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In animal contests, winners of previous contests often keep winning and losers keep losing. This coupling
of previous experiences to future success, referred to as the winnereloser effect, plays a key role in
stabilizing the resulting dominance hierarchies. Despite their importance, the cognitive mechanisms
through which these effects occur are unknown. Identifying the mechanisms behind winnereloser ef-
fects requires identifying plausible models and generating predictions that can be used to test these
alternative hypotheses. Winnereloser effects are often accompanied by a change in the aggressiveness of
experienced individuals, which suggests individuals may be adjusting their self-assessment of their
abilities after each contest. This updating of a prior estimate can be effectively described by Bayesian
updating, and here we implement an agent-based model with continuous Bayesian updating to explore
whether this is a plausible explanation of winnereloser effects. We first show that Bayesian updating
reproduces known empirical results of typical dominance interactions. We then provide a series of
testable predictions that can be used in future empirical work to distinguish Bayesian updating from
simpler mechanisms. Our work demonstrates the utility of Bayesian updating as a mechanism to explain
and ultimately predict changes in behaviour after salient social experiences.

© 2025 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
The winner effect is a widely observed phenomenon where
success in one contest leads to increased probability of success in
subsequent contests, while the loser effect describes how defeat
often leads to more defeats (Chase et al., 1994; reviewed in Hsu
et al., 2006). Because of the impact of prior experiences on future
success, winnereloser effects can have an important role in the
formation of dominance hierarchies (reviewed in Tibbetts et al.,
2022). Although it is established that an individual's position
within their dominance hierarchy will have important conse-
quences for their success (Dewsbury, 1988; Simons et al., 2022;
Snyder-Mackler et al., 2020), predicting any given individual's po-
sition in social networks remains a challenge (Chase et al., 2002,
2022; Landau, 1951). This difficulty persists in part because we lack
a full understanding of the behavioural and cognitive mechanisms
used by individuals to navigate repeated social interactions (Chase
et al., 2002; Tibbetts et al., 2022). Identifying the mechanism
behind winnereloser effects and how they function in the forma-
tion of social hierarchies could provide powerful insight into what
determines individual dominance status and social network
Ltd on behalf of The Association fo
c-nd/4.0/).
structure. If we hope to one day demonstrate the underlying
mechanisms of winnereloser effects, we must first identify the
predictions of specific potential mechanisms so that they can be
tested empirically (Supplementary Material 2, Table S1).

The existence of a winner or loser effect implies a mechanistic
link between past experiences and future contest outcomes.
Assuming winning a contest is the result of some combination of
intrinsic ability and individual behaviour, there are three mecha-
nisms that could explain winnereloser effects: (1) winning/losing
could modify an individual's intrinsic ability; (2) contest outcomes
could change individual behaviour directly by modifying the indi-
vidual rules governing that behaviour; or (3) contest outcomes
could modify behaviour indirectly via some upstream internal state
variable (e.g. self-assessment). This state variable could then
change behaviour via static rules governing behaviour. While a
change in internal state (specifically self-assessment) is commonly
cited as the explanation for winnereloser effects (reviewed in Rutte
et al., 2006), most existing theory on winnereloser effects has
modelled self-assessment only implicitly, modelling the change
either as mechanism (1) or (2) described above.

The first wave of models exploring winnereloser effects (e.g.
Bonabeau et al., 1996; Dugatkin, 1997; Hemelrijk, 2000), termed
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type I models by Mesterton-Gibbons (2016), focused on whether
changes in the probability of winning could explain the nature of
the resultant dominance hierarchies. Social dominance is complex,
but empirical evidence shows that hierarchies are generally stable
and contain more linear dominance relationships than would be
predicted by chance (Jackson & Winnegrad, 1988; Tibbetts et al.,
2022). In type I models, the existence of winnereloser effects is a
stated assumption, and the focus is to explore the consequences of
winnereloser effects for social hierarchies, specifically their role in
promoting linearity. In these models, the underlying mechanisms
of winnereloser effects often remain something of a black box.
Type I models tend to model winnereloser effects directly as a
change in intrinsic ability, either by scaling the resource-holding
potential (RHP) of the winner (and loser) by some fixed amount
(Bonabeau et al., 1996; Dugatkin, 1997; Hickey & Davidsen, 2019;
Kura et al., 2016), or changing RHP as a function of the difference
between individual and opponent RHP (Hemelrijk, 2000; Hock &
Huber, 2006). While these models explore the predictions of
winnereloser effects on dominance hierarchies, they remain
structurally agnostic as to whether the change in RHP reflects a
change in behaviour, intrinsic ability, or both.

A second class of models termed type II models (Mesterton-
Gibbons et al., 2016), test how winnereloser effects can evolve,
i.e. whether there are evolutionarily stable strategies that give rise
to winnereloser effects. Because these models are interested in the
evolution of behaviour, they generally distinguish behaviour from
intrinsic ability. In some cases, agents’ estimates of that ability is
only implicit (Leimar, 2021; Van Doorn et al., 2003), but twomodels
(Fawcett & Johnstone, 2010; Mesterton-Gibbons, 1999) treat
winnereloser effects as an explicit change in self-assessment. To
our knowledge, these are the only two models in which
winnereloser effects result from an explicit change in self-
assessment, but in both cases, self-assessment is incidental to
their respective questions, so they limit agents to two or three
possible states (big/small or naïve/post-win/post-loss). Further-
more, for simplicity, both models limit the contest behaviour to a
binary all-or-nothing decision, compete or yield (i.e. a hawkedove
contest), rather than allowing individuals to decide how much and
how long to invest in a given contest. Additional models are needed
to identify the predictions of continuous changes in self-
assessment and contest effort, as well as explore how these pre-
dictions vary based on the underlying mechanisms of adjusting
self-assessment.

If we assume winnereloser effects are driven by modifying
uncertain estimates of individual ability, what mechanism best
describes this change in self-assessment? While there are many
potential mechanisms, Bayesian updating is a clearly relevant
approach. In brief, Bayesian updating entails using Bayes’ theorem
tomodify an existing estimate of the state of the world using newly
acquired information (McNamara et al., 2006), thereby calculating
the precise probability of some given state (e.g. being an individual
of size x). Bayesian updating itself thus operates entirely on indi-
vidual perception, making it well suited to describe assessment-
based winnereloser effects. Conveniently, because the features
that factor into Bayesian updating are generally explicit models of
biological features (e.g. size distribution, probability of winning a
contest), researchers can input relevant knowledge of these dis-
tributions during model specification. Because Bayesian updating
calculates the precise conditional probability of some event, it
provides a theoretical best-case scenario, and existing theory and
empirical research indicate that many animals at least approximate
Bayesian processes when making decisions in other contexts, for
example during foraging or mate choice (Luttbeg, 1996; McNamara
et al., 2006; Okasha, 2013; Olsson, 2006; Valone, 2006). Despite
being so well suited to model postcontest changes in self-
assessment (Whitehouse, 1997), to our knowledge, only one
model (Fawcett & Johnstone, 2010) has incorporated Bayesian
updating when modelling winnereloser effects, and only in the
context of binary ability (big/small) and effort (hawk/dove) as
described above. Natural contests are generally decided by the
relative size, ability and effort of competitors, all continuous traits,
but no model has used Bayesian updating for continuous abilities
and outcomes. Bayesian modelling can be challenging to imple-
ment (see McNamara & Leimar, 2020), particularly as the
complexity of the social information increases, but it is likely that
the predictions of a continuous model would differ from a binary
scenario, and understanding these specific predictions of changing
self-assessments via Bayesian updating could provide important
insight into the actual mechanisms underlying the behaviour of
various systems. Given the potential power of Bayesian updating as
a hypothesis to predict and explain winnereloser effects, it is
important to identify the specific predictions of a Bayesian model
and understand how we might distinguish Bayesian updating from
alternative mechanisms.

