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Nakamoto’s consensus protocol, known for operating in a permissionless model

where nodes can join and leave without notice. However, it guarantees agree-

ment only probabilistically. Is this weaker guarantee a necessary concession to

the severe demands of supporting a permissionless model? This thesis shows

that it is not with the Sandglass and Gorilla Sandglass protocols.

Sandglass emerges as the first permissionless consensus algorithm that

transcends Nakamoto’s probabilistic limitations by guaranteeing deterministic

agreement and termination with probability 1, under general omission failures.

It operates under a hybrid synchronous communication model, where, despite

the unknown number and dynamic participation of nodes, a majority are con-

sistently correct and synchronously connected.

Further building on the framework of Sandglass, Gorilla Sandglass is the

first Byzantine fault-tolerant consensus protocol that preserves deterministic

agreement and termination with probability 1 within the same synchronous

model adopted by Nakamoto. Gorilla addresses the limitations of Sandglass,

which only tolerates benign failures, by extending its robustness to include

Byzantine failures. We prove the correctness of Gorilla by mapping executions

that would violate agreement or termination in Gorilla to executions in Sand-

glass, where we know such violations are impossible. Establishing termination

proves particularly interesting, as the mapping requires reasoning about infinite

executions and their probabilities.
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CHAPTER 1

INTRODUCTION

The publication of Bitcoin’s white paper [46], besides jump-starting an

industry whose market capitalization, according to Forbes [18] was valued

at $2.5T in June 2024, presented the distributed computing community with

a fundamental question [24]: how should the agreement protocol at the core of

Nakamoto’s blockchain construction (henceforth, Nakamoto’s Consensus or NC)

be understood in light of the combination of consensus and state machine repli-

cation [33, 52] that the community has studied for over 30 years? The similari-

ties are striking: in both cases, the goal is to create an append-only distributed

ledger that everyone agrees upon, which NC calls a blockchain.

But so are the differences. Unlike traditional consensus algorithms, where

the set of participants n is known and can only be changed by running an ex-

plicit reconfiguration protocol, Nakamoto’s consensus is permissionless: it does

not enforce access control and allows the number and identity of participants

to change without notice. It only assumes that the computing power of the en-

tire system is bounded, which effectively translates to assuming the existence

of an upper bound N on the number of participants; and that, at all times. the

majority of the computing power be controlled by correct participants.

To operate under these much weaker assumptions, NC adopts a new mech-

anism for reaching agreement: since the precise value of n is unknown, NC

forsakes explicit majority voting and relies instead on a Proof of Work (PoW) lot-

tery mechanism [16, 26], designed to drive agreement towards the blockchain

whose construction required the majority of the computational power of all par-

ticipants. With PoW, a process can work for a short while and probabilistically
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succeed in solving a puzzle. Finally, whereas traditional consensus protocols

guarantee agreement deterministically, NC can do so only probabilistically; fur-

thermore, that probability approaches 1 only as termination time approaches

infinity. Is settling for these weaker guarantees the inevitable price of running

consensus in a permissionless setting?

Some attempts have been made to settle this question. Lewis-Pye and

Roughgarden showed that deterministic and permissionless consensus cannot

be achieved in a synchronous network in the presence of Byzantine failures [37].

Nonetheless, previous work (§5) has achieved deterministic safety and termina-

tion with probability 1 under different models. Pass et al. propose the Sleepy

Model [48], where participants join and leave (“sleep”); the model assumes a

public key infrastructure (PKI), and guarantees of the consensus protocol pre-

sented for this model are as probabilistic as those of pure proof of work. Mo-

mose et al. [43] guarantee termination only if the set of processes stabilizes.

Malkhi et al. [41] and Losa et al. [19], while leveraging either authenticated chan-

nels or digital signatures, propose a solution with constant expected latency.

However, since the attempts above either limit Byzantine behavior, restrict

how nodes join and leave, or rely on authentication, it is still unclear whether

it is possible to achieve deterministic safety and ensure termination with prob-

ability 1 in a fully permissionless setting without these constraints.

We answer this question in the affirmative by first introducing Sandglass,

a permissionless consensus algorithm that ensures deterministic agreement and

achieves termination with probability 1 within a hybrid-synchronous benign

model. We then build on Sandglass by introducing Gorilla Sandglass, which

extends the same guarantees to a general synchronous Byzantine model.
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1.1 Contributions

In summary, this thesis makes the following contributions:

• It formalizes Nakamoto’s permissionless protocol in the vocabulary of

traditional consensus. Nakamoto’s blockchain protocol is structured as a

chain of blocks, where each block contains a hash of the content of the pre-

ceding block, thus, in effect, pointing to its immediate predecessor. This

design choice, introduced to protect the integrity of the data stored in the

blockchain, has significant implications on how NC can be understood as

a consensus protocol.

Intuitively, NC can be seen as running multiple instances of consensus,

with the blockchain playing the role of the consensus ledger. This intu-

ition, however, misses a key difference. When running traditional (re-

peated) consensus to fill a ledger, each of the consensus decisions needed

to fill the ledger is independent of the others; not so in NC, where each

new ledger entry must point back to all the entries that precede it.

Therefore, a more nuanced interpretation of NC as a consensus protocol

is needed. As detailed in Chapter 2, we argue that adding a new block b

in NC involves more than just starting a new instance of consensus to fill

the next entry of the ledger; it also, implicitly, results in proposing (again),

the blocks in the chain that b belongs to for the instances of consensus that

determine the content of the earlier entries of the ledger.

The process of proposing also differs from traditional consensus protocols,

where it typically involves explicit message exchanges. In Nakamoto’s

blockchain protocol, participants communicate only sporadically, remain-
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ing largely passive and silent unless they possess a valid proof of work.

However, as we explain in Chapter 2, even though participants do not

explicitly send proposal values, the mining work they quietly perform ef-

fectively amounts to proposing in all ongoing consensus instances.

Indeed, although NC is not typically understood as a round-based pro-

tocol, we argue that the addition of a new block to the chain can be seen

not just as the beginning of a new consensus instance, but as the start of

a new round for all the consensus instances responsible for deciding the

previous blocks in the chain. Thus, the “longest-chain wins” mechanism

is more than just a simple rule for extending the chain; it plays a crucial

role in signaling the progress of consensus.

• It exposes the connection between PoW and a voting mechanism that

can be implemented via message passing.

Once we frame Nakamoto’s blockchain protocol through the lens of con-

sensus, we can begin to unravel the role that PoW plays in facilitating

consensus.

In NC, receiving a longer chain signals that a participant has successfully

found a valid PoW. On the other hand, we have argued above that accept-

ing a longer chain in NC should be interpreted, in traditional consensus

terms, as entering a new round of consensus.

Typically, for a consensus participant to advance to a new round, some

condition must hold. In a synchronous system, that condition may be

the passage of a certain amount of time (the round’s length); in an asyn-

chronous system, it may be the receipt of messages from a quorum. In

our context, then, a natural question arises: when looking at NC from the

perspective of a traditional, round-based consensus protocol, what is the
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equivalent of receiving a valid PoW to enable a participant to move from

one round to the next?

This dissertation answers this question by introducing a novel approach

that expresses the work a participant performs to solve a cryptographic

puzzle in terms of messages sent by the participant; as a result, it becomes

possible to express the expected total amount of work needed for a group

of participants to solve a cryptographic puzzle (i.e., the PoW’s difficulty) as

a threshold of messages that need to be generated and received.

Although the idea of requiring the receipt of a threshold of messages (typ-

ically, one message from a majority of participants) to regulate passage

from one round to the next is common in asynchronous consensus proto-

cols, the approach we propose departs from it in significant ways. Specif-

ically, since we aim to develop a permissionless consensus protocol, in

which the number of participants is unknown and can change at all times,

it becomes impossible to condition progress on the receipt of a message

from a majority of participants: there is no way to know what that major-

ity, at any time, is!

Instead, our approach requires each participant, while executing in a

round, to continuously send and receive messages. Progress to the next

round occurs only after receiving a threshold of messages that is inde-

pendent of the number of participants currently in the system, but only

depends on the upper bound N on the number of participants.

This novel approach suggests a new way to leverage the assumption that

a majority of computing power is in the hands of correct participants:

those who do not receive messages from a majority will inevitably take

more time to reach the threshold than those who do, and thus start losing
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ground on them. And, unlike PoW, who can only give probabilistic guar-

antees that the majority of correct nodes will be first to generate a block

(move to a new round), this mechanism does not allow participants that

have fallen behind to recover lost ground through a sequence of strokes of

luck.

• It introduces Sandglass, the first protocol that achieves deterministic

agreement in a permissionless setting under hybrid synchrony. Sand-

glass is a novel protocol that achieves deterministic agreement in a permis-

sionless setting. It draws inspiration from both Nakamoto’s Proof of Work

(PoW) mechanism and Ben-Or’s classic consensus protocol [5]. Sandglass

operates within a hybrid synchronous network model and assumes a be-

nign failure model.

While its round-based structure resembles that of Ben-Or, Sandglass uses

the novel threshold mechanism discussed above to determine when a par-

ticipant can advance to a new round, eliminating the need to know the

number of participants.

In keeping with Ben-Or’s approach to ensuring safety, participants in

Sandglass give priority, when proposing, to the value they have seen being

unanimously proposed in the previous round. In Ben-Or, where progress

to the next round is only possible after receiving a message from a ma-

jority, a participant can decide as soon as it has seen the same unanimous

value being proposed for two consecutive rounds (i.e., the value reaches

priority 2). In Sandglass, where faulty nodes can still make progress with-

out receiving any messages from the correct majority, the priority of a

value must be much higher before it is safe for a process to decide on that

value. As we will see in Chapter 3, this stringent condition is necessary to
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ensure that even if faulty nodes temporarily keep pace with correct nodes,

they cannot overturn the decisions of the correct nodes.

• It introduces Gorilla Sandglass, the first protocol to achieve determinis-

tic safety and liveness with probability 1 in a permissionless Byzantine

model. Gorilla Sandglass builds on the approach of Sandglass. Sandglass

already defends against attacks such as ignoring messages and strategi-

cally choosing when to send messages to correct nodes. When moving to

the full Byzantine model, the major challenge left becomes controlling the

rate at which Byzantine nodes can send messages. To address this, Gorilla

Sandglass uses Verifiable Delay Functions (VDFs). These functions ensure

that all nodes can only send a message after a verifiable delay has elapsed,

thereby limiting the speed of generating messages.

• It introduces novel proof strategies.

In Sandglass The Sandglass proof diverges substantially from the typi-

cal proof style of traditional consensus protocols. In these protocols,

the number of participants is known: this knowledge makes it pos-

sible to enable mechanisms that prevent isolated faulty nodes, those

who only communicate with other faulty nodes (i.e., choose not to

receive messages from correct nodes, who are a majority) from mak-

ing progress. When the number of participants is unknown and can

constantly fluctuate, however, these mechanisms become unfeasible:

any fixed majority threshold may prove either too low to block the

progress of faulty participants (whenever the fluctuating number of

participants grows to twice the threshold or more) or too high to al-

low the progress of correct participants (whenever the number of cor-

rect participants is lower than the threshold).
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Instead of outright preventing the progress of isolated faulty nodes,

Sandglass’ novel mechanism guarantees that isolated faulty nodes

advance more slowly from round to round than correct nodes – even-

tually, they lag so far behind that they can no longer influence the

values proposed by correct nodes, thereby guaranteeing safety. Ad-

ditionally, the impossibility of relying on quorum intersection adds

complexity to the proof of termination. It becomes necessary to

demonstrate that faulty nodes, which may stubbornly propose con-

flicting values, do not impede the system’s liveness.

In Gorilla Sandglass We prove the correctness of Gorilla Sandglass by

reducing it to Sandglass: we show that any violation of safety and

liveness in Gorilla Sandglass would correspond to one in Sandglass.

Having proved that Sandglass is safe and terminates with probability

1, we then conclude that the same must hold for Gorilla.

To this effect, since both Sandglass and Gorilla executions proceed

over a sequence of steps, we would ideally be able to align at step

boundaries each Gorilla execution with a corresponding Sandglass

execution, in a way that ensures that any violation of safety or live-

ness in Gorilla would also occur in Sandglass.

However, the mapping is far from straightforward. For example, it

becomes necessary to address the possibility that Byzantine nodes

may act across step boundaries, interleaving VDF computations in-

stead of producing one VDF (and hence one message) at a time. A

further novel aspect of the proof comes up when proving termina-

tion – in particular, the challenge consists in proving that if a Gorilla

execution, once it has been aligned to an execution in Sandglass, ter-
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minates with probability 1, so does the pre-alignment Gorilla execu-

tion.

1.2 Overview

This thesis is structured as follows: Chapter 2 provides foundational knowl-

edge on Nakamoto’s blockchain protocol alongside Ben-Or’s probabilistic ter-

mination consensus protocol. Chapter 3 presents Sandglass, a novel algorithm

that ensures deterministic safety and termination with probability 1 within a

permissionless context. Chapter 4 introduces Gorilla Sandglass which incorpo-

rates a Verifiable Delay Function (VDF) cryptographic primitive to extend the

safety and liveness guarantees of Sandglass to a synchronous Byzantine model.

Chapter 5 discusses related work, and Chapter 6 concludes the thesis. The full

proof of Sandglass and Gorilla can be found in Appendix A and Appendix B,

respectively.
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CHAPTER 2

BACKGROUND

2.1 Consensus protocols

A consensus protocol addresses the challenge of ensuring that a set of nodes,

each starting with an initial value and communicating by sending messages

to one another, arrive at a unanimous, irreversible decision on the same value

despite potential failures.

Formally, consensus is specified in terms of three properties:

Validity: If all initial values are v and a correct node decides, it decides v.

Agreement: If a correct node decides on v, no correct node decides differently.

Termination: Every correct node eventually decides on a value.

Whether consensus can be achieved, and, if so, how and at what cost, de-

pends on timing and failure models [7, 34, 38, 40, 54].

Timing assumptions Consensus protocols can be designed to operate in either

asynchronous or synchronous systems.

In asynchronous systems (i) there is no upper bound on how long it takes

for a message to travel from a correct sender to a correct receiver; (ii) there is

no bound on the relative processing speed of the nodes in the system; and (iii)

the local clocks of these nodes are not synchronized. Any system that is not

asynchronous is synchronous: in these systems, it is easy to structure protocols
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as a sequence or rounds, each of length ∆, where ∆ is an upper bound of the

time needed for a message to travel between two correct nodes. A system does

not live in one of these two camps forever. In particular, partially synchronous

systems [15] operate asynchronously until some unknown Global Stabilization

Time (GST), whenceforth they are assumed to behave synchronously.

Failure assumptions A node is considered faulty if it deviates from its specifi-

cation; otherwise, it is correct. There are two fundamental ways in which such

deviations (or faults) can manifest.

Omission faults: A node fails to take actions it is supposed to take. These faults,

which are often referred to as benign, include crashes as well as less clear-

cut situations, such as when a node selectively fails to send or receive some

message.

Commission faults: A node takes actions that it is not supposed to take. These

faults, which are often referred as malicious, include, for example, situa-

tions when a node equivocates when performing a broadcast, sending dis-

tinct messages to different nodes.

The Byzantine failure model [15] allows faulty nodes to experience omission as

well as arbitrary commission failures.

In a synchronous system, consensus can be achieved even in the presence of

Byzantine failures, as long as f , the number of faulty nodes is less than a third

of n, the total number of nodes in the system.

In an asynchronous system, to the contrary, the celebrated FLP impossibility

result [17] establishes a sobering truth: no deterministic protocol can provide a
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solution to consensus, even if only a single node fails, and only by crashing.

Traditional attempts to sidestep FLP have focused either on strengthening

the model (by equipping each node with sufficiently powerful, if unreliable,

failure detectors [8]) or on weakening the problem (for example, by only guaran-

teeing Termination after GST [35], when the system is no longer asynchronous).

Ben-Or’s protocol [5] introduces a form of weakening particularly relevant

to the rest of this dissertation. By giving nodes the possibility of flipping a coin,

instead of insisting on a purely deterministic solution, this purely asynchronous

protocol guarantees safety (captured by Validity and Agreement) while promis-

ing Termination with probability 1.

2.2 Nakamoto’s blockchain protocol

Nakamoto’s blockchain protocol [46] introduces new and interesting dimen-

sions to the consensus problem. The goal of the protocol is to create the ab-

straction of a shared ledger. The ledger is simply an append-only log for storing

data: new items can only be added to the end of the ledger and no previous item

can be modified. The data recorded in the ledger consists of transactions–these

are typically financial transactions, but, more generally, they are operations that

cause atomic changes to the state whose evolution the ledger tracks. For perfor-

mance reasons, the ledger does not grow at the granularity of individual trans-

actions; rather, an entry of the ledger records a group of transactions batched

in a block, which (hence the name blockchain used to characterize the resulting

ledger).
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The need for consensus arises from the need to guarantee agreement on

which block is associated with which entry of the ledger.

Model Traditional consensus protocols operate in a controlled environment:

the total number of nodes engaging in consensus is known, and, although up to

f nodes can fail, they cannot otherwise leave or join the protocol at will: partic-

ipation is regulated by some form of trusted authority. Consensus is typically

achieved by having participating nodes vote on their (current) preferred values,

which different protocols then aggregate in their own unique way to produce a

single consensus value.

Nakamoto’s protocol departs drastically from this traditional setting. It aims

to support fully permissionless participation. No authority controls who is al-

lowed to read from, verify the contents of, or append a new entry to the ledger.

Thus, the number of participating nodes is unknown, and nodes can join and

leave the protocol at will. 1

There are, however, assumptions that Nakamoto’s protocol does depend on

for correctness. First, the network must be synchronous [21, 31, 47]. Second,

there must exist a known upper bound on the amount of computational re-

sources that can, at any time, be used towards running the protocol [47]. Note

that, under the assumption that all participating nodes have identical compu-

tational power, this is equivalent to assuming a known upper bound on the

maximum number of nodes that can, at any point, be participating in the proto-

col. Without this assumption, an unbounded increase in computational power
1Nakamoto’s requirement that a majority of the system’s computational power be controlled

by correct nodes does, indirectly, pose some limit on a node’s freedom to change its membership
status.
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could lead to multiple participants solving the puzzle simultaneously, resulting

in divergent chains that prevent the system from achieving consensus. We re-

mark that assuming the existence of this upper bound says nothing about the

specific amount of computational power (or, similarly, about the number of par-

ticipants) used in running the protocol at any specific time, except that it is no

larger than the upper bound. Third, correct nodes should, at all times, control a

majority of the computational power used in running the protocol 2 Finally, all

nodes have access to a random oracle which, for any given input, produces a

unique value taken from a uniformly random distribution.

Protocol Nakamoto’s protocol addresses two main concerns in constructing a

blockchain.

The first is to ensure the blockchain’s integrity: once a block has been added

to the blockchain, it should not be possible to alter its content without the tam-

pering being detected. Thus, every block added to the ledger after the very first

block (referred to as the genesis block), stores a cryptographic hash of the previ-

ous block, which serves both as a backward pointer and as a guarantee of that

block’s integrity.

The second concern is more immediately tied to consensus. In a fully per-

missionless setting, nothing prevents a single party from participating in the

consensus protocol using arbitrarily many identities [50]; thus, traditional con-

sensus schemes that assign each participant equal voting rights can be easily

subverted by a party bent on obtaining a specific consensus outcome.
2Recent studies suggest that correct nodes should actually enjoy a slightly wider margin than

the smallest of majorities for correctness to hold.
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Nakamoto solves this problem by choosing as the consensus value the one

proposed by whoever is able to solve a Proof-of-Work (POW) puzzle (described

below).

The nodes that compete to solve the puzzle are called miners. Each of them

keeps a local version of the blockchain and attempts to extend it with a new

block NB that contains (i) a set of transactions and (ii) a pointer to the last block

in its local version of the blockchain.

To succeed, the miner needs to solve a puzzle. Specifically, for other correct

nodes to consider NB as successfully added to the blockchain, the miner needs

to find a value (the presumptive solution) such that, once NB (which includes

a set of transactions and a backward pointer to a previous block) and the pre-

sumptive solution are given together as input to the random oracle, the value

produced in output is lower than a given threshold.

The only known method to find a solution to this puzzle is through brute

force, i.e. by trying random values. Once a miner succeeds, they broadcast their

extended chain. If a node receives a longer chain than its current one, it adopts

this new chain — this mechanism is referred to as the longest-chain-wins rule.

A block is deemed decided once it is followed in the blockchain by a confir-

mation threshold of T additional blocks. In Bitcoin, the cryptocurrency that relies

on Nakamoto’s blockchain protocol, the threshold consists of five blocks. At this

threshold, the likelihood that Byzantine nodes, even if they constitute up to 10%

of the computing power, will be able to alter the chain to exclude a confirmed

block reduces to below 0.4% [23].
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Correctness The protocol probabilistically ensures agreement on an ever-

growing prefix of the chain. The chance of Byzantine nodes outpacing correct

nodes to “rewrite history” by producing a longer chain depends on their chance

to be faster at finding PoW solutions; since there is no faster way than brute force

to find a solution, that chance is proportional to the computing power they con-

trol. Here is where Nakamoto’s assumption that correct nodes control a major-

ity of computational power plays a crucial role: because of it, correct nodes are

more likely to find PoW solutions faster than Byzantine nodes bent on rewriting

history. As more blocks are added behind a block in a correct node’s chain, the

likelihood that Byzantine nodes can produce a longer alternative chain dimin-

ishes, solidifying the block’s permanence in the correct chains.

However, this level of assurance still falls short of a deterministic guaran-

tee: there always exists a probability, albeit small, that attackers might succeed

in overriding a given blockchain by producing a longer alternative chain. Fur-

thermore, for any protocol that terminates after a finite number of steps, that

probability is not 0.

2.3 Nakamoto’s protocol: a traditional Consensus perspective

In this section, we aim to interpret the entire process of a Nakamoto Consensus

(NC) execution through the framework of traditional consensus mechanisms.

Multiple consensus instances on a chain Nakamoto’s ledger abstraction is

a familiar one: it is at the core of state machine replication [33, 52], the most

general approach to build reliable distributed services.
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Figure 2.1: Consensus instances in Nakamoto

In that context, the goal is to determine the single total order in which correct,

deterministic replicas are to process clients’ requests. Each entry in the ledger

is decided by running an independent instance of consensus, where instance i

determines the content of the i-th entry. Multiple instances can execute concur-

rently, and the vagaries of network latency can cause later ledger entries to be

decided before earlier ones—this is not a problem, as long as correct replicas ex-

ecute the request held in the ledger’s i-th entry only after having executed those

held in the i → 1 entries that precede it.

Nakamoto’s ledger adds a twist to this picture: because in Nakamoto, every

block in the chain points to its unique predecessor, the instances of consensus

that decide the content of the different entries in the ledger are no longer inde-

pendent. A miner that, in consensus instance i, proposes a particular block b to

fill the i-th entry in the chain is implicitly participating in all preceding instances

of consensus: it is proposing to fill entry i → 1 with the block that b points back

to—and so on, recursively, until the very first entry of the ledger.

For example, in Fig 2.1, the node that generated the red block is effectively

proposing this block for Consensus Instance 3. By extending a particular chain,

it also proposes the green block for Consensus Instance 2 and similarly for the
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blocks preceding it.

Nakamoto Consensus as a round-based protocol It is useful to describe how

an instance of Nakamoto consensus converges on a decision as a round-based

process. Consider a block chain of length l → 1. All participants working on the

computational puzzle that must be solved to extend the chain with a new block

can be seen as engaged in the first round of the l→ th instance of consensus. Once

a correct participant p succeeds in extending the chain, it broadcasts a message

with the new chain to everyone, still within the first round of instance l. By

receiving and accepting this new chain, all correct participants (i) move to the

second round of instance l and (ii) enter the first round of consensus instance

l + 1.

In general, a participant working on extending a chain of length (l → 1) is in

the (l + 1 → i)-th round of the i-th consensus instance, for each 1 ↑ i ↑ l and the

messages it sends are to be interpreted, within each consensus instance 1 ↑ i ↑ l,

as having been sent in the (l + 1 → i)-th round of that instance of consensus.

This round-based perspective offers a natural interpretation of Nakamoto’s

longest-chain-wins rule.

Consider a Byzantine participant that intentionally ignores a longer chain of

length l broadcast by some correct participant and attempts instead to extend a

shorter chain of length-(l → 1). When the Byzantine node eventually succeeds in

generating a chain of length l and broadcasts it, this chain will be ignored by the

correct nodes under the longest-chain wins rule, because it is not longer than

the chains that correct nodes currently maintain.
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From a round-based perspective, this behavior is easy to justify. Correct

participants see the Byzantine-generated message as a first-round message of

the l-th consensus instance (and more generally, as a (l+1→i)-th round message of

the i-th consensus instance for each 1 ↑ i ↑ l). All correct participants, however,

have already advanced to the second round of the l-th consensus instance (and

similarly, to the (l + 2 → i)-th round of the i-th consensus instance, for each 1 ↑

i ↑ l).

Therefore, the longest-chain wins rule can be seen as acting essentially as a

mechanism for disregarding messages from past rounds in a traditional round-

based protocol.

Note that participants may skip certain rounds within a consensus instance.

For example, if a correct node that is extending a chain of length (l → 1) receives

a chain of length (l + 1), it progresses to the third round of the l-th consensus

instance and simultaneously enters the first round of (l + 2)-th consensus in-

stance. This occurs without the node ever being in the second round of the l-th

consensus instance.

Lottery voting In Nakamoto Consensus, the process for selecting proposal

values resembles a lottery voting mechanism. A key property of the puzzle

to be solved in order to extend a chain c of length l by some block b, is that

any unit of computing power has a constant probability of finding a solution.

Thus, each unit of computational power spent on solving that puzzle can be

seen as a lottery ballot with l + 1 values printed on it: the first l values read as

the corresponding block in the existing chain; the last value reads b.

Thus, the probability that a block b↓ will be selected as the proposal value

19



for the next round of a consensus instance i is proportional to the computing

power expended on the chain that either already holds b↓ in its entry i, or is

in the process of being extended by choosing a value for entry i—that is, it is

proportional to the number of ballots that read b↓ as their proposed value for

the appropriate consensus instance.

Note that even participating nodes extending different chains might have

the same block b in their ballot for the i-th consensus instance if their chains

share a prefix up to the i-th block.

We observe that NC’s approach to selecting proposal values for the next

round—randomly choosing from all ballots— is quite different from the alter-

native approach of first conducting a leader election and then adhering to the

leader’s proposals. The key distinction emerges when two puzzle solutions

are discovered almost simultaneously; in such cases, NC considers both pro-

posal values equally valid, whereas leader election mechanisms would treat the

leader’s decision as distinctly superior at all times.3 This characteristic aligns

NC more closely with consensus protocols like Ben-Or [5], which also allows

participants, in certain circumstances, to randomly select their proposal values,

and sets it apart from leader-based consensus protocols like Paxos [34], which

rely on a single leader’s decisions.

Decision Nakamoto Consensus uses a confirmation threshold T to determine

when a decision has been reached. Specifically, a block b at height k on the

longest chain is considered decided if there are at least T blocks following b

in the chain. From the perspective of the i-th consensus instance, all values
3The distinction cannot be fudged by treating the puzzle solving exercise as a leader election

protocol, since such protocol must produce a single leader.
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proposed from round (T + 1) on are its decision values.

Therefore, from the perspective of the i-th consensus instance, there are mul-

tiple ways of violating agreement:

Multiple Decisions by a Single Node : A correct node p proposes block b in

the j-th round of the i-th consensus instance, where j > T , and then pro-

poses a different block b↔ ! b in the ( j + 1)-th round of the same consensus

instance. This scenario leads p to decide multiple times on different val-

ues within the same consensus instance. This situation may occur when a

node, maintaining a chain of length at least i + T , receives a longer chain

where the i-th block differs from the one in its current chain.

Disagreement among Different Nodes : Agreement is also violated when a

correct node p proposes block b in the j-th round of the i-th consensus

instance, where j > T , and another correct node q proposes a different

block b↔ ! b in the same round of the same consensus instance. This re-

sults in p and q deciding on different values within the same consensus

instance. This situation may occur when two nodes have chains whose

suffixes diverge by more than the last T blocks.

2.4 Ben-Or’s classic consensus protocol

The Ben-Or binary consensus protocol (Protocol 1) circumvents the FLP impos-

sibility result by weakening the Termination clause of the specification of Con-

sensus: the guarantee that every correct node will eventually decide is only

given with probability 1.
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Protocol 1 Ben-Or Consensus Protocol [5]
1: vi ↗ inputi; r ↗ 0;
2: loop
3: broadcast (r, phase = 1, vi) ω Phase 1
4: wait until ↘n/2≃ + 1 messages from Phase 1 are received
5: if all the messages from Phase 1 have the same proposal v then ω Phase

2
6: broadcast (r, phase = 2, v)
7: else
8: broadcast (r, phase = 2,⇐)
9: wait until ↘n/2≃ + 1 messages from Phase 2 are received

10: if ⇒(r, 2, v ! ⇐) then
11: vi = v
12: else
13: vi = randomly pick one from V
14: if v ! ⇐ for all the messages from Phase 2 then
15: decide(v)
16: r = r + 1

Model Ben-Or’s protocol solves binary consensus in a permissioned setting

within an asynchronous network—that is, without loss of generality [45], par-

ticipants are limited to proposing either 0 or 1; the number n and identities of

participants are known; and there is no upper bound on message delivery times.

Ben-Or assumes that majority of the n participants are correct and that the f par-

ticipants who are faulty, where f < n/2, can suffer benign failures, i.e., general

omission failures, including crashes.

Protocol The protocol progresses in asynchronous rounds. Each round is

divided into two phases; in each phase, every non-faulty node broadcasts a

message and collects the messages sent by its peers in that phase. Because the

network is asynchronous and fewer than half of the nodes can fail, nodes do not

wait for more than a majority of responses.

In Phase 1 of each round (Line 3-4), each node broadcasts its current proposal
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value and waits for the values broadcast by a majority of nodes (including it-

self). If all these values are identical (i.e., if a majority is proposing the same

value), the node adopts that value (call it v) as its proposal for Phase 2 of the

round; otherwise, it adopts ⇐.

In Phase 2, each node broadcasts the proposal value adopted at the end of

Phase 1 (Line 5-8) and once again waits for the values broadcast by a majority

of nodes. There are three cases.

1. If a node receives only proposals consisting of the same value v ! ⇐,

(meaning that a majority of nodes report that they have each observed

a majority of nodes proposing v), then the node decides v (Line 14-15) and

retains v as its proposal value for Phase 1 of the next round.

2. If a node receives some ⇐ and some v (meaning that at least some node

observed a majority of nodes proposing v in Phase 1) then the node adopts

v as its proposal value for Phase 1 of the next round (Line 11).

3. If a node receives only ⇐ (meaning that a majority of nodes received con-

flicting proposal in Phase 1) then the node’s proposal value for Phase 1 of

the next round is selected at random (Line 13).

Correctness Ben-Or’s protocol guarantees Validity and Agreement, while en-

suring Termination with probability 1.

Validity If all nodes initially propose the same value v, each node can only

receive Phase 1 messages containing v. Consequently, in Phase 2, all nodes that

send a message (excluding those that crash, experience a send omission, or are

stuck in Phase 1 because of receive omission) will broadcast Phase 2 messages
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with v. By the end of Phase 2, all correct nodes will have collected a majority of

Phase 2 messages containing v, and will thus all decide v, satisfying Validity.

Agreement Suppose r is the earliest round that some correct node p decides,

and p decides v in round r. We need to show that all correct nodes will eventu-

ally decide v.

First, it is easy to see that no other correct node can decide something other

than v in round r. To decide v, p must have received a majority of messages

in Phase 2 of round r proposing v (Line 15); thus, since all majorities intersect,

in a benign failure model there cannot exist in that phase a majority proposing

some v↔ ! v. In fact, applying again the observation that all majorities intersect,

but this time on proposals received in Phase 1 of round r, it is impossible for

two distinct values v and v↔, both other than ⇐, to be proposed in Phase 2 of any

round.

Further, again because all majorities intersect, any node that in Phase 2 of

round r receives a majority of messages (in particular, every correct node) must

receive at least one of the messages proposing v that p received. Therefore, all

such nodes will adopt v as their proposal value for Phase 1 of the next round

(i.e., round (r + 1)) (Line 13).

Therefore, all nodes capable of moving to round (r + 1) will propose value v,

and will only receive Phase 1 messages proposing v. Then, all nodes that man-

age to send messages will broadcast Phase 2 messages proposing v. By the end

of Phase 2, all correct nodes will collect a majority of Phase 2 messages propos-

ing v, and thus decide v by the end of round (r + 1), satisfying Agreement.
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Termination We saw in our proof for Validity how, if all the nodes start with

the same proposal v in Phase 1 of round r, all correct nodes decide v (and thus

satisfy Termination) in that round. Therefore, Ben-Or’s protocol will only fail

to terminate if not all nodes propose the same value for an infinite number of

rounds.

Consider the probability that nodes will have the same proposal value in

round (r + 1) under different round r scenarios:

No non-⇐messages received in Phase 2 All nodes randomly select a value to

propose for round r + 1 (Line 13). The probability that they will select the

same value is non-zero.

Some non-⇐messages received in Phase 2 All nodes that receive a Phase 2

message with v will propose v in round r + 1. We showed in the Agree-

ment proof that it is impossible to receive a Phase 2 message with a value

different from v, other than ⇐. The probability that all nodes without a

non-⇐ Phase 2 message will randomly select v is also non-zero. Thus, the

probability that all nodes will select the same value is non-zero.

