% Formal Methods in Computer-Aided Design 2024

Context Pruning for More Robust SMT-based
Program Verification

Yi Zhou (2, Jay Bosamiya

, Jessica Li, Marijn J. H. Heule

, Bryan Parno

Carnegie Mellon University, Pittsburgh, PA, USA
{yeet, jaybosamiya, jgli,marijn, parno}@cmu.edu

Abstract—SMT solvers provide powerful proof automation for
program verification. However, relying on SMT solvers also leads
to proof instability, where a previously successful proof may fail
after the developer makes trivial modifications to the source
program. Such instability is a major headache for developers,
but the causes and potential mitigations for it have received
limited attention. In this study, we find that irrelevant query
context accounts for 78% of the instability in existing program-
verification query sets. As a result, we design SHAKE, a novel
technique that leverages the structure in program-verification
SMT queries in order to filter out irrelevant context from such
queries. SHAKE is the first SMT-level technique that targets
instability, and we implement it as a pre-processing step for SMT
solvers. We evaluate SHAKE on real-world, large-scale query sets,
and we find that it leads to large reduction in context and a 29%
and 41% improvement in query stability on Z3 and cvc5, with
minor performance overhead.

I. INTRODUCTION

Satisfiability Modulo Theories (SMT) solvers play a crucial
role in automated program verification, since verification-
oriented languages (e.g., Dafny [1] or F* [2]) often translate
program source code and specifications into verification condi-
tions [3], [4] that they encode as SMT queries [5]. Essentially,
each SMT query states that the code adheres to its specifications,
and the SMT solver (e.g., Z3 [6] or cvc5 [7]) checks if this
statement holds. The solvers obviate many manual proof steps,
simplifying the verification of large code bases [8]-[14].

Unfortunately, SMT-based program verification is not nec-
essarily robust. Notably, the approach is susceptible to proof
instability [15], where trivial changes to the program cause
spurious verification failures. For instance, the SMT solver may
reject a previously-verified program after the developer renames
a variable, even though the program’s semantics clearly did
not change. Faced with such a proof failure, the developer
may need to tediously provide manual proof steps to guide the
solver back on track [16], which arguably defeats the purpose
of automation. To the frustration of practitioners, instability has
been a long-standing problem [15], [17]-[23]. While instability
is pervasive in practice [15], its causes remain understudied, let
alone its mitigation. Existing literature has pointed at several
potential culprits [18]-[20], but these claims are anecdotal and
lack quantitative evidence.

In this work, we explore the problem quantitatively and find
that irrelevant query context is a major contributor to instability.
Our experiments on unsatisfiable cores from a large-scale
program-verification query set discover that typically 96%—99%
of the assertions in a query do not remain in the unsatisfiable

d https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_12

core—they are irrelevant to verification. More importantly,
irrelevant assertions account for 78% of the observed unstable
instances ($III).

Motivated by the findings, we propose a novel SMT context-
pruning technique, named SHAKE, to improve stability. We
base SHAKE on the insight that program-verification tasks
are typically automated theorem proving (ATP) [24] tasks,
meaning that the verification queries are each composed of a
goal assertion along with axiom assertions. SHAKE triages the
axioms with respect to the goal and prunes the less relevant
axioms.

While SMT solvers are built for constraint-solving, adopting
a theorem-proving perspective helps improve stability. We
implement SHAKE as a preprocessor, and evaluate it on
large-scale program-verification query sets from the Mariposa
study [15]. We find that SHAKE typically reduces the context
by 3-10x. Moreover, we show that SHAKE can mitigate
instability on Z3 by 29% and on cvc5 by 41%. SHAKE imposes
little runtime overhead, even improving the number of solved
instances on cvc5 by 73% in one benchmark and 8% overall.

In summary, we make the following contributions.

o We empirically show that irrelevant context is a major

source of instability in program-verification queries.

o We propose a novel pruning technique, SHAKE, based on

a theorem-proving view of program verification.

o We show that SHAKE reduces instability by 29%-41%

on existing query sets, with only minor overhead.

To facilitate research on context pruning and instability
mitigation, our source code and query sets are all available at
https://github.com/secure-foundations/mariposa.

II. BACKGROUND

Formal verification provides strong guarantees about program
properties such as security and functional correctness. In recent
years, academia has made notable progress in verifying large-
scale systems [8]-[14], [25]-[28]. Industry has also adopted
verification in certain mission-critical scenarios [29]-[31].
In particular, automated verification languages have gained
popularity, exemplified by Dafny and F*, which are maintained
by Amazon Web Services and Microsoft Research respectively.

These automated verification languages are powered by SMT
solvers. Typically, a language’s verification condition generator
(VCG) encodes the source program into a logical formula,
which states that the program’s specification holds; i.e., the
program is correct. If the SMT solver reports the negation of

This article is licensed under a Creative
BY Commons Attribution 4.0 International License


https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-7597-1176
https://orcid.org/0000-0002-5596-6828
https://orcid.org/0000-0002-5587-8801
https://orcid.org/0000-0002-9113-1684
 https://github.com/secure-foundations/mariposa
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_12
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_12
https://creativecommons.org/licenses/by/4.0/

the formula to be unsatisfiable, the program’s specification is
never violated, and thus the program verifies. However, since
program properties are generally undecidable, the solver cannot
guarantee that it will verify every correct program.

This incompleteness then leads to the phenomenon of proof
instability, where a previously successful verification spuriously
fails after trivial modifications to the source program. This
happens because source-level changes obligate the VCG to
create a new query for the SMT solver. Due to incompleteness,
the solver may succeed on an old version of the query but
may fail on the new one, even if the queries are semantically
equivalent.

Instability is a major headache for developers. For indi-
viduals, it disrupts their incremental development process by
diverting them from their main development tasks. For teams,
instability is even more problematic, as instability may only
appear when concurrent changes to the source code are merged.

In light of this problem, the Mariposa project [15] aims to
quantify instability in SMT-based program verification. For a
given SMT query-solver pair (g, s), the Mariposa tool outputs
a stability category: stable, unstable, or unsolvable.
In some cases the status may be inconclusive, which
indicates that Mariposa does not have sufficient statistical power
to confidently assign a category.

The Mariposa tool derives the stability status from the
performance of s on ¢’s mutants, which are semantically
equivalent to g. Specifically, Mariposa creates the mutants
by shuffling the assertions or renaming the symbols in g, as
well as by reseeding the random number generator in s.

The Mariposa project experimented with large-scale program
verification query sets. For this study, we use the Mariposa
methodology to measure instability, and we also conduct our
experiments on the Mariposa query sets. We exclude one query
set, Komodog, from our study, which we discuss in §VIL

III. QUERY CONTEXT

In this section, we study the connection between query
context and stability. We abstract an SMT query’s context as a
set of assertions, each introducing a constraint to the query. We
then analyze each query’s unsatisfiable core. Upon reaching an
unsat result, the solver produces a core, which is a subset of
the original assertions that the solver used to derive the unsat
result. Thus, the solver-produced core serves as an oracle of
relevant assertions, and what is excluded from the core can be
considered irrelevant.