Here, we present an agent-based model of winnereloser effects,
and dominance formation generally, as a process of Bayesian
updating for continuous self-assessment, in which individual
agents with self-assessed contest ability compete to win social
contests, using Bayesian updating to modify their self-assessments.
The purposes of this model are (1) to explore whether Bayesian
updating is a plausible explanation of winnereloser effects by
comparing the features and limitations of Bayesian updating to
empirical observations and (2) to identify testable predictions that
could assess empirically whether animal behaviour is consistent
with Bayesian updating, and ideally distinguish it from alternative
mechanisms of modifying self-assessments. Because our model is
motivated by and for empirical concerns, it is designed primarily for
demonstrating whether Bayesian updating is a plausible mecha-
nism behind winnereloser effects and for generating testable
predictions, rather than (for example) being a general description
of social behaviour. To this end, we show that Bayesian updating
can reconcile disparate empirical observations of the attributes of
winnereloser effects, while laying out clear, testable predictions
that can be used in future experiments, to better understand the
mechanisms that drive winnereloser effects specifically and indi-
vidual dominance status and social structure generally.

GENERAL APPROACH

We were interested in a scenario where animals are motivated
to win contests without overinvesting (Maynard Smith & Parker,
1976; Parker, 1974) and can observe opponent size (Arnott &
Elwood, 2009) but cannot accurately observe their own size. (Size
is used here as a proxy for any intrinsic trait that drives contest
outcomes.) For illustration purposes, in Fig. 1 we depict the agents
in our model as a tank of fish of varying sizes, but there is nothing
specific about this model to fish, and readers should imagine the
individual agents as representing any species where conspecific
competition occurs and there is some uncertainty about relative
contest ability (e.g. rats, parakeets, baboons, humans). Under these
conditions, we would expect individuals to update their self-
assessment following a contest to better determine future
optimal contest effort. Specifically, we construct a scenario where
animals compete for dominance in paired contests and individuals
win by outlasting their opponents. This is similar to the war of
attrition described by Maynard Smith (1974), which is well suited
to describe animal contests where effort and/or persistence de-
termines the outcome, as are common in nature (Enquist et al.,
1990; Koops & Grant, 1993; Leimar et al., 1991; Marden & Waage,
1990; Mesterton-Gibbons et al., 1996). Note, however, that this is
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Figure 1. Overview of the model. (a) Individuals with fixed size, representing intrinsic ability (which is unknown to self), and an estimated self-assessment are paired. (b) Each
individual estimates their own size and their opponent's size to determine their effort, based on their estimated probability of winning. (c) The size and effort of each agent
determines their relative wagers. The relative wager of the smaller individual determines the probability of winning. (d) Based on this probabilistic outcome, agents update their
self-assessment of their size, multiplying their prior assessment by the calculated likelihood of the observed outcome.
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not quite a game in the mathematical sense, as there are no explicit
costs or benefits to winning/losing, and our model is not evolu-
tionary: we specify investment strategies and other aspects of the
model based on known features of empirical systems.

Our model consists of four steps, described graphically in Fig. 1.
First, we generate agents with random (normally distributed)
intrinsic contest ability and imperfect naïve self-assessments of
that ability (Fig. 1a). For illustration purposes, we will refer to the
intrinsic ability as ‘size’, although this could describe any combi-
nation of intrinsic traits. Second, these agents are paired with op-
ponents and allowed to interact. In each contest, individuals
determine the maximum effort they are willing to invest, which is
based on their estimated probability of winning, using their exist-
ing self-assessment of their size and their assessment of opponent
size (Fig. 1b). Third, contest outcomes are determined probabilis-
tically based on the relative size and effort of each participant
(Fig. 1c). Finally, following the contest, each agent updates their
self-assessment based on their prior estimate of size and their
estimated likelihood of the observed outcome (Fig. 1d). We simu-
late these contests either in controlled one-on-one contests or
in small group simulations where all individuals meet via
randomized round-robin pairings. For these latter group simula-
tions, groups are closed, without immigration or emigration, and
are composed of N ¼ 5 agents, lacking individual recognition or
social eavesdropping.
Generation of Agents

To model the modification of self-assessment, we generate focal
agents with some intrinsic contest ability, called ‘size’. The size
remains constant during the simulation and is usually set at xi ¼
50, except for group simulations, where each agent size is drawn
from a truncated normal distribution between 1 and 100 (arbitrary
units), such that
xi � Nðmx;sxÞ;where xi2½1;100� (1)

Each agent starts with a point estimate, xi, of their self-
assessment of size, itself drawn from a truncated normal distribu-
tion centred around their actual size:

xi � Nðxi;saÞ;where xi2½1;100� (2a)

where sa reflects individual ‘self-assessment error’, i.e. the initial
precisionwith which they can estimate their own size. Note that we
imagine this initial self-assessment being based on some direct
correlate of individual size, rather than being inferred from
observing some surrounding population. Because we are interested
in scenarios where naïve self-assessment is difficult, for all main
results, we set the naïve self-assessment error quite high, sa ¼ 20
(Table 1), but as with all parameters, we vary this value to observe
the impact on our predictions (see Supplementary Material 1 for
notes on parameter selection and Supplementary Material 2 for
sensitivity analyses). Individuals then calculate a starting prior as
the truncated normal distribution centred on their estimate, with
standard deviation, sq ¼ sa;

PrðqÞ¼Nðxi;sqÞ; for 1� x � 100 (2b)

For our model, we will use the term ‘estimate’ to refer specif-
ically to the point value, x, which is the maximum likelihood esti-
mate of the probability distribution of size, while ‘self-assessment’
typically refers to the full distribution.

