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The nonabelian Brill-Noether divisor on ./\_/113
and the Kodaira dimension of R 3
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We highlight several novel aspects of the moduli space of curves of genus 13, the first genus g where
phenomena related to K3 surfaces no longer govern the birational geometry of M. We compute the
class of the nonabelian Brill-Noether divisor on M;3 of curves that have a stable rank-two vector bundle
with canonical determinant and many sections. This provides the first example of an effective divisor
on M, with slope less than 6 4 10/g. Earlier work on the slope conjecture suggested that such divisors
may not exist. The main geometric application of our result is a proof that the Prym moduli space R 3 is
of general type. Among other things, we also prove the Bertram—Feinberg—Mukai and the strong maximal
rank conjectures on Mjs.
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1 Introduction

One of the defining achievements of modern moduli theory is the result due to Harris, Mumford and
Eisenbud [27; 16] that M g 1s of general type for g > 24. An essential step in their proof is the calculation of
the class of the Brill-Noether divisor /\_/lg,, consisting of those curves X of genus g such that G, (X) # @
in the case p(g.r,d) := g—(r+1)(g—d +r) = —1. Recall that the slope of an effective divisor D on My
not containing any of the boundary divisors A; in its support is defined as the quantity s(D) := a/min; b;,
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804 Gavril Farkas, David Jensen and Sam Payne

where [D] = aA —bodo — -+ —b|g/2]8|g/2] € CHI(/\_/lg). Eisenbud and Harris [16] showed that the
slope of /Wg,r isa/bp =6+ 12/(g + 1). After these seminal results from the 1980s, the fundamental
question arose whether one can construct effective divisors D on Mg of slope s(D) <6+ 12/(g+1)
by using conditions defined in terms of higher rank vector bundles on curves.

Each effective divisor D on Mg of slope s(D) < 6+ 12/(g + 1) must contain the locus Kg € Mg of
curves lying on a K3 surface; see Farkas and Popa [21]. Since curves on K3 surfaces possess stable
rank-two vector bundles with canonical determinant and unexpectedly many sections (see Lazarsfeld [35],
Mukai [38] and Voisin [48]), it is then natural to focus on conditions defined in terms of rank-two vector
bundles with canonical determinant.

For a smooth curve X of genus g, let SUy (2, w) be the moduli space of semistable rank-two vector
bundles £ on X with det £ =~ wy . For k > 0, Bertram and Feinberg [7, Conjecture, page 2] and Mukai [38,
Problem 4.8] conjectured that for a general curve X, the rank-two Brill-Noether locus

SUx(2,w,k) :={E € SUx (2, wy) : h°(X, E) > k}
has dimension B(2, g,k) :==3g -3 — (k;rl). For a general curve X the Mukai—Petri map
(1) we:Sym?> HO(X, E) - H°(X, Sym?(E))

is injective for each £ € SUx (2, w); see Teixidor i Bigas [45]. As a consequence, SUy (2, w, k) has the
expected dimension 8(2, g, k), if it is nonempty. There are numerous partial results on the nonemptiness
of SUyx (2, w, k) — see for instance Lange, Newstead and Park [34], Teixidor i Bigas [44] and Zhang [49] —
although still no proof in full generality.

Assume now that 3g—3 = (kaLl). Then generically, SUy (2, w, k) consists of finitely many vector bundles,
if it is nonempty. We consider the nonabelian Brill-Noether divisor MPg on Mg consisting of curves
[X] for which there exists £ € SUy (2, wy, k) such that the Mukai—Petri map @ g is not an isomorphism.

In this paper, we focus on the first genuinely interesting case,!

g=13 and k =8.
Our first main result proves this case of the Bertram—Feinberg—Mukai conjecture and computes the class
of the closure of the nonabelian Brill-Noether divisor.
Theorem 1.1 A general curve X of genus 13 carries exactly three stable vector bundles E € SUx (2, w, 8).
The closure in M3 of the nonabelian Brill-Noether divisor on M3
MPy3:={[X] € M3 : there exists an E € SUx (2, w, 8) with g : Sym?> H°(E) 2, HO(Sym?(E))}

has slope equal to

s(MP1a]) = 4% = 6.735... <6+ 19 =6.769. ..

11t is left to the reader to show that in the previous cases k = 5, 6, the corresponding divisors MPg and MPg are supported on
the loci, in Mg and Mg respectively, of curves failing the Petri theorem.
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The nonabelian Brill-Noether divisor on M3 and the Kodaira dimension of Ris 805

To explain the significance of this result, we recall that several infinite series of examples of divisors
on M ¢ for g > 10 with slope less than 6 4+ 12/(g + 1) have been constructed in Farkas [17], Farkas and
Popa [21], Farkas, Jensen and Payne [19] and Khosla [32], using syzygies on curves. Quite remarkably,
the slopes s(D) of all these divisors D on M, satisfy

10 12
6+? <s(D) <6+m.
The slope 6 + 12 /(g + 1) appears as both the slope of the Brill-Noether divisors /\_/lg’r and as the slope
of a Lefschetz pencil of curves of genus g on a K3 surface. Similarly, 6 + 10/ g is the slope of the family
of curves {X,};cp1 in Ag C M, obtained from a Lefschetz pencil {X;},cp:1 of curves of genus g — 1
on a K3 surface S by identifying two sections corresponding to basepoints of the pencil. The natural
question has been therefore raised in [10, page 2], whether a slight weakening of the Harris—Morrison

slope conjecture [26] remains true and the inequality

@) s(D)= 6+ 12

g
holds for every effective divisor D on M ¢- Results from Farkas and Popa [21] and Tan [43] imply that
inequality (2) holds for all g < 12. In particular, the divisor K19 on Mg consisting of curves lying on
K3 surfaces, which was shown in [21] to be the original counterexample to the slope conjecture, satisfies
s(Kig)=7=6+ 10/g. On M, since a general curve of genus 11 lies on a K3 surface, it follows
that the pencils {X/},cp1 cover the boundary divisor Ag € M2, and consequently the inequality (2)
holds. Therefore 13 is the smallest genus where inequality (2) can be tested, and Theorem 1.1 provides a
negative answer to the question posed in Chen, Farkas and Morrison [10].

1.1 The Kodaira dimension of the Prym moduli space R 13

One application of Theorem 1.1 concerns the birational geometry of the moduli space R of Prym curves
of genus g. The Prym moduli space R classifying pairs [X, n], where X is a smooth curve of genus g
and 7 is a 2—torsion point in Pic®(X), has been classically used to parametrize moduli of abelian varieties
via the Prym map Ry — Ag—1 [6]. The Deligne-Mumford compactification R is uniruled for g < 8
(see Farkas and Verra [23]), and was previously known to be of general type for g > 14 and g # 16 (see
Bruns [9] and Farkas and Ludwig [20]).2

Theorem 1.2 The Prym moduli space R13 is of general type.

In particular, 13 is the smallest genus g for which it is known that ﬁg is of general type. The proof of
Theorem 1.2 takes full advantage of Theorem 1.1. It also uses the universal theta divisor ®13, defined as
2The problem of determining the Kodaira dimension of R1g remains open. It was proven in Farkas and Ludwig [20] that the

Prym—Green conjecture on R implies that Ry¢ is of general type. However, as shown in Chiodo, Eisenbud, Farkas and
Schreyer [11, Proposition 4.4], there is strong indication that the Prym—Green conjecture fails in genus 16.
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806 Gavril Farkas, David Jensen and Sam Payne

the locus of Prym curves [X, 7] € R13 for which there exists a vector bundle E € SUx (2, w, 8) such that
H%(X,E ®n) # 0. In an indirect way (to be explained later), we calculate the class [®13] of the closure
of ®;3 inside R ;3 and show that

3) Kz, € Q>0(A, [®13], [D13:2], boundary divisors),

where D135 is the effective divisor on R 13 introduced in Farkas and Ludwig [20] consisting of Prym
curves [X, n] for which 7 can be written as the difference of two effective divisors of degree 6 on X.
Since A is big, it follows that K7 . is also big. Theorem 1.2 follows, since the singularities of Rg do not
impose adjunction conditions [20].

1.2 The strong maximal rank conjecture on ./\_/11 3

The proofs of both Theorems 1.1 and 1.2 are indirect and proceed through a study of the failure locus
of the strong maximal rank conjecture (see Aprodu and Farkas [3]) on M3. For a general curve X of
genus 13 the Brill-Noether locus W5 (X) is one-dimensional, and W, 6(X ) = @. Counting dimensions
shows that the multiplication map

ér:Sym?> H(X, L) — H°(X, L®?)

has at least a one-dimensional kernel, since 7°(X, L®?) =2deg(L)+ 1—g = 20. The space of pairs [X, L]
such that Ker(¢y) is at least two-dimensional therefore has expected codimension 2 in the parameter space
(’5? ¢ of all such pairs [X, L]. Since the fibers of the map o°: QS? 6 — M3 are in general one-dimensional,
the pushforward of this locus is expected to be a divisor on M3.

Our next result verifies this case of the strong maximal rank conjecture and computes the class of the
closure of the divisorial part of the failure locus. This is essential input for the calculation of the nonabelian
Brill-Noether divisor class in Theorem 1.1 and hence for the proof of Theorem 1.2.

Theorem 1.3 The locus of curves [X] € M3 carrying a line bundle L € W156 (X) such that the multipli-
cation map ¢ : Sym? H%(X, L) — H%(X, L®?) is not surjective is a proper subvariety of M3, having
a divisorial part ® 13, whose closure in M3 has slope

s(D13) =222 =6.754... <6+ 13.
The proof of Theorem 1.3 takes full advantage of the techniques we developed in [19] in the course of
our work on My, and M>s. To that end, we split Theorem 1.3 in two parts.

Recall that a curve is treelike if its dual graph becomes a tree after deletlng all loop edges [16, page 364].
We consider a proper moduli stack of generalized limit linear series o': 051 6> 93?13, where 93?13 is a
suitable moduli stack of treelike curves of genus 13 equal to i3 U Ag U A in codimension one; see
Section 2 for a precise definition. We then construct a morphism of vector bundles over 5? ¢ globalizing
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The nonabelian Brill-Noether divisor on M3 and the Kodaira dimension of Ris 807

the multiplication maps ¢;, considered before. The degeneracy locus 4 of this morphism, due to its

determinantal nature, carries a virtual class [¢[]"™ of codimension 2 inside (’5? 6 Set

[D13]"™ 1= 0x ([UY1) € CH ! (M3).

Theorem 1.4 The following relation for the virtual class [3513]Virt holds:

[D13]"'" = 3(50591 — 74980 —392981) € CH ' (M13).

