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Abstract

In-Context Learning (ICL) empowers Large Lan-

guage Models (LLMs) to tackle diverse tasks

by incorporating multiple input-output examples,

known as demonstrations, into the input of LLMs.

More recently, advancements in the expanded con-

text windows of LLMs have led to many-shot ICL,

which uses hundreds of demonstrations and out-

performs few-shot ICL, which relies on fewer

examples. However, this approach is often hin-

dered by the high cost of obtaining large amounts

of labeled data. To address this challenge, we

propose Many-Shot Adaptive Pseudo-LabEling,

namely MAPLE, a novel influence-based many-

shot ICL framework that utilizes pseudo-labeled

samples to compensate for the lack of label infor-

mation. We first identify a subset of impactful un-

labeled samples and perform pseudo-labeling on

them by querying LLMs. These pseudo-labeled

samples are then adaptively selected and tailored

to each test query as input to improve the per-

formance of many-shot ICL, without significant

labeling costs. Extensive experiments on real-

world datasets demonstrate the effectiveness of

our framework, showcasing its ability to enhance

LLM adaptability and performance with limited

labeled data. Our code is provided at https:

//github.com/Chen-1031/MAPLE_ICL.

1. Introduction

In-Context Learning (ICL) has emerged as a fundamental ca-

pability of large language models (LLMs) (Zhao et al., 2023;

Chang et al., 2024), enabling them to perform diverse tasks

with a set of input-output examples, i.e., demonstrations, as

input (Brown et al., 2020; Wang et al., 2023; 2024b). In

contrast to fine-tuning strategies, ICL does not update model

parameters, making it an efficient and flexible approach for
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Figure 1: Accuracies on Date and GPQA datasets with different
amount of demonstrations. The LLM is Gemini 1.5 Flash.

enhancing the performance of LLMs (Rubin et al., 2022; Lu

et al., 2021). More recently, advancements in expanding the

context windows of LLMs to accommodate a large number

of input tokens have enabled many-shot ICL (Agarwal et al.,

2024), where hundreds of demonstrations are incorporated

into the input. Many-shot ICL has been shown to signif-

icantly improve performance, particularly for complex or

nuanced tasks, by providing richer task-specific informa-

tion (Baek et al., 2024).

However, many-shot ICL faces a critical limitation: the high

cost associated with acquiring a large volume of labeled

data as demonstrations (Li et al., 2024). This challenge

is particularly pronounced in resource-constrained settings

where manual labeling is expensive or infeasible (e.g., com-

plex reasoning tasks), thereby limiting the applicability of

many-shot ICL. An alternative strategy is to use unlabeled

samples as demonstrations. However, as shown in Fig. 1, the

performance improvement becomes marginal and unstable

in comparison to using labeled demonstrations.

In order to effectively leverage unlabeled samples, a practi-

cal solution is to perform pseudo-labeling on them, allowing

these samples to serve as demonstrations for many-shot ICL

without incurring significant human labeling costs. How-

ever, this approach presents two key challenges: (1) Se-

lection of unlabeled samples for pseudo-labeling: Given

a potentially large pool of unlabeled samples, identifying

the most informative samples for pseudo-labeling is a crit-

ical challenge. This is particularly relevant in tasks where

unlabeled samples may contain limited information (e.g.,

question answering). Selecting the most beneficial unla-
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beled samples is essential to ensure that pseudo-labeling

provides meaningful additional information to enhance task

performance. (2) Impact of unrelated demonstrations: With

pseudo-labeled samples, the challenge remains in selecting

the most suitable ones as demonstrations, tailored to each

test query. Since not all pseudo-labeled and labeled samples

are beneficial for inference, using unrelated demonstrations

for a specific input query may involve unnecessary noise.

Therefore, it is essential to adaptively select demonstrations

to minimize the impact of irrelevant pseudo-labeled and

labeled samples, ensuring that only the most informative

and reliable ones are used as demonstrations.

In this work, we propose Many-Shot Adaptive Pseudo-

LabEling, namely MAPLE, a novel influence-based frame-

work to effectively utilize unlabeled samples for many-shot

ICL. We consider the scenario where a smaller set of labeled

samples and a potentially large set of unlabeled samples are

available, as it is affordable to manually label several sam-

ples in practice. Our approach tackles the two primary chal-

lenges with the following designs: (1) Influence-Based Sam-

ple Selection for Pseudo-Labeling: We leverage the concept

of node influence on graphs to identify the most impactful

unlabeled samples relative to labeled samples. By con-

structing a graph encompassing both labeled and unlabeled

samples, we exploit their relationships to inform selection.

This ensures the pseudo-labeled samples provide the neces-

sary information for inference. (2) Adaptive Demonstration

Selection: For each input query, we adaptively select labeled

and pseudo-labeled demonstrations tailored specifically to

the query. By identifying and incorporating samples with

the most significant influence on the test query, our approach

avoids involving unrelated demonstrations and ensures the

effective utilization of demonstrations. These designs col-

lectively maximize the effectiveness of leveraging unlabeled

samples, while minimizing reliance on costly labeled data

and extending the applicability of LLMs to various real-

world tasks with only limited labeled samples. We conduct

extensive experiments on various real-world datasets, and

the results validate the effectiveness of our framework. Our

main contributions are summarized as follows:

• Novelty. We are the first to explore the capability of many-

shot ICL under the pseudo-labeled setting. This novel

perspective highlights the potential of leveraging abun-

dant unlabeled samples for pseudo-labeling to alleviate

the data bottleneck, broadening the applicability of ICL

beyond reliance on labeled data.

• Algorithm. We propose an influence-based mechanism to

select and pseudo-label only the most impactful unlabeled

samples and adaptively select demonstrations for each

test query, ensuring strong performance without extensive

pseudo-labeling.

• Practicality. Our approach significantly reduces the need

for labeled data in many-shot ICL, thereby improving the

feasibility of LLMs in real-world scenarios where labels

are scarce. Through extensive experiments on diverse

datasets, we demonstrate the superior performance of our

framework over other baselines.

2. Related Works

In-Context Learning. In-context learning (ICL) (Brown

et al., 2020) equips large language models (LLMs) with the

ability to leverage a handful of input-output demonstrations

for reasoning. ICL has proven remarkably successful in han-

dling complex tasks, including summarization (Jain et al.,

2023; Baek et al., 2024) and reasoning (Wang et al., 2024a;

Lee et al., 2024; Chen et al., 2024b).