Investment Strategy for Effort

Although the purpose of our model is to explore updating
mechanisms, the impact of individual self-assessment is wholly
dependent on the rules individuals use to determine behaviour, so
we must first establish how agents determine their effort, vi, for a



Table 1
Overview of parameters and their default values

Symbol Default Range Explanation

x : ðx; xi;xo;xiÞ Random 1 � x � 100 Size of an individual. xi represents the size for individual i, while xo is the size of opponent. x is the max-likelihood
estimate of size

mx 50 1 � x � 100 Mean of the population from which individuals are drawn for group simulations
sx 10 0 � sx <∞ Standard deviation of population from which individuals are drawn for group simulations. At s ¼ ∞, uniform

distribution is used
v: ðv; vi; voÞ None 0 � v � 1 Effort, the amount (e.g. of time) agents are willing to invest in a contest
w: ðw;wi;woÞ None 0 � w � 1 Wager, or contest performance, a combination of the agent's size and effort
s 0.7 0 � s< 1 Relative importance of size vs effort when calculating the weighted sum
p 6.3 0 � p<∞ Relative wager modifier, controlling predictability, such as p increases, the probability of an upset decreases
sa 20 0 � sa <∞ Self-assessment error, the accuracy of agents' starting size estimate
sc 3.1 0 � sc <∞ Opponent assessment error, the accuracy when guessing opponent size
PðqÞ e e Used to denote the prior, the estimated probability distribution of size
n 5 2 � n< 10 The number of individuals in a group, when placed in round-robin style tournaments
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contest. In our model, effort represents any degree of variable in-
vestment in that contest (e.g. the amount of time/energy an animal
will expend before yielding). To determine effort (i.e. maximum
investment), each agent assesses the size of their opponent, by
drawing their estimate of opponent size, xo , from a truncated
normal distribution centred on their opponent's true size,

xo � Nðxo;scÞ;where xo2½1;100� (3a)

Here the standard deviation, sc, represents opponent assessment
error. For all main results, sc ¼ 3:1. Agents then set their effort, vi,
based on their estimated probability of winning, such that

vi ¼ Pðwin jxi; xoÞ (3b)

where effort, vi, is equal to the conditional probability of winning.
In plain terms, we assume that individuals are willing to bear a

greater cost when their perceived probability of victory is higher.
The principle of matching investment to the expected reward is a
standard assumption of behavioural theory (Enquist & Leimar,
1983; Maynard Smith & Parker, 1976), and empirical work con-
firms that individuals are willing to invest more in contests they
expect to win (Hsu et al., 2008). This increased investment in turn
increases their probability of winning, creating a feedback loop
between expected outcomes, investment and actual outcomes that
is at the heart of assessment-based winnereloser effects.

In equation (3b) above, calculating the probability of winning
requires individuals to estimate not just the opponent's size but
also predict their relative effort. For simplicity, in our model, agents
assume that both their opponent and they themselves will equally
invest 0.5 effort to estimate their probability of winning. Of course,
wemight expect individuals to better anticipate both their own and
their opponent's effort, and there is a rich literature investigating
the evolution of optimal strategies (Maynard Smith, 1974;
McNamara & Leimar, 2020), including for winner effects (Leimar,
2021; Mesterton-Gibbons et al., 2016), but establishing a full
evolutionary model was beyond the scope of this paper. As our
model is primarily focused on how self-assessment changes
following a contest under Bayesian updating, our specified effort
strategy serves as a plausible simplifying assumption for our pur-
poses here.

Having established their assumptions of their own and their
opponent's size, agents can calculate their effort, vi, being equal to
their perceived probability of winning, via equations (4ae4b)
below. Note that for practical purposes, assessment in our model
is instantaneous and conducted prior to the contest, but this also
captures scenarios where the assessment occurs over the course of
the contest, as is the case in many natural systems (Arnott &
Elwood, 2008). At some point, whether before or during the
contest, individuals must determine when they will yield. While
continuous assessment would likely be important if our goal were
to predict changes in behaviour during the fight, our research
question is focused on how assessment changes as a result of
contest outcomes, so this simplification seemed appropriate.
Obviously, our approach will not precisely match every animal
system, but it models a broad range of systems where animals are
uncertain of opponent ability and behaviour, including systems in
which size and/or effort are continuous, which may not have been
captured by existing models of winnereloser effects.

Determining Contest Outcome

Once individuals determine their maximum effort, thewinner is
decided probabilistically, based on the size and effort of each agent,
combined to define each agent's wager, wi:

wi ¼ s� xi
100

þ ð1� sÞ � vi (4a)

The wager thus scales with their size (normalized to be between
ð0;1Þ) and individual effort, with s allowing us to control the rela-
tive importance of size and effort. For example, our default
parameter value, s ¼ 0:7, means that size contributes 70% of the
wager value, with effort contributing 30%, but different parameter
values can make contests more or less size dependent, as we
explore in Supplementary Material 2.

In most natural systems, the contest ends when one individual
yields (becoming the loser). For this reason, we calculate the
outcome probability from the perspective of the lower-wagering
individual, termed the underdog. We thus calculated the proba-
bility of an upset (i.e. a win by the underdog) with

PðupsetÞ¼1
2
�
�
wmin:
wmax:

�p

(4b)

where p is a bias parameter, ‘predictability’, controlling how close
the two wagers need to be for there to be a meaningful probability
of upset, such that as p increases to infinity, the probability of an
upset goes to 0 unless the two wagers are equal. Once PðupsetÞ is
established, we use a random number generator to simulate
whether an upset occurs.

This approach for settling contests allows us to vary the relative
contributions of size, effort and stochasticity while observing the
(simulated) behaviour of individual agents and groups. For all main
results, we set the values of these parameters at s ¼ 0:7; p ¼ 6:3,
which corresponds to a system where intrinsic ability is the most
important factor in determining contest outcome, and larger/better
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individuals generally win, but sufficient effort and/or luck drives
occasional upsets.

Updating Self-assessment Postcontest

In the results below, we compare Bayesian updating with a
simpler strategy (linear updating) and a null hypothesis (static
estimates, i.e. no updating). Each is described here, with some
additional details in Supplementary Material 2. These three stra-
tegies do not capture the entire range of possible updating mech-
anisms, but linear updating is a common approach in existing
models of winnereloser effects (Bonabeau et al., 1996; Dugatkin,
1997; Kura et al., 2016) and serves as an instructive contrast with
Bayesian updating, allowing us to distinguish what predictions are
specific to Bayesian updating and what is simply a consequence of
changes in self-assessment.

Static Estimate (No Updating)

The simplest possible approach to maintain a self-assessment is
to never vary from your initial self-assessment of size (i.e. intrinsic
ability). We model this scenario, keeping each agent's initial
assessment of their size fixed throughout the simulation, regardless
of contest outcomes. Under this ‘no updating’ approach, the accu-
racy of individual estimates depends on their initial awareness, sa.