That the degeneracy locus 4l does not map onto M3 is a particular case of the strong maximal rank
conjecture of [3]. We prove this case, along with a stronger result that guarantees that the virtual class
[513]Virt is effective, using tropical geometry. In particular, we use the method of tropical independence
on chains of loops, as introduced in Jensen and Payne [30; 31]. Our construction of the required tropical
independences is similar to the one used in our proof that M3, and M>3 are of general type, with one
important innovation. In [19], we were able to ignore certain loops called lingering loops. Here, this
seems impossible; there are too few nonlingering loops. This difficulty shows up already in the simplest
combinatorial case, which we call the vertex-avoiding case; for a discussion of how we resolve this
difficulty, see Remarks 4.3 and 4.11.

Theorem 1.5 For a general curve [X] € M3 the map ¢ : Sym? HO(X, L) — H®(X, L®?) is surjective
for all L € W156 (X). Furthermore, there is no component of the degeneracy locus $\ mapping with
positive-dimensional fibers onto a divisor in /qu;.

Theorem 1.5 implies that D3, defined as the divisorial part of o((), represents the class [D3]"™.
Together with Theorem 1.4, this completes the proof of Theorem 1.3.

The existence of effective divisors of exceptionally small slope on M3 has direct applications to the
birational geometry of the moduli space M3 , of n—pointed stable curves of genus 13.

Theorem 1.6 The moduli space M3 5, is of general type forn > 9.

This improves on Logan’s result [36] that M13,n is of general type for n > 11. It is known that M 13,1 18
uniruled for n < 4; see Agostini and Barros [1].

1.3 The divisor ® {3 and rank-two Brill-Noether loci

The link between Theorems 1.1 and 1.3 involves a reinterpretation of the divisor ®13 in terms of rank-two
Brill-Noether theory. Let SU/13(2, w, 8) denote the moduli space of pairs [X, E], where [X] € M3 and
E € SUx (2, w, 8). Consider the forgetful map

9:SU 32, ,8) > My3, [X,E]— [X].

Geometry & Topology, Volume 28 (2024)
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We will show that ¥ is a generically finite map of degree 3 (Theorem 6.5) and that Si/;3(2, w, 8) is
unirational (Corollary 6.3). The fact that Mj3 possesses a modular cover ¢ of such small degree is
surprising; we do not know of parallels for other moduli spaces M.

We now fix a pair [X, E] € SU13(2, w, 8) and consider the determinant map
d: NH(X,E) - H°(X, wy).

It turns out that for a general [X, E] as above, F is globally generated and the map d is surjective. In
particular, P (Ker(d)) C ]P’(/\ZH %X, E )) =~ P27 is a 14-dimensional linear space. Since h°(X, wy) =
2h0(X, E) — 3, it follows that the set of pairs [X, E] satisfying the condition

C)) P(Ker(d)) N G2, H* (X, E)) # @,

the intersection being taken inside P (/\2H %X,E )), is expected to be a divisor on SU13(2, w, 8), and
its image under projection by the generically finite map ¢ is expected to be also a divisor on Mj3. We
refer to this locus as the resonance divisor PRes3, inspired by the algebraic definition of the resonance
variety; see Aprodu, Farkas, Papadima, Raicu and Weyman [4, Definition 2.4].

Theorem 1.7 The closure of the resonance divisor in M3
Mesy3 = {[X] € M3 : there exists an E € SUx (2, w, 8) with P(Ker(d)) N G2, H*(X, E)) # @}
is an effective divisor in M 3. One has the following equality of divisors on M3:

Resiz = D13+ 3 -./\_/li3,7.

Here, we recall that ./ij is the Hurwitz divisor of heptagonal curves on M3 whose class is computed
in Harris and Mumford [27]. The set-theoretic inclusion M%3,7 C fRes3 is relatively straightforward.
The multiplicity 3 with which M }3’7 appears in fRes3 is explained by an excess intersection calculation
carried out in Section 7, and confirms once more that the degree of the map ¥ : SU13(2, w, 8) = M3
is 3.

We conclude this introduction by explaining the connection between the resonance divisor fResi3 and
Theorems 1.1 and 1.3. On the one hand, using Farkas and Rimdnyi [22] the class [%13] of the closure of
PRes3 in M3 can be computed in terms of the generators of CH ! (./\7113) and a tautological class ¥« (y),
where y is the pushforward of the second Chern class of the (normalized) universal rank-two vector
bundle on the universal curve over a suitable compactification of Si13(2, w, 8); see Definition 7.3 for
details. On the other hand, Theorem 1.7 yields an explicit description of Res13. By combining this
description with Theorem 1.3, we obtain a second calculation for the class [%13]. In this way, we
indirectly determine the tautological class ¥« (y); see Proposition 7.7. Once the class of [9?::513] is known,
the calculation of the class of the nonabelian Brill-Noether divisor [./\77313] (Theorem 1.1) and that of the
universal Theta divisor [@)13] on R13 (Theorems 1.2 and 8.3) follow from Grothendieck—Riemann—Roch
calculations, after checking suitable transversality assumptions.

Geometry & Topology, Volume 28 (2024)
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2 The failure locus of the strong maximal rank conjecture on M3

We denote by ETTZg the moduli stack of stable curves of genus g > 2 and by M ¢ the associated coarse
moduli space. We work throughout over an algebraically closed field K of characteristic 0 and the Chow
groups that we consider are with rational coefficients. Via the isomorphism CH *(DTTg) ~ CH*(My),
we routinely identify cycle classes on STIg with their pushforward to M. Recall that for g > 3 the group
CH'(My) is freely generated by the Hodge class A and by the classes of the boundary divisors §; = [A;]
for i =O,...,L%gJ.

In this section, we realize the virtual divisor class [513]"irt as the pushforward of the virtual class of a
codimension 2 determinantal locus inside the moduli space gf ¢ Of limit linear series of type gf 6 Over an
open substack 97?13 of 97?13, which agrees with 99113 U Ag U A outside a subset of codimension 2. We
will use standard terminology from the theory of limit linear series [15], and begin by recalling a few of

the basics.

Definition 2.1 Let X be a smooth curve of genus g with £ = (L, V) € GJ(X) a linear series. The
ramification sequence of £ at a point g € X is denoted by

o"(q) 1 05(q) < - < o[ (q).
This is obtained from the vanishing sequence a*(q) : af;(q) << af(q) < d of £ at ¢, by setting
ozl.e (q9):= af(q)—i fori =0,...,r. The ramification weight of g with respect to £ is wtt(¢) := Yo af (g).
We define p(£, q) := p(g, . d) —wtt(q).
A generalized limit linear series on a treelike curve X of genus g consists of a collection
£={(Lc,Vc):C is acomponent of X},

where L¢ is a rank-one torsion-free sheaf of degree d on C and Ve € HO(C, L¢) is an (r+1)-
dimensional space of sections satisfying compatibility conditions on the vanishing sequences at the nodes
of X; see [16, page 364]. Let (_;:i (X) be the variety of generalized limit linear series of type g/, on X.

In this section we set
) g=13, r=5 d=1e.
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810 Gavril Farkas, David Jensen and Sam Payne

Although we are mainly interested in the case g = 13, some of the constructions are set up for an arbitrary
genus g, making it easier to refer to results from [19].

We denote by M?3’15 the subvariety of M3 parametrizing curves X such that W155(X ) # . As
explained in [19, Section 3], we have codim(/\/lf3,5, Miz) > 2.

Let A € A; € Mg be the locus of curves [X U, E], where X is a smooth curve of genus g — 1
and [E, y] € My 1 is an arbitrary elliptic curve. The point of attachment y € X is chosen arbitrarily.
Furthermore, let A§ € Ag C M, be the locus of curves [Xyq := X/y ~ g] € Ag, where [X,¢] is a
smooth curve of genus g —1 and y € X is an arbitrary point, together with their degenerations [X Uy Exo],
where E is a rational nodal curve (that is, E is a nodal elliptic curve and j(Es) = o0). Points of
this form comprise the intersection Ag N AJ. We define the following open subset of Meg:

Mg == Mg UAGU AT,

Along the lines of [19, Section 3], we introduce an even smaller open subspace of Mg, over which the
calculation of [D13]""™ can be completed. Let 7o C A§ be the locus of curves [X,4 := X/y ~ ¢], where
either GZH (X)# @ or G;_z (X) # @. Similarly, let 7; € A7 be the locus of curves [X U, E], where
X is a smooth curve of genus g — 1 such that G;‘H(X) #FaorG;_,(X) # 3. We set

We define Ag := .A~/lg NAp € Ag and Ay = Mg N Ay € Af. Note that /ﬁg and Mg U AgU Ay agree
away from a set of codimension two in each. We identify CHI(./\7lg) >~ Q(A, 80, 61), where A is the
Hodge class, 8o := [Ao] and §; := [A4].

2.1 Stacks of limit linear series

Let é; be the stack of pairs [X, £], where [X] € M ¢ and £ is a (generalized) limit linear series of type g,
on the treelike curve X. We consider the proper projection
o: B — M.

Over a curve [X Uy, E] € A1, we identify o ~1([X Uy E]) with the variety of (generalized) limit linear
series £ = ({x,LE) € (_}:1 (X Uy E). TheEber 071 ([Xy4]) over an irreducible curve [Xy,] € Ao\ A
is canonically identified with the variety W/, (Xy4) of rank-one torsion-free sheaves L on X4 having
degree d(L) = d and h®(Xy4, L) > r + 1.

Let Eg — ﬁtg be the universal curve, and let p;: ég X3, 65:1 — (752 be the projection map. We denote
by 3 C (’Nig X5, (75:1 the codimensioniwo substack consisting of pairs [Xy4, L, z], where [X,,4] € A, the
point z is the node of X4 and L € W, (X)4) \ W (Xy4) is a non-locally free torsion-free sheaf. Let

e: ¢, :=Bl3(C, X5, &) — €4 X5, &
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be the blowup of this locus, and we denote the induced universal curve by
p::pzoe:é\ge@;.
The fiber of g over a point [X,4, L] € Ao, where L € WZ, (Xyg) \ W;(Xyq), is the semistable curve

X Uygy gy R of genus g, where R is a smooth rational curve meeting X transversally at y and q.

2.2 A degeneracy locus inside @Sf 6

In order to define the degeneracy locus on @f ¢ Whose pushforward produces [513]Vm, we first choose a
Poincaré line bundle £ over the universal curve ég with the following properties:

(i) If[XUu,E]e A; and £ = (Ux,LE) € 52()( U E) is a limit linear series, then
Lixu,E 0 € Picd(X) X PiCO(E).

