

ScienceDirect

Current understanding of atypical resistance against fungal pathogens in wheat

Arunima Sinha, Lovepreet Singh and Nidhi Rawat

Abstract

Pathogens and pests are a major challenge to global food security. Around one hundred different pests and pathogens challenge wheat, one of the most important food crops in the world. Traditional worldwide use of a few key resistance genes in wheat cultivars has necessitated a diversification of the toolbox of resistance genes in wheat varieties over the coming decades to meet the global production demands. Recent advances in gene discovery and functional characterization of genetic resistance mechanisms in wheat reveal great diversity in the types and effectiveness of the underlying resistance genes. This article summarizes the recent developments in the discovery of non-traditional "atypical" resistance genes in wheat against diverse fungal pathogens.

Addresses

Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA

Corresponding author: Rawat, Nidhi (nidhirwt@umd.edu)

Current Opinion in Plant Biology 2022, 68:102247

This review comes from a themed issue on Biotic interactions (2022)

Edited by Dr. Nidhi Rawat and Dr. Corné Pieterse

For complete overview of the section, please refer the article collection - Biotic interactions (2022)

Available online 15 June 2022

https://doi.org/10.1016/j.pbi.2022.102247

1369-5266/© 2022 Elsevier Ltd. All rights reserved.

Keywords

Wheat, Fungal pathogens, Atypical resistance, Broad-spectrum resistance (BSR).

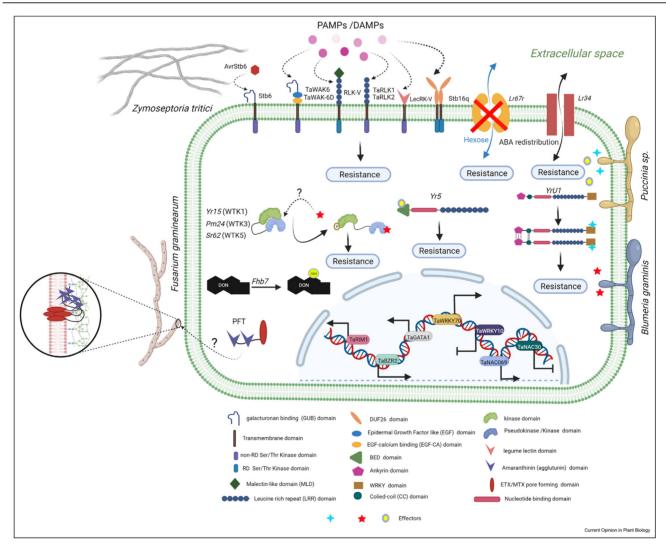
Introduction

Wheat is one of the most important food crops covering more than 219 million ha and yielding more than 760 million tons annually [1]. It meets around 20% of the total daily caloric need of the global human population [2]. However, wheat production is impaired by various biotic and abiotic stresses [3,4]. Around 21.5% of wheat production is lost to fungal pathogens and insect pests globally every year [5]. Enhancing genetic resistance in wheat against fungal pathogens is critical to achieving global food security [6,7]. Recent advances in genome sequencing and annotation of different diploid, tetraploid, and hexaploid wheat genomes are facilitating

unprecedented progress in the discovery and characterization of diverse resistance genes that will fortify wheat breeders' arsenal for resistance breeding against multiple pathogens [8–11].

In the quintessential interaction between a resistant plant and its biotrophic pathogen, the pathogen secretes proteins known as effectors in plant cells to facilitate infection, which are directly or indirectly detected by the host's resistance (R) proteins [12,13]. Since this interaction leads to the activation of a strong resistance response, known as effector-triggered immunity (ETI) in plants, the underlying pathogen effectors are called avirulence factors or Avrs [14]. Typical R proteins consist of nucleotide-binding leucine-rich repeat (NLR) proteins produced in the cytoplasm of the host cells. Rapid progress in the discovery and functional genomics of disease resistance genes in plants, including wheat, has revealed wide diversity in the type and their mechanisms of action, far exceeding the typical R-Avr interaction [15,16]. Examples of such atypical resistance genes include receptor-like kinases (RLKs), Wall-associated like receptor-like kinases (WAKs), Sugar and ATP binding cassette (ABC) transporters, tandem kinase proteins (TKPs), glutathione S-transferase (GST), Pore Forming Toxin-Like (PFT) and transcription factors (TFs). For this review, we have classified the non-canonical resistance genes as the atypical resistance genes. The atypical resistance proteins are not limited to the cytoplasm, and in fact, they can be categorized based on their cellular localization (Figure 1). This review article discusses recent discoveries made in the atypical resistance genes in wheat, grouped by the cellular location of the underlying predicted proteins (Table 1).