Linear Updating

A common way to implement simple self-assessment updating,
first implemented by Dugatkin (1997), is to either increase or
decrease the agent's estimate of their size, using some scalar, k,
multiplied by its prior estimate.

xitþ1
¼ kxit (5a)

To make this compatible with our model construction, we set
bounds on the maximum and minimum possible size (Xmin: ¼ 1;
Xmax: ¼ 100Þ, such that an agent's new estimate, xitþ1

, is a function
of their previous estimate, shifted by some factor, where

Xmin: � xitþ1
� Xmax: (5b)

We also set k to vary dynamically as a function of distance from
the max./min. size, where

k¼0:1� �
Xmax: � xit

�
; if win (5c)

k¼ �0:1� �
xit �Xmin:

�
; if loss

This dynamic shift more closely matches Bayesian updating and
prevents estimates from escaping their bounds. Since this function
only acts on the point estimate (defined by the maximum likeli-
hood estimation of the prior distribution), after updating this
maximum likelihood estimate, we generate a new, truncated
normal distribution, centred around that estimate, based on the
agent's self-assessment error, sa, as in equation (2b). This approach
provides a simple heuristic that, like Bayesian updating, allows for
weighted updating of self-assessment but does not change an es-
timate's confidence and does not calculate a likelihood function.

Bayesian Updating

In contrast with simpler heuristics, Bayesian updating can
potentially calculate the true probability of some value or event,
based on known/estimated parameters about the state of the world
and the conditional probability of outcomes. Bayesian updating is
thus defined by a prior assessment and a likelihood function. In our
case, the prior is the agent's current self-assessment of its own size,
modelled as a discrete probability distribution. The likelihood
function provides the probability of the observed outcome (i.e.
winning a given contest), conditioned on being some assumed size,
calculated across all possible sizes. Then the posterior distribution,
i.e. the new probability distribution of an agent's size estimate, q, is
calculated by Bayes' formula

PpostðqjoutcomeÞ¼ Pðoutcome j qÞ � PpriorðqÞ
PðoutcomeÞ (6a)

We discuss here the case of a winning outcome, but the
formulation is similar following a loss. For each possible size in our
discrete size range, the posterior probability of being a given size is

Pðxi ¼ xjwinÞ¼ Pðwinjxi ¼ xÞ � Pðxi ¼ xÞ
PðwinÞ (6b)

where Pðxi ¼ xÞ is the estimated prior probability of being a given
size, while the likelihood Pðwinjxi ¼ xÞ is the probability of an in-
dividual of size xwinning the previous contest, which is calculated
according to the probability of upset from equation (4b). In this
model, we assume that, although their opponent assessment is
error-prone while deciding how much to invest, by the end of the
contest, individuals have an accurate assessment of the size and
effort of their opponent, allowing them to calculate the probability
of the observed outcome (winning/losing) for any given own size,
xi, without needing to iterate over all possible opponent sizes and
efforts (see Supplementary Material 2). PðwinÞ is thus calculated as
the sum of Pðwinjxi ¼ xÞ � Pðxi ¼ xÞ across all possible sizes, x,

PðwinÞ¼
Xxmax:

x¼0

Pðwinjxi ¼ xÞ � Pðxi ¼ xÞ (6c)

After calculating the posterior estimate, agents update their
point estimate of size, xi

xi ¼ EðqÞ¼
X100
x¼1

x� Pðxi ¼ xÞ (6d)

where E is the maximum likelihood estimate of the size distribu-
tion. This value is then used to compute agent effort in the next
contest.

While the above notation can seem somewhat daunting, the
general approach is quite intuitive: individuals can observe that
they won (or lost) a contest. They can then infer that (for example)
it is very unlikely that they would have won a contest against a
large individual if they were small (the likelihood), so they shift
their existing estimate (their prior) towards larger values (Fig. 1d).
Assuming the information provided is accurate, Bayes' formula
makes it possible to calculate the ‘true’ probability of being a given
size, thus providing a best-case scenario for uncertain self-
assessment.
Parameter Space

Our possible parameter space comprises the contest outcome
parameters ðs; pÞ, the first reflecting the influence of size versus
effort, and the second describing the degree of predictability and
the assessment parameters ðsa; scÞ, representing self-assessment
error and opponent assessment error. For all main figures, we use
the following values: s ¼ 0:7; p ¼ 6:3; sa ¼ 20; sc ¼ 3:1. The
default values of s and p were chosen to approximate empirical
observations that upsets are rare and contests are roughly
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predicted by size (Supplementary Material 1, Fig. S1) (Beacham,
1988; Bierbach et al., 2012), while the values of sa and sc were
selected to explore a scenario where opponent assessment is
somewhat error-prone and naïve self-assessment is poor. We
explore the full parameter space in Supplementary Material 2.

Model Analysis

The goal of our model is to answer the following two questions.
(1) Does Bayesian updating for self-assessment produce
winnereloser effects and dominance hierarchies that match the
behaviour of empirical systems? (2) How can we distinguish,
empirically, Bayesian updating from alternative models of domi-
nance establishment and winnereloser effects? To answer these
questions, we run simulations of model behavioural experiments
while extracting behavioural metrics that would be tractable in and
relevant to an empirical context, such as contest intensity. These
experiments, and the behavioural metrics we measure, are dis-
cussed in their relevant results sections.

RESULTS

Part 1: Matching Empirical Observations

Before addressing how we might test for Bayesian updating, we
first compare the predictions of this model to known empirical
features of winnereloser effects. Here we focus on three well-
documented phenomena: (1) winnereloser effects exist; (2) the
relative strength of winnereloser effects varies across species; (3)
more recent contests tend to bemore impactful.We also explore (4)
how Bayesian updating might account for the observed differences
in the duration of winnereloser effects across systems and (5) the
extent to which Bayesian updating promotes stable linear hierar-
chies. These observations need not be unique to Bayesian updating,
indeed there are several simple models that are consistent with
these empirical observations, but they are common observations of
empirical contest behaviour, so it is important to test whether a
Bayesian model can also recreate these effects, and this provides
insight into how Bayesian updating functions in the context of
winnereloser effects.

Bayesian updating predicts the existence of winner and loser effects
We first test whether agents using Bayesian updating show

winnereloser effects. To do so, we model a simulated experiment
(designed to emulate standard empirical approaches) by forcing
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Figure 2. (a) The proportion of focal agents (out of N ¼ 1000) winning against a naïve size-m
of repeated contests against naïve size-matched opponents, with the branching paths show
highlighting the recency effect, which diminishes with increased experience. (c) Focal agents
focal agent's estimate following a win is greater when their opponent is larger.
either a win or a loss in a contest between a focal agent and a
‘treatment’opponentof knownsize (in this case, the same size as the
focal individual, xi ¼ 50).We thenmeasurewinnereloser effects by
pairing these focal winners or losers against ‘assay’ opponents (a
second size-matched agent). We repeat this process for 1000 focal
winners and losers.We can thenquantify thewinner (loser) effect as
the proportion of focal agents that won (lost) against their assay
opponent. In the absence of winner (loser) effects, wewould expect
50% of focal agents to win (lose) their assay contest.

As shown in Fig. 2a, we found that agents using Bayesian
updating for self-assessment exhibited obvious winnereloser ef-
fects, in that previous winners were more likely to win subsequent
contests, while previous losers were more likely to lose. These
winner and loser effects were broadly observed across the range of
parameter values wherever size and effort combined to determine
contest outcome, the only exception being where naïve self-
assessment was perfect (Supplementary Material 2, Fig. S2).

