) execution through the framework of traditional consensus mechanisms.

Multiple consensus instances on a chain Nakamoto’s ledger abstraction is
a familiar one: it is at the core of state machine replication [33, 52], the most

general approach to build reliable distributed services.

16

[DDDD]—:-[DDDD]%:{DDDD]—.[DDDD]
|

1

|

; I

| Consensus Instance 2
|

|

Figure 2.1: Consensus instances in Nakamoto

In that context, the goal is to determine the single total order in which correct,
deterministic replicas are to process clients’ requests. Each entry in the ledger
is decided by running an independent instance of consensus, where instance i
determines the content of the i-th entry. Multiple instances can execute concur-
rently, and the vagaries of network latency can cause later ledger entries to be
decided before earlier ones—this is not a problem, as long as correct replicas ex-
ecute the request held in the ledger’s i-th entry only after having executed those

held in the i — 1 entries that precede it.

Nakamoto’s ledger adds a twist to this picture: because in Nakamoto, every
block in the chain points to its unique predecessor, the instances of consensus
that decide the content of the different entries in the ledger are no longer inde-
pendent. A miner that, in consensus instance i, proposes a particular block b to
fill the i-th entry in the chain is implicitly participating in all preceding instances
of consensus: it is proposing to fill entry i — 1 with the block that b points back

to—and so on, recursively, until the very first entry of the ledger.

For example, in Fig[2.1} the node that generated the red block is effectively
proposing this block for Consensus Instance 3. By extending a particular chain,

it also proposes the green block for Consensus Instance 2 and similarly for the

17

blocks preceding it.

Nakamoto Consensus as a round-based protocol It is useful to describe how
an instance of Nakamoto consensus converges on a decision as a round-based
process. Consider a block chain of length / — 1. All participants working on the
computational puzzle that must be solved to extend the chain with a new block
can be seen as engaged in the first round of the /-4 instance of consensus. Once
a correct participant p succeeds in extending the chain, it broadcasts a message
with the new chain to everyone, still within the first round of instance /. By
receiving and accepting this new chain, all correct participants (i) move to the
second round of instance [and (ii) enter the first round of consensus instance

[+ 1.

In general, a participant working on extending a chain of length (/ - 1) is in
the (I + 1 — i)-th round of the i-th consensus instance, for each 1 < i < [and the
messages it sends are to be interpreted, within each consensus instance 1 <i </,

as having been sent in the (/ + 1 — i)-th round of that instance of consensus.

This round-based perspective offers a natural interpretation of Nakamoto’s

longest-chain-wins rule.

Consider a Byzantine participant that intentionally ignores a longer chain of
length / broadcast by some correct participant and attempts instead to extend a
shorter chain of length-(/ — 1). When the Byzantine node eventually succeeds in
generating a chain of length / and broadcasts it, this chain will be ignored by the
correct nodes under the longest-chain wins rule, because it is not longer than

the chains that correct nodes currently maintain.

18

From a round-based perspective, this behavior is easy to justify. Correct
participants see the Byzantine-generated message as a first-round message of
the [-th consensus instance (and more generally, as a (/+1—i)-th round message of
the i-th consensus instance for each 1 < i < [). All correct participants, however,
have already advanced to the second round of the /-th consensus instance (and
similarly, to the (/ + 2 — i)-th round of the i-th consensus instance, for each 1 <

i<

Therefore, the longest-chain wins rule can be seen as acting essentially as a
mechanism for disregarding messages from past rounds in a traditional round-

based protocol.

Note that participants may skip certain rounds within a consensus instance.
For example, if a correct node that is extending a chain of length (/ — 1) receives
a chain of length (/ + 1), it progresses to the third round of the /-th consensus
instance and simultaneously enters the first round of (/ + 2)-th consensus in-
stance. This occurs without the node ever being in the second round of the /-th

consensus instance.

Lottery voting In Nakamoto Consensus, the process for selecting proposal
values resembles a lottery voting mechanism. A key property of the puzzle
to be solved in order to extend a chain ¢ of length / by some block b, is that
any unit of computing power has a constant probability of finding a solution.
Thus, each unit of computational power spent on solving that puzzle can be
seen as a lottery ballot with / + 1 values printed on it: the first / values read as

the corresponding block in the existing chain; the last value reads b.

Thus, the probability that a block 5* will be selected as the proposal value

19

for the next round of a consensus instance i is proportional to the computing
power expended on the chain that either already holds 5 in its entry i, or is
in the process of being extended by choosing a value for entry i—that is, it is
proportional to the number of ballots that read »* as their proposed value for

the appropriate consensus instance.

Note that even participating nodes extending different chains might have
the same block b in their ballot for the i-th consensus instance if their chains

share a prefix up to the i-th block.

We observe that NC’s approach to selecting proposal values for the next
round—randomly choosing from all ballots— is quite different from the alter-
native approach of first conducting a leader election and then adhering to the
leader’s proposals. The key distinction emerges when two puzzle solutions
are discovered almost simultaneously; in such cases, NC considers both pro-
posal values equally valid, whereas leader election mechanisms would treat the
leader’s decision as distinctly superior at all timesﬁ This characteristic aligns
NC more closely with consensus protocols like Ben-Or [5], which also allows
participants, in certain circumstances, to randomly select their proposal values,
and sets it apart from leader-based consensus protocols like Paxos [34], which

rely on a single leader’s decisions.

Decision Nakamoto Consensus uses a confirmation threshold T to determine
when a decision has been reached. Specifically, a block b at height k on the
longest chain is considered decided if there are at least T blocks following b

in the chain. From the perspective of the i-th consensus instance, all values

3The distinction cannot be fudged by treating the puzzle solving exercise as a leader election
protocol, since such protocol must produce a single leader.

20

proposed from round (T + 1) on are its decision values.

Therefore, from the perspective of the i-th consensus instance, there are mul-

tiple ways of violating agreement:

Multiple Decisions by a Single Node : A correct node p proposes block b in
the j-th round of the i-th consensus instance, where j > T, and then pro-
poses a different block 4" # b in the (j + 1)-th round of the same consensus
instance. This scenario leads p to decide multiple times on different val-
ues within the same consensus instance. This situation may occur when a
node, maintaining a chain of length at least i + T, receives a longer chain

where the i-th block differs from the one in its current chain.

Disagreement among Different Nodes : Agreement is also violated when a
correct node p proposes block b in the j-th round of the i-th consensus
instance, where j > T, and another correct node g proposes a different
block b’ # b in the same round of the same consensus instance. This re-
sults in p and ¢ deciding on different values within the same consensus
instance. This situation may occur when two nodes have chains whose

suffixes diverge by more than the last 7' blocks.

2.4 Ben-Or’s classic consensus protocol

The Ben-Or binary consensus protocol (Protocol [1) circumvents the FLP impos-
sibility result by weakening the Termination clause of the specification of Con-
sensus: the guarantee that every correct node will eventually decide is only

given with probability 1.

21

Protocol 1 Ben-Or Consensus Protocol [5]

1: v; < input; r < 0;

2: loop

3: broadcast (r, phase = 1,v;) > Phase 1

4: wait until |n/2] + 1 messages from Phase 1 are received

5: if all the messages from Phase 1 have the same proposal v then » Phase
2

6: broadcast (r, phase = 2,v)

7: else

8: broadcast (r, phase = 2, 1)

9: wait until [#/2] + 1 messages from Phase 2 are received

10: if A(r,2,v # 1) then

11: Vi=V

12: else

13: v; = randomly pick one from V

14: if v # 1 for all the messages from Phase 2 then
15: decide(v)

16: r=r+1

Model Ben-Or’s protocol solves binary consensus in a permissioned setting
within an asynchronous network—that is, without loss of generality [45], par-
ticipants are limited to proposing either 0 or 1; the number n and identities of
participants are known; and there is no upper bound on message delivery times.
Ben-Or assumes that majority of the n participants are correct and that the f par-
ticipants who are faulty, where f < n/2, can suffer benign failures, i.e., general

omission failures, including crashes.

Protocol The protocol progresses in asynchronous rounds. Each round is
divided into two phases; in each phase, every non-faulty node broadcasts a
message and collects the messages sent by its peers in that phase. Because the
network is asynchronous and fewer than half of the nodes can fail, nodes do not

wait for more than a majority of responses.

In Phase 1 of each round (Line[3}{4), each node broadcasts its current proposal

22

value and waits for the values broadcast by a majority of nodes (including it-
self). If all these values are identical (i.e., if a majority is proposing the same
value), the node adopts that value (call it v) as its proposal for Phase 2 of the

round; otherwise, it adopts L.

In Phase 2, each node broadcasts the proposal value adopted at the end of
Phase 1 (Line 5{8) and once again waits for the values broadcast by a majority

of nodes. There are three cases.

1. If a node receives only proposals consisting of the same value v # 1,
(meaning that a majority of nodes report that they have each observed
a majority of nodes proposing v), then the node decides v (Line[14{15) and

retains v as its proposal value for Phase 1 of the next round.

2. If a node receives some L and some v (meaning that at least some node
observed a majority of nodes proposing v in Phase 1) then the node adopts

v as its proposal value for Phase 1 of the next round (Line [11).

3. If a node receives only L (meaning that a majority of nodes received con-
flicting proposal in Phase 1) then the node’s proposal value for Phase 1 of

the next round is selected at random (Line [13).

Correctness Ben-Or’s protocol guarantees Validity and Agreement, while en-

suring Termination with probability 1.

Validity If all nodes initially propose the same value v, each node can only
receive Phase 1 messages containing v. Consequently, in Phase 2, all nodes that
send a message (excluding those that crash, experience a send omission, or are

stuck in Phase 1 because of receive omission) will broadcast Phase 2 messages

23

with v. By the end of Phase 2, all correct nodes will have collected a majority of

Phase 2 messages containing v, and will thus all decide v, satisfying Validity.

Agreement Suppose r is the earliest round that some correct node p decides,
and p decides v in round r. We need to show that all correct nodes will eventu-

ally decide v.

First, it is easy to see that no other correct node can decide something other
than v in round r. To decide v, p must have received a majority of messages
in Phase 2 of round r proposing v (Line [15); thus, since all majorities intersect,
in a benign failure model there cannot exist in that phase a majority proposing
some V' # v. In fact, applying again the observation that all majorities intersect,
but this time on proposals received in Phase 1 of round r, it is impossible for
two distinct values v and v/, both other than L, to be proposed in Phase 2 of any

round.

Further, again because all majorities intersect, any node that in Phase 2 of
round r receives a majority of messages (in particular, every correct node) must
receive at least one of the messages proposing v that p received. Therefore, all
such nodes will adopt v as their proposal value for Phase 1 of the next round

(i.e., round (r + 1)) (Line[13).

Therefore, all nodes capable of moving to round (r + 1) will propose value v,
and will only receive Phase 1 messages proposing v. Then, all nodes that man-
age to send messages will broadcast Phase 2 messages proposing v. By the end
of Phase 2, all correct nodes will collect a majority of Phase 2 messages propos-

ing v, and thus decide v by the end of round (r + 1), satisfying Agreement.

24

Termination We saw in our proof for Validity how, if all the nodes start with
the same proposal v in Phase 1 of round r, all correct nodes decide v (and thus
satisfy Termination) in that round. Therefore, Ben-Or’s protocol will only fail
to terminate if not all nodes propose the same value for an infinite number of

rounds.

Consider the probability that nodes will have the same proposal value in

round (r + 1) under different round r scenarios:

No non-L messages received in Phase 2 All nodes randomly select a value to
propose for round r + 1 (Line[13). The probability that they will select the

same value is non-zero.

Some non-L messages received in Phase 2 All nodes that receive a Phase 2
message with v will propose v in round r + 1. We showed in the Agree-
ment proof that it is impossible to receive a Phase 2 message with a value
different from v, other than L. The probability that all nodes without a
non-1 Phase 2 message will randomly select v is also non-zero. Thus, the

probability that all nodes will select the same value is non-zero.

Therefore, regardless of what happens in round r, the probability that the
protocol will terminate in round (r + 1) is non-zero, meaning the probability that
the protocol will never terminate is 0. Thus, Ben-Or’s protocol terminates with

probability 1.

25

2.5 Reframing Ben-Or’s consensus protocol in terms of priority

If we take a step back and examine the selection process of proposal and deci-
sion values in Ben-Or’s protocol, we observe that values endorsed by a majority
are selected as proposal values, and a value that receives majority support in
both phases of a round is chosen as the decision value. This progression, where
a value repeatedly endorsed by a majority is prioritized over others, forms the

core of how decisions are reached.

Sandglass and Gorilla (Chapter|3} |4) adopt this same principle of prioritizing
values that are continuously endorsed by a majority across multiple rounds. To
better understand and highlight this process, we introduce an explicit priority
variable and rewrite Ben-Or’s protocol to incorporate it. This variable counts
the number of consecutive phases in which a value is unanimously endorsed
by a majority. Intuitively, in Ben-Or’s protocol, when the priority of a value v
is 1, v is adopted as the proposal value for the next phase. If the priority of v

reaches 2, v is decided.

Making a value’s priority explicit reveals the remarkable similarity between
the two phases that constitute each round of Ben-Or’s protocol: in both phases,
the value with the higher priority is the one chosen to be proposed or decided.
Drawing out this similarity allows for a more streamlined presentation of the
protocol as a sequence of identical, elemental rounds no longer decomposed in
distinct phases. This reframed version of Ben-Or (see Algorithm [2) not only
is more concise, but also serves as an excellent foundation for the Sandglass
protocol, where, as we will see in Chapter |§L the explicit handling of priority

becomes pivotal in adapting consensus mechanisms to a permissionless setup.

26

Protocol 2 Reframed Ben-Or Consensus Protocol with priority

1: v; « input;; r < O; priority, < 0
2: loop
3: broadcast (r, v;, priority,)

4: wait until a set of [n/2] + 1 messages, M;, is received
5: Consider the set of values, L, that have the largest priority.
6: Randomly pick any value v from L
7 V=V
8: if v = v; for all the messages in M; then
9: priority, = min.,, priorityyem,(Priority) + 1

10: else

11: priority, = 0

12: if priority, = 2 then

13: decide(v;)

14: r=r+1

15: if r mod 2 == 0 then

16: priority, = 0

Starting from round 0, even-numbered rounds correspond to the first phases
of the original protocol, and odd-numbered rounds correspond to the second

phases.
We now show that this new formulation is equivalent to the original one.

In the new formulation, the structure of each round is simple.

1. Nodes broadcast their proposal value with its associated priority.
2. Nodes wait to receive a majority of proposals.

3. Nodes select the value to be proposed in the next round by choosing ran-

domly among the received proposals with highest priority.

4. Nodes associate a priority with the selected value on the basis of criteria,

which we will discuss in a moment, chosen so that even and odd rounds

27

operate, respectively, as Phase 1 and Phase 2 of a round of the original

Ben-Or.

5. If the priority associated to the selected value is 2, then that value is de-

cided.

Let’s see in greater detail how the protocol’s behavior differs in even and odd
rounds. Their first three steps are identical; the differences arise in the priorities
that can be associated to the values proposed in those rounds. In reading the
discussion below, recall that the value that is being proposed in an odd (respec-
tively, even) rounds, depends on the values (with associated priorities) received

in the previous even (respectively, odd) round.

Odd rounds Since all values proposed in even rounds have the same priority
(i.e., 0) (see below the discussion of Even rounds), the set L that deter-
mines what is going to be proposed in the following odd round contains
all the values a node received in the preceding even round. There are two

possibilities:

1. If all the received values are the same (say, v), then the node sets its
proposal value to v (since it is picking at random among identical
values!) and increases v’s priority to 1 (Line [9). This is equivalent
to adopting v as the proposal value at the beginning of Phase 2 of the
original Ben-Or after receiving a unanimous majority of proposals for

v in Phase 1.

2. Otherwise, it chooses at random one of the received values and as-
signs to it priority 0. This is equivalent to adopting L as the proposal
value at the beginning of Phase 2 of the original Ben-Or after receiv-

ing different proposal values in Phase 1.

28

Even rounds As mentioned above, all values proposed in even rounds have
priority 0. This is true in the very first round (Line [I) and is enforced
by setting the priority to 0 at the beginning of all even rounds (Line [16).
What remains is determining the actual value that a node proposes: this
depends on the values the node received in the preceding odd round and
on their associated priority The protocol requires the proposal value to
be chosen randomly among the collected proposals with highest priority

(Lines|5}{6). What can those priorities be? There are three possibilities.

1. All values received in the preceding odd round have priority 0; this
case corresponds, in the original Ben-Or, to receiving only Phase 2
messages reading L. In this case, as in the original Ben-Or formula-
tion, the value proposed in the next round is chosen at random and
could be either of the two initial values of the binary consensus being

executed.

2. Some (but not all) values received in the preceding odd round have
priority 1; this case corresponds, in the original Ben-Or (Lines [10}
[11), to receiving some non-L Phase 2 messages. Note that, since the
priority of a proposal value is increased only if that is the only value
received from a majority of nodes, the by-now-familiar majority inter-
section argument ensures that there cannot be multiple distinct val-

ues with priority 1 received in an odd round.

3. All messages received in the preceding odd round propose the same
value v with priority 1; this case corresponds, in the original Ben-Or,
to receiving a majority of matching Phase 2 messages proposing the

same value v. This is the condition under which the original Ben-

“The value a node proposes in the very first round is its initial proposal.

29

Or decides v. The same happens in our reformulation: V’s priority

is increased from 1 to 2 (Line [9), which then causes v to be decided

(Line[12}{13).

In conclusion, this reformulation of Ben-Or protocol, is equivalent to the orig-
inal. At the same time, it makes explicit what the original leaves implicit—
namely, that a value proposed by a majority should be prioritized in both the

proposal and decision-making processes.

Further, by making explicit the process of increasing the priority of a value, it
makes it possible to think of protocols in which priority values can grow larger
than 2. This newly-found flexibility will prove particularly valuable in the de-

sign of the Sandglass protocol, which will be explored thoroughly in Chapter[3}

2.6 Verifiable Delay Function

Verifiable Delay Functions (VDFs) are cryptographic primitives that require a
predetermined number of sequential operations to compute on some input,
while producing a result that can be efficiently and quickly verified by any-
one [6,/49, 55]. This characteristic of having a high computation cost but a low
verification effort makes VDFs particularly beneficial in permissionless settings,
as they allow any verifier to quickly verify whether a specific amount of time

has been devoted to a particular input.

In the Gorilla protocol, VDFs are employed to prevent Byzantine nodes from
conducting Sybil attacks. In such attacks, a single Byzantine node may generate

numerous pseudonymous identities to send a vast number of messages, aiming

30

to disproportionately sway the voting process. To counteract this threat, the pro-
tocol mandates that each message sent must be accompanied by a VDF result,
which is evaluated based on the message content. This safeguard ensures that,
even in a permissionless environment, Byzantine nodes are unable to exploit the
system by multiplying their influence through Sybil attacks. Thus, the integrity
of the voting process is maintained, protecting the consensus mechanism from

manipulation.

By demonstrating that a specific amount of computational effort has been
expended on given message content, VDFs thus fulfill a role similar to Proof
of Work (PoW). The primary distinction between VDFs and PoW lies in the
nature of their computations: VDFs require sequential processing that cannot
be parallelized, unlike PoW, which can be accelerated with a larger amount of

computational resources.

Moreover, for the Gorilla protocol, a significant advantage of Verifiable De-
lay Functions (VDFs) is their deterministic nature. VDFs are evaluated through
a fixed number of operations, ensuring consistent and predictable computa-
tional effort across all nodes. This deterministic process is crucial as it translates
the majority assumption based on participant numbers effectively into a major-
ity assumption based on message counts. Therefore, if a majority of nodes are
honest and adhere to the protocol, this majority is mirrored in the number of
valid messages produced, effectively preventing any minority (possibly mali-

cious) group from exerting undue influence.

In contrast, Proof of Work (PoW) mechanisms depend on a probabilistic ap-
proach, where the necessary number of operations can vary significantly. This

inconsistency can allow faulty or malicious nodes to progress faster than honest

31

nodes, potentially influencing the protocol disproportionately. Thus, the pre-
dictable, fixed effort required for VDFs provides a more secure and fair mecha-
nism for protocols like Gorilla, ensuring that correct nodes cannot be outpaced

by faulty ones simply through variance in computational effort.

Here is a brief summary of how VDF works. A VDF is defined by a triple of
algorithms: Setup, Eval, and Verify:

Setup(1,t) — pp = (ek,vk) generates a pair of public parameters pp = (ek, vk),
where ek refers to the evaluation key and vk refers to the verification key.
These parameters are generated based on a security parameter 1 and a

delay parameter 7.

The security parameter A, determines the cryptographic strength of the
VDF, ensuring that the computation cannot be accelerated through paral-
lel processing or advanced cryptanalytic techniques. It ensures that the
probability of successfully bypassing the delay function is negligible in 4,

i.e., decreasing faster than the inverse of any polynomial in A.

The delay parameter ¢, on the other hand, specifies the minimum amount
of time required to compute the VDF, measured by the number of sequen-
tial steps or operations. This parameter enforces a fixed time delay, en-
suring that the function takes a predictable amount of time to compute,

regardless of the computational resources available.

Together, the delay and security parameters balance the computational
effort required, resistance to parallelism, and cryptographic strength, en-

suring that the VDF meets both performance and security requirements.

Eval(ek, x) — (y,n) takes an input x and an evaluation key ek from public pa-

rameters pp, computes the output y after r sequential steps.

32

Alongside the output value y the function may also generate a proof x.
This proof is used to verify that the output y was correctly computed fol-
lowing the prescribed sequential steps. In some cases, 7 might be empty
if the VDF does not require additional proof or if the proof is implicitly

included in the output value y.

Verify(vk, x,y,) — {Yes, No} is a deterministic algorithm that takes a verifica-
tion key vk, an input x, an output y, and a proof r as its parameters. Using
these inputs, the function checks whether the proof n correctly verifies that
the output y was obtained from the input x through the prescribed sequen-
tial steps. If the proof is valid, Verify returns “Yes”, indicating that the VDF
computation was performed correctly and the output y is trustworthy. If
the proof is invalid or missing in a scheme where proof is required, the
function returns “No”, signaling that the output y may not be correct or

the computation might have been tampered with.

In VDF schemes where the proof is optional or implicitly included in the
output y, the verification function may use alternative methods to vali-
date the output directly using the verification key vk and the input x. In
such cases, Verify can still return “Yes” or “No” based on these alternative

verification methods.

This verification process is designed to be significantly faster than the Eval.

This thesis leverages several key properties of Verifiable Delay Functions

(VDEFs), the formal definitions of which are detailed in Boneh et al. (2018) [6]:

Correnctness The Verify algorithm should return “Yes” for any output pro-

duced by the Eval function.

33

Soundness For any x, the probability of finding a y where Verify(pp,x,y,n) =

Yes but Eval(pp, x) # y is negligible in A.

Sequentiality Correct nodes can compute (y,m) < Eval(ek, x) in ¢ sequential
steps whereas no adversary with a parallel machine and a polynomial
number of processors can differentiate the output y from random in sig-

nificantly fewer steps.

Efficient Verification Verification is fast compared to the evaluation, requiring
only poly-logarithmic time relative to ¢ [49] or even constant time [9, [11,

55].

34

CHAPTER 3
SANDGLASS

In this chapter, we present Sandglass, a permissionless consensus algorithm that
guarantees deterministic agreement and terminates with probability 1. Sandglass
operates in a model based on Nakamoto’s. The model allows an arbitrary num-
ber of participants to join and leave the system at any time and stipulates that
at no time the number of participants exceeds an upper bound N (though the
actual number n of participants at any given time is unknown). Further, like
Nakamoto’s, it is hybrid synchronous, in that, at all times, a majority of partic-
ipants are correct and able to communicate synchronously with one another.
We call these participants good; our protocol’s safety and liveness guarantees
apply to them. Participants that are not good (whether because they crash, per-
form omission failures, and/or experience asynchronous network connections)
we call defective. Sandglass proceeds in asynchronous rounds, with a structure
surprisingly reminiscent of Ben-Or’s classic consensus protocol [5]. We briefly

review it here, and the full discussion is in

In Ben-Or’s protocol, nodes propose a value by broadcasting it; in the first
round, each node proposes its initial value; in subsequent rounds, nodes pro-
pose a value chosen among those received in the previous round. Values come
with an associated priority, initialized to 0. The priority of v depends on the
number of consecutive rounds during which v was the only value received by
the node proposing v — whenever a node receives a value other than v, it re-
sets Vs priority back to 0. When proposing a value in a given round, node p
selects the highest priority value received in the previous round; if multiple val-

ues have the same priority, then it selects randomly among them. A node can

35

safely decide a value v after sufficiently many consecutive rounds in which the
proposals it receives unanimously endorse v (i.e., when v’s priority is sufficiently
high); and termination follows from the non-zero probability that the necessary

sequence of unanimous, consecutive rounds will actually eventually occur.

Of course, embedding this structure in a permissionless setting introduces
unprecedented challenges. Consider, for example, how nodes decide. In Ben-
Or, a node decides v after observing two consecutive, unanimous endorsements
of v; it can do so safely because any two majority sets of its fixed set of n nodes
intersect in at least one correct node. This approach is clearly no longer feasible
in a permissionless setting, where n is unknown and the set of nodes can change

at any time.

Instead, Sandglass’s approach to establishing safety is inspired by one of the
key properties of Nakamoto’s PoW: whatever the value of n, whatever the iden-
tity of the nodes participating in the protocol at any time, the synchronously
connected majority of good nodes will, in expectation, be faster than the remain-

ing nodes in adding a new block to the blockchain.

Think now of adding a block b at position i of the blockchain as implicitly
starting a new round of consensus for all the chain’s positions that precede i;
for each position, the new round proposes the corresponding block in the hash
chain that ends at b. In this light, the greater speed in adding blocks that PoW
promises to the majority of connected nodes translates into these nodes mov-
ing faster from one asynchronous round to the next in each of the consensus

instances.

This insight suggests an alternative avenue for achieving deterministic con-

36

sensus among good nodes — without relying on quorum intersection. Node p
should decide on a value v only after it has seen v unanimously endorsed for
sufficiently many rounds that, if p is good, the lead p (and all other good nodes)
have gained over any defective node g proposing some other value is so large

that ¢’s proposals can no longer affect the proposal of good nodes.

Why can’t the same approach be used to achieve deterministic consensus in
Nakamoto’s original protocol? Because Nakamoto’s PoW mechanism, notwith-
standing its name, is an indirect and imperfect vehicle for proving work. As
evidence of performed work, Nakamoto presents the solution to a puzzle: this
solution, however, could just have been produced as a result of a lucky guess.
Thus, however unlikely, it is always possible in NC for defective nodes propos-
ing a value other than v to catch up with, or even overtake, good nodes and

reverse their decisions.

To avoid this danger, Sandglass relies on a different PoW mechanism, which
ties the ability to propose a value to a deterministic amount of work. In particular,
Sandglass nodes can propose a value in any round other than the first only after
they have received a specific threshold of messages from the previous round.
Therefore, each proposed value implicitly represents all the work required to
generate the messages needed to clear the threshold. The threshold value is
chosen as a function of the upper bound N on the number of nodes that at any
time run the protocol, in such a way that, whatever is their actual number n,
any node that does not receive messages from good nodes will inevitably take

longer than them in moving from round to round.

The full power of this PoW mechanism, however, comes from pairing it with

the idea, which we borrow from Ben-Or, of associating a priority with the val-

37

ues being proposed. With a fixed set of n nodes, Ben-Or leverages priorities
and quorum intersection to safely decide a value v once it has reached priority
2, because it can guarantee that henceforth every node executing in the same
round as a correct node will propose v. In a permissionless setting, we show
that the combination of priorities and our POW mechanism allows Sandglass
to offer good nodes the same guarantee (though, as we will see, v will be re-
quired to reach a significantly higher priority value!). Intuitively, by the time v
reaches the priority necessary to decide, any node ¢ that manages not to fall
behind (and thus become irrelevant) to the unanimous majority of good nodes
who have kept proposing v must have received some of the messages propos-
ing v from some good nodes. Furthermore, to keep up, ¢ must have received
such messages often enough that, given how the priority of received values de-
termines what a node can propose, it would be impossible for ¢ to propose any

value other than v.

In summary, this chapter makes the following contributions: (i) it formalizes
Nakamoto’s permissionless model in the vocabulary of traditional consensus
analysis; (ii) it introduces novel proof strategies suitable for this new model;
(iii) it exposes the connection between PoW and a voting mechanism that can
be implemented by message passing; and (iv) it introduces Sandglass, the first
protocol that achieves deterministic agreement in a permissionless setting under

hybrid synchrony.

In this chapter, we present the model of Sandglass in Section 3.1} the protocol
in Section [3.2} and the correctness of Sandglass in Section [3.3|

38

3.1 Model

The system comprises an infinite set of nodes p, p,,.... Time progresses in
discrete steps; in each step, a subset of the nodes is active and the rest are inactive.

At each step, active nodes are partitioned into good and defective subsets.

We assue a hybrid synchronous model. Good nodes are correct, and the net-
work that connects them to one another is synchronous; at all times, a majority
of active nodes are good. Defective nodes may suffer from benign failures, such
as crashes and omission failures, or simply lack a synchronous connection with

some good node.

The system progress is orchestrated by a scheduler. In each step, the sched-
uler can activate any inactive node p; (we say that p; has joined the system) and
deactivate an active node (which then leaves the system). The scheduler chooses
which nodes to activate and deactivate arbitrarily, subject only to the following
three constraints: (i) The upper bound of active nodes in any step is N; (ii) there
is at least one active node in every step; and (iii) in every step the majority of

active nodes is good.

In each step where it is active, each node p; executes the stateful protocol
shown as procedure Step in Sandglass’s pseudocode (see Algorithm [3). It can
execute computations, update its state variables, and communicate with other
nodes with a broadcast network. In particular, since Sandglass assumes benign
failures, every active node, whether good or defective, waits for a full step to

elapse before sending its next message.