To effectively harness ICL, researchers have devised various

adaptive strategies for selecting the most suitable demon-

strations (Su et al., 2022; Chen et al., 2024a). Broadly, these

methods can be grouped into learning-free and learning-

based categories. The former uses heuristic strategies, in-

cluding semantic similarity (Liu et al., 2021) or entropy (Lu

et al., 2021), without actively querying the model (Zhao

et al., 2021; Agrawal et al., 2022). Learning-based meth-

ods, in contrast, incorporate feedback from the LLM into

a training loop. As a classic example, EPR (Rubin et al.,

2022) applies contrastive learning and learns a score based

on the probabilities of language model outputs. Moreover,

CEIL (Ye et al., 2023) selects multiple demonstrations while

considering their correlations, and IDS (Qin et al., 2023)

iteratively select demonstrations based on zero-shot chain-

of-thought reasoning (Wei et al., 2022).

Many-Shot ICL. With advancements in expanding the con-

text windows of LLMs (Li et al., 2024; Bertsch et al., 2024;

Team et al., 2024), many-shot ICL has emerged as a promis-

ing approach, leveraging larger sets of demonstrations to

significantly boost performance at the cost of longer input

lengths (Li et al., 2023; Jiang et al., 2024; Huang et al.,

2024; Chen et al., 2025). As a pioneering effort, Agarwal

et al. (2024) explored the capability of scaling many-shot

ICL to thousands of demonstrations, showcasing its superior

performance across a wide variety of tasks. While this work

reduces human labeling costs by utilizing model-generated

(i.e., pseudo-labeling) answers as demonstrations, it does

not address the selection of unlabeled samples (for pseudo-

labeling) or the adaptive selection of demonstrations for

individual test queries. Baek et al. (2024) further highlight

the importance of using extensive demonstrations of LLMs

in many-shot settings, in contrast to the careful selection

of demonstrations. However, the limited effectiveness of

existing selection methods stems from their specific design

for few-shot ICL (Zhang et al., 2025). This underscores the

need for novel strategies tailored to the unique challenges

of many-shot ICL.
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3. Methodology

3.1. Preliminaries

We begin with formulating the setup of ICL in this

work. Consider a dataset D = DL ∪ DU , where DL =
{(xi, yi)}

L
i=1

consists of a small set of labeled samples, and

DU = {xj}
U
j=1

contains a large set of unlabeled samples.

Here x represents the textual input (i.e., query), and y is the

corresponding label. Generally, L j U holds true, due to

the substantial cost associated with human annotations.

The goal of (few-shot) ICL is to select a set of demonstra-

tions S ¦ DL, acting as the additional input for a pre-trained

language model M. The model M then utilizes S along

with a test query xtest to make predictions:

ŷ = M (S(xtest), xtest) , (1)

where S(xtest) denotes the set of selected demonstrations,

conditioned on the test query xtest.

3.2. Overview

As the labeled set DL may not be sufficient for many-shot

ICL, we propose to identify a subset of unlabeled samples

from DU and perform pseudo-labeling on these samples.

The overall process is described in Fig. 2. We use D∗
U ¢ DU

to denote the set of unlabeled samples selected for pseudo-

labeling. The pseudo-labeling process is executed by a

language model Mp, which assigns a pseudo-label ŷj to

each selected sample xj :

ŷj = Mp(xj), ∀xj ∈ D∗
U . (2)

Notably, |D∗
U | = P , where the size P is a hyper-parameter

and serves as the pseudo-labeling budget. The pseudo-

labeled samples, along with the labeled samples in DL,

are then aggregated into DF , referred to as the candidate

demonstration set:

DF = {(xj , ŷj) | xj ∈ D∗
U} ∪ DL. (3)

With demonstrations in DF , we adaptively select a set of

demonstrations S̃(xtest) ¦ DF for each input query xtest ∈
Dtest, which serves as the many-shot demonstrations for

inference. The model M then uses these demonstrations to

make predictions for xtest:

ŷ = M(S̃(xtest), xtest). (4)

3.3. Relationship Construction

In our framework, we aim to maximally utilize the in-

formation from the labeled set DL to decide which un-

labeled samples to select for pseudo-labeling. Therefore,

we first construct a labeled-unlabeled graph G = (V, E)
that captures the relationships among labeled and unlabeled

samples. Here V is the set of nodes, and E is the set of

edges. We utilize the entire demonstration pool (i.e., dataset)

D = DL∪DU to build G, and each sample x ∈ D is treated

as a node v ∈ V . For each node vi ∈ V , we identify the k
closest nodes in terms of the relevance score r(vi, vj), as

defined in Contriver (Izacard et al., 2021), and connect them

as its neighbors. The relevance score is calculated from the

dot product of the encoded representations of xi and xj :

r(vi, vj) = ïfθ(xi), fθ(xj)ð, (5)

where xi and xj are the corresponding queries of vi and vj ,

respectively. fθ(·) is the pre-trained encoder. Notably, as

the unlabeled samples in DU do not contain labels (i.e., y),

we only use the queries (i.e., x) to calculate the relevance

score. Based on the obtained relevance scores r(vi, vj),
the adjacency matrix A of the labeled-unlabeled graph is

obtained by connecting the k nodes with the largest rele-

vance scores to each node vi. Formally, the entries of A are

calculated as follows:

Aij =

{
r(vi, vj), if r(vi, vj) ∈ Top-k({r(vi, vk)}

|V|
k=1

),

0, otherwise,

(6)

where Top-k(·) selects the k largest values in {r(vi, vj)}
|V|
j=1

according to the relevance scores. This ensures that only the

most relevant connections are retained in the constructed

labeled-unlabeled graph G. In concrete, G enables us to

capture the relationships among both labeled and unlabeled

samples, which is critical for selecting impactful unlabeled

samples for pseudo-labeling.

3.4. Selecting Unlabeled Samples for Pseudo-Labeling

Notably, due to the prohibitive cost of labeling, the num-

ber of labeled samples is significantly smaller than that of

unlabeled samples, i.e., |DL| j |DU |. To complement the

limited labeled information in DL, we propose to leverage

the concept of node influence, which describes the extent

to which the representation of a node can be impacted by

another node (Xu et al., 2018; Huang & Zitnik, 2020; Wang

& Leskovec, 2020). We first provide the formal definition

as follows:

Definition 3.1. [Node Influence] The node influence from

node vi to node vj is defined as I(vi, vj) = ∥∂vi/∂vj∥,

where vi and vj are the node representations of vi and vj
learned by the widely adopted neighborhood aggregation

mechanism, respectively. ∂vi/∂vj is a Jacobian matrix,

and the norm can be any specific subordinate norm.