Bayesian updating can generate variable biases in the strength of
winnereloser effects

Given our model's construction (winning increases an in-
dividual's estimate, the individual's estimate determines effort and
effort determines the probability of winning), it is perhaps not
surprising that Bayesian updating produces winnereloser effects.
However, the details of how winnereloser effects function under
Bayesian updating are not trivial. We found that, as implemented
here, Bayesian updating produced a loser effect that wasmarginally
stronger (on average) than the winner effect, but this depended on
the parameters chosen (Supplementary Material 2, Fig. S2). It has
long been assumed that loser effects tend to be stronger than
winner effects (Hsu et al., 2006), but a recent meta-analysis showed
high variation (with some species being winner-biased and others
loser-biased) but no general effect (Yan et al., 2024). Our model is
broadly consistent with this finding, as in our case, the relative
strength of winner versus loser effects was highly sensitive to the
investment strategy agents used to determine their effort in each
contest. Under the simple ‘proportional effort’ strategy we use for
the main results (equation 3b), we found a very slight loser effect
bias (Supplementary Material 2, Fig. S2), driven by the fact that
winning a contest was determined by the relative size of the
smaller individual, and for any given shift, the relative decrease in
the estimated size difference was greater than for an increase in
estimate. To illustrate this, consider an individual of size 50 that
either increases or decreases its estimate by 25 units, then faces
another individual of size 50. Decreasing its estimate results in the
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individual perceiving itself as (the underdog) being just 50% of its
opponent's size (25/50), while increasing its estimate results in the
individual perceiving its opponent as (the underdog) being 67% of
its own size (50/75). This effect of proportionality, built into the
agent's investment strategy, drives the slight loser effect bias in the
model described above, but under alternative investment strategies
that we explore in Supplementary Material 2 (equation S4), we can
produce agents with stronger biases towardswinner or loser effects
(Fig. S4), even with equal changes in self-assessment. The fact that
loser effect bias is mediated by, and highly dependent on, the
specific effort strategy used by a given system could account for the
high degree of variation in the relative strengths of the winner and
loser effects observed across empirical systems, based on their
specific evolutionary history.

Bayesian updating produces a behaviour-mediated recency bias in
winnereloser effects

Although winnereloser effects vary across species, there is
consistent evidence for a recency bias (Benincasa et al., 2023; Hsu&
Wolf, 1999), in which the outcomes of more recent contests have a
stronger effect on behaviour than do the outcomes of earlier con-
tests. To explore this, we emulate empirical tests of the
winnereloser effect, by simulating contests between naïve size-
matched agents (xi ¼ 50), then pair these focal winners and
losers against new, naïve size-matched opponents, repeating this
process over six rounds of contests. We control the outcome of each
contest to generate new branching paths with both winners and
losers. To limit noise, in this simulated experiment we centre all
individual priors on their true size, and agents' opponent assess-
ment is set to match opponent size exactly. Here, we measure
winnereloser effects directly as the agents’ own size estimates.

In Fig. 2b, we see that our model recreates winnereloser effects
with an experience-dependent recency bias. In particular, ‘recent
losers’ (WL), who first won a contest and then lost a second contest,
updated their size estimate to be lower than ‘recent winners’ (LW),
who initially lost and then won. This is particularly interesting,
since Bayesian updating is known to be ‘order invariant’ in that the
order of identical events should not impact the final estimate.
However, in this case the events are not identical: the recent
winners (LW) win while investing less in their second contest than
the recent losers (i.e. initial winners, WL). Because estimate
updating occurs at every step, shifting the amount of effort, these
events might be better described as LW-, WLþ, since later wins and
losses occur under different circumstances, whichmake themmore
impactful. The strength of this effect depends on the specific pa-
rameters used (see SupplementaryMaterial 2, Fig. S5), but under all
parameters, recent winners had posterior estimates that were
greater than or equal to those of recent losers. Like the other
phenomenon described in this section, this recency effect is of
course not unique to Bayesian updating, but it confirms that
Bayesian updating is consistent with empirical observations.

Under Bayesian updating, experimental methodology drives
variation in the persistence of winnereloser effects

In empirical observations of dominance contests, winnereloser
effects are persistent in some cases (Lan & Hsu, 2011; Laskowski
et al., 2016) while in others they are short-lived (Chase et al.,
1994) or even absent (reviewed in Hsu et al., 2006). If we assume
Bayesian updating, what mechanism could produce these dis-
crepancies? To assess this, we again simulate a forced-win exper-
imental approach, this time allowing a simulated focal agent of size
xo ¼ 50 to win a staged contest against a treatment opponent of
variable size: either size-matched to, or smaller or larger than the
focal agent (xo ¼ ½40;50 or 60�Þ. We thenmeasure the effects of the
contest outcome directly by checking the estimate of the agent's
own self-assessment after the contest. Following this initial treat-
ment contest, we allowed focal agents to interact with additional
naïve individuals so that we could observe subsequent changes in
their estimates over time.

We found that the duration of winnereloser effects depended
on the size of the initial shift in estimate. The size of this shift was a
function of the unexpectedness of the outcome, in this case the
opponent's size, with wins against larger opponents generating
larger shifts in agent estimates (Fig. 2c). This initial increase in self-
assessment attenuated rapidly with additional experience,
although it did not fully return to baseline, with themean estimates
of winners (for all opponent sizes) persisting significantly above the
true individual size (x¼ 50). The extent towhich the change in self-
assessment, and the associatedwinner effects, persist above a given
threshold also depended somewhat on the nature of these post-
fight experiences (Supplementary Material 2, Fig. S8), but even
after 100 contests, the mean self-assessments of these initial win-
ners were higher than their actual size, and those who won against
bigger opponents had significantly higher self-assessments than
those who won over smaller ones.

Although winner estimates remain higher indefinitely under
Bayesian updating, whether such a change in self-assessment could
be detected empirically is a function of the power of the experi-
ment used to assay winnereloser effects. If a small shift in estimate
(blue line, Fig. 2c) does not lead to visible changes in behaviour, the
winner effect may appear to be temporary or even nonexistent.
Social experience following the ‘treatment’ contest and variation in
the size and/or effort of the assay opponent would add additional
noise that may further mask small differences in focal individual
estimates. In a simulated experiment, moderate sample sizes with
some intervening social experience were generally insufficient to
detect winnereloser effects at the behavioural level (i.e. a deviation
from the expected 50% win (loss) rate against a size-matched
opponent), even though these effects persisted in individual esti-
mates (Supplementary Material 2, Fig. S7). Indeed it has been
shown that in empirical contexts, whether, and for how long,
winnereloser effects are observed depends on the experimental
methods used (Chase et al., 1994; Huang et al., 2011). Given that,
within our model, detecting persistent winnereloser effects re-
quires far greater statistical power than is often feasible, it is not
surprising that many studies have found winnereloser effects to be
short-lived, even if we assume that the winnereloser effect can be
perfectly described by Bayesian updating.