Therefore, regardless of what happens in round r, the probability that the

protocol will terminate in round (r+1) is non-zero, meaning the probability that

the protocol will never terminate is 0. Thus, Ben-Or’s protocol terminates with

probability 1.

25



2.5 Reframing Ben-Or’s consensus protocol in terms of priority

If we take a step back and examine the selection process of proposal and deci-

sion values in Ben-Or’s protocol, we observe that values endorsed by a majority

are selected as proposal values, and a value that receives majority support in

both phases of a round is chosen as the decision value. This progression, where

a value repeatedly endorsed by a majority is prioritized over others, forms the

core of how decisions are reached.

Sandglass and Gorilla (Chapter 3, 4) adopt this same principle of prioritizing

values that are continuously endorsed by a majority across multiple rounds. To

better understand and highlight this process, we introduce an explicit priority

variable and rewrite Ben-Or’s protocol to incorporate it. This variable counts

the number of consecutive phases in which a value is unanimously endorsed

by a majority. Intuitively, in Ben-Or’s protocol, when the priority of a value v

is 1, v is adopted as the proposal value for the next phase. If the priority of v

reaches 2, v is decided.

Making a value’s priority explicit reveals the remarkable similarity between

the two phases that constitute each round of Ben-Or’s protocol: in both phases,

the value with the higher priority is the one chosen to be proposed or decided.

Drawing out this similarity allows for a more streamlined presentation of the

protocol as a sequence of identical, elemental rounds no longer decomposed in

distinct phases. This reframed version of Ben-Or (see Algorithm 2) not only

is more concise, but also serves as an excellent foundation for the Sandglass

protocol, where, as we will see in Chapter 3, the explicit handling of priority

becomes pivotal in adapting consensus mechanisms to a permissionless setup.
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Protocol 2 Reframed Ben-Or Consensus Protocol with priority
1: vi ↗ inputi; r ↗ 0; priorityi ↗ 0
2: loop
3: broadcast (r, vi, priorityi)
4: wait until a set of ↘n/2≃ + 1 messages, Mi, is received
5: Consider the set of values, L, that have the largest priority.
6: Randomly pick any value v from L
7: vi = v
8: if v = vi for all the messages in Mi then
9: priorityi = min(r,vi,priority)⇑Mi(priority) + 1

10: else
11: priorityi = 0
12: if priorityi = 2 then
13: decide(vi)
14: r = r + 1
15: if r mod 2 == 0 then
16: priorityi = 0

Starting from round 0, even-numbered rounds correspond to the first phases

of the original protocol, and odd-numbered rounds correspond to the second

phases.

We now show that this new formulation is equivalent to the original one.

In the new formulation, the structure of each round is simple.

1. Nodes broadcast their proposal value with its associated priority.

2. Nodes wait to receive a majority of proposals.

3. Nodes select the value to be proposed in the next round by choosing ran-

domly among the received proposals with highest priority.

4. Nodes associate a priority with the selected value on the basis of criteria,

which we will discuss in a moment, chosen so that even and odd rounds

27



operate, respectively, as Phase 1 and Phase 2 of a round of the original

Ben-Or.

5. If the priority associated to the selected value is 2, then that value is de-

cided.

Let’s see in greater detail how the protocol’s behavior differs in even and odd

rounds. Their first three steps are identical; the differences arise in the priorities

that can be associated to the values proposed in those rounds. In reading the

discussion below, recall that the value that is being proposed in an odd (respec-

tively, even) rounds, depends on the values (with associated priorities) received

in the previous even (respectively, odd) round.

Odd rounds Since all values proposed in even rounds have the same priority

(i.e., 0) (see below the discussion of Even rounds), the set L that deter-

mines what is going to be proposed in the following odd round contains

all the values a node received in the preceding even round. There are two

possibilities:

1. If all the received values are the same (say, v), then the node sets its

proposal value to v (since it is picking at random among identical

values!) and increases v’s priority to 1 (Line 9). This is equivalent

to adopting v as the proposal value at the beginning of Phase 2 of the

original Ben-Or after receiving a unanimous majority of proposals for

v in Phase 1.

2. Otherwise, it chooses at random one of the received values and as-

signs to it priority 0. This is equivalent to adopting ⇐ as the proposal

value at the beginning of Phase 2 of the original Ben-Or after receiv-

ing different proposal values in Phase 1.
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Even rounds As mentioned above, all values proposed in even rounds have

priority 0. This is true in the very first round (Line 1) and is enforced

by setting the priority to 0 at the beginning of all even rounds (Line 16).

What remains is determining the actual value that a node proposes: this

depends on the values the node received in the preceding odd round and

on their associated priority.4 The protocol requires the proposal value to

be chosen randomly among the collected proposals with highest priority

(Lines 5-6). What can those priorities be? There are three possibilities.

1. All values received in the preceding odd round have priority 0; this

case corresponds, in the original Ben-Or, to receiving only Phase 2

messages reading ⇐. In this case, as in the original Ben-Or formula-

tion, the value proposed in the next round is chosen at random and

could be either of the two initial values of the binary consensus being

executed.

2. Some (but not all) values received in the preceding odd round have

priority 1; this case corresponds, in the original Ben-Or (Lines 10-

11), to receiving some non-⇐ Phase 2 messages. Note that, since the

priority of a proposal value is increased only if that is the only value

received from a majority of nodes, the by-now-familiar majority inter-

section argument ensures that there cannot be multiple distinct val-

ues with priority 1 received in an odd round.

3. All messages received in the preceding odd round propose the same

value v with priority 1; this case corresponds, in the original Ben-Or,

to receiving a majority of matching Phase 2 messages proposing the

same value v. This is the condition under which the original Ben-
4The value a node proposes in the very first round is its initial proposal.
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Or decides v. The same happens in our reformulation: v’s priority

is increased from 1 to 2 (Line 9), which then causes v to be decided

(Line 12-13).

In conclusion, this reformulation of Ben-Or protocol, is equivalent to the orig-

inal. At the same time, it makes explicit what the original leaves implicit—

namely, that a value proposed by a majority should be prioritized in both the

proposal and decision-making processes.

Further, by making explicit the process of increasing the priority of a value, it

makes it possible to think of protocols in which priority values can grow larger

than 2. This newly-found flexibility will prove particularly valuable in the de-

sign of the Sandglass protocol, which will be explored thoroughly in Chapter 3.

2.6 Verifiable Delay Function

Verifiable Delay Functions (VDFs) are cryptographic primitives that require a

predetermined number of sequential operations to compute on some input,

while producing a result that can be efficiently and quickly verified by any-

one [6, 49, 55]. This characteristic of having a high computation cost but a low

verification effort makes VDFs particularly beneficial in permissionless settings,

as they allow any verifier to quickly verify whether a specific amount of time

has been devoted to a particular input.

In the Gorilla protocol, VDFs are employed to prevent Byzantine nodes from

conducting Sybil attacks. In such attacks, a single Byzantine node may generate

numerous pseudonymous identities to send a vast number of messages, aiming
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to disproportionately sway the voting process. To counteract this threat, the pro-

tocol mandates that each message sent must be accompanied by a VDF result,

which is evaluated based on the message content. This safeguard ensures that,

even in a permissionless environment, Byzantine nodes are unable to exploit the

system by multiplying their influence through Sybil attacks. Thus, the integrity

of the voting process is maintained, protecting the consensus mechanism from

manipulation.

By demonstrating that a specific amount of computational effort has been

expended on given message content, VDFs thus fulfill a role similar to Proof

of Work (PoW). The primary distinction between VDFs and PoW lies in the

nature of their computations: VDFs require sequential processing that cannot

be parallelized, unlike PoW, which can be accelerated with a larger amount of

computational resources.

Moreover, for the Gorilla protocol, a significant advantage of Verifiable De-

lay Functions (VDFs) is their deterministic nature. VDFs are evaluated through

a fixed number of operations, ensuring consistent and predictable computa-

tional effort across all nodes. This deterministic process is crucial as it translates

the majority assumption based on participant numbers effectively into a major-

ity assumption based on message counts. Therefore, if a majority of nodes are

honest and adhere to the protocol, this majority is mirrored in the number of

valid messages produced, effectively preventing any minority (possibly mali-

cious) group from exerting undue influence.

In contrast, Proof of Work (PoW) mechanisms depend on a probabilistic ap-

proach, where the necessary number of operations can vary significantly. This

inconsistency can allow faulty or malicious nodes to progress faster than honest
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nodes, potentially influencing the protocol disproportionately. Thus, the pre-

dictable, fixed effort required for VDFs provides a more secure and fair mecha-

nism for protocols like Gorilla, ensuring that correct nodes cannot be outpaced

by faulty ones simply through variance in computational effort.

Here is a brief summary of how VDF works. A VDF is defined by a triple of

algorithms: Setup, Eval, and Verify:

Setup(ε, t)⇓ pp = (ek, vk) generates a pair of public parameters pp = (ek, vk),

where ek refers to the evaluation key and vk refers to the verification key.

These parameters are generated based on a security parameter ε and a

delay parameter t.

The security parameter ε, determines the cryptographic strength of the

VDF, ensuring that the computation cannot be accelerated through paral-

lel processing or advanced cryptanalytic techniques. It ensures that the

probability of successfully bypassing the delay function is negligible in ε,

i.e., decreasing faster than the inverse of any polynomial in ε.

The delay parameter t, on the other hand, specifies the minimum amount

of time required to compute the VDF, measured by the number of sequen-

tial steps or operations. This parameter enforces a fixed time delay, en-

suring that the function takes a predictable amount of time to compute,

regardless of the computational resources available.

Together, the delay and security parameters balance the computational

effort required, resistance to parallelism, and cryptographic strength, en-

suring that the VDF meets both performance and security requirements.

Eval(ek, x)⇓ (y, ϑ) takes an input x and an evaluation key ek from public pa-

rameters pp, computes the output y after t sequential steps.
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Alongside the output value y the function may also generate a proof ϑ.

This proof is used to verify that the output y was correctly computed fol-

lowing the prescribed sequential steps. In some cases, ϑ might be empty

if the VDF does not require additional proof or if the proof is implicitly

included in the output value y.

Verify(vk, x, y, ϑ)⇓ {Yes,No} is a deterministic algorithm that takes a verifica-

tion key vk, an input x, an output y, and a proof ϑ as its parameters. Using

these inputs, the function checks whether the proof ϑ correctly verifies that

the output y was obtained from the input x through the prescribed sequen-

tial steps. If the proof is valid, Verify returns “Yes”, indicating that the VDF

computation was performed correctly and the output y is trustworthy. If

the proof is invalid or missing in a scheme where proof is required, the

function returns “No”, signaling that the output y may not be correct or

the computation might have been tampered with.

In VDF schemes where the proof is optional or implicitly included in the

output y, the verification function may use alternative methods to vali-

date the output directly using the verification key vk and the input x. In

such cases, Verify can still return “Yes” or “No” based on these alternative

verification methods.

This verification process is designed to be significantly faster than the Eval.

This thesis leverages several key properties of Verifiable Delay Functions

(VDFs), the formal definitions of which are detailed in Boneh et al. (2018) [6]:

Correnctness The Verify algorithm should return “Yes” for any output pro-

duced by the Eval function.
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Soundness For any x, the probability of finding a y where Veri f y(pp, x, y, ϑ) =

Yes but Eval(pp, x) ! y is negligible in ε.

Sequentiality Correct nodes can compute (y, ϑ) ↗ Eval(ek, x) in t sequential

steps whereas no adversary with a parallel machine and a polynomial

number of processors can differentiate the output y from random in sig-

nificantly fewer steps.

Efficient Verification Verification is fast compared to the evaluation, requiring

only poly-logarithmic time relative to t [49] or even constant time [9, 11,

55].
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CHAPTER 3

SANDGLASS

In this chapter, we present Sandglass, a permissionless consensus algorithm that

guarantees deterministic agreement and terminates with probability 1. Sandglass

operates in a model based on Nakamoto’s. The model allows an arbitrary num-

ber of participants to join and leave the system at any time and stipulates that

at no time the number of participants exceeds an upper bound N (though the

actual number n of participants at any given time is unknown). Further, like

Nakamoto’s, it is hybrid synchronous, in that, at all times, a majority of partic-

ipants are correct and able to communicate synchronously with one another.

We call these participants good; our protocol’s safety and liveness guarantees

apply to them. Participants that are not good (whether because they crash, per-

form omission failures, and/or experience asynchronous network connections)

we call defective. Sandglass proceeds in asynchronous rounds, with a structure

surprisingly reminiscent of Ben-Or’s classic consensus protocol [5]. We briefly

review it here, and the full discussion is in §2.4.

In Ben-Or’s protocol, nodes propose a value by broadcasting it; in the first

round, each node proposes its initial value; in subsequent rounds, nodes pro-

pose a value chosen among those received in the previous round. Values come

with an associated priority, initialized to 0. The priority of v depends on the

number of consecutive rounds during which v was the only value received by

the node proposing v – whenever a node receives a value other than v, it re-

sets v’s priority back to 0. When proposing a value in a given round, node p

selects the highest priority value received in the previous round; if multiple val-

ues have the same priority, then it selects randomly among them. A node can
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safely decide a value v after sufficiently many consecutive rounds in which the

proposals it receives unanimously endorse v (i.e., when v’s priority is sufficiently

high); and termination follows from the non-zero probability that the necessary

sequence of unanimous, consecutive rounds will actually eventually occur.

Of course, embedding this structure in a permissionless setting introduces

unprecedented challenges. Consider, for example, how nodes decide. In Ben-

Or, a node decides v after observing two consecutive, unanimous endorsements

of v; it can do so safely because any two majority sets of its fixed set of n nodes

intersect in at least one correct node. This approach is clearly no longer feasible

in a permissionless setting, where n is unknown and the set of nodes can change

at any time.

Instead, Sandglass’s approach to establishing safety is inspired by one of the

key properties of Nakamoto’s PoW: whatever the value of n, whatever the iden-

tity of the nodes participating in the protocol at any time, the synchronously

connected majority of good nodes will, in expectation, be faster than the remain-

ing nodes in adding a new block to the blockchain.

Think now of adding a block b at position i of the blockchain as implicitly

starting a new round of consensus for all the chain’s positions that precede i;

for each position, the new round proposes the corresponding block in the hash

chain that ends at b. In this light, the greater speed in adding blocks that PoW

promises to the majority of connected nodes translates into these nodes mov-

ing faster from one asynchronous round to the next in each of the consensus

instances.

This insight suggests an alternative avenue for achieving deterministic con-

36



sensus among good nodes – without relying on quorum intersection. Node p

should decide on a value v only after it has seen v unanimously endorsed for

sufficiently many rounds that, if p is good, the lead p (and all other good nodes)

have gained over any defective node q proposing some other value is so large

that q’s proposals can no longer affect the proposal of good nodes.

Why can’t the same approach be used to achieve deterministic consensus in

Nakamoto’s original protocol? Because Nakamoto’s PoW mechanism, notwith-

standing its name, is an indirect and imperfect vehicle for proving work. As

evidence of performed work, Nakamoto presents the solution to a puzzle: this

solution, however, could just have been produced as a result of a lucky guess.

Thus, however unlikely, it is always possible in NC for defective nodes propos-

ing a value other than v to catch up with, or even overtake, good nodes and

reverse their decisions.

To avoid this danger, Sandglass relies on a different PoW mechanism, which

ties the ability to propose a value to a deterministic amount of work. In particular,

Sandglass nodes can propose a value in any round other than the first only after

they have received a specific threshold of messages from the previous round.

Therefore, each proposed value implicitly represents all the work required to

generate the messages needed to clear the threshold. The threshold value is

chosen as a function of the upper bound N on the number of nodes that at any

time run the protocol, in such a way that, whatever is their actual number n,

any node that does not receive messages from good nodes will inevitably take

longer than them in moving from round to round.

The full power of this PoW mechanism, however, comes from pairing it with

the idea, which we borrow from Ben-Or, of associating a priority with the val-
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ues being proposed. With a fixed set of n nodes, Ben-Or leverages priorities

and quorum intersection to safely decide a value v once it has reached priority

2, because it can guarantee that henceforth every node executing in the same

round as a correct node will propose v. In a permissionless setting, we show

that the combination of priorities and our PoW mechanism allows Sandglass

to offer good nodes the same guarantee (though, as we will see, v will be re-

quired to reach a significantly higher priority value!). Intuitively, by the time v

reaches the priority necessary to decide, any node q that manages not to fall

behind (and thus become irrelevant) to the unanimous majority of good nodes

who have kept proposing v must have received some of the messages propos-

ing v from some good nodes. Furthermore, to keep up, q must have received

such messages often enough that, given how the priority of received values de-

termines what a node can propose, it would be impossible for q to propose any

value other than v.

In summary, this chapter makes the following contributions: (i) it formalizes

Nakamoto’s permissionless model in the vocabulary of traditional consensus

analysis; (ii) it introduces novel proof strategies suitable for this new model;

(iii) it exposes the connection between PoW and a voting mechanism that can

be implemented by message passing; and (iv) it introduces Sandglass, the first

protocol that achieves deterministic agreement in a permissionless setting under

hybrid synchrony.

In this chapter, we present the model of Sandglass in Section 3.1, the protocol

in Section 3.2, and the correctness of Sandglass in Section 3.3.

38



3.1 Model

The system comprises an infinite set of nodes p1, p2, . . . . Time progresses in

discrete steps; in each step, a subset of the nodes is active and the rest are inactive.

At each step, active nodes are partitioned into good and defective subsets.

We assue a hybrid synchronous model. Good nodes are correct, and the net-

work that connects them to one another is synchronous; at all times, a majority

of active nodes are good. Defective nodes may suffer from benign failures, such

as crashes and omission failures, or simply lack a synchronous connection with

some good node.

The system progress is orchestrated by a scheduler. In each step, the sched-

uler can activate any inactive node pi (we say that pi has joined the system) and

deactivate an active node (which then leaves the system). The scheduler chooses

which nodes to activate and deactivate arbitrarily, subject only to the following

three constraints: (i) The upper bound of active nodes in any step isN ; (ii) there

is at least one active node in every step; and (iii) in every step the majority of

active nodes is good.

In each step where it is active, each node pi executes the stateful protocol

shown as procedure Step in Sandglass’s pseudocode (see Algorithm 3). It can

execute computations, update its state variables, and communicate with other

nodes with a broadcast network. In particular, since Sandglass assumes benign

failures, every active node, whether good or defective, waits for a full step to

elapse before sending its next message.

The network allows each active node to broadcast and receive unauthenticated
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messages. Node pi broadcasts a message m with a Broadcasti(m) instruction and

receives messages broadcast by itself and others with a Receivei instruction. The

network does not generate or duplicate messages, i.e., if in step t a node pi re-

ceives message m with Receivei, then m was sent in some step t↔ < t.

The communication model is designed to capture the design of Nakamoto’s

consensus, which relies on an underlying network layer to propagate and store

blocks. Nakamoto’s network layer provides a shared storage of data structures,

called blocks, and guarantees delivery of published blocks within a bounded

time. Each block includes cryptographically secure references to all blocks seen

by its creator. This allows a newly joined node to receive and validate the entire

history of published blocks. Thus, in our model, the scheduler determines when

each message is delivered to each node under the following constraints.

First, propagation time is bounded between any pair of good nodes. For-

mally: if a good node pi calls Broadcasti(m) in step t, and if a good node pj calls

Receive j in step t↔ > t, then m is returned, unless it was already received by pj

in an earlier call to Receive j. Thus, a newly activated good node is guaranteed,

upon executing its first Receive, to receive all messages from other good nodes

broadcast in the steps prior to its activation.

Second, the network is reliable, but there is no delivery bound unless both

nodes are good. Formally: For any two nodes pi and pj, where at least one of pi

and pj is defective, and for a message m broadcast by pi, if node pj calls Receive j

infinitely many times, then m is eventually delivered.

Each node is initiated when joining the system with an initial value vi ⇑ {a, b}.

An active node pi can decide by calling a Decidei(v) instruction for some value v.
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The goal of the nodes is to reach a consensus based on these values:

Definition 1 (Agreement). If a good node decides a value v, then no good node decides

a value other than v.

Definition 2 (Validity). If all nodes that ever join the system have initial value v and

any node (whether good or defective) decides, then it decides v.

Definition 3 (Termination). Every good node that remains active eventually decides.

3.2 Protocol

To form an intuition for the mechanics of Sandglass, it is useful to compare

and contrast it with Ben-Or. From a distance, the high-level structure of the

two protocols is strikingly similar: execution proceeds in asynchronous rounds;

progress to the next round depends on collecting a threshold of messages sent

in the current round; safety and liveness depend on the correctness of a major-

ity of nodes; and nodes decide a value v when, for sufficiently many consecu-

tive rounds, all the messages they collect propose v. But looking a little closer,

the differences are equally striking. On the one hand, Sandglass’s notion of

node correctness and its hybrid synchronous model are stronger than Ben-Or’s.

Sandglass assumes a majority of good nodes that are not only free from crashes

and omissions, but also synchronously connected to one another. On the other

hand, in Sandglass, unlike Ben-Or, the number n of nodes running the proto-

col is not only unknown, but may be changing all the time. These differences

motivate four key aspects that separate the two protocols:

Choosing a threshold In Ben-Or, a node advances to a new round only after

having received a message from a majority of nodes. This strict condition
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for achieving progress is critical to how Ben-Or establishes Agreement.

Any node that, from a majority of the nodes in round r, receives a set of

messages that unanimously propose v, can be certain that (i) there cannot

exist in r also a unanimous majority proposing a value other than v and

(ii) no node can proceed to round (r + 1) unaware that v is among the

values proposed in round r. Nodes that isolate themselves from a majority

simply do not make any progress; and since all majority sets intersect,

nodes cannot make contradictory decisions.

Unfortunately, this approach is unworkable in Sandglass: when the car-

dinality and membership of the majority set can change at any time, re-

ceiving messages from a majority can no longer serve as a binary switch

to trigger progress. More generally, thresholds based on the cardinality of

the set of nodes from which one receives messages become meaningless.

Instead, Sandglass allows nodes to broadcast multiple messages during

a round, one in each of the round’s steps, and lets nodes move to round

(r + 1) once they have collected a specified threshold of messages sent in

round r.

Think of the threshold T of messages that allows a node to move to a new

round as the number of grains of sands in a sandglass: a node (figura-

tively) flips the sandglass at the beginning of a round, and cannot move

to the next until all T sand grains have moved to the bottom bulb. The

value of T is the same for all nodes; the speed at which messages are

collected, however—the width of their sandglass’s neck—is not, and can

change from step to step: if all nodes broadcast messages at the same rate,

the larger the number of nodes that one receives messages from in a timely

fashion, the faster it will be to reach the threshold. Thus, while in Sand-
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glass setting a threshold cannot altogether prevent nodes that don’t re-

ceive messages from a majority from making progress, it ensures that they

will progressively fall behind those who do.

Exchanging messages In each step of the protocol, a node currently in round

r (i) determines, on the basis of the messages received so far, what is the

largest round rmax ⇔ r for which it has received the required threshold of

messages and (ii) broadcasts a message for round rmax, which includes the

node’s current proposed value, as well as the critical metadata discussed

below.

Keeping history Unlike Ben-Or, Sandglass allows nodes to join the system at

any time. To bring a newly activated node up to speed, each message

broadcast by a node p in round r carries a message coffer that includes (i)

the set of messages (at least T of them) p collected in round r→1 to advance

to round r; (ii) recursively, the set of messages in those messages’ coffers;

and (iii) the set of messages p collected so far for round r.

Respecting priority In Ben-Or, a node decides v if, for two consecutive rounds,

v is the only value it collects from a majority set. To ensure the safety of

that decision, Ben-Or assigns a priority to the value v that a node p pro-

poses: if v was unanimously proposed by all the messages p collected in

the previous round, it is given priority 1; otherwise, 0. Nodes that collect

more than one value in round r, propose for round r + 1 the one among

them with the highest priority, choosing by a coin flip in the event of a tie.

Sandglass uses a similar idea, although its different threshold condition re-

quires a much longer streak of consecutive rounds where v is unanimously

proposed before v’s priority can be increased. To keep track of the length

of that streak, every message sent in a given round r carries a unanimity
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counter, which the sender computes upon entering r.

3.2.1 Selecting the Threshold

Unlike Ben-Or, Sandglass’s threshold condition can not altogether prevent

nodes from making progress. It is perhaps surprising that, by leveraging only

the assumption that at all times a majority of nodes are good (i.e., correct and

synchronously connected with each other) without ever knowing precisely how

many they actually are, Sandglass retains enough of the disambiguating power

of intersecting majorities to ultimately yield deterministic agreement.

In essence, Sandglass succeeds by causing defective nodes that isolate them-

selves from the majority of nodes in the systen to fall eventually so far behind

that they no longer share the same round with good nodes. At the same time, it

ensures that, once some good node has decided on a value v, nodes that manage

to keep pace with good nodes will never propose anything other than v.

Of course, to obtain this outcome it is critical to setT appropriately. Consider

two nodes, one good and one defective, and suppose they flip their sandglass

at the same time—i.e., they enter a new round in the same step. We want that,

independent of how the number of active nodes may henceforth vary at each

step, if the defective node only receives messages from other defective nodes

(i.e., if it fails to hear from a majority of nodes), it will reach the threshold T

at least one step later than the good node will. The following lemma shows

that setting T to ↖N2

2 ↙ (whereN is the upper bound on the maximum number of

nodes active in any step) does the trick.

Lemma 1. For any k, consider any time interval comprising (k + 1) consecutive steps.
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Let the number of messages generated by good nodes and defective nodes in each step

of the interval be, respectively, g0, g1, ..., gk and d0, d1, ..., dk. Setting the threshold T to

↖
N

2

2 ↙ ensures that, if Σi=k→1
i=1 gi < T , then Σi=k

i=0di < T .

Proof. Note how the lemma does not count the messages generated by good

nodes in the steps at the two ends of the interval. Recall that moving from the

current round to the next requires a node to receive at least a threashold T of

messages sent in the current round. Note that good nodes that in step 0 enter

a new round r are unable to count against the threshold for round r messages

generated by good node that in step 0 are still in round r→1; thus, we drop good

messages from step 0. Similarly, we drop step k because good nodes may only

need one of the messages sent by good nodes in step k to move to a new round

– and have no use for the remaining messages in gk.

We begin by observing that, when k is either 0 or 1, the lemma trivially

holds, since in all steps defective nodes generate fewer than N messages. For

example, when k = 1, d0 + d1 <
N

2 +
N

2 = N ↑ ↖
N

2

2 ↙. We then prove the lemma

for k ⇔ 2.

Let ḡ = Σi=k→1
i=1 gi

k→1 and d̄ = Σi=k→1
i=1 di

k→1 denote, respectively, the average number of

messages generated by good nodes and by defective nodes during the k → 1

steps that include all but the interval’s first and last step. Expressed in terms

of ḡ and d̄, the lemma requires us to show that, if ḡ · (k → 1) < T , then Σi=k
i=0di =

d0 + d̄ · (k → 1) + dk < T when T is chosen to equal ↖N2

2 ↙.

Assume ḡ · (k → 1) < T ; then k → 1 < Tḡ . Substituting for (k → 1) in the formula
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that computes the messages generated by defective nodes, we have:

Σi=k
i=0di = d̄ · (k → 1) + d0 + dk

< d̄ ·
T

ḡ
+ d0 + dk (since (k → 1) <

T

ḡ
)

↑ d̄ ·
T

ḡ
+
N → 1

2
+
N → 1

2
(since defective nodes are always a minority)

↑ d̄ ·
T

ḡ
+
T

N2

2

(N → 1) (since T = ↖
N

2

2
↙ ⇔
N

2

2
)

= T (
d̄
ḡ
+

2(N → 1)
N2 ).

Then, to establish that Σi=k
i=0di < T , it suffices to prove that d̄

ḡ +
2(N→1)
N2 < 1.

Since for any i, di ↑ gi → 1 and di + gi ↑ N , we know that d̄ ↑ ḡ→ 1 and d̄ + ḡ ↑ N .

Dividing both inequalities by ḡ yields d̄
ḡ ↑ min(1→ 1

ḡ ,
N

ḡ → 1). Note that the largest

value of min(1 → 1
ḡ ,
N

ḡ → 1) occurs when 1 → 1
ḡ =

N

ḡ → 1; solving for ḡ and plugging

the solution back in, gives us: min(1 → 1
ḡ ,
N

ḡ → 1) ↑ N→1
N+1 .

Therefore, we have that d̄
ḡ +

2(N→1)
N2 ↑

N→1
N+1 +

2(N→1)
N2 = N

3+N2
→2

N3+N2 < 1. ↭

3.2.2 Protocol Mechanics

Protocol 3, besides showing how Sandglass initializes its key variables, presents

the code that node pi executes to take a step. Every step begins with adding

all received messages, as well as the messages in their message coffers, to a sin-

gle set, Reci (lines 4 - 5). Going over the elements of that set, pi determines

the largest round rmax for which it has received at least a threshold T of mes-

sages, and, if the condition at line 6 holds, sets the current round to (rmax + 1)

(line 7). Upon entering a new round, pi does four things. First, after resetting its
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Protocol 3 Sandglass: Code for node pi

1: procedure INIT(inputi)
2: vi ↗ inputi; priorityi ↗ 0; uCounteri ↗ 0; ri = 1; Mi = ∝; Reci = ∝; uidi = 0
3: procedure STEP
4: for all m = (·, ·, ·, ·, ·,M) received by pi do
5: Reci ↗ Reci ′ {m} ′ M
6: if max|Reci(r)|⇔T (r) ⇔ ri then
7: ri = max|Reci(r)|⇔T (r) + 1
8: Mi = ∝

9: for all m = (·, ri → 1, ·, ·, ·,M) ⇑ Reci(ri → 1) do
10: Mi ↗ Mi ′ {m} ′ M
11: Let C be the multi-set of messages in Mi(ri→1) with the largest priority.

12: if all messages in C have the same value v then
13: vi ↗ v
14: else
15: vi ↗ one of{a, b}, chosen uniformly at random
16: if all messages in Mi(ri → 1) have the same value vi then
17: uCounteri ↗ 1+min{uCounter|(·, ri → 1, vi, ·,uCounter, ·) ⇑ Mi(ri → 1)}
18: else
19: uCounteri ↗ 0
20: priorityi ↗ max(0,

⌊
uCounteri
T

⌋
→ 5)

21: if priorityi ⇔ 6T + 4 then
22: Decidei(vi)
23: uidi ↗ uidi + 1;
24: Mi ↗ Mi ′ Reci(ri)
25: broadcast (pi,uidi, ri, vi, priorityi,uCounteri,Mi)

message coffer M, pi collects in the coffer all the messages it received from the

previous round—as well as the messages stored in the coffers of those messages

(lines 8 - 10). Second, pi chooses the value v that it will propose in the current

round (lines 11 - 15): it picks the highest-priority value among those collected

in its coffer for the previous round ; if more than one value qualifies, it chooses

among them uniformly at random. Third, pi computes the unanimity counter

and the priority for all messages that pi will broadcast during the current round

(lines 16 -20). The counter represents, starting from the previous round and
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going backwards, the longest sequence of rounds for which all corresponding

messages in pi’s coffer unanimously proposed v. The priority is simply a direct

function of the value of the unanimity counter: we maintain it explicitly because

it makes it easier to describe how Sandglass works. Finally, if v’s priority is high

enough, pi decides v (lines 21- 22). Whether or not it starts a new round, pi ends

every step by broadcasting a message (line 25): before it is sent, the message is

made unique (line 23) and pi adds to the message’s coffer all messages received

for the current round (line 24).

3.3 Correctness: Overview

Sandglass upholds the definitions of Validity, Agreement, and Termination

(with probability 1) given in Section 3.1. We overview the proof below, as its

approach differs from proofs of classical, permissioned protocols. We defer the

presentation of the full proof to Appendix A, which includes the formal state-

ments of the lemmas we informally state below.

Validity is easily shown by induction on the round number, since if all nodes

that join have the same value, there is only one value that can be sent in each

round (Lemma 9). Establishing Agreement and Termination is significantly

more involved, and hinges on a precise understanding of the kinematics of good

and defective nodes—and how that interacts with the ability of good nodes to

converge on decision value and on the number of rounds necessary to do so

safely. How clustered are good nodes as they move from round to round? At

what rate do good nodes gain ground over defective nodes that cut themselves

out from receiving messages from good nodes? How often do defective nodes
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need to receive messages from good nodes to be in turn able to have their mes-

sages still be relevant to good nodes?

The answer to these and similar questions constitute the scaffolding of lem-

mas and corollaries on which the proofs of Agreement and Termination rely. We

discuss it in greater detail below, before moving on to the proofs.

3.3.1 The Scaffolding

The protocol achieves several properties that facilitate the consensus proof.

First, it keeps good nodes close together as they move from round to round.

Specifically, in any step two good nodes are at most one round apart (Corol-

lary 2), and if in any step a good node is in round r, then by the next step all

good nodes are guaranteed to be at least in round r (Lemma 10). However, note

that defective nodes can advance faster than good ones, using a combination

of messages from good nodes and messages from defective nodes that do not

reach the good nodes. Nonetheless, we show that at any step a defective node

is at most one round ahead of any good node (Lemma 12).

Second, the protocol guarantees information sharing among good nodes.

This may appear trivial to establish, since good nodes are correct and syn-

chronously connected, but the laissez-faire attitude of the permissionless model,

with nodes joining and leaving without coordination at any step, complicates

matters significantly, making it impossible to prove seemingly basic properties.