The network allows each active node to broadcast and receive unauthenticated

39

messages. Node p; broadcasts a message m with a Broadcast,(m) instruction and
receives messages broadcast by itself and others with a Receive; instruction. The
network does not generate or duplicate messages, i.e., if in step ¢ a node p; re-

ceives message m with Receive;, then m was sent in some step ¢’ < t.

The communication model is designed to capture the design of Nakamoto’s
consensus, which relies on an underlying network layer to propagate and store
blocks. Nakamoto’s network layer provides a shared storage of data structures,
called blocks, and guarantees delivery of published blocks within a bounded
time. Each block includes cryptographically secure references to all blocks seen
by its creator. This allows a newly joined node to receive and validate the entire
history of published blocks. Thus, in our model, the scheduler determines when

each message is delivered to each node under the following constraints.

First, propagation time is bounded between any pair of good nodes. For-
mally: if a good node p; calls Broadcast,(m) in step ¢, and if a good node p; calls
Receive; in step ' > t, then m is returned, unless it was already received by p;
in an earlier call to Receive;. Thus, a newly activated good node is guaranteed,
upon executing its first Receive, to receive all messages from other good nodes

broadcast in the steps prior to its activation.

Second, the network is reliable, but there is no delivery bound unless both
nodes are good. Formally: For any two nodes p; and p;, where at least one of p;
and p; is defective, and for a message m broadcast by p;, if node p; calls Receive;

infinitely many times, then m is eventually delivered.

Each node is initiated when joining the system with an initial value v; € {a, b}.

An active node p; can decide by calling a Decide;(v) instruction for some value v.

40

The goal of the nodes is to reach a consensus based on these values:

Definition 1 (Agreement). If a good node decides a value v, then no good node decides

a value other than v.

Definition 2 (Validity). If all nodes that ever join the system have initial value v and

any node (whether good or defective) decides, then it decides v.

Definition 3 (Termination). Every good node that remains active eventually decides.

3.2 Protocol

To form an intuition for the mechanics of Sandglass, it is useful to compare
and contrast it with Ben-Or. From a distance, the high-level structure of the
two protocols is strikingly similar: execution proceeds in asynchronous rounds;
progress to the next round depends on collecting a threshold of messages sent
in the current round; safety and liveness depend on the correctness of a major-
ity of nodes; and nodes decide a value v when, for sufficiently many consecu-
tive rounds, all the messages they collect propose v. But looking a little closer,
the differences are equally striking. On the one hand, Sandglass’s notion of
node correctness and its hybrid synchronous model are stronger than Ben-Or’s.
Sandglass assumes a majority of good nodes that are not only free from crashes
and omissions, but also synchronously connected to one another. On the other
hand, in Sandglass, unlike Ben-Or, the number n of nodes running the proto-
col is not only unknown, but may be changing all the time. These differences

motivate four key aspects that separate the two protocols:

Choosing a threshold In Ben-Or, a node advances to a new round only after

having received a message from a majority of nodes. This strict condition

41

for achieving progress is critical to how Ben-Or establishes Agreement.
Any node that, from a majority of the nodes in round r, receives a set of
messages that unanimously propose v, can be certain that (i) there cannot
exist in r also a unanimous majority proposing a value other than v and
(ii) no node can proceed to round (r + 1) unaware that v is among the
values proposed in round r. Nodes that isolate themselves from a majority
simply do not make any progress; and since all majority sets intersect,

nodes cannot make contradictory decisions.

Unfortunately, this approach is unworkable in Sandglass: when the car-
dinality and membership of the majority set can change at any time, re-
ceiving messages from a majority can no longer serve as a binary switch
to trigger progress. More generally, thresholds based on the cardinality of
the set of nodes from which one receives messages become meaningless.
Instead, Sandglass allows nodes to broadcast multiple messages during
a round, one in each of the round’s steps, and lets nodes move to round
(r + 1) once they have collected a specified threshold of messages sent in

round r.

Think of the threshold 7~ of messages that allows a node to move to a new
round as the number of grains of sands in a sandglass: a node (figura-
tively) flips the sandglass at the beginning of a round, and cannot move
to the next until all 7 sand grains have moved to the bottom bulb. The
value of 7" is the same for all nodes; the speed at which messages are
collected, however—the width of their sandglass’s neck—is not, and can
change from step to step: if all nodes broadcast messages at the same rate,
the larger the number of nodes that one receives messages from in a timely

fashion, the faster it will be to reach the threshold. Thus, while in Sand-

42

glass setting a threshold cannot altogether prevent nodes that don’t re-
ceive messages from a majority from making progress, it ensures that they

will progressively fall behind those who do.

Exchanging messages In each step of the protocol, a node currently in round
r (i) determines, on the basis of the messages received so far, what is the
largest round r,,,, > r for which it has received the required threshold of
messages and (ii) broadcasts a message for round r,,,,, which includes the
node’s current proposed value, as well as the critical metadata discussed

below.

Keeping history Unlike Ben-Or, Sandglass allows nodes to join the system at
any time. To bring a newly activated node up to speed, each message
broadcast by a node p in round r carries a message coffer that includes (i)
the set of messages (at least 7~ of them) p collected in round r—1 to advance
to round r; (i) recursively, the set of messages in those messages’ coffers;

and (iii) the set of messages p collected so far for round r.

Respecting priority In Ben-Or, a node decides v if, for two consecutive rounds,
v is the only value it collects from a majority set. To ensure the safety of
that decision, Ben-Or assigns a priority to the value v that a node p pro-
poses: if v was unanimously proposed by all the messages p collected in
the previous round, it is given priority 1; otherwise, 0. Nodes that collect
more than one value in round r, propose for round r + 1 the one among
them with the highest priority, choosing by a coin flip in the event of a tie.
Sandglass uses a similar idea, although its different threshold condition re-
quires a much longer streak of consecutive rounds where v is unanimously
proposed before v’s priority can be increased. To keep track of the length

of that streak, every message sent in a given round r carries a unanimity

43

counter, which the sender computes upon entering r.

3.2.1 Selecting the Threshold

Unlike Ben-Or, Sandglass’s threshold condition can not altogether prevent
nodes from making progress. It is perhaps surprising that, by leveraging only
the assumption that at all times a majority of nodes are good (i.e., correct and
synchronously connected with each other) without ever knowing precisely how
many they actually are, Sandglass retains enough of the disambiguating power

of intersecting majorities to ultimately yield deterministic agreement.

In essence, Sandglass succeeds by causing defective nodes that isolate them-
selves from the majority of nodes in the systen to fall eventually so far behind
that they no longer share the same round with good nodes. At the same time, it
ensures that, once some good node has decided on a value v, nodes that manage

to keep pace with good nodes will never propose anything other than v.

Of course, to obtain this outcome it is critical to set 7~ appropriately. Consider
two nodes, one good and one defective, and suppose they flip their sandglass
at the same time—i.e., they enter a new round in the same step. We want that,
independent of how the number of active nodes may henceforth vary at each
step, if the defective node only receives messages from other defective nodes
(i.e., if it fails to hear from a majority of nodes), it will reach the threshold 7~
at least one step later than the good node will. The following lemma shows
that setting 7~ to [NTZ] (where N is the upper bound on the maximum number of

nodes active in any step) does the trick.

Lemma 1. For any k, consider any time interval comprising (k + 1) consecutive steps.

44

Let the number of messages generated by good nodes and defective nodes in each step
of the interval be, respectively, go, g1, ..., 8k and dy, d,, ..., dy. Setting the threshold T to

[NTZ] ensures that, if £=%"'g; < T, then Zi=kd; < T

Proof. Note how the lemma does not count the messages generated by good
nodes in the steps at the two ends of the interval. Recall that moving from the
current round to the next requires a node to receive at least a threashold 7~ of
messages sent in the current round. Note that good nodes that in step 0 enter
a new round r are unable to count against the threshold for round r messages
generated by good node that in step 0 are still in round r - 1; thus, we drop good
messages from step 0. Similarly, we drop step k because good nodes may only
need one of the messages sent by good nodes in step k to move to a new round

—and have no use for the remaining messages in gy.

We begin by observing that, when & is either 0 or 1, the lemma trivially
holds, since in all steps defective nodes generate fewer than N messages. For
example, whenk = 1,dy+d; < ¥+ 5 = N < [NTZ]. We then prove the lemma

fork > 2.

Let g = Zj{%;g and d = Z%lld denote, respectively, the average number of
messages generated by good nodes and by defective nodes during the k — 1
steps that include all but the interval’s first and last step. Expressed in terms
of g and d, the lemma requires us to show that, if g - (k — 1) < 7, then Zi’gdi =

dy+d-(k-1)+d, <7 when 7 is chosen to equal [NTZ].

Assume g-(k—1)< 7 ;thenk-1< %. Substituting for (k — 1) in the formula

45

that computes the messages generated by defective nodes, we have:

Yisedi =d - (k—1)+dp+dy

<d- % +dy+dy (smce(k—1)<—)
<d- % + N2— ! + N2— (since defective nodes are always a minority)
SCZ'Z N =1 (smce‘T—[—z]_iz)
g X 2
= T(§ 2%; 2

Then, to establish that X/={d; < 7, it suffices to prove that g + % <1.

Since forany i, d; < g;— 1 and d;+ g; < N,weknow thatd <g—landd+g < N .

1 % _1). Note that the largest
8’8

Dividing both inequalities by g yields g < min(1 -

value of min(1 - é, %’ — 1) occurs when 1 — é = % - 1; solving for g and plugging

2

-1
+1°

N
A<

z

the solution back in, gives us: min(l — ¢

c_? 2(IN-D -1 , 2IN-D _ N3+N2-2
Therefore, we have thatg e <X Mt TR = S < L m|

3.2.2 Protocol Mechanics

Protocol 3, besides showing how Sandglass initializes its key variables, presents
the code that node p; executes to take a step. Every step begins with adding
all received messages, as well as the messages in their message coffers, to a sin-
gle set, Rec; (lines |4 - 5). Going over the elements of that set, p; determines
the largest round r,,,, for which it has received at least a threshold 7~ of mes-
sages, and, if the condition at line |§| holds, sets the current round to (7, + 1)

(line[7). Upon entering a new round, p; does four things. First, after resetting its

46

Protocol 3 Sandglass: Code for node p;

1: procedure INIT(input;)

12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

23:
24:
25:

v; « input;; priority; < 0; uCounter; < 0; r; = 1, M; = 0; Rec; = 0; uid; = 0
: procedure STEP

Rec; < Rec, U{m} UM

if maX|Recl.(,)|Z¢(r) > r; then

ri = MaXRec(n=7(r) + 1
M;=0
forallm=(,r,—1,-,-,-,M) € Reci(r;— 1) do
M; — M, U{m}uM
Let C be the multi-set of messages in M;(r,—1) with the largest priority.

if all messages in C have the same value v then
Vi —V

else
v; < one of{a, b}, chosen uniformly at random

if all messages in M;(r; — 1) have the same value v; then
uCounter; <« 1+ min{uCounter|(-,r; - 1,v;, -, uCounter,-) € M;(r;— 1)}
else

uCounter; < 0

.. Counter;
priority; < max(0, [”‘”‘% -5)

if priority, > 67 + 4 then
Decide;(v;)

uid; « uid; + 1;
M,‘ — M,‘ @) Rec,-(r,-)
broadcast (p;, uid;, r;, v;, priority;, uCounter;, M;)

message coffer M, p; collects in the coffer all the messages it received from the

previous round—as well as the messages stored in the coffers of those messages

(lines [§] - [10). Second, p; chooses the value v that it will propose in the current

round (lines [11]-[15): it picks the highest-priority value among those collected

in its coffer for the previous round ; if more than one value qualifies, it chooses

among them uniformly at random. Third, p; computes the unanimity counter

and the priority for all messages that p; will broadcast during the current round

(lines [16] {20). The counter represents, starting from the previous round and

47

going backwards, the longest sequence of rounds for which all corresponding
messages in p;’s coffer unanimously proposed v. The priority is simply a direct
function of the value of the unanimity counter: we maintain it explicitly because
it makes it easier to describe how Sandglass works. Finally, if v’s priority is high
enough, p; decides v (lines @- @[) Whether or not it starts a new round, p; ends
every step by broadcasting a message (line 25): before it is sent, the message is
made unique (line[23) and p; adds to the message’s coffer all messages received

for the current round (line 24).

3.3 Correctness: Overview

Sandglass upholds the definitions of Validity, Agreement, and Termination
(with probability 1) given in Section 3.1 We overview the proof below, as its
approach differs from proofs of classical, permissioned protocols. We defer the
presentation of the full proof to Appendix A, which includes the formal state-

ments of the lemmas we informally state below.

Validity is easily shown by induction on the round number, since if all nodes
that join have the same value, there is only one value that can be sent in each
round (Lemma [9). Establishing Agreement and Termination is significantly
more involved, and hinges on a precise understanding of the kinematics of good
and defective nodes—and how that interacts with the ability of good nodes to
converge on decision value and on the number of rounds necessary to do so
safely. How clustered are good nodes as they move from round to round? At
what rate do good nodes gain ground over defective nodes that cut themselves

out from receiving messages from good nodes? How often do defective nodes

48

need to receive messages from good nodes to be in turn able to have their mes-

sages still be relevant to good nodes?

The answer to these and similar questions constitute the scaffolding of lem-
mas and corollaries on which the proofs of Agreement and Termination rely. We

discuss it in greater detail below, before moving on to the proofs.

3.3.1 The Scaffolding

The protocol achieves several properties that facilitate the consensus proof.

First, it keeps good nodes close together as they move from round to round.
Specifically, in any step two good nodes are at most one round apart (Corol-
lary [2), and if in any step a good node is in round r, then by the next step all
good nodes are guaranteed to be at least in round r (Lemma|[10). However, note
that defective nodes can advance faster than good ones, using a combination
of messages from good nodes and messages from defective nodes that do not
reach the good nodes. Nonetheless, we show that at any step a defective node

is at most one round ahead of any good node (Lemma|12).

Second, the protocol guarantees information sharing among good nodes.
This may appear trivial to establish, since good nodes are correct and syn-
chronously connected, but the laissez-faire attitude of the permissionless model,
with nodes joining and leaving without coordination at any step, complicates
matters significantly, making it impossible to prove seemingly basic properties.
For example, consider a good node p that, in round r and step T, proposes

a value v with a positive uCounter. It would feel natural to infer that all good

49

nodes must have proposed v in the previous round—but it would also be wrong.
If p just entered r in step T, it would in fact ignore any value proposed by good
nodes that newly joined the systems in step T, but are still in round r — 1. Fortu-
nately, we show that a much weaker form of information sharing among good
nodes is sufficient to carry the day. We say that a node collects a message in
a round if it receives the message and does not ignore it (messages originated
from a lower round number are ignored). We show that, in any round, a good
node collects at least one message from a good node (Lemma|13), and that, for
any round, there exists a message from a good node that is collected by all good

nodes (Corollary [1).

Third, it allows us to establish the basis for a key insight about the kinematics
of Sandglass nodes that will be crucial for proving Agreement and Termination:
in the long run, the only values proposed by defective nodes that remain rel-
evant to the outcome of consensus are those that have been, in turn, recently
influenced by values proposed by good nodes. This insight stands on a series
of intermediate results. We already saw (Lemma [1) that, given any sequence
of steps, if good nodes cannot generate enough messages to get into the next
round, neither can defective nodes, even if they, unlike good nodes, are allowed
to count messages generated in the two steps at the opposite ends of the period.
It follows that during the steps that good nodes spent in a round, defective
nodes can generate fewer than the 7~ messages necessary to move to the next
round (Lemma [17). It all ultimately leads to Lemma [18| which quantifies the
slowdown experienced by defective nodes that don’t allow themselves to be
contaminated by good nodes: it establishes that defective nodes that do not col-
lect any message from good nodes for k7~ consecutive rounds fall behind every

good node by at least (k — 1) rounds.

50

3.3.2 Agreement

The intuition behind our proof of Agreement is simple. To each value v pro-
posed and collected by Sandglass nodes is associated a uCounter, which records
the current streak of consecutive rounds for which all the messages collected
by the proposer of v were themselves proposing v. Once v's uCounter reaches
a certain threshold, v’s priority increases; and once the value v proposed by a
node reaches a given priority threshold, then a node decides v (see Algorithm |3}
line E[) Since, as we saw, good nodes share information from round to round
(recall Corollary [I), proving Agreement hinges on showing that, once a good
node decides v, no good node will ever propose a value other than v. To prove
that, we must in turn leverage what we learned about the kinematics of Sand-
glass nodes to identify a priority threshold that makes it safe for good nodes to
decide. It should be large enough that, after it is reached, it becomes impossible

for a defective node to change the proposal value of any good node.

The technical core of the Agreement proof then consists in establishing the

truth of the following (Claim [2):

Let p, be the earliest good node to decide, in round r, at step T,. Sup-
pose p, decides v,4. Then, any good node p, that in any step (whether
before, at, or after T,) finds itself in a round r, that is at least as large

as ry, proposes v, for r, with priority at least 1.

It is easy to see that if the above claim holds, then Agreement follows. Say

that 7, is the earliest step in which a good node p,, currently in round r,, decides

! Although proving Agreement does not require that v, be proposed with priority at least 1,
it makes proving the claim easier.

51

vq. The claim immediately implies that no good node can decide a value other
than v, in a round greater or equal to r,, since, from r; on, every good node
proposes v,. Recall that, since good nodes are never more that one round apart
at any step (Corollary BD, the earliest round a good node can find itself at 7, is
(ra — 1); and that, by Lemma [10} every good node is guaranteed to be at least in
round r, by step (T, + 1). All that is left to show then is that no good node p’,
which at T, found itself in round (r; — 1), can decide some value v’ other than v,.
To this end, we leverage the information sharing that we proved exists among

good nodes.

By Corollary [1, there is at least a message m generated in round (r, — 2) by
a good node that is collected by all the good nodes. Since p, at T, has reached
the priority threshold required to decide v,, m must have proposed v,; but if so,
it would be impossible for good node p’, which also must have collected m, to

have reached the priority threshold required to decide a different value v'.

Proving Claim [2| is non trivial. The core of the proof consists in showing
that any node that proposes a value v other than the decided value v; must
find itself, at T, in a much earlier round than the earliest round occupied by
any good node. In fact, we show something stronger: we choose a priority
threshold large enough that any node, whether good or defective, that at 7, or
later is within earshot of a good node (i.e., whose message m can be collected by
a good node), not only proposes v,, but it does so with a uCounter large enough

that allows whoever collects m to propose v, with priority at least 1.

To see why those who propose V' are so far behind good nodes, note that the
good node p, that decided v, at T, must have received only messages proposing

v for a long sequence of rounds, so long as to push v,’s priority over the (67 +4)

52

threshold required for a decision. Let’s zoom in on that sequence of rounds. It
took 67 unanimous rounds for v, to reach priority 1 (see Algorithm [3} line 20);

after clearing that first hurdle, v,’s priority increased by 1 every 7 rounds.

Consider now the set S of messages collected by p, during the long climb
that took v,’s priority from 1 to (67 + 4). Any node p’ that during this climb
proposes something other than v, faces a dilemma. It can either refuse to collect
any message in S — but if it does so, it will advance more slowly than good
nodes, and, by the time v,’s priority reaches the decision threshold, it will be
so far behind that no good node will collect its messages. Or p’ can try to keep
up by collecting messages from S — but, if it wants to keep proposing v #
Vg4, it can do so in at most one round during the entire climb: since the first
message collected from § would reset v’ priority to 0, any further message from
S collected by p’ in later rounds would have higher priority than the one of v/,

forcing p’ to henceforth propose v, instead of v'.

In short, since p’ can collect messages from S in at most one round, to ensure
that any node that in round r, is within earshot of good nodes will propose v, it
suffices to choose a large enough priority threshold for deciding. In particular,
setting the threshold to (67 + 4) ensures that (i) all messages collected by good
nodes for round (r, — 1) will propose v,, and (ii) v,’s uCounter in all these mes-
sages is at least (67 — 1), ensuring that all good nodes in round r, will propose v,

with uCounter at least 67, i.e., with priority at least 1.

Finally, a simple induction argument shows that, if all good nodes propose
vqg with priority at least 1 from r, on, then any node that, from step (7, + 1)
on, continues to propose a value other than v,, will fall ever more behind good

nodes, as it will be allowed to collect messages from good nodes only once every

53

67 rounds, on pain of being forced to switch its proposed value to v,.

3.3.3 Termination

The Termination property requires good nodes that stay active to eventually
decide. Sandglass’s Termination guarantee is probabilistic: for Termination to
hold, Sandglass needs to be lucky, so that it can build a sequence of consecutive
rounds during which all messages collected by good nodes propose the same
value; long enough that the value will reach the priority required for a node
to decide. Luck is required because Sandglass allows some randomness in the
values that a node proposes: nodes are required to propose the highest priority
value from any message collected in the previous round, but, if they receive
multiple values with the same priority, they can choose among them uniformly

at random.

To help us prove that luck befalls Sandglass with probability 1, we introduce
the interdependent notions of lucky period, lucky value, and lucky round. Intu-
itively, a lucky period is a sequence of steps that leads to a decision: all nodes
that are active in the step that immediately follows the end of the lucky period
are guaranteed to decide in that step, if not earlier. A lucky round is simply the
first round of a lucky period. What is more interesting is the quality that makes
a period lucky: during a lucky period, whenever Sandglass allows nodes to use
randomness in picking which value they will propose in the current round, they

select the same value — the lucky value for that round.

A minimum requirement for a round’s lucky value is that it should be a

plausible value on which good nodes may converge, in the sense that it should

54

not explicitly go counter the value that some good node is required to propose
in that round. Concretely, if the messages collected by a good node require it to
propose v and all other nodes can randomly choose between v and v, then the
round’s lucky value better not be v. In addition, to encourage the possibility of
a lucky period, the lucky value should be sticky: we would like random choices
to consistently pick the same value, round after round, unless doing so would

make the value implausible.

In the end, Sandglass adopts a definition of lucky value (see Appendix |A.4)
that, in addition to upholding plausibility, has two additional properties that
express its stickiness. First, in every round good nodes collect at least one mes-
sage that proposes the lucky value of the previous round (Observation [2): this
guarantees that under no circumstances the previous round’s lucky value will
simply be forgotten when moving to a new round. The second property, which
builds upon the first, establishes that lucky values don't flip easily: (Observa-
tion 3): for the lucky value in the current round to change, some good node
must have collected a different value with priority at least 1 from the previous

round.

To prove that Sandglass guarantees Termination with probability 1, we then

proceed in two steps.

First, we show (Observation [5)) that the uCounter of all good nodes active in
the step that immediately follows the end of the lucky period reaches a value
that allows these good nodes to decide. To this end, we begin by proving that,
in any lucky period, the lucky value after a while becomes locked: specifically,
we show that the lucky value v, at round 67 in the lucky period remains the

lucky value until the end of the lucky period, and, further, that after that round

55

all good nodes propose v,. Then, leveraging techniques similar to those used to
prove Agreement, we show that any node p’ that proposes a value V' other that
v must fall behind good nodes during the lucky period. The reason is that, once
veis locked, p’ can collect a message from a good node only every 67 rounds. If
it did it more often, p” would collect a message proposing v, from a good node
while V" has priority 0, which would force p’ to change its proposal to v, — even
if v/ and v, both had priority 0, and p’ could choose randomly among them, it
would have to propose v, in the next round, since v, is the lucky value. Thus,
by choosing a sufficiently long lucky period, we ensure that nodes that propose
values other that v, fall so far behind good nodes that v,’s priority, for any good
node that is active in the step right after the end of a lucky period, reaches the

threshold necessary for deciding.

Second, we show that lucky periods occur with non-zero probability, since
the probability of a certain outcome of random choices for a finite number of
nodes during a finite number of steps is non-zero. Since in any infinite execution
lucky periods appear infinitely often, it follows that any good node that stays

active, no matter when it joins, is guaranteed to eventually decide.

56

CHAPTER 4
GORILLA SANDGLASS

In this chapter, we present Gorilla Sandglass (or simply Gorilla) (§4.2), a consen-
sus protocol that guarantees deterministic safety and termination with probabil-
ity 1 in this standard model, which we dub GM (for Gorilla Model). Gorilla relies
on a form of PoW: Verifiable Delay Functions (VDFs) [6]. We consider an ideal
VDF [42] that proves a process waits for a certain amount of time and cannot
be amortized. The key difference between a VDF and Nakamoto’s PoW is that
multiple processes can calculate multiple VDFs concurrently, but cannot, by co-
ordinating, reduce the time to calculate a single VDFE. The crux of the protocol is
simple. The protocol proceeds in steps. In each step, all (correct) nodes collect
VDF solutions from their peers and build new VDFs based on those. Intuitively,
correct processes, which are the majority, accrue solutions faster than Byzantine
nodes, and progress through the asynchronous rounds of the protocol faster.
Eventually, the round inhabited by correct nodes is so far ahead of that occu-
pied by Byzantine nodes that, no longer subject to Byzantine influence, correct

nodes can safely decide.

Gorilla Sandglass adopts the general approach of Sandglass, in the sense that
puzzle results are accrued, with each puzzle built on its predecessors. In Sand-
glass, participants are benign, and they send, in each step, a message built on
previously received messages. In Gorilla, however, the Byzantine adversary is
not limited to acting on step boundaries or communicating at particular times.
Surprisingly, Gorilla’s correctness can be reduced to the correctness of a varia-

tion of Sandglass.
Gorilla Sandglass adopts the general approach of Sandglass, in the sense that

57

puzzle results are accrued, with each puzzle built on its predecessors. In Sand-
glass participants are benign and they send, in each step, a message built on
previously received messages. In Gorilla, however, the Byzantine adversary is
not limited to acting on step boundaries or communicating at particular times.
Surprisingly, Gorilla’s correctness can be reduced to the correctness of a varia-

tion of Sandglass. We perform this reduction in two steps (§4.3).

We first show that, for every execution of Gorilla in GM, there is a match-
ing execution where the Byzantine processes adhere to step boundaries, in a
model we call GM+. In the mapped execution, Byzantine processes only start
calculating their VDF at the beginning of a step and only send messages at the
end of a step. GM+ is a purely theoretical device, as it allows operations that
cannot be implemented by actual cryptographic primitives. In particular, it al-
lows Byzantine processes to start calculating a VDF in a step s building on any
VDF computed by other Byzantine nodes that will be completed by the end of s,
rather than by the start s, as allowed by GM (and actually feasible in reality).
Nonetheless, GM+ serves as a crucial stepping stone towards proving Gorilla’s

correctness.

Next, we show that, given an execution in GM+ that violates correctness,
there exists a corresponding execution of Sandglass in a model we call SM+.
The SM+ model is similar to that of Sandglass: in both, processes are benign
and propagation time is bounded for messages among correct processes and
unbounded for messages to and from so-called defective nodes. But unlike Sand-
glass, in SM+ a message from a defective node can reference another message
generated by another defective node during the same step (similar to how GM+

allows Byzantine nodes to calculate a VDF that builds on VDFs calculated by

58

other Byzantine nodes in the same step).

Together, this pair of reduction steps establishes that if an execution of Go-
rilla in GM violates correctness with positive probability, then so does an execu-
tion of Sandglass in SM+. To conclude Gorilla’s proof of correctness, all that is
left to show is that Sandglass retains deterministic safety and termination with
probability 1 in the SM+ model: fortunately, the correctness proof of Sandglass
works almost without change (§B.1) in SM+. Thus, a violation of correctness in

Gorilla results in a contradiction, and therefore, Gorilla is correct.

Gorilla demonstrates that it is possible to achieve deterministic safety and
liveness with probability 1 in a permissionless Byzantine model. Yet, possible
does not mean practical: Gorilla is not, since, like the Sandglass protocol that
inspires it, it requires an exponential number of rounds to terminate. By an-
swering the fundamental question of possibility, Gorilla ups the ante: is there a

practical solution to deterministically safe permissionless consensus?

41 Model

The system is comprised of an infinite set of nodes {p, p, ... }. Time progresses
in discrete ticks 0, 1,2, 3, ... In each tick, a subset of the nodes is active; the rest
are inactive. The upper bound on active nodes in any tick, necessary to the
safety of Nakamoto’s permissionless consensus [47], is N, and there is at least
one active node in every tick. Starting from tick 0, every K ticks are grouped

into a step: each step i consists of ticks iK,iK +1,...,iK + K — 1.

A Verifiable Delay Function (VDF) is a function whose calculation requires

59

completing a given number of sequential steps. Thus, evaluating a VDF requires
the evaluator to spend a certain amount of time in the process. Specifically, we
require the evaluation of a single VDF to take K ticks. We refer to the intermedi-
ate random values that this evaluation produces at the end of each of the K ticks
as the units of the VDF evaluation (or, more succinctly, the units of the VDF). We
denote the i-th unit of evaluating the VDF of some input y by vdf;; we denote

the final result (i.e., vdny) by vdf,, or, when there is no ambiguity, by vdf.

We model the calculation of VDFs with the help of an oracle Q. Nodes use Q
both to iteratively obtain the units of a VDF and to verify whether a given value

is the vdf of a given input. In particular, Q provides the following API:

Get(y, vdf;)z returns vdf;”l). By convention, invoking Get(y, L) returns vdfy1 .
The oracle remembers how it responded to a Get query — so that, even
though the units of a VDF are random values, identical queries produce
identical responses. Q accepts at most one call to Get() in any tick from

each node.

Verify(vdf, y): returns True iff vdf = vdff . Q accepts any number of calls to

Verify() in any tick from any node.

If Get(y, L) is called at tick # and step s, we say the VDF calculation for y
starts at tick ¢ and step s. Similarly, the VDF calculation for y finishes at tick t and

step s if Get(y, vdny ') is called at tick and step s.