According to Definition 3.1, larger node influence indicates

that the representation of a node can more easily affect an-

other node, i.e., having a higher influence. We propose

to consider unlabeled samples that have a higher influence

on the entire set of labeled samples because these high-

3
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Figure 2: Overview of the MAPLE framework. Given a dataset with a small fraction of labeled samples, we select unlabeled samples for
pseudo-labeling using the proposed influence score. During inference, we adopt a similar approach to select relevant samples from the
candidate pool for each query, filtering out unrelated ones. The remaining samples are then used for many-shot ICL.

influence unlabeled samples are inherently more representa-

tive of the underlying data distribution. By pseudo-labeling

these impactful samples, we enrich the demonstration pool

with samples that reflect critical patterns and relationships

within the specific dataset. We denote the node set as

V = VL ∪ VU , where VL and VU correspond to samples in

DL and DU , respectively.

To effectively estimate the node influence of an unlabeled

sample on the entire set of labeled samples, we propose the

following theorem that provides a lower bound for the node

influence on any set of nodes V in G:

Theorem 3.2. Consider the node influence from node u
to a node set V . Denote the geometric mean of the node

influence to all nodes in V as IV(u) =
|V|

√∏|V|
i=1

I(u, vi),
where vi is the i-th node in V . Assume the node degrees are

randomly distributed with the mean value as d. Then,

E(log IV(u)) g log P̃S(u,V)− log d · LS(u,V), (7)

where LS(u,V) is the average shortest path distance be-

tween u and nodes in V . P̃S(u,V) is the geometric mean of

the numbers of shortest paths between u and nodes in V .

We provide the proof in Appendix A. From Theorem 3.2,

we can conclude that in order to select nodes that are most

influential to a set of nodes, we need to consider both the

shortest path distance and the number of shortest paths.

Specifically, for each unlabeled sample x ∈ DU , which

corresponds to v ∈ VU , we define its influence score on the

labeled set DL as

s(VL, v) = log P̃S(v,VL)− log d · LS(v,VL), (8)

where VU and VL denote the node sets of unlabeled samples

and labeled samples, respectively.

We rank all unlabeled nodes and select the top P nodes with

the highest values of s(VL, v) for pseudo-labeling, denoted

as V∗
U :

V∗
U = argmax

v∈VU ,|V∗
U
|=P

∑

v∈VU

s(VL, v). (9)

The pseudo-labels for selected samples in V∗
U are generated

using a language model Mp:

ŷj = Mp(xj), ∀xj ∈ D∗
U , (10)

where D∗
U denotes the samples that corresponding to nodes

in V∗
U . The pseudo-labeled samples, along with the assigned

pseudo-labels, are then aggregated with the labeled set DL

to constitute the final candidate demonstration pool DF :

DF = {(xj , ŷj) | vj ∈ V∗
U} ∪ DL. (11)

This process ensures that the most influential unlabeled sam-

ples are identified and pseudo-labeled, resulting in a high-

quality demonstration pool from which the demonstrations

for all input queries can be selected.

3.5. Adaptive Demonstration Selection

Now DF contains only labeled and pseudo-labeled samples,

which exhibit high influence and can serve as demonstra-

tions for many-shot ICL. However, it still remains unsolved

which samples will ultimately contribute meaningfully to

the prediction of a specific test query xtest by the LLM. To

adaptively select the final demonstration set from DF , we

again utilize the concept of node influence. We first estab-

lish a pseudo-labeled graph G′(xtest) = (V ′, E ′) tailored
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for each test query xtest. G
′(xtest) consists of all samples in

DF , along with xtest, thereby |V ′| = |DF | + 1. The edges

E ′ in G′ are constructed in the same pattern as the labeled-

unlabeled graph, leveraging the relevance scores between

any pair of nodes. Notably, as G′ involves labeled sam-

ples and pseudo-labeled samples, we calculate the relevance

scores based on both the queries (i.e., x) and labels (i.e., y):

r̃(vi, vj) =

{
ïfθ(xi, ŷi), fθ(xj , ŷj)ð, if xj ̸= xtest,

ïfθ(xi), fθ(xj)ð, otherwise,

(12)

With the calculated relevance scores, we construct the

pseudo-labeled graph G′(xtest). The adjacency matrix is

obtained as follows:

A
′
ij =

{
r̃(vi, vj), if r̃(vi, vj) ∈ Top-k

(
{r̃(vi, vj)}

|V′|
j=1

)
,

0, otherwise,
(13)

With the pseudo-labeled graph, we evaluate the influence

of the labeled and pseudo-labeled samples on the test query

xtest to select demonstrations that are highly relevant to

the query. We aim to select nodes in V ′ whose influence

on the test node exceeds the average influence of labeled

nodes. Formally, we estimate the influence of each node

v ∈ V ′ \ {vtest} on vtest, based on Theorem 3.2. Notably, the

calculation becomes a specific case in Theorem 3.2, where

the node set V only involves one node. The score is denoted

as s(v, vtest). In this manner, the demonstration set S(xtest)
is then constructed as follows:

S(xtest) = argmax
VS¦V′\{vtest}

∑

v∈VS

s(v, vtest),

where |VS | = α · |V ′|.

(14)

α ∈ R is a hyperparameter to control the percentage of

samples we would like to include in S(xtest). The final

demonstration set S(xtest) is then used as input to the pre-

trained language model M for predicting the output of xtest:

ŷtest = M(S(xtest), xtest). (15)

3.6. Computation Cost Analysis

Our proposed method, MAPLE, performs graph construc-

tion in both selecting relevant unlabeled samples and adap-

tive demonstration selection. In this section, we analyze

the computational cost associated with graph construction.

Given a graph G = (V, E), the graph construction requires

the computation of the relevance score r among any pair of

nodes, which will be O(|V|2). To compute shortest paths,

we use breadth-first search for each node, and the cost is

O(|V| + |E|) = O(|V|) as E = O(k|V|). Therefore, the

whole shortest path computation cost is O(|DL||V|). No-

tably, the above cost is only required once before inference,

and does not scale with the number of test-time queries.

With more queries involved during the test, the computa-

tional cost of the graph becomes negligible. As for adap-

tive demonstration selection, we further note that adaptive

demonstration selection is an optional component that offers

a trade-off between efficiency and performance, which will

be discussed in Section 4.5.