Bayesian updating increases the efficiency of size-based dominance
hierarchies

So far, we have only assessed winnereloser effects at the level of
individuals, but these effects generally function within group hi-
erarchies. It is thus important to model and test how Bayesian
updating is predicted to impact winner effects within social net-
works since the marginal increases in effort predicted under
experimental contexts may not translate to observable changes
within dynamic dominance hierarchies. To do this, we established
groups of N ¼ 5 individuals with sizes drawn from a normal dis-
tribution (x ¼ 50;sx ¼ 10) that were paired in randomized rounds
such that every individual faced every other individual. We then
recorded the structure and intensity of dominance contests.

The transition to low-intensity contests is a standard prediction
of established social groups (Jackson & Winnegrad, 1988), as in-
dividuals should seek to avoid serious injury from escalated social
contests, especially when contests are frequent, as is the case in
many group-living species. Although individuals in our model were
forced to ‘interact’, agents chose how much effort to invest, be-
tween 0 and 1, allowing them to effectively choose whether to
engage in a contest. Future implementations could more fully
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model the costs and benefits of opponent selection, but here we
simply assumed individuals were willing to invest proportional to
their perceived probability of winning to ask whether increasing
the accuracy of individual estimates would decrease the intensity of
contests, as well as producing dominance hierarchies that are more
linear and stable than we would expect without updating.

We found that our simulated agents using Bayesian updating
rapidly reduced the intensity of contests (Fig. 3a). This occurred in
our model as the smaller agents began to yield quickly to larger
opponents, resulting in lower mean effort across contests. This shift
was attributable to the rapid decrease in estimate error, calculated
using equation (S5) in Supplementary Material 2, as shown in
Fig. 3b. This increase in accuracy, and the associated decrease in
intensity, was widely observed across our parameter space (see
Supplementary Material 2, Figs S8eS9). For comparison, we
repeated these simulated groups using a fixed estimate (Fig. 3) or a
linear estimate (Supplementary Material 2, Fig. S9). Compared to
these alternative updating methods, Bayesian updating resulted in
more accurate estimates which, in turn, resulted in the rapid
reduction in high-intensity contests.

This improved accuracy also increased the stability and linearity
of networks over time (see Supplementary Material 2,
Figs S11eS12), but these networks did not ‘self-organize’ into sta-
ble, linear hierarchies in the absence of intrinsic differences in size.
This makes sense, since Bayesian updating results in accurate as-
sessments, so where intrinsic differences are small, individuals
accurately assess that they have a high potential to win a contest
and invest accordingly. If we modify our model to allow for feed-
back on agent size (Supplementary Material 2, equation S6), net-
works do organize into linear hierarchies, and in this context,
Bayesian updating causes networks to self-organize more quickly
and to a greater extent than with feedback on size alone
(Supplementary Material 2, Fig. S13e). In short, the increased ac-
curacy of Bayesian updating has a stabilizing effect on dominance
hierarchies, beyond what can occur from inaccurate self-
assessment or changes in intrinsic ability alone.

Part 2: Distinguishing Bayesian Updating from Other Mechanisms

We have shown that our Bayesian model is successful at recre-
ating many empirical observations of animal contests. We now
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line); however, when agents cannot update, intensity remains high (grey line). (b) Agent
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randomized rounds of paired contests between all individuals in a group (N ¼ 5 individuals
explore which testable predictions distinguish Bayesian updating
from other potential mechanisms of self-assessment, again
comparing three potential updating mechanisms: Bayesian, linear
updating or static estimates (no updating). In particular, we focus
on the two defining features of Bayesian updating: the likelihood-
based updating and the probabilistic prior. We investigate each of
these two aspects separately, with simulated experiments using
empirically tractable approaches to describe potential experiments
in animal systems. Their contrasting predictions are summarized in
Supplementary Material 2, Table S1.

The certainty effect is characteristic of Bayesian updating
Because Bayesian updating encodes all previous experiences as

a probability distribution, it is able to capture not just the individual
estimate but the statistical certainty of that estimate. As such, the
statistical certainty gained from increased experience should
distinguish Bayesian updating from linear updating, which only
maintains the estimate itself. To test for this certainty effect, we
simulate focal agents, using either Bayesian or linear updating, who
experience between 0 and 50 contests against naïve opponents
prior to the treatment win/loss, thereby creating differences in
experience. Each contest alternates between awin against a smaller
opponent and a loss against a larger opponent, producing in-
dividuals with similar point estimates but with different numbers
of pretreatment experiences. We then assess the strength of the
winnereloser effect as we would empirically, by pairing the focal
individual against a size-matched treatment opponent and forcing
a win/loss, and then recording whether these focal winners and
losers win against a subsequent naïve size-matched assay oppo-
nent. This allows us to measure the extent to which certainty
gained through experience attenuates the winnereloser effect
observed in the final assay contest.

As expected, in agents using Bayesian updating (Fig. 4a, blue
line), experienced agents with more prior contests showed weaker
winner effects in the final contest than did naïve agents (i.e. agents
for whom the number of fights prior to the treatment contest was
0). In comparison, in agents using linear updating (Fig. 4a, green
line), winner effects remained strong regardless of previous expe-
rience. However, agents that use linear updating can sometimes
mimic the same winnereloser effect attenuation seen in experi-
enced Bayesian updaters. This can happen when the intervening
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contests are against randomly sized opponents, which can cause
linear updating agents' estimates to strongly diverge over time,
making them susceptible to winnereloser effects (Supplementary
Material 2, Fig. S14). Thus, depending on the experimental para-
digm, this ‘certainty effect’ may not always distinguish Bayesian
updating from simpler mechanisms, but it remains a core feature of
Bayesian updating (across a range of parameter values, as shown in
Supplementary Material 2, Fig. S15), and failing to find that
winnereloser effects attenuate with increased experience would
provide strong evidence against Bayesian updating for continuous
self-assessment as a mechanism.

The discrepancy effect can distinguish Bayesian updating from
simpler models

In addition to the probabilistic prior, Bayesian updating is
defined by the likelihood function, which calculates the probability
of any given outcome based on various possible conditions. As such,
we should expect winnereloser effects to vary based on the extent
to which the outcome of the contest is surprising. As was already
shown in Fig. 2c, agents using Bayesian updating showed stronger
winner effects when their initial opponent was larger, and this
effect can be observed across parameters wherever size and effort
both affect contest outcome (Supplementary Material 2, Fig. S17).
Importantly, this ‘discrepancy effect’ was not seen for agents using
a linear shift (Fig. 4b).

The general observation that more surprising outcomes drive
more dramatic shifts in the posterior estimate is a fundamental
feature of Bayesian updating (Courville et al., 2006). In our model, it
depends on agents conditioning their updates on opponent size
specifically, but discrepancy effects could be driven by variation in
any observable variable that influences the probability of winning
(e.g. duration of the contest, age of the opponent, the quality of
some defensive resource), depending on the specifics of the study
system. While the simple linear updating mechanism we use for
comparison does not incorporate any contest information, and thus
does not show a discrepancy effect, linear updating methods could
be modified to incorporate opponent size or number of past ex-
periences, which could generate outcomes very similar to Bayesian
updating. Thus, the presence of a discrepancy effect does not
exclude the other mechanisms, but the lack of any such effect
would exclude Bayesian updating as a likely mechanism for
modifying self-assessment.