In each tick, an active node receives a non-negative number of messages,
updates its variables — potentially including calls to the oracle — and then
communicates with others using a synchronous broadcast network. The net-

work allows each active node to broadcast and receive unauthenticated messages.

60

Node p; invokes Broadcast;(m) to broadcast a message m, and receives broadcast
messages from other nodes (and itself) by invoking Receive;. The network nei-
ther generates nor duplicates messages and ensures that if a node receives a
message m in tick ¢, then m is broadcast in tick (r — 1). The network propaga-
tion time is negligible compared to a tick, i.e., to the time necessary to calculate
a unit of a VDE. By executing the command Receive;, a newly joining node p;
receives all messages broadcast by correct nodes prior to its activation. Nodes
whose network connections with other nodes are asynchronous can be modeled
as Byzantine, as Byzantine nodes can deliberately or unintentionally delay mes-
sages sent from or to them. Therefore, Gorilla also tolerates asynchrony, as long

as the nodes that communicate asynchronously are a minority.

Correct nodes do not deviate from their specification and constitute a major-
ity of active nodes at each tick. Correct nodes always join at the beginning of a
step and leave when a step ends. Hence, a correct node is active from the first
to the last tick of a step. The remaining nodes are Byzantine and can suffer from

arbitrary failures. Byzantine nodes can join and leave at any tick.

All nodes are initialized with a value v; € {a, b} upon joining the system. An
active node p; decides by calling Decide;(v) for some value v. A protocol solves

the consensus problem if it guarantees the following properties [15]:

Definition 4 (Agreement). If a correct node decides a value v, then no correct node

decides a value other than v.

Definition 5 (Validity). If all nodes that ever join the system have initial value v and

there are no Byzantine nodes, then no correct node decides v’ # v.

Definition 6 (Termination). Every correct node that remains active eventually de-

cides.

61

4.2 Gorilla

Gorilla borrows its general structure from Sandglass (see Algorithm [4). Exe-
cutions proceed in asynchronous rounds (even though, unlike Sandglass, Go-
rilla assumes a standard synchronous model of communication between all
nodes). Upon receiving a threshold of valid messages for the current round,
nodes progress to the next round; if all the messages received by a correct node
propose the same value v for sufficiently many consecutive rounds, the node de-
cides v. The number of active nodes is bounded by N but otherwise unknown.
Within this bound, it can fluctuate arbitrarily, but both safety and liveness de-

pend on the correctness of a majority of nodes.

The key aspects of the protocol can be summarized as follows:

Ticks, steps and VDF Each valid message must contain a vdf. A correct node
takes a full step, i.e., K consecutive ticks, to individually calculate a vdf,
and at the end of the step sends a valid message that contains the vdf.
Byzantine nodes may instead share among themselves the work required
to finish the K units of a VDF calculation; even so, it still takes K distinct
ticks for Byzantine nodes to compute a vdf. Requiring valid messages to
carry a vdf limits Byzantine nodes to sending messages at the same rate
as correct nodes; this ensures that, on average across all steps, the correct
majority sends at least one more valid message than the minority of nodes

that are Byzantine.

Choosing a threshold A node proceeds to round rif it receives at least 7~ = [N721
messages for round r — 1. Even though setting such a threshold does not

prevent Byzantine nodes from advancing from round to round, it nonethe-

62

less gives the correct nodes an edge in the pace of such progress, since they

constitute a majority.

Exchanging messages In each step of the protocol, a node in any round r —
based on the messages it has received so far — searches for the largest
round r,,,, > r for which it has accrued 7 messages. It then broadcasts
a message for the next round. The message includes the node’s current

proposed value v, the vdf, and four other attributes discussed below: the

message’s coffer, a nonce, as well as v’s priority and unanimity counter.

Keeping history Nodes can join the system at any time. To help a joining node
catch up, every message broadcast by a node p in round r includes a mes-
sage coffer that contains: (i) messages from round r — 1 received by p to
advance to round r; (i) recursively, messages included in those messages’

coffers; and (iif) messages received by p for round r.

Nonce By making it possible to distinguish between messages that are gener-
ated from the same coffer, nonces allow correct nodes to broadcast mul-
tiple valid messages during a round while, at the same time, preventing
Byzantine nodes from reusing the same vdf to send multiple valid mes-

sages based on a given message coffer.

Priority and unanimity counter If a node p only receives the value v from a
majority for a sufficient number of consecutive rounds, it decides v. To
guarantee the safety of this decision, p assigns a priority to the value v
that it proposes. This priority is incremented once v is unanimously pro-
posed for a long stretch of consecutive rounds. To record the length of this
stretch, each node computes it upon entering a round r, and includes it
as the unanimity counter in the messages it sends for round r. If a node

collects more than one value in a round r, it chooses the one with the high-

63

est priority, and proposes it for round r + 1. In case of a tie, it uses vdf as
a source of randomness to choose one of the values randomly. Since vdf
is a random number calculated based on the message coffer and a nonce
(lines [13{15), a Byzantine node is unable to deliberately pick an input to

VDF to deterministically get the desired value.

Message internal consistency and validity A message m is internally consistent
if the attributes carried by m can be generated by following Gorilla cor-
rectly based on the message coffer carried in m. We denote the vdf in m
by vdf .

A message m is valid (and thus isValid(m) returns true), if (i) vdf, can be
verified by the message coffer and the nonce of m; (ii) m is internally con-
sistent; and (iii) for any message m’ in m’s coffer, m’ is also valid. Other-

wise, m is invalid.

In addition to demonstrating variable initialization, Algorithm |4] presents
the algorithm each node p; runs at each step. Each node p; starts every step by

adding all valid messages, in addition to the messages in their coffers, to the

set Rec; (lines [4H6).

Iterating over Rec;, node p; computes the largest round r,,,, for which it has
received at least 7 messages, and updates its current round to 7,,,, + 1 (line |§[)
if the condition in line |Z| holds. Once in a new round, p; does the following: (i)
resets its message coffer M and adds to it the messages it has received from the
previous round — alongside the messages in their coffers (lines |2H£[); (if) picks
a nonce and calculates a vdf based on its coffer and the nonce (lines[13{{15); (iii)
chooses its proposal value (lines [16|20); it chooses the proposal with the high-

est priority among the previous round messages in its coffer; in case of a tie, it

64

chooses a random number utilizing the randomness in vdf; (iv) determines the
priority and the unanimity counter for the messages it will broadcast in the cur-
rent round (lines 21}{25); and finally (v) the node decides v if v's priority is high
enough (lines @Hzp If p; does not enter a new round, it starts to create a mes-
sage nonetheless: it adds to the message’s coffer all messages received for the
current round (line[29), and calculates a vdf with the new message coffer and a
different nonce as the input (lines[30}32), so that the message is unique. Regard-
less of whether it enters a round or not, p; ends every step by broadcasting the

message it has created (line [33).

4.21 Comparing Sandglass and Gorilla

Gorilla retains the structure of Sandglass, adding the requirement that valid
messages must include a vdf and a nonce. The differences between the protocols
are highlighted in orange in Algorithm 4 (i) vdf is calculated for each message
sent (lines[13{1530{32), (ii) received messages are checked to see if they are valid
(line |§[) ; (iii) vdf is used as the source of randomness (line @[) where the protocol

requires choosing a value randomly.

These additions are critical to handling Byzantine faults. Both Gorilla and
Sandglass rely on correct (respectively, good) nodes sending the majority of
unique messages during an execution. In Sandglass, where defective nodes
are benign, this property simply follows from requiring correct nodes to be a
majority in each step; not so in Gorilla, where faulty nodes can be Byzantine.
Requiring valid message in Gorilla to carry a vdf preserves correctness by effec-

tively rate-limiting Byzantine nodes’ ability to create valid messages.

65

Algorithm 4 Gorilla: Code for node p;. The orange text highlights where Gorilla
departs from Sandglass.

1: procedure INIT(input;)

2:

3

10:
11:

12:

16:

17:
18:
19:

21:
22:
23:
24:
25:
26:
27:

28:
29:

33:

v; « input;; priority; < 0; uCounter; < 0; r;, = 1, M; = 0; Rec; = 0;
: procedure STEP
4.

Rec; < Rec; U{m}U M

if maxmeci(,ﬂz(r(r) > ri then

ri = maleec,-(r)\Z’T(r) +1

M,‘ = @

forallm=(,r,-1,-,-,-,M) € Rec;(r; — 1) do
M; — M;U{m} UM

M; « M; U Rec;(r;)

Let C be the multi-set of messages in M;(r;,—1) with the largest priority.

if all messages in C have the same value v then
Vi <V
else

if all messages in M;(r; — 1) have the same value v; then
uCounter; <« 1+ min{uCounter|(-,r; - 1,v;,-,uCounter,-) € M;(r;— 1)}
else

uCounter; < 0

.. Counter;
priority; < max(0, [% -5)

if priority, > 67 + 4 then
Decide;(v;)

else

M; «— M; U Rec;(r;)

broadcast (r;, v;, priority;, uCounter;, M;, nonce, vdf)

Given their differences in both failure model and timing assumptions, it is

perhaps surprising that so little needs to change when moving from Sandglass

to Gorilla. After all, Sandglass assumes a model where failures are benign and

66

a hybrid synchronous model of communication [?]; Gorilla instead assumes a
Byzantine failure model, and a synchronous network model (§4.1). Note, how-
ever, that although Sandglass assumes benign failures, its hybrid communica-
tion model implicitly accounts for Byzantine nodes strategically choosing the
timing for receiving and sending messages to correct nodes: Gorilla can then

simply inherit from Sandglass the mechanisms for tolerating such behaviors.

4.3 Correctness

Despite the similarlity between the Gorilla and Sandglass protocols, proving
Gorilla’s correctness directly is challenging. Unlike Sandglass, Byzantine nodes
can act between step boundaries, interleave VDF computations instead of pro-
ducing one VDF (and hence one message) at the time, etc. To overcome this
complexity, our approach is to leverage as much as possible Sandglass’s proof

of correctness.

Our battle plan was to first map executions of Gorilla to executions of Sand-
glass. Then we intended to proceed by contradiction: assume that a correctness
guarantee is violated in Gorilla, and map this violation to Sandglass; since cor-
rectness violations are not possible in Sandglass, we could then conclude that

neither they can be in Gorilla.

The best laid plans often go awry, and, as we discuss below, ours was no
exception—but we were able to nonetheless retain the conceptual simplicity of

our initial approach.

67

4.3.1 The Main Story, and How it Fails

The mapping from Gorilla to Sandglass must satisfy certain well-formedness and
equivalence conditions. The former specify how to map a Gorilla execution into
one that satisfies the Sandglass model (SM) and follows the Sandglass protocol;
the latter allow us to map violations from Gorilla to Sandglass, i.e., they preserve
certain properties of the behavior of correct nodes in Gorilla and reinterpret them

as the behavior of good nodes in Sandg]lass.

Well-formedness requires mapping correct nodes to good nodes, and Byzan-
tine nodes to defective nodes, while respecting model constraints (e.g., at each
step defective nodes should be fewer than good nodes). The first half of this
mapping is easy: except for calculating a VDF, correct nodes in GM are not do-
ing anything different than good nodes in SM. Thus, mapping a step in GM
to a step in SM yields a straightforward connection between correct and good
nodes. The second half, however, is trickier. Defective nodes in SM can suffer
from benign faults like omission and crashing, but these fall short of fully cap-
turing Byzantine behavior in GM. In particular, Byzantine nodes, even when
sending valid messages, can violate the timing constraints that Gorilla places on
a node’s actions, e.g., by splitting the calculation of a single VDF into multiple
steps. Thus, before a Gorilla execution can be mapped to a Sandglass execution,
Byzantine nodes’” actions must be brought to conform to step boundaries and
not spill across steps. After tidying things up this way, it must become possible
to map the faulty actions of the Byzantine nodes to a combination of crashes,

omissions, and network delays, i.e., to the faults and anomalies that SM allows.

Equivalence in turn requires that, when mapping executions from Gorilla to

Sandglass, a correct node and its corresponding good node send and receive

68

cloe OO
. QE® NN E® '
[olololellel6le]clololel » Iclolulele/olelelelclcle

0 | 2 g s o | 2) :
(a) The counterexample. (b) The solution enabled by peeking.

Figure 4.1: An execution that cannot be reorganized in GM (a), and how peeking
solves the problem in GM+ (b).

in every step messages that allow them to update their proposed value, round
number, priority, and unanimity counter in the same way. Since messages play
the same role in both protocols, this is sufficient for good nodes in Sandglass to

decide identically to the corresponding correct nodes in Gorilla.

Our plan to realize this logical mapping involved splitting it into two con-
crete, intermediate mappings: a first mapping from an initial Gorilla execution
to an intermediate Gorilla execution in which Byzantine actions conform to step
boundaries; and a second mapping from that intermediate execution to a Sand-
glass execution. We require all of our well-formedness and equivalence condi-
tions to hold throughout these mappings: (i) model constraints must be always
respected, (ii) correct nodes in the intermediate execution send and receive the
equivalent (indeed, the same!) messages as their counterparts in the initial ex-
ecution, at the same steps, and (iii) good nodes in the final execution send and
receive equivalent messages as their correct counterparts in the intermediate

execution, at the same steps.

Unfortunately, well-formedness and equivalence cannot be satisfied by the first
mapping. To see why, consider Figure Here, each square represents a VDF
unit calculated by a Byzantine node for a specific input, denoted by a unique

color. Numbered circles represent the corresponding messages, e.g., the VDF

69

units containing (D are associated with message (D. Each VDF calculation takes
three ticks, and a step comprises three ticks. The numbered dashed lines indi-
cate the steps, i.e., the three ticks between lines i and i + 1 belong to step i. As-
sume that, to maintain a majority of correct nodes in the system, the maximum
allowable number of Byzantine nodes in the four steps shown in the figure are,
respectively, 1, 1, 3, and 1. Moreover, assume that messages @, G, and ® all
include in their coffers messages D, @, and 3. Finally, assume that messages
@, ®, and ® are sent to correct nodes at the start of Step 4. Since the actions
of Byzantine nodes in Figure |4.1al do not conform to step boundaries, the first
mapping should be able to organize them in a way that ensures that (i) correct
nodes receive messages @, ®, and © at the beginning of Step 4, and (ii) each of
these messages in turn includes messages D, @), and @. Thus, the calculation
of the VDFs for messages D, @), and 3 must be completed before those for @,
®), and ® can start. Now, since steps 0 and 1 include only one Byzantine node,
they can only accommodate one VDF, i.e., only one VDF can be calculated in
each of steps 0 and 1. Without loss of generality, let those VDFs be (D and Q),
respectively. VDF @ must still complete before messages @, &), and ®: thus,
it has to be placed in Step 2. Note that, although Step 2 could accommodate
two more Byzantine VDFs at Step 2, they cannot be placed there, since the com-
pletion of VDF) must precede the start of the calculation of VDFs @, B, and
©: the earliest step where they can start is Step 3. However, it is impossible to

accommodate all three there, since in Step 3 there is a single Byzantine node.

Our first attempt at mapping executions from Gorilla to Sandglass has thus
failed. Fortunately, though, it is possible to retain the strategy that under-
lies it and overcome the above counterexample without weakening our well-

formedness and equivalence conditions. Instead, we proceed to weaken the

70

model in which we operate, by giving Byzantine nodes extra power.

4.3.2 A New Beginning

The first step in our two-step process for mapping a Gorilla execution 7¢ into
a Sanglass execution 7y is to reorganize the actions taken by Byzantine nodes
in 7g: we want to map 7¢ to an execution where Byzantine nodes join the system
and receive valid messages at the beginning of a step (by the first tick) and
broadcast valid messages and leave the system at the step’s end (at its K-th
tick). Since, as explained in Section 4.3.1} satisfying all of these requirements is

not possible, we extend GM to a new model.

We need some way to calculate a VDF on an input that includes the final
result of VDF calculations that are still in progress. To achieve this, we extend
the oracle’s API to allow Byzantine nodes to peek at those future outcomes. By
issuing the oracle’s peek query, Byzantine nodes active in any step s can learn the
result of a VDF computed by Byzantine nodes finishing in step s even before its

calculation has ended.

We thus introduce GM+, a model that extends GM by having a new ora-

cle, Q*, that supports one additional method:

Peek(y): immediately returns vdf,.

In any tick, a Byzantine node in GM+ can call Peek() multiple times, with
different inputs. However, Byzantine nodes can only call Peek subject to two

conditions:

71

* A Byzantine node can peek in step s at vdf, only if Byzantine nodes commit

to finish the VDF calculation for input y within s; and

* a Byzantine node does not peek at vdf , where y = (M, nonce), if M in turn
contains some VDF result v obtained by peeking, and the calculation of v

has yet to finish in this tick.

Note that these restrictions only limit the additional powers that GM+ grants the

adversary: in GM+, Byzantine nodes remain strictly stronger than in GM.

With this new model, we first map an execution of Gorilla in GM to an ex-
ecution of Gorilla in GM+, in which Byzantine behavior is reorganized with
the addition of peeking. Hence follows the first lemma of our scaffolding: the

existence of the first mapping.

Definition 7. Consider an execution ng in GM and an execution i/, in GM+. We

say n¢. is a reorg of ng iff the following conditions are satisfied:

REORG-1 For every correct node p in 1g, there exists a correct node p* in nf;, such
that p and p* (i) join and leave the system at the same ticks in the same steps and

(ii) receive and send the same messages at the same ticks in the same steps.

REORG-2 Each Byzantine node in i, (i) joins at the first tick of a step and leaves
after the last tick of that step; (ii) receives messages at the first tick of a step and
sends messages at the last tick of that step; and (iii) sends and receives only valid

messages.

REORG-3 If in ng a Byzantine node sends a valid message m at a tick in step s, then

in n}. a Byzantine node sends m at a tick in some step s’ < s.

72

Lemma 2. There exists a mapping REORG that maps an execution ng in GM to an

execution i in GM+, denoted nj, = REORG(1)¢), such that n, is a reorg of ng.

While peeking solves the challenge with reorganizing Byzantine behavior,
it complicates our second mapping. The ability to peek granted to Byzantine
nodes in GM+ has no equivalent in Sandglass — it simply cannot be reduced to
the effects of network delays or to the behavior of defective nodes. Therefore,
we weaken SM so that defective nodes can benefit from a capability equivalent

to peeking.

We do so by introducing SM+, a model that is identical to SM, except for the
following change: defective nodes at step s can receive any message m sent by a
defective node no later than s — as opposed to (s — 1) in SM — as long as m does
not contain in its coffer a message that is sent at s. Note that allowing defective
nodes to receive in a given step a message m sent by defective nodes within that
very step maps to allowing Byzantine nodes to peek at a message whose vdf
will be finished by Byzantine nodes within the same step; and the constraint
that m shouldn’t contain in its coffer other messages sent in the same step, maps
to the constraint that Byzantine nodes cannot peek at messages whose coffer

also contains a peek result from the same step.

One might rightfully ask: But the plan to leverage the correctness of Sand-
glass in SM? Indeed, but fortunately, Sandglass still guarantees deterministic agree-
ment and termination with probability 1 under the SM+ model (§B.1.2). Thus, it is
suitable to map a Gorilla execution in GM+ to a Sandglass execution in SM+,
and orient our proof by contradiction with respect to the correctness of Sand-

glass in SM+.

73

Formally, we specify our second mapping as follows. We map messages by

simply translating the data structure:

Definition 8. Given a message m in the Gorilla protocol, the mapping MAPM produces

a message in the Sandglass protocol as follows

1. Omit the vdf and the nonce from m.
2. Let p; be the node that sends m. Include p; as a field in m.
3. If mis the j-th message sent by p;, add a field uid = j to m.

4. Repeat the steps above for all of the messages in m's coffer.

Denote the result by in = MAPM(m). We say m and i are equivalent. Furthermore,
with a slight abuse of notation, we apply MAPM to a set of messages as well, i.e., if
M is a set of messages, and we map each message m € M, we obtain the message set

MAPM(M).

Thus, we can define the execution mapping:

Definition 9. Consider an execution nf, in GM+ and an execution 1§ in SM+. We

say n¢ is an interpretation of i, iff the following conditions are satisfied:

1. The nodes in i, are in a one-to-one correspondence with the nodes in ng. For

every node p in ng,, we denote the corresponding node in 1§ with p.

2. Nodes p and p join and leave at the same steps in i, and n¢, respectively. Fur-

thermore, their initial values are the same.

3. If p is a Byzantine node, then p is defective in SM+; otherwise, p is a good node

in SM+.

74

4. Node p sends i at step s in ng iff p generates a message m in i, at step s. Note
that in i, correct nodes send their messages to all as soon as they are generated,
while Byzantine nodes may only send their messages to a subset of nodes once

their messages are generated.

5. Node p receives i at step s in 1§ iff p receives m at step s in .

Lemma 3. Consider any execution ng in GM, and an execution i in GM+ is a reorg
of ng. There exists a mapping INTERPRET that maps n, to an execution ng in SM+,

denoted as n; = INTERPRET(np}), such that i is an interpretation of ng.

Finally, for our proof by contradiction to work, we have to show that Sand-

glass is correct in SM+. The proof is deferred to §B.1.2.

Theorem 1. Sandglass satisfies agreement and validity deterministically and termina-

tion with probability 1 in SM+.

Safety

We prove that Gorilla satisfies Validity and Agreement. The proofs follow the
same pattern: assume a violation exists in some execution 7 of Gorilla running
in GM; map that execution to 1, = REORG(15) in GM+; then, map 7 again to
ns = INTERPRET(}) in SM+; and, finally, rely on the fact that these mappings
ensure that correct nodes in 75 and good nodes in 7 reach the same decisions
in the same steps to derive a contradiction. This approach is made rigorous in

following lemmas, proved in §B.3L

Lemma 4. Consider an arbitrary Gorilla execution ng, and n;, = REORG(ng). If a
correct node p decides a value v at step s in ng, then p’s corresponding node p* decides v

at step s in nf.

75

Lemma 5. Consider any execution ng in GM. If an execution n¢ in SM+ is an in-
terpretation of an execution n;; = REORG(1g) in GM+, then the following statements

hold:

1. If a correct node p decides a value v at step s in n;., then the corresponding p,

decides v at step s in nj.

2. Consider the first message m = (r,v, priority, uCounter, M, nonce,vdf) that p
generates for round r. Let the step when m is generated be s. If uCounter is 0,

then p randomly chooses value v as the proposal value at step s in .

We can now state and prove the safety guarantees.

Theorem 2. Gorilla satisfies agreement in GM.

Proof. By contradiction, assume that there exists a Gorilla execution 7 in GM
that violates agreement. This means that there exist two correct nodes p; and
P2, two steps s; and s,, and two values v; # v, such that p, decides v, at s,
and p, decides v, at s5,. Consider 1/, = REORG(15). According to Lemma @ 12
decides v, at s; and p] decides v, at s,, in i7.. Now, consider i = INTERPRET (7).
According to Lemma |5, p7 decides v; at s; and p; decides v, at s, in ;. How-
ever, this contradicts the fact Sandglass satisfies agreement in SM+ (Theorem|1).

Therefore, Gorilla satisfies agreement in GM. O

Theorem 3. Gorilla satisfies validity in GM.

76

Proof. By contradiction, assume that there exists a Gorilla execution 7, such
that (i) all nodes that ever join the system have initial value v; (ii) there are no

Byzantine nodes; and (iii) a correct node p decides v' # v.

Since GM+ is an extension of GM, 7 conforms to GM+. According to Defi-

nition N = ¢ in GM+ is trivially a reorg of ;. Consider 1§ = INTERPRET(7)).

By the construction of the INTERPRET mapping (in Lemma [3), good nodes
in 7§ have the same initial values as their corresponding correct nodes in 7.
Furthermore, since there are no Byzantine nodes in 7}, there are no defective
nodes in 77§ by Definition 9] Therefore, by Validity of Sandglass in SM+ (Theo-
rem [1), no good node decides v' # v. However, by Lemma |4/ and Lemma [5| p
decides v # v, which leads to a contradiction. Therefore, Gorilla satisfies valid-

ity in GM. o

4.3.3 Liveness

Similar to the safety proof, the liveness proof proceeds by contradiction: it starts
with a liveness violation in Gorilla, and maps it to a liveness violation in Sand-

glass.

Formalizing the notion of violating termination with probability 1 requires
specifying the probability distribution used to characterize the probability of
termination. To do so, we first have to fix all sources of non-determinism [2} 4,
27]. For our purposes, non-determinism in GM and GM+ stems from correct
nodes, Byzantine nodes and their behavior; in SM+, it stems from good nodes,

defective nodes and the scheduler.

77

For correct, good, and defective nodes, non-determinism arises from the
joining /leaving schedule and the initial value of each joining node. For Byzan-
tine nodes in GM and GM+, fixing non-determinism means fixing their action
strategy according to the current history of an execution. Similarly, fixing the
scheduler’s non-determinism means specifying the timing of message deliv-
eries and the occurrence of benign failures, based on the current history. We,
therefore, define non-determinism formally in terms of an environment and a

strategy:.

To this end, we introduce the notion of a message history, and define what it
means for a set of messages exchanged in a given step to be compatible with the

message history that precedes them.

Definition 10. For any given execution in GM and GM+ (resp., SM+), and any step s,
the message history up to s, MH,, is the set of (m, p, s") triples such that p is a correct

node (resp., good node) and p receives m at s" < s.

Definition 11. We say a set MP,, of (m, p, s+1) triples is compatible with a message
history up to s, MH, if there exists an execution such that for any (m,p,s + 1) €

MP.1, the correct node (resp., good node) p receives m at step (s + 1).

Definition 12. An environment & in GM and GM+ (resp., SM+) is a fixed join-
ing/leaving schedule and fixed initial value schedule for correct nodes (resp., good and

defective nodes).

Definition 13. Given an environment &, a strategy ®g for the Byzantine nodes (resp.,
scheduler) in GM and GM+ (resp., SM+) is a function that takes the message his-

tory MH s up to a given step s as the input, and outputs a set MP,, that is compatible
with MH,.

78

Before proceeding, there is one additional point to address. The most gen-
eral way of eliminating non-determinism is to introduce randomness through a
tixed probability distribution over the available options. However, the follow-
ing lemma, proved in @, establishes that Byzantine nodes do not benefit from

employing such a randomized strategy.

Lemma 6. For any environment &, if there exists a randomized Byzantine strat-
egy for Gorilla that achieves a positive non-termination probability, then there exists a
deterministic Byzantine strategy for Gorilla that achieves a positive non-termination

probability.

Since the output vdf of a call to the VDF oracle is a random number, the (vdf
mod 2) operation in line 20| of Gorilla is equivalent to tossing an unbiased coin.
Given a strategy ©g/!| the nodes might observe different coin tosses as the exe-
cution proceeds; thus, the strategy specifies the action of the Byzantine nodes
for all possible coin toss outcomes. The scheduler’s strategy in SM+ is similarly
specified for all coin toss outcomes. Therefore, once a strategy is determined, it
admits a set of different executions based on the coin toss outcomes; we denote
it by Hg. Specifically, a strategy determines an action for each outcome of any

coin toss.

Given a strategy O, we can define a probability distribution Py, over Hg. For
each execution 7 € Hg, there exists a unique string of zeros and ones, repre-
senting the coin tosses observed during 5. Denote this bijective correspondence
by COINS : Hg — {0, 1}* U {0, 1}, and the probability distribution on the coin
toss strings in COINS(He) by Py, . For every event E C Hg, if COINS(E) is mea-

surable in COINS(Hpg), then Py, (COINS(E)) is well-defined; thus, Py, (E) is also

!'When it is clear from the context, we will omit the environment from the subscript of the
strategy.

79

well-defined and Py, (E) = Py,(COINS(E)). We denote Py, as the probability

distribution induced over Hg by its coin tosses.

Equipped with these definitions, we can formally define termination with

probability 1.

Definition 14. The Gorilla protocol terminates with probability 1 iff for every environ-
ment & and every Byzantine strategy @ based on &, the probability of the termination

event T in He, i.e., Py (T), is equal to 1.

This definition gives us the recipe for proving by contradiction that Gorilla
terminates with probability 1. We first assume there exists a Byzantine strat-
egy O that achieves a non-zero non-termination probability, and map this strat-
egy through the REORG and INTERPRET mappings to a scheduler strategy A that
achieves a non-zero non-termination probability in SM+. However, A cannot ex-

ist, as the Sandglass protocol terminates with probability 1 in SM+ (Theorem|1).

Lemma 7. If there exists an environment & and a Byzantine strateqy ®g in GM that
achieves a positive non-termination probability, then there exists an environment &'
and a Byzantine strateqy We in GM+ that also achieves a positive non-termination

probability.

Proof. Assume there exist an environment & and a Byzantine strategy g in GM
that achieves a positive non-termination probability. Consider the REORG map-
ping. Since, according to Lemma 2] the joining/leaving and initial value sched-
ules for correct nodes remain untouched by the REORG mapping, we just

set & = &. In the rest of the proof, we omit the environments for brevity.

We now show that the strategy ¥ exists, and is in fact the same as ®. For

brevity, let Rg denote REORG(Hg), and consider any execution n in He. By

80

Lemma BL correct nodes in 7 receive the same messages, at the same steps, as
the correct nodes in REORG(77) and, moreover, the coin results in 5 are exactly
the same as the ones in REORG(77). Thus, the message history of correct nodes
up to any step s in 7 is the same as the message history of correct nodes up to
the same step in REORG(#). In addition, because REORG(7) is a GM+ execution,
compatibility is trivially satisfied. Thus, we conclude that Byzantine nodes in Rg
follow the same strategy as in ®, conforming to the same coin toss process. Let

us denote this strategy with V.