Cell wall and membrane


Perception and initial outcome of plant-pathogen interaction

The presence of microbes in the apoplastic space is detected by cell surface immune receptors that belong to membrane-associated RLKs or receptor-like proteins (RLPs). RLKs consist of an extracellular domain, a transmembrane domain, and a cytoplasmic kinase domain [17]. RLPs are similar in structure but lack the kinase domain. The diversity of extracellular ligand-binding domains of RLKs and RLPs has been used to classify them into different subclasses in model plants

Arabidopsis and rice [18]. Major classes include leucinerich repeats (LRRs), lectin-like domain, cysteine-rich domain, lysine motif (LysM), epidermal growth factor (EGF)-like domain, and malectin-like domain (MLD) [19,20]. In wheat, *TaRLK1* and *TaRLK2* [21] and *RLK-V* and *LecRK-V* from *Haynaldia villosa*, a diploid wheat relative highly resistant to powdery mildew [22,23], have been shown to regulate wheat defense to powdery

mildew pathogen *Blumeria graminis* f. sp. *tritici* (*Bgt*). *TaRLK1* and *TaRLK2* are LRR RLKs and their ectopic overexpression in wheat leads to increased production of reactive oxygen species (ROS) in fungal penetration sites leading to *Bgt* resistance [21]. *RLK-V* is a malectin-like/LRR-RLK that regulates both basal defense and *Pm21*-mediated resistance to *Bgt* [22]. *LecRK-V* is a lectin type RLK, whose overexpression confers *Bgt* resistance [23].

Figure 1

Schematic representation of Broad-spectrum resistance genes against fungal pathogens in wheat compartmentalized between extracellular spaces, cell membrane, cytoplasm, and nucleus. The extracellular and membrane-bound resistance genes have been categorized into receptor-like kinases (*TaRLK1*, *TaRLK2*), malectin-like/LRR-RLK (*RLK-V*), lectin type RLK (*LecRK-V*), cysteine-rich *RLK* (*Stb16q*), and wall-associated receptor-like kinases (*Stb6*, *TaWAK6*). The encoded proteins are involved in the perception of fungal determinants and transmitting the defense signal to the cell interior. Two other important membrane-bound atypical resistance genes encode for hexose transporters (Yr46/Lr67) and ABC transporters (Lr34) that confer BSR using a unique mechanism of inhibiting hexose transport and ABA redistribution, respectively. Intracellular BSR genes, covering a wide range of genes from NLR with atypical domains [BED (*Yr5*), Ankyrin and WRKY (*YrU1*)], wheat tandem kinase [WTK1 (*Yr15*), WTK3 (*pm24*), and WTK5 (*Sr62*)], GST (*Fhb7*), and PFT (*Fhb1*) utilizes diverse resistance mechanisms of defense against phytopathogenic fungus in wheat. Finally, nuclear transcription factors regulate the outcome of defense pathways by modulating the expression of defense-related and hormone-responsive genes. The different classes of TFs involved in wheat BSR are R2R3-MYB (TaRIM1), WRKY (TaWRKY70, TaWRKY10), NAC (TaNAC069, TaNAC30), BES/BZR (TaBZR2), and B-GATA (TaGATA1).

Current Opinion in Plant Biology 2022, 68:102247

Table 1	
List of non-canonical atypical resistance genes reported in w	vheat.

Localization	Gene	Gene product	Pathogen	Disease	Reference
Membrane	Stb6	Wall-associated receptor kinase (WAK)	Zymoseptoria tritici	Septoria tritici blotch	[28]
	TaWAK-6D	WAK	Fusarium pseudograminearum, and Rhizoctonia cerealis	Fusarium crown rot; sharp eyespot	[30]
	TaRLK1 and TaRLK2	leucine-rich-repeat (LRR) RLKs	Blumeria graminis f. sp. tritici (Bgt)	Powdery mildew	[21]
	RLK-V	Malectin-like/LRR-RLK	Bgt	Powdery mildew	[22]
	LecRK-V	Lectin type receptor-like kinase	Bgt	Powdery mildew	[23]
	TaWAK6	WAK	Pt	Leaf rust	[29]
	Stb16q	Cysteine-rich receptor like kinase (CRK)	Z. tritici	Septoria tritici blotch	[24]
	Yr46/Lr67	Hexose transporter	Puccinia triticina (Pt); Puccinia striiformis f. sp. Tritici (Pst); Puccinia graminis (Pgt); Bgt	Leaf rust; stripe rust; stem rust; powdery mildew	[31]
	Yr18/Lr34	ABC transporter	Pt; Pst; Pgt; Bgt	Leaf rust; stripe rust; stem rust; powdery mildew	[37]
Cytoplasm	Yr5	NLR and N terminal zinc-finger BED domain	Pst	Stripe rust	[48]
	YrU1	ANK-NLR-WRKY	Pst	stripe rust	[49]
	Yr15; YrG303; YrH52	Tandem kinase-pseudokinases	Pst	Stripe rust	[51]
	Pm24	Wheat tandem Kinase 3	Bgt	Powdery mildew	[54]
	Sr62	WTK5	Pgt	Stem rust	[55]
	Fhb7	Glutathione S-transferase	Fusarium spp.	Fusarium head blight	[56]
	Fhb1	Pore forming toxin-Like	Fusarium spp.	Fusarium head blight	[57]
Nucleus	TaRIM1	R2R3-MYB transcription factor	R.cerealis	Sharp eyespot	[58]
	TaWRKY70	Transcription factor	Pst	Stripe rust	[59]
	TaWRKY10	Transcription factor	Z. tritici	Septoria tritici blotch (STB)	[60]
	TaNAC069	NAC transcription factor	Pt	Leaf rust	[61]
	TaNAC30	NAC transcription factor	Pst	Stripe rust	[62]
	TaBZR2	Transcription factor	Pst	Stripe rust	[63]
	TaGATA1	B-GATA transcription factor	R. cerealis	Sharp eyespot	[64]