For example, consider a good node p that, in round r and step T , proposes

a value v with a positive uCounter. It would feel natural to infer that all good
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nodes must have proposed v in the previous round—but it would also be wrong.

If p just entered r in step T , it would in fact ignore any value proposed by good

nodes that newly joined the systems in step T , but are still in round r→ 1. Fortu-

nately, we show that a much weaker form of information sharing among good

nodes is sufficient to carry the day. We say that a node collects a message in

a round if it receives the message and does not ignore it (messages originated

from a lower round number are ignored). We show that, in any round, a good

node collects at least one message from a good node (Lemma 13), and that, for

any round, there exists a message from a good node that is collected by all good

nodes (Corollary 1).

Third, it allows us to establish the basis for a key insight about the kinematics

of Sandglass nodes that will be crucial for proving Agreement and Termination:

in the long run, the only values proposed by defective nodes that remain rel-

evant to the outcome of consensus are those that have been, in turn, recently

influenced by values proposed by good nodes. This insight stands on a series

of intermediate results. We already saw (Lemma 1) that, given any sequence

of steps, if good nodes cannot generate enough messages to get into the next

round, neither can defective nodes, even if they, unlike good nodes, are allowed

to count messages generated in the two steps at the opposite ends of the period.

It follows that during the steps that good nodes spent in a round, defective

nodes can generate fewer than the T messages necessary to move to the next

round (Lemma 17). It all ultimately leads to Lemma 18, which quantifies the

slowdown experienced by defective nodes that don’t allow themselves to be

contaminated by good nodes: it establishes that defective nodes that do not col-

lect any message from good nodes for kT consecutive rounds fall behind every

good node by at least (k → 1) rounds.
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3.3.2 Agreement

The intuition behind our proof of Agreement is simple. To each value v pro-

posed and collected by Sandglass nodes is associated a uCounter, which records

the current streak of consecutive rounds for which all the messages collected

by the proposer of v were themselves proposing v. Once v’s uCounter reaches

a certain threshold, v’s priority increases; and once the value v proposed by a

node reaches a given priority threshold, then a node decides v (see Algorithm 3,

line 21). Since, as we saw, good nodes share information from round to round

(recall Corollary 1), proving Agreement hinges on showing that, once a good

node decides v, no good node will ever propose a value other than v. To prove

that, we must in turn leverage what we learned about the kinematics of Sand-

glass nodes to identify a priority threshold that makes it safe for good nodes to

decide. It should be large enough that, after it is reached, it becomes impossible

for a defective node to change the proposal value of any good node.

The technical core of the Agreement proof then consists in establishing the

truth of the following (Claim 2):

Let pd be the earliest good node to decide, in round rd at step Td. Sup-

pose pd decides vd. Then, any good node pg that in any step (whether

before, at, or after Td) finds itself in a round rg that is at least as large

as rd, proposes vd for rg with priority at least 1. 1

It is easy to see that if the above claim holds, then Agreement follows. Say

that Td is the earliest step in which a good node pd, currently in round rd, decides
1Although proving Agreement does not require that vd be proposed with priority at least 1,

it makes proving the claim easier.
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vd. The claim immediately implies that no good node can decide a value other

than vd in a round greater or equal to rd, since, from rd on, every good node

proposes vd. Recall that, since good nodes are never more that one round apart

at any step (Corollary 2), the earliest round a good node can find itself at Td is

(rd → 1); and that, by Lemma 10, every good node is guaranteed to be at least in

round rd by step (Td + 1). All that is left to show then is that no good node p↔,

which at Td found itself in round (rd → 1), can decide some value v↔ other than vd.

To this end, we leverage the information sharing that we proved exists among

good nodes.

By Corollary 1, there is at least a message m generated in round (rd → 2) by

a good node that is collected by all the good nodes. Since pd at Td has reached

the priority threshold required to decide vd, m must have proposed vd; but if so,

it would be impossible for good node p↔, which also must have collected m, to

have reached the priority threshold required to decide a different value v↔.

Proving Claim 2 is non trivial. The core of the proof consists in showing

that any node that proposes a value v↔ other than the decided value vd must

find itself, at Td, in a much earlier round than the earliest round occupied by

any good node. In fact, we show something stronger: we choose a priority

threshold large enough that any node, whether good or defective, that at Td or

later is within earshot of a good node (i.e., whose message m can be collected by

a good node), not only proposes vd, but it does so with a uCounter large enough

that allows whoever collects m to propose vd with priority at least 1.

To see why those who propose v↔ are so far behind good nodes, note that the

good node pd that decided vd at Td must have received only messages proposing

vd for a long sequence of rounds, so long as to push vd’s priority over the (6T +4)
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threshold required for a decision. Let’s zoom in on that sequence of rounds. It

took 6T unanimous rounds for vd to reach priority 1 (see Algorithm 3, line 20);

after clearing that first hurdle, vd’s priority increased by 1 every T rounds.

Consider now the set S of messages collected by pd during the long climb

that took vd’s priority from 1 to (6T + 4). Any node p↔ that during this climb

proposes something other than vd faces a dilemma. It can either refuse to collect

any message in S — but if it does so, it will advance more slowly than good

nodes, and, by the time vd’s priority reaches the decision threshold, it will be

so far behind that no good node will collect its messages. Or p↔ can try to keep

up by collecting messages from S — but, if it wants to keep proposing v↔ !

vd, it can do so in at most one round during the entire climb: since the first

message collected from S would reset v↔ priority to 0, any further message from

S collected by p↔ in later rounds would have higher priority than the one of v↔,

forcing p↔ to henceforth propose vd instead of v↔.

In short, since p↔ can collect messages from S in at most one round, to ensure

that any node that in round rd is within earshot of good nodes will propose vd it

suffices to choose a large enough priority threshold for deciding. In particular,

setting the threshold to (6T + 4) ensures that (i) all messages collected by good

nodes for round (rd → 1) will propose vd, and (ii) vd’s uCounter in all these mes-

sages is at least (6T →1), ensuring that all good nodes in round rd will propose vd

with uCounter at least 6T , i.e., with priority at least 1.

Finally, a simple induction argument shows that, if all good nodes propose

vd with priority at least 1 from rd on, then any node that, from step (Td + 1)

on, continues to propose a value other than vd, will fall ever more behind good

nodes, as it will be allowed to collect messages from good nodes only once every

53



6T rounds, on pain of being forced to switch its proposed value to vd.

3.3.3 Termination

The Termination property requires good nodes that stay active to eventually

decide. Sandglass’s Termination guarantee is probabilistic: for Termination to

hold, Sandglass needs to be lucky, so that it can build a sequence of consecutive

rounds during which all messages collected by good nodes propose the same

value; long enough that the value will reach the priority required for a node

to decide. Luck is required because Sandglass allows some randomness in the

values that a node proposes: nodes are required to propose the highest priority

value from any message collected in the previous round, but, if they receive

multiple values with the same priority, they can choose among them uniformly

at random.

To help us prove that luck befalls Sandglass with probability 1, we introduce

the interdependent notions of lucky period, lucky value, and lucky round. Intu-

itively, a lucky period is a sequence of steps that leads to a decision: all nodes

that are active in the step that immediately follows the end of the lucky period

are guaranteed to decide in that step, if not earlier. A lucky round is simply the

first round of a lucky period. What is more interesting is the quality that makes

a period lucky: during a lucky period, whenever Sandglass allows nodes to use

randomness in picking which value they will propose in the current round, they

select the same value — the lucky value for that round.

A minimum requirement for a round’s lucky value is that it should be a

plausible value on which good nodes may converge, in the sense that it should
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not explicitly go counter the value that some good node is required to propose

in that round. Concretely, if the messages collected by a good node require it to

propose v and all other nodes can randomly choose between v and v, then the

round’s lucky value better not be v. In addition, to encourage the possibility of

a lucky period, the lucky value should be sticky: we would like random choices

to consistently pick the same value, round after round, unless doing so would

make the value implausible.

In the end, Sandglass adopts a definition of lucky value (see Appendix A.4)

that, in addition to upholding plausibility, has two additional properties that

express its stickiness. First, in every round good nodes collect at least one mes-

sage that proposes the lucky value of the previous round (Observation 2): this

guarantees that under no circumstances the previous round’s lucky value will

simply be forgotten when moving to a new round. The second property, which

builds upon the first, establishes that lucky values don’t flip easily: (Observa-

tion 3): for the lucky value in the current round to change, some good node

must have collected a different value with priority at least 1 from the previous

round.

To prove that Sandglass guarantees Termination with probability 1, we then

proceed in two steps.

First, we show (Observation 5) that the uCounter of all good nodes active in

the step that immediately follows the end of the lucky period reaches a value

that allows these good nodes to decide. To this end, we begin by proving that,

in any lucky period, the lucky value after a while becomes locked: specifically,

we show that the lucky value vϖ at round 6T in the lucky period remains the

lucky value until the end of the lucky period, and, further, that after that round
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all good nodes propose vϖ. Then, leveraging techniques similar to those used to

prove Agreement, we show that any node p↔ that proposes a value v↔ other that

vϖ must fall behind good nodes during the lucky period. The reason is that, once

vϖ is locked, p↔ can collect a message from a good node only every 6T rounds. If

it did it more often, p↔ would collect a message proposing vϖ from a good node

while v↔ has priority 0, which would force p↔ to change its proposal to vϖ – even

if v↔ and vϖ both had priority 0, and p↔ could choose randomly among them, it

would have to propose vϖ in the next round, since vϖ is the lucky value. Thus,

by choosing a sufficiently long lucky period, we ensure that nodes that propose

values other that vϖ fall so far behind good nodes that vϖ’s priority, for any good

node that is active in the step right after the end of a lucky period, reaches the

threshold necessary for deciding.

Second, we show that lucky periods occur with non-zero probability, since

the probability of a certain outcome of random choices for a finite number of

nodes during a finite number of steps is non-zero. Since in any infinite execution

lucky periods appear infinitely often, it follows that any good node that stays

active, no matter when it joins, is guaranteed to eventually decide.
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CHAPTER 4

GORILLA SANDGLASS

In this chapter, we present Gorilla Sandglass (or simply Gorilla) (§4.2), a consen-

sus protocol that guarantees deterministic safety and termination with probabil-

ity 1 in this standard model, which we dub GM (for Gorilla Model). Gorilla relies

on a form of PoW: Verifiable Delay Functions (VDFs) [6]. We consider an ideal

VDF [42] that proves a process waits for a certain amount of time and cannot

be amortized. The key difference between a VDF and Nakamoto’s PoW is that

multiple processes can calculate multiple VDFs concurrently, but cannot, by co-

ordinating, reduce the time to calculate a single VDF. The crux of the protocol is

simple. The protocol proceeds in steps. In each step, all (correct) nodes collect

VDF solutions from their peers and build new VDFs based on those. Intuitively,

correct processes, which are the majority, accrue solutions faster than Byzantine

nodes, and progress through the asynchronous rounds of the protocol faster.

Eventually, the round inhabited by correct nodes is so far ahead of that occu-

pied by Byzantine nodes that, no longer subject to Byzantine influence, correct

nodes can safely decide.

Gorilla Sandglass adopts the general approach of Sandglass, in the sense that

puzzle results are accrued, with each puzzle built on its predecessors. In Sand-

glass, participants are benign, and they send, in each step, a message built on

previously received messages. In Gorilla, however, the Byzantine adversary is

not limited to acting on step boundaries or communicating at particular times.

Surprisingly, Gorilla’s correctness can be reduced to the correctness of a varia-

tion of Sandglass.

Gorilla Sandglass adopts the general approach of Sandglass, in the sense that
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puzzle results are accrued, with each puzzle built on its predecessors. In Sand-

glass participants are benign and they send, in each step, a message built on

previously received messages. In Gorilla, however, the Byzantine adversary is

not limited to acting on step boundaries or communicating at particular times.

Surprisingly, Gorilla’s correctness can be reduced to the correctness of a varia-

tion of Sandglass. We perform this reduction in two steps (§4.3).

We first show that, for every execution of Gorilla in GM, there is a match-

ing execution where the Byzantine processes adhere to step boundaries, in a

model we call GM+. In the mapped execution, Byzantine processes only start

calculating their VDF at the beginning of a step and only send messages at the

end of a step. GM+ is a purely theoretical device, as it allows operations that

cannot be implemented by actual cryptographic primitives. In particular, it al-

lows Byzantine processes to start calculating a VDF in a step s building on any

VDF computed by other Byzantine nodes that will be completed by the end of s,

rather than by the start s, as allowed by GM (and actually feasible in reality).

Nonetheless, GM+ serves as a crucial stepping stone towards proving Gorilla’s

correctness.

Next, we show that, given an execution in GM+ that violates correctness,

there exists a corresponding execution of Sandglass in a model we call SM+.

The SM+ model is similar to that of Sandglass: in both, processes are benign

and propagation time is bounded for messages among correct processes and

unbounded for messages to and from so-called defective nodes. But unlike Sand-

glass, in SM+ a message from a defective node can reference another message

generated by another defective node during the same step (similar to how GM+

allows Byzantine nodes to calculate a VDF that builds on VDFs calculated by
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other Byzantine nodes in the same step).

Together, this pair of reduction steps establishes that if an execution of Go-

rilla in GM violates correctness with positive probability, then so does an execu-

tion of Sandglass in SM+. To conclude Gorilla’s proof of correctness, all that is

left to show is that Sandglass retains deterministic safety and termination with

probability 1 in the SM+ model: fortunately, the correctness proof of Sandglass

works almost without change (§B.1) in SM+. Thus, a violation of correctness in

Gorilla results in a contradiction, and therefore, Gorilla is correct.

Gorilla demonstrates that it is possible to achieve deterministic safety and

liveness with probability 1 in a permissionless Byzantine model. Yet, possible

does not mean practical: Gorilla is not, since, like the Sandglass protocol that

inspires it, it requires an exponential number of rounds to terminate. By an-

swering the fundamental question of possibility, Gorilla ups the ante: is there a

practical solution to deterministically safe permissionless consensus?

4.1 Model

The system is comprised of an infinite set of nodes {p1, p2, . . . }. Time progresses

in discrete ticks 0, 1, 2, 3, . . . In each tick, a subset of the nodes is active; the rest

are inactive. The upper bound on active nodes in any tick, necessary to the

safety of Nakamoto’s permissionless consensus [47], is N , and there is at least

one active node in every tick. Starting from tick 0, every K ticks are grouped

into a step: each step i consists of ticks iK, iK + 1, . . . , iK + K → 1.

A Verifiable Delay Function (VDF) is a function whose calculation requires
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completing a given number of sequential steps. Thus, evaluating a VDF requires

the evaluator to spend a certain amount of time in the process. Specifically, we

require the evaluation of a single VDF to take K ticks. We refer to the intermedi-

ate random values that this evaluation produces at the end of each of the K ticks

as the units of the VDF evaluation (or, more succinctly, the units of the VDF). We

denote the i-th unit of evaluating the VDF of some input ϱ by vdf
i
ϱ; we denote

the final result (i.e., vdf
K
ϱ ) by vdfϱ, or, when there is no ambiguity, by vdf.

We model the calculation of VDFs with the help of an oracle Ω. Nodes use Ω

both to iteratively obtain the units of a VDF and to verify whether a given value

is the vdf of a given input. In particular, Ω provides the following API:

Get(ϱ,vdf
i
ϱ): returns vdf

(i+1)
ϱ . By convention, invoking Get(ϱ,⇐) returns vdf

1
ϱ .

The oracle remembers how it responded to a Get query – so that, even

though the units of a VDF are random values, identical queries produce

identical responses. Ω accepts at most one call to Get() in any tick from

each node.

Verify(vdf, ϱ): returns True iff vdf = vdf
K
ϱ . Ω accepts any number of calls to

Verify() in any tick from any node.

If Get(ϱ,⇐) is called at tick t and step s, we say the VDF calculation for ϱ

starts at tick t and step s. Similarly, the VDF calculation for ϱ finishes at tick t and

step s if Get(ϱ, vdf
K→1
ϱ ) is called at tick t and step s.

In each tick, an active node receives a non-negative number of messages,

updates its variables – potentially including calls to the oracle – and then

communicates with others using a synchronous broadcast network. The net-

work allows each active node to broadcast and receive unauthenticated messages.
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Node pi invokes Broadcasti(m) to broadcast a message m, and receives broadcast

messages from other nodes (and itself) by invoking Receivei. The network nei-

ther generates nor duplicates messages and ensures that if a node receives a

message m in tick t, then m is broadcast in tick (t → 1). The network propaga-

tion time is negligible compared to a tick, i.e., to the time necessary to calculate

a unit of a VDF. By executing the command Receivei, a newly joining node pi

receives all messages broadcast by correct nodes prior to its activation. Nodes

whose network connections with other nodes are asynchronous can be modeled

as Byzantine, as Byzantine nodes can deliberately or unintentionally delay mes-

sages sent from or to them. Therefore, Gorilla also tolerates asynchrony, as long

as the nodes that communicate asynchronously are a minority.

Correct nodes do not deviate from their specification and constitute a major-

ity of active nodes at each tick. Correct nodes always join at the beginning of a

step and leave when a step ends. Hence, a correct node is active from the first

to the last tick of a step. The remaining nodes are Byzantine and can suffer from

arbitrary failures. Byzantine nodes can join and leave at any tick.

All nodes are initialized with a value vi ⇑ {a, b} upon joining the system. An

active node pi decides by calling Decidei(v) for some value v. A protocol solves

the consensus problem if it guarantees the following properties [15]:

Definition 4 (Agreement). If a correct node decides a value v, then no correct node

decides a value other than v.

Definition 5 (Validity). If all nodes that ever join the system have initial value v and

there are no Byzantine nodes, then no correct node decides v↔ ! v.

Definition 6 (Termination). Every correct node that remains active eventually de-

cides.
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4.2 Gorilla

Gorilla borrows its general structure from Sandglass (see Algorithm 4). Exe-

cutions proceed in asynchronous rounds (even though, unlike Sandglass, Go-

rilla assumes a standard synchronous model of communication between all

nodes). Upon receiving a threshold of valid messages for the current round,

nodes progress to the next round; if all the messages received by a correct node

propose the same value v for sufficiently many consecutive rounds, the node de-

cides v. The number of active nodes is bounded by N but otherwise unknown.

Within this bound, it can fluctuate arbitrarily, but both safety and liveness de-

pend on the correctness of a majority of nodes.

The key aspects of the protocol can be summarized as follows:

Ticks, steps and VDF Each valid message must contain a vdf. A correct node

takes a full step, i.e., K consecutive ticks, to individually calculate a vdf,

and at the end of the step sends a valid message that contains the vdf.

Byzantine nodes may instead share among themselves the work required

to finish the K units of a VDF calculation; even so, it still takes K distinct

ticks for Byzantine nodes to compute a vdf. Requiring valid messages to

carry a vdf limits Byzantine nodes to sending messages at the same rate

as correct nodes; this ensures that, on average across all steps, the correct

majority sends at least one more valid message than the minority of nodes

that are Byzantine.

Choosing a threshold A node proceeds to round r if it receives at leastT = ↖N2

2 ↙

messages for round r → 1. Even though setting such a threshold does not

prevent Byzantine nodes from advancing from round to round, it nonethe-
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less gives the correct nodes an edge in the pace of such progress, since they

constitute a majority.

Exchanging messages In each step of the protocol, a node in any round r –

based on the messages it has received so far – searches for the largest

round rmax ⇔ r for which it has accrued T messages. It then broadcasts

a message for the next round. The message includes the node’s current

proposed value v, the vdf, and four other attributes discussed below: the

message’s coffer, a nonce, as well as v’s priority and unanimity counter.

Keeping history Nodes can join the system at any time. To help a joining node

catch up, every message broadcast by a node p in round r includes a mes-

sage coffer that contains: (i) messages from round r → 1 received by p to

advance to round r; (ii) recursively, messages included in those messages’

coffers; and (iii) messages received by p for round r.

Nonce By making it possible to distinguish between messages that are gener-

ated from the same coffer, nonces allow correct nodes to broadcast mul-

tiple valid messages during a round while, at the same time, preventing

Byzantine nodes from reusing the same vdf to send multiple valid mes-

sages based on a given message coffer.

Priority and unanimity counter If a node p only receives the value v from a

majority for a sufficient number of consecutive rounds, it decides v. To

guarantee the safety of this decision, p assigns a priority to the value v

that it proposes. This priority is incremented once v is unanimously pro-

posed for a long stretch of consecutive rounds. To record the length of this

stretch, each node computes it upon entering a round r, and includes it

as the unanimity counter in the messages it sends for round r. If a node

collects more than one value in a round r, it chooses the one with the high-
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est priority, and proposes it for round r + 1. In case of a tie, it uses vdf as

a source of randomness to choose one of the values randomly. Since vdf

is a random number calculated based on the message coffer and a nonce

(lines 13-15), a Byzantine node is unable to deliberately pick an input to

VDF to deterministically get the desired value.

Message internal consistency and validity A message m is internally consistent

if the attributes carried by m can be generated by following Gorilla cor-

rectly based on the message coffer carried in m. We denote the vdf in m

by vdfm.

A message m is valid (and thus isValid(m) returns true), if (i) vdfm can be

verified by the message coffer and the nonce of m; (ii) m is internally con-

sistent; and (iii) for any message m↔ in m’s coffer, m↔ is also valid. Other-

wise, m is invalid.

In addition to demonstrating variable initialization, Algorithm 4 presents

the algorithm each node pi runs at each step. Each node pi starts every step by

adding all valid messages, in addition to the messages in their coffers, to the

set Reci (lines 4-6).

Iterating over Reci, node pi computes the largest round rmax for which it has

received at least T messages, and updates its current round to rmax + 1 (line 8)

if the condition in line 7 holds. Once in a new round, pi does the following: (i)

resets its message coffer M and adds to it the messages it has received from the

previous round – alongside the messages in their coffers (lines 9-11); (ii) picks

a nonce and calculates a vdf based on its coffer and the nonce (lines 13-15); (iii)

chooses its proposal value (lines 16 -20); it chooses the proposal with the high-

est priority among the previous round messages in its coffer; in case of a tie, it
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chooses a random number utilizing the randomness in vd f ; (iv) determines the

priority and the unanimity counter for the messages it will broadcast in the cur-

rent round (lines 21-25); and finally (v) the node decides v if v’s priority is high

enough (lines 26-27). If pi does not enter a new round, it starts to create a mes-

sage nonetheless: it adds to the message’s coffer all messages received for the

current round (line 29), and calculates a vdf with the new message coffer and a

different nonce as the input (lines 30-32), so that the message is unique. Regard-

less of whether it enters a round or not, pi ends every step by broadcasting the

message it has created (line 33).

4.2.1 Comparing Sandglass and Gorilla

Gorilla retains the structure of Sandglass, adding the requirement that valid

messages must include a vdf and a nonce. The differences between the protocols

are highlighted in orange in Algorithm 4: (i) vdf is calculated for each message

sent (lines 13-15,30-32), (ii) received messages are checked to see if they are valid

(line 5); (iii) vdf is used as the source of randomness (line 20) where the protocol

requires choosing a value randomly.

These additions are critical to handling Byzantine faults. Both Gorilla and

Sandglass rely on correct (respectively, good) nodes sending the majority of

unique messages during an execution. In Sandglass, where defective nodes

are benign, this property simply follows from requiring correct nodes to be a

majority in each step; not so in Gorilla, where faulty nodes can be Byzantine.

Requiring valid message in Gorilla to carry a vdf preserves correctness by effec-

tively rate-limiting Byzantine nodes’ ability to create valid messages.
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Algorithm 4 Gorilla: Code for node pi. The orange text highlights where Gorilla
departs from Sandglass.

1: procedure INIT(inputi)
2: vi ↗ inputi; priorityi ↗ 0; uCounteri ↗ 0; ri = 1; Mi = ∝; Reci = ∝;
3: procedure STEP
4: for all m = (·, ·, ·, ·, ·,M) received by pi do
5: if isValid(m) then
6: Reci ↗ Reci ′ {m} ′ M
7: if max|Reci(r)|⇔T (r) ⇔ ri then
8: ri = max|Reci(r)|⇔T (r) + 1
9: Mi = ∝

10: for all m = (·, ri → 1, ·, ·, ·,M) ⇑ Reci(ri → 1) do
11: Mi ↗ Mi ′ {m} ′ M
12: Mi ↗ Mi ′ Reci(ri)
13: vdf↗ ⇐; nonce↗ a new arbitrary value
14: for j : 1..k do
15: vdf↗ Get((Mi, nonce), vd f )
16: Let C be the multi-set of messages in Mi(ri→1) with the largest priority.

17: if all messages in C have the same value v then
18: vi ↗ v
19: else
20: vi ↗ vdf mod 2
21: if all messages in Mi(ri → 1) have the same value vi then
22: uCounteri ↗ 1+min{uCounter|(·, ri → 1, vi, ·,uCounter, ·) ⇑ Mi(ri → 1)}
23: else
24: uCounteri ↗ 0
25: priorityi ↗ max(0,

⌊
uCounteri
T

⌋
→ 5)

26: if priorityi ⇔ 6T + 4 then
27: Decidei(vi)
28: else
29: Mi ↗ Mi ′ Reci(ri)
30: vdf↗ ⇐; nonce↗ a new arbitrary value
31: for j : 1..k do
32: vd f = Get((Mi, nonce), vd f )
33: broadcast (ri, vi, priorityi,uCounteri,Mi, nonce, vdf)

Given their differences in both failure model and timing assumptions, it is

perhaps surprising that so little needs to change when moving from Sandglass

to Gorilla. After all, Sandglass assumes a model where failures are benign and
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a hybrid synchronous model of communication [?]; Gorilla instead assumes a

Byzantine failure model, and a synchronous network model (§4.1). Note, how-

ever, that although Sandglass assumes benign failures, its hybrid communica-

tion model implicitly accounts for Byzantine nodes strategically choosing the

timing for receiving and sending messages to correct nodes: Gorilla can then

simply inherit from Sandglass the mechanisms for tolerating such behaviors.

4.3 Correctness

Despite the similarlity between the Gorilla and Sandglass protocols, proving

Gorilla’s correctness directly is challenging. Unlike Sandglass, Byzantine nodes

can act between step boundaries, interleave VDF computations instead of pro-

ducing one VDF (and hence one message) at the time, etc. To overcome this

complexity, our approach is to leverage as much as possible Sandglass’s proof

of correctness.

Our battle plan was to first map executions of Gorilla to executions of Sand-

glass. Then we intended to proceed by contradiction: assume that a correctness

guarantee is violated in Gorilla, and map this violation to Sandglass; since cor-

rectness violations are not possible in Sandglass, we could then conclude that

neither they can be in Gorilla.

The best laid plans often go awry, and, as we discuss below, ours was no

exception—but we were able to nonetheless retain the conceptual simplicity of

our initial approach.
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4.3.1 The Main Story, and How it Fails

The mapping from Gorilla to Sandglass must satisfy certain well-formedness and

equivalence conditions. The former specify how to map a Gorilla execution into

one that satisfies the Sandglass model (SM) and follows the Sandglass protocol;

the latter allow us to map violations from Gorilla to Sandglass, i.e., they preserve

certain properties of the behavior of correct nodes in Gorilla and reinterpret them

as the behavior of good nodes in Sandglass.

Well-formedness requires mapping correct nodes to good nodes, and Byzan-

tine nodes to defective nodes, while respecting model constraints (e.g., at each

step defective nodes should be fewer than good nodes). The first half of this

mapping is easy: except for calculating a VDF, correct nodes in GM are not do-

ing anything different than good nodes in SM. Thus, mapping a step in GM

to a step in SM yields a straightforward connection between correct and good

nodes. The second half, however, is trickier. Defective nodes in SM can suffer

from benign faults like omission and crashing, but these fall short of fully cap-

turing Byzantine behavior in GM. In particular, Byzantine nodes, even when

sending valid messages, can violate the timing constraints that Gorilla places on

a node’s actions, e.g., by splitting the calculation of a single VDF into multiple

steps. Thus, before a Gorilla execution can be mapped to a Sandglass execution,

Byzantine nodes’ actions must be brought to conform to step boundaries and

not spill across steps. After tidying things up this way, it must become possible

to map the faulty actions of the Byzantine nodes to a combination of crashes,

omissions, and network delays, i.e., to the faults and anomalies that SM allows.

Equivalence in turn requires that, when mapping executions from Gorilla to

Sandglass, a correct node and its corresponding good node send and receive
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(b) The solution enabled by peeking.

Figure 4.1: An execution that cannot be reorganized in GM (a), and how peeking
solves the problem in GM+ (b).

in every step messages that allow them to update their proposed value, round

number, priority, and unanimity counter in the same way. Since messages play

the same role in both protocols, this is sufficient for good nodes in Sandglass to

decide identically to the corresponding correct nodes in Gorilla.

Our plan to realize this logical mapping involved splitting it into two con-

crete, intermediate mappings: a first mapping from an initial Gorilla execution

to an intermediate Gorilla execution in which Byzantine actions conform to step

boundaries; and a second mapping from that intermediate execution to a Sand-

glass execution. We require all of our well-formedness and equivalence condi-

tions to hold throughout these mappings: (i) model constraints must be always

respected, (ii) correct nodes in the intermediate execution send and receive the

equivalent (indeed, the same!) messages as their counterparts in the initial ex-

ecution, at the same steps, and (iii) good nodes in the final execution send and

receive equivalent messages as their correct counterparts in the intermediate

execution, at the same steps.

Unfortunately, well-formedness and equivalence cannot be satisfied by the first

mapping. To see why, consider Figure 4.1a. Here, each square represents a VDF

unit calculated by a Byzantine node for a specific input, denoted by a unique

color. Numbered circles represent the corresponding messages, e.g., the VDF
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units containing 1→ are associated with message 1→. Each VDF calculation takes

three ticks, and a step comprises three ticks. The numbered dashed lines indi-

cate the steps, i.e., the three ticks between lines i and i + 1 belong to step i. As-

sume that, to maintain a majority of correct nodes in the system, the maximum

allowable number of Byzantine nodes in the four steps shown in the figure are,

respectively, 1, 1, 3, and 1. Moreover, assume that messages 4→, 5→, and 6→ all

include in their coffers messages 1→, 2→, and 3→. Finally, assume that messages

4→, 5→, and 6→ are sent to correct nodes at the start of Step 4. Since the actions

of Byzantine nodes in Figure 4.1a do not conform to step boundaries, the first

mapping should be able to organize them in a way that ensures that (i) correct

nodes receive messages 4→, 5→, and 6→ at the beginning of Step 4, and (ii) each of

these messages in turn includes messages 1→, 2→, and 3→. Thus, the calculation

of the VDFs for messages 1→, 2→, and 3→ must be completed before those for 4→,

5→, and 6→ can start. Now, since steps 0 and 1 include only one Byzantine node,

they can only accommodate one VDF, i.e., only one VDF can be calculated in

each of steps 0 and 1. Without loss of generality, let those VDFs be 1→ and 3→,

respectively. VDF 2→ must still complete before messages 4→, 5→, and 6→: thus,

it has to be placed in Step 2. Note that, although Step 2 could accommodate

two more Byzantine VDFs at Step 2, they cannot be placed there, since the com-

pletion of VDF 2→ must precede the start of the calculation of VDFs 4→, 5→, and

6→: the earliest step where they can start is Step 3. However, it is impossible to

accommodate all three there, since in Step 3 there is a single Byzantine node.

Our first attempt at mapping executions from Gorilla to Sandglass has thus

failed. Fortunately, though, it is possible to retain the strategy that under-

lies it and overcome the above counterexample without weakening our well-

formedness and equivalence conditions. Instead, we proceed to weaken the
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model in which we operate, by giving Byzantine nodes extra power.

4.3.2 A New Beginning

The first step in our two-step process for mapping a Gorilla execution ςG into

a Sanglass execution ςS is to reorganize the actions taken by Byzantine nodes

in ςG: we want to map ςG to an execution where Byzantine nodes join the system

and receive valid messages at the beginning of a step (by the first tick) and

broadcast valid messages and leave the system at the step’s end (at its K-th

tick). Since, as explained in Section 4.3.1, satisfying all of these requirements is

not possible, we extend GM to a new model.

We need some way to calculate a VDF on an input that includes the final

result of VDF calculations that are still in progress. To achieve this, we extend

the oracle’s API to allow Byzantine nodes to peek at those future outcomes. By

issuing the oracle’s peek query, Byzantine nodes active in any step s can learn the

result of a VDF computed by Byzantine nodes finishing in step s even before its

calculation has ended.

We thus introduce GM+, a model that extends GM by having a new ora-

cle, Ω+, that supports one additional method:

Peek(ϱ): immediately returns vdfϱ.

In any tick, a Byzantine node in GM+ can call Peek() multiple times, with

different inputs. However, Byzantine nodes can only call Peek subject to two

conditions:
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• A Byzantine node can peek in step s at vdfϱ only if Byzantine nodes commit

to finish the VDF calculation for input ϱ within s; and

• a Byzantine node does not peek at vdfϱ, where ϱ = (M, nonce), if M in turn

contains some VDF result v obtained by peeking, and the calculation of v

has yet to finish in this tick.

Note that these restrictions only limit the additional powers that GM+ grants the

adversary: in GM+, Byzantine nodes remain strictly stronger than in GM.

With this new model, we first map an execution of Gorilla in GM to an ex-

ecution of Gorilla in GM+, in which Byzantine behavior is reorganized with

the addition of peeking. Hence follows the first lemma of our scaffolding: the

existence of the first mapping.

Definition 7. Consider an execution ςG in GM and an execution ς+G in GM+. We

say ς+G is a reorg of ςG iff the following conditions are satisfied:

REORG-1 For every correct node p in ςG, there exists a correct node p+ in ς+G, such

that p and p+ (i) join and leave the system at the same ticks in the same steps and

(ii) receive and send the same messages at the same ticks in the same steps.