Note that according to Lemma [4] whenever a correct node decides at some
step s in 7, its corresponding correct node in REORG(7) decides the same value
at the same step. Therefore, the set of non-terminating executions in Hg are
mapped to the set of non-terminating executions in Re in a bijective manner.
Let us denote these sets as NTy and NTk, respectively. Since the same coin toss
process induces probability distributions Py, and Pg, on He and Re, respec-
tively, we conclude that Py, (NTy) = Pg,(NTg). Therefore, since Py,(NTy) > 0
by assumption, this concludes our proof, as we have shown the existence of a

strategy ¥ in GM+ that achieves a positive non-termination probability. o

A similar lemma applies to the second mapping. We prove it in §B.4.

Lemma 8. If there exists an environment & and a strateqy ¥ for Byzantine nodes
in GM+ that achieves a positive non-termination probability, then there exists an en-
vironment & and a scheduler strategey Ag in SM+ that also achieves a positive non-

termination probability.

Based on these lemmas, we are finally ready to prove Gorilla’s liveness guar-

antee.

81

Theorem 4. The Gorilla protocol terminates with probability 1.

Proof. By contradiction, assume that there exist a GM environment and a Byzan-
tine strategy ® in Gorilla that achieve a positive non-termination probability.
By Lemma [/} there exist a GM+ environment and a strategy ¥ for the Byzan-
tine nodes in GM+ that achieve a positive non-termination probability. Simi-
larly, by Lemmalg] there exists an SM+ environment and a scheduler strategy A
in SM+ that achieve a positive non-termination probability. But this is a con-
tradiction, since Sandglass terminates with probability 1 in SM+ (Theorem 1)
Thus, Byzantine strategy ® cannot force a positive non-termination probability;

Gorilla terminates with probability 1. o

82

CHAPTER 5
RELATED WORK

The consensus problem has been studied for decades, covering both benign and
Byzantine faults under different synchrony assumptions. Common across these
classic works is the assumption that the set of nodes that participate in run-
ning the protocol is either constant or changes through an agreement among the
current participants (permissioned). In contrast, Sandglass and Gorilla allow for
participants to change arbitrarily and without any coordination (permissionless)
as long as, at all times, a majority of nodes are correct and synchronously con-
nected. More recent papers also explore models where participants can change
dynamically at any time, subject to guarantees of a well-behaved majority; un-
like Sandglass and Gorilla, those works achieve only probabilistic safety guar-

antees. We briefly review related prior work in more detail below.

Classic consensus The permissionless nature of our model implies that con-
sensus solutions for classical models (e.g., [28]) do not apply. For synchronous
networks, previous solutions rely on the fact that the number of failures is
bounded over a period of time. They tolerate up to (n — 1) benign failures [54]
or Byzantine failures with authentication [14)} 36]. For asynchronous networks,
Fisher, Lynch, and Paterson [17] show that it is impossible to solve consensus
with deterministic safety and liveness, even with a single crash failure. Vari-
ous protocols (e.g., [32,/51} 53]) thus either solve asynchronous consensus with
weaker liveness guarantees than deterministic termination, or provide deter-
ministic termination after a Global Stabilization Time (GST) (e.g., [7]). They
use logical rounds, and for each round collect messages from a sufficient num-

ber of (authenticated) nodes, tolerating fewer than 3 failures in a benign failure

83

model [5, 34], and fewer than % failures with Byzantine failures and authenti-
cation [7, 58]. Although our model is not directly comparable, Sandglass and
Gorilla match the 5 bound of a benign model in an asynchronous network, de-

spite assuming synchrony among good nodes.

Impossibility result for permissionless setting Lewis-Pye and Roughgar-
den [37] show that deterministic consensus cannot be achieved in a permis-
sionless synchronous model with Byzantine nodes, let alone in a partially syn-
chronous model (where communication becomes synchronous only after some
GST unknown to the processes). Sandglass and Gorilla show, for the first time,
that deterministic safety and termination with probability 1 can be achieved in

a permissionless model.

Blockchains A newer line of work, inspired by Nakamoto’s introduction of
Bitcoin [46], investigates decentralized systems where participants may freely

join or leave without notifying existing members.

Bitcoin employs a probabilistic Proof-of-Work (PoW) mechanism, predicated
on the idea that a minority group cannot sustain over long duration the pace
of the majority in producing proof of work outputs, thereby ensuring system
safety with high probability as long as a majority of participants follow the pro-
tocol, as confirmed by various studies [13| 21} 31} 47]. Other protocols, like
Ethereum and the protocol described in [44], adopt different probabilistic ap-
proaches: Ethereum uses Proof-of-Stake (PoS) [56], which secures the network
through validators staking their own tokens as a form of security, while the
system outlined in [44] utilizes Proof-of-Space-Time (PoST), where participants

prove they have allocated disk space over a specific duration to validate trans-

84

actions. Both mechanisms aim to offer similar probabilistic guarantees tailored

to their unique operational frameworks.

Several protocols, inspired by the Proof of Work (PoW) approach, achieve
consensus among a large group of principals while requiring the active partici-

pation of only a subset of them.

Pass et al. [48] introduce the sleepy participation model, in which honest nodes
are either awake or asleep. Awake nodes participate in the protocol, while
asleep nodes neither participate nor relay messages. Byzantine nodes are al-
ways awake, but the scheduler can adaptively turn an honest node Byzantine
as long as Byzantine nodes remain a minority of awake nodes. This elegant
model requires a public key infrastructure (PKI) and offers probabilistic safety
guarantees. Ouroboros [10,30] approaches blockchain through a proof-of-stake
(PoS) mechanism by using internal tokens to randomize participant selection,
thus providing probabilistic safety and efficiency. In Algorand [22], committees
of users elect one another through successive reconfigurations. Participants are
randomly chosen from a large pool, which still allows for a negligible possibil-
ity of selecting a committee with a Byzantine majority. Consequently, Algorand

too offers only probabilistic safety guarantees.

In contrast, despite their permissionless model, Sandglass and Gorilla guar-
antee deterministic safety (without relying on PKI) and terminate with proba-
bility 1. Sandglass operates under a model that differs from the one adopted
by the three above systems. Its network assumptions are weaker, as it allows
communication to and from defective nodes to be asynchronous; on the other
hand, its failure model is stronger, as it assumes only benign failures. Gorilla, on

the other hand, matches the network and failure models adopted by the above

85

systems, as it assumes a synchronous network and tolerates Byzantine faults.

Participation restriction Few proposals achieve deterministic safety in a per-
missionless setting [3, 43], but only by limiting the ability of correct nodes to

leave the system.

Aspnes et al. [3] explore the consensus problem in an asynchronous benign
model where an unbounded number of nodes can join and leave [20], but where
at least one node is required to live forever, or until termination. It is easy to see
that, without this latter assumption, deterministic safety is impossible in their

model.

Momose et al. [43] introduce the notion of eventually stable participation, akin
to partial synchrony; it requires that, after an unknown global stabilization time,
for each T-wide time interval [7,f + T], at least half of the nodes ever awake

during the interval are correct and do not leave.

In contrast, Sandglass and Gorilla guarantee deterministic safety while al-
lowing all nodes to freely join and leave without requiring any correct node to
stay in the system or assuming statibility in participation, as long as a majority

of active nodes is correct.

Signatures A different line of work by Malkhi et al. [41] and Losa et al. [19] do
let nodes join and leave at any time, as in Gorilla. Both studies achieve termi-
nation within a constant expected latency. Unlike Gorilla, however, they must
rely on a public key infrastructure (PKI) to tolerate fluctuations in the number

of adversaries.

86

Other efforts to make the connection between blockchains and traditional
consensus Abraham and Malkhi [1] formalize Nakamoto’s Consensus within
a classical disturbed systems framework, and in particular abstract the PoW
primitive as a Pre-Commit, Non-Equivocation, Leader Election (PCNELE) Or-
acle. However, the leader elected by the oracle is not unique, which is funda-

mentally different from consensus protocols that depend on the leader election.

VDEF Verifiable Delay Functions (VDFs) [6] have been leveraged as a resource
against Byzantine adversaries in various works [12, 29| 139, 57|, specifically to
defend PoS systems from attacks where participants can go back in time and
mine blocks. Gorilla leverages VDFs to rate-limit the ability of Byzantine nodes

to create valid messages.

87

CHAPTER 6
CONCLUSION

Sandglass and Gorilla show, for the first time, that it is possible to obtain con-
sensus with deterministic safety in a permissionless model. This result suggests
that it is the probabilistic nature of its POW mechanism, rather that its permis-

sionless model, that prevents deterministic safety in Nakamoto’s consensus.

Furthermore, Gorilla is the first Byzantine-tolerant consensus protocol to
guarantee, in the same synchronous model adopted by Nakamoto, determinis-
tic agreement and termination with probability 1 in a permissionless setting. To
this end, Gorilla leverages VDFs to extend the approach of Sandglass, the first

protocol to provide similar safety guarantees in the presence of benign failures.

Neither Gorilla nor Sandglass are practical protocols, however: they ex-
change a very large number of messages and the number of rounds they require
to decide is large even under favorable circumstances, and can, in general, be
exponential. On the other hand, there exists a line of research [19,41] focused on
more practical solutions that can achieve deterministic safety in a dynamically
available setting and reach decisions within a few rounds, albeit depending on
a public key infrastructure (PKI). This opens up the possibility of developing
a new protocol that combines the best of both approaches: a practical Byzan-
tine fault-tolerant permissionless protocol that achieves deterministic safety but

does not rely on a PKI.

88

APPENDIX A
CORRECTNESS OF SANDGLASS

We prove that Sandglass satisfies the consensus requirements. Figure |A.1
illustrates the dependency between the statements proven below. The letters L,

O, and C, signify Lemma, Observation, and Corollary, respectively.

Sandglass upholds the definitions of Valdity, Agreement, and Termination

(with probability 1) given in Section 4.1}

A.1 Validity

We show that if all nodes have the same initial value, this is the only value that

can be decided.

Lemma 9 (Validity). If all nodes that ever join the system have initial value v and any

node (whether good or defective) decides, then it decides v.

Proof. By line @ of Sandglass, if a node p; decides a value, it decides the value
held in its variable v;. By lines |g| and |£H§| of Sandglass, v; is either the initial
value of p;, or one of the values that p, receives. Therefore, it suffices to show
that if all nodes have initial value v, then v is the only value that can be sent by

any node.

We prove, by induction on the round number, that any message m sent by

any node for round r proposes v.

Base case: r = 1 Consider any node p that sends a message in the first

round. Since every node’s initial value is v, the message that p broadcasts at

89

line 25| proposes v.

Induction hypothesis: Assume that all messages sent by any node up to

round r = k propose v.

Induction step: Consider any node p sending a message in round r = (k+ 1)
at step 7. By assumption, all round k messages collected by p must be propos-
ing v. In lines of Sandglass, v; is randomly selected from among the pro-
posed values with highest priority collected in round k. Since the only collected

value is v, v; can only be set to v. o

Figure A.1: The structure of the proof is illustrated through the dependencies
among its constituent lemmas, corollaries, claims, and observations. Prepara-
tory results discussed in the Scaffolding section are shown in black; red and blue
denote facts used in the proofs of Agreement and Termination, respectively.

L1 L10
L14
112
L15 17
L13
c2
c1 118
L19
€3 L16
01 02 c4 04 / 120
cI2
- 03 Lil
I e
121 122

90

A.2 Scaffolding

Before addressing Agreement and Termination, we prove several statements

that will serve as scaffolding for our main results.

We start with some terminology. In Sandglass, a node in round r ignores
every message it receives that was sent with some round » < (r - 1) (line[9). We
say that a node p collects message m if it adds it to M, (line[10). We say that a

node is in round r at step T if it sends a message for round r at step T'.

Our first lemma establishes that good nodes are progressing almost together

from round to round.

Lemma 10. If a good node is in round r at step T, then all good nodes will be in round r

or larger at step (T + 1).

Proof. Let p be a good node in round r at step 7.

By line [6| of Sandglass, p must have collected at least 7~ messages for
round (r — 1), which p will then forward to all nodes in the coffer of the message

m that p broadcasts at line 25|

Consider any good node p’ that is in a round 7 < r at T or joins the system
at step (T + 1). Since p and p’ are good, p’ will receive m by (T + 1) and, by
line |5} add to its set Rec,y both m and all the messages p forwarded in m'’s coffer,
including at least 7~ messages for round (r — 1). Then, computing at line |¢| the
largest round for which p’ has received 7~ messages or more will return at least
(r—1), and, at line |Zl p’ will update its round number, if it was smaller, to be at

least r.

91

The next lemma establishes that good nodes progress by at least one round

every 7 steps.

Lemma 11. If, at step T, r is the earliest round that any good node is in, then at

step (T + 7T") all good nodes are at least in round (r + 1).

Proof. Let p be a good node that, by hypothesis, is in round r at step T; by
assumption, all good nodes are at least in round r at step 7. By Lemma [10} all
good nodes are in round r or larger at step (7'+1); indeed, by a similar argument,
all good nodes are in round r or larger for any step 7" > T. Further, in each of
these steps the system contains at least one good node, since, by assumption,
the system contains at least one node in every step and a majority of its nodes

are good.

For the time interval from T to (T + 7 — 1), consider all the good nodes in

each of the steps of the interval. There are two cases:

* In some step of the interval, some good node is in some round " > r.

If so, by the same reasoning used above, all good nodes will be in

round ' > (r + 1) or larger at step (T + 7).
¢ In all steps of the interval, all good nodes are in round r.

If so, in each of these steps there exists at least one good node that broad-
casts a message for round r (by line 25 of Sandglass). Consider any good

node p, at step (T + 7). Again, there are two cases:

— p, receives some message m’ for round ' > (r + 1), from a defective

node.

92

If so, by line 5, Rec,, will include at least the 7 messages for

round (¥’ — 1) > r forwarded on m’.

- p, only receives messages for round r or smaller.

If so, p, receives at least 7~ messages for round r.

In both cases, computing at line] the largest round for which p, has re-
ceived 7~ messages or more will return at least r, and, at line |ZL pe wWill

update its round number, if it was smaller, to be at least (r + 1).

O

Lemma 12. At any step T, any defective node is at most one round ahead of any good

node.

Proof. By contradiction. Assume that there exists an earliest step, T, where some
defective node p is more than one round ahead of a good node p,, i.e., at T

node p is in some round r and node p, is in round r,, < (r - 2).

Note that no good node is in round (r — 1) or larger before T; otherwise, by
Lemma @L all good nodes would be in round (r — 1) or larger at 7, contradict-
ing r,, < (r — 2). Therefore, defective node p received no messages from good

nodes for round (r — 1) by T

Consider the earliest step 7" < (T — 1) where some defective node is in
round (r — 1). Since T is the first step where some defective node is more than a
round ahead of a good node, all good nodes must be in round (r — 2) or larger
at 7’; but, as we just showed, no good node is in round (r — 1) or larger before T

Therefore, all good nodes must be in round (r — 2) from 7" until T

93

Consider the k consecutive steps from 7’ to (T — 1). Let the number of mes-
sages generated by good nodes and defective nodes in each step be, respec-
tively, g1, ..., gk and dj, ..., dy. Since up to and including step T node p has received
for round (r—1) only messages from defective nodes, and yet pisinround rat T,
by line[p|of Sandglass, £i=d; > 7~ and thus, by Lemmall} £i%-'¢; > 7. Since by
assumption every step includes at least one good node (i.e., g, > 0), we have
that £=*"1¢; > 7. Recall that during these k steps all good nodes are in round
(r — 2); then, all messages g1, ..., g« are for round (r — 2) and will all be received
by all good nodes by 7. By line|6|and line|[7} then, all good nodes (including p,)
must be in round (r — 1) at 7. This contradicts our assumption and completes

the proof. o

Lemma 13. For any r, a good node that enters round (r+1) collects at least one message

from a good node for round r.

Proof. By contradiction. Let T be the first step where some good node p, enters

round (r + 1) without collecting any messages from any good node for round r.

Since, by line [9] of Sandglass, p, collects all the messages it receives for
round r, and yet it collects no messages from good nodes for round r, p, must

have received no messages for round r from good nodes by 7.

By our model’s assumptions about good nodes, this implies that no good
node has sent a message for round r (and hence that no good node was in
round r) before step T. Therefore, both of the following statements must be

true:

S1: Defective nodes generated at least T~ messages for round r before step T. By

line |, a node must receive at least 7~ messages for round r to be in

94

round (r + 1). Since p, received no messages for round r from good nodes
before 7, all the messages p, received for round r must be from defective

nodes.

S2: No good node moved past round (r — 1) before T. We have showed above that
no good node is in round r before T’; further, since p, is in round (r + 1)
at T, by Lemma @L no good node is in a round larger than (r + 1) be-
fore T. Finally, no good node p; can be in round (r + 1) at 7" < T other-
wise, since good nodes send no messages for round r before T, p, would
not have collected any message from a good node for round r at 7’, con-
tradicting our assumption that 7 is the first step where some good node
enters round (r + 1) without collecting any message from good nodes for
round r. Hence, before T no good node can be in round r or larger: the

largest round any good node can be in is round (r - 1).

Let T” be the earliest step when some defective node is in round r. By
Lemma |12} the earliest round that any good node can be in at 7" is round (r - 1).
Combining this observation with S2, we conclude that all good nodes are in

round (r — 1) from 7’ until 7.

Denote by k the number of consecutive steps from 7’ to (T — 1). Let the
number of messages generated by good nodes and defective nodes in each step
be, respectively, gi,...,gx and d, ...,d;. Since by T node p, has received only
messages from defective nodes for round r, and yet it is in round (r + 1) at T,
then, by line [f| of Sandglass, Zi=¥d; > 7~ and thus, by Lemma [1} Ziz¢"g; > 7.
Recall that during these k steps all good nodes are in round (r — 1); then, all

messages gi, ..., 8x-1 are for round (r — 1) and will all be received by all good

nodes by (T - 1). By lines |§| and |Z| of Sandglass, then, all good nodes (including

95

pp) must be in round r at (T — 1), contradicting S2. o

It follows that all good nodes collect a message from a single good node for

each round.

Corollary 1. For any round r, there exists a message from a good node for round r that

is collected by all good nodes that are in round r' > (r + 1).

Proof. Consider any round r. Let T be the earliest step when some good node p,
reaches some round (r + 1). By Lemma [13} p, collects by T at least one mes-
sage, m,q;, from a good node for round r. Since m,; is sent by a good node, all

good nodes must have received m by T.

Now we prove m,.,; is collected by all good nodes that are in round »’ > (r+1)

by induction on r'.

Base case: ' = (r+ 1) We are going to prove that m,,; is collected by all

good nodes that are in round (r + 1).

Since p, is the earliest good node who reaches round (r + 1), any good node
who reaches round (r + 1) at the same step or later must have collected m, ,; at

line [10|of Sandglass.

Induction hypothesis Assume m,; is collected by all good nodes that are

inround » =k > (r+1).

Induction step We are going to prove that the lemma holds for ' = (k+ 1).
By induction hypothesis, m, ,; is collected by all good nodes that are in round &;

ie,V¥m=(,-k,-,-, M) sent by a good node for round k, m,; € M.
Consider the earliest step T when some good node p, reaches round (k + 1).

96

By Lemma @ pg collects by T at least one message, my = (-, k, -, -, My), from
a good node for round k. As we argued above, m,,; must be included in M;.
Since my is sent by a good node, all good nodes must have received m by T.
Since p, is one of the earliest good node to reach round (k+1), any good node that
reaches round (k + 1) at the same step or later must have collected both n; and
all the messages in M, including m,.,; at line |1_O| of Sandglass. Therefore, there
exists a message from a good node for round r, namely m,.,;, that is collected by

all the good nodes that are in round (k + 1). O

Lemma 14. For any message m = (-,-,r > 2,-,-,-, M), M contains at least T~ messages

generated for round (r — 1).

Proof. Consider a message m = (p,-,r,-,-,-, M,) for any round r > 2.

Let T be the earliest step when p is in round r (i.e., the earliest step when
p broadcasts at line [25 of Sandglass a message for round r). Independent of
whether p has just been activated at T, or was already active in a round smaller
than r at (T — 1), p’s round number r, must have been updated to r in line |Z|
of Sandglass. Therefore, the condition on line |§| must be satisfied, i.e., Rec, must
contain at least 7 messages for round (r—1) at 7. Then by lines , M, contains
at least 7 messages for round (r — 1) at 7. By line @L any message p generates
and broadcasts while in round 7, either at T or later, contains at least 7~ messages

generated in round (r - 1). O

Lemma 15. If a node p receives a message for round r at step T, then p will be in at

least round r at step T.

Proof. When p receives a message m generated in round r, it adds to Rec, all

the messages contained in the set M included in m (line [5 of Sandglass). By

97

Lemma@ M contains at least 7" messages for round (r — 1); thus, if r,, is smaller

than r at line 6}, r, will be set to at least r at line[7} O

Corollary 2. At any step T, if a good node is in round r > 2, then any good node is at

least in round (r — 1).

Proof. Consider a good node p that is in round r at 7. By Lemma (13| p must
have collected at least one message, m, from a good node p,_; for round (r —
1). Consider any other good node p’, it must also have received m by T. By

Lemma@ p’is atleastin round (r — 1) at step 7. O
Lemma 16. The round number of a node never decreases.
Proof. The lemma follows trivially since line 5|of Sandglass only adds new mes-

sages to Rec;; thus, the set of received messages used to compute the current

round number at line [ZInever shrinks. O

Lemma 17. Let T, and T,., be the earliest steps where all good nodes are, respectively,
at least in rounds r and (r+1). Let g; and d; denote, respectively, the number of messages
generated by good nodes and defective nodes in the i-th step of the sequence of k steps

starting from T, and up to step (T,+, — 1). Then, Ef.‘zld[<T.

Proof. First of all, by Lemma [10, no good node is in a round smaller than r

after 7,; and no good node is in a round smaller than (r + 1) after 7',,.
Ifk=0,ie, T, =T, thelemma trivially holds.

If k > 1, it suffices to establish that ¥"¢; < 7; then, by Lemma |1, we can

conclude that =¥ d; < 7 and proves the lemma.

98

All that is left to prove then is that =g, < 7 holds. To do so, we begin
by observing that no good node is in round (r + 1) or later at step (T,,; — 2);
otherwise, by Lemma m all good nodes would already be in round (r + 1) at
step (T)4+1 — 1), i.e., before T,.;, which, by definition, is the earliest step where all

good nodes are at least in round (r + 1).

Therefore, since all =-'¢; messages sent by good nodes from 7, and up

to (T, — 2) must be at least for round r, they must be exactly for round r.

From this, it immediately follows that ¢ !¢; must be less that 7~ (proving
the lemma): if ¥ g; equaled or exceeded 7, then all good nodes would have
received at least 7 messages for round r by step (7., — 1) and thus would all be

in round (r + 1) or larger at step (7,4, — 1), contradicting the definition of 7,,;. O

The following important lemma characterizes the rate of progress experi-
enced by defective nodes that do not collect messages from good nodes. In
particular, it establishes that defective nodes that do not collect any message
from good nodes for k7~ consecutive rounds fall behind every good node by at

least (k — 1) rounds.

Lemma 18. Suppose a good node p, is in round r at step T, and a node p, is in round r,
at step T' < T. If p, does not collect any messages from good nodes in any round (r — i),

where 0 < i < kT, thenry < (r — (k- 1)).

Proof. To prove the lemma, we compute the maximum number of messages D,y
that a defective node p, can collect during the k7~ rounds when it does not collect
any message from good nodes. To help us count these messages, for any 1 <i <
kT, denote by T,_ir+; the earliest step for which all good nodes are at least in

round (r — kT +).

99

Recall that, to be collected by p, at step 7', a message must have been gen-

erated no later than step (7" — 1) < (T — 1). Then, we partition the execution

of the system up to step T — 1 into three time intervals, and compute, for each

interval, the maximum number of messages generated during these intervals

that p, could have collected for rounds (r — k7~ + 2) or larger.

I1:

12:

13:

Up to Step (T(r—k‘7'+1) - 1)

By definition of T, _s7+1), some good node is in some round ' < r — k7 + 1
at step (T(,—k7+1) — 1). Therefore, neither a defective node nor a good node
can be in some round r” > r — k7 + 1 at step (T,—x7+1) — 1), respectively
because of Lemma [12]and Corollary [2l Therefore, during this interval no

messages were generated for rounds (r — k7 + 2) or larger.
From 7,471, up to (T, - 1).

By assumption, p; only collects messages generated by defective nodes
throughout interval 12. We further split 12 into (k<7~ — 1) consecutive subin-
tervals, each going from T\, _y7~; up to (T—kg+ir1y — 1) for 1 <i < (k7 —1).
By Lemma|17} in each of these sub-intervals defective nodes can generate
at most (77 — 1) messages. Therefore, the number of messages generated

by defective nodes during I2 is at most (7 — 1) - (k7" — 1).
Between T, and T — 1.
Once again, by assumption p, only collects messages generated by
defective nodes throughout interval I3. There are two cases:
- T — 1 precedes T..
If so, defective nodes trivially generate no messages during I3.

— T — 1 does not precede T..

100

By assumption, some good node p, is in round r at 7, where it col-
lects all messages generated by good nodes before T; further, since
p, is still in round r, the messages for round r sent by good nodes
before T must be fewer than 7. Finally, since p, is in round r at T,
by Lemma |10} in all steps preceding 7' no good node can be in round
(r + 1) or higher. We then conclude that from step 7, and up to (T - 1)
good nodes generated at most (7" — 1) messages, all for round r. Thus,
since in any step defective nodes generate fewer messages than good
nodes, during I3 defective nodes generate fewer than (7" — 1) mes-

sages.

Adding the messages generated in the three intervals, we find that D,,,, the
maximum number of messages that p, could have collected up to and including
step T for rounds (r—k7 +2) or larger, is smaller than (7 —1)-k7"; at the same time,
since by assumption p, is in round r4, D, must equal at least (r;—(r—k7 +2))-7".
Therefore, we have that (r, — (r — k7 +2)) -7 < (T — 1) - k7, which implies

rqg < r —(k — 1), proving the corollary. O

Corollary 3. Suppose a good node p, is in round r at step T, and a node py, is in
round ry = (r—1)at step T' < T. p, must have collected some message from good nodes

in some round r,, where r — 37 < r, < (r—1).

Proof. By contradiction. Assume that node p, is in round (r — 1) and has not

collected any message from good nodes in any round r,, where r - 37 < r, <r.

Note that by T’ p, has collected no message for round r as well, for, if it had,
its round number would be at least r. To see why, suppose p, collected m, for

round r. By line |§| of Sandglass, p; would then add to its set Rec,, both m, and

101

all the messages in the message coffer of m,, including at least 7 messages for
round (r — 1). Then, maXge,=7(r) would be at least r at line @ and p; would

update its round number to be at least r (line[7).

Therefore, p, does not collect any message from good nodes in any round r,,

where (r—=37) <r, <r.

Then, by applying k = 3 in Lemmal 18} r, < (r — 2). Contradiction. |

The following lemma formalizes the semantics of the unanimity counter uC
included in every message; it states that the value of uC in a message that pro-
poses v is equal to the number of consecutive rounds in which the sender of m

has collected only messages that propose v.

Lemma 19. Consider a message m = (-,-,r,v,-, uC > 0,M). For any m' =

/

GV, uC’, -y e M, where r —uC < r < r, we haveVv' =vand uC’ > uC — (r = r’).

Proof. By induction on uC.

Base case: uC =1 We are going to prove that if a node broadcasts a mes-
sagem = (-,-,1,v,,uC = 1, M), thenVm’' = (,-,r,v',-,uC’,-) € M, where r’ = (r-1),

we havev =vand uC’ >uC -1 =0.

Establishing that uC” > 0 follows trivially from the protocol. Since r' = (r —
1) < r, " was added to M in line [10] of Sandglass (not in line [24). Note that
Sandglass sets the value of uCounter; (at lines [L6{{19) only once per round, in
the round’s first step. Since by assumption the unanimity counter’s valueis 1, it
must have been set at line[17} therefore, the condition at line[l6|must be satisfied.

Thus, for all m’" in M;(r — 1), v’ equals the value v broadcast in m at line @

102

Induction hypothesis = Assume the lemma holds for uC = k > 0.
Induction step We are going to prove that the lemma holds for uC = (k+1).

First, we prove that for any m,.; = (-,-,r — 1,v,_1,-,uC,_y,-) € M, it holds
that uC,_y >uC-1=(k+1)—-1=kand v = v,_;. Since uC = (k+ 1) > 0, the
value of the minimum value of the unanimity counter carried by all messages
(including m,_;) from round (r — 1) must be k; therefore, uC,_; > uC -1 = k.
Finally, as in the Base Case, since uCounter is set at line |1_7| of Sandglass, the

condition at line|16|is satisfied; therefore v = v,_;.

Now, by line @' of Sandglass, Vm' = (-,-,7',V',-,uC’,-) € M, one of the follow-

ing must be true:

Case1 r’ = (r—1). It directly follows that uC’ > uC —1and v ='".

Case 2 There exists a message m” = (-,-,r",v"’,-,uC”,M") € M, wherer’" = (r—1)
and m’ € M”. Since r” = (r — 1), it follows again that uC” > uC -1 =

’/

k and v = v”. Therefore, by the induction hypothesis, we have Vm, =
Gyl Vi, uCy,-) € M”, where " —k < r, < r’, we have v, = V' = v
and uC, > uC” — (" — r,). Since m’ € M”, it follows that v/ = v and uC’ >

uC” — (" -r)y>wC-1)-(r-1)—-r)=uC-(r-r).

O

Corollary 4. If a good node p proposes v with uCounter = uC for round r and uC > 1,
then for any round r’, where r — uC < r’ < r, there exists a good node proposing v

with uCounter at least uC — (r —r’) .