DISCUSSION

Here, we show that Bayesian updating for continuous self-
assessment can explain the existence of winner and loser effects,
resulting in contest behaviour and dominance hierarchies that are
broadly consistent with those observed within social systems in
nature. Our model shows that changes in self-assessment alone,
whether through linear updating or Bayesian updating, can be
sufficient to drive winnereloser effects (measured as changes in
contest outcomes), without any change in actual ability or oppo-
nent behaviour. This prediction is consistent with previous self-
assessment based models (Fawcett & Johnstone, 2010; Mesterton-
Gibbons, 1999) and empirical observations of the winner effect
occurring independent of changes in individual ability (Hsu&Wolf,
2001). In addition to being broadly consistent with empirical ob-
servations, our model generates testable predictions that distin-
guish Bayesian updating from the simpler, non-Bayesian linear
model. These predictions are designed to lead directly to future
empirical tests, allowing us and others to assess the mechanisms
behind winnereloser effects. Even if these tests do not conclusively
establish the underlyingmechanism, they could identify features of
winnereloser effects (e.g. does the size of the opponent determine
the strength of winnereloser effects?) that have not been previ-
ously described.

Note that while we have generally discussed Bayesian updating
specifically as it relates to how individuals change their assess-
ments following a contest, researchers sometimes use ‘Bayesian’ to
refer to individuals that begin a task with informed assumptions,
and this can also be tested empirically. We explore some potential
mechanisms that could explain how these initial assumptions may
be formed in animals in Supplementary Material 2 (Figs S18eS20)
and the predictions of those mechanisms. For example, animals
could form these initial assumptions based on some internal cue
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(e.g. age) or based on observations of their surroundings (e.g. if an
individual is in a group of animals of a given size, it is likely that
their own size is similar). However, this aspect of Bayesian self-
assessment is tangential to the winner effect itself, which is the
focus of our model.

Like type I models that explore the consequences of winner
effects, our model predicts that Bayesian updating (compared to
maintaining naïve estimates) results in increasing the stability,
linearity and efficiency of dominance hierarchies over time (Balph,
1979; Senar et al., 1990). But importantly, in our model, stable,
linear hierarchies only occur when individuals start with, or can
develop over time, intrinsic differences in ability (Supplementary
Material 2, Fig. S13f). Our model is intended to explore changes in
behaviour in the absence of any changes in intrinsic ability, and we
found that Bayesian updating alone did not generate linear net-
works from identically sized individuals (Supplementary Material
2, Fig. S13d). This makes sense: if individuals can accurately
assess their size, and all individuals are the same size, contests
should be protracted and unpredictable, as all individuals
(correctly) think they can win based on effort. Previous models
have shown that when contest outcomes alter intrinsic ability, in-
dividuals ‘self-organize’ into networks that are more linear than
expected by chance, evenwhen all individuals start out at the same
size/ability (Bonabeau et al., 1996; Dugatkin, 1997; Hemelrijk,
2000). We can extend our model to include direct feedback
whereby winning a contest does increase intrinsic ability, and
when we do, stratification of initially identical individuals does
occur (Supplementary Material 2, Fig. S13b). In this context,
Bayesian updating increases the observed linearity of simulated
social networks (Supplementary Material 2, Fig. S13e) compared to
fixed estimates. Based on these results, we would expect the
stratification of dominance hierarchies observed in natural systems
(Tibbetts et al., 2022) to require some real intrinsic differences in
individuals, which either existed prior to the contest or which come
about as a result of contests (e.g. as winners gain better access to
resources) (Bonabeau et al., 1999). Accurate self-assessment
updating could then act as secondary mechanism that allows in-
dividuals to match their effort to their ability, thereby facilitating
the stability, linearity and efficiency of these dominance hierarches.

If we accept that Bayesian updating is a plausible mechanism,
howmight we test for it? As we have shown, a certainty effect and a
discrepancy effect are key features of Bayesian updating. Bayesian
updating is expected to produce attenuating winnereloser effects
with increasing experience and stronger shifts in behaviour in
response to ‘surprising’ outcomes. These are natural consequences of
the probabilistic prior and likelihood functions, respectively. Failing
to find either a certainty or discrepancy effect would provide strong
evidence against Bayesian updating being behind winnereloser ef-
fects, but it is important to note that these effects are not necessarily
unique to Bayesian updating, as other updating mechanisms can
produce similar results depending on their exact mechanics.

There are two models in particular whose constructions pro-
duce similar predictions to ours. The first is the binary Bayesian
model from Fawcett and Johnstone (2010); the second is the
actorecritic reinforcement learning model of Leimar (2021,
extended in Leimar& Bshary, 2022). In both cases, themost obvious
difference between these two models and ours is the extent to
which effort and individual ability can vary. Our model focuses on
continuous changes in self-assessment and effort. In contrast,
Fawcett and Johnstone binarize both size (strong/weak) and effort
(hawk/dove), whereas Leimar allows for continuous intrinsic ability
but keeps contest investment binary (hawk/dove). Fully imple-
menting these models for a direct comparison is beyond the scope
of our work here, but we briefly explore some of the relevant
predictions of these models and how their explanatory
mechanisms differ from our model. A summary of relevant differ-
ences can be found in Supplementary Material 2 (Table S1).

In Fawcett and Johnstone (2010), reducing aggression and ability
to binary values results in highly stratified estimates, with in-
dividuals often becoming ‘stuck’ playing dove, after which they are
unable to gain more information. In our model, because there are
many scenarios where individuals win even with very low invest-
ment, unlucky individuals tend to recover from initial losses
(Supplementary Material 2, Fig. S13c). In natural systems, subordi-
nate individuals often engage with dominants (Guiaşu & Dunham,
1997; Hotta et al., 2021; Rowell, 1974), which could provide an op-
portunity for recovery, whereby stronger subordinates eventually
supplant weaker dominant individuals (Favre et al., 2008; Samuels
et al., 1987). In this vein, Fawcett and Johnstone found that their
‘juvenile’ individuals (comparable to naïve individuals in ourmodel)
tended to be hyperaggressive, because of the benefit of correctly
identifying themselves as large early on and being able to invest
accordingly. Empirically, it does not appear that juveniles are
consistently more ‘aggressive’ (Bernstein et al., 1983; Groves, 1978;
but see Baxter & Dukas, 2017; Fortunato & Earley, 2023), but juve-
nile individuals do famously engage in play fighting (Thompson,
1998; Thor & Holloway, 1984), and as mentioned, subordinate in-
dividuals tend to seek out agonistic encounters (Guiaşu & Dunham,
1997; Rowell, 1974), so it does appear that naïve and lower-ranking
individuals highly value information and may engage in contests
based on this. In our model there is no explicit reward for seeking
information (or for winning contests for that matter). If we
expanded ourmodel to incentivize information gathering, wemight
expect individuals to ‘overinvest’ in potentially informative contests
in order to gain valuable information, seeking out information-rich
encounters despite the cost of more intense losses.