The extracellular domain in the members of the cysteine-rich RLK (CRK) subfamily consists of two DUF26 domains for ligand perception. Wheat gene *Stb16q* encoding a CRK confers a broad spectrum of resistance (BSR) against 11 isolates of *Zymoseptoria tritici*, causing Septoria tritici blotch [24]. One of the two DUF26 domain shares sequence similarity with the GNK2 mannose-binding domain, which suggests the affinity of extracellular *Stb16q* for apoplastic plant or fungi-derived mannose or its derivatives leading to *Stb16q*-mediated resistance [25]. Recognition of a conserved carbohydrate signature of the *Z. tritici* population by extracellular *Stb16q* stops the progression of pathogen either before its penetration through the stomata or into the sub-stomatal cavities [24].

WAKs represent a diverse cell surface immune receptor sub-family, specific to plants. WAKs confer resistance via different mechanisms ranging from non-specific quantitative resistance to a high level of specific resistance against particular races of pathogens [26]. Wheat Stb6 gene, encodes a WAK-like protein, containing a secretory signal peptide, galacturonan-binding (GUB) domain, a transmembrane domain and a serine/threonine kinase domain. Stb6 detects the presence of a matching apoplastic effector (AvrStb6) from Z. tritici and confers gene-for-gene resistance without a hypersensitive response [27,28]. Whereas, TaWAK6, a nonarginine-aspartate (non-RD) WAK, with an extracellular GUB domain, a calcium-binding epidermal growth factor (EGF CA) domain, and a cytoplasmic serine/ threonine kinase domain leads to quantitative partial resistance against Puccinia triticina (Pt) [29]. Another WAK, TaWAK-6D mediates a BSR against two different fungal pathogens: Fusarium pseudograminearum and Rhizoctonia cerealis, causing Fusarium crown rot and sharp eyespot diseases, respectively. TaWAK-6D protein includes a secretory signal peptide, an extracellular GUB domain closely connected to the cell wall, an EGF-like domain, an EGF domain, and an intracellular tyrosine kinase domain [30].

Transporters: the "gatekeepers" in wheat disease resistance

Membrane localized transporter proteins are vital to plant growth and development, and several studies have elucidated their role in biotic stress resistance. Sugar transporters are direct targets of pathogens to acquire carbohydrates for their growth and survival. A nonfunctional hexose transporter, resulting from mutations in two critical amino acids of Yr46/Lr67, confers BSR against multiple fungal pathogens including Puccinia triticina (leaf rust), Puccinia striiformis f. sp. tritici (Pst; stripe rust), Puccinia graminis f. sp. tritici (Pgt; stem rust), and (Puccinia graminis f. sp. tritici; Pgt) and, Blumeria graminis f. sp. tritici (Bgt; powdery mildew) in wheat [31,32]. Furthermore, Lr67 conferred BSR in barley

against *Puccinia hordei* and *B. graminis* f. sp. *hordei*, suggesting a conserved resistance mechanism between wheat and barley [33]. In addition to hexose transporters, sugars will eventually be exported transporters (SWEETs) are also exploited by pathogens to acquire carbohydrates in the extracellular space. Mutation of rice *OsSWEET11* has been shown to confer BSR against not only 63 diverse *Xanthomonas oryzae* races [34], but also against diverse *Rhizoctonia solani* (fungal pathogen causing sheath blight disease in rice) isolates in rice [35]. In wheat, a total of 108 *TaSWEETs* have been reported which show similarity with other 8 plant species that can be a good target for imparting resistance in wheat from *Pt* and *Pgt* conferring BSR [36].