Proof. If a good node p proposes v with uCounter = uC for round r and uC > 1,

by Lemma [19} all the messages p collected for round r/, where r —uC < r' < r

103

propose v with uCounter > uC — (r — r’). By Corollary [1] at least one of these
messages is from a good node. Therefore, there exists a good node proposing v

with uCounter at least uC — (r — r’) for round r’.

For " = r, the corollary trivially holds, since p proposes v with uCounter = uC

for round r. O

Lemma 20. If a good node p sends a message proposing v with uCounter > 0 for
round r, no good node sends a message proposing v\ # v with uCounter > 0 for

round (r — 1).

Proof. By contradiction. Assume a good node p’ sends a message, m’, propos-

ing v # v with uCounter > 0 for round (r - 1).

Let 77 be the first step when p’ is in round (r — 1), and let T be the first step

when p is in round r.

Sandglass does not change the proposal value (v;) or the priority counter
(uCounter;) during a round; therefore, p sends a message proposing v
with uCounter > 0 for round r at T; and p’ sends a message proposing V'

with uCounter > 0 for round (r — 1) at T".

First, we are going to show that 7" = T by showing that neither 7" < T

or T’ > T is possible.

Not 7’ < T Assume 7’ < T. By model assumption, p will receive all the mes-
sages sent by good nodes on or before T — 1, which include m’. Since T
is the first step where p is in round r, the condition in line 6| of Sandglass

holds, and all the messages p received for round (r — 1), including m’, will

104

be collected by p at line[10]at 7. By lines [16}{19] since m’ is proposing v/, it

is impossible for p to propose v with non-zero uCounter.

Not 7’ > T Assume 7’ > T. Since p is in round r at T, then by Lemma 10} p’ is
at least in round r at (T + 1). Then, by Lemma @L it is impossible for p’ to

beinround (r—1)at7T’ > (T + 1).

Therefore, T’ = T, i.e., T is both the first step when p is in round r, and the first

step when p’ is in round (r — 1).

Now, we show that p’ must have collected some message proposing v for

round (r — 2).

By Corollaryly there exists a message, m,,—1, from a good node for round (r—
1) that is collected by all the good nodes in round r, including p. We make
two observations about m,;,—;: (i) to be collected by T, my;,-; must be sent
before T'; and (ii) since p proposes v with uCounter > 0, by Lemma (19} m,

must propose v.

Let myy -1 = (Paiy—1, 7 = 1,v,+,+, Mgy ,—1). By lines 11H15 of Sandglass, v must
be proposed by one of the round (r — 2) messages in M,;,_;. Let one of the

messages that propose v for round (r — 2) in M-, be m,,_.

Since p’ is a good node, it must also have received m,;,_, by T. Therefore, by
line |§| of Sandglass, all the messages in M-, including m, ,_,, are added to Rec’

by p’atT.

Now, since we established that 7 is the first step when p’ is in round (r—1), p’
updates its round number to (r — 1) at line |Z| of Sandglass. Then, at line {10} p’

collects all the round (r — 2) messages from the messages that it has received,

105

including m,,_,. Since m,,_, proposes v, by lines 16H19, it is impossible for p’ to

propose v with uCounter > 0 for round (r — 1). Contradiction. o

A.3 Agreement

Our strategy for proving Agreement (see Definition 4) proceeds in two phases
and with the help of two claims, detailed below. We begin by assuming that
Claim [I| holds, and rely on it to prove Agreement in Lemma [21} We do not
prove Claim [1] directly, however: instead, we find it easier to prove Claim [2,

which implies Claim [1} thus establishing Agreement.

Claim 1. Let p, be the earliest good node to decide, in round ry at step T,. Suppose
pa decides vq. Then, any good node p, that in any step (whether before, at, or after T,)

finds itself in a round r,, where ry > r,, proposes vy for r,.

We now prove that, assuming Claim 1|holds, so does Agreement.

Lemma 21 (Agreement). If a good node decides a value v, then no good node decides

a value other than v.

Proof. Denote by U” the value of the unanimity counter at which a node decides.
By lines 20|and 21| of Sandglass, U” = (67 + 9)7 . Let p, be the first good node
to decide; and suppose p, decides v, in round r, at step 7,. By line @ node p,

broadcasts at T, a message my = (p4, -, 74, Va, -» uCy), where uC, > UP.

By Lemma all the messages p, collected for any round r, — i, 1 <i < UP,

must be of the form (., -, r; — i, vy, -, uCounter, -), where uCounter > U” —i.

106

By Corollary/2} at T, no good node can be in a round earlier than (r, — 1); this
implies, since py is the first good node to decide, that no good can decide prior

to round (r; — 1).

We now show that it is impossible for any such node to decide on a value
other than v, — neither in (r, — 1), nor in r, or in later rounds — thus proving the

lemma.

Not in (r, — 1) By Corollary m there exists a message for round (r, — 2) broad-
cast by a good node that is collected by every good node that is in
round (r; — 1) or larger. Let the message be m,,_,. Since m,,, is also
collected by p, when it decides with uCounter = U”, m,,, is of the
form (-,-,ry — 2, vy, -, uCounter,, 5, -), where uCounter,,_, > UP — 2. Consider
any good node p, in round (r; — 1). Since p, collects m,,_, that proposes v,
in round (r; — 2), by lines [16{19] of Sandglass, the uCounter of any value
other than v, proposed by p, must be 0. Therefore, by lines 20[21} it is

impossible for p, to decide any value other than v, in round (r, — 1).

Not in r > r; Trivially follows from Claim [l any good node p, in a round r,
where r > r;, will propose v,, and cannot decide any value other than v,.

O

Now we have shown if Claim |l|is true, Agreement is satisfied. To complete
the proof, we proceed to show Claim [1] is true, and we are going to do it by
proving the following claim that implies Claim 1} Claim 2]is at least as strong as

Claim 1}, since it adds to Claim [1|the additional requirement shown in bold.

Claim 2. Let p, be the earliest good node to decide, in round ry at step T,. Suppose

pa decides v,. Then, any good node p, that in any step (whether before, at, or after T,)

107

finds itself in a round r,, where ry > 1y, proposes vy for r, with priority at least 1.

Now, before proving Claim 2| we prove an observation that is useful to prove

the claim.

Let U” be the value of the unanimity counter at which a node decides.
Since p, decides at T,, Sandglass requires p, to broadcast at T, a message
my = (Pas+sra»va, > uCy), where uC, > UP; therefore, by Lemma all the mes-
sages that p, has collected for round r, where r > r,; — U>, propose v4, and their

uCounter is at least U — (r, — r).

Definition 15 ((py, T,)-D-form). Given a node p, that decides v, in round ry at T, we
say that a message for round r, where r > r,— UP, is in (py, Ty4)-D-form if it proposes v,
and the uCounter is at least UP — (r; — r). When py and T, are clear from the context,

we e say simply that the message is in D-form.

It directly follows from Lemma [19|that all the messages that p, collects from

round (r; — UP) to round (r; — 1) are in D-form.

Observation 1. For any round r, where ry — U < r < ry—1, let T and T, be
the earliest steps where all the good nodes are at least in round r and in round (r + 1),
respectively. Consider the set that includes messages sent by defective nodes starting
from T\ and before T | and messages sent by good nodes for round r. The total number

of messages not in D-form in this set is smaller than T

Proof. Let T;! be the earliest step when some good node is in round r. By Corol-

lary (1, we know that T exists for all r.

108

We are going to show that:

For any round r, where r, — U” < r < r, — 1, all the messages sent by good nodes

for round r before T,

must be in D-form. (F1)
We prove two cases separately.

Casel r;— U < r < ry— 2. Consider the message, m,.1, that all good nodes
collect for round (r + 1). Since p, also collects it, m,;,+; must be in D-form.
Consider the node py,+ that sends my;,,;. By definition of T?H, Dailr+1

enters round (r + 1) at or after T |; therefore, p.,+; must have collected
all the messages sent by good nodes for round r before Til. Since myy; 41 1S
in D-form, by Lemma [19} all the messages sent by good nodes for round r

before T | must also be in D-form.

Case 2 r = r;—1, note that p, decides in round r,, and thus also sends a message
in D-form for round r,. Since p, enters round r, at or after Tr:j, , pa must have
collected all the messages sent by good nodes for round (r, — 1) before T,
Therefore, by Lemma [19} all messages sent by good nodes for round r =

ra — 1 before T | must also be in D-form.

Having established [F1, we proceed to prove the observation.

By Corollary[2} all good nodes are at least in round r at T2, , i.e., good nodes
are either in round r or in round (r+ 1) at T, |. If all good nodes are in round (r +
1), then T/ = T ; otherwise, by Lemma T', = (T, +1). We consider these

r+1/

two cases separately.

Let S, be the sequence of k steps starting from 7, and up to (T, — 1) (per-

haps k = 1). Let X equal the sum of (i) the number of messages sent by good

109

nodes for round r that are not in D-form, and (ii) the number of messages sent
by defective nodes during S, that are not in D-form. To prove Observation |1} it

is sufficient to prove X < 7.

Let d; denote the number of messages sent by defective nodes in the i-th step
of §,. Let g; denote the number of messages sent by good nodes for round r in
the i-th step of S

Casel T/, = T3

- - In this case, since all messages sent by good nodes for

round r are sent before T2 , by all messages sent by good nodes for

r+l1”/
round r are in D-form. Therefore, X is no more than the number of mes-

sages sent by defective nodes during S, i.e. X < XX d.

Since, in this case, no good node is in round (r + 1) at (T, — 1), the num-
ber of messages sent by good nodes for round r before (T, — 1) is smaller
than 77; otherwise, by line|6|of Sandglass, all good nodes would have pro-
ceeded to round (r + 1) at (T, — 1). Therefore, £i-'¢; < 7. Then, by

Lemma Zledi < 7, therefore X < 7, an we are done.

Case2 T 6 =T>, +1. Again, we proved in [F1| that all messages sent by good
nodes for round r before T3, are in D-form. Therefore, X is no more than

the sum of the messages sent by good node for round r at T}, and the

r+1

messages sent by defective nodes during S, i.e., X < ¥ d; + g

Now we are going to show, using a set of inequalities, that Zf.‘zldk + g <

7; X <7 directly follows.

sh=1g4

Letd = ,’(11 Zid and g = Z' ‘g’ . Recall that, in all steps, good nodes outnumber

<i<(k-1),wehaved < g — 1.

defective nodes. Therefore, for all 1
Then, forall 1 <i < (k—1),sinced; < g;— 1 and d; + g < N, we have

thatd < g—1and d + g < N . Dividing both inequalities by g yields

110

g < min(1 - %, % — 1). Note that the largest value of min(1 - %, % — 1) occurs
when1-1 = % — 1; solving for g and plugging the solution back in gives
us: min(1 — %, % —1) < (1 - £%7). Therefore, we have g < (1 - %) and thus
d<z-(1 2) (A.1)

=8 N+17 ’

Since TY,, = T.}, + 1, some good node is still in round r at T} ; therefore,

the number of messages sent by good nodes for round r before T3, is
smaller than 7°; otherwise, by line |f| of Sandglass, all good nodes would

have proceeded to round (r + 1) at 7. ,. Therefore, =g, < T, i.e.,

g- (k-1 <T. (A.2)

Since at least one good node is already in round (r + 1) at 7+, |, the number
of good nodes in round r plus the number of defective nodes at 7| is no

more than N — 1, i.e.,

gi+di <N —1. (A.3)

Since good nodes outnumber defective nodes in all steps, we have for

all1 <i<(k-1)
N -1

. (A.4)

d; <

Now we will show (Z_ d; + g) < 7.

111

Edi+g)=di+ g+ (k= 1)d

<IN=1D+(k-1d (By Inequality [A.3)
_ 2 .
<IN-D+k-1-5-(1- m) (By Inequality |A.1)
<N-D+7-(1- ﬁ) (By Inequality |A.2)
2
—(N—1)+T—W‘T
2 N2 . _ N2 NZ
S‘T—N+1-7+(N—l) (Since 7 =12)
1
R TIRd
This concludes the second case and thus the proof. o

We can now proceed to prove Claim 2|

Proof. We are going to prove that, for any step T, if at T a good node p, is in

round r, > r,, then p, proposes v, with priority at least 1.

Let U' = 67 be the uCounter value, such that if uCounter is greater or equals
to U', then priority is at least 1. Thus U? = (U' + 3)7 + U' is the uCounter value

that, once reached, allows a node to decide (lines[21{22|of Sandglass).
As the first step of our proof, we establish the following fact:

If a good node is in r, at T', a node that, before T, proposes v # v,, can be

at most in round (r, — U' - 1). (F2)

Assuming [F2/holds, Claim [2| follows easily. Since by [F2]all nodes that propose

in round (r, — U'") before T must propose v,, then, by line |1_7| of Sandglass,

112

all nodes that propose in round (r, — U' + 1) before T must propose v, with
uCounter at least 1. A simple inductive argument then shows that all nodes
that ever propose in round (r, — U' + i) before T, where 1 < i < U', propose v,
with uCounter at least i. Withi = U' — 1, messages sent for r,, before T must
propose v, with uCounter at least (U' — 1); therefore, p, must propose v, with

uCounter at least U' at T, i.e., with priority at least 1.

Before, proving|F2} we introduce a useful notion: For each message m sent in
round r, we consider the set of messages collected by the sender of m in round

(r — 1); we call this set m’s bag for round (r — 1).

Consider some node p’ that sends m!, proposing v’ for round . By line (12| of
Sandglass, p’ must have collected for round (+* — 1) a message m’,_, proposing v/,
whose priority was the largest among all messages in m”,’s bag. Inductively, con-
sider message m!,_: it must in turn contain in its bag a message m!,_, , propos-
ing v/, whose priority is the largest among all the messages in the bag. Therefore,
there exists a chain of messages extending from round 1 to round »’, where each

of these messages proposes v'.

Consider these messages’ bags. By construction of the chain, there exists
exactly one bag per round, and at least one of the messages with the highest

priority in each bag must be proposing v'.

Let uCounterl.V’ be the value of uCounter of mlv By line (17| of Sandglass, for

v

all 1 <i < r: uCounter! > uCounter),, — 1. Therefore,

foralll <i<j<r: uCounteriv/ > uCounter;' —(j—). (F3)

113

We now prove|F2|by induction on the round number r, that a good node, p,,

is in.

Induction Basis: r, = r; Suppose a good node is in round r, at 7. We proceed
by contradiction: assume that before T there exists a node, p’, proposing V' in

some round ' > (r, - U' = 1) = (r, - U' = 1).

Proceeding as above, we construct the chain of messages for p” and consider
the bags for every round from (r,—(U?-U")—1) to (r;,—U'—1). We will show that
(i) at most one of these bags can contain messages in D-form; and (ii) the total
number of messages not in D-form sent before T is not sufficient to fill these
bags. Thus, it is impossible for a node that before T proposes v' # v, to advance
up to round (r, — U"), contradicting our assumption and proving the basis of the

induction.

Proof of (i) We show that at most one of the bags for the rounds from (r,— (U” -
UY) - 1)to (r;, — U' — 1) contains messages in D-form, i.e., messages that

propose v, in round r, where r > r,— U?, with uCounter at least UP — (r,—r).

By contradiction: assume more than one of the bags for the rounds
from (r,—(UP-U"-1) to (r,~U'—1) contains messages in D-form. Consider
two such bags, for round r; and r, respectively, where (r,— (U? -U")-1) <
r <r <(ry—U"-=1). Consider now any message mj’l in D-form contained
in the bag for round ry; m¢ proposes v, with uCounter,‘f > UP —(r;—n).
Similarly, any message m¢ in D-form contained in the bag for round r,

proposes v, with uCounteri > UP - (r;—).

Now, let us consider the messages m; ,, and m;, on the chain. We showed

114

above that uCounterrvl’ > uCounterrVZ’ — (r, = (r; + 1)). Since there is a
message in D-form that proposes v, # V' in the bag of round ry, by line 17|
of Sandglass, uCoum‘er,V;+1 = 0. Therefore, uCounterrV; < uCounterrV]'H +(ry —

m+D)=rn-+D)<rn->;—UP-UY)=UP-U"'-(r;—n). Then, by
line of Sandglass, priorityrvzl < max(0, LWJ -5).

Recall that m¢ proposes v, with uCounterr‘i > UP - (r; —). Then,

D _ —
priorityf2 > max (0, LWJ -5)
D _ 1 _ _
= max(0, LU v (7721 ro) 6TJ -5) (Since U'= 67")
D _ 1 _ _
= max(0, I_U v 7 (ra r2)J +1).

Since r, > r, > (ry — (UP = UY = 1), ie., rn > (r; — (UP = UY), we
have U — U' = (r; = 1) 2 0. Then, |Z=Y20=)| 4 | > 1. There-
fore, priorityr‘i > LWJ +1> L%J —5and priorityr“; >1>0.

Therefore, priority? > max(0, | 2=Y21"2 | - 5) > priority..

Now, consider m!__,. It collects both m), and m¢,. Since m proposes v, m),
must be the message with the highest priority among the messages col-

lected by m!,, for round r,. However, priorityr‘i > priarity:;. Contradiction.

Proof of (ii) Now we established that at most one of the bags for the rounds
from (r, — (U — U") - 1) to (r; - U' — 1) contains messages in D-form.
That is, among these (U” — 2U" + 1) bags, (U” — 2U") of them contain only
messages that are not in D-form. We will call these ND-bags. Since the size

of each bag is at least 7,

ND-bags contain at least 7 - (U” — 2U") messages. (F4)

115

Let us now compute the largest number of messages they can contain.
ND-bags can only contain messages not in D-form in any round from (r; -

(UP-UY-1)to (ry—U"'-1) sent by (A) good nodes; or (B) defective nodes.
Recall that 7} is the earliest step where all good nodes are in round r.

By Lemma TZ;— (wp_yty—2 18 the earliest step where some defective node
can be in round (r;,— (U? = U") - 1). Then, the messages covered by case (B)
must have been sent between steps sz_ (UP—U-2 and (T — 1). We can then

partition this range of steps into four consecutive subranges:

. v v
B1 : from Trd—(UD—Ul)—Z to (Trd_(UD_Ul)_l -1
B2 : from TZ,_(UD_UI)—l to (TZ]_UI -1

B3 : from T;’;_Ul to (T} - 1)

B4: from T, to (T - 1)

We now count the total number of messages covered by cases A and Bl to

B4.

B1 By Lemma |17} the number of messages in Bl is at most (7~ — 1).

A and B2 Consider, for any round r,, where (r,—(UP=U")-1) < 1, < (ra—
U'-1), the set of messages S ,, obtained by adding (i) messages sent by

defective nodes starting from 7,/ and before T,/

., and (ii) messages

not in D-form sent by good nodes for round r;,. By Observation m S
contains fewer than 7 messages. Thus, the set

(rg-U'-1)
SV},’

R=(ra—(UP=U")=1)
which contains all messages covered by cases A and B2, consists of

no more than (7 - 1) - (U? = 2U" + 1) messages.

116

B3 By Lemma [17, the number of messages sent by defective nodes in
the time interval from 7, to (T, — 1) is at most (7 — 1). Since B3
contains U'such intervals, the number of messages sent in B3 is at

most (7 —1)-U".

B4 Note that p, is still in round r, at 7, and that, by Lemma [10|and the
definition of T}, all good nodes are in round r, from T, to (T — 1).
Therefore, the number of messages good nodes generate during B4
is smaller than 7°; otherwise, all good nodes would be at least in
round (r; + 1) at T. Since good nodes outnumber defective nodes
in any step, it follows that the number of messages sent by defective

nodes between T;’; and (T — 1) is at most (7 — 1).

Therefore, adding the number of messages in Bl, A and B2, B3, and B4,
ND-bags can contain no more than (7 - 1)+ (7 = 1) - (U? =2U" + 1) + (T -

1) - U' + (7 - 1) messages, i.e.,
(T -1)-(U”-U"+3). (A.5)
Recall [F4 ND-bags contain at least
T - (UP = 2U") messages. (A.6)
Therefore, we have
(T-1)-(U°-U"+3)>7 -(U” -2U"Y),

which we rewriteas 7 - (U? - U' +3) -7 - (UP -2U") > UP - U' + 3, and
finally as U < (U' +3)7 + U' - 3.

However, since U = (U' + 3)7 + U', we have a contradiction. Q.E.D.

117

Induction hypothesis: 7, < r, < r; + k We assume that if a good node is in r,,
where r; <r, <r;+k, at T, then a node that, before T, proposes V' # v, can be at
most in round (r, — U' — 1). As we argued above, this is enough to easily show

a version of Claim |2| limited to the case whenr; <r, <r;+k.

Induction step: r, = r, + k + 1 Suppose a good node is inround r, = ry + k + 1
at T, and that Claim 2 holds for any round r, where r, < r < r; + k. We will prove
that if a good node is in r, at T, then a node that, before T, proposes v' # v, can

be at most in round (r, - U' — 1).

We will assume, by contradiction, that there exists a node p’ that before T
proposes V' in some round r’ > (r, — U' — 1). We will consider the following two
cases: (1) (r,-U'=1)<r;—1,ie,r, <rg+U%and 2) (r,-U"'-1) > ry— 1,

ie,rg>rg+ U

Case 1: r, < r; + U' Proceeding as above, we construct the chain of messages
for p’ and consider the bags for every round from (r, — (U? - U") - 1)

to (r,—U' = 1). Withr, <ry+ U',wehave (r,-U' - 1) <r; - 1.

We will show that (i) at most one of these bags can contain messages in
D-form; and (ii) the total number of messages not in D-form sent before
T is not sufficient to fill these bags. Thus, it is impossible for a node that
before T proposes v # v, to advance up to round (r, — U'), contradicting
our assumption. The proof for Case 1 is very similar to how we proved

the induction basis; we present it in full for completeness.

Proof of (i) We will show that at most one of the bags for the rounds

from (r, — (U? - U") - 1) to (r, — U' — 1) contains messages in D-form.

118

By contradiction: assume more than one of the bags for the rounds
from (r; - (U? = U") = 1) to (r, — U' — 1) contains messages in D-
form. Consider two such bags, for round r, and r, respectively,

where (r; —(UP -UY-1) <rp <np < (rg—U"'=1) < (rg = 1.

d
r

Consider now any message m¢ in D-form contained in the bag for
round ry; mfl proposes v, with uCoum‘errdI > UP—(ry—r). Similarly, any
message mj’z in D-form contained in the bag for round r, proposes v,
with uCounterfi > UP —(ry—).

v

Now, let us consider the messages m)

and m!, on the chain. We
showed above that uCounter,V;Jr1 > uCounterrV; —(rp, = (r; + D).
Since there is a message in D-form that proposes v, # V' in the
bag of round r, by line 17| of Sandglass, uCounter,vl/ 41 = 0. There-
fore, uCounter,VZ’ < uCounterrV;+1 + (- +1) =nrn->0+1) <
ry—(rg —(UP = UY) = UP - U" - (ry - rp). Then, by line@of Sand-

glass, priorityrv; < max(0, LWJ -5).

Recall that m¢ proposes v, with uCounter? > UP — (r; — r,). Then,

D _(p _
priority! > max(0, LWJ -5)
D_ [/l _(f, —
= max(0, LU v g:d r)+ 6TJ —-5) (Since U'=67)
D_ [/l _(f, _
= max(0, I_U v 7 (ra rZ)J +1).

Sincer, > r, > (ry — (UP =UY = 1), ie., rn > (ry — (UP = U")), we
have U” = U' = (ry =) = 0. Then, [Z=Y=0=2)| 1 | > 1. There-

L. D_yl_(_ D_y/l_(p ..
fore, przorztyr‘i > LMJ +1> LMJ —5and przorztyi >

1 > 0. Therefore, priorityr‘i > max(0, LWJ -5)> priorityﬁ;.

Now, consider m” _,. It collects both m" and m?¢. Since m"”
r+1 2 L] r+1

119

proposes v/, m!, must be the message with the highest prior-
ity among the messages collected by m , for round r,. How-

ever, priority > priority! . Contradiction.

Proof of (ii) Now we established that at most one of the bags for the
rounds from (r;, — (U? — U') = 1) to (r, — U' — 1) contains mes-
sages in D-form. That is, among these (U” — 2U' + (r, — ry) + 1)
bags, (UP - 2U" + (r, — r;)) of them contain only messages that are
not in D-form. We will call these ND-bags. Since the size of each bag

is at least 7,
ND-bags contain at least 7 - (U” — 2U" + (ry — rg)) messages. (F5)

Let us now compute the largest number of messages they can con-
tain. ND-bags can only contain messages not in D-form in any round
from (r, — (UP = U") = 1) to (r, - U' = 1) sent by (A) good nodes; or (B)
defective nodes.

By Lemma TZJ—(UD—Ul)—Z is the earliest step where some defective
node can be in round (r,—(U”-U")-1). Then, the messages covered by

case (B) must have been sent from step TZ:— (wo—uhy— tostep (T'—1). We

can then partition this range of steps into four consecutive subranges:

. v v
B1 : from T, oy 0@, oy =D
B2 : from TZ,_(UD—UI)—l to (TZ_UI -1

B3 : from TV_U1 to (T — 1)
rg 3

B4 : from T;Z to(T -1)

We now count the total number of messages covered by cases A and

B1 to B4.

120

B1 By Lemmall7] the number of messages sent in Bl is at most (7 —1).

A and B2 Consider, for any round r,, where (r,—(U?-U")-1) < r, <
(re — U' — 1), the set of messages S ,, obtained by adding (i) mes-
sages sent by defective nodes starting from 7, and before T,/ ;
and (ii) messages not in D-form sent by good nodes for round r,.
By Observation/|l} §,, contains fewer than 7~ messages. Thus, the
set et

Srb’

P=(rg=(UP-U")-1)

which contains all messages covered by cases A and B2, consists
of no more than (7 = 1) - (UP? = 2U" + (r, — ry) + 1).

B3 By Lemma 17| the number of messages sent by defective nodes in
the time interval from T, to (T, — 1) is at most (7~ — 1). Since B3
contains U'such intervals, the number of messages sent in B3 is
atmost (77— 1)-U".

B4 Note that p, is still in round r, at T, and that, by Lemma|[10jand the
definition of T;Vg , all good nodes are in round r, from T;Z to (T -1).
Therefore, the number of messages good nodes generate during
B4 is smaller than 7; otherwise, all good nodes would be at least
in round (r, + 1) at 7. Since good nodes outnumber defective
nodes in any step, it follows that the number of messages sent by

defective nodes between T)Z and (T — 1) is at most (7 — 1).

Therefore, adding the number of messages in Bl, A and B2, B3, and
B4, ND-bags can contain no more than (7 - 1)+ (7 — 1) - (U? - 2U" +

(rg—ra)+ 1)+ (T —1)-U' + (7 — 1) messages, i.e.,

(T—l)-(UD—U1+(rg—rd)+3). (A.7)

121

Recall [F5 ND-bags contain at least
T -(UP -2U" + (r, — r4)) messages. (A.8)
Therefore, we have

T =1)- (U =U"+(ry—r)+3) 2T - (UP =2U" + (r, — 1))
=T -D-UP-U"+rg=ra)+3) 2 (T - 1) - (U” =2U" + (rg — 1))
+(UP =2U" + (ry, — 1)
=S T -D-(U'+3)2U"-2U" +(rg—ra)
ST -1)-U' +3)>2U" +3)T -U"+(ry—ra)
(since UP = (U' + 3)T + U")

=023+ ;1)
However, since r, > r;, we have a contradiction. Q.E.D.

Case 2: r, > ry + U' Again, we construct the chain of messages for p’ and con-

sider the bags for every round from (r, — (U? = U") - 1) to (r, — U' - 1).

We will show that:

(i) At most one of the bags for rounds from (r, — (U = U") - 1) to (r;— 1)
contains messages in D-form. That is, among these (U” — U' + 1)
bags, (U” — U") of them contain only messages that are not in D-form.

We will call these ND-bags.

(i) Among the bags for rounds from r, to (r, — U' — 1), at most one in ev-

ery U' bags can contain messages from good nodes. That is, among

1
rg—ra—U
Ul

these (r, —r,— U") bags, (r, —ry = U' = 1) of them contain only

messages from defective nodes. We will call these Def-bags.

122

(iti) The sum of (1) the messages not in D-form for round (r,—(U?-U")-1)
to (r, — 1), and (2) the messages sent by defective nodes for round r,

to (r, — U' — 1) before T, is not sufficient to fill ND-bags and Def-bags.

Thus, it is impossible for a node that before T proposes v # v, to advance

up to round (r, — U'), contradicting our assumption.

Proof of (i) By contradiction: assume more than one of the bags for the
rounds from (r, — (U? — U') = 1) to (r; — 1) contains messages in
D-form. Consider two such bags, for round r; and r, respectively,
where (r;, - (UP = U"Y)-1) < r, < rn < (r; —1). Consider now
any message m{ in D-form contained in the bag for round r; m¢

proposes v, with uCounterr‘f > UP - (ry; =). Similarly, any mes-

sage m¢ in D-form contained in the bag for round r, proposes v,
with uCounteri > UP — (r;—).

Now, let us consider the messages mﬁl ,; and m on the chain. We

1

showed above @I) that uCounter”

el 2 uCounter,V; —(rp — (r; + 1)).

Since there is a message in D-form that proposes v, # V' in the
bag of round ry, by line of Sandglass, uCounterrV; +1 = 0. There-
fore, uCounter,”z/ < uCoum‘er,V;Jr1 + (- +1) =n-0r+1) <
ry—(rq —(UP = UY) = UP = U"' = (ry - rp). Then, by line@of Sand-

glass, priorityrvz' < max(0, Lw [

Recall that m¢ proposes v, with uCounterr‘i > UP - (r; = rp). Then,

D_(p, _
priority? > max(0, LWJ -3)
D_pl_(r,
= max(0,| DO) (Since = 67)
D_ [l _(y, —
= max(0, I_U v 7 (ra rZ)J +1).