In §III-A, we describe our method to obtain unsat cores.
In §III-B, we show that often only a tiny fraction of the
assertions are relevant to verification success. In $III-C, we
show that irrelevant context can be a major source of proof
instability. In §III-D, we present a simple theorem-proving
view of the query context and discuss how that view can help
cut down on irrelevant assertions to improve stability.

A. Export the Unsatisfiable Core

In theory, we can export an unsat core by enabling an
SMT solver’s produce-unsat-cores option. In reality,

60

obtaining an unsat core can sometimes be non-trivial, especially
on unstable queries. Though uncommon, two types of problems
may occur, so we document our workarounds here.

Unsuccessful Export. The solver might not be able to
produce a core. There can be several reasons. First, the solver
behaves differently depending on whether the core is requested
or not. We have observed cases in which the solver returns
unsat on a query, but returns unknown when core production
is enabled. Second, the query itself might be unstable, meaning
that the original query may fail, but some mutants of it
may succeed. Third, a query might be completely unsolvable
(regardless of mutations) with a particular solver version, but
solvable with another.

In these cases, we perform Mariposa-style mutations to the
query, attempting to obtain a core from any of the mutants.
We then map the core from a successful mutant back to a core
of the original query. If necessary, we also try the core export
using different versions of the solver.

Incomplete Core. The solver might also produce a core
query that is incomplete. Specifically, the solver might return
unsat on the original query and successfully produce a core
query; however, when given the core query, the solver fails
to produce unsat, even with mutations applied to the core.
This could be due to certain assertions that are necessary to
the proof but missing in the core. Note that incompleteness
here is not a strictly formal notion, since we do not have a
ground truth for necessity.

When this happens, we apply a best-effort search to repair
the core by adding assertions back to the core query, performing
a bisection search to find a small addition of assertions that
make the solver return unsat on the core. In practice, we
find the incompleteness problem to occur more often with F*
queries (~ 8%), and the core is typically only “missing” a
small number (< 5) of assertions.

In summary, if the two issues above occur, we make a best-
effort attempt to find a core query such that: its assertions form
a subset of the original’s, and it is sufficient for the solver
to show unsat. We are successful in these attempts for all
but a small fraction of the original queries. In that remaining
fraction, we use the original query as the core query.

B. Most of the Context is Irrelevant

After acquiring an unsat core, we compare its context to
the original. As shown in Figure 1, the original query context
typically contains thousands of assertions. Using the assertion
count as a proxy for the “size” of the context, we examine the
relevance ratio:

# core assertions
x 100%

# original assertions

Since an unsat core is a subset of the original query, the lower
this ratio is, the less context is retained, and the more irrelevant
context the original query has.

Figure 2 shows the CDFs of the relevance ratios for different
projects. For example, on the left side lies the line for DICE%.
The median relevance ratio (MRR) is 0.06%, meaning that



100
1 = vWasmp
90 VeriBetrKV p
80 1 —— VeriBetrKVy,
04— Komodop
R DICE}
< 60 r
: 50 - 31 $23:291
()
O 40 A
30 4
20 A
10
0 T |‘ T
102 103 10*

Original Query Assertion Count Log Scale

Fig. 1. Original Query Assertion Count. More to the right means larger
query contexts, which may each contain thousands of assertions.

100
90 4 DICE}
VeriBetrKV p
80 1 —— VeriBetrKV,
70 4 —— Komodop
P —— vWasm
= 601 r
: 50 4 0.06%
[
O 40 A
30 -
20 A
10
0 T T T T
1073 1072 1071 100 10! 102

Original Query Relevance Ratio Log Scale (%)

Fig. 2. Original Query Context Relevance. More to the left means more
irrelevant contexts. Typically, the vast majority of an original query context is
irrelevant.

for a typical query in the project, only 0.06% of the context
is relevant. In vWasmp, the MRR is 3.76%, which is almost
an of order of magnitude higher than the other projects. We
attribute this to the manual context tuning by the authors of
vWasmp, who explicitly documented the tedious effort [14],
[15]. Nevertheless, if we consider the complement of the
relevance ratio, typically 96.23-99.94% of the context is
irrelevant, even considering vWasmp .

C. Irrelevant Context Harms Stability

Given the significant amount of irrelevant context, we
further analyze how that impacts stability. Here we compare
and contrast the stability of the original queries and their
cores. Recall the Mariposa stability status for a query-solver
pair can be one of unsolvable, unstable, stable, or
inconclusive. Given an original query ¢ and its core q.,
we introduce the following two metrics:

« Preservation: given that ¢ is stable, the probability
that g. remains stable.

« Mitigation: given that ¢ is unstable, the probability
that ¢. becomes stable.

We use the Mariposa tool [32] with Z3 version 4.12.5 in this
experiment. In Figure 3, we list the number of original queries
and the scores for solver-produced core. As an example, in
the original Komodop queries, 1,914 are stable and 93 are
unstable. In its core counterpart, 99.4% of the stable queries
remain stable, while 90.3% of the unstable ones become stable.
vWasmp is the only case where the core has no mitigation
effect. However, its original queries are rarely unstable. As
we noted previously, vWasmp also starts with more relevant
original context. Therefore, the stability of vWasmp can be
explained by the manual tuning done by the original developers.

Project Original Solver-Produced Core
Stable  Unstable Preservation Mitigation
Komodop 1,914 93 99.4% 90.3%
VeriBetrKV p 4,983 172 99.5% 64.5%
VeriBetrKV 4,999 256 99.6% 83.6%
DICE} 1,483 20 99.6% 90.0%
vWasmpg 1,731 4 99.7% 0.0%
Overall 15,110 545 99.5% 78.3%

Fig. 3. Stability of Core Queries. Typically an unsat core preserves the
stability of the original query, and it mitigates instability in 78.3% of the
unstable queries.

Generally, the solver-produced unsat core is highly likely to
preserve query stability. Moreover, across all projects, 78.3%
of the unstable instances can be mitigated by using the core.
In other words, irrelevant context is a major contributor to
instability. This result suggests a promising mitigation strategy
of pruning irrelevant assertions. In the next section, we discuss
the composition of query context and how it can inform context
pruning.

D. Context Pruning is Axiom Selection

In §II, we offered an overview of the verification condition
generator (VCG) in automated verification languages. Here we
give a more formal treatment on how a VCG constructs the
query context, along with an intuitive view of the query as a
theorem-proving task and context pruning as axiom selection.