ABC transporter encoded by Lr34 (=Yr18/Sr57/Pm38) constitutes another important class that mediates quantitative BSR in wheat [37]. Transgenic expression of Lr34res in barley, rice, maize, and sorghum has been shown to enhance their resistance against various biotrophic or hemi-biotrophic fungal pathogens [38–41]. Recently, it was shown in wheat and barley that Abscisic Acid (ABA) is the substrate for the LR34 ABC transporter and LR34res-mediated ABA redistribution contributes to the resistance against multiple fungal pathogens [42,43].

Intracellular atypical resistance genes

Recently, various intracellular resistance genes with diverse atypical resistance mechanisms have been discovered in wheat. Intracellular plant receptors, which are typically NLRs, play a vital role in pathogen surveillance [44]. One of the recently emerged classes of non-canonical NLRs with atypical domain structures are NLRs with integrated domains (NLR-IDs) [45]. Like other plant species, wheat has a diverse set of IDs including kinases, DNA binding domains (AP2, B3, Myb-Like, WRKY, Zinc Finger), Jacalin-like lectin and ubiquitin-conjugating domains, etc. [46,47]In wheat currently, two NLR-IDs conferring BSR against multiple races of stripe rust pathogen Pst have been characterized. Yr5 contains an N terminal zinc-finger BED domain that acts as a decoy, mimicking the target of pathogen effectors, leading to immunity against stripe rust in wheat [48]. YrU1 encodes NLR-ID with two IDs: an N terminal ankyrin domain and a C-terminal WRKY domain. The homo-dimerization of coiled-coil and ankyrin repeats is critical for the activity of YrU1 in resistance to stripe rust in wheat [49].

Lately, a novel class of intracellular receptors known as TKPs has emerged as class of atypical resistance proteins. TKPs consist of two kinase domains separated by a linker region [50]. In fact, five out of the six functionally characterized TKP in plants have been discovered in wheat and its relatives [51–55]. Notably, two of these TKPs, wheat tandem kinase 1 (WTK1) encoded

by Yr15 and WTK3 encoded by Pm24, confer BSR against more than 3000 genetically diverse Pst isolates and 36 tested isolates of Bgt, respectively [51,54]. Recently, Sr62, another tandem kinase gene cloned from Aegilops sharonensis, a distant wild relative of wheat, was found to confer high levels of resistance against 12 geographically distinct Pgt isolates in wheat [55]. Based on mutation analysis, both the kinase domains of Sr62 were required for resistance [55]. The molecular mechanism of TKP-mediated resistance is still not clear. It is proposed that the pseudokinase domain (or one of the kinase domains) could serve as a decoy for pathogen effector recognition and upon activation, kinase domain can initiate downstream defense signaling [50].

A mycotoxin detoxification gene is a new addition to intracellular atypical resistance genes in wheat. Cloning of Fhb7 from Thinopyrum elongatum, a wild relative of wheat, revealed that it encodes a GST that irreversibly detoxifies trichothecene mycotoxins and provides resistance against Fusarium Head Blight (FHB) in wheat [56]. Moreover, *Fhb7* establishes a unique evolutionary path as it underwent horizontal gene transfer from an endophytic fungus *Epichloe* sp. to *T.* elongatum [56]. Another novel type of wheat atypical resistance protein is PFT protein. PFT is one of the major determinants of Fhb1-mediated BSR against FHB [57]. PFT is predicted to be a chimeric plant lectin with two amaranthin domains (agglutinin domains of Amaranthus caudatus) and one bacterial epsilon toxin (ETX)/ mosquitocidal toxin (MTX) domain of aerolysin poreforming toxin family. It is hypothesized that PFT interacts with the fungal cell walls via amaranthin domains and makes pores in the fungal membrane through ETX/ MTX pore-forming domain, thereby killing the fungus [57]. This unique mechanism of defense against fungal pathogens can be widely applicable; however, it awaits further experimentation.