123

Since r, > r, = (r;— (UP = UY = 1), 1e, rn > (r; — (UP = UY), we

have UP? — U' = (r; — r;) > 0. Then, LWJ + 1 > 1. There-

fore, priority® > |V | 4y > | LEUSten) | s and priority >

UD—UI—(Vd—Vz)J
=

1 > 0. Therefore, priorityr‘i > max (0, | -5 > priorityf;.

d

v : v
v, and m),. Since m

Now, consider m! . It collects both m” and m
2+1 r r+1

proposes v/, m!, must be the message with the highest prior-
ity among the messages collected by mjz ., for round r,. How-

ever, priorityi > priority, . Contradiction.

Proof of (ii) We will show that among the bags for rounds r, to (r,—U'-1),

at most one in every U' bags can contain messages from good nodes.

By contradiction: assume there exist two bags containing
messages from good nodes, for round r; and r, respectively,
wherer, <r <r, <(r,—U'-1),and r, — r; < U'. Consider now any
message m;, from a good node contained in the bag for round ry; by
induction hypothesis, my, proposes v, with priority¥ > 1. Similarly,
any message m;, from a good node contained in the bag for round r,

proposes v, with priorityf > 1.

Now, let us consider messages mﬁl ., and m!, on the chain. We showed
above l) that uCounterer' > uCounter,vzl —(ry —(r; + 1)). Since there is
a message from a good node proposing v, # V' in the bag of round r;,
by line [17| of Sandglass, uCounter,”]'+1 = 0. Therefore, uCounterrV; <
uCounterrvll+1 +(rp—(r1+ 1)) = r,—r =1 < U'. Then, by line 20| of

Sandglass, priorityfz' < 1.

124

Recall that mf, proposes v, with priority? > 1. Then, we
have priority? > priorityr"z/.

Now, consider m) . It collects both m), and mj,. Since m! ,
proposes v, m!. must be the message with the highest prior-
ity among the messages collected by mﬁz ., for round r,. How-

ever, priority’ > priority, . Contradiction.

Proof of (iii) Now we established that:
(i) Among the bags for rounds from (r, — (U” = U") = 1) to (r, - 1),
(UP — U') ND-bags contain only messages that are not in D-form.

(i) Among the bags for rounds from r, to (r, = U' = 1), (r, —ry = U' -

ro—rg—U!
[

1) Def-bags contain only messages from defective nodes.
Since each bag contains at least 7" messages, ND-bags and Def-bags
contain collectively at least

1
1)) messages. (F6)

—I’d—U

r
T-(UP=U"+(rg=ry=U' = [+

Let us now compute the largest number of messages they can contain.
ND-bags and Def-bags can contain messages not in D-form in any
round from (r,— (U - U")—1) to (r,— 1) sent by either (4) good nodes
or (B) defective nodes, and (C) messages sent for round ry to r,—U'—1

by defective nodes.

By Lemma TZ;—(UD—UI)—Z is the earliest step where some defective
node can be in round (r; — (U” — U') — 1). Then, the messages cov-
ered by case (B) and (C) must have been sent from step TZ;;— WP—U-2

to step (T — 1). We can then partition this range of steps into four

125

consecutive subranges:

. v v
BC1 : from T, oy 0T, oy =D
BC2 : from TL_(UD_UI)_I to (TZI -1

BC3 : from T, to (T;Z -1

BC4 : from T;’; to (T - 1)

We now count the total number of messages covered by cases A and

BC1 to BCA4.

BC1 By Lemma M the number of messages in BC1 is at most (7 —1).
A and BC2 Consider, for any round r,, where (ry—(UP-UY-1)<r, <
(rs — 1), the set of messages S,, obtained by adding (i) messages
sent by defective nodes starting from 7, and before 7 ,; and
(if) messages not in D-form sent by good nodes for round r,. By

Observationlll S, contains fewer than 7~ messages. Thus, the set

(ra=1)
Srb’

ry=(ra=(UP=U")=1)
which contains all messages covered by cases A and BC2, consists

of no more than (7 - 1) - (U? = U' + 1) messages.

BC3 By Lemma 17} the number of messages sent by defective nodes
in the time interval from 7,/ to (T, —1) is at most (7 —1). Since B3
contains (r, — r4) such intervals, the number of messages sent
in BC3 is at most (7 — 1) - (r, — ry).

BC4 Note that p, is still in round r, at 7, and that, by Lemma
and the definition of 7,/, all good nodes are in round r, from 7/
to (T — 1). Therefore, the number of messages good nodes gen-

erate during BC4 is smaller than 7°; otherwise, all good nodes

126

would be at least in round (r, + 1) at 7. Since good nodes out-
number defective nodes in any step, it follows that the number
of messages sent by defective nodes between 7,/ and (T - 1) is at
most (7 —1).
Therefore, adding the number of messages in BC1, A and BC2, BC3,
and BC4, ND-bags and Def-bags can contain no more than (7" - 1) +
T -1-(UP-U"+ 1)+ (T = 1) (ry —ry) + (7 — 1) messages, i.e.,

(T =1 - (UP =U"+(r, —r4) +3). (A.9)
Recall [F6t ND-bags and Def-bags contain at least

—r, = U!
T-(UP-U"+(rg—ry-U" - [L])) messages. (F6)

U
Therefore, we have

—I’d—Ul

(T =1)-UP = U+ (ry = 1) +3) 2T - (U = U' + (ry = rg = U' = [2)
—r, = U!
:>‘T-(U1+3+Frg Zl N>UP-U"+(ry—rq) +3
1 re=rq=U' 1
=57 -(U +3+] L D=>WU +3)T +(rg—1rs)+3
(Since UP = (U' +3)T + UY))
Tg—Tq4 (rg—ra) +3 . |
-1>—— =6
= [T 1-1= = (Since U! = 67")
rg—rd>(rg—rd)+3
67T T

(Since “= > ([%4] - 1))

However, since 0 < (r, —r,) < ((ry—ry)+3)and (67) > 7 > 0, we have

a contradiction. Q.E.D.

This concludes our proof of Agreement. o

127

A.4 Termination

The Termination property requires good nodes that stay active to eventually
decide. Sandglass’s Termination guarantee is probabilistic: For Termination to
hold, Sandglass needs to be lucky. To help us prove that luck befalls Sandglass
with probability 1, we introduce the interdependent notions of lucky period, lucky

value, and lucky round.

Intuitively, a lucky period is a sequence of steps that leads to a decision: all
nodes that are active in the step that immediately follows the end of the lucky
period are guaranteed to decide in that step, if not earlier. The quality that
makes a period lucky is straightforward. Recall that in Sandglass, if a node re-
ceives distinct highest priority proposals in the previous round, it can choose
uniformly at random among them which one it is going to propose in the cur-
rent round. During a lucky period, all the random choices that occur in a given
round just happen to select the same value — the lucky value for that round. We
give below a simple rule that defines what constitutes the lucky value for any
given round spanned by the lucky period. To prove that Sandglass guarantees
Termination with probability 1, we will proceed in two steps. First, we will
show that the unanimity counter of all good nodes that are active during the
last step of a lucky period reaches a value that allows them to decide. Second,
we will prove that lucky periods occur with non-zero probability. Since in any
infinite execution lucky periods appear infinitely often, it follows that any good
node that stays active, no matter when it joins, is guaranteed to eventually de-

cide.

Lucky value The rule that determines the lucky value for a given round r is

128

defined in terms of two sets. The first, C(r, p), is independently computed by
every node p as the set of messages for round r defined by line[11]of Sandglass;
it contains the highest-priority messages p collected for round (r—1). The second
set, O(r), contains a (possibly empty) subset of good nodes, and is defined across
all good nodes that enter round r at any time. It contains any good node p, that
meets the following two criteria: (1) p, has collected exactly one highest priority
value in round (r — 1) (which p, is then required to propose in round r) and (2)
one of the messages sent by p, in round r is collected by all good nodes in round
(r + 1). Note that if O(r) contains multiple good nodes, they may differ in the

single highest priority value they have collected.

We dub the first round of a lucky period a lucky round. The lucky value v(r)
for a given round r of a given lucky period is defined inductively, with the base

case defined by that period’s lucky round, 7, as follows:

e Whenr = Fstart-
If O(Fstart) # 0 and Vp € Ostart), v € C(Fstart, D), then Ve(Fstart) = V.

Otherwise, v¢(rsrt) is arbitrarily set to one of the initial values. We will

assume, without loss of generality, that v,(rs,) is set to a.
e When r > ryu:
If O(r) #0and Vp € O(r), v € C(r, p), then v (r) = v.

Otherwise, v/(r) = ve(r — 1).

Lucky period. We already saw that, informally, a lucky round is the first round
of a lucky period. To define these notions more precisely, we introduce the

following definitions, which we will use extensively in our Termination proof:

129

* Ti(r): The earliest step where some node, possibly defective, is in round r.

* 7o The round with index (r + 677). We will prove that, if r is a lucky
round then, in every round from (rj, + 1) to the end of the lucky period, v,
is the same as the lucky value of round e, and all good nodes propose

the lucky value of round ry.

® T(r): The earliest step where some node is in round ry.

(6T -1)-UP+18T

. ﬁ;: A constant, equal to (67 + [5

1), which denotes the number
of rounds spanned by a lucky period, i.e., all rounds from the period’s

lucky round 74y to round (7 + }?{» — 1) (or, equivalently, round (7o +

67 -1)-UP+18T
r%] -1).

* Tp(r): The earliest step where all good nodes are in round (r + PHg) or later.
We will prove that, if r is a lucky round, then all good nodes decide by

step Tp(r).

We then say that 7y, is a lucky round if, in every step during the lucky period
from T (rsart) to (Tp(rsiarr) — 1), whenever the set C(r, p) of a node p in round
r (Where ryut < 1 < Foart + 132) holds multiple values, p randomly chooses to

propose that round’s lucky value, i.e., v(r).

We now prove two observations that are useful for the proof for termination.

Observation 2. Suppose ry is lucky and consider round r, where ryg < r < rstm+PHg.
If v(r) = v, then all good nodes in round (r + 1) collect at least one message proposing v

for round r.

130

Proof. By contradiction. Assume v,(r) = v and that some good node in round (r+

1) does not collect v for round r.

Let A(r) be the set of good nodes whose messages for round r are collected
by all the good nodes in round (r + 1). By Corollary 1| A(r) # 0. Since some good
node does not collect v for round r, it follows that none of the good nodes in A(r)

proposes v for round r, i.e. all the good nodes in A(r) propose v' # v for round r.

Since v/(r) = v, for any node p, if v € C(r, p), then p must propose v for
round r. Note that all the good nodes in A(r) propose V' for round r, therefore,
for any p, € A(r), C(r, p,) only contains v'. That is, O(r) = A(r) # 0. By definition

of v, ve(r) should be set to v'. Contradiction. O

Observation 3 (Necessary condition for v, flipping). If s is lucky, then for any r
where roppy < 1 < Fopapt + ﬁ;, ve(r) is different from vi(r — 1) only if some good node

collects from round (r — 1) some message proposing v,(r) with priority at least 1.

Proof. Assume vi(r — 1) =V and v/(r) = v, where v # v.

Since r > ry,r and V' # v, by definition of v, O(r) # 0 and for any p €
O(r), v € C(r, p). Now we consider the values that one such good node, p, € O(r),
collects from round (r — 1). By Observation [2, p, collects at least one message
proposing V' from round (r - 1). However, only v is in C(r, p,). Therefore, p must
have collected a message proposing v with a higher priority than v/, that is, at

least 1.

Observation 4. If some good node in round r at T collects from round (r — 1) some

message m proposing v with priority at least 1, then there exists a good node proposing v

131

with uCounter larger than 37 in round r,, where r — 37 < r, <r—1.

Proof. Consider the node p that at step 7" < T sends m, which proposes v with
priority at least 1 for round (r — 1). By Corollary 3| p must have collected a
message from a good node m, by T’ for round r,, where r - 37 < r, < r—-1.
Since p sends m with priority 1, i.e. uCounter, > 67 ; then, by Lemma @ m, must

propose v’ with uCounter, > uCounter,—((r—1)—r,) > 67 —((r—=1)—-r,) >37. 0O
Observation 5. If round re.: is a lucky round, then all good nodes active at

step Tp(start) have decided by T p(Fstart).

Proof. Recall that T'(rj) is the earliest step where some node is in round 7o,

and 7ok = Fspart + 67 . Let ve(roec) be v.

The proof proceeds in two main steps. In Step 1, we will prove that:

s
For any r, where riyg < 7 < rgan + Pe — 1, ve(r) = ve(rioa) = v, and all good

nodes propose v for round r. (F7)

In Step 2, relying on [F7, we are going to prove that, for any good node p,,
the uCounter of v = vi(ripe) at Tp(rsar) will be at least UP, upon which p, will

decide v.

Step 1 To prove [F7| we are going to prove:

C=d
No good node in round r, where rj, < 7 < rgan + P — 1, collects a message

proposing v' # v for round (r — 1) with priority larger than 0. (F8)

Assuming [F8|is true, then it is easy to show [F7|is true as follows. By

combining@ and Observation@ we can conclude that v,(roc) is the lucky

132

value for all rounds from rj, to (Fsprt + 15_; —1). Now, consider any round r,
where rpg + 1 < 7 < ropp + ﬁ; — 1. By Observation BL since vi(r — 1) = v,
all good nodes in round r collect at least one message proposing v for
round (r — 1). By [F8, we know that no good node in round r collects
a message proposing V' for round (r — 1) with priority larger than O .
Therefore, any good node in round r either collects only v, or collects
both v and V', where the priority of v’ is 0. Since ry,y is a lucky round, all

good nodes propose v for round r, proving|F7.

We are going to prove [F§ by contradiction. Let #” be the earliest round in
the range from rjpx to (Fstart + IS; — 1), where some good node, currently
in 7/, collects a message from round (' — 1) proposing V' # v with priority

at least 1.

We are going to prove that (i) there exists a round r,, where (rjoex — 37) <
re < (r = 1), such that (a) a good node p, proposes v’ in round r, with
uCounter, > 37, and (b) v¢(r,—1) = v'; and (i) (r, — 1) can be neither smaller
nor larger than rj,. Since (r, — 1) # riq, as their v, values are different, this

leads to a contradiction.

Proof of (i) Since some good node in round r’ at T collects a message
proposing V' for round (' — 1) with priority at least 1, then, by Ob-
servation |4} there exists a good node p, proposing V' in round r,,
where v =37 < r, < — 1 with uCounter, > 37". Now with r, > (r' —
37) = (riec—37") (by definition of '), we have (rjpex—37") < r, < (' = 1),
establishing (a).

Now, to establish (b), we show that v,(r, —1) = v'. Since uCounter, > 0,

by line|17|of Sandglass, p, collects only v" in round (r, — 1). Note that,

133

by Observation 2, all good nodes in round r,, including p,, collect
at least one message proposing vi(r, — 1) for round (r, — 1). There-
fore, vi(r, — 1) must be equal to V', i.e., v(r, = 1) = V".

Having proved (a) and (b), we proved (i).

Proof of (ii) Consider the round r, that exists by (i). We know that (r, —
1) # rjocx. We now show that (r, — 1) can be neither smaller nor larger

than r,,x, which leads to a contradiction.

Casel (r,—1) < rix
We are going to show that, under the assumption of (r,—1) < 7y,
it is possible to prove two statements, S1 and S2, that are in con-

tradiction with each other.

S1: There exists a round r, where r, — 3T < r < re — 1, in which a
good node proposes v with uCounter > 37 .

Since vi(r, — 1) = v and v¢(ri,) = v, there must exist a round r.
between r, and rj,« where v, changes from v’ to v, i.e. vg(r.— 1) = V'
and v,(r.) = v.

By Observation [3| some good node in round r. collects from
round (r, — 1) some message proposing v with priority at least 1.
Then, by Observation EL there exists a good node p, in round r,,
where r. — 37 < r, < r.— 1, proposing v with uCounter > 37".
Since r, < r. < rpx, We have proved S1: there exists a round r,,

where r, — 37 < r, < e — 1, such that a good node p, in r,

proposes v with uCounter > 37.

134

S$2: No good node in any round r, where r, — 37 < r < nok — 1,
proposes v with uCounter > 37 .

Recall that, by (i), p, proposes v with uCounter, > 37 + 1 in
round r,. Consider any round r between r, — 37 and r,. By
Corollary {4} there exists a good node in round r proposing v
with uCounter atleast (uCounter,—(r,—r)), which is a value greater
than 0. Then, by Lemma @L we can draw a first conclusion: no
good node can propose v with uCounter > 0 for any round r,
wherer, =37 -1 <r<r,- 1.

When r is equal to (r, — 1), this means that no good node
proposes v with uCounter > 0 in round (r, — 1). Then, by
Corollary |4 we can further infer that no good node proposes v
with uCounter > 37 in any round between r, and (r, + 37).
Since ry > (rjpek — 37), i.€., (Tioek — 1) < 1y + 37 — 1, we can draw a
second conclusion: for any round r, where r, < r < 75, — 1, NO
good node proposes v with uCounter > 37".

Combining our two conclusions, we have that no good node

can propose v with uCounter > 37 in any round r, where

re =37 <r <1k — 1, proving S2.

Since S1 and S2 contradict each other, and we were able to prove
them under the assumption that r, — 1 < &, we conclude that
Case 1 is impossible.

Case2 (r,—1) > 1ok
Since v(rj,cc) = v and we proved that v,(r, — 1) = V', then in some

round r., where rj,qc < 1. < (ry = 1), ve(re = 1) = v and v(r.) =

135

V. By Observation 3| some good node in round r, must collect a
message proposing v’ with priority at least 1 from round (r. — 1).
Recall that 7’ is the earliest round in the range from rjx to (Fstart +
P, - 1), where some good node, currently in 7/, collects a message
from round (#' — 1) proposing v' # v with priority at least 1; and
that r, < 7" — 1. Therefore, rip <r. <1y <7'.

However, by assumption, 7’ is the earliest round in which some
node collects a message proposing v’ with priority at least 1. Con-

tradiction.

This concludes the proof that @ holds. Recall that, as we showed above,

EF8|implies|F7
P

>
For any r, where rjpex < 1 < Fpare + Pe — 1, ve(r) = ve(rioer) = v, and all good

nodes propose v for round r. (F7)

which is now also proved.

Step 2 Now, we are going to show that, for any good node p, that is active
at Tp(rsar), the uCounter of v = vi(ripex) at Tp(rsar) Will be at least UP. This

is the condition upon which p, will decide v.

The key technical hurdle we need to clear is to prove following fact:

A node that proposes v' # v before Tp(rstr+) can be at most in

round (rg + If)_)g -U?-1). (F9)

Assuming [F9| holds, it follows easily that all good nodes that are active

at Tp(rsiarr) must have decided by Tp(rsar). Here is why.

136

Since by all nodes that propose in round (7 + 13_; — UP) before Tp(Fsiart)
must propose v, then, by line [17 of Sandglass, all nodes that propose in
round (Fea + 132 — UP + 1) before Tp(rsiart) must propose v with uCounter at
least 1. A simple inductive argument then shows that all nodes that ever
propose in round (rgg + P, — U + i) before Tp(rsat), where 1 < i < UP,
propose v with uCounter at least i. With i = U” — 1, messages sent
for round (ry + 15_; — 1) before Tp(rsq) must propose v with uCounter
at least (U? - 1). Note that by Lemma and because p, is active at
step Tp(rsart), P enters round (7 + ﬁ;) either at step (Tp(rstart) — 1) OF
at step Tp(rsart). In both cases, p, proposes v with uCounter at least U”,
i.e., with priority at least (67 + 4), and decides by lines IEHQ of Sand-
glass. Therefore, if p, is active at step Tp(rsrt), it must have decided by

Step TD(rstart)°

To prove we use again the notion of bags that we introduced in the

proof for Agreement. We quickly review it below.

For each message m sent in round r, m’s bag for round (r — 1) is the set of

messages collected by the sender of m in round (r — 1).

Recall that, if some node p’ sends a message m', proposing v’ for round #,
then there exists a chain of messages extending from round 1 to round 7,
where (a) each message on the chain proposes v/, and (b) the i-th mes-
sage on the chain was one of the highest priority messages collected from

round i by the sender of the (i + 1)-th message.

To each message in the chain corresponds a bag: by definition, the bag of

the chain’s i-th message is the bag for round (i—1). Thus, in the chain there

137

exists exactly one bag per round, and at least one of the messages with the
highest priority in each bag must be proposing v'.

Let uCounter!” be the value of uCounter of the i-th message on the chain. By
lineof Sandglass, Vi : 2 < i < r’: uCounter, > uCounter;,, — 1. Therefore,

as we saw, the following holds:

Vi:2<i<j<r: uCounteriV’ > uCounter;/ —(j—). (F3)

We are now ready to prove[F9] We proceed by contradiction.

Assume there exists a node p’ that before T(rq) uses a message m’ to
propose V' in some round » > (Fyayt + 15; — UP - 1). Consider the chain of
messages associated with m’ and, in particular, the bags for every round

from (riock + 1) t0 (ryare + P = U = 1),
We will show that:
(i) Among the bags for rounds from (rj,e+ 1) to (Fstart +ﬁ;— UP-1), at most

one in every U' bags can contain messages from good nodes. That is,

among these (rsart + Pe — UP = ripex — 2) bags, (rstart + P — UP = ripse — 2 —

['s’””JrP"LI{D_””k_z]) = (13_; -67 -UP-2- [—P€_67L;IUD_2]) of them contain
only messages from defective nodes. We will call these Def-bags.
(if) The number of messages sent by defective nodes for round (7 + 1)

to (Fpart + 1(5; —UP —1) before Tp(ry) is not sufficient to fill all Def-bags.

Thus, it is impossible for a node that before T proposes v # v, to advance

up to round (ryap + 13_; -UP -1, contradicting our assumption.

Proof of (i) We will show that among the bags for rounds (7 +1) to (Fssar+
15; — UP - 1), at most one in every U' bags contains messages from

good nodes.

138

By contradiction: assume there exist two bags containing messages
from good nodes, for round r; and r, respectively, where (/o + 1) <
11 < 1y < (Fsart + P,—UP - 1), and r, — r; < U'. Consider now any mes-
sage m$, from a good node contained in the bag for round r,. Since r,
is within the lucky period that begins in rgq, by [F7, mf, proposes v.
Similarly, any message m;, from a good node contained in the bag for

round r, proposes v.

Now, let us consider messages m! ,; and m), on the chain. We showed
above @ that uCounter,V;+1 > uCounter,”zl = (ra = (r1 + 1)). Since mf,
proposing v # V' is in the bag of round r, by line [17] of Sand-
glass, uCounter,VI'H = 0. Therefore, uCounter,VZ’ < uCounter,vl/+1 + (ry —
(rn+1)=r—-r—1<U' Then, by lineof Sandglass, priorityrvzl =0.
However, recall that m!, is one of the messages with the largest
priority among all messages in mﬁ; .,'s bag. Therefore, no message
collected by m) ,, from round r, proposes v’ with priority greater
than 0. Note that mﬁz ., also collects mf,, which proposes v. Therefore,
consider the set of values with the highest priority that mﬁz ., collected
from round r,. Either that set contains only v, when some v is
proposed with priority greater than 0; or it contains both v and v,
when both values are proposed with priority equal to 0. In either
case, since (r; + 1) < (Fopare + I‘()_)g — UP) < (Fspart + 13_;) is within the lucky
period, and vi(r, + 1) = ve(rick) = v, mrz ,; must propose v. However,

by construction m. | should propose v'. Contradiction.

Proof of (ii) We have just established that, among the bags for rounds

from (rie + 1) to (rewarr + Pe — UP - D), (Fstarr + P¢ — UP - Viock —

139

«
2 _ |'rstart+Pf_UD_rlock_2

o 1) Def-bags contain only messages from defective

nodes.

Since each bag contains at least 7 messages, Def-bags contain at

least 7 - (P, — 67 — UP -2 — [w]) messages.

Let us now compute the largest number of messages these Def-bags

can contain.

Def-bags can only contain messages sent for round (rjc + 1) to (Ftart +

f’? -UP -1 by defective nodes. By Lemma T? is the earliest

Tlock

step where some defective node can be in round (7,4 + 1). Then,

the messages in Def-bags must have been sent from step T, to

Tlock

step (Tp(Fstarr) — 1). By Lemma M the number of messages sent

by defective nodes in the time interval from T, to (T,

— 1) is at

most (7 — 1). Since Tp(rsarr) = T' %, the period from step T,

r
Tstart +P[lock

to step (Tp(Fstart) — 1) covers (rspar + fD—; — Flock) = (Pj —67) such intervals;
thus, the number of messages sent by defective nodes in this period

is at most (7" = 1) - (P, — 67).

>

Recall that Def-bags contain at least 7~ (ﬁ; -67 -UP-2- [w])

140

messages. Therefore, we have

5 o P, —67 —UP -2
(T =1 (P =6T) 2T - (P = 6T —-U” -2~ TUI

- UP -
:>(7’—1)-C27’-(C—UD—2—f—C Zl 21)

D

(where C = [WL and P(_; =67 +QC)

-UP -2 C
D 2 >
U +247 i 1_7.
c-ul-2 C > b
U 43 o > = (Since (5= + 1) > [<5=2)
5)
:>UD+3>C+6# (Since U' = 67")
67 (UP +3)-UP -2 (67 - HUP + 18T -2
=C < 5 = 5

6T -DUP+187 -2
5

_ |-(6‘7‘—1)‘UD+18‘7‘
- 5

However, since C 1> , we have a contra-

diction. O

Lemma 22 (Termination with probability 1). Every good node that remains active

decides with probability 1.

Proof. By Observation @ for any round 7y, if 7gen is a lucky round, then all
good nodes that are active in step T (7s) decide a value in round gy + 67 +

_1.UP . gD
l—(6T 1)2/ +18‘7']. Let Pg — 67~+ |-(67' l)él +18‘7'-|.

LetS ={1+k- (13_; + 1)k € N}. S is a set containing infinitely many numbers of

rounds, that the events of each of them being lucky are mutually independent.

Let 77(r) be the earliest step where all good nodes are in round r. For any
round r, T(r), which is earliest step that any good node can be in round r, is no
earlier than 7¥(r — 1) by Lemma and T(r) is defined as T"(r + ﬁ;). Consider
the period consisting of the steps from T(r) to Tp(r) — 1, i.e., from T"(r — 1)

to TV(r + }(’_2) — 1; this period covers all rounds from r to (r + ﬁg —1). For this

141

period to be lucky and for r to be a lucky round, we require any node that must
randomly select the value it will propose in any round between r and r + Pr—1

to select the lucky value v, for its current round.

Consider the events that correspond to rounds in S being lucky. Since the
lucky periods for rounds in S are not overlapping, these events are mutually

independent.

Now we are going to show that all rounds in S are lucky with non-zero
probability. Consider round r in S. In each step of r’s lucky period, there are at
most N nodes in the system. Each node that makes a random choice in one of the
rounds covered by the lucky period chooses the round’s lucky value with prob-
ability 3. Therefore, in every step of the lucky period, the probability that all
nodes that make random choices select the lucky value for their current round is
at least 2LN By Lemma@ it takes at most 7" - (I(’_; +1) steps from T (r) to (Tp(r)—1).

Therefore, the probability that any round in S is lucky is at least ﬁg’ﬁ > 0.

Now, consider any good node p, that joins in round r, at any step T and stays
active. Recall that, by Lemma(11} good nodes are guaranteed to eventually reach
any arbitrary round. Since there are infinitely many rounds r in § where Tp(r) >
T, with probability 1 there exists a round r € § such that (1) r is a lucky round;
and (2) Tp(r) = T. Then, by Lemma [11} p, will eventually reach T)p(r) and, by
Observation[5] decide. O

142

APPENDIX B
GORILLA CORRECTNESS

B.1 Sandglass Plus

In this section, we first introduce the SM+ model, which is nearly identical to
that of Sandglass (§3), with the exception that it permits defective nodes to re-
ceive messages sent by other defective nodes within the same step, subject to

certain constraints.

We then prove that Sandglass remains correct in this new model by satisfy-
ing Validity, Agreement, and termination with probability 1. Fortunately, the
correctness proof of Sandglass requires only minor modifications to the proofs
of two lemmas to be applicable to the SM+ model. We will show in Section|B.1.2
the two lemmas that require change, and refer the readers to the Sandglass pa-

per for the rest of the proof.

B.1.1 The SM+ Model

SM+ and the Sandglass model (SM) largely make the same set of assumptions.
We show the only difference here and refer the readers to the rest of the model
in the Sandglass (§3.1): SM assumes that if in step t a node p; receives message m
with Receive;, then m was sent in some step t' < t. In SM+, we weaken this assump-
tion, by allowing defective nodes to non-recursively receive messages sent from
defective nodes within the same step. Formally, if in step ¢ a node p; receives

message m from p; with Receive;, then m was sent in some step ¢ < t when at

143

least one of p; and p; is good, or ¢ < t when both p; and p; are defective and m

does not contain in its coffer a message that is also sent in s.

B.1.2 Sandglass is Correct in SM+

The proof of correctness for Sandglass in SM+ closely resembles the proof
for SM, with the exception of Lemma|l12]and Lemma [18)in the Sandglass proof
(§A). While the statements of these lemmas remain unchanged, their proofs re-

quire minor modifications.

It is perhaps surprising that so little of the proof needs changing when mov-
ing from SM to SM+. The reason is that the original Sandglass proof assumes
that all the messages generated by defective nodes contribute to their progress,
regardless of when they are actually received. Specifically, when estimating the
maximum possible round that defective nodes can be in, the proof considers the
totality of messages generated by defective nodes during the execution and di-
vides it by the size of the threshold of messages that must be received to advance
to a new round. This best-case scenario for defective nodes already accounts for
the additional flexibility that SM+ affords to defective nodes. In particular, the
original proof already accounts for the possibility, allowed in SM+, that defec-
tive nodes receive, in a given step, messages that defective nodes sent in that

same step—even though SM disallows such executions.