The VCG typically creates an SMT query per procedure!
under verification. Given a procedure P, the VCG encodes
a verification goal v, which is a formula stating that P is
correct. = is then placed into the query as an assertion. In
practice, the goal ) is rarely self-contained, since P usually
refers to other procedures or relies on language-level axioms.
The VCG also includes these dependencies in the query. As a
result, the query context is a constraint set I' = {—)} UT 4,
where I'y = {1, ..., o, } is a set of axioms.

The standard semantics of an SMT query is the satisfiability
of the constraint set I'. We can interpret the query as checking
the validity of I' - false, which is equivalent to I'4 F 1.

'We generically refer to a function-like construct with pre/post-conditions
as a procedure. It can be a function, method, lemma, etc.

61



Intuitively, this is a theorem-proving task, where the axioms
in "4 are given to prove the verification goal .

Through this view, the context pruning problem becomes
an axiom selection problem, in which we choose a subset
of axioms I'r C I'4 s.t. I'r = 9. The SMT solver usually
takes the constraint-solving view of the query, where the
relevance of an assertion is determined by its contribution to
the unsatisfiability. As it turns out, the solver can also benefit
from this theorem-proving perspective, where we define the
relevance of the axiom assertions with respect to the goal.

IV. SHAKE

In this section, we introduce SHAKE, a pruning technique
for SMT queries produced during program verification. At a
high level, SHAKE takes a query as input and computes the
distance from each axiom to the goal, indicating the relevance.
More formally, the input to SHAKE is a set of constraints
' = {po, ..., pn}. For convenience, let ¢q = —), where 1)
is the verification goal, while 1, ..., ¢, are the axioms. The
output of SHAKE is thus a map of distances:

dists = {(¢0 : 0), ..., (o : dn)}

where the goal is at 0. SHAKE then prunes the axioms based
on their distances. We first introduce a naive version of SHAKE,
then progressively improve upon the design.

A. The Naive SHAKE Algorithm

In this version of SHAKE, we abstract a formula ¢ via the set
of query-defined symbols it contains, denoted as SYMBOLS(¢).
More precisely, the symbols are the functions, constants, and
datatypes introduced by the query, excluding sorts, local vari-
ables, and built-in SMT-LIB functions: intuitively, ubiquitous
functions like < or not do not convey much information.

Alg. 1 shows the naive SHAKE algorithm. We first initialize
a context symbol set S, from the goal. We then select all
axioms ¢, such that SYMBOLS((p;) intersects with S, on
the theory that intersection conveys relevance. After scanning
through all axioms in this round, we augment S.;, with the
symbols from the selected axioms. The update is delayed until
the end of the round, so S, remains the same during this
scan. Otherwise, the scan order would affect the content of
Sz, introducing a form of instability.

Applying this process repeatedly scores the distance of an
axiom ¢; based on the round in which SymBoLs((p;) first
intersects with S.;,. The outer iteration continues until we
reach a fixed point. When there are unreachable axioms at the
end, they are assigned a distance of round count plus one.

In practice, we find that naive SHAKE typically terminates
after very few iterations, giving little differentiation between
axioms. The problem arises because naive SHAKE is too eager
in its expansion. Since we use symbol sets to abstract away
formulas, a single complex axiom with a large symbol set
can easily saturate S, ending the process quickly. In light
of this problem, we refine the formula abstraction to handle
quantifiers, which SHAKE expands lazily.

62

Algorithm 1 Naive SHAKE

procedure NAIVESHAKE(I' = {po, ..., pn})
# assuming g is the goal
Sctz < SYMBOLS(¢0)
dists, round < {(¢o : 0)},1
repeat
acc + 0
for ¢; € I' do
if Sz N SYMBOLS((p;) # 0 then
# check if ¢; has been assigned a distance
if ¢; € UNREACHED(dists, ") then
dists < dists U {(p; : round)}
acc < acc U SYMBOLS(y;)
# update the symbol set after considering all ¢;
Scte < acc U Seig
round < round + 1
until ISFIXEDPOINT(dists)
max_dist < round + 1
for ¢; € UNREACHED(dists,I") do
# assign maximum distance to unreachable axioms
dists < dists U {(p; : maz_dist)}

return dists

(declare-fun foo (Int) Int)
(declare—-fun bar (Int) Int)
(declare—-fun qux (Int) Int)
(assert (forall ((x Int))
(! (< (foo x) (bar (qux x)))
:pattern ((foo x))
:pattern ((bar x)))))

Fig. 4. Example SMT Assertion with Pattern. The patterns are hints to
the solver on when to instantiate the quantifier. In this example, either the
pattern (foo x) or the pattern (bar x) should be matched.

B. SHAKE with Quantifiers

In the queries we study, quantifiers often come with pat-
terns [33], [34]. Patterns are syntactic hints to the solver as to
when a quantifier should be instantiated; if the patterns are not
matched, the quantified body remains hidden. In this version
of SHAKE, we use the available patterns to refine the notion
of relevance for formulas.

In this version, we construct a formula state for a given
formula ¢. We denote this via INITFSTATE(¢), which augments
¢ with two fields:

o @.Syisivle: the set of symbols in ¢ not under any quantifier.

e ¢.gstates: a list of quantifier states, constructed only
from the outermost quantifiers in ¢. The construction via
INITQSTATE is lazy, meaning that any nested quantifiers
are hidden under the outermost quantifier states.

Given a quantified formula w, INITQSTATE(w) creates a quan-
tifier state containing w and two additional fields:

e w.patterns: a list of symbol sets from the patterns.

o W.Ohidden: the quantified body, which remains uninitial-
ized until expanded, including any nested quantifiers it
may contain.

For example, in Figure 4, the list of pattern symbol sets is
[{bar}, {foo}], and the hidden body is the formula (< (foo

x) (bar (qux x))).