4. Experiments

4.1. Experimental Settings

Baselines. In our experiments, we consider baselines that

focus on how to select unlabeled demonstrations for pseudo-

labeling to further improve many-shot ICL performance,

given a fixed set of labeled instances. We compare our

approach against the following baseline methods: (1) Zero-

shot: This method provides only the task instruction to the

LLM, without any demonstrations. (2) Few-shot: This ap-

proach incorporates only the labeled demonstrations for the

LLM. (3) Random: This method randomly selects demon-

strations for pseudo-labeling. (4) RAG: This approach uses

Contriever (Izacard et al., 2021) to compute embeddings of

both the query and the unlabeled demonstrations, selecting

the most similar demonstrations for pseudo-labeling. (5)

RAG-Adapt: This approach adds an adaptive demonstra-

tion selection process based on RAG based on embeddings

of the query and the candidate demonstration pool DF .

Datasets. We evaluate the effectiveness of our approach

on eight datasets across four tasks. (1) Summarization:

This task assesses the ability of models to generate con-

cise and coherent summaries from articles. We use the

widely adopted XSum dataset (Narayan et al., 2018) for

evaluation, with the ROUGE-L score as our evaluation met-

ric. (2) Reasoning: This task tests the models’ capacity

for complex reasoning. We evaluate performance on three

challenging datasets (Date, Salient, and Tracking7) from

the Big Bench Hard (BBH) (Suzgun et al., 2023), follow-

ing the experimental setup of the Long-Context Frontiers

(LOFT) benchmark (Lee et al., 2024). (3) Classification: In

this task, we focus on Financial PhraseBank (FP) sentiment

analysis (Malo et al., 2014; Wei & Liu, 2025) and a sub-

set of challenging benchmark datasets (Li et al., 2024) that

are specifically designed for ICL tasks with diverse classes

and long inputs, including Banking77 and GoEmotion. (4)

Question Answering: We evaluate performance on the

Google-Proof QA (GPQA) dataset (Rein et al., 2023), a

multiple-choice QA benchmark. The questions are designed

to challenge graduate-level reasoning in subjects such as

biology and chemistry. The detailed descriptions of the used

datasets are provided in Appendix C.

Implementation. In our main experiment, we set k = 20
and α = 0.75, and we sample 1,000 demonstrations for
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Figure 3: Performance comparison of various sample selection strategies in a many-shot ICL setting using Gemini 1.5 Flash across
multiple datasets. ’Zero-shot’ refers to the query LLM being provided only with the task instruction. We randomly selected 20 labeled
samples to construct DL, and the results obtained using just DL are presented as ’Few-shot’. Based on DL, we compare MAPLE with
other pseudo-labeling baselines with different D∗

U .

labeling and 300 for testing. For datasets with fewer than

1,000 training samples or fewer than 300 test samples, we

use the entire dataset. We randomly select 20 demonstra-

tions to form DL. Unless specified otherwise, we eval-

uate the many-shot ICL performance of the Gemini 1.5

Flash (Team et al., 2024) model with 1M token context

length. We apply the Contriver (Izacard et al., 2021) as

fθ(·). We conduct experiments with pseudo-labeled sizes

ranging from 20 to 100. For most tasks, while increasing the

number of demonstrations further improves performance,

many-shot ICL reaches a sufficiently good performance with

around 100 to 27 demonstrations (Agarwal et al., 2024). The

prompts used to elicit responses from ICL are provided in

the Appendix B. Each experiment is run five times, and the

average performance is reported.

4.2. Main Result

As shown in Fig. 3, we evaluate our method, MAPLE, in

comparison to all baselines across eight datasets. From

the results, we observe the following: w Superior Perfor-

mance Across Datasets: Our method consistently outper-

forms all other baselines across all eight datasets, showing

significant improvements with various numbers of pseudo-

labeled demonstrations. This highlights the effectiveness of

our framework in selecting suitable unlabeled samples for

pseudo-labeling in many-shot ICL. x Exceptional Results

on Complex Tasks: MAPLE demonstrates particularly

strong performance on complex datasets such as Banking77,

Data, and GPQA. This suggests that in tasks requiring nu-

anced understanding, our framework’s ability to select ap-

propriate unlabeled samples provides a clear advantage over

baseline methods. y Limited Gains in Certain Datasets:

The inclusion of additional pseudo-labeled samples does

not always lead to performance improvements. For datasets

like Tracking7 and XSum, the limited benefits can be at-

tributed to low-quality pseudo-labeled samples that cannot

effectively assist in the inference process. z Effectiveness

of ICL Settings: Across all datasets, the few-shot setting

consistently outperforms the zero-shot setting, demonstrat-

ing the value of in-context learning. Furthermore, involving

more pseudo-labeled samples selected by our framework

leads to notable performance enhancements, underscoring

the effectiveness of leveraging pseudo-labeled data in many-

shot ICL. { Performance Degradation with More Pseudo-

labeled Demonstrations: For certain tasks, such as Track-

ing77 and Salient, we observe a performance drop as the

number of pseudo-labeled demonstration increases. This

can be attributed to the fact that as more demonstrations

are included, the influence of noisy labels becomes more

pronounced. Additionally, each query does not necessar-

ily require a large number of samples, and the inclusion of

irrelevant examples can degrade performance.
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Figure 4: Results of MAPLE compared to baselines on two datasets
with a larger number of demonstrations. We increase the size of
DL to 100 and compare performance for different sizes of D∗

U (50,
100, 150, and 200).

4.3. Impact of More Demonstrations

Given that long-context LLMs, such as Gemini 1.5 Flash,

can process over 100 million tokens, we extend our experi-

ments by increasing the number of labeled demonstrations

to 100, while varying the number of pseudo-labeled demon-

strations from 50 to 250. According to results presented in

Fig. 4, we first observe that incorporating a larger number

of demonstrations leads to improved performance, which

validates the effectiveness of many-shot ICL. Furthermore,

MAPLE consistently outperforms all baselines as the num-

ber of demonstrations increases, indicating the scalability of

MAPLE in scenarios with a large number of demonstrations.

4.4. Results of Different LLMs

In our main experiments, we use Gemini 1.5 Flash. In this

section, we adopt a stronger LLM, Gemini 1.5 Pro, to show-

case the performance of MAPLE under different LLMs.

The experimental results in Table 1 highlight several key

observations. First, the proposed MAPLE method consis-

tently outperforms the baseline across all tasks and LLM

variants, demonstrating its ability to effectively leverage

pseudo-labeled demonstrations. For instance, in the Bank-

ing77 task, MAPLE achieves an average accuracy improve-

ment of 1.7% with Gemini Pro and 1.5% with Gemini Flash

compared to the baseline. Second, MAPLE exhibits a no-

table advantage in scalability, showing steady improvements

in performance as the number of pseudo-labeled demonstra-

tions increases. This trend is particularly evident in the

Date and GPQA tasks, where MAPLE achieves its highest

accuracy at 100 demonstrations, outperforming the baseline

by a significant margin. Finally, the stronger Gemini Pro

model consistently amplifies the performance of MAPLE

across all tasks, indicating that the method’s benefits are

further enhanced when paired with more advanced LLMs.