Nuclear regulation of disease response in wheat

In the nucleus, TFs modulate the expression of defenserelated genes. Various families of TFs impart resistance against fungal pathogens in wheat. In a study on R. cerealis-wheat interaction, it was shown that a nuclearlocalized TF TaRIM1, an R2R3-MYB, positively regulates defense response by modulating the expression of five defense genes (Defensin, PR10, PR17c, nsLTP1, and chitinase1) [58]. In another study, TaWRKY70 was found to be associated with wheat high-temperature seedling plant resistance to Pst. Furthermore, TaWRKY70 regulates the expression of Ethylene- and Salicylic Acidresponsive genes TaPIE1 and TaPR1.1, respectively [59]. Recently another WRKY TF, TaWRKY10 was found to negatively regulate the expression of IA receptor TaCOI1, thereby downregulating JA responses in Z. triticiwheat interaction [60]. In a very recent study, the role of one of the NAC TFs. TaNAC069 was found to positively regulate the wheat resistance to leaf rust fungus Pt by activating PR genes and inhibiting ROS clearancerelated genes [61]. While another NAC, TaNAC30 negatively regulates resistance in wheat-stripe rust pathogen (Pst) interaction as silencing of TaNAC30 enhanced resistance by inducing a significant increase in the accumulation of H₂O₂ [62]. Another TF, TaBZR2 targets the promoter region of the chitinase gene TaCht20.2, activating its transcription thereby conferring BSR to the stripe rust fungus by increasing total chitinase activity in wheat [63]. A wheat nuclear-localized LLM-domain containing B-GATA TF, TaGATA1, defends against R. cerealis infection by activating defense genes PR10, PR17C, and Chitinase3 [64].

In addition to genetic regulation, epigenetic regulation with underlying DNA methylation is being investigated as an important aspect of defense regulation in wheat. Recent exploratory studies suggest that modulating DNA methylation enhances resistance against powdery mildew and FHB of wheat [65,66]. In addition, epigenetic regulation is also exploited by wheat fungal pathogens. For example, stem rust fungus Pgt uses an epigenetic silencing pathway similar to RNA-directed DNA methylation in plants [67]. Pgt induces an array of early and late infection small RNAs with differing profiles and up-regulates a subclass of RNAi genes regulating DNA methylation during late infection. Future host-induced gene silencing approaches may use this knowledge to utilize fungus's RNAi machinery to silence its important virulence genes [67].

Conclusion

Recent advances in wheat functional genomics have led to major breakthroughs in resistance gene discovery in wheat. Various new atypical resistance genes that may be effective against multiple races or even multiple species of pathogens have been characterized. Notably, these resistance genes have diverse mechanisms of action and encode proteins with non-canonical domain architecture. The diverse resistance mechanisms include pathogen surveillance, substrate transport, defense signaling, transcription regulation, pore formation, and toxin detoxification. Although several proposed mechanisms await experimental validation, the discovery of novel resistance genes is expanding our knowledge of plant immunity beyond traditional ETI. The promise of enhancing the extent of plant defense by these discoveries is exemplified by the transgenic incorporation of a cassette of five genes Sr22-Sr35-Sr45-Sr50-Sr55 in wheat to achieve BSR against stem rust [68]. With the discovery of multiple atypical resistance genes with diverse underlying mechanisms, exciting opportunities exist to engineer specific domains and incorporate them in wheat cultivars to further enhance the level and range of genetic resistance against fungal pathogens.

Disclosure

Given her role as Guest Editor, Nidhi Rawat had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Corné Pieterse.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Acknowledgements

We would like to thank our funding agencies US National Science Foundation (Award number 1943155), USDA National Institute of Food, and Agriculture (Award number 2020-67013-32558), and US Wheat and Barley Scab Initiative (Award number 59-0206-0-179) for supporting our research.

References

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- ** of outstanding interest
- Faostat: Crop production summary. 2020. https://www.fao.org/ 1.
- 2. Faostat: Food balance sheet. 2019. https://www.fao.org/faostat/ en/#data/FBS.
- Velásquez AC, Castroverde CDM, He SY: Plant-pathogen 3. warfare under changing climate conditions. Curr Biol 2018, 28: R619-R634.
- Gupta A, Rico-Medina A, Caño-Delgado Al: The physiology of plant responses to drought. Science 2020, https://doi.org 10.1126/science.aaz7614
- Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A: The global burden of pathogens and pests on major food crops. *Nature Ecology & Evolution* 2019, **3**:430–439.
- Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI: **Genetic strategies for improving crop yields**. Nature 2019, 575:109-118.
- Gerten D, Heck V, Jägermeyr J, Bodirsky BL, Fetzer I, Jalava M, Kummu M, Lucht W, Rockström J, Schaphoff S, et al.: Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat Sustain 2020, 3:200-208.
- Consortium (Iwgsc) Tiwgs, Investigators Ir principal, Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Investigators I whole-genome assembly principal, Pozniak CJ, et al.: Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361:eaar7191.
- Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, et al.: The transcriptional landscape of polyploid wheat. Science 2018, 361:eaar6089.
- 10. Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, et al.: Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 2019, 51: 885-895
- 11. Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, Kolodziej MC, Delorean E, Thambugala D, et al.: Multiple wheat genomes reveal global variation in modern breeding. Nature 2020, 588:277-283.