SHAKE is lazy when determining the relevance of a quantifier
state, reflected in the TRYEXPAND procedure. Given a symbol
set S, if none of the w.patterns is a subset of S, the quantifier
is irrelevant, and ¢p;g4en, remains unexpanded (i.e., SHAKE
ignores the symbols it contains). The subset condition is
necessary because for an actual instantiation, all the symbols
in a specific pattern must be present in S. Upon a match,
TRYEXPAND creates a new formula state from its hidden body
Ohidden- We note that the quantifier is only expanded by one
level of nesting via INITFSTATE.

procedure TRYEXPAND(w, Sctz)
relevant < false
# subset check needed to check for pattern match
for S € w.patterns do
if S C S then
relevant < true
if relevant then
# create a new formula state from the hidden body
INITFSTATE(w. Pridden )
return SOME (w.@hidden)

return NONE

SHAKE checks the relevance of a formula state ¢ as
follows. Given a symbol set S, ¢ is relevant if ¢.Sy;sbie
intersects with S, or if any of the ¢.¢states is considered
relevant. When SHAKE expands a quantifier state, the resultant
formula state is merged into ¢. This process is reflected in the
FORMULARELEVANT procedure below.

procedure FORMULARELEVANT(, Sctz)
gstates’ <+ []
relevant < Seciz N . Syisivie 7# 0
for w € p.qstates do
r < TRYEXPAND(w, Sctz)

# expansion may create a new formula state @nidden
if SOME(qb}“'dden) = r then
# a trigger matches; merge @nigden With

gstates’ < qstates’ + Pnidden.qstates
§0~Svisible — L,D‘Sm’sible U ¢hidden~5visible
relevant < true
else
# no match; no new formula state created
gstates’ < gstates’ + [w] # keep the quantifier state
@.qstates < gstates’
return relevant

The main procedure for this version of SHAKE is shown in
Alg. 2. Its structure is almost identical to the naive version,
but it uses FORMULARELEVANT to determine the relevance of
each axiom in the context. A more subtle detail is that SHAKE
must revisit all of the axioms in each round, as an axiom’s
nested quantifiers may be expanded in later rounds. Moreover,

the formula state from the goal ¢ is also part of the main loop.

This way the quantifiers in the goal are also lazily expanded.

C. SHAKE with Frequent Symbols

Thus far we have used the symbol set abstraction introduced
in §IV-A, where we exclude certain basic symbols, such as

63

Algorithm 2 Refined SHAKE with Quantifiers

procedure QUANTIFIERSHAKE(I' = {poq, ..., n})
for p; €I do
# create the formula state
INITFSTATE(QDZ')
# assuming g is the goal
Sctz’ — @OASvisible
dists, round < {(¢o : 0)},1
repeat
acc <
for p; €I do
Sprev — S0i~Svisible
# possibly expand quantifiers
if FORMULARELEVANT(;, S¢t;) then
if ¢; € UNREACHED(dists,I") then
dists < dists U {(p; : round)}
# update with previous symbols in ¢;
acc < acc U Sprey
Sectz < acc U Sei
round < round + 1
until ISFIXEDPOINT(dists)
maz_dist < round + 1
for p; € UNREACHED(dists,I") do
dists + dists U {(p; : maz_dist)}

return dists

the built-in SMT-LIB functions, based on the intuition that
such prevalent symbols provide little indication of relevance.
We now further refine the symbol-set abstraction to reflect this
intuition.

In some verification languages, the SMT encoding uses
certain symbols pervasively. For example, the function symbol
ApplyTT is ubiquitous in F* queries. This is expected, as
F* is based on dependent types, where terms are proofs, and
ApplyTT represents term application. However, symbols like
ApplyTT cause SHAKE to quickly saturate, absorbing many
axioms when added to the reached symbol set.

To address this issue, we propose a simple heuristic. We
define the frequency of a symbol z to be the ratio of formulas
in "= {¢o, ..., n } containing x in their symbol set:

_ Hei | pi €T A€ SYMBOLS(;) }|
B IT|

freq(z)

Given a threshold 6, SHAKE excludes all symbols x such that
freq(x) > 6, treating them as if they were built-in functions. As
a side note, this idea is related to inverse document frequency
in information retrieval [35]. This simple approach improves
pruning on certain F* queries, as we show in the evaluation.

D. SHAKE with Distance Limit

SHAKE is similar to iterative deepening [36] in spirit.
However, SHAKE does not explicitly or implicitly construct a
graph. Instead, SHAKE creates “layers” of axioms at different
distances. By default, SHAKE runs until a fixed point, dropping
axioms that are unreachable at the last layer.

SHAKE’s complexity is therefore O(DN), where D is the
maximum distance and NV is the number of axioms. In practice,
our evaluation shows that D is almost always a constant <



20, while N can be in the thousands, as shown in Figure 1.
SHAKE’s approach improves efficiency, since a graph-based
approach would take O(N?) time just to construct the graph.

Stopping SHAKE early can also be useful: by setting a
distance limit, SHAKE potentially prunes even more irrelevant
axioms. However, the other side of the coin is that a shallow
distance limit may miss out on relevant axioms that are
necessary to the goal.

The choice of distance limit thus appears to present a
dilemma. However, we argue that SHAKE can leverage an unsat
core as an oracle for nearly-optimal distance: since our main
goal is to improve stability, we assume that an initial version
of procedure P verifies, and a subsequent version P’ may fail
due to minor changes. Therefore, we can use the distance limit
from the unsat core of P to inform the subsequent runs of P’.

In practice, we envision saving SHAKE’s distance limit
with source-level annotations. For example, in Dafny, a
commonly used attribute is { :timeLimit N}, which allows
the user to provide a procedure-specific time limit, overriding
the default. Related attributes include {:rlimit N} and
{:timeLimitMultiplier X}, which are also solver con-
figurations. Similar annotations also exist in languages like F*
and Verus [37].

SHAKE can be configured in a similar way, where the
distance value is a procedure attribute. With a fresh procedure
(query), the attribute is not present yet, and the solver runs as
normal. If verification succeeds, we store the maximum core
distance as an attribute. The next time the same procedure
is verified, SHAKE uses the stored distance limit and prunes
the context accordingly. Small changes in the procedure (e.g.,
renaming a variable) will have no impact on SHAKE’s layering,
and the stored limit should still work.

V. EVALUATION

In this section, we evaluate the effectiveness of SHAKE.
We describe the experimental setup in §V-A. We show the
distribution of distance values produced by SHAKE in §V-B.
We then evaluate SHAKE’s improvement of context relevance
in §V-C and stability in §V-D. We further assess the impact
of ignoring frequent symbols in §V-E. Lastly, in §V-F, we
evaluate SHAKE’s impact on solving performance in terms of
run time and number of queries solved.

A. Experimental Setup

In the evaluation, we run SHAKE in two different modes.

o Default Mode: SHAKE computes the distances and then
prunes the unreachable axioms, i.e., axioms in the last
layer discussed in §IV-A.

e Oracle Mode: We obtain an “ideal” distance by employ-
ing the unsat core as an oracle. We then use SHAKE to
prune axioms beyond the oracle distance.

To evaluate stability, we use SHAKE’s oracle mode. As
discussed in §IV-D, to counter instability, we assume a prior
working version of the query that produces a core, from which
we obtain the oracle distance.

64

To evaluate standard solving performance overhead, i.e.,
without any query mutation, we use the oracle mode along
with the default mode. This provides a best-case and worst-case
comparison for SHAKE’s performance impact as a preprocessor.

By default, SHAKE does not ignore any query-defined sym-
bols based on their frequencies (§IV-C). We only experiment
with frequency configuration in §V-E.