(ii) For a point t = [X,4, L], where [X,4] € Ao and L € WZ(qu) \ W7 (Xyq), thus L = vy (A)
for some A € W;_,(X), we have £|x = A and L|g = Og(1). Here, ©~1(t) = X U R, whereas
v: X — X4 is the normalization map.

We now introduce two sheaves over @52,
E:=pu(L£) and F:= p.(L®?).

Both £ and F are locally free; the proof by local analysis in [19, Proposition 3.6] goes through essentially
without change.

There is a sheaf morphism over @f ¢ globalizing the multiplication of sections
(6) ¢: Sym?(€) — F.

We denote by i C (’3? ¢ the locus where ¢ is not surjective (equivalently, where ¢V is not injective). Due
to its determinantal nature, Ll carries a virtual class in the expected codimension 2.

Definition 2.2 We define the virtual divisor class [D13]"™ := o ([[]") as
D13 1= 0u(c2(Sym?* (€)= FY)) € CH' (My3).
If Y has pure codimension 2, then D13 is a divisor on M3 and [513]"irt = [513]. The following corollary
provides a local description of the morphism ¢.
Corollary 2.3 The morphism ¢: Sym?(€) — F has the following description on fibers:
(i) For[X,L]e ®, with[X] e Mg \/\/l;’a,_1 smooth, the fibers are
Ex,py=H (X, L) and Fxr)=H(X,L®?),
and ¢(x.1): Sym> HO(X, L) — HO(X, L®?) is the usual multiplication map of global sections.
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(ii) Supposet = (X U, E €x LE) € o~ Y(Ay), where X is a curve of genus g — 1, E is an elliptic
curve and £y = |Lyx| is the X —aspect of the corresponding limit linear series with Lx € W7 (X)
such that h°(X, Ly (—2y)) > r. If Ly has no basepoint at y, then

&=HX,Lx)~H(X,Lx(-2y))®K-u and F,=HX,L*(-2y)) & K -u?,
where u € H%(X, L) is any section such that ordy (1) = 0.
If Ly has a basepoint at y, then
& = H(X, Lx) = H%(X, Lx(-y)).
and the image of F; — H°(X, L$?) is the subspace H%(X, L$*(-2y)) € H(X, L$?).

(iii) Lett =[Xyq,L]€ o 1 (Ag) be a point withq, y € X and let L € W;(X,4) be a locally free sheaf
of rank one, such that h°(X,v*L(—y —q)) > r, where v: X — Xy, is the normalization. Then
the fibers are described as

& =HXv*L) and F;=H°X vL®*(—y—¢q))®K -u?,
where u € H®(X,v*L) is any section not vanishing at both points y and q.
(iv) Lett =[Xyq,v«(A)], where A € W;_,(X), and again set X Uy, 1 R to be the fiber ©~1(t). Then

& = H°X UR,Lxur) = H°(X,A) and F; = H*(X U R, L$? ). Furthermore, ¢ (1) is the

multiplication map on X U R.
Proof The proof is essentially identical to the proof of [19, Corollary 3.8]; we omit the details. |

2.3 Test curves in ./\713

As in [19], the calculation of [513]Virt is carried out by understanding the restriction of the morphism ¢
along the pullbacks of the three standard test curves Fy, Fg and F; inside /\7113. Let [X, g] be a general
pointed curve of genus g — 1 and fix an elliptic curve [E, y]. We then define

Fo::{qu::X/qu:yeX}gAggﬂz and F; 3:{XUyE:y€X}gA°g/\_/[2,
Furthermore, we define the curve
™ Fai:={[X U, E/]:t e Py C A} C Mg,

where {[E;, q]},cp1 denotes a pencil of plane cubics and ¢ is a fixed point of the pencil. We record the
intersection of these test curves with the generators of CH ' (M g):

Fo-A=0, Fy-8=2—-2g, Fo-861=1, Fo-8; =0 forj:2,...,L%gJ,
Fai-A=1, Fe-80=12, Fa-81=—1, Fen-8;=0 for j=2,...]3¢]
Note also that F;-A =0, F1-8; =4—2g and F1-§; =0 for j # 1.
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We now describe the pullback o*(Fp) € &3,. Having fixed a general pointed curve [X, q] € M2,1, we
introduce the variety

®) Y :={(y,L) € X x W5(X) : h°(X, L(—=y —q)) > 5},

together with the projection 71: Y — X. Arguing in a way similar to [19, Proposition 3.10], we conclude
that Y has pure dimension 2, that is, its actual dimension equals its expected dimension as a degeneracy
locus. We consider two curves inside Y, namely

I ={(y.A(y)):yeX. Ac W(X)} and Dh:={(y.A(q)):yeX, AeW5(X)}.

intersecting transversely along finitely many points. We then introduce the variety Y obtained from Y by
identifying for each (y, A) € X x W155(X), the points (y, A(y)) € I1 and (y, A(g)) € [5. Let 9: Y — Y
be the projection map.

Proposition 2.4 With notation as above, there is a birational morphism
fio%(Fo)— 7Y,

which is an isomorphism outside z?(yrl_l(q)). The restriction of f to f~1 (z?(yrl_l(q))) forgets the aspect
of each limit linear series on the elliptic curve E« . Furthermore, both £+ (F,) and F|s+(F,) are pullbacks
under f of vector bundles on Y.

Proof The proof is identical to that of [19, Proposition 3.11]. a

We now describe the pullback o*(F;) € (’3? ¢ and we define the determinantal variety
) Z :={(y,L) € X x W(X) : h°(X, L(=2y)) > 5}.

Because X is general, arguing precisely as in [19, Proposition 3.10], we find that Z is pure of dimension 2.
Next we observe that in order to estimate the intersection of [@13]Virt with the surface o*(Fy), it suffices
to restrict ourselves to Z:

Proposition 2.5 The variety Z is an irreducible component of o*(Fy), and

c2(Sym?* (€)Y = FY) g+ (Fy) = c2(Sym?* (€)Y — FY) 7.

Proof Let ({x,Lg) € 0~ ([X Uy E]) be a limit linear series. Observe that p(13,5,16) = 1, which
is greater than or equal to the sum of the adjusted Brill-Noether numbers p({x,y) + p({E, y); see
Definition 2.1. Since p({g,y) > 0, it follows that p(£x, y) € {0,1}. If p({g,y) = 0, then £ =
10y 4+ |Og (6y)| and the aspect £y € Gf6 (X) is a complete linear series with a cusp at the point y € X.
Therefore (y,{x) € Z, and in particular Z x {{g} =~ Z is a union of irreducible components of o*(Fy).
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The remaining components of o*(Fy) are indexed by Schubert indices
a:=0<gy<---<a5<11=16-5)

such that > (0, 1, 1, 1, 1, 1) holds lexicographically and o9 + - - - + a5 € {6, 7} when p(£x, y) > —1 for
any point y € X; see also [18, Theorem 0.1]. For a Schubert index « satisfying these conditions, we let
af :=(11—as,...,11 —ap) be the complementary Schubert index, and define

Zo i ={(y.lx) € X x Gs(X) :a¥ (y) =@} and Wy :={lg € Gis(E) :a'E(y) = ).
Then the following relation holds for certain natural coefficients mg:

SMF)=Z+ Y me(ZaxWa).
«>(0,1,1,1,1,1)

We now finish the proof by invoking the pointed Brill-Noether theorem [16, Theorem 1.1], which gives
dim Zy =1+ p(12,5,16) — (g + - - + a5) < 1. In the definition of the test curve Fj, the point of
attachment y € E is fixed, therefore the restrictions of both £ and F are pulled-back from Z, and one
obtains ¢2(Sym? (€)Y — FV),z,xw, = 0 for dimension reasons. O

2.4 Top Chern numbers on Jacobians

We use various facts about intersection theory on Jacobians, for which we refer to [5, Chapters VII-VIII].
We start with a general curve X of genus g, fix a Poincaré line bundle P on X X Pic? (X) and denote by

71: X xPic? (X) = X and 5 X x Pic? (X) — Pic? (X)
the two projections. Let n = r{([xo]) € H 2(X x Pic? (X),Z), where xg € X is a fixed point. We choose
a symplectic basis 81, ...,82, € HY(X,Z) = H'! (Picd (X), Z), and then consider the class

g
y ==Y (7} ()73 (g +a) — T} Bg-+a)73 (8a)) € HA(X x Pic? (X)), Z).
a=1

One has ¢1(P) = d -n+ y, and the relations y3 = 0, yn =0, *> = 0 and y? = —2n7; (6), for which we
refer to [5, page 335]. Assuming WdrH(X) = @& (which is what happens in the case of g =12, r =5
and d = 16 relevant to us), the smooth variety W (X) admits a rank-r+1 vector bundle

M= (12)+(Px xwr (x))

with fibers My = HO(X, L), for L € W, (X). The Chern numbers of M are computed via the Harris-Tu
formula [28]. We write formally

Y oeiMY) = (14x1) - (14 x41).
i=0
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For a class { € H*(Pic? (X), Z), the Chern number cjy(M)---cj (M) - ¢ € HP(W](X),Z) can be
computed by repeatedly using the following formal identities:3

(10) xlll .. .xlr—:-ll . ep(gsryd)_il_'"_irJrl — g! 1_[]>k(lk _l] + ] _k) )
" [T (g —d +2r +ig — k)

We now specialize to the case when X is a general curve of genus 12, thus W156(X ) is a smooth 6—fold.

By Grauert’s Theorem, N := (Rlnz)*(P|Xle56(X)) is locally free of rank one. Set y; := c¢1(N). We
now explain how y; determines the Chern numbers of M.
Proposition 2.6 For a general curve X of genus 12 set ¢; := c;(MY) fori =1,...,6, and y1 := c1(N).
Then the following relations hold in H* (W156 (X),7):
91’ 01’—1
Ci:ﬁ_m'yl fOFl=1,...,6.
Proof For an effective divisor D of sufficiently large degree on X, there is an exact sequence

0= M — (12)x(P ® O(1* D)) = (12)+(P ® O(r{ D) |1 p) — Ran*(Pp(foG(X)) — 0.

Recall that A is the vector bundle on the right in the exact sequence above. By [5, Chapter VII], we have
Ctot((ﬂz)*(']) ® O(Tri“D))) = ¢, and the total Chern class of (72)x(P ® O(T[i"D)miwD) is trivial. We
therefore, as claimed, obtain the formula

(I+y)-e?=1-ci+c—-+cs. O

Using Proposition 2.6, any Chern number on W156 (X) can be expressed in terms of monomials in y;
and 0. The following identity on H 12(W156 (X), Z) follows from (10) using the canonical isomorphism
H'(X, L)~ H(X,wox @ LV)V:

6 612 12
6—i _ —
(11) ' - ¥ )W&(X)_m_”(i ).

With this preparation in place, we now compute the classes of the loci Y and Z.