These observations validate the robustness and adaptability

of MAPLE in varying contexts.
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Figure 5: The results of varying the fraction of pseudo-labeled
demonstrations. We fix the size of the candidate demonstration
pool DF as 120 and adjust the proportion of pseudo-labeled sam-
ples, while randomly selecting the labeled samples.

4.5. KV Cache Ablation

In MAPLE, we provide personalized demonstrations for

each query as the many-shot ICL prompt, which can be

time-consuming during inference. In this section, we exam-

ine a variant of MAPLE that omits adaptive demonstration

selection. In this setup, the labeled and pseudo-labeled

demonstrations are fixed across all queries, allowing us

to apply the KV Cache (Pope et al., 2023) to cache the

demonstrations in the LLM before inference for improved

efficiency. To illustrate the effect of KG Cache in our frame-

work, we provide a detailed analysis regarding the FLOPs

with KV Cache in Appendix D.

Furthermore, we investigate the trade-off between efficiency

and performance of our framework MAPLE when using KV

Cache. Particularly, we conduct experiments on datasets

XSum and Date. We additionally consider using various

numbers of pseudo-labeled demonstrations, and report the

performance and inference time. From the results presented

in Table 2, we observe that applying KV Cache can re-

duce inference time as expected. Moreover, the efficient

improvement is more significant with a larger number of

pseudo-labeled demonstrations. However, including more

demonstrations as input for each query introduces more

noise and irrelevant information, which negatively impacts

performance. Moreover, we also note that the efficiency

gains from KV Cache are not significant. This is potentially

due to the time required for the internal loading of the KV

cache in API-based models, such as Gemini 1.5 Flash.

4.6. Fraction of Pseudo-labeled Demonstrations

In this subsection, we conduct experiments to evaluate the

impact of noisy pseudo-labeled data on many-shot ICL per-

formance. In this manner, we further assess the quality

of demonstrations selected by MAPLE in comparison to

other baselines. In particular, we fix the total number of

7



MAPLE: Many-Shot Adaptive Pseudo-Labeling for In-Context Learning

Table 1: Results of many-shot ICL across three tasks (extreme classification, reasoning, and question answering) with different
LLMs (Gemini 1.5 Pro and Gemini 1.5 Flash). We report the performance in % under different numbers of |D∗

U |. MAPLE consistently
outperforms the baseline across all tasks and LLM variants, demonstrating its ability to effectively leverage pseudo-labeled demonstrations.

Task Model Method
# of Pseudo-labeled Demonstrations

Avg.
20 40 60 80 100

Banking77

Gemini Flash
Random 76.7 ± 3.9 76.0 ± 4.4 75.6 ± 3.1 75.4 ± 3.7 77.8 ± 3.2 76.3

RAG 77.0 ± 2.3 76.8 ± 2.3 76.4 ± 2.4 76.3 ± 3.4 78.3 ± 4.1 77.0
MAPLE 77.0 ± 2.8 78.3 ± 2.6 78.4 ± 2.6 78.1 ± 2.7 80.8 ± 3.4 78.5

Gemini Pro
Random 74.7 ± 2.3 76.7 ± 1.9 79.3 ± 2.2 78.5 ± 2.0 78.3 ± 2.1 77.5

RAG 76.3 ± 2.5 78.3 ± 2.0 78.7 ± 1.5 79.3 ± 2.8 78.8 ± 2.5 78.3
MAPLE 79.3 ± 2.2 79.7 ± 1.5 80.3 ± 2.3 81.3 ± 1.5 80.7 ± 1.9 80.3

Date

Gemini Flash
Random 52.1 ± 1.4 52.7 ± 1.5 53.3 ± 0.6 54.4 ± 1.6 56.4 ± 1.0 53.8

RAG 52.7 ± 1.0 52.2 ± 1.5 53.0 ± 0.9 54.4 ± 1.4 55.6 ± 1.8 53.6
MAPLE 54.3 ± 1.2 54.8 ± 1.3 55.7 ± 0.9 55.6 ± 1.8 58.4 ± 2.4 55.8

Gemini Pro
Random 64.4 ± 1.0 66.2 ± 1.2 66.8 ± 1.8 67.2 ± 1.1 68.0 ± 0.8 66.5

RAG 66.4 ± 1.6 66.8 ± 1.5 66.0 ± 1.2 67.2 ± 0.5 68.4 ± 1.4 67.0
MAPLE 67.6 ± 0.8 67.6 ± 1.7 67.2 ± 0.6 68.8 ± 1.0 68.8 ± 3.0 68.0

GPQA

Gemini Flash
Random 36.2 ± 0.6 35.1 ± 1.9 34.6 ± 3.1 34.5 ± 2.3 33.1 ± 2.0 34.7

RAG 35.7 ± 1.2 34.7 ± 1.3 34.8 ± 0.5 32.7 ± 1.4 33.8 ± 1.0 34.3
MAPLE 37.7 ± 1.7 37.0 ± 0.4 36.9 ± 1.3 36.7 ± 1.9 37.4 ± 1.6 37.1

Gemini Pro
Random 41.4 ± 0.8 41.4 ± 1.3 43.3 ± 2.0 42.4 ± 2.0 42.9 ± 1.1 42.3

RAG 43.9 ± 0.3 43.3 ± 2.5 41.9 ± 1.5 41.9 ± 1.6 43.3 ± 1.0 42.9
MAPLE 44.4 ± 2.3 44.4 ± 1.0 44.9 ± 2.0 43.8 ± 0.6 43.9 ± 1.6 44.3

Table 2: Comparison of MAPLE with its variant, which removes
the adaptive demonstration selection component. We report the
average performance and the inference time (s) per query on two
datasets XSum and Date.