We use the default settings for Mariposa [32], including a
time limit of 60 seconds for each query. We experiment with
recent versions of two SMT solvers, Z3 version 4.12.5 and
cveS version 1.1.1. We conduct our experiments on machines
with an Intel Core 19-9900K (max 5.00 GHz) CPU, 128 GB
of RAM, and the Ubuntu 20.04.3 LTS operating system.

B. Distribution of SHAKE Distances

First, we evaluate how well SHAKE distances reflect the
relevance of axioms. Recall that for an original query I' =
{©0, ---son}, SHAKE computes the distances:

dists = {(@O : d0>7 sy (‘pn : dn)}

Let I'. C T be the core provided by the solver. We can then
determine the maximum distances for the original query and
the core:

dom‘g = max(di | ((Pi : dl) S F)
deore = max(di | (QDZ : dz) € FC)

Intuitively, if dorig > dcore, then SHAKE is able to
differentiate between core and non-core axioms: the more
significant the difference is, the more we can safely prune
layers in between with no loss of core axioms.

As shown in Figure 5-Figure 9, the maximum distances are
upper-bounded by 20 for all queries from the five projects
in this study. Moreover, there is usually a clear difference
between d,rig and deor.. As an example, Figure 5 shows
the distributions from Komodop. Note the strong separation
between the two: the median d.,,. is 2, while the median
dorig 1s 8. Moreover, the distribution of the dcore is light-
tailed, where a distance of 3 covers almost the entirety of the
query set.

100
90 1
80 1
70 1
60 1
50 1
40 A
30 1
20 1
10

0

Lo

CDF (%)
b @y

Core

L

—— Original

-
1

56 7 8 9 1011121314 1516 17 18
Maximum Shake Distance

4

[en)
—
o H
w

Fig. 5. Maximum SHAKE Distances for Komodop. There is a clear
separation between the distance values of core axioms versus original axioms.

However, in Figure 9, we observe that vWasmp is a bit of
an outlier (again). As we discussed in §III-C, the vWasmp



query set starts off with much higher context relevance; thus
we do not expect much room for differentiation using SHAKE’s
distance.

100
90 1
80
70
60
5011
40 1 :
304=_1

20

10 1
0

CDF (%)

Core
—— Original

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Maximum Shake Distance

Fig. 6. Maximum SHAKE Distances for VeriBetrKV .

100
90 A1
80 1
70 1
60 1
50 1 ® {
40 A
30 A
20 A
10

0 T
0 1

CDF (%)

Core
Original

4 5 6 7 8 9 10 11 12 13 14 15
Maximum Shake Distance

2 3

Fig. 7. Maximum SHAKE Distances for VeriBetrKV .

100
90 1
80 1
70
60 1
50 1 ® @
40 A
30 1
20 1
10 1

0

Core
Original

CDF (%)

6 78 91011121314151617181920
Maximum Shake Distance

012345

Fig. 8. Maximum SHAKE Distances for DICE7..

100

Core
—— Original

CDF (%)
Z

6 7 8 910111213141516171819
Maximum Shake Distance

o A
[
-
ot

Fig. 9. Maximum SHAKE Distances for vWasmpr.

C. Context Relevance Ratio

Now that we have demonstrated that SHAKE differentiates
core and non-core axioms, we evaluate how much context
pruning SHAKE enables. Since our main goal is to mitigate

instability, we run SHAKE in oracle mode. As in §III-B, we
compute the relevance ratio of the pruned query:

# i 1
core axioms + « 100%

# axioms after pruning + 1

In Figure 10, we present the relevance ratios that SHAKE
achieves. We see significant improvements over the original
queries as shown in Figure 2. For example, in VeriBetrKV,
the median relevance ratio (MRR) is 0.32% in the original
queries, while the MRR increases to 3.46% with oracle SHAKE.
Overall, SHAKE improves the MRR by 3-10x. We note the
intersection on the right side of the plot, where the relevance
ratio is 100%. In those cases, SHAKE matches the unsat core
when only given the oracle distance.

100
DICE},
901 — Komodop
i VeriBetrKV p
80 = VeriBetrKVy,
70 4 —— vWasmp
< 601
: 50 - 0.21%¢ 1.74%, 3.46% 15.74%
[
O 40+
30 A
20 A
10 A
0 j T T T T
1073 1072 1071 10° 10! 102

Shake Query Relevance Ratio Log Scale (%)

Fig. 10. Oracle SHAKE Query Context Relevance. Oracle SHAKE shows
improvement of context relevance over Figure 2 by 3—-10X.

D. Stability Improvement

Next, we evaluate if the improved context relevance translates
into improved stability. We assess stability in the same way as in
the unsat core experiments in §1II-C, both from a preservation
and mitigation perspective.

In Figure 11, we report the stability scores for oracle SHAKE
on Z3 version 4.12.5. We include all of the unstable queries
found in the original Mariposa query set (just as we did
in Figure 3), and then we sample roughly the same number of
stable queries (110 from each project). We observe that SHAKE
generally preserves stability, and achieves reasonable success
mitigating instability, with an overall mitigation score of 29.7%.
We also see that the naive SHAKE from §IV-A performs much
worse, achieving an overall mitigation score of only 11%.

We observe that DICE% sees much less mitigation. We
attribute this to F*’s pervasive use of certain function symbols
(such as ApplyTT) in its query encoding. In §V-E, we evaluate
the effectiveness of suppressing such symbols based on their
frequency. We also observe that SHAKE does not help with
the unstable queries in vWasmp. Since the unsat core is not
effective on vWasmp, this is unsurprising.

To further validate the stability improvement, we also
evaluate SHAKE with cvc5 version 1.1.1. However, cvcS

65



Project Original Count Oracle Naive SHAKE Oracle SHAKE
Stable Unstable Preservation Mitigation Preservation Mitigation
Komodop 110 93 99.1% 7.5% 100.0% 25.8%
VeriBetrKV p 110 172 100.0% 12.2% 98.2% 23.3%
VeriBetrKV, 110 256 100.0% 11.7% 100.0% 37.9%
DICE%: 110 20 100.0% 10.0% 100.0% 5.0%
vWasmp 110 4 100.0% 0.0% 96.4% 0.0%
Overall 550 545 99.8% 11.0% 98.9% 29.7%

Fig. 11. Oracle SHAKE Query Stability on Z3 4.12.5. We include oracle naive SHAKE (middle column) from §IV-A for comparison. Oracle SHAKE, which
employs the quantifier handling strategy from §IV-B, shows similar preservation, but stronger mitigation results.

is known to not work well with queries from Dafny and
F*, as acknowledged by cvc5’s developers [15]. In fact, to
make this evaluation possible, we had to first syntactically
transform the queries into a format cvcS could parse. Even
then, cvcS times out on many of the original queries (whereas
73 succeeds for nearly all of them). Hence, we only evaluate
the stability of original queries that do not timeout with cvc5.
This necessarily introduces bias in the resulting query sample,
so the stabilization results from Z3 and cvc5 should not be
directly compared.