Lemma [12|in Sandglass. At any step T, any defective node is at most one round

ahead of any good node.

Proof. By contradiction. Assume that there exists an earliest step, 7, where some

144

defective node p is more than one round ahead of a good node p,, i.e., at T

node p is in some round r and node p, is in round r,, < (r - 2).

Note that no good node is in round (r — 1) or larger before T; otherwise, by
Lemma 3 in Sandglass (§A) , all good nodes would be in round (r - 1) or larger
at T, contradicting r,, < (r—2). Therefore, defective node p received no messages

from good nodes for round (r — 1) by T.

Consider the earliest step 7" < T where some defective node is in round (r —
1). Since T is the first step where some defective node is more than a round
ahead of a good node, all good nodes must be in round (r — 2) or larger at 7”;
but, as we just showed, no good node is in round (r — 1) or larger before T.

Therefore, all good nodes must be in round (r — 2) from 7" until T

Consider the k consecutive steps from 7’ to 7. Let the number of mes-
sages generated by good nodes and defective nodes in each step be, respec-
tively, g1, ..., g« and d, ..., di. Since up to and including step 7' node p has received
for round (r—1) only messages from defective nodes, and yet pisinround rat T,
by line @ of Sandglass, Zfi/fdi -1 > 7 and thus, by Lemma 1 in Sandglass (§E)
, Xi=k1g, > 7. Since by assumption every step includes at least one good node
(i.e., g1 > 0), we have that Z=*"!g; > 7. Recall that during these (k — 1) steps all
good nodes are in round (r —2); then, all messages g, ..., g«-1 are for round (r —2)
and will all be received by all good nodes by T. By line|f| and line |7} then, all
good nodes (including p,) must be in round (r — 1) at 7. This contradicts our

assumption and completes the proof. o

Lemma [18) in Sandglass. Suppose a good node p, is in round r at step T, and a
node py is in round rqy at step T' < T. If py does not collect any messages from good

nodes in any round (r — i), where 0 < i < kT, then ry < (r — (k — 1)).

145

Proof. To prove the corollary, we compute the maximum number of mes-
sages D, that a defective node p, can collect during the k7~ rounds when it
does not collect any message from good nodes. To help us count these mes-
sages, for any 1 < i < k7", denote by T, the earliest step for which all good

nodes are at least in round (r — k7 + i).

Recall that, to be collected by p, at step T’, a message from a good node must
have been generated no later than step (7’ — 1) < (T - 1), and a message from
a defective node must have been generated no later than step 7" < T. Then,
we partition the execution of the system up to step T into three time intervals,
and compute, for each interval, the maximum number of messages generated
during these intervals that p, could have collected for rounds (r — k7~ + 2) or

larger.

I1: Up to step (Tr—k7+1y — 1).

By definition of 7(,_i7+1), some good node is in some round ' < r — k7 + 1
at step (T(,—k7+1) — 1). Therefore, neither a defective node nor a good node
can be in some round r” > r — k7 + 1 at step (T(,—x7+1) — 1), respectively
because of Lemma 5 and Corollary 2 in Sandglass (§A) . Therefore, during

this interval, no messages were generated for rounds (r — k7 +2) or larger.
12: From T(r—k‘7'+l) up to (Tr - 1)

By assumption, p,; only collects messages generated by defective nodes
throughout interval 12. We further split 12 into i consecutive subinter-
vals, each going from T+ up to (T—grsivy — 1) for 1 < i < (k7 - 1).
By Lemma 10 in Sandglass (§A) , in each of these sub-intervals defective
nodes can generate at most (7 — 1) messages. Therefore, the number of

messages generated by defective nodes during 12 is at most (7 —1)- (k7 —1).

146

13: From T, to T.

Once again, by assumption, p, only collects messages generated by defec-

tive nodes throughout interval I3. There are two cases:

— T precedes T,.
If so, defective nodes trivially generate no messages during I3.

— T does not precede T,.
By assumption, some good node p, is in round r at T, where it col-
lects all messages generated by good nodes before T'; further, since p,
is still in round r, the messages for round r sent by good nodes be-
fore T must be fewer than 7. Finally, since p, is in round r at T, by
Lemma 3 in Sandglass (§A) , in all steps preceding 7' no good node
can be in round (r + 1) or higher. We then conclude that from step 7,
and up to (T — 1) good nodes generated at most (7 — 1) messages, all
for round r. Let the number of messages generated by good nodes
and defective nodes starting from 7, to T be, respectively, gi, ..., 8k
and d,, ...,d,. Then we have =¥ ¢; < 7. By Lemma 1 in Sandglass (gg)
, we then have Zf.‘zld,- < T, ie., during I3 defective nodes generate

fewer than (7~ — 1) messages.

Adding the messages generated in the three intervals, we find that D,,,, the
maximum number of messages that p, could have collected up to and including
step T for rounds (r—k7 +2) or larger, is smaller than (7 —1)-k7; at the same time,
since by assumption p, is in round r,, D,,,, must equal at least (r,—(r—k7 +2))-7".
Therefore, we have that (r, — (r — k7 +2)) -7 < (7 = 1) - k7, which implies r,; <

r — (k — 1), proving the corollary.

147

Finally, we have our intended theorem.

Theorem 1. Sandglass satisfies agreement and validity deterministically and termina-

tion with probability 1 in SM+.

Proof for the theorem directly follows from Lemma 2, 14, 15 in Sand-

glass (§A).

To prove the correctness of Gorilla, we first show a mapping in two steps
from a Gorilla execution to an execution of Sandglass in SM+ (§B.2). Then, given
that Sandglass is correct in SM+, we leverage this mapping to proof safety (§B.3)
and liveness (§B.4) for Gorilla.

B.2 Scaffolding

The first step in our two-step process for mapping a Gorilla execution 7¢ into
a Sanglass execution 7 is to reorganize the actions taken by Byzantine nodes
in ng: we want to map 7 to an execution where Byzantine nodes join the system
and receive valid messages at the beginning of a step (by the first tick) and
broadcast valid messages and leave the system at the step’s end (at its K-th
tick). Since, as explained in Section 4.3.1} satisfying all of these requirements is

not possible, we extend GM to a new model.

We need some way to calculate a VDF on an input that includes the final
result of VDF calculations that are still in progress. To achieve this, we extend
the oracle’s API to allow Byzantine nodes to peek at those future outcomes. By

issuing the oracle’s peek query, Byzantine nodes active in any step s can learn the

148

result of a VDF computed by Byzantine nodes finishing in step s even before its

calculation has ended.

We thus introduce GM+, a model that extends GM by having a new ora-

cle, QF, that supports one additional method:

Peek(y): immediately returns vdf,.

In any tick, a Byzantine node in GM+ can call Peek() multiple times, with
different inputs. However, Byzantine nodes can only call Peek subject to two

conditions:

* A Byzantine node can peek in step s at vif, only if Byzantine nodes commit

to finish the VDF calculation for input y within s; and

* a Byzantine node does not peek at vdf , where y = (M, nonce), if M in turn
contains some VDF result v obtained by peeking, and the calculation of v

has yet to finish in this tick.

Note that these restrictions only limit the additional powers that GM+ grants the

adversary: in GM+, Byzantine nodes remain strictly stronger than in GM.

With this new model, we first map an execution of Gorilla in GM to an ex-
ecution of Gorilla in GM+, in which Byzantine behavior is reorganized with
the addition of peeking. Hence follows the first lemma of our scaffolding: the

existence of the first mapping.

Definition 7. Consider an execution ng in GM and an execution i} in GM+. We

say n¢. is a reorg of ng iff the following conditions are satisfied:

149

REORG-1 For every correct node p in g, there exists a correct node p* in nf, such
that p and p* (i) join and leave the system at the same ticks in the same steps and

(ii) receive and send the same messages at the same ticks in the same steps.

REORG-2 Each Byzantine node in nf, (i) joins at the first tick of a step and leaves
after the last tick of that step; (ii) receives messages at the first tick of a step and
sends messages at the last tick of that step; and (iii) sends and receives only valid

messages.

REORG-3 If in g a Byzantine node sends a valid message m at a tick in step s, then

in n}. a Byzantine node sends m at a tick in some step s’ < s.

Lemma 2. There exists a mapping REORG that maps an execution ng in GM to an

execution i in GM+, denoted nj, = REORG(1)¢), such that n, is a reorg of 1.

Proof. Consider any Gorilla execution 7. We are going to construct an execu-

tion 17 in GM+ that satisfies REORG-1,2,3.

First, we specify how correct and Byzantine nodes join and leave in 75/;. For
each correct node p in 75, a corresponding correct node p* in 77 joins and leaves
the system at the same steps as p in 5g. Consider any step s in 77, and let ¢ be
the number of correct nodes in step s. We make (c — 1) Byzantine nodes join at

the beginning of step s and leave at the end of step s.

Let the set of valid messages sent by Byzantine nodes in 15 be Mjp. Note that
this set of valid messages sent by Byzantine nodes can be larger than the set of
valid messages correct nodes received from Byzantine nodes due to Byzantine

omissions.

Our proof proceeds in two steps. We overview them and then explain them

in detail:

150

Step 1 For any m € Mp, we assign a unique shell, (s,b), identified by a step s
and a Byzantine node b in n(;, for the K Get() calls of VDF calculation for m.
Note that any node can only make one Get() call in a tick, and it takes K

Get() calls to get vdf .

We prove four claims about the shells, which are useful later to prove the

same messages can be generated in 776 and in 7.

Step 2 We prove by induction that correct nodes will receive and send the same
messages in 7, as in 77, and the same valid messages are sent by Byzan-
tine nodes at the same step or earlier. Then, it immediately follows that

REORG-1,2,3 are satisfied.

Step 1

We run Algorithm [5] to assign shells for the VDF calculation of messages
in Mp. The algorithm operates as follows: we maintain two variables within a
loop, s and CandidateVDEF, where s denotes the step number, initially set to -1,
and CandidateVDF represents a set of VDFs, starting as an empty set. During
each loop iteration, s is incremented by 1. The algorithm adds VDFs whose first
units are calculated in step s of 7 to the CandidateVDF set. While there exists
an available shell in step s, the algorithm assigns this shell to a VDEF, vdf, from
CandidateVDE. The selected vdf’s last unit should be calculated the earliest in
n¢ and the algorithm then removes it from CandidateVDEF. This process contin-
ues until no free shells remain in step s. Subsequently, the algorithm moves to

the next iteration of the loop and repeats these steps.

Now we prove the following claims are true about the assignment:

Claim 3. For any m € Mg, if the first Get() call for vdf, is in step i, then the shell

151

Algorithm 5 Algorithm for reorganizing VDF units

1: procedure REORG

2: s« —1

3 CandidateVDFs« 0

4 loop

5: s < s+ 1; B, « the set of Byzantine nodes at step s

6 CandidateVDFs « CandidateVDFs U {vdf — vdf’s first unit is calcu-
lated in step s in ¢}

7: while there’s a free shell (s, p € By) do

8: vdf « a VDF result in CandidateVDFs whose last unit is calculated
the earliest in g

9: Assign (s, p) to vdf

10: CandidateVDFs « CandidateVDFs\{vdf }

assigned to vdf, in i, is in step i or later.

Proof. Since vdf,, is not added to the CandidateVDFs set at line || of Algorithm
until s is increased to i (in line[5), the step of the shell that vdf,, can be assigned

to is at least i (line[9). |

Before stepping into Claim |4} we show a useful observation following from
Algorithm 5|
Observation 6. Consider any step s in nj,. We note two possible scenarios of shells at

step s, such that if either of these scenarios happens, the calculation of VDFs assigned

to shells later than s in i, must start in a step later than s in ng:

A free shell exists at step s in ;. When the loop for s finishes, if there is a free
shell at (s, p), then the CandidateVDFs set is empty at the end of the iteration for s.

That is, any vdf assigned to a shell in a later step starts its calculation at a step s > s

in neG-

152

A shell at step s is assigned to a vdf that is not the earliest to finish in 7}
, among all the vdfs that are not assigned to a shell yet. Consider the scenario in which
a vdf is assigned to a shell at s at line |9 (it is the earliest to finish among all VDFs
in CandidateVDFs), but it is not the earliest to finish among all the remaining VDFs.
Then the calculation of the remaining VDFs, including those VDFs whose calculation
is finished earlier than vdf, must start later than s in g, because they are not in the

CandidateVDFs set yet.

We are ready to prove Claim 4]

Claim 4. For any m € Mg, if the last Get() call for vdf is in step i, then the shell

assigned to vdf, in n, is in step i or earlier.

Proof. We prove this by contradiction. Consider the first step i in 7, such that
the last Get() call of a VDF, vdf ", is in step i, but vdf " is not assigned to a shell

in i}, by the end of i-th iteration of the loop.

Consider the largest step j < i such that, one of the scenarios in Observation|f|
happens. If no such j exists, we take j to be -1. By Observation 6} for all the VDFs
that are already assigned to the shells in steps [j + 1,], their first Get() calls are
after step j. Furthermore, since they are already assigned to shells, their last
unit is no later than vdf *’s, i.e., their last Get() calls are in or before step i . We
call this set of vdfs, VDF ,c.py. Then, we have all of the Get() calls of VDF ,.cpy

are in steps [j + 1,i] in 7.

Note that there are no free shells in [j+1, i] (otherwise, j would be larger). Let
the number of Byzantine nodes in any step s be b,. Then, the size of VDF ..,

is X!

s=j+1

iskK-Xi

s=j+1

b,. Therefore the number of Get() calls for VDF ..., in steps [j + 1,i]

bsirlng.

153

Note that in 7, the number of Byzantine nodes at any step s is at most b,.
Therefore, the total number of Get() calls that can be made in steps [j+ 1, i] in 1

is at most K - X{_,,

bs, and one of them is the last Get() call of vdf". Therefore,
there are not enough ticks available to make all Get() calls for VDF ..,y in 6. A

contradiction. O

Claim 5. Consider any two VDFs, vdf, and vdf,, reserved respectively at steps s, and s,

in nf. If the last Get() call of vdf, is before the first Get() call of vdf, in ng, then s; < s,.

Proof. By line |6} vdf, must be added to the CandidateVDFs set after vdf,. By
line 8, vdf, must be assigned to its shell before vdf,. Note that, by line |5, shells

are assigned in non-decreasing step order; therefore, s, < s,. o

Claim 6. Consider any three vdfs, vdf,, vdf,, and vdf,, reserved respectively at
steps s1, s, and s3 in ng. If, in ng, the last Get() call of vdf, is before the first Get() call
of vdf,, and the last Get() call of vdf, is before the first Get() call of vdf,, then s, < s;.

Proof. Let the tick of the first Get() call of vdf,, and vdf, in 5 be], and .

Note that the last Get() call of vdf, is before tg in ng. By Claim lﬂ vdf, must
be assigned to step L(r§ — 1)/K] or earlier. By Claim @ vdf, must be assigned
to Lrg/KJ or later. Since rg < rg—K, ie., (rg— 1) < rg—K, we have s; < L(tg— /K] <

I_tg/KJ < 83,16, 85 < $3.

Now in 1, all the Byzantine nodes join and leave at the boundaries and stay
for a single step; and for each valid message m sent by a Byzantine node in 7,

we have assigned a unique shell (s, b) for some s and * to it. Then, if b can

154

receive the messages contained in m’s message coffer, M,, then b will make K
Get() calls in step s for input (M,,, nonce,,), and therefore b will be able to send m

innt.

We construct 5 so that if a Byzantine node is able to send a (valid) mes-
sage m, it sends m to all Byzantine nodes in the next step. Every Byzantine node
forwards all the messages it has received in a step to all the Byzantine nodes in
the next step. Furthermore, if m is received at tick #' by a correct node c in 7,

one Byzantine node who has m at tick (' — 1) will send m to c at tick (# — 1) in i7;..

We will show in Step 2 that for each valid message m sent by a Byzantine
node in 7 and the shell (s, b) assigned to it, b can indeed receive the messages
contained in m’s message coffer, and can therefore send m at s. Furthermore,
any correct node c* at step s in 77} can receive the same set of messages as its

corresponding node c in 7 at step s, and therefore send the same message at s.

Step 2

We will prove by induction that we can construct 77 such that any message
received and sent in 7 by correct nodes is received and sent in 7, at the same
step, and any valid message sent in 7; by a Byzantine node is sent in 5 at the
same or earlier step by a Byzantine node and is received at the same step as in 7

by correct nodes.

Recall that in GM+, Byzantine nodes can peek VDF results of other Byzantine

nodes that complete at the same step.

Base case In step 0, we show it is possible to (i) make all correct nodes in 7},

155

send the same messages sent by their corresponding correct nodes in 7
at step 0, and (ii) for any shell (0, py;) that is reserved for message my;,

make py, send my,.

First, consider the valid messages that are sent by correct nodes in step 0
in 5. In step 0, there were not enough ticks to generate a VDF. Therefore,
all correct nodes receive no (valid) message in 7, i.e., the message coffer
of any valid message sent by a correct node in step 0 in 75 is empty. There-
fore, by making all the correct nodes have the same initial values as in 7¢
and pick the same nonces, any (valid) message sent in 75 can also be sent
in i/, in step 0.

Second, consider any message mg, whose shell is in step 0 in 7. Consider
the message coffer M, of my,. Note thatin ng, for any m € M;,, m’s last Get()
call must be before my,’s first Get() call. Therefore, by Claim |§L m’s shell
must also be in step 0. Since step 0 is the earliest step, by Claim [6| m does
not contain any messages in its message coffer, otherwise messages in m’s
message coffer would have been assigned to a step earlier than step 0.
Then, p* can include the messages in My, in its message coffer in 5/ by
peeking the vdf, , therefore, p* can send my, in step 0. Again, by picking

the same nonce, my, can be sent in 7; in step 0.

We make the nodes send these messages in 7. in the following way:

¢ Correct nodes send their messages to all the nodes.
* Byzantine nodes send their messages to all the Byzantine nodes.

* Consider a correct node p,. that receives a message m sent by a Byzan-
tine node in 7 at step 1. Note that by Claim |4, m must be assigned

to a shell in step 0. Let that shell be (0, b,,). b,, sends m to p. at step 0

156

inng.

Induction hypothesis Up until step k, any message sent in 7 by a correct node
is sent in 7 at the same step. Byzantine nodes can send all the messages
whose shells are at step K. Messages received by correct nodes up until
step (k + 1) are the same as in 1. Byzantine nodes receive all the messages

from correct nodes and Byzantine nodes.
Induction step Consider messages sent at step (k + 1) in 7.

First, we prove correct nodes can send the same messages in step (k + 1)
in 5 as in 5. By the induction hypothesis and due to synchrony, correct
nodes receive the same set of messages from Byzantine nodes and correct
nodes in step (k + 1) in i, and in 7. By making all the correct nodes select
the same nonces in 7, as in 7, correct nodes are going to send the same

messages in 7; as in 7.

Second, we prove that Byzantine nodes can send all the messages whose
shells are at step (k + 1) in n,. Consider any message m,, whose shell is
at step (k + 1) and any my, in mgy’s message coffer in n;. There are two

possibilities for m,,.

my is sent by a Byzantine node Then the last Get() call for the VDF of m,,
is before the first Get() call for the VDF of m, in 1. Then, by Claim @
the shell reserved for my, is in a step sy, where sy < (k + 1). Note
that in 77, Byzantine nodes in a step can peek at the VDF results for
messages from Byzantine nodes that finish within the same step; and,
by Claim [6| m,, does not contain any message whose shell is also in

step (k + 1) or later. It follows that m,, can be included in the message

coffer of my, in nf..

157

my is sent by a correct node By Claim |§L my, is calculated no later than
step (k + 1) in ng. Therefore, my must be sent in a step no later than
step k in ng. By the induction hypothesis, m, is sent in 7},. There-

fore, my, can be included in m,,’s coffer in /..

Therefore, by picking the same nonces, Byzantine nodes can also send

the same messages as in 7 at step (k+1) in n; whose shells are at step (k+1).

We make the nodes send messages in 7. in the following way:

¢ Correct nodes send their messages to all the nodes.
* Byzantine nodes send their messages to all the Byzantine nodes.

¢ Byzantine nodes forward messages they received to all the Byzantine

nodes.

* Consider a correct node p, that receives a message m sent by a Byzan-
tine node in g at step (k + 2). By Claim |4, m must be assigned to a
shell that is no later than (k + 1). We just showed above that Byzan-
tine nodes can send all the messages whose shells are at step (k + 1).
Combining with induction hypothesis, some Byzantine node b,, must
have received or generated m. We make b,, sends m to p, at step (k+1)

in ng.

Now we have proven that correct nodes receive and send the same messages
in 1 as in n}. Note that we also proved that Byzantine nodes can send all the
messages at the step where their shells are. By Claim 4} it directly follows that
for any valid message m sent by a Byzantine node in 755, a Byzantine node sends

the same messages in the same step or earlier in 77/, (REORG-3).

158

In summary, we have constructed /. in GM+ that satisfies REORG-1,2,3.

While peeking solves the challenge with reorganizing Byzantine behavior,
it complicates our second mapping. The ability to peek granted to Byzantine
nodes in GM+ has no equivalent in Sandglass — it simply cannot be reduced to
the effects of network delays or to the behavior of defective nodes. Therefore,
we weaken SM so that defective nodes can benefit from a capability equivalent

to peeking.

We do so by introducing SM+, a model that is identical to SM, except for the
following change: defective nodes at step s can receive any message m sent by a
defective node no later than s — as opposed to (s — 1) in SM — as long as m does
not contain in its coffer a message that is sent at 5. Note that allowing defective
nodes to receive in a given step a message m sent by defective nodes within that
very step maps to allowing Byzantine nodes to peek at a message whose vdf
will be finished by Byzantine nodes within the same step; and the constraint
that m shouldn’t contain in its coffer other messages sent in the same step, maps
to the constraint that Byzantine nodes cannot peek at messages whose coffer

also contains a peek result from the same step.

One might rightfully ask: But the plan to leverage the correctness of Sand-
glass in SM? Indeed, but fortunately, Sandglass still guarantees deterministic agree-
ment and termination with probability 1 under the SM+ model (§B.1.2). Thus, it is
suitable to map a Gorilla execution in GM+ to a Sandglass execution in SM+,
and orient our proof by contradiction with respect to the correctness of Sand-

glass in SM+.

159

Formally, we specify our second mapping as follows. We map messages by

simply translating the data structure:

Definition 8. Given a message m in the Gorilla protocol, the mapping MAPM produces

a message in the Sandglass protocol as follows

1. Omit the vdf and the nonce from m.
2. Let p; be the node that sends m. Include p; as a field in m.
3. If mis the j-th message sent by p;, add a field uid = j to m.

4. Repeat the steps above for all of the messages in m's coffer.

Denote the result by in = MAPM(m). We say m and i are equivalent. Furthermore,
with a slight abuse of notation, we apply MAPM to a set of messages as well, i.e., if
M is a set of messages, and we map each message m € M, we obtain the message set

MAPM(M).

Thus, we can define the execution mapping:

Definition 9. Consider an execution nf, in GM+ and an execution 1§ in SM+. We

say n¢ is an interpretation of i, iff the following conditions are satisfied:

1. The nodes in i, are in a one-to-one correspondence with the nodes in ng. For

every node p in ng,, we denote the corresponding node in 1§ with p.

2. Nodes p and p join and leave at the same steps in i, and n¢, respectively. Fur-

thermore, their initial values are the same.

3. If p is a Byzantine node, then p is defective in SM+; otherwise, p is a good node

in SM+.

160

4. Node p sends i at step s in ng iff p generates a message m in i, at step s. Note
that in i, correct nodes send their messages to all as soon as they are generated,
while Byzantine nodes may only send their messages to a subset of nodes once

their messages are generated.

5. Node p receives i at step s in 1§ iff p receives m at step s in n..

Lemma 3. Consider any execution ng in GM, and an execution i in GM+ is a reorg
of ng. There exists a mapping INTERPRET that maps n, to an execution ng in SM+,

denoted as n; = INTERPRET(p}), such that i is an interpretation of ng.

Proof. For execution ¢, we construct the interpretation of N, Me, in SM+. First,

for every p in i, we add a corresponding p to n¢ such that:

* pjoins and leaves at the same steps that p joins and leaves, respectively.
® p has the same initial value as p.

e If p is a Byzantine node, then p is a defective node; otherwise, p is a good

node.

The number of Byzantine nodes in a step of 1, is smaller than the number of
correct nodes at each step and the number of defective and good nodes are equal
to those of Byzantine and correct nodes, respectively; therefore, the number

of defective nodes in 75 is fewer than that of good nodes at each step. Thus,

Condition[1} 2| and [3| are satisfied.

We now construct the messages sent in g such that 7y is an interpretation
of 1. Specifically, we require Condition 4/ and Condition [5|in Definition 9| to be
satisfied for the messages sent. We prove this by induction on steps. Note that

messages are constructed inductively alongside the induction.

161

Induction Base Consider any node p in /. at the first step, and message m that
it generates at the first step. We prove the claim holds for the first step,

conditioned on whether p is a correct node or not.

p is a correct node Note that p and p have the same initial value v, by
construction. We now prove that p will send i = MAPM(m) to all

nodes at the first step in 7¢.

Since there are not enough ticks to generate a VDF, p does not receive
any message in the first step, therefore, m does not contain any mes-
sage in its message coffer. Therefore, m = (p,r = 1,v = v, priority =
0, uCounter = 0, M = 0, -, -). Note that p cannot receive any message in
the first step, either. The message p sends at the first step, by Sand-
glass, is (p,uid = 1,r = 1,v = v,,priority = 0,uCounter = 0,M = 0),
which is equal to . Note that in 7§, since good nodes are syn-
chronously connected, all the good nodes in the second step will re-
ceive /. Note that it’s possible for a defective node not to receive 7,
by performing an omission failure, or to receive / in any step, being

asynchronously connected to other nodes.

p is a Byzantine node Note that in SM+, defective nodes at step s can re-
ceive any message m sent at s, as long as m does not contain in its
coffer a message that is also sent at s. Again, we will prove /# can and

will be sent at the first step in 75.

We first consider any message m generated by a Byzantine node p,
whose message coffer is empty. With the same argument for a correct
node p in the first step of 5/, p will send /1 in the first step of n;.
Again, note that it’s possible for any node not to receive 7, when p

performs an omission failure, or to receive 7z in any step, since p is

162

asynchronously connected to other nodes.

Second, let’s consider a message m generated by a Byzantine node p,
whose message coffer is not empty. Note that the number of messages
that can be included in m’s coffer is at most the number of Byzantine
nodes in the first step, which is smaller than 7. We have m = (p,r =
1,v,priority = 0,uCounter = 0,M,-,-). Consider any message m,; €
M, m,, must be sent by a Byzantine node and the vdf in m,, is a Peek()
result. By specification of Peek(), m,, must be generated in the first
step, and not contain any message in its message coffer. We have
proven above that 71, will be sent in the first step of 7{. Note that
message coffer of /71, is also empty. Therefore, we make the scheduler
deliver 71, to the defective node p and therefore p will include 7, in
its message coffer. In summary, for every m,, € M, p will receive iy,
and |[M| < 7. Therefore, p will send (p, r = 1, v, priority = 0, uCounter =

0, MAPM(M)), which is equal to 7.

Induction Hypothesis Node p receives 7 at step s < s in 7g, iff p receives m
at step 5" in 5 (Condition @) Node p sends 71 at step 5" < s in 75, iff p

generates a message m in 77;; at step s’ (Condition 5).

Induction Step Now we prove that the claim holds for step s + 1, conditioned

on whether p is a correct node or not.

p is a correct node We prove Condition 4| and Condition 5|separately.
Condition 4 First, we will prove that if p receives m at step (s + 1)
in i}, then p receives /i at step (s + 1) in n5.
If m is generated by a correct node p., m must be sent at step s

in nf. By the induction hypothesis, /i must be sent by a good

163

node p, at step s in 775. Note that in SM+, the network between
good nodes is synchronous. Therefore, p receives i at (s+1) in .
If m is generated by a Byzantine node p, m could have been gen-
erated at any step s’ < s and finally sent to p at s in .. By the
induction hypothesis, /i must be sent by a defective node p at
step s” in 175. Note that in SM+, the network between good nodes

and defective nodes is asynchronous. Therefore, we can make

the scheduler deliver /& to p at (s + 1) in ng.

Condition 5] Now we prove that if p generates a message m in 7/, at
step (s + 1), then p can send 7 at step (s + 1) in 5. Consider
the set of messages Rec, received by p at s. By the induction
hypothesis and the proof for Condition[4} p received a set of mes-
sages MAPM(Rec,) at step (s + 1).

Note that Gorilla (lines[9{11)29) and Sandglass (lines|8{{10}24) con-
struct message coffers in the same way based on the messages re-
ceived. Let the message coffer maintained by p be M,,. Then, the
message coffer p has maintained up to (s + 1) is MAPM(M,,).

It follows that p’s set C; at line [11]is MAPM(C,). If the proposal
value v, of p is chosen based on the vdf at line [20, then p also
chooses proposal value v; based on a random selection at line
Then in 7, p chooses the value v,. Note that any my € M,
and MAPM(my) have the same round number, proposal value,
priority and uCounter. The variables priority and uCounter are
updated the same way in Gorilla (lines 22}25) and in Sandglass
(lines [17H20). Therefore, p sends message MAPM(m) at s, which

has p as the process, the same round number, proposal value,

164

priority and uCounter as m, and MAPM(M,) as the message coffer.
p is a Byzantine node We further separate this case into two sub-cases:

p does not receive a peek result First, we prove that if p receives m
at step (s + 1) in i, then p receives 7 at step (s + 1) in 5§ Since m
is not a Peek() result, m must be sent at step s or earlier in 7.
By the induction hypothesis, /2 must be sent at step s or earlier
in n¢. Note that in SM+ connections to defective nodes are asyn-
chronous. Therefore, we can make the scheduler deliver 7 to p
at (s + 1) in 7.