Proposition 2.7 Let [X, g] be a general pointed curve of genus 12, let M denote the tautological rank-six
vector bundle over W156(X), and set c; = c¢;(MY) e H* (W156(X), Z.) as before. Then:

(i) [Z] = n5(c5) —6n0m5 (c3) + (541 + 2y) 75 (ca) € H'O(X x Wis(X), Z).

(i) [Y] =73 (cs) — 20075 (c3) + (157 +y)ni (ca) € H'OX x Wi(X), Z).
Proof The locus Z has been defined by (9) as the degeneracy locus of a vector bundle morphism

over the 7-dimensional smooth variety X x W (X) (observe again that W166(X ) = @). For each
(y,L)e X x W156 (X), there is a natural map

HYX,L® 0ay)Y — H°(X, L)V.
3See [19, Section 4.1] for a detailed discussion of how to read and apply the Harris—Tu formula in this context.
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These maps viewed together induce a morphism ¢: J1(P)Y — 75 (M) of vector bundles. Then Z is the
first degeneracy locus of ¢ and applying the Porteous formula,
[Z] = es5 (5 (M) = J1(P)Y).
The Chern classes of the jet bundle J; (P) are computed using the standard exact sequence
0— ) (wx) ® P — J1(P) > P —0.

We compute the total Chern class of the formal inverse of the jet bundle as follows:

ol (P)) ! = (Z(d(L)n n y)f) - (Z((zgm —24d(Lyn+ y)"),

Jj=0 j=>0
=(+16n+y+y>+-)-(1+38n+y+y"+--),
=14 54n+2y —610.
Multiplying this with the total class of 75 (M), one finds the claimed formula for [Z].
To compute the class of Y defined in (8), we consider the projections
w,v: X x X xPic!®(X) — X x Pic!®(X),

and let A € X x X x Pic'®(X) be the diagonal. Set I, := {g} x Pic'®(X) and consider the vector
bundle B := wx(v*(P) ® Op4,*(r,))- There is a morphism y: BY — (2)*(M)" of vector bundles over
X X W156 (X) obtained as the dual of the evaluation map, and the surface Y is realized as its degeneracy
locus. Since we also have that

coiB) 7 = (14+d(L)n+y) + (@@L +y)> +---) - (1—n) = 1 + 157+ y — 216,
we find the stated expression for [Y] and finish the proof. O

We introduce two further vector bundles which appear in many of our calculations. Their Chern classes
are computed via Grothendieck—Riemann—Roch.

Proposition 2.8 Let [X, g] be a general pointed curve of genus 12 and consider the vector bundles A3
and B, on X x Pic'®(X) having fibers
Az ) = HO (X, L®(=2y)) and By (1) = H(X.L®*(=y —q)).
respectively. One then has the following formulas for their Chern classes:
c1(Az) = —460 — 4y — 86, c1(By) = —46 —2y —31n,
c2(Az) =862 + 32000 + 16y0, c2(Ba) = 86% + 11610 + 86y.

Proof We apply Grothendieck—Riemann—Roch to the projection map
v X x X xPic!®(X) = X x Pic!®(X).

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill-Noether divisor on M3 and the Kodaira dimension of Ris 817

Via Grauert’s theorem, .4, can be realized as a pushforward under the map v, precisely

Az = (W (PP?® OXxXxPic“’(X)(_ZA))) = v (W (PP @ OXxXxPiclé(X)(_zA)))'

Applying Grothendieck—Riemann—Roch to v, we find chy(A>) = 816, and v«(c1 (P)?) = —26. One then
obtains ¢1(Ap) = —460 —4y — (4d(L) +2g(C)—2)n, which yields the formula for ¢5(.A3). To determine
the Chern classes of B,, we observe ¢1(B8;) = —40 —2y — (2d — 1) and ch,(B;) = 4n6. |

3 The class of the virtual divisor 513

In this section we determine the virtual class [513]Virt 1= 0% (02 (Sym2 &)Y —-F V) on Mys. We begin
by recording the following formulas for a vector bundle V of rank r + 1 on a stack X

c1(Sym*>(V)) = (r +2)c1(V) and  ¢2(Sym?(V)) = %r(r + 3)c%(V) + (™ +3)c2(V).
We apply these formulas for the first degeneracy locus of ¢V: F¥ — Sym?(£)V. By Definition 2.2, its
class [¢]¥I is given by
(12)  c2Sym*(@©)Y = FY) = c2(Sym*(€)") — c1(Sym*(€)¥) -1 (FY) + ¢} (F¥) = c2(FY)

= 20c7 (&) + 8c2(E) — Te1(€) - c1(F) + ¢ (F) — c2(F).

In what follows we expand the virtual class in CH'! (/\7113) as
(13) [D13]"'" = aA — boSo — b1 6.

We compute the coefficients a, by and by, by intersecting both sides of this expression with the test
curves Fy, F1 and Fg). We start with the coefficient b;.

Theorem 3.1 Let X be a general curve of genus 12. The coefficient by in (13) is

b1 o*(F1)-c2(Sym? (&)Y — FY) = 11787.

" 28(X)—2
Proof We intersect the degeneracy locus of the map ¢: Sym?(£) — F with o*(F}). By Proposition 2.5,
it suffices to estimate the contribution coming from Z. We write

a*(F1)-c2(Sym*(£)Y = FY) = c2(Sym* (€)Y = FY)|z.

In Proposition 2.7, we constructed a morphism ¢: J1(P)Y — 75 (M) of vector bundles on Z, whose
fibers are the maps H%(02y)Y — H®(X, L)V. The kernel sheaf Ker(¢) is locally free of rank one. If U
is the line bundle on Z with fiber

HO(X,L)
HO(X, L(-2y))

over a point (y, L) € Z, then over Z one has the exact sequence

U(y,L) = — H%(X,L ® 02))

0— U — Ji(P) = (Ker(¢))Y — 0.
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In particular, by Proposition 2.7, we find that
(14) c1(U) =2y + 54n + c1(Ker(0)).

The product of the Chern class of Ker(¢) with any class £ € H?(X x W156 (X), Z) is given by the Harris-Tu
formula [28]

(15) c1(Ker(0))-£jz =—ce(m5 (M)Y =J1(P)Y)-§17 =—(75 (c6)—6n0m5 (ca)+(54n+2y) 75 (c5)) -6 2.
Similarly, one has the formula [28] for the self-intersection on the surface Z:
(16)  cf(Ker(0)) = (5 (c7) — 60673 (cs5) + (540 +2y) 73 (ce)) € H'* (X x Wi((X), Z) = Z.
We also observe that ¢7 = 0, since the bundle M has rank 6.
Let A3 denote the vector bundle on Z having fibers

Az y.) = H°(X, L®?)

constructed as a pushforward of a line bundle on X x X x Pic'®(X). Then the line bundle U ®Z can be
embedded in A3/ .A>. We consider the quotient

Az / Az

V= e

The morphism U®? — A3/ A, vanishes along the locus of pairs (y, L), where L has a basepoint. Tt
follows that the sheaf G has torsion along the locus I C Z consisting of pairs (¢, A(q)), where A € W156 (X).
Furthermore, F|z, as a subsheaf of A3, can be identified with the kernel of the map A3 — G. Summarizing,
there is an exact sequence of vector bundles on Z,

a7n 0—>A2|Z—>]-'|Z—>U®2—>O.
Over a general point (y, L) € Z, this sequence reflects the decomposition
F(y, L) = H°(X, L®*(-2y)) ® K -u?,
where u € H%(X, L) is a section such that ordy, (u) = 1.
Via the exact sequence (17), one computes the Chern classes of Fjz:
c1(Fiz) = c1(Azz) +2¢1(U) and c2(Fz) = c2(Azz) +2¢1(Az z)c1(U).
Recalling that £z = 75 (M), z and using (12), we find that 6*(Fy) - c2((Sym? £)¥ — FV) is equal to
207 (5 M\7) + 8c2(r3 M) + Ter (mf MZ) - e1(Agz) + 4c (U)
—ca(Agjz) + lder (T M) - c1(U) + e (Agjz) + 26§ (Ag z) - 1 (V).

Here, ¢; (7} ./\/llvz) =n5(c;)e H 2i(Z,Z). The Chern classes of Az|z were computed in Proposition 2.8.
Formula (14) expresses c¢1(U) in terms of ¢y (Ker({)) and the classes 1 and y. When expanding
o*(F1) - c2(Sym2(£)Y — FV), one distinguishes between terms that do and those that do not contain
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the first Chern class of Ker(¢). The coefficient of ¢ (Ker({)), as well as the contribution coming from
c%(Ker({ )) in the expression of 0* (F})-c2(Sym?(£)Y — FV) is evaluated using the formulas (15) and (16)
respectively. To carry this out, we first consider the part of this product that does not contain ¢ (Ker({)),
and we obtain

875 (c2) + 2075 (c7) + ¢ (Agjz) + 75 (c1) - c1(Ag z) — c2( Az z) + 42y + 54n)?
+ 22y +54n) - c1(Az)z) + 142y + 54n) - 5 (c1)
= 2075 (c?) + 15475 (c1) - — 2875 (c1) - 6 — 9610 + 802 4 875 (c2)
in H*(X x W156(X ), Z). This polynomial gets multiplied by the class [Z], which is expressed in

Proposition 2.7 as a degree 5 polynomial in 6,  and 75 (c;). We obtain a homogeneous polynomial of
degree 7 viewed as an element of H!'4(X x W156 (X), 7).

Next we turn our attention to the contribution o*(Fy) - c2(Sym?(£)Y — FV) coming from terms that do
contain ¢ (Ker(¢)). This is given by the formula

4¢3 (Ker(£) + c1(Ker(£) - (8(2y + 54n) + 2¢1(Ag z) + 1475 (c1)).

Using (15) and (16), one ends up with the following homogeneous polynomial of degree 7 in 1, 6 and
5 (ci) fori =1,...,6:

8475 (c1c4)0n — 4875 (c4)60%n— 75675 (c1¢5)n + 44075 (¢5)0n — 4475 (c6)n.

Adding together the parts that do and those that do not contain ¢ (Ker({)), and using the fact that the
only monomials that need to be retained are those containing 7, after manipulations carried out using
Maple, one finds

o*(F1)-c2(Sym? (€)Y — FY)

=nm, (—602c1cs +432¢504 — lZchc_a,Q + 168c1c30% — 48¢3603 + 1080ch4 —1428c1¢46
— 48¢2¢30 + 384467 + 34450 — ddcg).