With that caveat in mind, we present the stability scores for
oracle SHAKE on cvc5 in Figure 12. Generally, the preservation
scores are quite strong. The overall mitigation score of 41.3%
is promising as well.

Project Original Count Oracle SHAKE
Stable  Unstable Preservation Mitigation
Komodop 110 36 100.0% 41.7%
VeriBetrKV p 110 143 94.5% 48.3%
VeriBetrKV 110 210 100.0% 37.1%
DICE} 110 17 100.0% 100.0%
vWasmp 110 27 99.1% 0.0%
Overall 550 433 98.7% 41.3%

Fig. 12. Oracle SHAKE Query Stability on cveS 1.1.1.

E. Frequency Configuration

As discussed in §IV-C, SHAKE can optionally take in a
threshold 6 and ignore any symbol z such that freg(xz) > 6.
We now evaluate if this configuration can help with stability.
Intuitively, if 6 is set properly, SHAKE can ignore trivial
matches due to pervasively used symbols. However, if 8 is too
low, SHAKE may not reach axioms that are actually relevant,
e.g., the ones in the core.

We continue to use the oracle mode for this experiment.
Recall that SHAKE assigns the unreachable axioms to the max-
imum distance. When core axioms end up being unreachable,
oracle SHAKE cannot safely prune any axioms, since this could
introduce incompleteness. Therefore, in addition to the mean
relevance ratio (MRR), we also report the fallback rate (FR),
which is the percentage of queries where oracle SHAKE cannot
prune any axioms.

First, we discuss the choice of 6 with an experiment on
query relevance. # = 1.00 means no symbols are pruned based

on frequency. In Figure 13, we observe that there is a trade-off
between the relevance ratio and the fallback rate. For example,
in Komodop, 6 = 0.15 achieves the highest MRR, but also has
the highest FR. In vWasmp, since the context starts with high
MRR, lower 6 values only increase FR. In general, § = 1.00
(no frequency pruning) tends to balance the two metrics.

Orig. 0—=100 0—=030 0=0.15

Komod MRR 057 1.74 1.74 2.40
omodon FR - 0.39 6.08 13.14
. MRR 033 3.8 3.35 251
VeriBetrKV p FR - 1.45 5.74 28.49
. MRR 032 3.46 3.59 3.03
VeriBetrKV, FR - 1.42 5.45 15.91
R MRR  0.06 021 032 0.88
DICEF FR - 4.44 5.90 7.10
W MRR  3.76 15.74 16.0 16.22
vwasme FR - 5.99 6.11 12.51

Fig. 13. Oracle SHAKE Context Relevance with Frequency Configuration.
Higher MRR means more relevant context. Higher FR means more queries
for which oracle SHAKE does not prune any axioms.

However, for DICE*., the results indicate that 6 = 0.15 is
a promising setting, since the MRR is increased by 4x with
respect to § = 1.00, while sacrificing three percentage points
of FR. We test the stability of using § = 0.15 on DICE}, with
73 and find that it improves stability by 6 x compared to oracle
SHAKE with § = 1.00.

F. Solving Performance Impact

Proof instability is a pernicious problem in program ver-
ification, so it might be reasonable to expect developers to
be willing to trade worse solving performance for greater
stability. Fortunately, our results show that such a trade is
largely unnecessary: SHAKE adds relatively little overhead and
even improves performance in some cases.

To evaluate solving performance, for each solver (Z3 and
cveS), we compare the following three scenarios.

o Baseline. The original queries are directly given to the

solver.

o Default SHAKE. The queries are preprocessed by SHAKE

in default mode and then given to the solver.

e Oracle SHAKE. The queries are preprocessed by SHAKE

in oracle mode and then given to the solver.

66



Since SHAKE is a preprocessor, its runtime includes the
time spent on computing the distances and the time spent in
I0. When reporting the runtime, we exclude the latter, since
we expect SHAKE to eventually be incorporated directly into
solvers, where parsing is already being done. Therefore, the
runtime for the SHAKE modes is the time spent on computing
the distances plus the time spent by the solver on the pruned
queries. Each query is given a 60 second timeout, so if SHAKE
distance computation and solver together takes more than that,
the query is not considered solved.

First we present the number of queries solved in each
scenario in Figure 14. Generally SHAKE adds a minor overhead
to Z3, but sometimes solves a few more in oracle mode.
However, if we consider cvcS, SHAKE usually improves the
number of queries solved, even in default mode. Notably,
in DICE%., cve5 solves 259 queries in the baseline; even
with default SHAKE, it solves 190 more (+79%); with oracle
SHAKE, it solves 424 more (+163%).

Solver Baseline Default Oracle

Komodo 73 1,983  -0.10% +0.30%
b cves 342 +1.75%  +21.64%

. 73 5103 -0.78% 20.61%
VeriBeKVp (s 2571 +9.14%  +20.77%
. 73 5167 -041% -0.04%
VeriBetrKVy (05 3158 +8.90%  +13.01%
DICE® 73 1,493 -0.07% +0.33%
F ceves 259  +7336% +163.71%
Wasm 73 1,733 -0.29% 10.35%
v F cves 1,630 -0.12% 20.12%
Overall 73 15479  -0.45% 0.18%
cves 7960  +8.92%  +18.10%

Fig. 14. Queries Solved with SHAKE as a Preprocessor.

To present the runtime performance, we use survival plots;
Brain et al. [38] provide a detailed explanation, but in short, a
survival plot shows the cumulative number of queries solved
within a total time budget. Therefore, a curve that is higher
and to the left indicates better performance.

In each plot, we show six curves, based on the three scenarios
for each of the two solvers. Generally, SHAKE adds a minor
overhead to Z3, but often improves the solving speed on cvc5.
For example, in Figure 16, we show the survival plot for
VeriBetrKV 5. SHAKE’s impact on Z3 is almost negligible,
whether in default or oracle mode. However, for cvcS, SHAKE
does improve on the solving speed, as well as the number of
queries solved, not only in oracle mode, but also in default
mode. In Figure 17, VeriBetrKV shows a similar trend as in
VeriBetrKV p.

In Figure 18, we show the results for DICE}.. We observe
that default SHAKE adds a minor overhead to Z3, but oracle
SHAKE has little impact. On cvc5, as we discussed earlier,
SHAKE significantly improves the number of queries solved
and improves the runtime as well.