- 12. Flor HH: Current status of the gene-for-gene concept. Annu Rev Phytopathol 1971, 9:275-296.
- 13. Jones JDG, Dangl JL: The plant immune system. Nature 2006, 444:323-329.
- 14. Dodds PN, Rathjen JP: Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 2010, 11:
- Thind AK, Wicker T, Šimková H, Fossati D, Moullet O, Brabant C, Vrána J, Doležel J, Krattinger SG: Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. *Nat Biotechnol* 2017, **35**:793–796.
- Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Singh N, et al.: Resistance gene cloning from a wild crop relative by sequence cap ture and association genetics. Nat Biotechnol 2019, 37:139-143.
- 17. Kanyuka K, Rudd JJ: Cell surface immune receptors: the guardians of the plant's extracellular spaces. Curr Opin Plant Biol 2019, 50:1-8.
- 18. Cheung AY, Qu L-J, Russinova E, Zhao Y, Zipfel C: **Update** on receptors and signaling. *Plant Physiol* 2020, **182**: 1527-1530.
- 19. Wu Y, Zhou J-M: Receptor-like kinases in plant innate immunity. J Integr Plant Biol 2013, 55:1271-1286.
- 20. Tang D, Wang G, Zhou J-M: Receptor kinases in plantpathogen interactions: more than pattern recognition. Plant Cell 2017, 29:618-637.
- 21. Chen T, Xiao J, Xu J, Wan W, Qin B, Cao A, Chen W, Xing L, Du C, Gao X, et al.: Two members of TaRLK family confer powdery mildew resistance in common wheat. BMC Plant Biol 2016, **16**:27.
- 22. Hu P, Liu J, Xu J, Zhou C, Cao S, Zhou W, Huang Z, Yuan S, Wang X, Xiao J, et al.: A malectin-like/leucine-rich repeat receptor protein kinase gene, RLK-V, regulates powdery mildew resistance in wheat. Mol Plant Pathol 2018, 19: 2561-2574.
- 23. Wang Z, Cheng J, Fan A, Zhao J, Yu Z, Li Y, Zhang H, Xiao J, Muhammad F, Wang H, et al.: LecRK-V, an L-type lectin receptor kinase in Haynaldia villosa, plays positive role in resistance to wheat powdery mildew. Plant Biotechnology Journal 2018, 16:50-62.
- Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary SMT, Poucet T, Marande W, Berges H, Xu S, Jaouannet M, *et al.*:

 A wheat cysteine-rich receptor-like kinase confers broadspectrum resistance against Septoria tritici blotch. Nat Commun 2021, 12:433.
 In this study, authors identified a BSR gene (Stb16q) against Zymo-

septoria tritici using comparative genomics, mutagenesis, and complementation, which encodes for a plasma membrane cysteine-rich receptor-like kinase. Stb16q when introduced into cultivated wheat considerably slows penetration and intercellular growth of the pathogen.

- 25. Miyakawa T, Hatano K, Miyauchi Y, Suwa Y, Sawano Y, Tanokura M: A secreted protein with plant-specific cysteinerich motif functions as a mannose-binding lectin that exhibits antifungal activity. Plant Physiol 2014, 166:766-778.
- Kou Y, Wang S: Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 2010. **13**:181-185.
- 27. Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, *et al.*: A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol 2017, 214:619-631.
- Saintenac C, Lee W-S, Cambon F, Rudd JJ, King RC, Marande W, Powers SJ, Bergès H, Phillips AL, Uauy C, et al.: Wheat receptor-kinase-like protein Stb6 controls gene-forgene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet 2018, 50:368-374.

Map-based cloning of Stb6, the first resistance gene cloned against Zymoseptoria tritici in wheat. Stb6 encodes a conserved wallassociated receptor kinase (WAK)-like protein and confers resistance without a hypersensitive response in a gene-for-gene manner by detecting AvrStb6 from the fungal pathogen.