We suppress n and the remaining polynomial lives inside H 12(W156 (X),Z) = Z. Using Proposition 2.6
this expression is equal to

0*(F1)-c2(Sym?* (€)Y — FY) = 12396 — 121169y, 4 189794 )2 12005 y7 = 259314,
where for the last step we used the formulas (11). We conclude
b1 = 550" (F1)-c2(Sym?(€)¥ — F¥) = 11787,
as required. a
Theorem 3.2 Let [X, ¢q] be a general pointed curve of genus 12 and let Fy C Zo - M 13 be the associated
test curve. Then the coefficient of 8y in the expression (13) of [D13]"™ is equal to
bo = 57 (0*(Fo) - c2(Sym? (€)Y — FV) + by) = 2247.
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Proof Using Proposition 2.4, we observe that
2 (Sym* (€)Y — FY) o= (o) = C2(Sym* (€)Y = F¥)y.
We shall evaluate the Chern classes of F|y via the line bundle V' on Y with fiber

B H%X,L)
~ HOYX,L(-=y—9q))

over a point (y, L) € Y. We write the exact sequence

V(y,L) — H'X,L ® Oy4y)

0—V —B— (Ker(y)" —0

over Y, where the morphism y: BY — 75 (M)" was defined in the final part of the proof of Proposition 2.7.
In particular, we have

c1(V) =150+ y + c1(Ker(y)).

The effect of multiplying ¢ (Ker(y)) against a class £ € H?(X x W(X), Z) is described by applying
once more the Harris—Tu formula [28]:

(18) c1(Ker(x) - &y = (=73 (c6) — 21675 (c4) + (150 + y) 75 (c5)) -y .
where we recall that 75: X x W156(X ) — W156 (X)and ¢c; € H* (W156(X ), Z). Similarly, for the self-
intersection on Y the following formula holds:

(19) c}(Ker(x)) = —2n075 (c5) + (150 + y)m5 (c6) € H'* (X x Wi5(X), Z).

We have also introduced in Proposition 2.8 the vector bundle B, on X x Pic'®(X) with fibers By (y,L) =
H%(X,L®?(—y —q)) over a point (y, L). A local calculation along the lines of the one in the proof of
Theorem 3.1 shows that one also has an exact sequence on Y, which can then be used to determine the
Chern numbers of Fjy:

0— By > Fly — V®2 0.

This exact sequence reflects the fact for a general point (y, L) € Y one has a decomposition F(y, L) =
HO(X,L®%(—y —q)) ® K -u?, where u € H°(X, L) is a section that does not vanish at y and g. We
thus obtain the formulas

c1(Fly) =c1(Byz) +2c1(V) and  ca(Fly) = c2(Bay) + 2¢1(Byy)er (V).
To estimate ¢2(Sym? (€)Y — FV)|y we use (12) and write
0¥ (Fo) - c2((Sym* &)Y — FY)

= 20cf(n;"M|VY) +8ca(ms My) + Te1(f M) -e1(Byyy) + 4¢3(V) = c2(Byyy)
+ 141 (M) -e1(V) + ¢ (Bajy) + 2¢1(Byyy) -1 (V).

We expand this expression, collect the terms that do not contain ¢ (Ker(y)), and obtain
2075 (¢}) — T (c1) — 2860 - 5 (c1) + 4601 + 862 + 875 (c2).
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This quadratic polynomial gets multiplied with the class [Y] computed in Proposition 2.7. Next, we
collect the terms in 0* (Fp) - c2(Sym? £Y — FV) that do contain ¢ (Ker(x)):

4c (Ker()) + c1(Ker(x)) (8(15n +y) + 1475 (1) + 2¢1(Bajy)-
This part of the contribution is evaluated using formulas (18) and (19).

Putting everything together, we obtain a polynomial in H1#(X x W156 (X),Z) = Z, as in the proof of
Theorem 3.1:

o™ (Fo) - c2(Sym*(€)¥ — FY)
= nry (—40c7c30 + 56¢1¢360% — 16¢360° 4 300cics —392¢1ca6 — 16¢2¢36 + 104¢46* —217¢1c5
4+ 120c3c4 + 124¢50 + 2(:6).

Applying Proposition 2.6 and then (11), after eliminating 1 we obtain
0*(Fo)-c2(Sym*(€)Y — FV) = 18196 — 2892y,  T29%y2 3007 )7 = 42141. o

We can now complete the calculation of [D3]"™.

Proof of Theorem 1.4 We consider the curve Fep C M ¢ defined in (7) obtained by attaching at the fixed
point of a general curve X of genus 12 a pencil of plane cubics at one of the basepoints of the pencil.
Then one has the relation

a—12bg + b1 = Fuy-0xc2(Sym?(€)Y — FV) = 0.

Using Theorems 3.1 and 3.2, we thus find a = 15177 for the A—coefficient in the expansion (13). This
completes the calculation of the virtual class [513]““. |

We finally explain how Theorems 1.4 and 1.5 (proved in Section 4) together imply Theorem 1.3.

Proof of Theorem 1.3 We write [D13] = al —boSg — - - - — beS6, where a, by and by are determined by
Theorem 1.4. Applying [21, Theorem 1.1], we have the inequalities b; > (6i + 8)bo — (i + 1)a > bg for
i =2,...,6, which shows thats(5513)=a/b0=%. O

4 The strong maximal rank conjecture in genus 13
In this section and the next, we prove that 513 is not all of /\7113 and that its codimension-one part
represents the virtual class [©13]"™.

To show that ® 13 is not all of M 13, it suffices to prove the existence of one Brill-Noether general smooth
curve X of genus 13 such that, for every L € W% (X), the multiplication map

¢r:Sym?> HO(X, L) - H°(X, L®?)
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is surjective. This is one case of the strong maximal rank conjecture [3]. The locus of such curves is Zariski
open; to prove that it is nonempty over every algebraically closed field of characteristic zero, it suffices to
show this over one such field. Hence, we can and do assume that our ground field K is spherically complete
with respect to a surjective valuation v: K* — R, and that K has residue characteristic zero. This allows
us to discuss the nonarchimedean analytifications of curves, the skeletons of those analytifications, and the
tropicalizations of rational functions, viewed as sections of L and L®Z. In this framework, we apply the
method of tropical independence to give a lower bound for the rank of the multiplication map ¢, for every
Le W156 (X). The motivation and technical foundations for this approach are detailed in Sections 1.4-1.5,
Sections 2.4-2.5 and Section 6 of [19], to which we refer the reader for details and further references.

After proving this case of the strong maximal rank conjecture, we will furthermore show that no
component of the degeneracy locus il in the parameter space (’Bf ¢ OVer Mis maps with generically
positive-dimensional fibers onto a divisor in M 3. As in [19], this additional step is necessary to show
that the pushforward of the virtual class is effective, and our proof involves analogous arguments on
lower-genus curves for linear series with ramification. In particular, we will consider linear series with
ramification on curves of genus 11 and 12 in Section 5, and so we set up our arguments here to work in
this greater generality.

Let X be a smooth projective curve of genus 11 < g < 13 over K whose Berkovich analytification X"
has a skeleton I" which is a chain of g loops connected by bridges, as shown. In order to simplify notation
later, the vertices of I' are labeled w13—g,..., w13, and vi4—g, ..., V14, as shown in Figure 1.

For 14 — g <k < 13 we write y; for the loop formed by the two edges of length £; and mj; between
Vg and wy. Similarly, for 14 — g < k < 14 we write B; for the bridge between wy_; and v; which has
length njy. Except where stated otherwise, we assume that these edge lengths satisfy

(20) Lpi1 €K my LKL K ngyq L ng forall k.

These conditions on the edge lengths are precisely as in [19, Section 7.1]. Any curve X whose analytifi-
cation has such a skeleton is Brill-Noether general [12].

Given a line bundle L on X we choose an identification L = Oy (Dyx) so that any linear series V C
HO(X, L) is identified with a finite-dimensional vector space of rational functions ¥V € K(X). The
tropicalization of any nonzero rational function f on X is a piecewise linear function with integer slopes
on I', and we write trop V' for the set of all tropicalizations of nonzero functions in V.

13-¢ me—gu U U me

Figure 1: The chain of loops I'.
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Any sum of two functions in trop V' is the tropicalization of a function in the image of the multiplication
map ¢y : Sym? V — HO(X, L®?). We say that a set of functions {yg, ..., ¥} on I is tropically
independent if there are real numbers by, ..., b, such that

min{yo + bo. . ... Vn + b} # min{yo +bo. ...V +bj.....Yn+by} for 0<j <n.

In other words, {Vq, ..., ¥y} is tropically independent if there are real numbers by, ..., b, such that
each ¥; + b; achieves the minimum uniquely in min; {; + b; } at some point v € I'. The function
0 = min; {ty; + b;} is then called an independence, since it verifies that {y, ..., ¥} is independent.

We recall that tropical independence is a sufficient condition for linear independence; if fy, ..., f, are
nonzero rational functions on X such that {trop( fo), ..., trop( f;)} is tropically independent on I', then
{fo,--., fu} is linearly independent in K(X). Therefore, the relevant case of the strong maximal rank
conjecture, and hence the fact that 513 is a divisor, follows immediately from the following.

Theorem 4.1 Let X be a curve of genus 13 with skeleton I'. Let V' be a linear series of degree 16 and
dimension 5 on X, and let ¥ = trop V. Then there is an independence 6 among 20 pairwise sums of
functions in .

We will use the following generalization of Theorem 4.1 in our proof that 513 represents the virtual
class; the generalization involves analogous statements for linear series satisfying certain ramification
conditions in genus 11 and 12. The situation is closely parallel to that in [19, Section 9.4]. Recall that
a(‘)/ (p)<---< al/ (p) denotes the vanishing sequence of a linear series V' of rank r at a point p.

Theorem 4.2 Let X be a curve of genus g € {11, 12, 13} whose skeleton is I', and let p € X be a point
specializing to wi3—g. Let V' be a linear series of degree 16 and dimension 5 on X, and let ¥ = trop V.
Assume that

(i) if g =12, thenal (p) > 2, and
(i) if g =11, then eithera}/(p) >3, orag(p) > 1 and ag(p) > 4.

Then there is an independence 6 among 20 pairwise sums of functions in X.