REORG–2 Each Byzantine node in ς+G (i) joins at the first tick of a step and leaves

after the last tick of that step; (ii) receives messages at the first tick of a step and

sends messages at the last tick of that step; and (iii) sends and receives only valid

messages.

REORG-3 If in ςG a Byzantine node sends a valid message m at a tick in step s, then

in ς+G a Byzantine node sends m at a tick in some step s↔ ↑ s.
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Lemma 2. There exists a mapping REORG that maps an execution ςG in GM to an

execution ς+G in GM+, denoted ς+G = REORG(ςG), such that ς+G is a reorg of ςG.

While peeking solves the challenge with reorganizing Byzantine behavior,

it complicates our second mapping. The ability to peek granted to Byzantine

nodes in GM+ has no equivalent in Sandglass – it simply cannot be reduced to

the effects of network delays or to the behavior of defective nodes. Therefore,

we weaken SM so that defective nodes can benefit from a capability equivalent

to peeking.

We do so by introducing SM+, a model that is identical to SM, except for the

following change: defective nodes at step s can receive any message m sent by a

defective node no later than s – as opposed to (s → 1) in SM – as long as m does

not contain in its coffer a message that is sent at s. Note that allowing defective

nodes to receive in a given step a message m sent by defective nodes within that

very step maps to allowing Byzantine nodes to peek at a message whose vd f

will be finished by Byzantine nodes within the same step; and the constraint

that m shouldn’t contain in its coffer other messages sent in the same step, maps

to the constraint that Byzantine nodes cannot peek at messages whose coffer

also contains a peek result from the same step.

One might rightfully ask: But the plan to leverage the correctness of Sand-

glass in SM? Indeed, but fortunately, Sandglass still guarantees deterministic agree-

ment and termination with probability 1 under the SM+ model (§B.1.2). Thus, it is

suitable to map a Gorilla execution in GM+ to a Sandglass execution in SM+,

and orient our proof by contradiction with respect to the correctness of Sand-

glass in SM+.
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Formally, we specify our second mapping as follows. We map messages by

simply translating the data structure:

Definition 8. Given a message m in the Gorilla protocol, the mapping MAPM produces

a message in the Sandglass protocol as follows

1. Omit the vdf and the nonce from m.

2. Let pi be the node that sends m. Include pi as a field in m.

3. If m is the j-th message sent by pi, add a field uid = j to m.

4. Repeat the steps above for all of the messages in m’s coffer.

Denote the result by m̂ = MAPM(m). We say m and m̂ are equivalent. Furthermore,

with a slight abuse of notation, we apply MAPM to a set of messages as well, i.e., if

M is a set of messages, and we map each message m ⇑ M, we obtain the message set

MAPM(M).

Thus, we can define the execution mapping:

Definition 9. Consider an execution ς+G in GM+ and an execution ς+S in SM+. We

say ς+S is an interpretation of ς+G iff the following conditions are satisfied:

1. The nodes in ς+G are in a one-to-one correspondence with the nodes in ς+S . For

every node p in ς+G, we denote the corresponding node in ς+S with p̂.

2. Nodes p and p̂ join and leave at the same steps in ς+G and ς+S , respectively. Fur-

thermore, their initial values are the same.

3. If p is a Byzantine node, then p̂ is defective in SM+; otherwise, p̂ is a good node

in SM+.
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4. Node p̂ sends m̂ at step s in ς+S iff p generates a message m in ς+G at step s. Note

that in ς+G, correct nodes send their messages to all as soon as they are generated,

while Byzantine nodes may only send their messages to a subset of nodes once

their messages are generated.

5. Node p̂ receives m̂ at step s in ς+S iff p receives m at step s in ς+G.

Lemma 3. Consider any execution ςG in GM, and an execution ς+G in GM+ is a reorg

of ςG. There exists a mapping INTERPRET that maps ς+G to an execution ς+S in SM+,

denoted as ς+S = INTERPRET(ς+G), such that ς+S is an interpretation of ς+G.

Finally, for our proof by contradiction to work, we have to show that Sand-

glass is correct in SM+. The proof is deferred to §B.1.2.

Theorem 1. Sandglass satisfies agreement and validity deterministically and termina-

tion with probability 1 in SM+.

Safety

We prove that Gorilla satisfies Validity and Agreement. The proofs follow the

same pattern: assume a violation exists in some execution ςG of Gorilla running

in GM; map that execution to ς+G = REORG(ςG) in GM+; then, map ς+G again to

ς+S = INTERPRET(ς+G) in SM+; and, finally, rely on the fact that these mappings

ensure that correct nodes in ςG and good nodes in ς+S reach the same decisions

in the same steps to derive a contradiction. This approach is made rigorous in

following lemmas, proved in §B.3.

Lemma 4. Consider an arbitrary Gorilla execution ςG, and ς+G = REORG(ςG). If a

correct node p decides a value v at step s in ςG, then p’s corresponding node p+ decides v

at step s in ς+G.
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Lemma 5. Consider any execution ςG in GM. If an execution ς+S in SM+ is an in-

terpretation of an execution ς+G = REORG(ςG) in GM+, then the following statements

hold:

1. If a correct node p decides a value v at step s in ς+G, then the corresponding p̂,

decides v at step s in ς+S .

2. Consider the first message m = (r, v, priority,uCounter,M, nonce, vdf) that p

generates for round r. Let the step when m is generated be s. If uCounter is 0,

then p̂ randomly chooses value v as the proposal value at step s in ς+S .

We can now state and prove the safety guarantees.

Theorem 2. Gorilla satisfies agreement in GM.

Proof. By contradiction, assume that there exists a Gorilla execution ςG in GM

that violates agreement. This means that there exist two correct nodes p1 and

p2, two steps s1 and s2, and two values v1 ! v2 such that p1 decides v1 at s1

and p2 decides v2 at s2. Consider ς+G = REORG(ςG). According to Lemma 4, p+1

decides v1 at s1 and p+2 decides v2 at s2, in ς+G. Now, consider ς+S = INTERPRET(ς+G).

According to Lemma 5, p̂+1 decides v1 at s1 and p̂+2 decides v2 at s2, in ς+S . How-

ever, this contradicts the fact Sandglass satisfies agreement in SM+ (Theorem 1).

Therefore, Gorilla satisfies agreement in GM. ↭

Theorem 3. Gorilla satisfies validity in GM.
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Proof. By contradiction, assume that there exists a Gorilla execution ςG, such

that (i) all nodes that ever join the system have initial value v; (ii) there are no

Byzantine nodes; and (iii) a correct node p decides v↔ ! v.

Since GM+ is an extension of GM, ςG conforms to GM+. According to Defi-

nition 7, ς+G = ςG in GM+ is trivially a reorg of ςG. Consider ς+S = INTERPRET(ς+G).

By the construction of the INTERPRET mapping (in Lemma 3), good nodes

in ς+S have the same initial values as their corresponding correct nodes in ςG.

Furthermore, since there are no Byzantine nodes in ς+G, there are no defective

nodes in ς+S by Definition 9. Therefore, by Validity of Sandglass in SM+ (Theo-

rem 1), no good node decides v↔ ! v. However, by Lemma 4 and Lemma 5, p

decides v↔ ! v, which leads to a contradiction. Therefore, Gorilla satisfies valid-

ity in GM. ↭

4.3.3 Liveness

Similar to the safety proof, the liveness proof proceeds by contradiction: it starts

with a liveness violation in Gorilla, and maps it to a liveness violation in Sand-

glass.

Formalizing the notion of violating termination with probability 1 requires

specifying the probability distribution used to characterize the probability of

termination. To do so, we first have to fix all sources of non-determinism [2, 4,

27]. For our purposes, non-determinism in GM and GM+ stems from correct

nodes, Byzantine nodes and their behavior; in SM+, it stems from good nodes,

defective nodes and the scheduler.
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For correct, good, and defective nodes, non-determinism arises from the

joining/leaving schedule and the initial value of each joining node. For Byzan-

tine nodes in GM and GM+, fixing non-determinism means fixing their action

strategy according to the current history of an execution. Similarly, fixing the

scheduler’s non-determinism means specifying the timing of message deliv-

eries and the occurrence of benign failures, based on the current history. We,

therefore, define non-determinism formally in terms of an environment and a

strategy.

To this end, we introduce the notion of a message history, and define what it

means for a set of messages exchanged in a given step to be compatible with the

message history that precedes them.

Definition 10. For any given execution in GM and GM+ (resp., SM+), and any step s,

the message history up to s,MH s, is the set of ∞m, p, s↔∈ triples such that p is a correct

node (resp., good node) and p receives m at s↔ ↑ s.

Definition 11. We say a setMPs+1 of ∞m, p, s+1∈ triples is compatible with a message

history up to s, MH s, if there exists an execution such that for any ∞m, p, s + 1∈ ⇑

MPs+1, the correct node (resp., good node) p receives m at step (s + 1).

Definition 12. An environment E in GM and GM+ (resp., SM+) is a fixed join-

ing/leaving schedule and fixed initial value schedule for correct nodes (resp., good and

defective nodes).

Definition 13. Given an environment E, a strategy ΘE for the Byzantine nodes (resp.,

scheduler) in GM and GM+ (resp., SM+) is a function that takes the message his-

toryMH s up to a given step s as the input, and outputs a setMPs+1 that is compatible

withMH s.
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Before proceeding, there is one additional point to address. The most gen-

eral way of eliminating non-determinism is to introduce randomness through a

fixed probability distribution over the available options. However, the follow-

ing lemma, proved in §B.4, establishes that Byzantine nodes do not benefit from

employing such a randomized strategy.

Lemma 6. For any environment E, if there exists a randomized Byzantine strat-

egy for Gorilla that achieves a positive non-termination probability, then there exists a

deterministic Byzantine strategy for Gorilla that achieves a positive non-termination

probability.

Since the output vd f of a call to the VDF oracle is a random number, the (vdf

mod 2) operation in line 20 of Gorilla is equivalent to tossing an unbiased coin.

Given a strategy ΘE,1 the nodes might observe different coin tosses as the exe-

cution proceeds; thus, the strategy specifies the action of the Byzantine nodes

for all possible coin toss outcomes. The scheduler’s strategy in SM+ is similarly

specified for all coin toss outcomes. Therefore, once a strategy is determined, it

admits a set of different executions based on the coin toss outcomes; we denote

it by HΘ. Specifically, a strategy determines an action for each outcome of any

coin toss.

Given a strategy Θ, we can define a probability distribution PHΘ over HΘ. For

each execution ς ⇑ HΘ, there exists a unique string of zeros and ones, repre-

senting the coin tosses observed during ς. Denote this bijective correspondence

by COINS : HΘ ⇓ {0, 1}↓ ′ {0, 1}∋, and the probability distribution on the coin

toss strings in COINS(HΘ) by P̃HΘ . For every event E △ HΘ, if COINS(E) is mea-

surable in COINS(HΘ), then P̃HΘ(COINS(E)) is well-defined; thus, PHΘ(E) is also
1When it is clear from the context, we will omit the environment from the subscript of the

strategy.
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well-defined and PHΘ(E) = P̃HΘ(COINS(E)). We denote PHΘ as the probability

distribution induced over HΘ by its coin tosses.

Equipped with these definitions, we can formally define termination with

probability 1.

Definition 14. The Gorilla protocol terminates with probability 1 iff for every environ-

ment E and every Byzantine strategy Θ based on E, the probability of the termination

event T in HΘ, i.e., PHΘ(T ), is equal to 1.

This definition gives us the recipe for proving by contradiction that Gorilla

terminates with probability 1. We first assume there exists a Byzantine strat-

egy Θ that achieves a non-zero non-termination probability, and map this strat-

egy through the REORG and INTERPRET mappings to a scheduler strategyΛ that

achieves a non-zero non-termination probability in SM+. However,Λ cannot ex-

ist, as the Sandglass protocol terminates with probability 1 in SM+ (Theorem 1).

Lemma 7. If there exists an environment E and a Byzantine strategy ΘE in GM that

achieves a positive non-termination probability, then there exists an environment E
↔

and a Byzantine strategy &E↔ in GM+ that also achieves a positive non-termination

probability.

Proof. Assume there exist an environment E and a Byzantine strategy ΘE in GM

that achieves a positive non-termination probability. Consider the REORG map-

ping. Since, according to Lemma 2, the joining/leaving and initial value sched-

ules for correct nodes remain untouched by the REORG mapping, we just

set E↔ = E. In the rest of the proof, we omit the environments for brevity.

We now show that the strategy & exists, and is in fact the same as Θ. For

brevity, let RΘ denote REORG(HΘ), and consider any execution ς in HΘ. By
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Lemma 2, correct nodes in ς receive the same messages, at the same steps, as

the correct nodes in REORG(ς) and, moreover, the coin results in ς are exactly

the same as the ones in REORG(ς). Thus, the message history of correct nodes

up to any step s in ς is the same as the message history of correct nodes up to

the same step in REORG(ς). In addition, because REORG(ς) is a GM+ execution,

compatibility is trivially satisfied. Thus, we conclude that Byzantine nodes in RΘ

follow the same strategy as in Θ, conforming to the same coin toss process. Let

us denote this strategy with &.

Note that according to Lemma 4, whenever a correct node decides at some

step s in ς, its corresponding correct node in REORG(ς) decides the same value

at the same step. Therefore, the set of non-terminating executions in HΘ are

mapped to the set of non-terminating executions in RΘ in a bijective manner.

Let us denote these sets as NTH and NTR, respectively. Since the same coin toss

process induces probability distributions PHΘ and PRΘ on HΘ and RΘ, respec-

tively, we conclude that PHΘ(NTH) = PRΘ(NTR). Therefore, since PHΘ(NTH) > 0

by assumption, this concludes our proof, as we have shown the existence of a

strategy & in GM+ that achieves a positive non-termination probability. ↭

A similar lemma applies to the second mapping. We prove it in §B.4.

Lemma 8. If there exists an environment E and a strategy & for Byzantine nodes

in GM+ that achieves a positive non-termination probability, then there exists an en-

vironment E
↔

and a scheduler strategey ΛE↔ in SM+ that also achieves a positive non-

termination probability.

Based on these lemmas, we are finally ready to prove Gorilla’s liveness guar-

antee.
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Theorem 4. The Gorilla protocol terminates with probability 1.

Proof. By contradiction, assume that there exist a GM environment and a Byzan-

tine strategy Θ in Gorilla that achieve a positive non-termination probability.

By Lemma 7, there exist a GM+ environment and a strategy & for the Byzan-

tine nodes in GM+ that achieve a positive non-termination probability. Simi-

larly, by Lemma 8, there exists an SM+ environment and a scheduler strategy Λ

in SM+ that achieve a positive non-termination probability. But this is a con-

tradiction, since Sandglass terminates with probability 1 in SM+ (Theorem 1).

Thus, Byzantine strategy Θ cannot force a positive non-termination probability;

Gorilla terminates with probability 1. ↭
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CHAPTER 5

RELATED WORK

The consensus problem has been studied for decades, covering both benign and

Byzantine faults under different synchrony assumptions. Common across these

classic works is the assumption that the set of nodes that participate in run-

ning the protocol is either constant or changes through an agreement among the

current participants (permissioned). In contrast, Sandglass and Gorilla allow for

participants to change arbitrarily and without any coordination (permissionless)

as long as, at all times, a majority of nodes are correct and synchronously con-

nected. More recent papers also explore models where participants can change

dynamically at any time, subject to guarantees of a well-behaved majority; un-

like Sandglass and Gorilla, those works achieve only probabilistic safety guar-

antees. We briefly review related prior work in more detail below.

Classic consensus The permissionless nature of our model implies that con-

sensus solutions for classical models (e.g., [28]) do not apply. For synchronous

networks, previous solutions rely on the fact that the number of failures is

bounded over a period of time. They tolerate up to (n → 1) benign failures [54]

or Byzantine failures with authentication [14, 36]. For asynchronous networks,

Fisher, Lynch, and Paterson [17] show that it is impossible to solve consensus

with deterministic safety and liveness, even with a single crash failure. Vari-

ous protocols (e.g., [32, 51, 53]) thus either solve asynchronous consensus with

weaker liveness guarantees than deterministic termination, or provide deter-

ministic termination after a Global Stabilization Time (GST) (e.g., [7]). They

use logical rounds, and for each round collect messages from a sufficient num-

ber of (authenticated) nodes, tolerating fewer than n
2 failures in a benign failure
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model [5, 34], and fewer than n
3 failures with Byzantine failures and authenti-

cation [7, 58]. Although our model is not directly comparable, Sandglass and

Gorilla match the n
2 bound of a benign model in an asynchronous network, de-

spite assuming synchrony among good nodes.

Impossibility result for permissionless setting Lewis-Pye and Roughgar-

den [37] show that deterministic consensus cannot be achieved in a permis-

sionless synchronous model with Byzantine nodes, let alone in a partially syn-

chronous model (where communication becomes synchronous only after some

GST unknown to the processes). Sandglass and Gorilla show, for the first time,

that deterministic safety and termination with probability 1 can be achieved in

a permissionless model.

Blockchains A newer line of work, inspired by Nakamoto’s introduction of

Bitcoin [46], investigates decentralized systems where participants may freely

join or leave without notifying existing members.

Bitcoin employs a probabilistic Proof-of-Work (PoW) mechanism, predicated

on the idea that a minority group cannot sustain over long duration the pace

of the majority in producing proof of work outputs, thereby ensuring system

safety with high probability as long as a majority of participants follow the pro-

tocol, as confirmed by various studies [13, 21, 31, 47]. Other protocols, like

Ethereum and the protocol described in [44], adopt different probabilistic ap-

proaches: Ethereum uses Proof-of-Stake (PoS) [56], which secures the network

through validators staking their own tokens as a form of security, while the

system outlined in [44] utilizes Proof-of-Space-Time (PoST), where participants

prove they have allocated disk space over a specific duration to validate trans-
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actions. Both mechanisms aim to offer similar probabilistic guarantees tailored

to their unique operational frameworks.

Several protocols, inspired by the Proof of Work (PoW) approach, achieve

consensus among a large group of principals while requiring the active partici-

pation of only a subset of them.

Pass et al. [48] introduce the sleepy participation model, in which honest nodes

are either awake or asleep. Awake nodes participate in the protocol, while

asleep nodes neither participate nor relay messages. Byzantine nodes are al-

ways awake, but the scheduler can adaptively turn an honest node Byzantine

as long as Byzantine nodes remain a minority of awake nodes. This elegant

model requires a public key infrastructure (PKI) and offers probabilistic safety

guarantees. Ouroboros [10, 30] approaches blockchain through a proof-of-stake

(PoS) mechanism by using internal tokens to randomize participant selection,

thus providing probabilistic safety and efficiency. In Algorand [22], committees

of users elect one another through successive reconfigurations. Participants are

randomly chosen from a large pool, which still allows for a negligible possibil-

ity of selecting a committee with a Byzantine majority. Consequently, Algorand

too offers only probabilistic safety guarantees.

In contrast, despite their permissionless model, Sandglass and Gorilla guar-

antee deterministic safety (without relying on PKI) and terminate with proba-

bility 1. Sandglass operates under a model that differs from the one adopted

by the three above systems. Its network assumptions are weaker, as it allows

communication to and from defective nodes to be asynchronous; on the other

hand, its failure model is stronger, as it assumes only benign failures. Gorilla, on

the other hand, matches the network and failure models adopted by the above
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systems, as it assumes a synchronous network and tolerates Byzantine faults.

Participation restriction Few proposals achieve deterministic safety in a per-

missionless setting [3, 43], but only by limiting the ability of correct nodes to

leave the system.

Aspnes et al. [3] explore the consensus problem in an asynchronous benign

model where an unbounded number of nodes can join and leave [20], but where

at least one node is required to live forever, or until termination. It is easy to see

that, without this latter assumption, deterministic safety is impossible in their

model.

Momose et al. [43] introduce the notion of eventually stable participation, akin

to partial synchrony; it requires that, after an unknown global stabilization time,

for each T-wide time interval [t, t + T ], at least half of the nodes ever awake

during the interval are correct and do not leave.

In contrast, Sandglass and Gorilla guarantee deterministic safety while al-

lowing all nodes to freely join and leave without requiring any correct node to

stay in the system or assuming statibility in participation, as long as a majority

of active nodes is correct.

Signatures A different line of work by Malkhi et al. [41] and Losa et al. [19] do

let nodes join and leave at any time, as in Gorilla. Both studies achieve termi-

nation within a constant expected latency. Unlike Gorilla, however, they must

rely on a public key infrastructure (PKI) to tolerate fluctuations in the number

of adversaries.
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Other efforts to make the connection between blockchains and traditional

consensus Abraham and Malkhi [1] formalize Nakamoto’s Consensus within

a classical disturbed systems framework, and in particular abstract the PoW

primitive as a Pre-Commit, Non-Equivocation, Leader Election (PCNELE) Or-

acle. However, the leader elected by the oracle is not unique, which is funda-

mentally different from consensus protocols that depend on the leader election.

VDF Verifiable Delay Functions (VDFs) [6] have been leveraged as a resource

against Byzantine adversaries in various works [12, 29, 39, 57], specifically to

defend PoS systems from attacks where participants can go back in time and

mine blocks. Gorilla leverages VDFs to rate-limit the ability of Byzantine nodes

to create valid messages.
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CHAPTER 6

CONCLUSION

Sandglass and Gorilla show, for the first time, that it is possible to obtain con-

sensus with deterministic safety in a permissionless model. This result suggests

that it is the probabilistic nature of its PoW mechanism, rather that its permis-

sionless model, that prevents deterministic safety in Nakamoto’s consensus.

Furthermore, Gorilla is the first Byzantine-tolerant consensus protocol to

guarantee, in the same synchronous model adopted by Nakamoto, determinis-

tic agreement and termination with probability 1 in a permissionless setting. To

this end, Gorilla leverages VDFs to extend the approach of Sandglass, the first

protocol to provide similar safety guarantees in the presence of benign failures.

Neither Gorilla nor Sandglass are practical protocols, however: they ex-

change a very large number of messages and the number of rounds they require

to decide is large even under favorable circumstances, and can, in general, be

exponential. On the other hand, there exists a line of research [19, 41] focused on

more practical solutions that can achieve deterministic safety in a dynamically

available setting and reach decisions within a few rounds, albeit depending on

a public key infrastructure (PKI). This opens up the possibility of developing

a new protocol that combines the best of both approaches: a practical Byzan-

tine fault-tolerant permissionless protocol that achieves deterministic safety but

does not rely on a PKI.
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APPENDIX A

CORRECTNESS OF SANDGLASS

We prove that Sandglass satisfies the consensus requirements. Figure A.1

illustrates the dependency between the statements proven below. The letters L,

O, and C, signify Lemma, Observation, and Corollary, respectively.

Sandglass upholds the definitions of Valdity, Agreement, and Termination

(with probability 1) given in Section 4.1.

A.1 Validity

We show that if all nodes have the same initial value, this is the only value that

can be decided.

Lemma 9 (Validity). If all nodes that ever join the system have initial value v and any

node (whether good or defective) decides, then it decides v.

Proof. By line 22 of Sandglass, if a node pi decides a value, it decides the value

held in its variable vi. By lines 2 and 12–15 of Sandglass, vi is either the initial

value of pi, or one of the values that pi receives. Therefore, it suffices to show

that if all nodes have initial value v, then v is the only value that can be sent by

any node.

We prove, by induction on the round number, that any message m sent by

any node for round r proposes v.

Base case: r = 1 Consider any node p that sends a message in the first

round. Since every node’s initial value is v, the message that p broadcasts at
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line 25 proposes v.

Induction hypothesis: Assume that all messages sent by any node up to

round r = k propose v.

Induction step: Consider any node p sending a message in round r = (k + 1)

at step T . By assumption, all round k messages collected by p must be propos-

ing v. In lines 12–15 of Sandglass, vi is randomly selected from among the pro-

posed values with highest priority collected in round k. Since the only collected

value is v, vi can only be set to v. ↭

Figure A.1: The structure of the proof is illustrated through the dependencies
among its constituent lemmas, corollaries, claims, and observations. Prepara-
tory results discussed in the Scaffolding section are shown in black; red and blue
denote facts used in the proofs of Agreement and Termination, respectively.
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A.2 Scaffolding

Before addressing Agreement and Termination, we prove several statements

that will serve as scaffolding for our main results.

We start with some terminology. In Sandglass, a node in round r ignores

every message it receives that was sent with some round r↔ < (r → 1) (line 9). We

say that a node p collects message m if it adds it to Mp (line 10). We say that a

node is in round r at step T if it sends a message for round r at step T .

Our first lemma establishes that good nodes are progressing almost together

from round to round.

Lemma 10. If a good node is in round r at step T , then all good nodes will be in round r

or larger at step (T + 1).

Proof. Let p be a good node in round r at step T .

By line 6 of Sandglass, p must have collected at least T messages for

round (r→ 1), which p will then forward to all nodes in the coffer of the message

m that p broadcasts at line 25.

Consider any good node p↔ that is in a round r↔ < r at T or joins the system

at step (T + 1). Since p and p↔ are good, p↔ will receive m by (T + 1) and, by

line 5, add to its set Recp↔ both m and all the messages p forwarded in m’s coffer,

including at least T messages for round (r → 1). Then, computing at line 6 the

largest round for which p↔ has received T messages or more will return at least

(r → 1), and, at line 7, p↔ will update its round number, if it was smaller, to be at

least r.
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↭

The next lemma establishes that good nodes progress by at least one round

every T steps.

Lemma 11. If, at step T , r is the earliest round that any good node is in, then at

step (T + T ) all good nodes are at least in round (r + 1).

Proof. Let p be a good node that, by hypothesis, is in round r at step T ; by

assumption, all good nodes are at least in round r at step T . By Lemma 10, all

good nodes are in round r or larger at step (T+1); indeed, by a similar argument,

all good nodes are in round r or larger for any step T ↔ > T . Further, in each of

these steps the system contains at least one good node, since, by assumption,

the system contains at least one node in every step and a majority of its nodes

are good.

For the time interval from T to (T + T → 1), consider all the good nodes in

each of the steps of the interval. There are two cases:

• In some step of the interval, some good node is in some round r↔ > r.

If so, by the same reasoning used above, all good nodes will be in

round r↔ ⇔ (r + 1) or larger at step (T + T ).

• In all steps of the interval, all good nodes are in round r.

If so, in each of these steps there exists at least one good node that broad-

casts a message for round r (by line 25 of Sandglass). Consider any good

node pg at step (T + T ). Again, there are two cases:

– pg receives some message m↔ for round r↔ ⇔ (r + 1), from a defective

node.
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If so, by line 5, Recpg will include at least the T messages for

round (r↔ → 1) ⇔ r forwarded on m↔.

– pg only receives messages for round r or smaller.

If so, pg receives at least T messages for round r.

In both cases, computing at line 6 the largest round for which pg has re-

ceived T messages or more will return at least r, and, at line 7, pg will

update its round number, if it was smaller, to be at least (r + 1).

↭

Lemma 12. At any step T , any defective node is at most one round ahead of any good

node.

Proof. By contradiction. Assume that there exists an earliest step, T , where some

defective node p is more than one round ahead of a good node pg, i.e., at T

node p is in some round r and node pg is in round rpg ↑ (r → 2).

Note that no good node is in round (r → 1) or larger before T ; otherwise, by

Lemma 10, all good nodes would be in round (r → 1) or larger at T , contradict-

ing rpg ↑ (r → 2). Therefore, defective node p received no messages from good

nodes for round (r → 1) by T .

Consider the earliest step T ↔ ↑ (T → 1) where some defective node is in

round (r → 1). Since T is the first step where some defective node is more than a

round ahead of a good node, all good nodes must be in round (r → 2) or larger

at T ↔; but, as we just showed, no good node is in round (r→ 1) or larger before T .

Therefore, all good nodes must be in round (r → 2) from T ↔ until T .
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Consider the k consecutive steps from T ↔ to (T → 1). Let the number of mes-

sages generated by good nodes and defective nodes in each step be, respec-

tively, g1, ..., gk and d1, ..., dk. Since up to and including step T node p has received

for round (r→1) only messages from defective nodes, and yet p is in round r at T ,

by line 6 of Sandglass, Σi=k
i=1di ⇔ T and thus, by Lemma 1, Σi=k→1

i=2 gi ⇔ T . Since by

assumption every step includes at least one good node (i.e., g1 > 0), we have

that Σi=k→1
i=1 gi > T . Recall that during these k steps all good nodes are in round

(r → 2); then, all messages g1, ..., gk are for round (r → 2) and will all be received

by all good nodes by T . By line 6 and line 7, then, all good nodes (including pg)

must be in round (r → 1) at T . This contradicts our assumption and completes

the proof. ↭

Lemma 13. For any r, a good node that enters round (r+1) collects at least one message

from a good node for round r.

Proof. By contradiction. Let T be the first step where some good node pg enters

round (r + 1) without collecting any messages from any good node for round r.

Since, by line 9 of Sandglass, pg collects all the messages it receives for

round r, and yet it collects no messages from good nodes for round r, pg must

have received no messages for round r from good nodes by T .

By our model’s assumptions about good nodes, this implies that no good

node has sent a message for round r (and hence that no good node was in

round r) before step T . Therefore, both of the following statements must be

true:

S1: Defective nodes generated at least T messages for round r before step T . By

line 6, a node must receive at least T messages for round r to be in
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round (r + 1). Since pg received no messages for round r from good nodes

before T , all the messages pg received for round r must be from defective

nodes.

S2: No good node moved past round (r → 1) before T . We have showed above that

no good node is in round r before T ; further, since pg is in round (r + 1)

at T , by Lemma 10, no good node is in a round larger than (r + 1) be-

fore T . Finally, no good node p↔g can be in round (r + 1) at T ↔ < T : other-

wise, since good nodes send no messages for round r before T , p↔g would

not have collected any message from a good node for round r at T ↔, con-

tradicting our assumption that T is the first step where some good node

enters round (r + 1) without collecting any message from good nodes for

round r. Hence, before T no good node can be in round r or larger: the

largest round any good node can be in is round (r → 1).

Let T ↔ be the earliest step when some defective node is in round r. By

Lemma 12, the earliest round that any good node can be in at T ↔ is round (r→ 1).

Combining this observation with S2, we conclude that all good nodes are in

round (r → 1) from T ↔ until T .

Denote by k the number of consecutive steps from T ↔ to (T → 1). Let the

number of messages generated by good nodes and defective nodes in each step

be, respectively, g1, ..., gk and d1, ..., dk. Since by T node pg has received only

messages from defective nodes for round r, and yet it is in round (r + 1) at T ,

then, by line 6 of Sandglass, Σi=k
i=1di ⇔ T and thus, by Lemma 1, Σi=k→1

i=1 gi ⇔ T .

Recall that during these k steps all good nodes are in round (r → 1); then, all

messages g1, ..., gk→1 are for round (r → 1) and will all be received by all good

nodes by (T → 1). By lines 6 and 7 of Sandglass, then, all good nodes (including
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pg) must be in round r at (T → 1), contradicting S2. ↭

It follows that all good nodes collect a message from a single good node for

each round.

Corollary 1. For any round r, there exists a message from a good node for round r that

is collected by all good nodes that are in round r↔ ⇔ (r + 1).

Proof. Consider any round r. Let T be the earliest step when some good node pg

reaches some round (r + 1). By Lemma 13, pg collects by T at least one mes-

sage, mr,all, from a good node for round r. Since mr,all is sent by a good node, all

good nodes must have received m by T .

Now we prove mr,all is collected by all good nodes that are in round r↔ ⇔ (r+1)

by induction on r↔.

Base case: r↔ = (r + 1) We are going to prove that mr,all is collected by all

good nodes that are in round (r + 1).

Since pg is the earliest good node who reaches round (r + 1), any good node

who reaches round (r + 1) at the same step or later must have collected mr,all at

line 10 of Sandglass.

Induction hypothesis Assume mr,all is collected by all good nodes that are

in round r↔ = k ⇔ (r + 1).

Induction step We are going to prove that the lemma holds for r↔ = (k+ 1).

By induction hypothesis, mr,all is collected by all good nodes that are in round k;

i.e., ▽m = (·, ·, k, ·, ·,M) sent by a good node for round k, mr,all ⇑ M.

Consider the earliest step T when some good node pg reaches round (k + 1).
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By Lemma 13, pg collects by T at least one message, mk = (·, ·, k, ·, ·,Mk), from

a good node for round k. As we argued above, mr,all must be included in Mk.

Since mk is sent by a good node, all good nodes must have received m by T .

Since pg is one of the earliest good node to reach round (k+1), any good node that

reaches round (k + 1) at the same step or later must have collected both mk and

all the messages in Mk, including mr,all at line 10 of Sandglass. Therefore, there

exists a message from a good node for round r, namely mr,all, that is collected by

all the good nodes that are in round (k + 1). ↭

Lemma 14. For any message m = (·, ·, r ⇔ 2, ·, ·, ·,M), M contains at least T messages

generated for round (r → 1).

Proof. Consider a message m = (p, ·, r, ·, ·, ·,Mp) for any round r ⇔ 2.

Let T be the earliest step when p is in round r (i.e., the earliest step when

p broadcasts at line 25 of Sandglass a message for round r). Independent of

whether p has just been activated at T , or was already active in a round smaller

than r at (T → 1), p’s round number rp must have been updated to r in line 7

of Sandglass. Therefore, the condition on line 6 must be satisfied, i.e., Recp must

contain at leastT messages for round (r→1) at T . Then by lines 9-10 , Mp contains

at least T messages for round (r → 1) at T . By line 24, any message p generates

and broadcasts while in round r, either at T or later, contains at least T messages

generated in round (r → 1). ↭

Lemma 15. If a node p receives a message for round r at step T , then p will be in at

least round r at step T .