Whereas Fawcett and Johnstone provided a powerful imple-
mentation of Bayesian updating within a highly specific context,
Leimar (2021) demonstrated a fully realized simulation of social
dominance with a fundamentally different learning mechanism
than Bayesian updating, i.e. actorecritic reinforcement learning.
Like Fawcett and Johnstone, Leimar found that individuals evolve to
be highly aggressive and, interestingly, that this aggression drives
the observed loser effect bias. This is consistent with our model, in
which shifting the effort function to be more ‘hawkish’ resulted in
far stronger loser effects (Supplementary Material 2, Fig. S5),
although the specific mechanisms differ: in Leimar's model, this
shift was specified by each individual's policy gradient factor, which
was inversely proportional to each individual's level of aggression,
while in ours, it was a consequence of how an agent's effort func-
tion translated a shift in its estimate to behaviour (Supplementary
Material 2, Fig. S21). This comparison is emblematic of these two
approaches generally, in which distinct underlying mechanisms
(Bayesian updating versus actorecritic reinforcement learning)
arrive at similar outcomes, which would require careful modelling
and very careful experimentation to distinguish.

Indeed, Bayesian updating and actorecritic learning (and the
field of reinforcement learning generally) are closely related:
because both algorithms are designed to accurately predict
outcome, any effective reinforcement learning paradigm should at
least approximate the ‘correct’ estimate that would be calculated by
Bayesian updating. There is a rich field of literature on the appli-
cation of reinforcement learning to behaviour (Dayan& Daw, 2008;
Niv, 2009), how it relates to Bayesian updating (Courville et al.,
2006; Kang et al., 2024) and (to a much lesser extent) how rein-
forcement learning relates to the winnereloser effect specifically
(Leimar, 2021). While they are closely related, Bayesian updating
functions slightly differently from standard reinforcement learning
models (Le Pelley, 2004; Pearce & Hall, 1980; Rescorla & Wagner,
1972). This is because unlike most models of reinforcement
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learning, Bayesian updating usually establishes a representative
model of reality (Courville et al., 2006; Vlassis et al., 2012), for
example by estimating the actual size of individuals, based on in-
formation about the sizes of opponents and how contests are
settled. For complex systems, modelling all relevant features can
quickly become intractable (McNamara & Leimar, 2020), but
assuming it is possible, Bayesian updating should provide the most
accurate possible solution. This is not to say reinforcement learning
is less effective, or even significantly less accurate, as prediction
error approaches have been shown to closely approximate Bayesian
updating (Kolter & Ng, 2009; Poupart et al., 2006). Given their
similarity it seems unlikely that there are large, fundamental dif-
ferences between the twomechanisms, at least in the general sense.
There is some theoretical work that has been able to parse the
specific predictions of Bayes updating from other forms of rein-
forcement learning (Courville et al., 2006; Kumaran et al., 2016), but
in our view, the more relevant differences are in the practical
application of these models. By abstracting the latent features of
reality into the behavioural rule and updating mechanisms rather
than having to explicitly infer them, reinforcement learning can be
much faster to simulate and analytically more tractable. In contrast,
Bayesian updating requires making decisions about a range of in-
ternal and environmental state variables in order for the prior and
likelihood functions to be meaningful. Empiricists often have access
to this information and need to identify testable predictions or
perform power analyses. In these contexts, the computational run
time of Bayesian updating is less of an issue, while the ability to
directly input known environmental variables is highly useful.

While model usefulness is a practical question, Bayesian
updating is also a hypothesis for the real underlying biological
process, and it is useful to briefly discuss how our predictions of
Bayesian updating relate to the current understanding of the bio-
logical bases of winnereloser effects. First, as mentioned, Bayes'
theorem is theoretically the most accurate possible strategy for
dealing with uncertain information. It thus represents the target
that evolved neurophysiological mechanisms should approximate,
whether or not they explicitly infer the underlying variables of
interest (Higginson et al., 2018). For example, it is known that the
endocrine system is tightly linked with winnereloser effects
(Fuxjager, Montgomery, et al., 2011; Fuxjager, Oyegbile, et al., 2011;
Zhou et al., 2018); even without cognitive ‘learning’, we might
expect endocrine mechanisms to reflect the predictions of Bayesian
updating with larger shifts in the levels of circulating testosterone
and other hormones following a dramatic win or loss as well as
encoding learning as the establishment of a new, stable state (e.g.
high circulating testosterone or changes in receptor densities).
Although hormones have been broadly implicated in winnereloser
effects, winnereloser effects do not appear to bemediated solely by
endocrine state (Fortunato & Earley, 2023; Rutte et al., 2006); for
many species they are likely mediated at least in part by processes
in the brain, where Bayesian updating could be implemented as the
explicit mechanism of learning. The neural correlates of
winnereloser effects are even less well defined, but many of the
predicted changes in behaviour could be extended to predicted
changes in the brain. For example, if we assume winnereloser ef-
fects are driven by Bayesian learning, we might expect expression
in the brain following a contest to include genes involved in plas-
ticity and learning, with brains adopting a new, stable state
reflecting the change in self-assessment. We would also expect
priors and likelihood functions to be encoded in the brain
(Ashwood et al., 2020; Colombo& Seri�es, 2012; Pouget et al., 2013),
although identifying where and how these distributions are enco-
ded would be a significant challenge. Regardless of the specific
approach, fully identifying the mechanism behind winnereloser
effects will require very careful theory paired with careful mea-
sures of behaviour and/or the underlying neurophysiological pro-
cesses involved.

Conclusion

Given the inherent difficulty of inferring internal processes, and
the limitations of any single study, what should empirical and theo-
retical biologists take from this work? First, Bayesian updating pro-
vides a plausible and intuitive framework forwinnereloser effects, in
whichwinnerelosereffects follownaturally fromindividual attempts
to accurately respond to an uncertain reality, and future experiments
can test the predictions we have laid out here to identify novel fea-
tures of winnereloser effects and assess whether they are consistent
with Bayesian updating. More broadly, winnereloser effects should
be thought of as a combination of multiple pathways, which interact
to link prior experience to future outcomes. In this paper, we have
explored a few potential mechanisms of individual assessment,
updating mechanisms, contest strategies and how contests are
settled, but there are likely additional mechanisms like social eaves-
dropping (Earley& Dugatkin, 2002; Tibbetts et al., 2020), motivation
(O'Connor et al., 2015), short- (Zhou et al., 2018) and long-term
(Gherardi, 2006) feedback on intrinsic ability and individual varia-
tion inbehaviour (Laskowski et al., 2022) that influencewinnereloser
effects and dominance contests generally. All of this can be daunting,
but experimentation and theory can isolate individual effects to
generate at least some diagnostic behavioural predictions, providing
models that can predict individual behaviour as well as powerful
insights into the underlying behavioural mechanisms.
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