The remainder of this section is devoted to the proof of Theorem 4.2. Our approach to constructing the
independence is similar to that of [19], with a few important differences that we highlight when they arise.
Throughout, we let Dy be a divisor class on X with V € H%(X, O(Dyx)). We write D = Trop(Dyx),
and we assume that D is a break divisor, meaning that it is the unique effective representative of its
equivalence class with multiplicity deg D — g at wg and precisely one point of multiplicity 1 on each
loop yx. (See for instance [2].) Let R(D) denoted the complete tropical linear series of D, as in [25].
In other words, R(D) = {y € PL(I") : D + div(y) > 0}. Note, in particular, that Trop(}/) is a tropical
submodule of R(D).
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Remark 4.3 The differences between the constructions of independences here and those in [19] are
subtle but crucial. Even when g = 13, [D] is vertex-avoiding, and ¥ is unramified (the cases treated in
Section 4.1), if we apply the algorithm of [19, Section 8.1] naively, we obtain an independence among
only 19 functions in X. To overcome this difficulty, we divide the graph into blocks in such a way that
the lingering loop is the last loop in its block and has exactly two permissible functions. This allows
us to alter the algorithm slightly and assign a function to the lingering loop, raising the total number of

functions in the independence to 20. See Remark 4.11.

4.1 The unramified vertex-avoiding case

We first consider the case where g = 13, D is vertex-avoiding, and ¥ = trop V is unramified. Unramified
means that the ramification weights of trop V' at wg and v14, in the sense of [19, Definition 9.7], are zero.
Vertex-avoiding means that, for 0 <i <5, there is a unique divisor D; ~ D such that D; —iwo—(5—i)v14
is effective. A vertex-avoiding divisor is unramified if and only if the support of D; —iwg —(5—i)via
contains neither wg nor vy4, for all i.

For y € X, we write s (1) and s,/( () for the rightward slopes along the incoming and outgoing bridges
of the k' loop vy, at v and wy, respectively. Since dim V = 6, the functions in ¥ have exactly 6 distinct
slopes along each tangent vector in .

Definition 4.4 Let 55 [0] <--- < s¢[5] and 57 [0] < --- < s [5] denote the 6 distinct rightward slopes that
occur as s () and s,’C () for ¥ € 3.

Since D is vertex-avoiding, there is a function ¢; € X such that
si(gi) = sli] and  sp(¢;) = s [i] forall k,

and it is unique up to additive constants. Since X is also unramified, there is a unique lingering loop yq,
ie a unique loop yy such that s [i] = s[i] for all i. Moreover, there is no function ¢ € X with the property
that s¢(¢) < s¢[i] and s;(¢) > s, [i + 1]. This last condition means that y; is not a switching loop, in the
sense of [19, Section 9.6].

Our assumption that % is unramified implies that the break divisor D satisfies deg,,, D = 3, and the
rightward slopes of the functions ¥; at wg are

($[0]. ... sh[5]) = (=2, —1,0,1,2,3).

Sk Sl/c
E— —_—
Vg Wk
Yk

Figure 2: The slopes s and s .
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Let us consider how the slope vector (s; [0],..., s} [5]) changes as we go from left to right across the
graph. When crossing a loop other than the lingering loop y,, one of these slopes increases by 1, and
the other 5 remain the same. So, after the first nonlingering loop, the slopes are (—2,—1,0, 1,2,4), and
after the second nonlingering loop, the slopes are either (—2,—1,0,1,2,5) or (—2,—1,0, 1, 3,4). The
data of these slopes is recorded by a standard Young tableau on a rectangle with 2 rows and 6 columns,
filled with the symbols 1 through 13, excluding £. If the symbol k appears in column 7, then it is the
(5—i)™ slope that increases on the loop yy, ie 5;[5—1i] = sg[5—i] + 1. Note, in particular, that each
slope increases exactly twice, so 515 = (0, 1,2, 3,4, 5) and no slope is ever greater than 5.

Let ¢;; := ¢; +¢;. To prove Theorem 4.2, we construct an independence & among 20 of the 21 functions in
B={gj:0<i<j<5}

In order to describe this construction, we divide the graph into three connected regions consisting of
some number of loops and the bridges between them, which we call blocks. The construction ensures
that, within each block, the slope of 6 is nearly constant on each bridge, equal to 4 on bridges in the first
block, 3 on bridges in the second block, and 2 on bridges in the third block. The slope decreases by 1
at the midpoint of the bridges between blocks.

The blocks are specified as follows. Recall that y; is the lingering loop. Let
zy =min{6,¢} and z, = max{7,{}.

Then y;, and y;, are the last loops of the first and second blocks, respectively. We construct our

independence 6 to satisfy
4 ifk <z,

21 Sk(9)= 3 ifzy <k <z,
2 ifzp <k <13.

Note that either z; or z5 is equal to £, so the lingering loop y, is always the last loop in its block.

When we construct 6 as a tropical linear combination of the functions in B, we keep track of which
functions achieve the minimum on which loops and bridges of I". The specified slopes of 8 along the
bridges within each block place natural constraints on which functions can achieve the minimum on a
given loop, which we encode in the following definition of permissibility. In the vertex-avoiding case,
we apply this condition only to functions ¢;; € B. However, we state the definition of permissibility
more generally, for arbitrary functions v in the complete tropical linear series R(D), for later use in
Sections 4.2-4.3.

Definition 4.5 Let ¢ € R(D). We say that { is permissible on yy, if

sk(V) <sk(0) and s (¥) > sx ().

We say that { is permissible on a block if it is permissible on some loop in that block.
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To understand this definition, suppose that 6 has nearly constant slope along the bridges within each block
and on each half of the bridges between blocks, and that it is written as the minimum of finitely many
functions in R(D), including . If s (¥) > 5% (0) + 1, then the value of ¥ at vy exceeds the value of 6
at v by at least the length of the bridge B (or half this length, if 8 is the bridge between two blocks).
Since this bridge is much longer than the loop yy, it follows that ¢ cannot achieve the minimum at any
point of y. A similar argument shows that if s]/( (V) < sp(8) — 1, then ¥ cannot achieve the minimum at

any point of yy.

We construct 6 algorithmically, moving from left to right across the graph. At each step, we keep track of
which functions in B are permissible on the given loop. The set of loops on which a given function ¥ is
permissible are indexed by the integers in an interval [19, page 44], so we pay special attention to the first
and last loops in these intervals.

Suppose yi is the first loop on which ¢;; € B is permissible and it is not the first loop in its block. Then
Yk 18 the unique loop on which ¢;; is permissible such that the first inequality in Definition 4.5 is strict.
Similarly, suppose yy is the last loop on which ¢;; is permissible and it is not the last loop in its block.
Then yy is the unique loop on which ¢;; is permissible such that the second inequality in Definition 4.5
is strict. This motivates the following definition.

Definition 4.6 A permissible function y is new if s; (V) < s (6)—1 and departing if s,/c () > s (0)+ 1.
Our choice of z; and z; determines which loops have new permissible functions in B.

Proposition 4.7 There are no new permissible functions of the form ¢;; on yj if and only if k = £ or
(i) £>6andk =6,
() £>7and k =17,
(iii) £<9and k =9, or
(v) £<7,s5[5]=4and k =8.

Proof There is no new permissible function on the lingering loop y;. Suppose k # £. Let j be the
unique integer satisfying s, [j] = sx[j] + 1. There is a new permissible function in 5 on yy if and only if
either the function ¢;; is both new and departing, or there is an integer i such that s]/c (@ij) = sk (0). We
now examine when such an 7 exists.

The values S;( [7] are six distinct integers between —2 and 5. Let a and b be the two integers in this range
that are not equal to s, [i] for any i. On the h" nonlingering loop, one has

5
h=> (sglil+2—i)=9—(a +b).
i=0
Since s, [j] = sk[j] + 1, we must have that s, [/] is equal to either @ + 1 or b + 1. Without loss of
generality, assume that it is equal to a + 1. There does not exist i such that s; [i] + s;( [/]=s;(0) if and

only if sl/C (0) — (a + 1) is greater than 5, smaller than —2, or equal to either a or b. If it is equal to a, then
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the function ¢;; is both new and departing. Since sl/c (0) <4anda+ 1> —1, we see that s,’c @ —(@+1)
cannot be greater than 5, and s; (6) — (a + 1) is smaller than —2 if and only if 5; (¢) = 2 and @ = 4. By
the above calculation, b = s,@(@) —(a+1)ifand only it h = 10— sl/c (0).

The 6™ nonlingering loop is contained in the first block if and only if £ > 6. The 7" nonlingering loop is
contained in the second block if and only if £ > 7. The 8" nonlingering loop is contained in the third
block if and only if £ < 9. Finally, if a = 4, then yi is one of the first 7 nonlingering loops. If i is in the
third block, then since z, > 7, we have £ <7, and yy is the first loop in the third block. O

Having determined which loops have new permissible functions in 5, we can now strategically choose
the subset B’ C B from which we will construct the independence 6, so that the number of permissible
functions in B’ on each block is precisely one more than the number of loops in the block. Note that
|B| = 21, so B’ is chosen by omitting a single function v from B.

Definition 4.8 If £ <7, let ¥ € B be a function that is permissible on the second block. Otherwise, let
Y € B be a function that is permissible on the third block. Let B’ = B\ {y/}.

Remark 4.9 There may be several functions that are permissible on the specified block; it does not
matter which of these we omit from 3’

Lemma 4.10 On each block, the number of permissible functions in B is one more than the number of
loops.

Proof This follows directly from Proposition 4.7. Specifically, since z; = min{6, £}, there is a new
permissible function in B on each loop of the first block, except for the last one. Since there are precisely
two pairs (7, j) such that s1(g;;) = 4, we see that the number of permissible functions on the first block
is one more than the number of loops. By symmetry, if z, < 7, then the number of permissible functions
in B on the third block is one more than the number of loops, and if z; > 7, it is two more. But when
z5 > 7, one of these functions is not in B'.

Finally, we consider the middle block. We count the number of pairs (i, j) such that Sél (pij) = 3.
Since 3 is odd, if (7, j) is such a pair, then i # j. It follows that there are 3 such pairs if and only if
sy, i1+ 53, [5—i] = 3 for all i, which implies that there are precisely 6 nonlingering loops in the first
block. It follows that, if £ < 7, then there are precisely two such pairs, and if £ > 7, there are three such
pairs. By Proposition 4.7, if £ < 7, there is a new permissible function on every loop of the middle block.
If £ = 7, then the middle block contains only one loop, and since this loop is lingering, there are no new
permissible functions on it. In both of these cases, the number of permissible functions in 5 on the middle
block is therefore two more than the number of loops, but one of these functions is not in B'. If £ > 7,
then there are no new permissible functions on 7 or yy, so the number of permissible functions is one
more than the number of loops. |
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We now describe the algorithm for constructing our independence
0 = min {g;; +ci;},
giseB /

with slopes s (6) as specified in (21), when g = 13, D is vertex-avoiding, and ¥ is unramified. The
algorithm is quite similar to that presented in [19, Section 8.1]. We include the details. See Example 4.19
for an illustration of the output in one particular case.