Proof. When p receives a message m generated in round r, it adds to Recp all

the messages contained in the set M included in m (line 5 of Sandglass). By
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Lemma 14, M contains at least T messages for round (r→ 1); thus, if rp is smaller

than r at line 6, rp will be set to at least r at line 7. ↭

Corollary 2. At any step T , if a good node is in round r ⇔ 2, then any good node is at

least in round (r → 1).

Proof. Consider a good node p that is in round r at T . By Lemma 13, p must

have collected at least one message, m, from a good node pr→1 for round (r →

1). Consider any other good node p↔, it must also have received m by T . By

Lemma 15, p↔ is at least in round (r → 1) at step T . ↭

Lemma 16. The round number of a node never decreases.

Proof. The lemma follows trivially since line 5 of Sandglass only adds new mes-

sages to Reci; thus, the set of received messages used to compute the current

round number at line 7 never shrinks. ↭

Lemma 17. Let Tr and Tr+1 be the earliest steps where all good nodes are, respectively,

at least in rounds r and (r+1). Let gi and di denote, respectively, the number of messages

generated by good nodes and defective nodes in the i-th step of the sequence of k steps

starting from Tr and up to step (Tr+1 → 1). Then, Σk
i=1di < T .

Proof. First of all, by Lemma 10, no good node is in a round smaller than r

after Tr; and no good node is in a round smaller than (r + 1) after Tr+1.

If k = 0, i.e., Tr = Tr+1, the lemma trivially holds.

If k ⇔ 1, it suffices to establish that Σk→1
i=1 gi < T ; then, by Lemma 1, we can

conclude that Σk
i=1di < T and proves the lemma.
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All that is left to prove then is that Σk→1
i=1 gi < T holds. To do so, we begin

by observing that no good node is in round (r + 1) or later at step (Tr+1 → 2);

otherwise, by Lemma 10, all good nodes would already be in round (r + 1) at

step (Tr+1 → 1), i.e., before Tr+1, which, by definition, is the earliest step where all

good nodes are at least in round (r + 1).

Therefore, since all Σk→1
i=1 gi messages sent by good nodes from Tr and up

to (Tr+1 → 2) must be at least for round r, they must be exactly for round r.

From this, it immediately follows that Σk→1
i=1 gi must be less that T (proving

the lemma): if Σk→1
i=1 gi equaled or exceeded T , then all good nodes would have

received at least T messages for round r by step (Tr+1 → 1) and thus would all be

in round (r+1) or larger at step (Tr+1→1), contradicting the definition of Tr+1. ↭

The following important lemma characterizes the rate of progress experi-

enced by defective nodes that do not collect messages from good nodes. In

particular, it establishes that defective nodes that do not collect any message

from good nodes for kT consecutive rounds fall behind every good node by at

least (k → 1) rounds.

Lemma 18. Suppose a good node pg is in round r at step T , and a node pd is in round rd

at step T ↔ ↑ T . If pd does not collect any messages from good nodes in any round (r→ i),

where 0 ↑ i < kT , then rd ↑ (r → (k → 1)).

Proof. To prove the lemma, we compute the maximum number of messages Dmax

that a defective node pd can collect during the kT rounds when it does not collect

any message from good nodes. To help us count these messages, for any 1 ↑ i ↑

kT , denote by T(r→kT+i) the earliest step for which all good nodes are at least in

round (r → kT + i).
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Recall that, to be collected by pd at step T ↔, a message must have been gen-

erated no later than step (T ↔ → 1) ↑ (T → 1). Then, we partition the execution

of the system up to step T → 1 into three time intervals, and compute, for each

interval, the maximum number of messages generated during these intervals

that pd could have collected for rounds (r → kT + 2) or larger.

I1: Up to step (T(r→kT+1) → 1).

By definition of T(r→kT+1), some good node is in some round r↔ < r → kT + 1

at step (T(r→kT+1) → 1). Therefore, neither a defective node nor a good node

can be in some round r↔↔ > r → kT + 1 at step (T(r→kT+1) → 1), respectively

because of Lemma 12 and Corollary 2. Therefore, during this interval no

messages were generated for rounds (r → kT + 2) or larger.

I2: From T(r→kT+1) up to (Tr → 1).

By assumption, pd only collects messages generated by defective nodes

throughout interval I2. We further split I2 into (kT → 1) consecutive subin-

tervals, each going from T(r→kT+i) up to (T(r→kT+i+1) → 1) for 1 ↑ i ↑ (kT → 1).

By Lemma 17, in each of these sub-intervals defective nodes can generate

at most (T → 1) messages. Therefore, the number of messages generated

by defective nodes during I2 is at most (T → 1) · (kT → 1).

I3: Between Tr and T → 1.

Once again, by assumption pd only collects messages generated by

defective nodes throughout interval I3. There are two cases:

– T → 1 precedes Tr.

If so, defective nodes trivially generate no messages during I3.

– T → 1 does not precede Tr.
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By assumption, some good node pg is in round r at T , where it col-

lects all messages generated by good nodes before T ; further, since

pg is still in round r, the messages for round r sent by good nodes

before T must be fewer than T . Finally, since pg is in round r at T ,

by Lemma 10, in all steps preceding T no good node can be in round

(r + 1) or higher. We then conclude that from step Tr and up to (T → 1)

good nodes generated at most (T →1) messages, all for round r. Thus,

since in any step defective nodes generate fewer messages than good

nodes, during I3 defective nodes generate fewer than (T → 1) mes-

sages.

Adding the messages generated in the three intervals, we find that Dmax, the

maximum number of messages that pd could have collected up to and including

step T for rounds (r→kT+2) or larger, is smaller than (T→1)·kT ; at the same time,

since by assumption pd is in round rd, Dmax must equal at least (rd→(r→kT +2))·T .

Therefore, we have that (rd → (r → kT + 2)) · T < (T → 1) · kT , which implies

rd ↑ r → (k → 1), proving the corollary. ↭

Corollary 3. Suppose a good node pg is in round r at step T , and a node pd is in

round rd = (r→1) at step T ↔ ↑ T . pd must have collected some message from good nodes

in some round rg, where r → 3T < rg ↑ (r → 1).

Proof. By contradiction. Assume that node pd is in round (r → 1) and has not

collected any message from good nodes in any round rg, where r → 3T < rg < r.

Note that by T ↔ pd has collected no message for round r as well, for, if it had,

its round number would be at least r. To see why, suppose pd collected mr for

round r. By line 5 of Sandglass, pd would then add to its set Recpd both mr and
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all the messages in the message coffer of mr, including at least T messages for

round (r → 1). Then, max|Reci(r)|⇔T (r) would be at least r at line 6, and pd would

update its round number to be at least r (line 7).

Therefore, pd does not collect any message from good nodes in any round rg,

where (r → 3T ) < rg ↑ r.

Then, by applying k = 3 in Lemma 18, rd ↑ (r → 2). Contradiction. ↭

The following lemma formalizes the semantics of the unanimity counter uC

included in every message; it states that the value of uC in a message that pro-

poses v is equal to the number of consecutive rounds in which the sender of m

has collected only messages that propose v.

Lemma 19. Consider a message m = (·, ·, r, v, ·, uC > 0,M). For any m↔ =

(·, ·, r↔, v↔, ·, uC↔, ·) ⇑ M, where r → uC ↑ r↔ < r, we have v↔ = v and uC↔ ⇔ uC → (r → r↔).

Proof. By induction on uC.

Base case: uC = 1 We are going to prove that if a node broadcasts a mes-

sage m = (·, ·, r, v, ·, uC = 1,M), then ▽m↔ = (·, ·, r↔, v↔, ·, uC↔, ·) ⇑ M, where r↔ = (r→1),

we have v↔ = v and uC↔ ⇔ uC → 1 = 0.

Establishing that uC↔ ⇔ 0 follows trivially from the protocol. Since r↔ = (r →

1) < r, m↔ was added to M in line 10 of Sandglass (not in line 24). Note that

Sandglass sets the value of uCounteri (at lines 16-19) only once per round, in

the round’s first step. Since by assumption the unanimity counter’s value is 1, it

must have been set at line 17; therefore, the condition at line 16 must be satisfied.

Thus, for all m↔ in Mi(r → 1), v↔ equals the value v broadcast in m at line 25.
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Induction hypothesis Assume the lemma holds for uC = k > 0.

Induction step We are going to prove that the lemma holds for uC = (k+1).

First, we prove that for any mr→1 = (·, ·, r → 1, vr→1, ·, uCr→1, ·) ⇑ M, it holds

that uCr→1 ⇔ uC → 1 = (k + 1) → 1 = k and v = vr→1. Since uC = (k + 1) > 0, the

value of the minimum value of the unanimity counter carried by all messages

(including mr→1) from round (r → 1) must be k; therefore, uCr→1 ⇔ uC → 1 = k.

Finally, as in the Base Case, since uCounter is set at line 17 of Sandglass, the

condition at line 16 is satisfied; therefore v = vr→1.

Now, by line 10 of Sandglass, ▽m↔ = (·, ·, r↔, v↔, ·, uC↔, ·) ⇑ M, one of the follow-

ing must be true:

Case 1 r↔ = (r → 1). It directly follows that uC↔ ⇔ uC → 1 and v = v↔.

Case 2 There exists a message m↔↔ = (·, ·, r↔↔, v↔↔, ·, uC↔↔,M↔↔) ⇑ M, where r↔↔ = (r→1)

and m↔ ⇑ M↔↔. Since r↔↔ = (r → 1), it follows again that uC↔↔ ⇔ uC → 1 =

k and v = v↔↔. Therefore, by the induction hypothesis, we have ▽mx =

(·, ·, rx, vx, ·, uCx, ·) ⇑ M↔↔, where r↔↔ → k ↑ rx < r↔↔, we have vx = v↔↔ = v

and uCx ⇔ uC↔↔ → (r↔↔ → rx). Since m↔ ⇑ M↔↔, it follows that v↔ = v and uC↔ ⇔

uC↔↔ → (r↔↔ → r↔) ⇔ (uC → 1) → ((r → 1) → r↔) ⇔ uC → (r → r↔).

↭

Corollary 4. If a good node p proposes v with uCounter = uC for round r and uC ⇔ 1,

then for any round r↔, where r → uC ↑ r↔ ↑ r, there exists a good node proposing v

with uCounter at least uC → (r → r↔) .

Proof. If a good node p proposes v with uCounter = uC for round r and uC ⇔ 1,

by Lemma 19, all the messages p collected for round r↔, where r → uC ↑ r↔ < r
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propose v with uCounter ⇔ uC → (r → r↔). By Corollary 1, at least one of these

messages is from a good node. Therefore, there exists a good node proposing v

with uCounter at least uC → (r → r↔) for round r↔.

For r↔ = r, the corollary trivially holds, since p proposes v with uCounter = uC

for round r. ↭

Lemma 20. If a good node p sends a message proposing v with uCounter > 0 for

round r, no good node sends a message proposing v↔ ! v with uCounter > 0 for

round (r → 1).

Proof. By contradiction. Assume a good node p↔ sends a message, m↔, propos-

ing v↔ ! v with uCounter > 0 for round (r → 1).

Let T ↔ be the first step when p↔ is in round (r → 1), and let T be the first step

when p is in round r.

Sandglass does not change the proposal value (vi) or the priority counter

(uCounteri) during a round; therefore, p sends a message proposing v

with uCounter > 0 for round r at T ; and p↔ sends a message proposing v↔

with uCounter > 0 for round (r → 1) at T ↔.

First, we are going to show that T ↔ = T by showing that neither T ↔ < T

or T ↔ > T is possible.

Not T ↔ < T Assume T ↔ < T . By model assumption, p will receive all the mes-

sages sent by good nodes on or before T → 1, which include m↔. Since T

is the first step where p is in round r, the condition in line 6 of Sandglass

holds, and all the messages p received for round (r → 1), including m↔, will
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be collected by p at line 10 at T . By lines 16-19, since m↔ is proposing v↔, it

is impossible for p to propose v with non-zero uCounter.

Not T ↔ > T Assume T ↔ > T . Since p is in round r at T , then by Lemma 10, p↔ is

at least in round r at (T + 1). Then, by Lemma 16, it is impossible for p↔ to

be in round (r → 1) at T ↔ ⇔ (T + 1).

Therefore, T ↔ = T , i.e., T is both the first step when p is in round r, and the first

step when p↔ is in round (r → 1).

Now, we show that p↔ must have collected some message proposing v for

round (r → 2).

By Corollary 1, there exists a message, mall,r→1, from a good node for round (r→

1) that is collected by all the good nodes in round r, including p. We make

two observations about mall,r→1: (i) to be collected by T , mall,r→1 must be sent

before T ; and (ii) since p proposes v with uCounter > 0, by Lemma 19, mall,r→1

must propose v.

Let mall,r→1 = (pall,r→1, ·, r → 1, v, ·, ·,Mall,r→1). By lines 11-15 of Sandglass, v must

be proposed by one of the round (r → 2) messages in Mall,r→1. Let one of the

messages that propose v for round (r → 2) in Mall,r→1 be mv,r→2.

Since p↔ is a good node, it must also have received mall,r→1 by T . Therefore, by

line 5 of Sandglass, all the messages in Mall,r→1, including mv,r→2, are added to Rec↔

by p↔ at T .

Now, since we established that T is the first step when p↔ is in round (r→1), p↔

updates its round number to (r → 1) at line 7 of Sandglass. Then, at line 10, p↔

collects all the round (r → 2) messages from the messages that it has received,
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including mv,r→2. Since mv,r→2 proposes v, by lines 16-19, it is impossible for p↔ to

propose v↔ with uCounter > 0 for round (r → 1). Contradiction. ↭

A.3 Agreement

Our strategy for proving Agreement (see Definition 4) proceeds in two phases

and with the help of two claims, detailed below. We begin by assuming that

Claim 1 holds, and rely on it to prove Agreement in Lemma 21. We do not

prove Claim 1 directly, however: instead, we find it easier to prove Claim 2,

which implies Claim 1, thus establishing Agreement.

Claim 1. Let pd be the earliest good node to decide, in round rd at step Td. Suppose

pd decides vd. Then, any good node pg that in any step (whether before, at, or after Td)

finds itself in a round rg, where rg ⇔ rd, proposes vd for rg.

We now prove that, assuming Claim 1 holds, so does Agreement.

Lemma 21 (Agreement). If a good node decides a value v, then no good node decides

a value other than v.

Proof. Denote by UD the value of the unanimity counter at which a node decides.

By lines 20 and 21 of Sandglass, UD = (6T + 9)T . Let pd be the first good node

to decide; and suppose pd decides vd in round rd at step Td. By line 25, node pd

broadcasts at Td a message md = (pd, ·, rd, vd, ·, uCd), where uCd ⇔ UD.

By Lemma 19, all the messages pd collected for any round rd → i, 1 ↑ i ↑ UD,

must be of the form (·, ·, rd → i, vd, ·,uCounter, ·), where uCounter ⇔ UD
→ i.
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By Corollary 2, at Td no good node can be in a round earlier than (rd →1); this

implies, since pd is the first good node to decide, that no good can decide prior

to round (rd → 1).

We now show that it is impossible for any such node to decide on a value

other than vd – neither in (rd → 1), nor in rd or in later rounds – thus proving the

lemma.

Not in (rd → 1) By Corollary 1, there exists a message for round (rd → 2) broad-

cast by a good node that is collected by every good node that is in

round (rd → 1) or larger. Let the message be mrd→2. Since mrd→2 is also

collected by pd when it decides with uCounter = UD, mrd→2 is of the

form (·, ·, rd → 2, vd, ·,uCounterrd→2, ·), where uCounterrd→2 ⇔ UD
→ 2. Consider

any good node pg in round (rd → 1). Since pg collects mrd→2 that proposes vd

in round (rd → 2), by lines 16-19 of Sandglass, the uCounter of any value

other than vd proposed by pg must be 0. Therefore, by lines 20-21, it is

impossible for pg to decide any value other than vd in round (rd → 1).

Not in r ⇔ rd Trivially follows from Claim 1, any good node pg in a round r,

where r ⇔ rd, will propose vd, and cannot decide any value other than vd.

↭

Now we have shown if Claim 1 is true, Agreement is satisfied. To complete

the proof, we proceed to show Claim 1 is true, and we are going to do it by

proving the following claim that implies Claim 1. Claim 2 is at least as strong as

Claim 1, since it adds to Claim 1 the additional requirement shown in bold.

Claim 2. Let pd be the earliest good node to decide, in round rd at step Td. Suppose

pd decides vd. Then, any good node pg that in any step (whether before, at, or after Td)
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finds itself in a round rg, where rg ⇔ rd, proposes vd for rg with priority at least 1.

Now, before proving Claim 2, we prove an observation that is useful to prove

the claim.

Let UD be the value of the unanimity counter at which a node decides.

Since pd decides at Td, Sandglass requires pd to broadcast at Td a message

md = (pd, ·, rd, vd, ·, uCd), where uCd ⇔ UD; therefore, by Lemma 19, all the mes-

sages that pd has collected for round r, where r ⇔ rd → UD, propose vd, and their

uCounter is at least UD
→ (rd → r).

Definition 15 ((pd,Td)-D-form). Given a node pd that decides vd in round rd at Td, we

say that a message for round r, where r ⇔ rd→UD
, is in (pd,Td)-D-form if it proposes vd

and the uCounter is at least UD
→ (rd → r). When pd and Td are clear from the context,

we e say simply that the message is in D-form.

It directly follows from Lemma 19 that all the messages that pd collects from

round (rd → UD) to round (rd → 1) are in D-form.

Observation 1. For any round r, where rd → UD
↑ r ↑ rd → 1, let T ▽r and T ▽r+1 be

the earliest steps where all the good nodes are at least in round r and in round (r + 1),

respectively. Consider the set that includes messages sent by defective nodes starting

from T ▽r and before T ▽r+1 and messages sent by good nodes for round r. The total number

of messages not in D-form in this set is smaller than T .

Proof. Let T ⇒r be the earliest step when some good node is in round r. By Corol-

lary 1, we know that T ⇒r exists for all r.
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We are going to show that:

For any round r, where rd → UD
↑ r ↑ rd → 1, all the messages sent by good nodes

for round r before T ⇒r+1 must be in D-form. (F1)

We prove two cases separately.

Case 1 rd → UD
↑ r ↑ rd → 2. Consider the message, mall,r+1, that all good nodes

collect for round (r + 1). Since pd also collects it, mall,r+1 must be in D-form.

Consider the node pall,r+1 that sends mall,r+1. By definition of T ⇒r+1, pall,r+1

enters round (r + 1) at or after T ⇒r+1; therefore, pall,r+1 must have collected

all the messages sent by good nodes for round r before T ⇒r+1. Since mall,r+1 is

in D-form, by Lemma 19, all the messages sent by good nodes for round r

before T ⇒r+1 must also be in D-form.

Case 2 r = rd→1, note that pd decides in round rd, and thus also sends a message

in D-form for round rd. Since pd enters round rd at or after T ⇒rd
, pd must have

collected all the messages sent by good nodes for round (rd → 1) before T ⇒rd
.

Therefore, by Lemma 19, all messages sent by good nodes for round r =

rd → 1 before T ⇒r+1 must also be in D-form.

Having established F1, we proceed to prove the observation.

By Corollary 2, all good nodes are at least in round r at T ⇒r+1, i.e., good nodes

are either in round r or in round (r+1) at T ⇒r+1. If all good nodes are in round (r+

1), then T ▽r+1 = T ⇒r+1; otherwise, by Lemma 10, T ▽r+1 = (T ⇒r+1 + 1). We consider these

two cases separately.

Let S r be the sequence of k steps starting from T ▽r and up to (T ▽r+1 → 1) (per-

haps k = 1). Let X equal the sum of (i) the number of messages sent by good
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nodes for round r that are not in D-form, and (ii) the number of messages sent

by defective nodes during S r that are not in D-form. To prove Observation 1, it

is sufficient to prove X < T .

Let di denote the number of messages sent by defective nodes in the i-th step

of S r. Let gi denote the number of messages sent by good nodes for round r in

the i-th step of S r.

Case 1 T ▽r+1 = T ⇒r+1. In this case, since all messages sent by good nodes for

round r are sent before T ⇒r+1, by F1, all messages sent by good nodes for

round r are in D-form. Therefore, X is no more than the number of mes-

sages sent by defective nodes during S r, i.e. X ↑ Σk
i=1di.

Since, in this case, no good node is in round (r + 1) at (T ▽r+1 → 1), the num-

ber of messages sent by good nodes for round r before (T ▽r+1 → 1) is smaller

than T ; otherwise, by line 6 of Sandglass, all good nodes would have pro-

ceeded to round (r + 1) at (T ▽r+1 → 1). Therefore, Σk→1
i=1 gi < T . Then, by

Lemma 1, Σk
i=1di < T , therefore X < T , an we are done.

Case 2 T ▽r+1 = T ⇒r+1 + 1. Again, we proved in F1 that all messages sent by good

nodes for round r before T ⇒r+1 are in D-form. Therefore, X is no more than

the sum of the messages sent by good node for round r at T ⇒r+1 and the

messages sent by defective nodes during S r, i.e., X ↑ Σk
i=1di + gk.

Now we are going to show, using a set of inequalities, that Σk
i=1dk + gk <

T ; X < T directly follows.

Let d̄ = Σ
k→1
i=1 di

k→1 , and ḡ = Σ
k→1
i=1 gi

k→1 . Recall that, in all steps, good nodes outnumber

defective nodes. Therefore, for all 1 ↑ i ↑ (k → 1), we have di ↑ gi → 1.

Then, for all 1 ↑ i ↑ (k → 1), since di ↑ gi → 1 and di + gi ↑ N , we have

that d̄ ↑ ḡ → 1 and d̄ + ḡ ↑ N . Dividing both inequalities by ḡ yields
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d̄
ḡ ↑ min(1 → 1

ḡ ,
N

ḡ → 1). Note that the largest value of min(1 → 1
ḡ ,
N

ḡ → 1) occurs

when 1 → 1
ḡ =

N

ḡ → 1; solving for ḡ and plugging the solution back in gives

us: min(1→ 1
ḡ ,
N

ḡ → 1) ↑ (1→ 2
N+1 ). Therefore, we have d̄

ḡ ↑ (1→ 2
N+1 ), and thus

d̄ ↑ ḡ · (1 →
2
N + 1

). (A.1)

Since T ▽r+1 = T ⇒r+1 + 1, some good node is still in round r at T ⇒r+1; therefore,

the number of messages sent by good nodes for round r before T ⇒r+1 is

smaller than T ; otherwise, by line 6 of Sandglass, all good nodes would

have proceeded to round (r + 1) at T ⇒r+1. Therefore, Σk→1
i=1 gi < T , i.e.,

ḡ · (k → 1) < T . (A.2)

Since at least one good node is already in round (r + 1) at T ⇒r+1, the number

of good nodes in round r plus the number of defective nodes at T ⇒r+1 is no

more than N → 1, i.e.,

gk + dk ↑ N → 1. (A.3)

Since good nodes outnumber defective nodes in all steps, we have for

all 1 ↑ i ↑ (k → 1)

di ↑
N → 1

2
. (A.4)

Now we will show (Σk
i=1di + gk) < T .
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(Σk
i=1di + gk) = dk + gk + (k → 1)d̄

↑ (N → 1) + (k → 1)d̄ (By Inequality A.3)

↑ (N → 1) + (k → 1) · ḡ · (1 →
2

N + 1
) (By Inequality A.1)

< (N → 1) + T · (1 →
2
N + 1

) (By Inequality A.2)

= (N → 1) + T →
2
N + 1

· T

↑ T →
2
N + 1

·
N

2

2
+ (N → 1) (Since T = ↖N2

2 ↙ ⇔
N

2

2 )

= T →
1
N + 1

< T

This concludes the second case and thus the proof. ↭

We can now proceed to prove Claim 2.

Proof. We are going to prove that, for any step T , if at T a good node pg is in

round rg ⇔ rd, then pg proposes vd with priority at least 1.

Let U1 = 6T be the uCounter value, such that if uCounter is greater or equals

to U1, then priority is at least 1. Thus UD = (U1 + 3)T + U1 is the uCounter value

that, once reached, allows a node to decide (lines 21-22 of Sandglass).

As the first step of our proof, we establish the following fact:

If a good node is in rg at T , a node that, before T , proposes v↔ ! vd, can be

at most in round (rg → U1
→ 1). (F2)

Assuming F2 holds, Claim 2 follows easily. Since by F2 all nodes that propose

in round (rg → U1) before T must propose vd, then, by line 17 of Sandglass,
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all nodes that propose in round (rg → U1 + 1) before T must propose vd with

uCounter at least 1. A simple inductive argument then shows that all nodes

that ever propose in round (rg → U1 + i) before T , where 1 ↑ i < U1, propose vd

with uCounter at least i. With i = U1
→ 1, messages sent for rv↔ before T must

propose vd with uCounter at least (U1
→ 1); therefore, pg must propose vd with

uCounter at least U1 at T , i.e., with priority at least 1.

Before, proving F2, we introduce a useful notion: For each message m sent in

round r, we consider the set of messages collected by the sender of m in round

(r → 1); we call this set m’s bag for round (r → 1).

Consider some node p↔ that sends mv↔
r↔ proposing v↔ for round r↔. By line 12 of

Sandglass, p↔ must have collected for round (r↔ →1) a message mv↔
r↔→1 proposing v↔,

whose priority was the largest among all messages in mv↔
r↔ ’s bag. Inductively, con-

sider message mv↔
r↔→i: it must in turn contain in its bag a message mv↔

r↔→i→1 propos-

ing v↔, whose priority is the largest among all the messages in the bag. Therefore,

there exists a chain of messages extending from round 1 to round r↔, where each

of these messages proposes v↔.

Consider these messages’ bags. By construction of the chain, there exists

exactly one bag per round, and at least one of the messages with the highest

priority in each bag must be proposing v↔.

Let uCounter
v↔
i be the value of uCounter of mv↔

i . By line 17 of Sandglass, for

all 1 ↑ i < r↔: uCounter
v↔
i ⇔ uCounter

v↔
i+1 → 1. Therefore,

for all 1 ↑ i < j ↑ r↔: uCounter
v↔
i ⇔ uCounter

v↔
j → ( j → i). (F3)
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We now prove F2 by induction on the round number rg that a good node, pg,

is in.

Induction Basis: rg = rd Suppose a good node is in round rg at T . We proceed

by contradiction: assume that before T there exists a node, p↔, proposing v↔ in

some round r↔ > (rg → U1
→ 1) = (rd → U1

→ 1).

Proceeding as above, we construct the chain of messages for p↔ and consider

the bags for every round from (rd→(UD
→U1)→1) to (rd→U1

→1). We will show that

(i) at most one of these bags can contain messages in D-form; and (ii) the total

number of messages not in D-form sent before T is not sufficient to fill these

bags. Thus, it is impossible for a node that before T proposes v↔ ! vd to advance

up to round (rd→U1), contradicting our assumption and proving the basis of the

induction.

Proof of (i) We show that at most one of the bags for the rounds from (rd→ (UD
→

U1) → 1) to (rd → U1
→ 1) contains messages in D-form, i.e., messages that

propose vd in round r, where r ⇔ rd→UD, with uCounter at least UD
→(rd→r).

By contradiction: assume more than one of the bags for the rounds

from (rd→(UD
→U1)→1) to (rd→U1

→1) contains messages in D-form. Consider

two such bags, for round r1 and r2 respectively, where (rd → (UD
→U1)→1) ↑

r1 < r2 ↑ (rd →U1
→ 1). Consider now any message md

r1
in D-form contained

in the bag for round r1; md
r1

proposes vd with uCounter
d
r1
⇔ UD

→ (rd → r1).

Similarly, any message md
r2

in D-form contained in the bag for round r2

proposes vd with uCounter
d
r2
⇔ UD

→ (rd → r2).

Now, let us consider the messages mv↔
r1+1 and mv↔

r2
on the chain. We showed
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above (F3) that uCounter
v↔
r1+1 ⇔ uCounter

v↔
r2
→ (r2 → (r1 + 1)). Since there is a

message in D-form that proposes vd ! v↔ in the bag of round r1, by line 17

of Sandglass, uCounter
v↔
r1+1 = 0. Therefore, uCounter

v↔
r2
↑ uCounter

v↔
r1+1 + (r2 →

(r1 + 1)) = r2 → (r1 + 1) ↑ r2 → (rd → (UD
→U1)) = UD

→U1
→ (rd → r2). Then, by

line 20 of Sandglass, priority
v↔
r2
↑ max(0, ↘UD

→U1
→(rd→r2)
T

≃ → 5).

Recall that md
r2

proposes vd with uCounter
d
r2
⇔ UD

→ (rd → r2). Then,

priority
d
r2
⇔ max(0, ↘

UD
→ (rd → r2)
T

≃ → 5)

= max(0, ↘
UD
→ U1

→ (rd → r2) + 6T
T

≃ → 5) (Since U1= 6T )

= max(0, ↘
UD
→ U1

→ (rd → r2)
T

≃ + 1).

Since r2 > r1 ⇔ (rd → (UD
→ U1) → 1), i.e., r2 ⇔ (rd → (UD

→ U1)), we

have UD
→ U1

→ (rd → r2) ⇔ 0. Then, ↘UD
→U1
→(rd→r2)
T

≃ + 1 ⇔ 1. There-

fore, priority
d
r2
⇔ ↘

UD
→U1
→(rd→r2)
T

≃ + 1 > ↘UD
→U1
→(rd→r2)
T

≃ → 5 and priority
d
r2
⇔ 1 > 0.

Therefore, priority
d
r2
> max(0, ↘UD

→U1
→(rd→r2)
T

≃ → 5) ⇔ priority
v↔
r2

.

Now, consider mv↔
r2+1. It collects both mv↔

r2
and md

r2
. Since mv↔

r2+1 proposes v↔, mv↔
r2

must be the message with the highest priority among the messages col-

lected by mv↔
r2+1 for round r2. However, priority

d
r2
> priority

v↔
r2

. Contradiction.

Proof of (ii) Now we established that at most one of the bags for the rounds

from (rd → (UD
→ U1) → 1) to (rd → U1

→ 1) contains messages in D-form.

That is, among these (UD
→ 2U1 + 1) bags, (UD

→ 2U1) of them contain only

messages that are not in D-form. We will call these ND-bags. Since the size

of each bag is at least T ,

ND-bags contain at least T · (UD
→ 2U1) messages. (F4)
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Let us now compute the largest number of messages they can contain.

ND-bags can only contain messages not in D-form in any round from (rd →

(UD
→U1)→1) to (rd→U1

→1) sent by (A) good nodes; or (B) defective nodes.

Recall that T ▽r is the earliest step where all good nodes are in round r.

By Lemma 12, T ▽rd→(UD→U1)→2 is the earliest step where some defective node

can be in round (rd→ (UD
→U1)→1). Then, the messages covered by case (B)

must have been sent between steps T ▽rd→(UD→U1)→2 and (T → 1). We can then

partition this range of steps into four consecutive subranges:

B1 : from T ▽rd→(UD→U1)→2 to (T ▽rd→(UD→U1)→1 → 1)

B2 : from T ▽rd→(UD→U1)→1 to (T ▽rd→U1 → 1)

B3 : from T ▽rd→U1 to (T ▽rd
→ 1)

B4 : from T ▽rd
to (T → 1)

We now count the total number of messages covered by cases A and B1 to

B4.

B1 By Lemma 17, the number of messages in B1 is at most (T → 1).

A and B2 Consider, for any round rb, where (rd→ (UD
→U1)→1) ↑ rb ↑ (rd→

U1
→1), the set of messages S rb obtained by adding (i) messages sent by

defective nodes starting from T ▽rb
and before T ▽rb+1; and (ii) messages

not in D-form sent by good nodes for round rb. By Observation 1, S rb

contains fewer than T messages. Thus, the set

(rd→U1
→1)⋃

rb=(rd→(UD→U1)→1)

S rb ,

which contains all messages covered by cases A and B2, consists of

no more than (T → 1) · (UD
→ 2U1 + 1) messages.
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B3 By Lemma 17, the number of messages sent by defective nodes in

the time interval from T ▽r to (T ▽r+1 → 1) is at most (T → 1). Since B3

contains U1such intervals, the number of messages sent in B3 is at

most (T → 1) · U1.

B4 Note that pg is still in round rd at T , and that, by Lemma 10 and the

definition of T ▽rd
, all good nodes are in round rd from T ▽rd

to (T → 1).

Therefore, the number of messages good nodes generate during B4

is smaller than T ; otherwise, all good nodes would be at least in

round (rd + 1) at T . Since good nodes outnumber defective nodes

in any step, it follows that the number of messages sent by defective

nodes between T ▽rd
and (T → 1) is at most (T → 1).

Therefore, adding the number of messages in B1, A and B2, B3, and B4,

ND-bags can contain no more than (T → 1)+ (T → 1) · (UD
→ 2U1 + 1)+ (T →

1) · U1 + (T → 1) messages, i.e.,

(T → 1) · (UD
→ U1 + 3). (A.5)

Recall F4: ND-bags contain at least

T · (UD
→ 2U1) messages. (A.6)

Therefore, we have

(T → 1) · (UD
→ U1 + 3) ⇔ T · (UD

→ 2U1),

which we rewrite as T · (UD
→ U1 + 3) → T · (UD

→ 2U1) ⇔ UD
→ U1 + 3, and

finally as UD
↑ (U1 + 3)T + U1

→ 3.