Task KV # of Pseudo-labeled

XSum

20 60 100

✓ 0.200/1.89 0.191/3.57 0.198/4.08
- 0.199/1.93 0.189/3.74 0.195/4.50

Date

100 250 300

✓ 0.584/0.94 0.596/1.92 0.636/1.96
- 0.578/0.91 0.589/1.99 0.622/2.04

demonstrations at 120 and adjust the fraction of labeled

demonstrations versus pseudo-labeled demonstrations (rang-

ing from 20 to 100 labeled). The results are presented in

Fig. 5. We can obtain the following observations: (1) The

experimental results demonstrate that MAPLE consistently

outperforms baseline methods across all fractions of labeled

and pseudo-labeled demonstrations, highlighting its effec-

tiveness in selecting high-quality pseudo-labeled data. (2)

Increasing the fraction of labeled demonstrations generally

improves performance, as higher-quality labeled data pro-

vides stronger guidance. (3) When the number of labeled

demonstrations decreases, appropriately selected pseudo-

labeled data compensates for the loss, maintaining or even

improving performance. This is particularly evident in cases

where pseudo-labeled data provides additional information
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Figure 6: Impact of the order of the two sources of samples.
Green dots represent methods with the default order, where labeled
demonstrations appear first, and pseudo-labeled demonstrations
are positioned closer to the query. Red dots represent methods with
the order reversed, where pseudo-labeled demonstrations appear
first and labeled demonstrations are positioned at the back.

to offset the reduction in labeled examples, showcasing the

robustness and adaptability of MAPLE in leveraging both

labeled and pseudo-labeled demonstrations effectively.

4.7. Study of the Order of Demonstrations

In our main experiments, we put labeled demos in the front

of the input and pseudo-labeled demos in the back of the

input and closer to the query. We examine how the or-
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der of labeled and pseudo-labeled demonstrations impacts

many-shot ICL performance. The baseline setup places la-

beled demonstrations at the front and pseudo-labeled ones

closer to the query, while the alternative swaps their posi-

tions. Results in Fig. 6 reveal that placing labeled demon-

strations near the query generally improves performance,

highlighting the importance of proximity to high-quality

data. However, this improvement diminishes as the number

of pseudo-labeled demonstrations increases, indicating that

the influence of noisy pseudo-labeled data becomes more

dominant with higher proportions. These findings empha-

size the significance of demonstration order in enhancing

ICL outcomes.

5. Conclusion

In this work, we focus on enhancing many-shot ICL perfor-

mance in resource-constrained tasks. we propose a novel

adaptive pseudo-labeling framework for many-shot ICL,

which selects the most impactful unlabeled samples for

pseudo-labeling. Additionally, we introduce an adaptive

method to select both pseudo-labeled and labeled samples

as demonstrations for LLM input. Extensive experiments

across various datasets validate the effectiveness of our

framework. In future work, we aim to further explore the

interaction between labeled and pseudo-labeled samples and

its impact on ICL performance. We believe this will help

identify the most useful samples for pseudo-labeling.
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A. Theorem 3.2 and Proof

Prior to proving Theorem 3.2, we present a lemma that establishes the lower bound of node influence between two nodes. In

the subsequent proof, we adopt the approach outlined in (Huang & Zitnik, 2020) and (Xu et al., 2018), utilizing GCNs (Kipf

& Welling, 2017) as the exemplar GNN for simplicity. It is worth noting that our proof can be readily extended to different

types of models (such as GAT (Veličković et al., 2018) and GraphSAGE (Hamilton et al., 2017)) by assigning different

values to edge weights. Specifically, the propagation process in the l-th layer can be represented as H(l+1) = σ(ÂH
(l)
W

(l),

where H
(l) and W

(l) denote the node representation and weight parameter matrices, respectively. Â = D
−1

A represents

the adjacency matrix after row normalization, ensuring that each row of Â sums up to 1. Following the convention of

Huang & Zitnik (2020), Wang & Leskovec (2020), and Xu et al. (2018), we set σ as the identity function and W as the

identity matrix. Additionally, we assume that the propagation process is performed over a sufficient number of iterations.

Consequently, the output representation of a node can be expressed as a function of the representations of its neighboring

nodes.

Lemma A.1. Consider the log-expectation of node influence between node vi and node vj , i.e., E (log (I(vi, vj))).
Assume that the node degrees are distributed uniformly for each node with the mean value d. Then, E (log (I(vi, vj))) g
logPS(vi, vj)− LS(vi, vj) · log d, where LS(vi, vj) is the shortest path distance between vi and vj , and PS(vi, vj) is the

number of paths with length of LS(vi, vj) from vi to vj .

Proof. According to the propagation strategy used in GCNs, we acknowledge that the representation of node vi can be

represented as

hi =
1

Dii

∑

k∈N (i)

aikhk,

where N (i) denotes the set of neighboring nodes of node vi. After that, we can expand the equation via incorporating more

neighbors of node vi:

hi =
1

Dii

∑

k∈N (i)

aik
1

Dkk

∑

l∈N (k)

aklhl

=
1

Dii

∑

k∈N (i)

aik
1

Dkk

∑

l∈N (k)

akl · · ·
1

Dmm

∑

o∈N (m)

amoho.

(16)

In this manner, the node influence Ii,j = ∥∂hi/∂hj∥ can be represented as:

∥∥∥∥
∂hi

∂hj

∥∥∥∥ =

∥∥∥∥∥∥
∂

∂hj


 1

Dii

∑

k∈N (i)

aik
1

Dkk

∑

l∈N (k)

akl · · ·
1

Dmm

∑

o∈N (m)

amoho



∥∥∥∥∥∥

=

∥∥∥∥∥
∂

∂hj

((
1

Dii

aik1

1

1

Dk1

1
k1

1

ak1

1
k1

2

· · ·
1

Dk1
n1

k1
n1

ak1
n1

jhj

)

+ · · · +

(
1

Dii

aikn
1

1

Dkn
1
kn
1

akn
1
kn
2
· · ·

1

Dkn
nn

kn
nn

akn
nn

jhj

))∥∥∥∥∥ .

(17)

In the above derivation, we begin by replacing the term hi with the iterative expansion of its neighboring nodes. This

expansion involves selecting only n paths from vi and to vj , where ni represents the number of intermediate nodes along

the i-th path. This selection is motivated by the fact that, when considering the gradient between vi and vj , the derivatives

along paths that do not include vj would be 0 and thus can be disregarded. Subsequently, we proceed to extract the shared
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term ∥∂hj/∂hj∥: ∥∥∥∥
∂hi
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(18)

In this derivation, we first employ the identity ∥∂hj/∂hj∥ = 1. This identity holds because ∥∂hj/∂hj∥ = ∥I∥ =
sup∥h∥=1 ∥Ih∥ = 1. The resulting term represents an expectation that involves summing the products of node degrees along

all paths connecting vi and vj . As a result, it surpasses the values obtained by summing the products of node degrees along

(potentially multiple) paths with the minimum node degree product:
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(19)

Assuming that the node degrees are uniformly distributed, the expectation of node degree products on path Pi is d(nPi
+1),

where nPi
+ 1 is the length, and d is the expectation of node degrees. Furthermore, it is noteworthy that these paths are

exactly the shortest paths between vi and vj . Therefore,

E

(∥∥∥∥
∂hi

∂hj

∥∥∥∥
)

g Pm (1/d)
(n∗+1)

= Pmd−(LS(vi,vj)), (20)

where LS(vi, vj) denotes the shortest path distance between node vi and node vj , and Pm is the number of these paths.