Now we prove that if p generates a message m in ij; at step (s + 1),

then p can send 7 at step (s + 1) in 7.

Consider m = (r,, v, priority, ,uCounter,,, M,,, nonce,,, vdf,). Note

that by Lemma 2] p joins the system for only one step. Therefore,

for any my € M,, p receives it at step (s + 1). Therefore, from

what we proved above, p receives my, at step (s + 1). Therefore p

has MAPM(M,,) as its coffer.

Now we prove that p can have v, as proposal value, priority

as priority, and uCounter,, as uCounter following the Sandglass

protocol. Note that by Lemma @ m must be valid (isValid(m)

equals true).

uCounter,, is 0 For all round (r,, — 1) messages in M,,, the largest
priority value for proposal values a and b are the same.
Therefore, in MAPM(M,,), the largest priority value for pro-
posal values a and b are the same. Then, it is possible that p

chooses v,, as its proposal value at line |15

uCounter,, isnot 0 All round (r, — 1) messages in M, have

165

the same proposal value v,. Therefore, in MAPM(M,,), all
round (r,, — 1) messages also propose v,,. By Sandglass proto-

col (line[12), p will set its proposal value to v,,.

Since m is consistent, p will set uCounter to uCounter,, and priority
to priority .

Note that p joins the system for only one step, and therefore it
sends only one message. We have p will send m = (p,uid =
L, 7, Vi, priority, , uCounter,,, MAPM(M,,)).

p receives some peek results Consider any peek result m’ that p re-
ceives at step (s + 1). Due to the constraint on peeking, m’ does
not contain any peek result, and m’ is sent by a Byzantine node
within step (s + 1). By what we proved in the first sub-case, m’
must be sent in step (s + 1). Since in SM+, the defective node p
can receive m'.

Then, based on the same argument as the first sub-case, we can

show that p can send 7.

B.3 Safety

We prove that Gorilla satisfies Validity and Agreement. The proofs follow the
same pattern: assume a violation exists in some execution 75 of Gorilla running
in GM; map that execution to 7, = REORG(776) in GM+; then, map 7/ again to
ns = INTERPRET(y}) in SM+; and, finally, rely on the fact that these mappings

ensure that correct nodes in 75 and good nodes in 7 reach the same decisions

166

in the same steps to derive a contradiction.

Lemma 4. Consider an arbitrary Gorilla execution ng, and n;, = REORG(ng). If a
correct node p decides a value v at step s in ng, then p’s corresponding node p* decides v

at step s in ng.

Proof. Consider any execution 7, in GM and 7}, = REORG(776) in GM+.

Consider a correct node p that decides a value v at step s in 7. Consider
the message m = (r, v, priority, uCounter, M, nonce, vdf) that p sends right after it
decides. Note that by Gorilla protocol, this is the first step that p ever collects at
least 7 messages for round (r— 1) and priority > 67 +4. By Lemma2 p* receives
and sends the same messages as p in the same steps. Therefore, s is also the first
step that p* collects at least 7 messages for round (r — 1), and p* sends m at

step s. Therefore, p* must also have decided v at step s. o

Lemma 5. Consider any execution ng in GM. If an execution n¢ in SM+ is an in-
terpretation of an execution n, = REORG(1g) in GM+, then the following statements

hold:

1. If a correct node p decides a value v at step s in i, then the corresponding p,

decides v at step s in ng.

2. Consider the first message m = (r,v, priority, uCounter, M, nonce, vdf) that p
generates for round r. Let the step when m is generated be s. If uCounter is 0,

then p randomly chooses value v as the proposal value at step s in nj.

Proof. Consider any execution 7, in GM. Consider execution 77, = REORG(7) in

GM-+, and 7§ in SM+ is an interpretation of 7.

167

Proof for Statement (1): Consider a correct node p that decides a value v at step
s in nf. Consider the message m = (r,v, priority, uCounter, M, nonce, vdf)
that p sends right after it decides. Note that by Gorilla protocol, this is
the first step that p ever collects at least 7 messages for round (r — 1)
and priority > 67 + 4. Since n¢ is an interpretation of 7}, by Defini-
tion [9, p receives the equivalent messages received by p in the same
steps. Therefore, s is also the first step that p collects at least 7" messages
for round (r — 1). Note that by definition of equivalence, p sends 71 =
(p, -, r, v, priority, uCounter, M) at s with priority > 67 + 4. Then p must also

have decided v at step s.

Proof for Statement (2): Consider the first message m = (r,v, priority =
0, uCounter = 0, M, nonce, vdf) that p generates for round r, and assume m
is generated at step s. By the definition of equivalence, p sends 71 =
(P, -, r,v, priority = 0,uCounter = 0, M) at s in n{, and 7 is also the first
message p sent for round r. Since uCounter is 0, v is chosen based on a coin
toss by Sandglass protocol. Therefore, p must have flipped a coin at step s

and the result is v.

Theorem 2. Gorilla satisfies agreement in GM.

Proof. By contradiction, assume that there exists a Gorilla execution 75 in GM
that violates agreement. This means that there exist two correct nodes p; and
D2, two steps s; and s,, and two values v, # v, such that p, decides v, at s,
and p, decides v, at s5,. Consider i, = REORG(75). According to Lemma @ 12

decides v, at s; and p; decides v, at s,, in .. Now, consider 1 = INTERPRET(7)).

168

According to Lemma 5, p7 decides v, at s; and p; decides v, at s,, in 5. How-
ever, this contradicts the fact Sandglass satisfies agreement in SM+ (Theorem 1)).

Therefore, Gorilla satisfies agreement in GM. o

Theorem 3. Gorilla satisfies validity in GM.

Proof. By contradiction, assume that there exists a Gorilla execution 7, such
that (i) all nodes that ever join the system have initial value v; (ii) there are no

Byzantine nodes; and (iii) a correct node p decides v' # v.

Since GM+ is an extension of GM, s conforms to GM+. According to Defi-

nition e = ¢ in GM+ is trivially a reorg of n;. Consider 1 = INTERPRET(7)).

By the construction of the INTERPRET mapping (in Lemma [3), good nodes
in n{ have the same initial values as their corresponding correct nodes in 7.
Furthermore, since there are no Byzantine nodes in 7}, there are no defective
nodes in 5} by Definition [} Therefore, by Validity of Sandglass in SM+ (Theo-
rem [I), no good node decides v' # v. However, by Lemma {4 and Lemma 5 p
decides v/ # v, which leads to a contradiction. Therefore, Gorilla satisfies valid-

ity in GM. O

B.4 Liveness

Similar to the safety proof, the liveness proof proceeds by contradiction: it starts
with a liveness violation in Gorilla, and maps it to a liveness violation in Sand-

glass.

Formalizing the notion of violating termination with probability 1 requires

169

specifying the probability distribution used to characterize the probability of
termination. To do so, we first have to fix all sources of non-determinism [2} 4,
27]. For our purposes, non-determinism in GM and GM+ stems from correct
nodes, Byzantine nodes and their behavior; in SM+, it stems from good nodes,

defective nodes and the scheduler.

For correct, good, and defective nodes, non-determinism arises from the
joining /leaving schedule and the initial value of each joining node. For Byzan-
tine nodes in GM and GM+, fixing non-determinism means fixing their action
strategy according to the current history of an execution. Similarly, fixing the
scheduler’s non-determinism means specifying the timing of message deliv-
eries and the occurrence of benign failures, based on the current history. We,
therefore, define non-determinism formally in terms of an environment and a

strategy.

To this end, we introduce the notion of a message history, and define what it
means for a set of messages exchanged in a given step to be compatible with the

message history that precedes them.

Definition 10. For any given execution in GM and GM+ (resp., SM+), and any step s,
the message history up to s, MH, is the set of (m, p, s’) triples such that p is a correct

node (resp., good node) and p receives m at s’ < s.

Definition 11. We say a set MP,., of (m, p, s+1) triples is compatible with a message
history up to s, MH, if there exists an execution such that for any (m,p,s + 1) €

MP,1, the correct node (resp., good node) p receives m at step (s + 1).

Definition 12. An environment & in GM and GM+ (resp., SM+) is a fixed join-
ing/leaving schedule and fixed initial value schedule for correct nodes (resp., good and

defective nodes).

170

Definition 13. Given an environment &, a strategy Og for the Byzantine nodes (resp.,
scheduler) in GM and GM+ (resp., SM+) is a function that takes the message his-
tory MH s up to a given step s as the input, and outputs a set MP,, that is compatible
with MH,.

Before proceeding, there is one additional point to address. The most gen-
eral way of eliminating non-determinism is to introduce randomness through a
tixed probability distribution over the available options. However, the follow-
ing lemma, proved in %, establishes that Byzantine nodes do not benefit from

employing such a randomized strategy.

Lemma 6. For any environment &, if there exists a randomized Byzantine strat-
egqy for Gorilla that achieves a positive non-termination probability, then there exists a
deterministic Byzantine strategy for Gorilla that achieves a positive non-termination

probability.

Proof. Let us fix the environment &. Consider a randomized Byzantine strat-
egy Og that achieves a positive non-termination probability. We omit & from
the subscript for brevity. Denote the non-termination event in He with NT,
ie., Py (NT) > 0. For brevity, we drop He from the subscripts for the proba-

bilities.

We provide an inductive proof. Consider the first time that a Byzantine node
takes a randomized action. This node can only choose from a countable set of
actions: sending a message to a node or calculating a unit of VDEF. Let us call this
set of actions A = {A,A,,...}. We have P(NT) = Y, P(A)P(NT|A;). Now, since
P(NT) > 0, there should exist an A; such that P(NT|A;) > 0, i.e., the Byzantine

nodes could have achieved positive non-termination probability by determinis-

171

tically taking the action A;. Similarly, for every further randomized action with
execution prefix ¢, and with the action choices A" = {A], A}, ...}, if P(NT|¢) > 0,
then there should exist an A! such that P(NT|¢,A}) > 0. Repeating this process,
we can carve a deterministic strategy from @, such that non-termination still has

a positive probability. o

Since the output vdf of a call to the VDF oracle is a random number, the (vdf
mod 2) operation in line 20| of Gorilla is equivalent to tossing an unbiased coin.
Given a strategy ©¢/!| the nodes might observe different coin tosses as the exe-
cution proceeds; thus, the strategy specifies the action of the Byzantine nodes
for all possible coin toss outcomes. The scheduler’s strategy in SM+ is similarly
specified for all coin toss outcomes. Therefore, once a strategy is determined, it
admits a set of different executions based on the coin toss outcomes; we denote
it by Hg. Specifically, a strategy determines an action for each outcome of any

coin toss.

Given a strategy O, we can define a probability distribution Py, over Hg. For
each execution 7 € Hg, there exists a unique string of zeros and ones, repre-
senting the coin tosses observed during 5. Denote this bijective correspondence
by COINS : Hg — {0, 1}* U {0, 1}, and the probability distribution on the coin
toss strings in COINS(Hg) by PHG. For every event E C Hp, if COINS(E) is mea-
surable in COINS(Hp), then Py, (COINS(E)) is well-defined; thus, Py, (E) is also
well-defined and Py, (E) = Py,(COINS(E)). We denote Py, as the probability

distribution induced over Hg by its coin tosses.

Equipped with these definitions, we can formally define termination with

!When it is clear from the context, we will omit the environment from the subscript of the
strategy.

172

probability 1.

Definition 14. The Gorilla protocol terminates with probability 1 iff for every environ-
ment & and every Byzantine strategy © based on &, the probability of the termination

event T in He, i.e., Py (T), is equal to 1.

This definition gives us the recipe for proving by contradiction that Gorilla
terminates with probability 1. We first assume there exists a Byzantine strat-
egy O that achieves a non-zero non-termination probability, and map this strat-
egy through the REORG and INTERPRET mappings to a scheduler strategy A that
achieves a non-zero non-termination probability in SM+. However, A cannot ex-

ist, as the Sandglass protocol terminates with probability 1 in SM+ (Theorem 1)).

Lemma 7. If there exists an environment & and a Byzantine strategy ®g in GM that
achieves a positive non-termination probability, then there exists an environment &
and a Byzantine strateqy Wg in GM+ that also achieves a positive non-termination

probability.

Proof. Assume there exist an environment & and a Byzantine strategy g in GM
that achieves a positive non-termination probability. Consider the REORG map-
ping. Since, according to Lemma |2} the joining/leaving and initial value sched-
ules for correct nodes remain untouched by the REORG mapping, we just

set & = &. In the rest of the proof, we omit the environments for brevity.

We now show that the strategy ¥ exists, and is in fact the same as ©. For
brevity, let Rg denote REORG(Hg), and consider any execution n in He. By
Lemma QL correct nodes in 7 receive the same messages, at the same steps, as
the correct nodes in REORG(77) and, moreover, the coin results in 5 are exactly

the same as the ones in REORG(77). Thus, the message history of correct nodes

173

up to any step s in 77 is the same as the message history of correct nodes up to
the same step in REORG(#). In addition, because REORG(7) is a GM+ execution,
compatibility is trivially satisfied. Thus, we conclude that Byzantine nodes in Rg
follow the same strategy as in ®, conforming to the same coin toss process. Let

us denote this strategy with ‘P

Note that according to Lemma |4 whenever a correct node decides at some
step s in 7, its corresponding correct node in REORG(77) decides the same value
at the same step. Therefore, the set of non-terminating executions in Hg are
mapped to the set of non-terminating executions in Rg in a bijective manner.
Let us denote these sets as NTy and NTk, respectively. Since the same coin toss
process induces probability distributions Py, and Pg, on He and Re, respec-
tively, we conclude that Py, (NTy) = Pg,(NTg). Therefore, since Py,(NTy) > 0
by assumption, this concludes our proof, as we have shown the existence of a

strategy ¥ in GM+ that achieves a positive non-termination probability. o

We can now continue our proof by showing that the INTERPRET mapping
preserves the non-zero non-termination probability, which will help us prove
our desired liveness property, termination with probability 1. In order to do
this, we first introduce a machinery that allows us to prove the perseverance
the non-zero non-termination probability throughout the INTERPRET mapping.
However, first note that the INTERPRET mapping changes nothing in the execu-
tions, and only maps the “syntax” of GM+ to that of SM+. Therefore, the map-
ping does not introduce non-deterministic decision points for Byzantine nodes.
Furthermore, as shown in Lemma [3| actions by Byzantine nodes in any execu-
tion in GM+ are translated to actions by the network in SM+. Therefore, we

conclude that a Byzantine strategy ® in GM+ is mapped to a network strategy

174

in SM+. Abusing notation, let us show the mapped strategy with INTERPRET(®).

Definition 16. Given strateqy @ for Byzantine nodes (the scheduler message delivery),
let NTg be the set of executions that do not terminate. Moreover, let us define NT;,
to be the event where the correct (good) node i joins, never leaves and never decides.
Similarly, for every n € N we define NTg' to be the event where the correct (good) node

i joins, does not leave, and does not decide within the first n steps of the execution.

First, note that we can enumerate the correct/good nodes since they are
countable. Second, note that our definition of termination in Section|4.1|implies

NTg = U2 NT{.

Definition 17. Given a strategy ® for Byzantine nodes (the scheduler message deliv-
ery) in GM+ (SM+), and a correct (good) node i, we define the random variable X, for

each n € Hg as follows:

. 1 If i joins, never leaves, and never decides during n,
Xo(n) =
0 Otherwise.

o0
n=1

Furthermore, let us define the random variables {Xg'}*> | as follows:

, 1 If i joins, does not leave, and does not decide within the first n steps during n,
Xo (1) =
0 Otherwise.

Lemma 23. For every strategy ©, every correct/good node i € N, and every n € He, we

have lim, ., X5'(7) = X5 (), i.e., X' converges (almost) surely to X,

Proof. Consider any execution € Hg. If node i joins, never leaves, and never

decides during 7, then for every n we have X () = X(’;’i (m) = 1.

175

If node i joins and leaves without deciding, then there exists a step n; € N in
which the node leaves. Therefore, for every n > n;, we have Xj(n) = X’Cf)’i(n) = 0.
If node i joins and decides during 7, then there exists an n; € N such that node i

decides at step n;. Therefore, for every n > n; we have X (n) = X('f)’i(n) =0.

Based on Lemma@ and the dominated convergence theorem [25], we have

the following lemma.

Lemma 24. For every strategy © and every node i we have lim,,. E{X}'} = E{XL}.

Proof. Based on Lemma [23| the sequence of random variables {X};'} converges
pointwise to X.. Furthermore, it is clear that every X{' is non-negative and
bounded from above by 1. This satisfies the conditions required for the domi-

nated convergence theorem, thus the theorem tells us lim,_,., £ {X(’Z)’i} = E{X;}. O

Lemma 25. For every strategy W in GM+, there exists a strategy A in SM+ such

that Hy = {INTERPRET(n)|n € Hy}.

Proof. We show that the strategy A exists, and is in fact the same as ¥. For
brevity, let Iy denote INTERPRET(Hy), and consider any execution n in Hy.
According to Lemma [3, correct nodes in 7 receive the same messages, at the
same steps, as the good nodes in INTERPRET(7). Thus, the message history
up to any step s in 75 is the same as the message history up to the same step
in INTERPRET(7). In addition, since INTERPRET(7) is an actual SM+ execution,
compatibility is trivially satisfied. Thus, we conclude that the executions in Iy

follow the same strategy as in . Naming this strategy A finishes the proof.

176

Lemma 8. If there exists an environment & and a strategy ¥ for Byzantine nodes
in GM+ that achieves a positive non-termination probability, then there exists an en-
vironment & and a scheduler strategey Ag in SM+ that also achieves a positive non-

termination probability.

Proof. Let us assume that there exists an environment & and a Byzantine strat-
egy Og in the Gorilla protocol that leads to a positive non-termination probabil-
ity. According to Lemmal7] there exists a strategy ¥ in GM+ that achieves a pos-
itive non-termination probability, in environment &. Consider the INTERPRET
mapping. Since, according to Lemma |§L the joining/leaving and initial value
schedules for correct nodes are bijectively mapped by the INTERPRET mapping
to the joining/leaving and initial value schedules of the good nodes, respec-
tively, we just set & = &. In the rest of the proof, we omit the environments for

brevity.

First, note that according to Lemma [5, the INTERPRET mapping preserves
all of the coin tosses in Hy. Moreover, for a given execution 1 € Hy, the same

lemma tells us that INTERPRET(77) might include more coin tosses than those in 7.

Consider A = INTERPRET(V), based on Lemma Let us also define the
events NTy, NT!, NT}', NTo,NT!, and NT}' based on Definition for the
strategies ¥ and A. Since Py, (NTy) = Py, (U2 NT, fp), using the union bound we
have Py, (NTy) < Y72, Pu,(NTY). Now, ¥ achieves a positive non-termination
probability, i.e., Py, (NTy) > 0. Therefore, there should exist some i* € N such
that Py, (N Tf;) > 0, since otherwise we would have Py, (NTy) = 0 based on the
union bound. We now define the random variables X, and X\'{’;i* as in Defini-
tion and based on Lemma 24 we have lim,_., E{X};} = E{X.}. Similarly,

we define the random variables X’ and X}", and once again Lemma 24| tells us

177

lim, e E(X}"} = E{(X}.

Based on Definition |16, we know that for every n, we have NT" c NT;™"
and NT?" ¢ NT;™'"". Therefore, we have E{X})} = Py, (NT}") < Py (NT3) =
E{X;™") and E(X}) = Pu (NT) < Py (NT) = E(X3"). Since the increas-
ing sequence {E{Xl’;;"*}};’f:1 converges to E{Xf;,} = Py, (N Tl’;) > 0, there should ex-
ist a step n* such that Py, (N TQ’,*”'*) = E{Xfl’,*’i*} > 0. Now, given n*, let us con-
sider Py, (N TI’{*’i*) = E{X/’(*’i*}. This value is computed based on the first n* steps
of the executions in H,. Based on Lemma 5, we know that these executions con-
tain all of the coin tosses happening in the first n* steps of the corresponding
executions in Hy. Moreover, they might contain more coin tosses as explained
above. Therefore, if the probability of the event NT}," in Hy is positive, the
probability of the corresponding event N Tf”'* in H, should also be positive,
ie., E{Xf”'*} > 0. Since the sequence {E{XT*}}ZL is increasing with n and con-
verging to E {XX}, we should therefore have E {Xi} > 0. It immediately follows

that Py, (NTY) = E{X\} > 0.

Finally, since NT{ c NT,, we should have 0 < Py, (NT%) < Py, (NT). This
means that A is a scheduler strategy that achieves positive non-termination

probability, and finishes our proof.

Theorem 4. The Gorilla protocol terminates with probability 1.

Proof. By contradiction, assume that there exista GM environment and a Byzan-
tine strategy ® in Gorilla that achieve a positive non-termination probability.
By Lemma [/} there exist a GM+ environment and a strategy ¥ for the Byzan-

tine nodes in GM+ that achieve a positive non-termination probability. Simi-

178

larly, by Lemmalg] there exists an SM+ environment and a scheduler strategy A
in SM+ that achieve a positive non-termination probability. But this is a con-
tradiction, since Sandglass terminates with probability 1 in SM+ (Theorem [1).
Thus, Byzantine strategy ® cannot force a positive non-termination probability;

Gorilla terminates with probability 1. o

179

BIBLIOGRAPHY

[1] Ittai Abraham, Dahlia Malkhi, et al. The blockchain consensus layer and
bft. Bulletin of EATCS, 3(123), 2017.

[2] James Aspnes. Randomized protocols for asynchronous consensus. Dis-
tributed Computing, 16(2):165-175, 2003.

[3] James Aspnes, Gauri Shah, and Jatin Shah. Wait-free consensus with in-
finite arrivals. In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 524-533, 2002.

[4] Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. Foundations of prob-
abilistic programming. Cambridge University Press, 2020.

[5] Michael Ben-Or. Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols. In Proceedings of the Sec-
ond Annual ACM Symposium on Principles of Distributed Computing, pages
27-30. ACM, 1983.

[6] Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. Verifiable
delay functions. In Annual international cryptology conference, pages 757—
788. Springer, 2018.

[7] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
OSDI, volume 99, pages 173-186, 1999.

[8] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM), 43(2):225-267,
1996.

[9] Chao Chen and Fangguo Zhang. Verifiable delay functions and delay en-
cryptions from hyperelliptic curves. Cybersecurity, 6(1):54, 2023.

[10] Bernardo David, Peter GaZi, Aggelos Kiayias, and Alexander Russell.
Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 66-98. Springer, 2018.

[11] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Veri-
tiable delay functions from supersingular isogenies and pairings. In Ad-
vances in Cryptology—ASIACRYPT 2019: 25th International Conference on the

180

Theory and Application of Cryptology and Information Security, Kobe, Japan, De-
cember 812, 2019, Proceedings, Part I 25, pages 248-277. Springer, 2019.

[12] Soubhik Deb, Sreeram Kannan, and David Tse. Posat: Proof-of-work avail-
ability and unpredictability, without the work. In Financial Cryptography
and Data Security: 25th International Conference, FC 2021, Virtual Event, March
1-5, 2021, Revised Selected Papers, Part 1I 25, pages 104-128. Springer, 2021.

[13] Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod
Viswanath, Xuechao Wang, and Ofer Zeitouni. Everything is a race and
Nakamoto always wins. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 859-878, 2020.

[14] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing, 12(4):656—-666, 1983.

[15] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM), 35(2):288-323,
1988.

[16] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk
mail. In Annual International Cryptology Conference, pages 139-147. Springer,
1992.

[17] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility
of distributed consensus with one faulty process. Technical report, MAS-
SACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCI-
ENCE, 1982.

[18] Forbes. Crypto prices, 2024. Accessed: 2024-06-14.

[19] Eli Gafni and Giuliano Losa. Brief announcement: Byzantine consensus
under dynamic participation with a well-behaved majority. In 37th Interna-
tional Symposium on Distributed Computing (DISC 2023). Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik, 2023.

[20] Eli Gafni, Michael Merritt, and Gadi Taubenfeld. The concurrency hier-
archy, and algorithms for unbounded concurrency. In Proceedings of the

twentieth annual ACM symposium on Principles of distributed computing, pages
161-169, 2001.

[21] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone

181

protocol: Analysis and applications. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 281-310.
Springer, 2015.

[22] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the 26th symposium on operating systems principles, pages
51-68, 2017.

[23] Dongning Guo and Ling Ren. Bitcoin’s latency-security analysis made
simple. In Proceedings of the 4th ACM Conference on Advances in Financial
Technologies, pages 244-253, 2022.

[24] Maurice Herlihy. Blockchains and the future of distributed computing. In
Proceedings of the 2017 ACM Symposium on Principles of Distributed Comput-
ing (PODC '17), page 155, August 2017. Keynote Address.

[25] Jean Jacod and Philip Protter. Probability essentials. Springer Science &
Business Media, 2004.

[26] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding pro-
tocols. In Secure Information Networks, pages 258-272. Springer, 1999.

[27] Benjamin Lucien Kaminski. Advanced weakest precondition calculi for proba-
bilistic programs. PhD thesis, RWTH Aachen University, 2019.

[28] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander
Spiegelman. All you need is DAG. In Proceedings of the 2021 ACM Sym-
posium on Principles of Distributed Computing, pages 165-175, 2021.

[29] Rami Khalil and Naranker Dulay. Short paper: Posh proof of staked hard-
ware consensus. Cryptology ePrint Archive, 2020.

[30] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain pro-
tocol. In Annual international cryptology conference, pages 357-388. Springer,
2017.

[31] Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method
to analyze blockchain consistency. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 729-744, 2018.

182

[32] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Ed-
mund Wong. Zyzzyva: speculative Byzantine fault tolerance. Communica-
tions of the ACM, 51(11):86-95, November 2008.

[33] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, 1978.

[34] Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems (TOCS), 16(2):133-169, 1998.

[35] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Com-
puting Column) 32, 4 (Whole Number 121, December 2001), pages 51-58, 2001.

[36] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382—401, 1982.

[37] Andrew Lewis-Pye and Tim Roughgarden. Byzantine generals in the per-
missionless setting. arXiv preprint arXiv:2101.07095, 2021.

[38] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko
Vukolic. Xft: Practical fault tolerance beyond crashes. In OSDI, pages 485
500, 2016.

[39] Jieyi Long. Nakamoto consensus with verifiable delay puzzle. arXiv
preprint arXiv:1908.06394, 2019.

[40] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[41] Dahlia Malkhi, Atsuki Momose, and Ling Ren. Towards practical sleepy
bft. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pages 490-503, 2023.

[42] Michael Mirkin, Lulu Zhou, Ittay Eyal, and Fan Zhang. Sprints: Intermit-
tent blockchain pow mining. Cryptology ePrint Archive, 2023.

[43] Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. Cryp-
tology ePrint Archive, 2022.

[44] Tal Moran and Ilan Orlov. Simple proofs of space-time and rational proofs
of storage. In Annual International Cryptology Conference, pages 381-409.
Springer, 2019.

183

[45] Achour Mostefaoui, Michel Raynal, and Frédéric Tronel. From binary con-
sensus to multivalued consensus in asynchronous message-passing sys-
tems. Information Processing Letters, 73(5-6):207-212, 2000.

[46] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec
2008. Accessed: 2015-07-01.

[47] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain pro-
tocol in asynchronous networks. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 643—673. Springer,
2017.

[48] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, pages 380—409. Springer, 2017.

[49] Krzysztof Pietrzak. Simple verifiable delay functions. In 10th innovations in
theoretical computer science conference (itcs 2019). Schloss-Dagstuhl-Leibniz
Zentrum fur Informatik, 2019.

[50] Moritz Platt and Peter McBurney. Sybil in the haystack: A comprehensive
review of blockchain consensus mechanisms in search of strong sybil attack
resistance. Algorithms, 16(1):34, 2023.

[51] Michael O Rabin. Randomized byzantine generals. In 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983), pages 403—409. IEEE,
1983.

[52] Fred B Schneider. Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299-319,
1990.

[53] Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asyn-
chronous consensus. In International Symposium on Distributed Computing,
pages 438-450. Springer, 2008.

[54] TK Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Distributed Computing, 2(2):80-94, 1987.

[55] Benjamin Wesolowski. Efficient verifiable delay functions. In Advances
in Cryptology—EUROCRYPT 2019: 38th Annual International Conference on

184

the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part III 38, pages 379—407. Springer, 2019.

[56] Gavin Wood et al. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper, 151(2014):1-32, 2014.

[57] Ronghua Xu and Yu Chen. Fairledger: a fair proof-of-sequential-work
based lightweight distributed ledger for iot networks. In 2022 IEEE In-
ternational Conference on Blockchain (Blockchain), pages 348-355. IEEE, 2022.

[58] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai
Abraham. Hotstuff: BFT consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Comput-
ing, pages 347-356, 2019.

185

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Contributions
	Overview

	Background
	Consensus protocols
	Nakamoto's blockchain protocol
	Nakamoto's protocol: a traditional Consensus perspective
	Ben-Or's classic consensus protocol
	Reframing Ben-Or's consensus protocol in terms of priority
	Verifiable Delay Function

	Sandglass
	Model
	Protocol
	Selecting the Threshold
	Protocol Mechanics

	Correctness: Overview
	The Scaffolding
	Agreement
	Termination

	Gorilla Sandglass
	Model
	Gorilla
	Comparing Sandglass and Gorilla

	Correctness
	The Main Story, and How it Fails
	A New Beginning
	Liveness

	Related Work
	Conclusion
	Correctness Of Sandglass
	Validity
	Scaffolding
	Agreement
	Termination

	Gorilla Correctness
	Sandglass Plus
	The SM+ Model
	Sandglass is Correct in SM+

	Scaffolding
	Safety
	Liveness

	Bibliography