However, since UD = (U1 + 3)T + U1, we have a contradiction. Q.E.D.
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Induction hypothesis: rd ↑ rg ↑ rd + k We assume that if a good node is in rg,

where rd ↑ rg ↑ rd + k, at T , then a node that, before T , proposes v↔ ! vd can be at

most in round (rg → U1
→ 1). As we argued above, this is enough to easily show

a version of Claim 2 limited to the case when rd ↑ rg ↑ rd + k.

Induction step: rg = rd + k + 1 Suppose a good node is in round rg = rd + k + 1

at T , and that Claim 2 holds for any round r, where rd ↑ r ↑ rd+k. We will prove

that if a good node is in rg at T , then a node that, before T , proposes v↔ ! vd can

be at most in round (rg → U1
→ 1).

We will assume, by contradiction, that there exists a node p↔ that before T

proposes v↔ in some round r↔ > (rg →U1
→ 1). We will consider the following two

cases: (1) (rg → U1
→ 1) ↑ rd → 1, i.e., rg ↑ rd + U1; and (2) (rg → U1

→ 1) > rd → 1,

i.e., rg > rd + U1.

Case 1: rg ↑ rd + U1 Proceeding as above, we construct the chain of messages

for p↔ and consider the bags for every round from (rd → (UD
→ U1) → 1)

to (rg → U1
→ 1). With rg ↑ rd + U1, we have (rg → U1

→ 1) ↑ rd → 1.

We will show that (i) at most one of these bags can contain messages in

D-form; and (ii) the total number of messages not in D-form sent before

T is not sufficient to fill these bags. Thus, it is impossible for a node that

before T proposes v↔ ! vd to advance up to round (rg → U1), contradicting

our assumption. The proof for Case 1 is very similar to how we proved

the induction basis; we present it in full for completeness.

Proof of (i) We will show that at most one of the bags for the rounds

from (rd → (UD
→U1) → 1) to (rg →U1

→ 1) contains messages in D-form.
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By contradiction: assume more than one of the bags for the rounds

from (rd → (UD
→ U1) → 1) to (rg → U1

→ 1) contains messages in D-

form. Consider two such bags, for round r1 and r2 respectively,

where (rd → (UD
→ U1) → 1) ↑ r1 < r2 ↑ (rg → U1

→ 1) ↑ (rd → 1).

Consider now any message md
r1

in D-form contained in the bag for

round r1; md
r1

proposes vd with uCounter
d
r1
⇔ UD

→(rd→r1). Similarly, any

message md
r2

in D-form contained in the bag for round r2 proposes vd

with uCounter
d
r2
⇔ UD

→ (rd → r2).

Now, let us consider the messages mv↔
r1+1 and mv↔

r2
on the chain. We

showed above (F3) that uCounter
v↔
r1+1 ⇔ uCounter

v↔
r2
→ (r2 → (r1 + 1)).

Since there is a message in D-form that proposes vd ! v↔ in the

bag of round r1, by line 17 of Sandglass, uCounter
v↔
r1+1 = 0. There-

fore, uCounter
v↔
r2
↑ uCounter

v↔
r1+1 + (r2 → (r1 + 1)) = r2 → (r1 + 1) ↑

r2 → (rd → (UD
→ U1)) = UD

→ U1
→ (rd → r2). Then, by line 20 of Sand-

glass, priority
v↔
r2
↑ max(0, ↘UD

→U1
→(rd→r2)
T

≃ → 5).

Recall that md
r2

proposes vd with uCounter
d
r2
⇔ UD

→ (rd → r2). Then,

priority
d
r2
⇔ max(0, ↘

UD
→ (rd → r2)
T

≃ → 5)

= max(0, ↘
UD
→ U1

→ (rd → r2) + 6T
T

≃ → 5) (Since U1= 6T )

= max(0, ↘
UD
→ U1

→ (rd → r2)
T

≃ + 1).

Since r2 > r1 ⇔ (rd → (UD
→ U1) → 1), i.e., r2 ⇔ (rd → (UD

→ U1)), we

have UD
→ U1

→ (rd → r2) ⇔ 0. Then, ↘UD
→U1
→(rd→r2)
T

≃ + 1 ⇔ 1. There-

fore, priority
d
r2
⇔ ↘

UD
→U1
→(rd→r2)
T

≃ + 1 > ↘UD
→U1
→(rd→r2)
T

≃ → 5 and priority
d
r2
⇔

1 > 0. Therefore, priority
d
r2
> max(0, ↘UD

→U1
→(rd→r2)
T

≃ → 5) ⇔ priority
v↔
r2

.

Now, consider mv↔
r2+1. It collects both mv↔

r2
and md

r2
. Since mv↔

r2+1
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proposes v↔, mv↔
r2

must be the message with the highest prior-

ity among the messages collected by mv↔
r2+1 for round r2. How-

ever, priority
d
r2
> priority

v↔
r2

. Contradiction.

Proof of (ii) Now we established that at most one of the bags for the

rounds from (rd → (UD
→ U1) → 1) to (rg → U1

→ 1) contains mes-

sages in D-form. That is, among these (UD
→ 2U1 + (rg → rd) + 1)

bags, (UD
→ 2U1 + (rg → rd)) of them contain only messages that are

not in D-form. We will call these ND-bags. Since the size of each bag

is at least T ,

ND-bags contain at least T · (UD
→ 2U1 + (rg → rd)) messages. (F5)

Let us now compute the largest number of messages they can con-

tain. ND-bags can only contain messages not in D-form in any round

from (rd → (UD
→U1)→ 1) to (rg →U1

→ 1) sent by (A) good nodes; or (B)

defective nodes.

By Lemma 12, T ▽rd→(UD→U1)→2 is the earliest step where some defective

node can be in round (rd→(UD
→U1)→1). Then, the messages covered by

case (B) must have been sent from step T ▽rd→(UD→U1)→2 to step (T →1). We

can then partition this range of steps into four consecutive subranges:

B1 : from T ▽rd→(UD→U1)→2 to (T ▽rd→(UD→U1)→1 → 1)

B2 : from T ▽rd→(UD→U1)→1 to (T ▽rg→U1 → 1)

B3 : from T ▽rg→U1 to (T ▽rg
→ 1)

B4 : from T ▽rg
to (T → 1)

We now count the total number of messages covered by cases A and

B1 to B4.
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B1 By Lemma 17, the number of messages sent in B1 is at most (T→1).

A and B2 Consider, for any round rb, where (rd→ (UD
→U1)→1) ↑ rb ↑

(rg → U1
→ 1), the set of messages S rb obtained by adding (i) mes-

sages sent by defective nodes starting from T ▽rb
and before T ▽rb+1;

and (ii) messages not in D-form sent by good nodes for round rb.

By Observation 1, S rb contains fewer than T messages. Thus, the

set
(rd→U1

→1)⋃

rb=(rg→(UD→U1)→1)

S rb ,

which contains all messages covered by cases A and B2, consists

of no more than (T → 1) · (UD
→ 2U1 + (rg → rd) + 1).

B3 By Lemma 17, the number of messages sent by defective nodes in

the time interval from T ▽r to (T ▽r+1 → 1) is at most (T → 1). Since B3

contains U1such intervals, the number of messages sent in B3 is

at most (T → 1) · U1.

B4 Note that pg is still in round rg at T , and that, by Lemma 10 and the

definition of T ▽rg
, all good nodes are in round rg from T ▽rg

to (T →1).

Therefore, the number of messages good nodes generate during

B4 is smaller than T ; otherwise, all good nodes would be at least

in round (rg + 1) at T . Since good nodes outnumber defective

nodes in any step, it follows that the number of messages sent by

defective nodes between T ▽rg
and (T → 1) is at most (T → 1).

Therefore, adding the number of messages in B1, A and B2, B3, and

B4, ND-bags can contain no more than (T → 1) + (T → 1) · (UD
→ 2U1 +

(rg → rd) + 1) + (T → 1) · U1 + (T → 1) messages, i.e.,

(T → 1) · (UD
→ U1 + (rg → rd) + 3). (A.7)

121



Recall F5: ND-bags contain at least

T · (UD
→ 2U1 + (rg → rd)) messages. (A.8)

Therefore, we have

(T → 1) · (UD
→ U1 + (rg → rd) + 3) ⇔ T · (UD

→ 2U1 + (rg → rd))

̸ (T → 1) · (UD
→ U1 + (rg → rd) + 3) ⇔ (T → 1) · (UD

→ 2U1 + (rg → rd))

+ (UD
→ 2U1 + (rg → rd))

̸ (T → 1) · (U1 + 3) ⇔ UD
→ 2U1 + (rg → rd)

̸ (T → 1) · (U1 + 3) ⇔ (U1 + 3)T → U1 + (rg → rd)

(since UD = (U1 + 3)T + U1)

̸ 0 ⇔ 3 + (rg → rd)

However, since rg ⇔ rd, we have a contradiction. Q.E.D.

Case 2: rg > rd + U1 Again, we construct the chain of messages for p↔ and con-

sider the bags for every round from (rd → (UD
→ U1) → 1) to (rg → U1

→ 1).

We will show that:

(i) At most one of the bags for rounds from (rd → (UD
→U1)→ 1) to (rd → 1)

contains messages in D-form. That is, among these (UD
→ U1 + 1)

bags, (UD
→U1) of them contain only messages that are not in D-form.

We will call these ND-bags.

(ii) Among the bags for rounds from rd to (rg →U1
→ 1), at most one in ev-

ery U1 bags can contain messages from good nodes. That is, among

these (rg → rd →U1) bags, (rg → rd →U1
→ ↖

rg→rd→U1

U1 ↙) of them contain only

messages from defective nodes. We will call these Def-bags.
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(iii) The sum of (1) the messages not in D-form for round (rd→(UD
→U1)→1)

to (rd → 1), and (2) the messages sent by defective nodes for round rd

to (rg →U1
→ 1) before T , is not sufficient to fill ND-bags and Def-bags.

Thus, it is impossible for a node that before T proposes v↔ ! vd to advance

up to round (rg → U1), contradicting our assumption.

Proof of (i) By contradiction: assume more than one of the bags for the

rounds from (rd → (UD
→ U1) → 1) to (rd → 1) contains messages in

D-form. Consider two such bags, for round r1 and r2 respectively,

where (rd → (UD
→ U1) → 1) ↑ r1 < r2 ↑ (rd → 1). Consider now

any message md
r1

in D-form contained in the bag for round r1; md
r1

proposes vd with uCounter
d
r1
⇔ UD

→ (rd → r1). Similarly, any mes-

sage md
r2

in D-form contained in the bag for round r2 proposes vd

with uCounter
d
r2
⇔ UD

→ (rd → r2).

Now, let us consider the messages mv↔
r1+1 and mv↔

r2
on the chain. We

showed above (F3) that uCounter
v↔
r1+1 ⇔ uCounter

v↔
r2
→ (r2 → (r1 + 1)).

Since there is a message in D-form that proposes vd ! v↔ in the

bag of round r1, by line 17 of Sandglass, uCounter
v↔
r1+1 = 0. There-

fore, uCounter
v↔
r2
↑ uCounter

v↔
r1+1 + (r2 → (r1 + 1)) = r2 → (r1 + 1) ↑

r2 → (rd → (UD
→ U1)) = UD

→ U1
→ (rd → r2). Then, by line 20 of Sand-

glass, priority
v↔
r2
↑ max(0, ↘UD

→U1
→(rd→r2)
T

≃ → 5).

Recall that md
r2

proposes vd with uCounter
d
r2
⇔ UD

→ (rd → r2). Then,

priority
d
r2
⇔ max(0, ↘

UD
→ (rd → r2)
T

≃ → 5)

= max(0, ↘
UD
→ U1

→ (rd → r2) + 6T
T

≃ → 5) (Since U1= 6T )

= max(0, ↘
UD
→ U1

→ (rd → r2)
T

≃ + 1).
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Since r2 > r1 ⇔ (rd → (UD
→ U1) → 1), i.e., r2 ⇔ (rd → (UD

→ U1)), we

have UD
→ U1

→ (rd → r2) ⇔ 0. Then, ↘UD
→U1
→(rd→r2)
T

≃ + 1 ⇔ 1. There-

fore, priority
d
r2
⇔ ↘

UD
→U1
→(rd→r2)
T

≃ + 1 > ↘UD
→U1
→(rd→r2)
T

≃ → 5 and priority
d
r2
⇔

1 > 0. Therefore, priority
d
r2
> max(0, ↘UD

→U1
→(rd→r2)
T

≃ → 5) ⇔ priority
v↔
r2

.

Now, consider mv↔
r2+1. It collects both mv↔

r2
and md

r2
, and mv↔

r2
. Since mv↔

r2+1

proposes v↔, mv↔
r2

must be the message with the highest prior-

ity among the messages collected by mv↔
r2+1 for round r2. How-

ever, priority
d
r2
> priority

v↔
r2

. Contradiction.

Proof of (ii) We will show that among the bags for rounds rd to (rg→U1
→1),

at most one in every U1 bags can contain messages from good nodes.

By contradiction: assume there exist two bags containing

messages from good nodes, for round r1 and r2 respectively,

where rd ↑ r1 < r2 ↑ (rg → U1
→ 1), and r2 → r1 < U1. Consider now any

message mg
r1 from a good node contained in the bag for round r1; by

induction hypothesis, mg
r1 proposes vd with priority

g
r1
⇔ 1. Similarly,

any message mg
r2 from a good node contained in the bag for round r2

proposes vd with priority
g
r2
⇔ 1.

Now, let us consider messages mv↔
r1+1 and mv↔

r2
on the chain. We showed

above (F3) that uCounter
v↔
r1+1 ⇔ uCounter

v↔
r2
→ (r2→ (r1+1)). Since there is

a message from a good node proposing vd ! v↔ in the bag of round r1,

by line 17 of Sandglass, uCounter
v↔
r1+1 = 0. Therefore, uCounter

v↔
r2
↑

uCounter
v↔
r1+1 + (r2 → (r1 + 1)) = r2 → r1 → 1 < U1. Then, by line 20 of

Sandglass, priority
v↔
r2
< 1.
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Recall that mg
r2 proposes vd with priority

g
r2
⇔ 1. Then, we

have priority
g
r2
> priority

v↔
r2

.

Now, consider mv↔
r2+1. It collects both mv↔

r2
and mg

r2 . Since mv↔
r2+1

proposes v↔, mv↔
r2

must be the message with the highest prior-

ity among the messages collected by mv↔
r2+1 for round r2. How-

ever, priority
g
r2
> priority

v↔
r2

. Contradiction.

Proof of (iii) Now we established that:

(i) Among the bags for rounds from (rd → (UD
→ U1) → 1) to (rd → 1),

(UD
→U1) ND-bags contain only messages that are not in D-form.

(ii) Among the bags for rounds from rd to (rg →U1
→ 1), (rg → rd →U1

→

↖
rg→rd→U1

U1 ↙) Def-bags contain only messages from defective nodes.

Since each bag contains at least T messages, ND-bags and Def-bags

contain collectively at least

T · (UD
→ U1 + (rg → rd → U1

→ ↖
rg → rd → U1

U1 ↙)) messages. (F6)

Let us now compute the largest number of messages they can contain.

ND-bags and Def-bags can contain messages not in D-form in any

round from (rd → (UD
→U1)→1) to (rd →1) sent by either (A) good nodes

or (B) defective nodes, and (C) messages sent for round rd to rg→U1
→1

by defective nodes.

By Lemma 12, T ▽rd→(UD→U1)→2 is the earliest step where some defective

node can be in round (rd → (UD
→ U1) → 1). Then, the messages cov-

ered by case (B) and (C) must have been sent from step T ▽rd→(UD→U1)→2

to step (T → 1). We can then partition this range of steps into four
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consecutive subranges:

BC1 : from T ▽rd→(UD→U1)→2 to (T ▽rd→(UD→U1)→1 → 1)

BC2 : from T ▽rd→(UD→U1)→1 to (T ▽rd
→ 1)

BC3 : from T ▽rd
to (T ▽rg

→ 1)

BC4 : from T ▽rg
to (T → 1)

We now count the total number of messages covered by cases A and

BC1 to BC4.

BC1 By Lemma 17, the number of messages in BC1 is at most (T →1).

A and BC2 Consider, for any round rb, where (rd→(UD
→U1)→1) ↑ rb ↑

(rd → 1), the set of messages S rb obtained by adding (i) messages

sent by defective nodes starting from T ▽rb
and before T ▽rb+1; and

(ii) messages not in D-form sent by good nodes for round rb. By

Observation 1, S rb contains fewer than T messages. Thus, the set

(rd→1)⋃

rb=(rd→(UD→U1)→1)

S rb ,

which contains all messages covered by cases A and BC2, consists

of no more than (T → 1) · (UD
→ U1 + 1) messages.

BC3 By Lemma 17, the number of messages sent by defective nodes

in the time interval from T ▽r to (T ▽r+1→1) is at most (T →1). Since B3

contains (rg → rd) such intervals, the number of messages sent

in BC3 is at most (T → 1) · (rg → rd).

BC4 Note that pg is still in round rg at T , and that, by Lemma 10

and the definition of T ▽rg
, all good nodes are in round rg from T ▽rg

to (T → 1). Therefore, the number of messages good nodes gen-

erate during BC4 is smaller than T ; otherwise, all good nodes
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would be at least in round (rg + 1) at T . Since good nodes out-

number defective nodes in any step, it follows that the number

of messages sent by defective nodes between T ▽rg
and (T → 1) is at

most (T → 1).

Therefore, adding the number of messages in BC1, A and BC2, BC3,

and BC4, ND-bags and Def-bags can contain no more than (T → 1) +

(T → 1) · (UD
→ U1 + 1) + (T → 1) · (rg → rd) + (T → 1) messages, i.e.,

(T → 1) · (UD
→ U1 + (rg → rd) + 3). (A.9)

Recall F6: ND-bags and Def-bags contain at least

T · (UD
→ U1 + (rg → rd → U1

→ ↖
rg → rd → U1

U1 ↙)) messages. (F6)

Therefore, we have

(T → 1) · (UD
→ U1 + (rg → rd) + 3) ⇔ T · (UD

→ U1 + (rg → rd → U1
→ ↖

rg → rd → U1

U1 ↙))

̸ T · (U1 + 3 + ↖
rg → rd → U1

U1 ↙) ⇔ UD
→ U1 + (rg → rd) + 3

̸ T · (U1 + 3 + ↖
rg → rd → U1

U1 ↙) ⇔ (U1 + 3)T + (rg → rd) + 3

(Since UD = ((U1 + 3)T + U1))

̸ ↖
rg → rd

6T
↙ → 1 ⇔

(rg → rd) + 3
T

(Since U1 = 6T )

̸
rg → rd

6T
>

(rg → rd) + 3
T

(Since rg→rd

6T > (↖ rg→rd

6T ↙ → 1))

However, since 0 < (rg → rd) < ((rg → rd)+ 3) and (6T ) > T > 0, we have

a contradiction. Q.E.D.

This concludes our proof of Agreement. ↭
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A.4 Termination

The Termination property requires good nodes that stay active to eventually

decide. Sandglass’s Termination guarantee is probabilistic: For Termination to

hold, Sandglass needs to be lucky. To help us prove that luck befalls Sandglass

with probability 1, we introduce the interdependent notions of lucky period, lucky

value, and lucky round.

Intuitively, a lucky period is a sequence of steps that leads to a decision: all

nodes that are active in the step that immediately follows the end of the lucky

period are guaranteed to decide in that step, if not earlier. The quality that

makes a period lucky is straightforward. Recall that in Sandglass, if a node re-

ceives distinct highest priority proposals in the previous round, it can choose

uniformly at random among them which one it is going to propose in the cur-

rent round. During a lucky period, all the random choices that occur in a given

round just happen to select the same value – the lucky value for that round. We

give below a simple rule that defines what constitutes the lucky value for any

given round spanned by the lucky period. To prove that Sandglass guarantees

Termination with probability 1, we will proceed in two steps. First, we will

show that the unanimity counter of all good nodes that are active during the

last step of a lucky period reaches a value that allows them to decide. Second,

we will prove that lucky periods occur with non-zero probability. Since in any

infinite execution lucky periods appear infinitely often, it follows that any good

node that stays active, no matter when it joins, is guaranteed to eventually de-

cide.

Lucky value The rule that determines the lucky value for a given round r is
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defined in terms of two sets. The first, C(r, p), is independently computed by

every node p as the set of messages for round r defined by line 11 of Sandglass;

it contains the highest-priority messages p collected for round (r→1). The second

set, O(r), contains a (possibly empty) subset of good nodes, and is defined across

all good nodes that enter round r at any time. It contains any good node pg that

meets the following two criteria: (1) pg has collected exactly one highest priority

value in round (r → 1) (which pg is then required to propose in round r) and (2)

one of the messages sent by pg in round r is collected by all good nodes in round

(r + 1). Note that if O(r) contains multiple good nodes, they may differ in the

single highest priority value they have collected.

We dub the first round of a lucky period a lucky round. The lucky value vϖ(r)

for a given round r of a given lucky period is defined inductively, with the base

case defined by that period’s lucky round, rstart, as follows:

• When r = rstart:

If O(rstart) ! ∝ and ▽p ⇑ O(rstart), v ⇑ C(rstart, p), then vϖ(rstart) = v.

Otherwise, vϖ(rstart) is arbitrarily set to one of the initial values. We will

assume, without loss of generality, that vϖ(rstart) is set to a.

• When r > rstart:

If O(r) ! ∝ and ▽p ⇑ O(r), v ⇑ C(r, p), then vϖ(r) = v.

Otherwise, vϖ(r) = vϖ(r → 1).

Lucky period. We already saw that, informally, a lucky round is the first round

of a lucky period. To define these notions more precisely, we introduce the

following definitions, which we will use extensively in our Termination proof:
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• T1(r): The earliest step where some node, possibly defective, is in round r.

• rlock: The round with index (r + 6T ). We will prove that, if r is a lucky

round then, in every round from (rlock + 1) to the end of the lucky period, vϖ

is the same as the lucky value of round rlock, and all good nodes propose

the lucky value of round rlock.

• T (rlock): The earliest step where some node is in round rlock.

• Pϖφ

φ

: A constant, equal to (6T + ↖ (6T→1)·UD+18T
5 ↙), which denotes the number

of rounds spanned by a lucky period, i.e., all rounds from the period’s

lucky round rstart to round (rstart + Pϖφ

φ

→ 1) (or, equivalently, round (rlock +

↖
(6T→1)·UD+18T

5 ↙ → 1).

• TD(r): The earliest step where all good nodes are in round (r + Pϖφ

φ

) or later.

We will prove that, if r is a lucky round, then all good nodes decide by

step TD(r).

We then say that rstart is a lucky round if, in every step during the lucky period

from T1(rstart) to (TD(rstart) → 1), whenever the set C(r, p) of a node p in round

r (where rstart ↑ r < rstart + Pϖφ

φ

) holds multiple values, p randomly chooses to

propose that round’s lucky value, i.e., vϖ(r).

We now prove two observations that are useful for the proof for termination.

Observation 2. Suppose rstart is lucky and consider round r, where rstart ↑ r < rstart+Pϖφ

φ

.

If vϖ(r) = v, then all good nodes in round (r + 1) collect at least one message proposing v

for round r.
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Proof. By contradiction. Assume vϖ(r) = v and that some good node in round (r+

1) does not collect v for round r.

Let A(r) be the set of good nodes whose messages for round r are collected

by all the good nodes in round (r+ 1). By Corollary 1, A(r) ! ∝. Since some good

node does not collect v for round r, it follows that none of the good nodes in A(r)

proposes v for round r, i.e. all the good nodes in A(r) propose v↔ ! v for round r.

Since vϖ(r) = v, for any node p, if v ⇑ C(r, p), then p must propose v for

round r. Note that all the good nodes in A(r) propose v↔ for round r, therefore,

for any pg ⇑ A(r), C(r, pg) only contains v↔. That is, O(r) = A(r) ! ∝. By definition

of vϖ, vϖ(r) should be set to v↔. Contradiction. ↭

Observation 3 (Necessary condition for vϖ flipping). If rstart is lucky, then for any r

where rstart < r < rstart + Pϖφ

φ

, vϖ(r) is different from vϖ(r → 1) only if some good node

collects from round (r → 1) some message proposing vϖ(r) with priority at least 1.

Proof. Assume vϖ(r → 1) = v↔ and vϖ(r) = v, where v↔ ! v.

Since r > rstart and v↔ ! v, by definition of vϖ, O(r) ! ∝ and for any p ⇑

O(r), v ⇑ C(r, p). Now we consider the values that one such good node, pg ⇑ O(r),

collects from round (r → 1). By Observation 2, pg collects at least one message

proposing v↔ from round (r→1). However, only v is in C(r, pg). Therefore, p must

have collected a message proposing v with a higher priority than v↔, that is, at

least 1.

↭

Observation 4. If some good node in round r at T collects from round (r → 1) some

message m proposing v with priority at least 1, then there exists a good node proposing v
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with uCounter larger than 3T in round rg, where r → 3T < rg ↑ r → 1.

Proof. Consider the node p that at step T ↔ < T sends m, which proposes v with

priority at least 1 for round (r → 1). By Corollary 3, p must have collected a

message from a good node mg by T ↔ for round rg, where r → 3T < rg ↑ r → 1.

Since p sends m with priority 1, i.e. uCounterp ⇔ 6T ; then, by Lemma 19, mg must

propose v↔ with uCounterg ⇔ uCounterp→ ((r→1)→ rg) ⇔ 6T → ((r→1)→ rg) > 3T . ↭

Observation 5. If round rstart is a lucky round, then all good nodes active at

step TD(rstart) have decided by TD(rstart).

Proof. Recall that T (rlock) is the earliest step where some node is in round rlock,

and rlock = rstart + 6T . Let vϖ(rlock) be v.

The proof proceeds in two main steps. In Step 1, we will prove that:

For any r, where rlock < r ↑ rstart + Pϖφ

φ

→ 1, vϖ(r) = vϖ(rlock) = v, and all good

nodes propose v for round r. (F7)

In Step 2, relying on F7, we are going to prove that, for any good node pg,

the uCounter of v = vϖ(rlock) at TD(rstart) will be at least UD, upon which pg will

decide v.

Step 1 To prove F7, we are going to prove:

No good node in round r, where rlock ↑ r ↑ rstart + Pϖφ

φ

→ 1, collects a message

proposing v↔ ! v for round (r → 1) with priority larger than 0. (F8)

Assuming F8 is true, then it is easy to show F7 is true as follows. By

combining F8 and Observation 3, we can conclude that vϖ(rlock) is the lucky
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value for all rounds from rlock to (rstart + Pϖφ

φ

→ 1). Now, consider any round r,

where rlock + 1 ↑ r ↑ rstart + Pϖφ

φ

→ 1. By Observation 2, since vϖ(r → 1) = v,

all good nodes in round r collect at least one message proposing v for

round (r → 1). By F8, we know that no good node in round r collects

a message proposing v↔ for round (r → 1) with priority larger than 0 .

Therefore, any good node in round r either collects only v, or collects

both v and v↔, where the priority of v↔ is 0. Since rstart is a lucky round, all

good nodes propose v for round r, proving F7.

We are going to prove F8 by contradiction. Let r↔ be the earliest round in

the range from rlock to (rstart + Pϖφ

φ

→ 1), where some good node, currently

in r↔, collects a message from round (r↔ → 1) proposing v↔ ! v with priority

at least 1.

We are going to prove that (i) there exists a round rg, where (rlock → 3T ) <

rg ↑ (r↔ → 1), such that (a) a good node pg proposes v↔ in round rg with

uCounterg > 3T , and (b) vϖ(rg→1) = v↔; and (ii) (rg→1) can be neither smaller

nor larger than rlock. Since (rg → 1) ! rlock, as their vϖ values are different, this

leads to a contradiction.

Proof of (i) Since some good node in round r↔ at T collects a message

proposing v↔ for round (r↔ → 1) with priority at least 1, then, by Ob-

servation 4, there exists a good node pg proposing v↔ in round rg,

where r↔ → 3T < rg ↑ r↔ → 1 with uCounterg > 3T . Now with rg > (r↔ →

3T ) ⇔ (rlock→3T ) (by definition of r↔), we have (rlock→3T ) < rg ↑ (r↔→1),

establishing (a).

Now, to establish (b), we show that vϖ(rg→1) = v↔. Since uCounterg > 0,

by line 17 of Sandglass, pg collects only v↔ in round (rg → 1). Note that,
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by Observation 2, all good nodes in round rg, including pg, collect

at least one message proposing vϖ(rg → 1) for round (rg → 1). There-

fore, vϖ(rg → 1) must be equal to v↔, i.e., vϖ(rg → 1) = v↔.

Having proved (a) and (b), we proved (i).

Proof of (ii) Consider the round rg that exists by (i). We know that (rg →

1) ! rlock. We now show that (rg → 1) can be neither smaller nor larger

than rlock, which leads to a contradiction.

Case 1 (rg → 1) < rlock

We are going to show that, under the assumption of (rg→1) < rlock,

it is possible to prove two statements, S1 and S2, that are in con-

tradiction with each other.

S1: There exists a round r, where rg → 3T < r ↑ rlock → 1, in which a

good node proposes v with uCounter > 3T .

Since vϖ(rg → 1) = v↔ and vϖ(rlock) = v, there must exist a round rc

between rg and rlock where vϖ changes from v↔ to v, i.e. vϖ(rc→1) = v↔

and vϖ(rc) = v.

By Observation 3, some good node in round rc collects from

round (rc → 1) some message proposing v with priority at least 1.

Then, by Observation 4, there exists a good node pv in round rv,

where rc → 3T < rv ↑ rc → 1, proposing v with uCounter > 3T .

Since rg ↑ rc ↑ rlock, we have proved S1: there exists a round rv,

where rg → 3T < rv ↑ rlock → 1, such that a good node pv in rv

proposes v with uCounter > 3T .
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S2: No good node in any round r, where rg → 3T < r ↑ rlock → 1,

proposes v with uCounter > 3T .

Recall that, by (i), pg proposes v↔ with uCounterg ⇔ 3T + 1 in

round rg. Consider any round r between rg → 3T and rg. By

Corollary 4, there exists a good node in round r proposing v

with uCounter at least (uCounterg→(rg→r)), which is a value greater

than 0. Then, by Lemma 20, we can draw a first conclusion: no

good node can propose v with uCounter > 0 for any round r,

where rg → 3T → 1 ↑ r ↑ rg → 1.

When r is equal to (rg → 1), this means that no good node

proposes v with uCounter > 0 in round (rg → 1). Then, by

Corollary 4, we can further infer that no good node proposes v

with uCounter > 3T in any round between rg and (rg + 3T ).

Since rg ⇔ (rlock → 3T ), i.e., (rlock → 1) ↑ rg + 3T → 1, we can draw a

second conclusion: for any round r, where rg ↑ r ↑ rlock → 1, no

good node proposes v with uCounter > 3T .

Combining our two conclusions, we have that no good node

can propose v with uCounter > 3T in any round r, where

rg → 3T < r ↑ rlock → 1, proving S2.

Since S1 and S2 contradict each other, and we were able to prove

them under the assumption that rg → 1 < rlock, we conclude that

Case 1 is impossible.

Case 2 (rg → 1) > rlock

Since vϖ(rlock) = v and we proved that vϖ(rg → 1) = v↔, then in some

round rc, where rlock < rc ↑ (rg → 1), vϖ(rc → 1) = v and vϖ(rc) =
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v↔. By Observation 3, some good node in round rc must collect a

message proposing v↔ with priority at least 1 from round (rc → 1).

Recall that r↔ is the earliest round in the range from rlock to (rstart +

Pϖφ

φ

→ 1), where some good node, currently in r↔, collects a message

from round (r↔ → 1) proposing v↔ ! v with priority at least 1; and

that rg ↑ r↔ → 1. Therefore, rlock < rc < rg < r↔.

However, by assumption, r↔ is the earliest round in which some

node collects a message proposing v↔ with priority at least 1. Con-

tradiction.

This concludes the proof that F8 holds. Recall that, as we showed above,

F8 implies F7:

For any r, where rlock < r ↑ rstart + Pϖφ

φ

→ 1, vϖ(r) = vϖ(rlock) = v, and all good

nodes propose v for round r. (F7)

which is now also proved.

Step 2 Now, we are going to show that, for any good node pg that is active

at TD(rstart), the uCounter of v = vϖ(rlock) at TD(rstart) will be at least UD. This

is the condition upon which pg will decide v.

The key technical hurdle we need to clear is to prove following fact:

A node that proposes v↔ ! v before TD(rstart) can be at most in

round (rstart + Pϖφ

φ

→ UD
→ 1). (F9)

Assuming F9 holds, it follows easily that all good nodes that are active

at TD(rstart) must have decided by TD(rstart). Here is why.
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Since by F9 all nodes that propose in round (rstart +Pϖφ

φ

→UD) before TD(rstart)

must propose v, then, by line 17 of Sandglass, all nodes that propose in

round (rstart + Pϖφ

φ

→UD + 1) before TD(rstart) must propose v with uCounter at

least 1. A simple inductive argument then shows that all nodes that ever

propose in round (rstart + Pϖφ

φ

→ UD + i) before TD(rstart), where 1 ↑ i < UD,

propose v with uCounter at least i. With i = UD
→ 1, messages sent

for round (rstart + Pϖφ

φ

→ 1) before TD(rstart) must propose v with uCounter

at least (UD
→ 1). Note that by Lemma 10 and because pg is active at

step TD(rstart), pg enters round (rstart + Pϖφ

φ

) either at step (TD(rstart) → 1) or

at step TD(rstart). In both cases, pg proposes v with uCounter at least UD,

i.e., with priority at least (6T + 4), and decides by lines 21-22 of Sand-

glass. Therefore, if pg is active at step TD(rstart), it must have decided by

step TD(rstart).