- Dmochowska-Boguta M, Kloc Y, Zielezinski A, Werecki P, Nadolska-Orczyk A, Karlowski WM, Orczyk W: TaWAK6 encoding wall-associated kinase is involved in wheat resistance to leaf rust similar to adult plant resistance. PLoS One 2020. 15. e0227713.
- 30. Qi H, Guo F, Lv L, Zhu X, Zhang L, Yu J, Wei X, Zhang Z: The wheat wall-associated receptor-like kinase TaWAK-6D mediates broad resistance to two fungal pathogens Fusarium pseudograminearum and Rhizoctonia cerealis. Front Plant Sci 2021, 12.
- **31.** Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, *et al.*: **A recently evolved hexose transporter** variant confers resistance to multiple pathogens in wheat. Nat Genet 2015, 47:1494-1498.
- 32. Julius BT, Leach KA, Tran TM, Mertz RA, Braun DM: Sugar transporters in plants: new insights and discoveries. Plant Cell Physiol 2017, 58:1442-1460
- Milne RJ, Dibley KE, Schnippenkoetter W, Mascher M, Lui ACW, Wang L, Lo C, Ashton AR, Ryan PR, Lagudah ES: The wheat Lr67 gene from the sugar transport protein 13 family confers multipathogen resistance in barley. Plant Physiol 2019, 179:
- 34. Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom J-S, Li C, Nguyen H, Liu B, *et al.*: **Broad-spectrum resistance to bacterial blight in rice using genome** editing. Nat Biotechnol 2019, 37:1344-1350.
- Gao Y, Zhang C, Han X, Wang ZY, Ma L, Yuan DP, Wu JN, Zhu XF, Liu JM, Li DP, et al.: Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Mol Plant Pathol 2018, 19:2149-2161.
- Gautam T, Saripalli G, Gahlaut V, Kumar A, Sharma PK, Balyan HS, Gupta PK: **Further studies on sugar transporter** (SWEET) genes in wheat (Triticum aestivum L.). Mol Biol Rep 2019, 46:2327–2353.
- Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B: A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 2009, 323: 1360-1363
- 38. Krattinger SG, Sucher J, Selter LL, Chauhan H, Zhou B, Tang M, Upadhyaya NM, Mieulet D, Guiderdoni E, Weidenbach D, et al.: The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnology Journal 2016, 14:1261-1268.
- Schnippenkoetter W, Lo C, Liu G, Dibley K, Chan WL, White J, Milne R, Zwart A, Kwong E, Keller B, *et al.*: The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnol J 2017, 15: 1387-1396.
- Sucher J, Boni R, Yang P, Rogowsky P, Büchner H, Kastner C, Kumlehn J, Krattinger SG, Keller B: **The durable wheat disease** resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnology Journal 2017, 15:489-496.
- 41. Boni R, Chauhan H, Hensel G, Roulin A, Sucher J, Kumlehn J, Brunner S, Krattinger SG, Keller B: Pathogen-inducible Ta-Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects. *Plant* Biotechnology Journal 2018, 16:245-253.
- Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, et al.: Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol 2019, 223:853-866.

Authors show that Lr34 regulates the distribution of Abscissic Acid, which is the candidate molecule contributing to resistance in plants. Lr34 encodes an ATP-binding cassette transporter and is known to confer durable resistance against multiple fungal pathogens in all major cereals.

- 43. Bräunlich S, Koller T, Glauser G, Krattinger SG, Keller B: Expression of the wheat disease resistance gene Lr34 in transgenic barley leads to accumulation of abscisic acid at the leaf tip. Plant Physiol Biochem 2021, 166:950-957.
- 44. Lolle S, Stevens D, Coaker G: Plant NLR-triggered immunity: from receptor activation to downstream signaling. Curr Opin Immunol 2020, **62**:99–105.
- Tamborski J, Krasileva KV: Evolution of plant NLRs: from natural history to precise modifications. Annu Rev Plant Biol 2020 71:355-378
- Andersen EJ, Nepal MP, Purintun JM, Nelson D, Mermigka G, Sarris PF: Wheat disease resistance genes and their diversification through integrated domain fusions. Front Genet 2020,
- 47. Bailey PC, Schudoma C, Jackson W, Baggs E, Dagdas G, Haerty W. Moscou M. Krasileva KV: Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol 2018, 19:23.
- Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski NM, Boyd L, McIntosh R, Wulff BBH, Berry S, et al.:

 BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants 2018, 4: 662-668.

Cloning of the first integrated BED domain-NLR in wheat providing BSR againt stripe rust pathogen *Puccinia striiformis*. The authors also identified three more haplotypes of the gene he authors also identified two more haplotypes of the gene: *Yr7* and *YrSP* with variations in leading to differential response to the pathogen.

- Wang H, Zou S, Li Y, Lin F, Tang D: An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. *Nat Commun* 2020, 11:1353.
- Klymiuk V, Coaker G, Fahima T, Pozniak CJ: Tandem protein kinases emerge as new regulators of plant immunity. MPMI (Mol Plant-Microbe Interact) 2021, 34:1094-1102.
- Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, *et al.*: Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. *Nat Commun* 2018, 9:

Cloning of Yr15, a BSR gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as *wheat* tandem kinase 1. Pyramiding of *Yr15* with *Yr5* (another BSR gene) was shown to provide full resistance to multiple virulent stripe rust races.