In this algorithm, we move from left to right across each of the three blocks where sz (6) is constant,
adjusting the coefficients of unassigned permissible functions and assigning one function ¢;; € B’ to
each loop so that each function achieves the minimum uniquely on some part of the loop to which it is
assigned. At the end of each block, there is one remaining unassigned permissible function that achieves
the minimum uniquely on the bridge immediately after the block, which we assign to that bridge. Since
there are 13 loops and three blocks, this gives us an independent configuration of 16 functions. The
remaining 4 functions, with slopes too high or too low to be permissible on any block, achieve the
minimum uniquely on the bridges to the left of the first loop or to the right of the last loop, respectively.
Example 4.19 illustrates the procedure for one randomly chosen tableau. We now list a few of the key
properties of the algorithm:

(1) Once a function has been assigned to a bridge or loop, it always achieves the minimum uniquely at
some point on that bridge or loop.

(i) A function never achieves the minimum on any loop to the right of the bridge or loop to which it is
assigned.

(iii)) The coefficient of each function is initialized to oo and then assigned a finite value when the
function is assigned to a bridge or becomes permissible on a loop, whichever comes first.

(iv) After the initial assignment of a finite coefficient, subsequent adjustments to this coefficient are
smaller and smaller perturbations. This is related to the fact that the edges get shorter and shorter
as we move from left to right across the graph.

(v) Only the coefficients of unassigned functions are adjusted, and all adjustments are upward. This
ensures that once a function is assigned and achieves the minimum uniquely on a loop, it always
achieves the minimum uniquely on that loop.

(vi) Exactly one function is assigned to each of the 13 loops, and the remaining seven functions are
assigned to either the leftmost bridge, the rightmost bridge, or one of the three bridges after the
blocks.

The algorithm terminates when we reach the rightmost bridge, at which point each of the 20 functions
{@ij + cij 1 ¢ij € B’} achieves the minimum uniquely at some point on the graph.

Remark 4.11 The one crucial difference, in comparison with the construction in [19, Section 8.1], is
that we do not skip the lingering loop y,. Instead, since y; is the last loop in its block, there are precisely
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two unassigned permissible functions on y,. These two functions do not have identical restrictions to y,.
Thus, if we adjust their coefficients upward so that they agree at wy, one of them will obtain the minimum
uniquely at some point of the loop y,. We assign this function to y, and adjust its coefficient upward by
an amount small enough so that it still obtains the minimum uniquely at some point of y;. The other
achieves the minimum uniquely at wy, and we assign it to the bridge By 1.

The algorithm depends on the following basic properties of the permissible functions ¢;;.

Lemma 4.12 There is at most one departing permissible function ¢;; on each loop yy . Furthermore, if
Vi 1is lingering then there are none.

Proof The proof is identical to [19, Lemma 8.8]. O
Lemma 4.13 For any loop yi, there are at most three nondeparting permissible functions in B on yy.

Proof If ¢;; is a nondeparting permissible function on yy, then sx1(@;;) = sx(6). For each i, this
equality holds for at most one j, and the lemma follows. a

Proposition 4.14 Consider a set of at most three nondeparting permissible functions from BB on a loop
vk and assume that all of the functions take the same value at wy. Then there is a point of yy at which one
of these functions is strictly less than the others.

Proof The proof is identical to [19, Lemma 8.19]. O

The algorithm is as follows:

e Start at the first bridge Start at 8; and initialize c¢55 = 0. Initialize c45 so that @45 + c45 equals @55
at a point one third of the way from wg to v. Initialize c44 and c35 so that @44 + c44 and @35 4 c35 agree
with @45 + c45 at a point two thirds of the way from wq to vy. Initialize all other coefficients ¢;; to oo.
Note that @55 and @45 achieve the minimum uniquely on the first and second third of B, respectively.
Assign both of these functions to 8, and proceed to the first loop.

e Loop subroutine Each time we arrive at a loop yi, apply the following steps:

e Step 1: reinitialize unassigned coefficients By Lemma 4.15 below, there are at least two
unassigned permissible functions. Find the unassigned permissible function ¢;; that maximizes
@ij(wg) + c;;. Initialize the coefficients of the new permissible functions (if any) and adjust the
coefficients of the other unassigned permissible functions upward so that they all agree with ¢;;
at wg. (The unassigned permissible functions are strictly less than all other functions on yy, even
after this upward adjustment; see Lemma 4.16.)

e Step 2: assign departing functions If there is a departing function, assign it to the loop. (There
is at most one, by Lemma 4.12.) Adjust the coefficients of the other permissible functions upward
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so that all of the functions agree at a point on the following bridge a short distance to the right of
wy, but far enough so that the departing function achieves the minimum uniquely on the whole
loop. This is possible because the bridge is much longer than the edges in the loop. Proceed to the
next loop.

e Step 3: otherwise, use Proposition 4.14 By Lemma 4.13, there are at most three nondeparting
functions. By Proposition 4.14, there is one ¢;; that achieves the minimum uniquely at some point
of yr. We adjust the coefficient of ¢;; upward by %mk. This ensures that it will never achieve
the minimum on any loops to the right, yet still achieves the minimum uniquely on this loop; see
Lemma 4.16, below. Assign ¢;; to yx, and proceed to the next loop.

e Proceeding to the next loop If the next loop is contained in the same block, then move right to the
next loop and apply the loop subroutine. Otherwise, the current loop is the last loop in its block. In this
case, proceed to the next block.

e Proceeding to the next block After applying the loop subroutine to the last loop in a block, there
is exactly one unassigned permissible function in B’, by Lemma 4.10. The unassigned permissible
function ¢;; achieves the minimum uniquely on the beginning of the outgoing bridge, without any further
adjustment of coefficients. Assign ¢;; to this bridge.

If we are at the last loop yg, then proceed to the last bridge. Otherwise, there are several permissible
functions on the first loop of the next block, as detailed in Lemma 4.13, above. Initialize the coefficient
of each permissible function on the first loop of the next block so that it is equal to 6 at the midpoint of
the bridge between the blocks, and then apply the loop subroutine.

e The last bridge Initialize the coefficient cg; so that g1 + co1 equals 6 at the midpoint of the last
bridge B14. Initialize coo so that ¢go + coo equals 6 halfway between the midpoint and the rightmost
endpoint. Note that both of these functions now achieve the minimum uniquely at some point on the
second half of B14. Assign both of these functions to 14, and output & = min{g;; + ¢;; : ¢;; € B'}.

To verify that this algorithm produces a tropical independence, we first show that there are at least two
unassigned permissible functions on each loop.

Lemma 4.15 There are at least two unassigned permissible functions on each loop yy.

Proof By Lemma 4.10, the number of permissible functions in B’ on the block containing yj is one
more than the number of loops. Since there is at most one new function per loop, the number of functions
in B’ that are permissible on some loop between the first loop of the block and yg, inclusive, is at least
one more than the number of loops. Finally, note that exactly one function is assigned to each loop,
and moreover, if a function is departing, it is assigned. It follows by induction on k’ that the number of
functions in B’ that are unassigned and permissible on some loop between Yy, and yy is at least k —k’ + 2.
Hence, the number of unassigned permissible functions on yy is at least two. |
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We now verify that this algorithm produces a tropical independence.

Lemma 4.16 Suppose that ¢;; is assigned to the loop yy or the bridge By. Then ¢;; does not achieve the
minimum at any point to the right of vj.

Proof If yy is a nonlingering loop, then the proof is the same as [19, Section 8.2]. On the other hand, if
Yk 1s the lingering loop, then it is the last loop in its block. Since vg 4 is the start of the next block, ¢;;
cannot achieve the minimum at any point to the right of v 1. O

This completes the proof of Theorem 4.2 in the vertex-avoiding case.

Remark 4.17 For future reference, we note that the proof of Lemma 4.16 does not depend on the relative
lengths of the bridges. It only uses that the bridges are much longer than the loops. The assumption that
each bridge is much longer than the next is only used later, when there are decreasing bridges, decreasing
loops, or switching loops.

Remark 4.18 If I'/ is the subgraph of T to the right of wy, then I'” is a chain of 12 loops whose edge
lengths satisfy the required conditions, and if the first loop is nonlingering, then the restriction of X to I'’
satisfies the ramification condition of Theorem 4.2, with equality. Similarly, the subgraph to the right
of w, is a chain of 11 loops whose edge lengths satisfy the required conditions, and the restriction of
Y to this subgraph satisfies the ramification condition of Theorem 4.2, with equality. To produce an
independence in these cases, assign each function in B’ with slope greater than 4 to the first bridge, and
then proceed as above. There are precisely 15 — g such functions, and they have distinct slopes along the
first bridge, as in [19, Lemma 10.40]. Because of this, we can choose coefficients so that each one obtains
the minimum uniquely at some point of the first bridge. Thus the unramified vertex-avoiding cases of
Theorem 4.2 for g = 11 and 12 (ie when X is unramified at vi4 and there is no extra ramification at
w13—g beyond what is required by the inequalities on vanishing orders in the statement of the theorem)
follow from essentially the same argument as for g = 13. Our choice to index the vertices starting at
w13—g reflects the idea that these linear series with ramification on a chain of g = 11 or 12 loops behave
like linear series on a chain of 13 loops restricted to the subgraph to the right of wi3—g.

Example 4.19 We illustrate the construction with an example. Let [D] be a vertex-avoiding class of
degree 16 and rank 5 associated to the tableau in Figure 3.

The independence 6 = min;;{g;; + ¢;;} that we construct is depicted schematically in Figure 4. The
graph should be read from left to right and top to bottom, so the first six loops appear in the first row, with

113/4|18|9]10
215|7|11112|13

Figure 3: The tableau corresponding to the divisor D.
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35 25 44 34 33 15
55 45 24
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22 13 04 03 12 11
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N

Figure 4: The divisor D’ = 2D + div(6). The function ¢;; achieves the minimum uniquely on
the region labeled ij in " \ Supp(D’).

y1 on the left and yg on the right, and ;3 is the last loop in the third row. The rows correspond to the
three blocks. The 31 dots indicate the support of the divisor D’ = 2D + div(6). Note that deg(D’) = 32;
the point on the bridge 4 appears with multiplicity 2, as marked. Because £ = 6, there is a function that
is permissible on the second block in B but not B’. The functions in B that are permissible on the second
block are precisely o5, @14, and ¢23; we have chosen (arbitrarily) to omit ¢,3 from B’. Each of the 20
functions ¢;; in B’ achieves the minimum uniquely on the connected component of the complement of
Supp(D’) labeled ij .

4.2 No switching loops

Recall that a loop y; is a switching loop for ¥ if there is some ¢ € ¥ and some % such that sy (¢) < s¢[h]
and s, (¢) > sy[h +1]. It is a lingering loop if it is not a switching loop and s¢[i] = s, [i] for all 7. Recall
also that yy is a decreasing loop if sg[h] > s;[h]. Similarly B is a decreasing bridge if s,_, [h] > s¢[h].