To prove F9, we use again the notion of bags that we introduced in the

proof for Agreement. We quickly review it below.

For each message m sent in round r, m’s bag for round (r → 1) is the set of

messages collected by the sender of m in round (r → 1).

Recall that, if some node p↔ sends a message mv↔
r↔ proposing v↔ for round r↔,

then there exists a chain of messages extending from round 1 to round r↔,

where (a) each message on the chain proposes v↔, and (b) the i-th mes-

sage on the chain was one of the highest priority messages collected from

round i by the sender of the (i + 1)-th message.

To each message in the chain corresponds a bag: by definition, the bag of

the chain’s i-th message is the bag for round (i→1). Thus, in the chain there
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exists exactly one bag per round, and at least one of the messages with the

highest priority in each bag must be proposing v↔.

Let uCounter
v↔
i be the value of uCounter of the i-th message on the chain. By

line 17 of Sandglass, ▽i : 2 ↑ i < r↔: uCounter
v↔
i ⇔ uCounter

v↔
i+1 → 1. Therefore,

as we saw, the following holds:

▽i : 2 ↑ i < j ↑ r↔: uCounter
v↔
i ⇔ uCounter

v↔
j → ( j → i). (F3)

We are now ready to prove F9. We proceed by contradiction.

Assume there exists a node p↔ that before TD(rstart) uses a message m↔ to

propose v↔ in some round r↔ > (rstart + Pϖφ

φ

→ UD
→ 1). Consider the chain of

messages associated with m↔ and, in particular, the bags for every round

from (rlock + 1) to (rstart + Pϖφ

φ

→ UD
→ 1).

We will show that:

(i) Among the bags for rounds from (rlock+1) to (rstart+Pϖφ

φ

→UD
→1), at most

one in every U1 bags can contain messages from good nodes. That is,

among these (rstart + Pϖφ

φ

→UD
→ rlock → 2) bags, (rstart + Pϖφ

φ

→UD
→ rlock → 2→

↖
rstart+Pϖφ

φ

→UD
→rlock→2

U1 ↙) = (Pϖφ

φ

→ 6T → UD
→ 2 → ↖Pϖ

φ

φ

→6T→UD
→2

U1 ↙) of them contain

only messages from defective nodes. We will call these Def -bags.

(ii) The number of messages sent by defective nodes for round (rlock + 1)

to (rstart+Pϖφ

φ

→UD
→1) before TD(rstart) is not sufficient to fill all Def -bags.

Thus, it is impossible for a node that before T proposes v↔ ! vd to advance

up to round (rstart + Pϖφ

φ

→ UD
→ 1), contradicting our assumption.

Proof of (i) We will show that among the bags for rounds (rlock+1) to (rstart+

Pϖφ

φ

→ UD
→ 1), at most one in every U1 bags contains messages from

good nodes.
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By contradiction: assume there exist two bags containing messages

from good nodes, for round r1 and r2 respectively, where (rlock + 1) ↑

r1 < r2 ↑ (rstart + Pϖφ

φ

→UD
→ 1), and r2 → r1 < U1. Consider now any mes-

sage mg
r1 from a good node contained in the bag for round r1. Since r1

is within the lucky period that begins in rstart, by F7, mg
r1 proposes v.

Similarly, any message mg
r2 from a good node contained in the bag for

round r2 proposes v.

Now, let us consider messages mv↔
r1+1 and mv↔

r2
on the chain. We showed

above (F3) that uCounter
v↔
r1+1 ⇔ uCounter

v↔
r2
→ (r2 → (r1 + 1)). Since mg

r1

proposing v ! v↔ is in the bag of round r1, by line 17 of Sand-

glass, uCounter
v↔
r1+1 = 0. Therefore, uCounter

v↔
r2
↑ uCounter

v↔
r1+1 + (r2 →

(r1 + 1)) = r2 → r1 → 1 < U1. Then, by line 20 of Sandglass, priority
v↔
r2
= 0.

However, recall that mv↔
r2

is one of the messages with the largest

priority among all messages in mv↔
r2+1’s bag. Therefore, no message

collected by mv↔
r2+1 from round r2 proposes v↔ with priority greater

than 0. Note that mv↔
r2+1 also collects mg

r2 , which proposes v. Therefore,

consider the set of values with the highest priority that mv↔
r2+1 collected

from round r2. Either that set contains only v, when some v is

proposed with priority greater than 0; or it contains both v and v↔,

when both values are proposed with priority equal to 0. In either

case, since (r2 + 1) ↑ (rstart + Pϖφ

φ

→ UD) < (rstart + Pϖφ

φ

) is within the lucky

period, and vϖ(r2 + 1) = vϖ(rlock) = v, mv↔
r2+1 must propose v. However,

by construction mv↔
r2+1 should propose v↔. Contradiction.

Proof of (ii) We have just established that, among the bags for rounds

from (rlock + 1) to (rstart + Pϖφ

φ

→ UD
→ 1), (rstart + Pϖφ

φ

→ UD
→ rlock →
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2 → ↖ rstart+Pϖφ

φ

→UD
→rlock→2

U1 ↙) Def -bags contain only messages from defective

nodes.

Since each bag contains at least T messages, Def -bags contain at

least T · (Pϖφ

φ

→ 6T → UD
→ 2 → ↖Pϖ

φ

φ

→6T→UD
→2

U1 ↙) messages.

Let us now compute the largest number of messages these Def -bags

can contain.

Def -bags can only contain messages sent for round (rlock + 1) to (rstart +

Pϖφ

φ

→ UD
→ 1) by defective nodes. By Lemma 12, T ▽rlock

is the earliest

step where some defective node can be in round (rlock + 1). Then,

the messages in Def -bags must have been sent from step T ▽rlock
to

step (TD(rstart) → 1). By Lemma 17, the number of messages sent

by defective nodes in the time interval from T ▽r to (T ▽r+1 → 1) is at

most (T → 1). Since TD(rstart) = T ▽
rstart+Pϖφ

φ

, the period from step T ▽rlock

to step (TD(rstart)→1) covers (rstart+Pϖφ

φ

→ rlock) = (Pϖφ

φ

→6T ) such intervals;

thus, the number of messages sent by defective nodes in this period

is at most (T → 1) · (Pϖφ

φ

→ 6T ).

Recall that Def -bags contain at least T ·(Pϖφ

φ

→6T →UD
→2→↖Pϖ

φ

φ

→6T→UD
→2

U1 ↙)
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messages. Therefore, we have

(T → 1) · (Pϖφ

φ

→ 6T ) ⇔ T · (Pϖφ

φ

→ 6T → UD
→ 2 → ↖

Pϖφ

φ

→ 6T → UD
→ 2

U1 ↙)

̸(T → 1) ·C ⇔ T · (C → UD
→ 2 → ↖

C → UD
→ 2

U1 ↙)

(where C = ↖ (6T→1)·UD+18T
5 ↙, and Pϖφ

φ

= 6T +C)

̸UD + 2 + ↖
C → UD

→ 2
U1 ↙ ⇔

C
T

̸UD + 3 +
C → UD

→ 2
U1 >

C
T

(Since (C→UD
→2

U1 + 1) > ↖C→UD
→2

U1 ↙)

̸UD + 3 >
5C + UD + 2

6T
(Since U1 = 6T )

̸C <
6T (UD + 3) → UD

→ 2
5

=
(6T → 1)UD + 18T → 2

5

However, since C = ↖ (6T→1)·UD+18T
5 ↙ > (6T→1)UD+18T→2

5 , we have a contra-

diction. ↭

Lemma 22 (Termination with probability 1). Every good node that remains active

decides with probability 1.

Proof. By Observation 5, for any round rstart, if rstart is a lucky round, then all

good nodes that are active in step TD(rstart) decide a value in round rstart + 6T +

↖
(6T→1)·UD+18T

5 ↙. Let Pϖφ

φ

= 6T + ↖ (6T→1)·UD+18T
5 ↙.

Let S = {1+k · (Pϖφ

φ

+1)|k ⇑ N}. S is a set containing infinitely many numbers of

rounds, that the events of each of them being lucky are mutually independent.

Let T ▽(r) be the earliest step where all good nodes are in round r. For any

round r, T1(r), which is earliest step that any good node can be in round r, is no

earlier than T ▽(r → 1) by Lemma 12; and TD(r) is defined as T ▽(r + Pϖφ

φ

). Consider

the period consisting of the steps from T1(r) to TD(r) → 1, i.e., from T ▽(r → 1)

to T ▽(r + Pϖφ

φ

) → 1; this period covers all rounds from r to (r + Pϖφ

φ

→ 1). For this
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period to be lucky and for r to be a lucky round, we require any node that must

randomly select the value it will propose in any round between r and r + Pϖφ

φ

→ 1

to select the lucky value vϖ for its current round.

Consider the events that correspond to rounds in S being lucky. Since the

lucky periods for rounds in S are not overlapping, these events are mutually

independent.

Now we are going to show that all rounds in S are lucky with non-zero

probability. Consider round r in S . In each step of r’s lucky period, there are at

most N nodes in the system. Each node that makes a random choice in one of the

rounds covered by the lucky period chooses the round’s lucky value with prob-

ability 1
2 . Therefore, in every step of the lucky period, the probability that all

nodes that make random choices select the lucky value for their current round is

at least 1
2N . By Lemma 11, it takes at most T ·(Pϖφ

φ
+1) steps from T1(r) to (TD(r)→1).

Therefore, the probability that any round in S is lucky is at least 1

2N·T ·(Pϖφ

φ

+1)
> 0.

Now, consider any good node pg that joins in round rg at any step T and stays

active. Recall that, by Lemma 11, good nodes are guaranteed to eventually reach

any arbitrary round. Since there are infinitely many rounds r in S where TD(r) >

T , with probability 1 there exists a round r ⇑ S such that (1) r is a lucky round;

and (2) TD(r) ⇔ T . Then, by Lemma 11, pg will eventually reach TD(r) and, by

Observation 5, decide. ↭
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APPENDIX B

GORILLA CORRECTNESS

B.1 Sandglass Plus

In this section, we first introduce the SM+ model, which is nearly identical to

that of Sandglass (§3), with the exception that it permits defective nodes to re-

ceive messages sent by other defective nodes within the same step, subject to

certain constraints.

We then prove that Sandglass remains correct in this new model by satisfy-

ing Validity, Agreement, and termination with probability 1. Fortunately, the

correctness proof of Sandglass requires only minor modifications to the proofs

of two lemmas to be applicable to the SM+ model. We will show in Section B.1.2

the two lemmas that require change, and refer the readers to the Sandglass pa-

per for the rest of the proof.

B.1.1 The SM+ Model

SM+ and the Sandglass model (SM) largely make the same set of assumptions.

We show the only difference here and refer the readers to the rest of the model

in the Sandglass (§3.1): SM assumes that if in step t a node pi receives message m

with Receivei, then m was sent in some step t↔ < t. In SM+, we weaken this assump-

tion, by allowing defective nodes to non-recursively receive messages sent from

defective nodes within the same step. Formally, if in step t a node pi receives

message m from pj with Receivei, then m was sent in some step t↔ < t when at
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least one of pi and pj is good, or t↔ ↑ t when both pi and pj are defective and m

does not contain in its coffer a message that is also sent in s.

B.1.2 Sandglass is Correct in SM+

The proof of correctness for Sandglass in SM+ closely resembles the proof

for SM, with the exception of Lemma 12 and Lemma 18 in the Sandglass proof

(§A). While the statements of these lemmas remain unchanged, their proofs re-

quire minor modifications.

It is perhaps surprising that so little of the proof needs changing when mov-

ing from SM to SM+. The reason is that the original Sandglass proof assumes

that all the messages generated by defective nodes contribute to their progress,

regardless of when they are actually received. Specifically, when estimating the

maximum possible round that defective nodes can be in, the proof considers the

totality of messages generated by defective nodes during the execution and di-

vides it by the size of the threshold of messages that must be received to advance

to a new round. This best-case scenario for defective nodes already accounts for

the additional flexibility that SM+ affords to defective nodes. In particular, the

original proof already accounts for the possibility, allowed in SM+, that defec-

tive nodes receive, in a given step, messages that defective nodes sent in that

same step–even though SM disallows such executions.

Lemma 12 in Sandglass. At any step T , any defective node is at most one round

ahead of any good node.

Proof. By contradiction. Assume that there exists an earliest step, T , where some
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defective node p is more than one round ahead of a good node pg, i.e., at T

node p is in some round r and node pg is in round rpg ↑ (r → 2).

Note that no good node is in round (r → 1) or larger before T ; otherwise, by

Lemma 3 in Sandglass (§A) , all good nodes would be in round (r → 1) or larger

at T , contradicting rpg ↑ (r→2). Therefore, defective node p received no messages

from good nodes for round (r → 1) by T .

Consider the earliest step T ↔ ↑ T where some defective node is in round (r →

1). Since T is the first step where some defective node is more than a round

ahead of a good node, all good nodes must be in round (r → 2) or larger at T ↔;

but, as we just showed, no good node is in round (r → 1) or larger before T .

Therefore, all good nodes must be in round (r → 2) from T ↔ until T .

Consider the k consecutive steps from T ↔ to T . Let the number of mes-

sages generated by good nodes and defective nodes in each step be, respec-

tively, g1, ..., gk and d1, ..., dk. Since up to and including step T node p has received

for round (r→1) only messages from defective nodes, and yet p is in round r at T ,

by line 6 of Sandglass, Σi=k
i=1di → 1 ⇔ T and thus, by Lemma 1 in Sandglass (§A)

, Σi=k→1
i=2 gi ⇔ T . Since by assumption every step includes at least one good node

(i.e., g1 > 0), we have that Σi=k→1
i=1 gi > T . Recall that during these (k → 1) steps all

good nodes are in round (r→2); then, all messages g1, ..., gk→1 are for round (r→2)

and will all be received by all good nodes by T . By line 6 and line 7, then, all

good nodes (including pg) must be in round (r → 1) at T . This contradicts our

assumption and completes the proof. ↭

Lemma 18 in Sandglass. Suppose a good node pg is in round r at step T , and a

node pd is in round rd at step T ↔ ↑ T . If pd does not collect any messages from good

nodes in any round (r → i), where 0 ↑ i < kT , then rd ↑ (r → (k → 1)).
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Proof. To prove the corollary, we compute the maximum number of mes-

sages Dmax that a defective node pd can collect during the kT rounds when it

does not collect any message from good nodes. To help us count these mes-

sages, for any 1 ↑ i ↑ kT , denote by T(r→kT+i) the earliest step for which all good

nodes are at least in round (r → kT + i).

Recall that, to be collected by pd at step T ↔, a message from a good node must

have been generated no later than step (T ↔ → 1) ↑ (T → 1), and a message from

a defective node must have been generated no later than step T ↔ ↑ T . Then,

we partition the execution of the system up to step T into three time intervals,

and compute, for each interval, the maximum number of messages generated

during these intervals that pd could have collected for rounds (r → kT + 2) or

larger.

I1: Up to step (T(r→kT+1) → 1).

By definition of T(r→kT+1), some good node is in some round r↔ < r → kT + 1

at step (T(r→kT+1) → 1). Therefore, neither a defective node nor a good node

can be in some round r↔↔ > r → kT + 1 at step (T(r→kT+1) → 1), respectively

because of Lemma 5 and Corollary 2 in Sandglass (§A) . Therefore, during

this interval, no messages were generated for rounds (r → kT + 2) or larger.

I2: From T(r→kT+1) up to (Tr → 1).

By assumption, pd only collects messages generated by defective nodes

throughout interval I2. We further split I2 into i consecutive subinter-

vals, each going from T(r→kT+i) up to (T(r→kT+i+1) → 1) for 1 ↑ i ↑ (kT → 1).

By Lemma 10 in Sandglass (§A) , in each of these sub-intervals defective

nodes can generate at most (T → 1) messages. Therefore, the number of

messages generated by defective nodes during I2 is at most (T →1)·(kT →1).
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I3: From Tr to T .

Once again, by assumption, pd only collects messages generated by defec-

tive nodes throughout interval I3. There are two cases:

– T precedes Tr.

If so, defective nodes trivially generate no messages during I3.

– T does not precede Tr.

By assumption, some good node pg is in round r at T , where it col-

lects all messages generated by good nodes before T ; further, since pg

is still in round r, the messages for round r sent by good nodes be-

fore T must be fewer than T . Finally, since pg is in round r at T , by

Lemma 3 in Sandglass (§A) , in all steps preceding T no good node

can be in round (r + 1) or higher. We then conclude that from step Tr

and up to (T → 1) good nodes generated at most (T → 1) messages, all

for round r. Let the number of messages generated by good nodes

and defective nodes starting from Tr to T be, respectively, g1, ..., gk

and d1, ..., dk. Then we have Σk→1
i=1 gi < T . By Lemma 1 in Sandglass (§A)

, we then have Σk
i=1di < T , i.e., during I3 defective nodes generate

fewer than (T → 1) messages.

Adding the messages generated in the three intervals, we find that Dmax, the

maximum number of messages that pd could have collected up to and including

step T for rounds (r→kT+2) or larger, is smaller than (T→1)·kT ; at the same time,

since by assumption pd is in round rd, Dmax must equal at least (rd→(r→kT +2))·T .

Therefore, we have that (rd → (r → kT + 2)) · T < (T → 1) · kT , which implies rd ↑

r → (k → 1), proving the corollary.

↭
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Finally, we have our intended theorem.

Theorem 1. Sandglass satisfies agreement and validity deterministically and termina-

tion with probability 1 in SM+.

Proof for the theorem directly follows from Lemma 2, 14, 15 in Sand-

glass (§A).

To prove the correctness of Gorilla, we first show a mapping in two steps

from a Gorilla execution to an execution of Sandglass in SM+ (§B.2). Then, given

that Sandglass is correct in SM+, we leverage this mapping to proof safety (§B.3)

and liveness (§B.4) for Gorilla.

B.2 Scaffolding

The first step in our two-step process for mapping a Gorilla execution ςG into

a Sanglass execution ςS is to reorganize the actions taken by Byzantine nodes

in ςG: we want to map ςG to an execution where Byzantine nodes join the system

and receive valid messages at the beginning of a step (by the first tick) and

broadcast valid messages and leave the system at the step’s end (at its K-th

tick). Since, as explained in Section 4.3.1, satisfying all of these requirements is

not possible, we extend GM to a new model.

We need some way to calculate a VDF on an input that includes the final

result of VDF calculations that are still in progress. To achieve this, we extend

the oracle’s API to allow Byzantine nodes to peek at those future outcomes. By

issuing the oracle’s peek query, Byzantine nodes active in any step s can learn the
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result of a VDF computed by Byzantine nodes finishing in step s even before its

calculation has ended.

We thus introduce GM+, a model that extends GM by having a new ora-

cle, Ω+, that supports one additional method:

Peek(ϱ): immediately returns vdfϱ.

In any tick, a Byzantine node in GM+ can call Peek() multiple times, with

different inputs. However, Byzantine nodes can only call Peek subject to two

conditions:

• A Byzantine node can peek in step s at vdfϱ only if Byzantine nodes commit

to finish the VDF calculation for input ϱ within s; and

• a Byzantine node does not peek at vdfϱ, where ϱ = (M, nonce), if M in turn

contains some VDF result v obtained by peeking, and the calculation of v

has yet to finish in this tick.

Note that these restrictions only limit the additional powers that GM+ grants the

adversary: in GM+, Byzantine nodes remain strictly stronger than in GM.

With this new model, we first map an execution of Gorilla in GM to an ex-

ecution of Gorilla in GM+, in which Byzantine behavior is reorganized with

the addition of peeking. Hence follows the first lemma of our scaffolding: the

existence of the first mapping.

Definition 7. Consider an execution ςG in GM and an execution ς+G in GM+. We

say ς+G is a reorg of ςG iff the following conditions are satisfied:
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REORG-1 For every correct node p in ςG, there exists a correct node p+ in ς+G, such

that p and p+ (i) join and leave the system at the same ticks in the same steps and

(ii) receive and send the same messages at the same ticks in the same steps.

REORG–2 Each Byzantine node in ς+G (i) joins at the first tick of a step and leaves

after the last tick of that step; (ii) receives messages at the first tick of a step and

sends messages at the last tick of that step; and (iii) sends and receives only valid

messages.

REORG-3 If in ςG a Byzantine node sends a valid message m at a tick in step s, then

in ς+G a Byzantine node sends m at a tick in some step s↔ ↑ s.

Lemma 2. There exists a mapping REORG that maps an execution ςG in GM to an

execution ς+G in GM+, denoted ς+G = REORG(ςG), such that ς+G is a reorg of ςG.

Proof. Consider any Gorilla execution ςG. We are going to construct an execu-

tion ς+G in GM+ that satisfies REORG-1,2,3.

First, we specify how correct and Byzantine nodes join and leave in ς+G. For

each correct node p in ςG, a corresponding correct node p+ in ς+G joins and leaves

the system at the same steps as p in ςG. Consider any step s in ς+G, and let c be

the number of correct nodes in step s. We make (c → 1) Byzantine nodes join at

the beginning of step s and leave at the end of step s.

Let the set of valid messages sent by Byzantine nodes in ςG beMB. Note that

this set of valid messages sent by Byzantine nodes can be larger than the set of

valid messages correct nodes received from Byzantine nodes due to Byzantine

omissions.

Our proof proceeds in two steps. We overview them and then explain them

in detail:
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Step 1 For any m ⇑ MB, we assign a unique shell, (s, b), identified by a step s

and a Byzantine node b in ς+G, for the K Get() calls of VDF calculation for m.

Note that any node can only make one Get() call in a tick, and it takes K

Get() calls to get vdfm.

We prove four claims about the shells, which are useful later to prove the

same messages can be generated in ςG and in ς+G.

Step 2 We prove by induction that correct nodes will receive and send the same

messages in ς+G as in ςG, and the same valid messages are sent by Byzan-

tine nodes at the same step or earlier. Then, it immediately follows that

REORG-1,2,3 are satisfied.

Step 1

We run Algorithm 5 to assign shells for the VDF calculation of messages

inMB. The algorithm operates as follows: we maintain two variables within a

loop, s and CandidateVDF, where s denotes the step number, initially set to →1,

and CandidateVDF represents a set of VDFs, starting as an empty set. During

each loop iteration, s is incremented by 1. The algorithm adds VDFs whose first

units are calculated in step s of ςG to the CandidateVDF set. While there exists

an available shell in step s, the algorithm assigns this shell to a VDF, vd f , from

CandidateVDF. The selected vd f ’s last unit should be calculated the earliest in

ςG and the algorithm then removes it from CandidateVDF. This process contin-

ues until no free shells remain in step s. Subsequently, the algorithm moves to

the next iteration of the loop and repeats these steps.

Now we prove the following claims are true about the assignment:

Claim 3. For any m ⇑ MB, if the first Get() call for vdfm is in step i, then the shell
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Algorithm 5 Algorithm for reorganizing VDF units
1: procedure REORG
2: s↗ →1
3: CandidateVDFs↗ ∝
4: loop
5: s↗ s + 1; Bs ↗ the set of Byzantine nodes at step s
6: CandidateVDFs ↗ CandidateVDFs ′ {vdf — vdf ’s first unit is calcu-

lated in step s in ςG}
7: while there’s a free shell (s, p ⇑ Bs) do
8: vdf↗ a VDF result in CandidateVDFs whose last unit is calculated

the earliest in ςG

9: Assign (s, p) to vdf

10: CandidateVDFs↗ CandidateVDFs\{vdf}

assigned to vdfm in ς+G is in step i or later.

Proof. Since vdfm is not added to the CandidateVDFs set at line 6 of Algorithm 5

until s is increased to i (in line 5), the step of the shell that vdfm can be assigned

to is at least i (line 9). ↭

Before stepping into Claim 4, we show a useful observation following from

Algorithm 5.

Observation 6. Consider any step s in ς+G. We note two possible scenarios of shells at

step s, such that if either of these scenarios happens, the calculation of VDFs assigned

to shells later than s in ς+G must start in a step later than s in ςG:

A free shell exists at step s in ς+G. When the loop for s finishes, if there is a free

shell at (s, p), then the CandidateVDFs set is empty at the end of the iteration for s.

That is, any vdf assigned to a shell in a later step starts its calculation at a step s↔ > s

in ςG.
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A shell at step s is assigned to a vdf that is not the earliest to finish in ς+G

, among all the vdfs that are not assigned to a shell yet. Consider the scenario in which

a vdf is assigned to a shell at s at line 9 (it is the earliest to finish among all VDFs

in CandidateVDFs), but it is not the earliest to finish among all the remaining VDFs.

Then the calculation of the remaining VDFs, including those VDFs whose calculation

is finished earlier than vd f , must start later than s in ςG, because they are not in the

CandidateVDFs set yet.

We are ready to prove Claim 4.

Claim 4. For any m ⇑ MB, if the last Get() call for vdfm is in step i, then the shell

assigned to vdfm in ς+G is in step i or earlier.

Proof. We prove this by contradiction. Consider the first step i in ςG, such that

the last Get() call of a VDF, vdf
↓, is in step i, but vdf

↓ is not assigned to a shell

in ς+G by the end of i-th iteration of the loop.

Consider the largest step j ↑ i such that, one of the scenarios in Observation 6

happens. If no such j exists, we take j to be -1. By Observation 6, for all the VDFs

that are already assigned to the shells in steps [ j + 1, i], their first Get() calls are

after step j. Furthermore, since they are already assigned to shells, their last

unit is no later than vdf
↓’s, i.e., their last Get() calls are in or before step i . We

call this set of vdf s, VDFoccupy. Then, we have all of the Get() calls of VDFoccupy

are in steps [ j + 1, i] in ςG.

Note that there are no free shells in [ j+1, i] (otherwise, j would be larger). Let

the number of Byzantine nodes in any step s be bs. Then, the size of VDFoccupy

is Σi
s= j+1bs. Therefore the number of Get() calls for VDFoccupy in steps [ j + 1, i]

is K · Σi
s= j+1bs in ςG.
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Note that in ςG, the number of Byzantine nodes at any step s is at most bs.

Therefore, the total number of Get() calls that can be made in steps [ j+ 1, i] in ςG

is at most K · Σi
s= j+1bs, and one of them is the last Get() call of vdf

↓. Therefore,

there are not enough ticks available to make all Get() calls for VDFoccupy in ςG. A

contradiction. ↭

Claim 5. Consider any two VDFs, vdf1 and vdf2, reserved respectively at steps s1 and s2

in ς+G. If the last Get() call of vdf1 is before the first Get() call of vdf2 in ςG, then s1 ↑ s2.

Proof. By line 6, vdf2 must be added to the CandidateVDFs set after vdf1. By

line 8, vdf1 must be assigned to its shell before vdf2. Note that, by line 5, shells

are assigned in non-decreasing step order; therefore, s1 ↑ s2. ↭

Claim 6. Consider any three vdfs, vdf1, vdf2, and vdf3, reserved respectively at

steps s1, s2 and s3 in ς+G. If, in ςG, the last Get() call of vdf1 is before the first Get() call

of vdf2, and the last Get() call of vdf2 is before the first Get() call of vdf3, then s1 < s3.

Proof. Let the tick of the first Get() call of vdf2, and vdf3 in ςG be t f
2 , and t f

3 .

Note that the last Get() call of vdf1 is before t f
2 in ςG. By Claim 4, vdf1 must

be assigned to step ↘(t f
2 → 1)/K≃ or earlier. By Claim 3, vdf3 must be assigned

to ↘t f
3/K≃ or later. Since t f

2 ↑ t f
3 →K, i.e., (t f

2 →1) < t f
3 →K, we have s1 ↑ ↘(t

f
2 →1)/K≃ <

↘t f
3/K≃ ↑ s3, i.e., s1 < s3.

↭

Now in ς+G, all the Byzantine nodes join and leave at the boundaries and stay

for a single step; and for each valid message m sent by a Byzantine node in ςG,

we have assigned a unique shell (s, b) for some s and b↓ to it. Then, if b can
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receive the messages contained in m’s message coffer, Mm, then b will make K

Get() calls in step s for input (Mm, noncem), and therefore b will be able to send m

in ς+G.

We construct ς+G so that if a Byzantine node is able to send a (valid) mes-

sage m, it sends m to all Byzantine nodes in the next step. Every Byzantine node

forwards all the messages it has received in a step to all the Byzantine nodes in

the next step. Furthermore, if m is received at tick t↔ by a correct node c in ςG,

one Byzantine node who has m at tick (t↔ → 1) will send m to c at tick (t↔ → 1) in ς+G.

We will show in Step 2 that for each valid message m sent by a Byzantine

node in ςG and the shell (s, b) assigned to it, b can indeed receive the messages

contained in m’s message coffer, and can therefore send m at s. Furthermore,

any correct node c+ at step s in ς+G can receive the same set of messages as its

corresponding node c in ςG at step s, and therefore send the same message at s.

Step 2

We will prove by induction that we can construct ς+G such that any message

received and sent in ςG by correct nodes is received and sent in ς+G at the same

step, and any valid message sent in ςG by a Byzantine node is sent in ς+G at the

same or earlier step by a Byzantine node and is received at the same step as in ςG

by correct nodes.

Recall that in GM+, Byzantine nodes can peek VDF results of other Byzantine

nodes that complete at the same step.

Base case In step 0, we show it is possible to (i) make all correct nodes in ς+G
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send the same messages sent by their corresponding correct nodes in ςG

at step 0, and (ii) for any shell (0, psh) that is reserved for message msh,

make psh send msh.

First, consider the valid messages that are sent by correct nodes in step 0

in ςG. In step 0, there were not enough ticks to generate a VDF. Therefore,

all correct nodes receive no (valid) message in ςG, i.e., the message coffer

of any valid message sent by a correct node in step 0 in ςG is empty. There-

fore, by making all the correct nodes have the same initial values as in ςG

and pick the same nonces, any (valid) message sent in ςG can also be sent

in ς+G in step 0.

Second, consider any message msh whose shell is in step 0 in ς+G. Consider

the message coffer Msh of msh. Note that in ςG, for any m ⇑ Msh, m’s last Get()

call must be before msh’s first Get() call. Therefore, by Claim 5, m’s shell

must also be in step 0. Since step 0 is the earliest step, by Claim 6, m does

not contain any messages in its message coffer, otherwise messages in m’s

message coffer would have been assigned to a step earlier than step 0.

Then, p+ can include the messages in Msh in its message coffer in ς+G by

peeking the vdfm, therefore, p+ can send msh in step 0. Again, by picking

the same nonce, msh can be sent in ς+G in step 0.

We make the nodes send these messages in ς+G in the following way:

• Correct nodes send their messages to all the nodes.

• Byzantine nodes send their messages to all the Byzantine nodes.

• Consider a correct node pc that receives a message m sent by a Byzan-

tine node in ςG at step 1. Note that by Claim 4, m must be assigned

to a shell in step 0. Let that shell be (0, bm). bm sends m to pc at step 0
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in ς+G.

Induction hypothesis Up until step k, any message sent in ςG by a correct node

is sent in ς+G at the same step. Byzantine nodes can send all the messages

whose shells are at step K. Messages received by correct nodes up until

step (k+ 1) are the same as in ςG. Byzantine nodes receive all the messages

from correct nodes and Byzantine nodes.

Induction step Consider messages sent at step (k + 1) in ςG.

First, we prove correct nodes can send the same messages in step (k + 1)

in ς+G as in ςG. By the induction hypothesis and due to synchrony, correct

nodes receive the same set of messages from Byzantine nodes and correct

nodes in step (k + 1) in ς+G and in ςG. By making all the correct nodes select

the same nonces in ς+G as in ςG, correct nodes are going to send the same

messages in ς+G as in ςG.

Second, we prove that Byzantine nodes can send all the messages whose

shells are at step (k + 1) in ς+G. Consider any message msh whose shell is

at step (k + 1) and any mM in msh’s message coffer in ςG. There are two

possibilities for mM.

mM is sent by a Byzantine node Then the last Get() call for the VDF of mM

is before the first Get() call for the VDF of msh in ςG. Then, by Claim 5,

the shell reserved for mM is in a step sM, where sM ↑ (k + 1). Note

that in ς+G, Byzantine nodes in a step can peek at the VDF results for

messages from Byzantine nodes that finish within the same step; and,

by Claim 6, mM does not contain any message whose shell is also in

step (k + 1) or later. It follows that mM can be included in the message

coffer of msh in ς+G.
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mM is sent by a correct node By Claim 3, msh is calculated no later than

step (k + 1) in ςG. Therefore, mM must be sent in a step no later than

step k in ςG. By the induction hypothesis, mM is sent in ς+G. There-

fore, mM can be included in msh’s coffer in ς+G.

Therefore, by picking the same nonces, Byzantine nodes can also send

the same messages as in ςG at step (k+1) in ς+G whose shells are at step (k+1).

We make the nodes send messages in ς+G in the following way:

• Correct nodes send their messages to all the nodes.

• Byzantine nodes send their messages to all the Byzantine nodes.

• Byzantine nodes forward messages they received to all the Byzantine

nodes.

• Consider a correct node pg that receives a message m sent by a Byzan-

tine node in ςG at step (k + 2). By Claim 4, m must be assigned to a

shell that is no later than (k + 1). We just showed above that Byzan-

tine nodes can send all the messages whose shells are at step (k + 1).

Combining with induction hypothesis, some Byzantine node bm must

have received or generated m. We make bm sends m to pg at step (k+1)

in ς+G.