- Chen S, Rouse MN, Zhang W, Zhang X, Guo Y, Briggs J Dubcovsky J: Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol 2020, 225:948-959.
- Gaurav K, Arora S, Silva P, Sánchez-Martín J, Horsnell R, Gao L, Brar GS, Widrig V, Raupp J, Singh N, et al.: **Population genomic** analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat Biotechnol 2022, 40:422-431.
- 54. Lu P, Guo L, Wang Z, Li B, Li J, Li Y, Qiu D, Shi W, Yang L, Wang N, et al.: A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 2020, 11:680.
- 55. Yu G, Matny O, Champouret N, Steuernagel B, Moscou MJ, Hernández-Pinzón I, Green P, Hayta S, Smedley M, Harwood W, et al.: Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun 2022, 13: 1607.
- Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, et al.: Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 2020, https://doi.org/10.1126/science.aba5435

Cloning of Fhb7 that encodes a glutathione S-transferase (GST), which irreversibly detoxifies trichothecene mycotoxins and provides resistance against Fusarium Head Blight in wheat. The authors also show that Fhb7 might have moved from Epichloë (an edophytic fungus) to T. elongatum through horizontal gene transfer.

Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, *et al.*: Wheat Fhb1 encodes a chimeric lectin with agglutinin

- domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. *Nat Genet* 2016, **48**: 1576–1580.
- Shan T, Rong W, Xu H, Du L, Liu X, Zhang Z: The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci Rep 2016, 6:28777.
- Wang J, Tao F, An F, Zou Y, Tian W, Chen X, Xu X, Hu X: Wheat transcription factor TaWRKY70 is positively involved in hightemperature seedling plant resistance to *Puccinia striiformis* f. sp. tritici. Mol Plant Pathol 2017, 18:649–661.
- Campanaro A, Srivastava AK, Zhang C, Lee J, Millyard L, Gatehouse AMR, Byrne E, Sadanandom A: TaWRKY10 transcription factor is a novel jasmonic acid signalling regulator involved in immunity against Septoria tritici blotch disease in wheat. Plant Pathol 2021, 70:1397–1408.
- Zhang Y, Geng H, Cui Z, Wang H, Liu D: Functional analysis of wheat NAC transcription factor, TaNAC069, in regulating resistance of wheat to leaf rust fungus. Front Plant Sci 2021, 12:329.
- 62. Wang B, Wei J, Song N, Wang N, Zhao J, Kang Z: A novel wheat NAC transcription factor, TaNAC30, negatively regulates resistance of wheat to stripe rust. J Integr Plant Biol 2018, 60:432–443.
- 63. Bai X, Zhan G, Tian S, Peng H, Cui X, Islam MA, Goher F, Ma Y, Kang Z, Xu Z-S, et al.: Transcription factor BZR2 activates chitinase Cht20.2 transcription to confer resistance to wheat stripe rust. Plant Physiol 2021, 187:2749–2762.
- 64. Liu X, Zhu X, Wei X, Lu C, Shen F, Zhang X, Zhang Z: The wheat LLM-domain-containing transcription factor TaGATA1

- positively modulates host immune response to Rhizoctonia cerealis. *J Exp Bot* 2020, **71**:344–355.
- 65. Geng S, Kong X, Song G, Jia M, Guan J, Wang F, Qin Z, Wu L, Lan X, Li A, et al.: DNA methylation dynamics during the interaction of wheat progenitor Aegilops tauschii with the obligate biotrophic fungus Blumeria graminis f. sp. tritici. New Phytol 2019, 221:1023–1035.
- Kumar J, Rai KM, Pirseyedi S, Elias EM, Xu S, Dill-Macky R, Kianian SF: Epigenetic regulation of gene expression improves Fusarium head blight resistance in durum wheat. Sci Rep 2020, 10:17610.
- 67. Sperschneider J, Jones AW, Nasim J, Xu B, Jacques S, Zhong C, Upadhyaya NM, Mago R, Hu Y, Figueroa M, et al.: The stem rust fungus Puccinia graminis f. sp. tritici induces centromeric small RNAs during late infection that are associated with genome-wide DNA methylation. BMC Biol 2021, 19:203.
- Luo M, Xie L, Chakraborty S, Wang A, Matny O, Jugovich M, Kolmer JA, Richardson T, Bhatt D, Hoque M, et al.: A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat Biotechnol 2021, 39: 561–566.

Authors deployed a transgene cassette of five resistance genes, encoding NLRs and a defective hexose transporter, into bread wheat as a single locus by Agrobacterium-mediated transformation. The multi-transgene stack provided BSR against stem rust pathogen in wheat and represents a strategic deployment technique for disease protection by simplifying breeding efforts and increasing durability of resistance.