Then we can achieve the final result:

E (log (I(vi, vj))) = logE

(∥∥∥∥
∂hi

∂hj

∥∥∥∥
)

g logPS(vi, vj)− LS(vi, vj) · log d, (21)

where PS(vi, vj) is the number of paths with length of LS(vi, vj) from vi to vj .

Lemma A.1 demonstrates that the expectation of logarithmic node influence between two nodes is related to two perspectives:

the shortest path distance and the number of shortest path distances between them. Now with Lemma A.1, we can prove

Theorem 3.2.

Theorem 3.2. Consider the node influence from node u to a node set V . Denote the geometric mean of the node influence

to all nodes in V as IV(u) =
|V|

√∏|V|
i=1 I(u, vi), where vi is the i-th node in V . Assume the node degrees are randomly

distributed with the mean value as d. Then,

E(log IV(u)) g log P̃S(u,V)− log d · LS(u,V), (22)

where LS(u,V) is the average shortest path distance between u and nodes in V . P̃S(u,V) is the geometric mean of the

numbers of shortest paths between u and nodes in V .
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Proof. We know log IV(vk) can be represented as follows:

log IV(u) =
1

|V|

|V|∑

i=1

log I(u, vi). (23)

Based on Lemma A.1, we know:

E (log IV(vk)) =
1

|V|

|V|∑

i=1

logE (I(u, vi))

g
1

|V|
·

|V′|∑

i=1

(logPS(u, vi)− LS(u, vi) · log d) ,

(24)

where LS(u, vi) denotes the shortest path distance between node u and node vi, and PS(u, vi) is the number of the shortest

paths between u and vi. Note that PS(u, vi) g 1, as any connected node pair should have at least a path. By rearranging the

term, we can obtain the final inequality:

E(log IV(u)) g
1

|V|

|V|∑

i=1

logPS(u, vi)− log d ·
1

|V|

|V|∑

i=1

LS(u, vi)

= log




|V|∏

i=1

PS(u,V)




1

n

− log d · LS(u,V)

= log P̃S(vi,V)− log d · LS(vi,V).

(25)

B. Prompts

We provide the prompts used for many-shot ICL in the summarization, reasoning, and question answering tasks in Table 3,

and for classification tasks in Table 4.
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Table 3: A list of prompts that we use for many-shot ICL on summarization, reasoning, and question answering tasks.

Types Prompts

Summarization

You are an expert in article summarization. I am going to give you some examples of article and its

summary in fluent English. Here are several examples.

(provide examples here with the following format.)

Article: <article>

Summary: <summary>

I am going to provide another article and I want you to summarize it. Give only the summary, and no

extra commentary, formatting, or chattiness.

Article: {TARGET_QUERY}

Reasoning

or

Quesition Answering

You are an expert in multiple-choice question answering tasks. I am going to give you some examples

in a multiple-choice question answering format. Here are several examples.

(provide examples here with the following format.)

Question: <question>

Answer: <answer>

I am going to provide another question and I want you to predict its answer. Give only the choice the

correct answer by selecting one of the options (e.g., ’(A)’, ’(B)’).

Question: {TARGET_QUERY}

Table 4: A list of prompts that we use for many-shot ICL on five different extreme classification tasks.

Types Prompts

Financial PhraseBank

You are an expert in financial sentiment analysis. Here are several examples.

(provide examples here with the following format.)
Sentence: <sentence>
Answer: <sentiment>

I am going to provide another sentence and I want you to analyze the sentiment of it and respond with only one
word: ’positive’, ’negative’, or ’neutral’. No extra commentary, formatting, or chattiness.

Sentence: {TARGET_QUERY}

Banking77

Given a customer service query, please predict the intent of the query. Here are several examples.

(provide examples here with the following format.)
service query: <query>
intent category: <category>

I am going to provide another customer service query and I want you to predict the intent of the query. Give only
the intent of the query, and no extra commentary, formatting, or chattiness. You can only make prediction from
the following categories: {77 classes of the Banking77 task}

service query: {TARGET_QUERY}

GoEmotion

Given a comment, please predict the emotion category of this comment. Here are several examples.

(provide examples here with the following format.)
comment: <comment>
emotion category: <category>

I am going to provide another comment and I want you to predict the emotion category of the comment. Give
only the emotion category, and no extra commentary, formatting, or chattiness. You can only make prediction
from the following categories: {28 classes of the GoEmotion task}

comment: {TARGET_QUERY}
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C. Datasets

• XSum (Narayan et al., 2018): Extreme Summarization (XSum) is a dataset designed for evaluating abstractive single-

document summarization systems. It contains 226,711 news articles from BBC (2010-2017), spanning various domains

such as news, politics, sports, weather, business, technology, science, health, family, education, and entertainment. The

goal is to generate a concise one-sentence summary answering the question, "What is the article about?"

• Date (Suzgun et al., 2023): This dataset is designed for Date Understanding, where the task is to answer a provided

question based on a small set of sentences related to a particular date.An example is: "Today is Christmas Eve of

1937. What is the date tomorrow in MM/DD/YYYY? Options: (A) 12/11/1937; (B) 12/25/1937; (C) 01/04/1938; (D)

12/04/1937; (E) 12/25/2006; (F) 07/25/1937"

• Salient (Suzgun et al., 2023): This dataset is designed for Salient Translation Error Detection, where, given a source

sentence written in German and its English translation, the task is to determine the type of translation error present

in the translated sentence. An example is: "Source: Karl Borrom0̆0e4us Joseph F0̆0fcrst von Liechtenstein war

ein kaiserlicher Feldmarschall. Translation: Charles Borromeo Joseph Prince of Liechtenstein was an judicial field

marshal. The translation contains an error pertaining to Options: (A) Modifiers or Adjectives; (B) Numerical Values;

(C) Negation or Antonyms; (D) Named Entities; (E) Dropped Content; (F) Facts"

• Tracking7 (Suzgun et al., 2023): This dataset is designed for Tracking Shuffled Objects, where, given the initial

positions of a set of seven objects and a series of transformations (specifically, pairwise swaps) applied to them, the

goal is to determine the final positions of the objects. An example is: "Alice, Bob, Claire, Dave, Eve, Fred, and

Gertrude are on the same team in a soccer match. At the start of the match, they are each assigned to a position: Alice is

playing striker, Bob is playing right winger, Claire is playing left winger, Dave is playing benchwarmer, Eve is playing

goalkeeper, Fred is playing center midfielder, and Gertrude is playing cheerleader. As the game progresses, pairs of

players occasionally swap positions. First, Eve and Claire trade positions. Then, Gertrude and Alice trade positions.