2000 4 —— Baseline Z3
=+++  Default Shake Z3 2
== Oracle Shake Z3 -
—— Baseline CVC5 U3
~ 15004 ++++ Default Shake CVC5 7+
§ — = Oracle Shake CVC5 A
o 4
N
n
& 1000 A
=]
<
S
2]
=
—
500 A
0
107!
Cumulative Time Log Scale (s)
Fig. 15. SHAKE Performance Survival Plot for Komodop.
50004 — Baseline Z3
===+ Default Shake Z3 Y74
== Oracle Shake Z3 /
—— Baseline CVC5 y)
o) 4000 ==++ Default Shake CVC5 /
T>; == Oracle Shake CVC5 /
o
»2 3000 A
w0
O
[
E
iz 2000 1
[}
1000 A
O T T T T T
1071 100 10! 102 103 104
Cumulative Time Log Scale (s)
Fig. 16. SHAKE Performance Survival Plot for VeriBetrKV p.
—— Baseline Z3
5000 =+«+  Default Shake Z3
== Oracle Shake Z3
—— Baseline CVC5
= 4000 7 .... Default Shake CVC5
T; == Oracle Shake CVC5
o
“2 3000 A
n
]
(]
E
% 2000 A
=
—_
1000 1

10! 10? 103 10

Cumulative Time Log Scale (s)

0 T
107! 10°

Fig. 17. SHAKE Performance Survival Plot for VeriBetrKVjy,.

67



= Baseline Z3
1400 4 =+*+ Default Shake Z3
== Oracle Shake Z3
1200 4 — Baseline CVC5
= =+*+ Default Shake CVC5
'_g 10004 =~ Oracle Shake CVC5
wn
3 800 1
=
£ 6001
400 1
2004
0 . . - ;
1071 100 10* 102 103 10*
Cumulative Time Log Scale (s)
Fig. 18. SHAKE Performance Survival Plot for DICE7Z.
1750 17 — Baseline Z3
==+« Default Shake Z3
1500 4 == Oracle Shake Z3
= Baseline CVC5
- =+« Default Shake CVC5
E 1250 1 == Oracle Shake CVC5
o
“2 1000 1
3
=
s 750 1
7
~ 500 A
250
O T T T
1071 10° 10 10

Cumulative Time Log Scale (s)

Fig. 19. SHAKE Performance Survival Plot for vWasmr.

VI. RELATED WORK

The problem of proof instability in the context of program
verification has been a long standing issue. For example,
Hawblitzel et al. bemoan the instability of certain SMT
queries [19], and the Komodo authors describe proof instability
as “the most frustrating recurring problem” [18].

The Mariposa project [15] is the first effort to quantify in a
statistically rigorous way the instability of SMT queries with
respect to a solver. The authors measure instability in six large-
scale verification projects across eight SMT solver versions.
However, their focus is on quantifying instability, rather than
understanding or mitigating it.

Our SHAKE technique resembles an algorithm first imple-
mented in the Sumo INference Engine [39]. The Sine algorithm
selects relevant axioms in automated theorem proving (ATP)
problems [24]. As in SHAKE, Sine uses overlapping symbols
to iteratively determine relevance. A similar strategy was later
employed by the lightweight relevance filtering algorithm [40].
However, these algorithms target ATP problems, e.g., those
from TPTP [41], which usually covers domains outside those in
the SMT queries produced by program verification. Moreover,

68

a major difference between SHAKE and these algorithms is
the strategy SHAKE employs to handle quantified expressions.
In SHAKE, we make use of quantifier patterns and perform
lazy quantifier expansion, which is not present in the earlier
algorithms.

VII. LIMITATIONS

This work has several limitations. First, we have only studied
verification projects written in Dafny and F*, which do not
necessarily represent the entire spectrum of automated pro-
gram verification. For example, we have excluded Mariposa’s
Komodog, since it is restricted to the decidable fragments
of SMT and does not fit our description of VCG in §III-D.
Second, unsatisfiable cores have guided much of our analysis
and experiments, but the solver-produced core is not a perfect
oracle of relevant assertions. For example, the solver makes
no guarantee about the minimality (necessity) of the core
assertions. Third, our proposed technique, SHAKE, needs to
assume an oracle distance limit and/or a frequency threshold to
be effective. While the assumption of oracle configurations can
be met when dealing with unstable queries, ideally we would
like to remove this dependency, possibly by integrating SHAKE
into the SMT solver in future work. Lastly, SHAKE works at
the SMT level, and thus may have less precision compared
to VCG-level pruning. Nevertheless, SHAKE demonstrates the
general applicability of context pruning to improve stability,
and we leave language-specific adaptations to future work.

VIII. CONCLUSION

In this work, we empirically study the problem of proof
instability in SMT-based program verification. We find that
irrelevant context is a major source of instability. We then pro-
pose SHAKE, a novel SMT-level context pruning algorithm as a
mitigation technique. We demonstrate that SHAKE can improve
the stability of automated program verification using queries
from real-world projects. Furthermore, we show that SHAKE
can potentially improve standard SMT-solving performance on
these queries as well. We hope our work offers useful insights
into the phenomenon of instability and the connection between
automated program verification and theorem proving.

IX. ACKNOWLEDGEMENT

Chris Hawblitzel and Doug Woos worked on a prototype
algorithm for SMT-level tree-shaking in 2016. This work is
a redesign and extension of that effort. We thank Haniel
Barbosa and Livia Sun for their advice on cvc5 configuration;
Jialin Li for her suggestion of storing distance limit as a
procedure attribute; and the anonymous reviewers for their
helpful feedback on the paper.

This work was supported in part by the National Science
Foundation (NSF) under grant 2224279, funding from AFRL
and DARPA under Agreement FA8750-24-9-1000, and the
Future Enterprise Security initiative at Carnegie Mellon CyLab
(FutureEnterprise @CyLab).



[1]

[2]

[3]
[4]

[5

=

[6]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning, E. M. Clarke and A. Voronkov, Eds., 2010.

N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoue, and S. Zanella-Béguelin, “Dependent Types and Multi-
Monadic Effects in F*)” in Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL), 2016.

C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”
Communications of the ACM, vol. 12, no. 10, 1969.

E. W. Dijkstra, “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs,” Commun. ACM, aug 1975.

C. Barrett, A. Stump, C. Tinelli et al., “The SMT-lib Standard: Version
2.0,” in Proceedings of the Workshop on Satisfiability Modulo Theories,
2010.

L. De Moura and N. Bjgrner, “Z3: An Efficient SMT Solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008.

H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Notzli et al., “cvc5: A
Versatile and Industrial-Strength SMT Solver,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2022.

J. Li, A. Lattuada, Y. Zhou, J. Cameron, J. Howell, B. Parno, and
C. Hawblitzel, “Linear Types for Large-Scale Systems Verification,” in
Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), December 2022.

M. Polubelova, K. Bhargavan, J. Protzenko, B. Beurdouche, A. Fromherz,
N. Kulatova, and S. Zanella-Béguelin, “HACLxN: Verified generic SIMD
crypto (for all your favorite platforms),” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS), October
2020.