Now we have proven that correct nodes receive and send the same messages

in ςG as in ς+G. Note that we also proved that Byzantine nodes can send all the

messages at the step where their shells are. By Claim 4, it directly follows that

for any valid message m sent by a Byzantine node in ςG, a Byzantine node sends

the same messages in the same step or earlier in ς+G (REORG-3).
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In summary, we have constructed ς+G in GM+ that satisfies REORG-1,2,3.

↭

While peeking solves the challenge with reorganizing Byzantine behavior,

it complicates our second mapping. The ability to peek granted to Byzantine

nodes in GM+ has no equivalent in Sandglass – it simply cannot be reduced to

the effects of network delays or to the behavior of defective nodes. Therefore,

we weaken SM so that defective nodes can benefit from a capability equivalent

to peeking.

We do so by introducing SM+, a model that is identical to SM, except for the

following change: defective nodes at step s can receive any message m sent by a

defective node no later than s – as opposed to (s → 1) in SM – as long as m does

not contain in its coffer a message that is sent at s. Note that allowing defective

nodes to receive in a given step a message m sent by defective nodes within that

very step maps to allowing Byzantine nodes to peek at a message whose vd f

will be finished by Byzantine nodes within the same step; and the constraint

that m shouldn’t contain in its coffer other messages sent in the same step, maps

to the constraint that Byzantine nodes cannot peek at messages whose coffer

also contains a peek result from the same step.

One might rightfully ask: But the plan to leverage the correctness of Sand-

glass in SM? Indeed, but fortunately, Sandglass still guarantees deterministic agree-

ment and termination with probability 1 under the SM+ model (§B.1.2). Thus, it is

suitable to map a Gorilla execution in GM+ to a Sandglass execution in SM+,

and orient our proof by contradiction with respect to the correctness of Sand-

glass in SM+.
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Formally, we specify our second mapping as follows. We map messages by

simply translating the data structure:

Definition 8. Given a message m in the Gorilla protocol, the mapping MAPM produces

a message in the Sandglass protocol as follows

1. Omit the vdf and the nonce from m.

2. Let pi be the node that sends m. Include pi as a field in m.

3. If m is the j-th message sent by pi, add a field uid = j to m.

4. Repeat the steps above for all of the messages in m’s coffer.

Denote the result by m̂ = MAPM(m). We say m and m̂ are equivalent. Furthermore,

with a slight abuse of notation, we apply MAPM to a set of messages as well, i.e., if

M is a set of messages, and we map each message m ⇑ M, we obtain the message set

MAPM(M).

Thus, we can define the execution mapping:

Definition 9. Consider an execution ς+G in GM+ and an execution ς+S in SM+. We

say ς+S is an interpretation of ς+G iff the following conditions are satisfied:

1. The nodes in ς+G are in a one-to-one correspondence with the nodes in ς+S . For

every node p in ς+G, we denote the corresponding node in ς+S with p̂.

2. Nodes p and p̂ join and leave at the same steps in ς+G and ς+S , respectively. Fur-

thermore, their initial values are the same.

3. If p is a Byzantine node, then p̂ is defective in SM+; otherwise, p̂ is a good node

in SM+.
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4. Node p̂ sends m̂ at step s in ς+S iff p generates a message m in ς+G at step s. Note

that in ς+G, correct nodes send their messages to all as soon as they are generated,

while Byzantine nodes may only send their messages to a subset of nodes once

their messages are generated.

5. Node p̂ receives m̂ at step s in ς+S iff p receives m at step s in ς+G.

Lemma 3. Consider any execution ςG in GM, and an execution ς+G in GM+ is a reorg

of ςG. There exists a mapping INTERPRET that maps ς+G to an execution ς+S in SM+,

denoted as ς+S = INTERPRET(ς+G), such that ς+S is an interpretation of ς+G.

Proof. For execution ς+G, we construct the interpretation of ς+G, ς+S , in SM+. First,

for every p in ς+G, we add a corresponding p̂ to ς+S such that:

• p̂ joins and leaves at the same steps that p joins and leaves, respectively.

• p̂ has the same initial value as p.

• If p is a Byzantine node, then p̂ is a defective node; otherwise, p̂ is a good

node.

The number of Byzantine nodes in a step of ς+G is smaller than the number of

correct nodes at each step and the number of defective and good nodes are equal

to those of Byzantine and correct nodes, respectively; therefore, the number

of defective nodes in ς+S is fewer than that of good nodes at each step. Thus,

Condition 1, 2 and 3 are satisfied.

We now construct the messages sent in ς+S such that ς+S is an interpretation

of ς+G. Specifically, we require Condition 4 and Condition 5 in Definition 9 to be

satisfied for the messages sent. We prove this by induction on steps. Note that

messages are constructed inductively alongside the induction.
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Induction Base Consider any node p in ς+G at the first step, and message m that

it generates at the first step. We prove the claim holds for the first step,

conditioned on whether p is a correct node or not.

p is a correct node Note that p and p̂ have the same initial value vp by

construction. We now prove that p̂ will send m̂ = MAPM(m) to all

nodes at the first step in ς+S .

Since there are not enough ticks to generate a VDF, p does not receive

any message in the first step, therefore, m does not contain any mes-

sage in its message coffer. Therefore, m = (p, r = 1, v = vp, priority =

0,uCounter = 0,M = ∝, ·, ·). Note that p̂ cannot receive any message in

the first step, either. The message p̂ sends at the first step, by Sand-

glass, is ( p̂, uid = 1, r = 1, v = vp, priority = 0,uCounter = 0,M = ∝),

which is equal to m̂. Note that in ς+S , since good nodes are syn-

chronously connected, all the good nodes in the second step will re-

ceive m̂. Note that it’s possible for a defective node not to receive m̂,

by performing an omission failure, or to receive m̂ in any step, being

asynchronously connected to other nodes.

p is a Byzantine node Note that in SM+, defective nodes at step s can re-

ceive any message m sent at s, as long as m does not contain in its

coffer a message that is also sent at s. Again, we will prove m̂ can and

will be sent at the first step in ς+S .

We first consider any message m generated by a Byzantine node p,

whose message coffer is empty. With the same argument for a correct

node p in the first step of ς+G, p̂ will send m̂ in the first step of ς+S .

Again, note that it’s possible for any node not to receive m̂, when p̂

performs an omission failure, or to receive m̂ in any step, since p̂ is
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asynchronously connected to other nodes.

Second, let’s consider a message m generated by a Byzantine node p,

whose message coffer is not empty. Note that the number of messages

that can be included in m’s coffer is at most the number of Byzantine

nodes in the first step, which is smaller than T . We have m = (p, r =

1, v, priority = 0,uCounter = 0,M, ·, ·). Consider any message mpk ⇑

M, mpk must be sent by a Byzantine node and the vdf in mpk is a Peek()

result. By specification of Peek(), mpk must be generated in the first

step, and not contain any message in its message coffer. We have

proven above that m̂pk will be sent in the first step of ς+S . Note that

message coffer of m̂pk is also empty. Therefore, we make the scheduler

deliver m̂pk to the defective node p̂ and therefore p̂ will include m̂pk in

its message coffer. In summary, for every mpk ⇑ M, p̂ will receive m̂pk,

and |M| < T . Therefore, p̂ will send (p, r = 1, v, priority = 0,uCounter =

0,MAPM(M)), which is equal to m̂.

Induction Hypothesis Node p̂ receives m̂ at step s↔ ↑ s in ς+S , iff p receives m

at step s↔ in ς+G (Condition 4). Node p̂ sends m̂ at step s↔ ↑ s in ς+S , iff p

generates a message m in ς+G at step s↔ (Condition 5).

Induction Step Now we prove that the claim holds for step s + 1, conditioned

on whether p is a correct node or not.

p is a correct node We prove Condition 4 and Condition 5 separately.

Condition 4 First, we will prove that if p receives m at step (s + 1)

in ς+G, then p̂ receives m̂ at step (s + 1) in ς+S .

If m is generated by a correct node pc, m must be sent at step s

in ς+G. By the induction hypothesis, m̂ must be sent by a good
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node p̂c at step s in ς+S . Note that in SM+, the network between

good nodes is synchronous. Therefore, p̂ receives m̂ at (s+1) in ς+S .

If m is generated by a Byzantine node p, m could have been gen-

erated at any step s↔ ↑ s and finally sent to p at s in ς+G. By the

induction hypothesis, m̂ must be sent by a defective node p̂ at

step s↔ in ς+S . Note that in SM+, the network between good nodes

and defective nodes is asynchronous. Therefore, we can make

the scheduler deliver m̂ to p̂ at (s + 1) in ς+S .

Condition 5 Now we prove that if p generates a message m in ς+G at

step (s + 1), then p̂ can send m̂ at step (s + 1) in ς+S . Consider

the set of messages Recp received by p at s. By the induction

hypothesis and the proof for Condition 4, p̂ received a set of mes-

sages MAPM(Recp) at step (s + 1).

Note that Gorilla (lines 9-11,29) and Sandglass (lines 8-10,24) con-

struct message coffers in the same way based on the messages re-

ceived. Let the message coffer maintained by p be Mp. Then, the

message coffer p̂ has maintained up to (s + 1) is MAPM(Mp).

It follows that p̂’s set Cp̂ at line 11 is MAPM(Cp). If the proposal

value vp of p is chosen based on the vdf at line 20, then p̂ also

chooses proposal value vp̂ based on a random selection at line 15.

Then in ς+S , p̂ chooses the value vp. Note that any mM ⇑ Mp

and MAPM(mM) have the same round number, proposal value,

priority and uCounter. The variables priority and uCounter are

updated the same way in Gorilla (lines 22-25) and in Sandglass

(lines 17-20). Therefore, p̂ sends message MAPM(m) at s, which

has p̂ as the process, the same round number, proposal value,
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priority and uCounter as m, and MAPM(Mp) as the message coffer.

p is a Byzantine node We further separate this case into two sub-cases:

p does not receive a peek result First, we prove that if p receives m

at step (s + 1) in ς+G, then p̂ receives m̂ at step (s + 1) in ς+S . Since m

is not a Peek() result, m must be sent at step s or earlier in ς+G.

By the induction hypothesis, m̂ must be sent at step s or earlier

in ς+S . Note that in SM+ connections to defective nodes are asyn-

chronous. Therefore, we can make the scheduler deliver m̂ to p̂

at (s + 1) in ς+S .

Now we prove that if p generates a message m in ς+G at step (s + 1),

then p̂ can send m̂ at step (s + 1) in ς+S .

Consider m = (rm, vm, prioritym,uCounterm,Mm, noncem, vdfm). Note

that by Lemma 2 p joins the system for only one step. Therefore,

for any mM ⇑ Mm, p receives it at step (s + 1). Therefore, from

what we proved above, p̂ receives mM at step (s + 1). Therefore p̂

has MAPM(Mm) as its coffer.

Now we prove that p̂ can have vm as proposal value, prioritym

as priority, and uCounterm as uCounter following the Sandglass

protocol. Note that by Lemma 2, m must be valid (isValid(m)

equals true).

uCounterm is 0 For all round (rm → 1) messages in Mm, the largest

priority value for proposal values a and b are the same.

Therefore, in MAPM(Mm), the largest priority value for pro-

posal values a and b are the same. Then, it is possible that p̂

chooses vm as its proposal value at line 15.

uCounterm is not 0 All round (rm → 1) messages in Mm have
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the same proposal value vm. Therefore, in MAPM(Mm), all

round (rm → 1) messages also propose vm. By Sandglass proto-

col (line 12), p̂ will set its proposal value to vm.

Since m is consistent, p̂ will set uCounter to uCounterm and priority

to prioritym.

Note that p̂ joins the system for only one step, and therefore it

sends only one message. We have p̂ will send m̂ = (p̂, uid =

1, rm, vm, prioritym,uCounterm,MAPM(Mm)).

p receives some peek results Consider any peek result m↔ that p re-

ceives at step (s + 1). Due to the constraint on peeking, m↔ does

not contain any peek result, and m↔ is sent by a Byzantine node

within step (s + 1). By what we proved in the first sub-case, m̂↔

must be sent in step (s + 1). Since in SM+, the defective node p̂

can receive m↔.

Then, based on the same argument as the first sub-case, we can

show that p̂ can send m̂.

↭

B.3 Safety

We prove that Gorilla satisfies Validity and Agreement. The proofs follow the

same pattern: assume a violation exists in some execution ςG of Gorilla running

in GM; map that execution to ς+G = REORG(ςG) in GM+; then, map ς+G again to

ς+S = INTERPRET(ς+G) in SM+; and, finally, rely on the fact that these mappings

ensure that correct nodes in ςG and good nodes in ς+S reach the same decisions
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in the same steps to derive a contradiction.

Lemma 4. Consider an arbitrary Gorilla execution ςG, and ς+G = REORG(ςG). If a

correct node p decides a value v at step s in ςG, then p’s corresponding node p+ decides v

at step s in ς+G.

Proof. Consider any execution ςG in GM and ς+G = REORG(ςG) in GM+.

Consider a correct node p that decides a value v at step s in ςG. Consider

the message m = (r, v, priority,uCounter,M, nonce, vdf) that p sends right after it

decides. Note that by Gorilla protocol, this is the first step that p ever collects at

least T messages for round (r→1) and priority ⇔ 6T +4. By Lemma 2, p+ receives

and sends the same messages as p in the same steps. Therefore, s is also the first

step that p+ collects at least T messages for round (r → 1), and p+ sends m at

step s. Therefore, p+ must also have decided v at step s. ↭

Lemma 5. Consider any execution ςG in GM. If an execution ς+S in SM+ is an in-

terpretation of an execution ς+G = REORG(ςG) in GM+, then the following statements

hold:

1. If a correct node p decides a value v at step s in ς+G, then the corresponding p̂,

decides v at step s in ς+S .

2. Consider the first message m = (r, v, priority,uCounter,M, nonce, vdf) that p

generates for round r. Let the step when m is generated be s. If uCounter is 0,

then p̂ randomly chooses value v as the proposal value at step s in ς+S .

Proof. Consider any execution ςG in GM. Consider execution ς+G = REORG(ςG) in

GM+, and ς+S in SM+ is an interpretation of ς+G.
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Proof for Statement (1): Consider a correct node p that decides a value v at step

s in ς+G. Consider the message m = (r, v, priority,uCounter,M, nonce, vdf)

that p sends right after it decides. Note that by Gorilla protocol, this is

the first step that p ever collects at least T messages for round (r → 1)

and priority ⇔ 6T + 4. Since ς+S is an interpretation of ς+G, by Defini-

tion 9, p̂ receives the equivalent messages received by p in the same

steps. Therefore, s is also the first step that p̂ collects at least T messages

for round (r → 1). Note that by definition of equivalence, p̂ sends m̂ =

( p̂, ·, r, v, priority,uCounter,M) at s with priority ⇔ 6T + 4. Then p̂ must also

have decided v at step s.

Proof for Statement (2): Consider the first message m = (r, v, priority =

0,uCounter = 0,M, nonce, vdf) that p generates for round r, and assume m

is generated at step s. By the definition of equivalence, p̂ sends m̂ =

( p̂, ·, r, v, priority = 0,uCounter = 0,M) at s in ς+S , and m̂ is also the first

message p̂ sent for round r. Since uCounter is 0, v is chosen based on a coin

toss by Sandglass protocol. Therefore, p̂ must have flipped a coin at step s

and the result is v.

↭

Theorem 2. Gorilla satisfies agreement in GM.

Proof. By contradiction, assume that there exists a Gorilla execution ςG in GM

that violates agreement. This means that there exist two correct nodes p1 and

p2, two steps s1 and s2, and two values v1 ! v2 such that p1 decides v1 at s1

and p2 decides v2 at s2. Consider ς+G = REORG(ςG). According to Lemma 4, p+1

decides v1 at s1 and p+2 decides v2 at s2, in ς+G. Now, consider ς+S = INTERPRET(ς+G).
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According to Lemma 5, p̂+1 decides v1 at s1 and p̂+2 decides v2 at s2, in ς+S . How-

ever, this contradicts the fact Sandglass satisfies agreement in SM+ (Theorem 1).

Therefore, Gorilla satisfies agreement in GM. ↭

Theorem 3. Gorilla satisfies validity in GM.

Proof. By contradiction, assume that there exists a Gorilla execution ςG, such

that (i) all nodes that ever join the system have initial value v; (ii) there are no

Byzantine nodes; and (iii) a correct node p decides v↔ ! v.

Since GM+ is an extension of GM, ςG conforms to GM+. According to Defi-

nition 7, ς+G = ςG in GM+ is trivially a reorg of ςG. Consider ς+S = INTERPRET(ς+G).

By the construction of the INTERPRET mapping (in Lemma 3), good nodes

in ς+S have the same initial values as their corresponding correct nodes in ςG.

Furthermore, since there are no Byzantine nodes in ς+G, there are no defective

nodes in ς+S by Definition 9. Therefore, by Validity of Sandglass in SM+ (Theo-

rem 1), no good node decides v↔ ! v. However, by Lemma 4 and Lemma 5, p

decides v↔ ! v, which leads to a contradiction. Therefore, Gorilla satisfies valid-

ity in GM. ↭

B.4 Liveness

Similar to the safety proof, the liveness proof proceeds by contradiction: it starts

with a liveness violation in Gorilla, and maps it to a liveness violation in Sand-

glass.

Formalizing the notion of violating termination with probability 1 requires

169



specifying the probability distribution used to characterize the probability of

termination. To do so, we first have to fix all sources of non-determinism [2, 4,

27]. For our purposes, non-determinism in GM and GM+ stems from correct

nodes, Byzantine nodes and their behavior; in SM+, it stems from good nodes,

defective nodes and the scheduler.

For correct, good, and defective nodes, non-determinism arises from the

joining/leaving schedule and the initial value of each joining node. For Byzan-

tine nodes in GM and GM+, fixing non-determinism means fixing their action

strategy according to the current history of an execution. Similarly, fixing the

scheduler’s non-determinism means specifying the timing of message deliv-

eries and the occurrence of benign failures, based on the current history. We,

therefore, define non-determinism formally in terms of an environment and a

strategy.

To this end, we introduce the notion of a message history, and define what it

means for a set of messages exchanged in a given step to be compatible with the

message history that precedes them.

Definition 10. For any given execution in GM and GM+ (resp., SM+), and any step s,

the message history up to s,MH s, is the set of ∞m, p, s↔∈ triples such that p is a correct

node (resp., good node) and p receives m at s↔ ↑ s.

Definition 11. We say a setMPs+1 of ∞m, p, s+1∈ triples is compatible with a message

history up to s, MH s, if there exists an execution such that for any ∞m, p, s + 1∈ ⇑

MPs+1, the correct node (resp., good node) p receives m at step (s + 1).

Definition 12. An environment E in GM and GM+ (resp., SM+) is a fixed join-

ing/leaving schedule and fixed initial value schedule for correct nodes (resp., good and

defective nodes).

170



Definition 13. Given an environment E, a strategy ΘE for the Byzantine nodes (resp.,

scheduler) in GM and GM+ (resp., SM+) is a function that takes the message his-

toryMH s up to a given step s as the input, and outputs a setMPs+1 that is compatible

withMH s.

Before proceeding, there is one additional point to address. The most gen-

eral way of eliminating non-determinism is to introduce randomness through a

fixed probability distribution over the available options. However, the follow-

ing lemma, proved in §B.4, establishes that Byzantine nodes do not benefit from

employing such a randomized strategy.

Lemma 6. For any environment E, if there exists a randomized Byzantine strat-

egy for Gorilla that achieves a positive non-termination probability, then there exists a

deterministic Byzantine strategy for Gorilla that achieves a positive non-termination

probability.

Proof. Let us fix the environment E. Consider a randomized Byzantine strat-

egy ΘE that achieves a positive non-termination probability. We omit E from

the subscript for brevity. Denote the non-termination event in HΘ with NT ,

i.e., PHΘ(NT ) > 0. For brevity, we drop HΘ from the subscripts for the proba-

bilities.

We provide an inductive proof. Consider the first time that a Byzantine node

takes a randomized action. This node can only choose from a countable set of

actions: sending a message to a node or calculating a unit of VDF. Let us call this

set of actions A = {A1, A2, . . . }. We have P(NT ) =
∑

i P(Ai)P(NT |Ai). Now, since

P(NT ) > 0, there should exist an Ai such that P(NT |Ai) > 0, i.e., the Byzantine

nodes could have achieved positive non-termination probability by determinis-
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tically taking the action Ai. Similarly, for every further randomized action with

execution prefix ↼, and with the action choices A↔ = {A↔1, A
↔

2, . . . }, if P(NT |↼) > 0,

then there should exist an A↔i such that P(NT |↼, A↔i) > 0. Repeating this process,

we can carve a deterministic strategy fromΘ, such that non-termination still has

a positive probability. ↭

Since the output vd f of a call to the VDF oracle is a random number, the (vdf

mod 2) operation in line 20 of Gorilla is equivalent to tossing an unbiased coin.

Given a strategy ΘE,1 the nodes might observe different coin tosses as the exe-

cution proceeds; thus, the strategy specifies the action of the Byzantine nodes

for all possible coin toss outcomes. The scheduler’s strategy in SM+ is similarly

specified for all coin toss outcomes. Therefore, once a strategy is determined, it

admits a set of different executions based on the coin toss outcomes; we denote

it by HΘ. Specifically, a strategy determines an action for each outcome of any

coin toss.

Given a strategy Θ, we can define a probability distribution PHΘ over HΘ. For

each execution ς ⇑ HΘ, there exists a unique string of zeros and ones, repre-

senting the coin tosses observed during ς. Denote this bijective correspondence

by COINS : HΘ ⇓ {0, 1}↓ ′ {0, 1}∋, and the probability distribution on the coin

toss strings in COINS(HΘ) by P̃HΘ . For every event E △ HΘ, if COINS(E) is mea-

surable in COINS(HΘ), then P̃HΘ(COINS(E)) is well-defined; thus, PHΘ(E) is also

well-defined and PHΘ(E) = P̃HΘ(COINS(E)). We denote PHΘ as the probability

distribution induced over HΘ by its coin tosses.

Equipped with these definitions, we can formally define termination with
1When it is clear from the context, we will omit the environment from the subscript of the

strategy.
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probability 1.

Definition 14. The Gorilla protocol terminates with probability 1 iff for every environ-

ment E and every Byzantine strategy Θ based on E, the probability of the termination

event T in HΘ, i.e., PHΘ(T ), is equal to 1.

This definition gives us the recipe for proving by contradiction that Gorilla

terminates with probability 1. We first assume there exists a Byzantine strat-

egy Θ that achieves a non-zero non-termination probability, and map this strat-

egy through the REORG and INTERPRET mappings to a scheduler strategyΛ that

achieves a non-zero non-termination probability in SM+. However,Λ cannot ex-

ist, as the Sandglass protocol terminates with probability 1 in SM+ (Theorem 1).

Lemma 7. If there exists an environment E and a Byzantine strategy ΘE in GM that

achieves a positive non-termination probability, then there exists an environment E
↔

and a Byzantine strategy &E↔ in GM+ that also achieves a positive non-termination

probability.

Proof. Assume there exist an environment E and a Byzantine strategy ΘE in GM

that achieves a positive non-termination probability. Consider the REORG map-

ping. Since, according to Lemma 2, the joining/leaving and initial value sched-

ules for correct nodes remain untouched by the REORG mapping, we just

set E↔ = E. In the rest of the proof, we omit the environments for brevity.

We now show that the strategy & exists, and is in fact the same as Θ. For

brevity, let RΘ denote REORG(HΘ), and consider any execution ς in HΘ. By

Lemma 2, correct nodes in ς receive the same messages, at the same steps, as

the correct nodes in REORG(ς) and, moreover, the coin results in ς are exactly

the same as the ones in REORG(ς). Thus, the message history of correct nodes
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up to any step s in ς is the same as the message history of correct nodes up to

the same step in REORG(ς). In addition, because REORG(ς) is a GM+ execution,

compatibility is trivially satisfied. Thus, we conclude that Byzantine nodes in RΘ

follow the same strategy as in Θ, conforming to the same coin toss process. Let

us denote this strategy with &.

Note that according to Lemma 4, whenever a correct node decides at some

step s in ς, its corresponding correct node in REORG(ς) decides the same value

at the same step. Therefore, the set of non-terminating executions in HΘ are

mapped to the set of non-terminating executions in RΘ in a bijective manner.

Let us denote these sets as NTH and NTR, respectively. Since the same coin toss

process induces probability distributions PHΘ and PRΘ on HΘ and RΘ, respec-

tively, we conclude that PHΘ(NTH) = PRΘ(NTR). Therefore, since PHΘ(NTH) > 0

by assumption, this concludes our proof, as we have shown the existence of a

strategy & in GM+ that achieves a positive non-termination probability. ↭

We can now continue our proof by showing that the INTERPRET mapping

preserves the non-zero non-termination probability, which will help us prove

our desired liveness property, termination with probability 1. In order to do

this, we first introduce a machinery that allows us to prove the perseverance

the non-zero non-termination probability throughout the INTERPRET mapping.

However, first note that the INTERPRET mapping changes nothing in the execu-

tions, and only maps the “syntax” of GM+ to that of SM+. Therefore, the map-

ping does not introduce non-deterministic decision points for Byzantine nodes.

Furthermore, as shown in Lemma 3, actions by Byzantine nodes in any execu-

tion in GM+ are translated to actions by the network in SM+. Therefore, we

conclude that a Byzantine strategy Θ in GM+ is mapped to a network strategy
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in SM+. Abusing notation, let us show the mapped strategy with INTERPRET(Θ).

Definition 16. Given strategy Θ for Byzantine nodes (the scheduler message delivery),

let NTΘ be the set of executions that do not terminate. Moreover, let us define NT i
Θ

to be the event where the correct (good) node i joins, never leaves and never decides.

Similarly, for every n ⇑ N we define NT n,i
Θ to be the event where the correct (good) node

i joins, does not leave, and does not decide within the first n steps of the execution.

First, note that we can enumerate the correct/good nodes since they are

countable. Second, note that our definition of termination in Section 4.1 implies

NTΘ = ′∋i=1NT i
Θ.

Definition 17. Given a strategy Θ for Byzantine nodes (the scheduler message deliv-

ery) in GM+ ( SM+), and a correct (good) node i, we define the random variable Xi
Θ for

each ς ⇑ HΘ as follows:

Xi
Θ(ς) =




1 If i joins, never leaves, and never decides during ς,

0 Otherwise.

Furthermore, let us define the random variables {Xn,i
Θ }
∋

n=1 as follows:

Xn,i
Θ (ς) =




1 If i joins, does not leave, and does not decide within the first n steps during ς,

0 Otherwise.

Lemma 23. For every strategy Θ, every correct/good node i ⇑ N, and every ς ⇑ HΘ, we

have limn⇓∋ Xn,i
Θ (ς) = Xi

Θ(ς), i.e., Xn,i
Θ converges (almost) surely to Xi

Θ.

Proof. Consider any execution ς ⇑ HΘ. If node i joins, never leaves, and never

decides during ς, then for every n we have Xi
Θ(ς) = Xn,i

Θ (ς) = 1.
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If node i joins and leaves without deciding, then there exists a step ni ⇑ N in

which the node leaves. Therefore, for every n ⇔ ni, we have Xi
Θ(ς) = Xn,i

Θ (ς) = 0.

If node i joins and decides during ς, then there exists an ni ⇑ N such that node i

decides at step ni. Therefore, for every n ⇔ ni we have Xi
Θ(ς) = Xn,i

Θ (ς) = 0.

↭

Based on Lemma 23, and the dominated convergence theorem [25], we have

the following lemma.

Lemma 24. For every strategy Θ and every node i we have limn⇓∋ E{Xn,i
Θ } = E{Xi

Θ}.

Proof. Based on Lemma 23, the sequence of random variables {Xn,i
Θ } converges

pointwise to Xi
Θ. Furthermore, it is clear that every Xn,i

Θ is non-negative and

bounded from above by 1. This satisfies the conditions required for the domi-

nated convergence theorem, thus the theorem tells us limn⇓∋ E{Xn,i
Θ } = E{Xi

Θ}. ↭

Lemma 25. For every strategy & in GM+, there exists a strategy Λ in SM+ such

that HΛ = {INTERPRET(ς)|ς ⇑ H&}.

Proof. We show that the strategy Λ exists, and is in fact the same as &. For

brevity, let I& denote INTERPRET(H&), and consider any execution ς in H&.

According to Lemma 3, correct nodes in ς receive the same messages, at the

same steps, as the good nodes in INTERPRET(ς). Thus, the message history

up to any step s in ς is the same as the message history up to the same step

in INTERPRET(ς). In addition, since INTERPRET(ς) is an actual SM+ execution,

compatibility is trivially satisfied. Thus, we conclude that the executions in I&

follow the same strategy as in &. Naming this strategy Λ finishes the proof.

↭
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Lemma 8. If there exists an environment E and a strategy & for Byzantine nodes

in GM+ that achieves a positive non-termination probability, then there exists an en-

vironment E
↔

and a scheduler strategey ΛE↔ in SM+ that also achieves a positive non-

termination probability.

Proof. Let us assume that there exists an environment E and a Byzantine strat-

egy ΘE in the Gorilla protocol that leads to a positive non-termination probabil-

ity. According to Lemma 7, there exists a strategy & in GM+ that achieves a pos-

itive non-termination probability, in environment E. Consider the INTERPRET

mapping. Since, according to Lemma 3, the joining/leaving and initial value

schedules for correct nodes are bijectively mapped by the INTERPRET mapping

to the joining/leaving and initial value schedules of the good nodes, respec-

tively, we just set E↔ = E. In the rest of the proof, we omit the environments for

brevity.

First, note that according to Lemma 5, the INTERPRET mapping preserves

all of the coin tosses in H&. Moreover, for a given execution ς ⇑ H&, the same

lemma tells us that INTERPRET(ς) might include more coin tosses than those in ς.

Consider Λ = INTERPRET(&), based on Lemma 25. Let us also define the

events NT&,NT i
&, NT n,i

& , NTΛ,NT i
Λ, and NT n,i

Λ based on Definition 16, for the

strategies & and Λ. Since PH&(NT&) = PH&(′∋i=1NT i
&), using the union bound we

have PH&(NT&) ↑
∑
∋

i=1 PH&(NT i
&). Now, & achieves a positive non-termination

probability, i.e., PH&(NT&) > 0. Therefore, there should exist some i↓ ⇑ N such

that PH&(NT i↓
&) > 0, since otherwise we would have PH&(NT&) = 0 based on the

union bound. We now define the random variables Xi↓
& and Xn,i↓

& as in Defini-

tion 17, and based on Lemma 24 we have limn⇓∋ E{Xn,i↓
& } = E{Xi↓

&}. Similarly,

we define the random variables Xi↓
Λ and Xn,i↓

Λ , and once again Lemma 24 tells us
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limn⇓∋ E{Xn,i↓
Λ } = E{Xi↓

Λ}.

Based on Definition 16, we know that for every n, we have NT n,i↓
& △ NT n+1,i↓

&

and NT n,i↓
Λ △ NT n+1,i↓

Λ . Therefore, we have E{Xn,i↓
& } = PH&(NT n,i↓

& ) ↑ PH&(NT n+1,i↓
& ) =

E{Xn+1,i↓
& } and E{Xn,i

Λ } = PHΛ(NT n,i↓
Λ ) ↑ PHΛ(NT n+1,i↓

Λ ) = E{Xn+1,i↓
Λ }. Since the increas-

ing sequence {E{Xn,i↓
& }}

∋

n=1 converges to E{Xi↓
&} = PH&(NT i↓

&) > 0, there should ex-

ist a step n↓ such that PH&(NT n↓,i↓
& ) = E{Xn↓,i↓

& } > 0. Now, given n↓, let us con-

sider PHΛ(NT n↓,i↓
Λ ) = E{Xn↓,i↓

Λ }. This value is computed based on the first n↓ steps

of the executions in HΛ. Based on Lemma 5, we know that these executions con-

tain all of the coin tosses happening in the first n↓ steps of the corresponding

executions in H&. Moreover, they might contain more coin tosses as explained

above. Therefore, if the probability of the event NT n↓,i↓
& in H& is positive, the

probability of the corresponding event NT n↓,i↓
Λ in HΛ should also be positive,

i.e., E{Xn↓,i↓
Λ } > 0. Since the sequence {E{Xn,i↓

Λ }}
∋

n=1 is increasing with n and con-

verging to E{Xi↓
Λ}, we should therefore have E{Xi↓

Λ} > 0. It immediately follows

that PHΛ(NT i↓
Λ) = E{Xi↓

Λ} > 0.

Finally, since NT i↓
Λ △ NTΛ, we should have 0 < PHΛ(NT i↓

Λ) ↑ PHΛ(NTΛ). This

means that Λ is a scheduler strategy that achieves positive non-termination

probability, and finishes our proof.

↭

Theorem 4. The Gorilla protocol terminates with probability 1.

Proof. By contradiction, assume that there exist a GM environment and a Byzan-

tine strategy Θ in Gorilla that achieve a positive non-termination probability.

By Lemma 7, there exist a GM+ environment and a strategy & for the Byzan-

tine nodes in GM+ that achieve a positive non-termination probability. Simi-

178



larly, by Lemma 8, there exists an SM+ environment and a scheduler strategy Λ

in SM+ that achieve a positive non-termination probability. But this is a con-

tradiction, since Sandglass terminates with probability 1 in SM+ (Theorem 1).

Thus, Byzantine strategy Θ cannot force a positive non-termination probability;

Gorilla terminates with probability 1. ↭
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