Then, Fred and Bob trade positions. Then, Dave and Fred trade positions. Then, Fred and Bob trade positions. Then,

Bob and Eve trade positions. Finally, Claire and Alice trade positions. At the end of the match, Gertrude is playing:

(A) striker; (B) right winger; (C) left winger; (D) benchwarmer; (E) goalkeeper; (F) center midfielder; (G) cheerleader"

• Financial PhraseBank (FP) (Malo et al., 2014): FP is a sentiment analysis dataset consisting of 4,840 sentences from

English-language financial news, categorized by sentiment. The annotators were instructed to assess the sentences from

an investor’s perspective, determining whether the news would likely have a positive, negative, or neutral impact on

stock prices. An example is: "Sentence: Pharmaceuticals group Orion Corp reported a fall in its third-quarter earnings,

which were impacted by larger expenditures on R&D and marketing. Label: negative."

• Banking77 (Casanueva et al., 2020): BANKING77 is a dataset for banking-domain intent detection, comprising

13,083 annotated examples across 77 distinct intents. It offers a complex and realistic representation of commercial

systems. An example is: "Text: I found my lost card. Am I still able to use it? Label: Link to Existing Card."

• GoEmotion (Demszky et al., 2020): GoEmotion is the largest human-annotated dataset, consisting of 58k carefully

selected Reddit comments, labeled with 27 emotion categories or "Neutral." The comments are extracted from popular

English subreddits. An example is: "Text: I’m not even sure what it is, why do people hate it. Label: confusion."

• GPQA (Rein et al., 2023): GPQA is a multiple-choice question answering benchmark that features challenging

graduate-level questions in biology, physics, and chemistry, designed to assess advanced reasoning skills. An example

question is: "If a sperm from species A is injected into an egg from species B, and both species have the same number

of chromosomes, what would be the main cause of the resulting zygote’s mortality?"

D. KV Cache Analysis

We begin by providing a simple analysis of the FLOPs between the vanilla transformer and the transformer with KV Cache.

We denote the length of the prefix context, model hidden size, the number of model layers, and the number of new tokens to

generate as n, dmodel, L, and T , respectively.
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Table 5: Basic information and statistics of datasets adopted in our experiments.

Dataset Task #(Training samples) #(Test samples)

XSum Summarization 204,045 11,334

Date Reasoning 369 250

Salient Reasoning 998 250

Tracking7 Reasoning 1,750 250

Financial PhraseBank Classification 2,952 500

Banking77 Classification 10,003 3,080

GoEmotion Classification 43,410 5,427

GPQA Question Answering 250 198

Vanilla decoding without KV Cache. The per-step cost for a length-m forward pass in one layer can be approximated as:

O
(
md2model +m2 dmodel

)
.

At each step t, we re-run a forward pass on m = (n+ t− 1) tokens, thus the total cost across all T decoding steps is:

O
( T∑

t=1

(n+ t− 1)2 dmodel

)
≈ O

(
T · (n+ T )2 dmodel

)
.

With KV Cache. To build the cache, it is the same as performing a full forward pass over the prefix (length n) once:

O
(
n2 dmodel + nd2model

)
× L.

This stores the keys and values for all n tokens in each layer. The per-step cost for each new token is:

O
(
ndmodel + d2model

)
× L.

Thus, the total cost with KV cache over T new tokens is:

O
(
n2 dmodel

)

︸ ︷︷ ︸
initial prefix

+ O
(
T ·
(
ndmodel + d2model

))

︸ ︷︷ ︸
decoding T tokens

.

Hence, once we have built the cache for the prefix, each new token only requires O(n) operations for attention plus O(d2model)
for projections and feed-forward, rather than re-encoding the entire sequence each time.

E. Additional Experiments

E.1. Effect of Encoder Models

In our main results, we use the Contriever (Izacard et al., 2021) model, a widely adopted encoder for information retrieval

tasks, as the embedding model fθ(·). To assess the impact of different embeddings, we conduct ablations with Sentence-

BERT (SBert) (Reimers & Gurevych, 2019) and DeBERTa (He et al., 2020) as alternative encoders, evaluating RAG and

MAPLE with 20, 60, and 100 pseudo-labeled examples. The results, presented in Table 6, show that while performance

varies across encoders, MAPLE consistently outperforms the RAG baseline, demonstrating its robustness and effectiveness

across different embedding choices.

E.2. Ablation Study of Influence Score Components

We conduct an ablation study to analyze the components of the influence score defined in Equation 8, namely the geometric

mean of the numbers of shortest paths P̃S(·, ·) and the average shortest path distance LS(·, ·). Experiments are performed

under the setting with 20 labeled and 100 pseudo-labeled examples. Results are presented in Table 7.
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Table 6: Impact of different embedding model fθ(·).

Encoder Method
Date GoEmotion

|D∗
U |=20 |D∗

U |=60 |D∗
U |=100 |D∗

U |=20 |D∗
U |=60 |D∗

U |=100

SBert
RAG 51.4 52.4 54.4 31.3 32.7 33.3

MAPLE 52.7 54.0 55.2 34.7 36.7 37.3

DeBERTa
RAG 52.0 53.6 55.2 32.7 33.7 34.4

MAPLE 54.4 55.2 57.6 37.3 37.2 39.3

While the length of the shortest path captures how quickly information can travel, it overlooks robustness—relying on a

single path can be fragile to noise or minor data variations. On the other hand, using only the number of shortest paths

captures redundancy but disregards distance; many long paths may not imply strong influence. Our influence score is

designed to capture both efficiency (via short paths) and robustness (via multiple paths), resulting in more reliable and

informative demonstration selection for many-shot ICL.

Table 7: Ablation study of components in the influence score

Dataset Banking77 GoEmotion GPQA

LS(·, ·) 75.3 37.6 36.4

P̃S(·, ·) 78.6 37.2 36.9

Influence score 80.8 38.1 37.4
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