J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A verified modern cryptographic library,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1789-1806.

J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Fournet,
N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C. Wintersteiger,
and S. Zanella-Beguelin, “EverCrypt: A Fast, Verified, Cross-Platform
Cryptographic Provider,” in Proceedings of the IEEE Symposium on
Security and Privacy, May 2020.

Y. Zhou, S. Gibson, S. Cai, M. Winchell, and B. Parno, “Galdpagos:
Developing verified low-level cryptography on heterogeneous hardware,”
in Proceedings of the ACM Conference on Computer and Communications
Security (CCS), November 2023.

T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Chajed,
N. Kobeissi, and J. Protzenko, “EverParse: Verified secure Zero-Copy
parsers for authenticated message formats,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019.

J. Bosamiya, W. S. Lim, and B. Parno, “Provably-Safe Multilingual
Software Sandboxing using WebAssembly,” in Proceedings of the
USENIX Security Symposium, August 2022.

Y. Zhou, J. Bosamiya, Y. Takashima, J. Li, M. Heule, and B. Parno,
“Mariposa: Measuring SMT instability in automated program verification,”
in Proceedings of the Formal Methods in Computer-Aided Design
(FMCAD), October 2023.

A. Tomb and J.-B. Tristan, “Avoiding verification brittleness in Dafny,”
https://dafny.org/blog/2023/12/01/avoiding-verification-brittleness/, 2023.
M. Dodds, “Formally Verifying Industry Cryptography,” IEEE Security
and Privacy Magazine, vol. 20, no. 3, 2022.

A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Us-
ing Verification to Disentangle Secure-Enclave Hardware from Software,”
in Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2017.

C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, “Ironclad Apps: End-to-End Security via Automated Full-
System Verification,” in Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), October 2014.

K. R. M. Leino and C. Pit-Claudel, “Trigger Selection Strategies
to Stabilize Program Verifiers,” in Proceedings of the International

69

[21]

(22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
[33]
(34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

Conference on Computer Aided Verification (CAV), S. Chaudhuri and
A. Farzan, Eds., 2016.

J. W. Cutler, E. Torlak, and M. Hicks, “Improving the stability of type
soundness proofs in Dafny,” in Proceedings of the First Workshop on
Dafny, 2024.

S. Ho and C. Pit-Claudel, “Incremental proof development in Dafny
with module-based induction,” in Proceedings of the First Workshop on
Dafny, 2024.

S. McLaughlin, G.-A. Jaloyan, T. Xiang, and F. Rabe, “Enhancing proof
stability,” in Proceedings of the First Workshop on Dafny, 2024.

M. Fitting, First-order Logic and Automated Theorem Proving. Springer
Science & Business Media, 2012.

C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill, “IronFleet: Proving Practical Distributed
Systems Correct,” in Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2015.

A. Arasu, T. Ramananandro, A. Rastogi, N. Swamy, A. Fromherz,
K. Hietala, B. Parno, and R. Ramamurthy, “FastVer2: A provably correct
monitor for concurrent, key-value stores,” in Proceedings of the ACM
Conference on Certified Programs and Proofs (CPP), January 2023.

T. Hance, A. Lattuada, C. Hawblitzel, J. Howell, R. Johnson, and B. Parno,
“Storage Systems are Distributed Systems (So Verify Them That Way!),”
in Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2020.

T. Hance, Y. Zhou, A. Lattuada, R. Achermann, A. Conway, R. Stutsman,
G. Zellweger, C. Hawblitzel, J. Howell, and B. Parno, “Sharding the
State Machine: Automated Modular Reasoning for Complex Concurrent
Systems,” in Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), July 2023.

J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl, S. Markle,
K. Sauri, D. Schleit, G. Slatton, S. Tasiran et al., “Using Lightweight
Formal Methods to Validate a Key-Value Storage Node in Amazon S3,”
in Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2021.

B. Cook, “Formal reasoning about the security of amazon web services,”
in Computer Aided Verification, H. Chockler and G. Weissenbacher, Eds.
Cham: Springer International Publishing, 2018, pp. 38—47.

N. Swamy, T. Ramananandro, A. Rastogi, I. Spiridonova, H. Ni,
D. Malloy, J. Vazquez, M. Tang, O. Cardona, and A. Gupta, “Hardening
Attack Surfaces with Formally Proven Binary Format Parsers,” in
Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI), June 2022. [Online]. Available:
https://www.fstar-lang.org/papers/EverParse3D.pdf

“Mariposa Public Repository,” https://github.com/secure-foundations/
mariposa, accessed: May 2023.

C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation,
Stanford University, Stanford, CA, USA, 1980, aAI8011683.

M. Moskal, “Programming with triggers,” in Proceedings of the Workshop
on Satisfiability Modulo Theories, 2009.

J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the first instructional conference on machine
learning, vol. 242, no. 1. Citeseer, 2003, pp. 29-48.

R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Artificial intelligence, vol. 27, no. 1, pp. 97-109, 1985.

A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou,
J. Howell, B. Parno, and C. Hawblitzel, “Verus: Verifying rust programs
using linear ghost types,” in Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), December 2023.

M. Brain, J. H. Davenport, and A. Griggio, “Benchmarking solvers,
SAT-style” in SC2@ ISSAC, 2017.

K. Hoder and A. Voronkov, “Sine qua non for large theory reasoning,”
in International Conference on Automated Deduction. Springer, 2011,
pp. 299-314.

J. Meng and L. C. Paulson, “Lightweight Relevance Filtering for Machine-
Generated Resolution Problems,” Journal of Applied Logic, vol. 7, no. 1,
pp. 41-57, 2009.

G. Sutcliffe and C. Suttner, “The TPTP Problem Library,” Journal of
Automated Reasoning, vol. 21, pp. 177-203, 1998.


https://www.fstar-lang.org/papers/EverParse3D.pdf
https://github.com/secure-foundations/mariposa
https://github.com/secure-foundations/mariposa

	I Introduction
	II Background
	III Query Context
	III-A Export the Unsatisfiable Core
	III-B Most of the Context is Irrelevant
	III-C Irrelevant Context Harms Stability
	III-D Context Pruning is Axiom Selection

	IV Shake
	IV-A The Naive Shake Algorithm
	IV-B Shake with Quantifiers
	IV-C Shake with Frequent Symbols
	IV-D Shake with Distance Limit

	V Evaluation
	V-A Experimental Setup
	V-B Distribution of Shake Distances
	V-C Context Relevance Ratio
	V-D Stability Improvement
	V-E Frequency Configuration
	V-F Solving Performance Impact

	VI Related Work
	VII Limitations
	VIII Conclusion
	IX Acknowledgement
	References