Because we are only considering cases where the adjusted Brill-Noether number is at most one,
by [19, Proposition 9.10], we know that there is at most one lingering loop, one positive ramification
weight, one decreasing loop, one decreasing bridge, or one switching loop, and these possibilities are
mutually exclusive. Moreover, for decreasing loops and bridges, the index /4 is unique and the decrease in
slope is exactly one. In this subsection, we consider all cases where there is no switching loop. The cases
with a switching loop are discussed in Section 4.3.

Assume X has no switching loops. Then for all i there is a function ¢; € X such that
sk(pi) = sili] and  s;(¢;) =s;[i] forall k.

We keep the notation ¢;; = ¢; +¢; and B ={¢;; :0 <i < j <5}. As in the unramified vertex-avoiding
case, we choose a subset B’ C B of 20 functions, and we choose integers z; and z5 in order to divide the
graph I' into three blocks. We make our choices to satisfy the following conditions:

(i) No two functions in B’ that are permissible on y; differ by a constant on yy.

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill-Noether divisor on M3 and the Kodaira dimension of Ris 833

(ii) The number of functions in B’ that are permissible on each block is at most one more than the
number of loops in that block.

(iii) No function in B’ is permissible on more than one block,
(iv) if yg is a lingering loop, then it is the last loop in its block.

(v) If yg is a decreasing loop and j is the unique value such that s [j] < sx[j], then no function of
the form ¢;; € B is permissible on yy.

(vi) If By is a decreasing bridge and j is the unique value such that s;[j] < sl/c_1 [7], then either By, is
a bridge between blocks, or no function of the form ¢;; € B’ is permissible on y;_;.

Proposition 4.20 If B satisfies conditions (i)—(vi), then the functions in B are independent.

Proof The algorithm for constructing the tropical independence is identical to the algorithm of Section 4.1,
with the following exceptions. First, as in Remark 4.18, we assign every function with slope greater than
four to the first bridge. Second, the procedure for proceeding to the next block must be altered slightly
when the bridge between the blocks is a decreasing bridge.

When the bridge between the blocks is a decreasing bridge, there is a unique point v on the bridge where
one of the functions ¢; is locally nonlinear. We initialize the coefficients of the new permissible functions
on the next block so that they are equal to 6 at a point to the right of v. If one of the blocks contains zero
loops, we set the coefficient of the unique function with slope equal to that of 6 so that it is equal to 8 at
a point to the right of v, and initialize the coefficients of the new permissible functions on the next block
so that they are equal to 6 at a point to the right of this.

We note that there are at most 3 nondeparting permissible functions in B’ on each loop. This is because a
nondeparting permissible function ¢;; on yy satisfies sg41(¢;;) = sx(6), and for each i this equality can
hold for at most one ;.

To see that this algorithm produces an independence, suppose that ¢;; is assigned to the loop i or the
bridge Bj. We show that ¢;; does not achieve the minimum at any point to the right of vgy. If yx and
B both have multiplicity zero, then the argument is the same as in [19, Section 8.2]. On the other hand,
if y has positive multiplicity, then either yj is a decreasing loop, or by (iv) it is the last loop in its block.
If y is a decreasing loop, then by (v) there is no function in B’ that is permissible on y; and contains the
decreasing function as a summand, so the result holds again as in [19, Section 8.2]. We may therefore
assume that yy is the last loop in its block, in which case the argument is identical to the vertex-avoiding
case above.

Similarly, if Bx has positive multiplicity, then by (vi) there are two possibilities. If ¢;; does not contain
the decreasing function as a summand, then there is nothing to show. Otherwise, f is a bridge between
blocks. By (iii) the function ¢;; is only permissible on one block. Since vg is the start of the next
block, ¢;; cannot achieve the minimum at any point to the right of vg 4. |
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For the rest of this section, we explain how to choose z1, z5, and the set B’ in order to satisfy conditions
(1)—(vi). This is done by a careful case analysis, depending on combinatorial properties of the tropical
linear series X.

Case 1: there are no loops or bridges of positive multiplicity This guarantees that either the linear
series is ramified at v14, or has “extra ramification” at w13—g, meaning that g = 13 and the linear series
is ramified at wg, or g = 11 or 12 and the linear series has more ramification than what is imposed by the
inequalities on vanishing numbers in Theorem 4.2s. In these cases, which are mutually exclusive, we
choose z1 and z3 so that y;, is the first loop in the first block with no new function, and y,,+1 is the last
loop in the last block with no departing function. These loops exist by a counting argument, but we make
the choice explicit.

If X is ramified at v14, let k be the smallest positive integer such that s [5] = 6, and define

6 iftk=>7,
(22) z1 = — ; 6. and zp = max{k —1,7}.
If X has extra ramification at w13—g, let k be the largest positive integer such that sx [0] = —3, and define
6 ifk=>38
23 = min{k, 6 d = -
(23) z1 = min{k, 6} an Z5 7 itk <7,

Let ¥ € B be a function that is permissible on the second block, and let B = B\ {}. (In the case where
z1 = z2, let € B be a function with s, 41(¥) = 3.)

If there is a loop or bridge of positive multiplicity, then since p = 1, there is only one such loop or bridge,
and it has multiplicity 1.

Case 2: there is a bridge 8¢ of multiplicity 1 If £ > 8 and sz_l [5] = 6, then define z; and z; as in (22).
If £ <7 and s;[0] = —3, then define z; and z; as in (23). Otherwise, define

zy=min{{ — 1,6} and zp=4{—1.

If £ > 8 and sy_1[5] = 6, or £ < 7 and s,7[0] = —3, then as above, we let ¥ € B be a function that is
permissible on the second block, and let B = B\ {¢/}. Otherwise, let & be the unique integer such
that sg[h] < s,_,[h]. If £ # 5,6, then we will see in Lemma 4.21 that either there is a unique i such
that s;,_, [h] + s;_;[i] = s¢—1(0), or 2s5;_,[h] = sg_1(0) + 1, but not both. In the first case, we let
B’ = B\ {¢p;}, and in the second case, we let B’ = B\ {¢p;}. (The function in B\ B’ is permissible on
both blocks to either side of the bridge B;.) If £ = 5 or 6, then we will see in Lemma 4.21 that there is a
unique i such that s;,_, [2] +s,_,[i] = sg—1(0) — 1, and we again let B' = B\ {g; }.

It remains to consider the cases where there is a loop of multiplicity one. The case of a switching loop is
left to the next subsection. In the case of a lingering loop, we construct an independence exactly as in
Section 4.1. (See Remark 4.18 for an explanation of how the algorithm for g = 13 is adapted to the cases
where g = 11 or g = 12.) We now discuss the remaining case, where there is a decreasing loop.
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Case 3: there is a decreasing loop y, If £ > 8 and sy[5] = 6, then define z1 and z, as in (22). If £ <7
and S;z [0] = —3, then define z; and z, as in (23). Otherwise, define

¢ ife <o, t—1 ife>38,
z1=15 if{ =6, and Zp =48 if £ =38,
6 ifl>6, 7 if £ <8.

If £ > 8 and s¢[5] = 6 or £ <7 and 57[0] = —3, then as above, we let ¥ € B be a function that is permissible
on the second block, and let B’ = B\ {{}. Otherwise, let & be the unique integer such that sé [h] < s¢[h].
If £ <6 or £ =7,8 then y, is the last loop in its block, and we will see in Lemma 4.21 that either there is
a unique i such that sg[h] + s¢[i] = s¢(6), or 25¢[h] = 54(8) + 1, but not both. In the first case, we let
B’ = B\ {¢p;}, and in the second case, we let B' = B\ {¢p;}. If £ > 8 or £ = 6, then we will see that
either there is a unique i such that sg[h] + s¢[i] = s¢_1(6), or 2s5¢[h] = sg_1(6) + 1. Again, in the first
case, we let B' = B\ {¢p;}, and in the second case, we let B' = B\ {¢p1}.

In the cases above, we asserted several times that certain functions exist with specified slopes. To prove
this, we need to generalize Proposition 4.7. We first define the function

5

(k) = (slil+2—1).

i=0
Note that, if there is a loop of positive multiplicity and y; is the k™ loop of multiplicity zero, then k = t(£).
The following observation serves as the basis for our counting arguments.

Lemma 4.21 For a fixed k, suppose that —2 < s]/c [i]<5foralli. Let j be an integer such that s]/c [j]—1
is not equal to —3 or s,/c [i] for any i. For s in the range 2 < s < 5, there does not exist i such that
sp[i]+s5;.[j]1 = s if and only if one of the following holds:

1) t(k)=10—s.

(i) s=5,j=0and s [0]=—1.
(iii) s=2,j =5and 5;[5] =5.
(v) 25, [j]=s+]1.

Proof The argument is identical to that of Proposition 4.7. O
There are additional relevant cases, when s, [5] = 6 or s [0] = —3.

Lemma 4.22 If s, [5] = 6, then there does not exist i such that s [i] + 6 < 3. Similarly, if s;[0] = 3,
then there does not exist i such that sf{ [[]-2>4.

Proof Since p = 1, if 5;[5] = 6, then s, [0] > —2. It follows that s} [i] + 6 > 4 for all i. Similarly, if
5k [0] = —3, then s; [i] <5 for all i. It follows that s, [i] —2 < 3 for all ;. O
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Lemma 4.23 The set B satisfies conditions (i)—(vi).

Proof (i) Ifs; [i]> s [i] forall i, then the result is immediate, so we may assume that yy is a decreasing
loop. Let h be the unique integer such that s,’c [A] = si[h] + 1, and let i’ be the unique integer such
that s [h'] = s [h'] — 1. If g is not permissible on yi, then again there is nothing to show. If gy is
permissible, then by Lemma 4.21, we must have s (6) = 10— k. By construction, this occurs if and only
if k =7, in which case g ¢ B'.

(ii) Consider the first block first. There are two functions ¥ € B with the property that s7,_ < (¥) =4.
The result will therefore hold for the first block if and only if the first block contains a loop with no
new permissible functions. Let y; be a loop of multiplicity zero that is contained in the first block.
By Lemmas 4.21 and 4.22, there is no new permissible function on y; if and only if t(k) = 6 or
s,/c [0] = 5£[0] + 1 = —2. Thus, the number of permissible functions in B on the first block is at most
two more than the number of loops in Cases 2 or 3 when £ < 6 and s;[0] > —2, and one more than the
number of loops in the remaining cases. In Cases 2 and 3 when £ < 6 and s;[0] > —2, the function in
B\ B’ is permissible on the first block. Since this function is not in B’, the number of functions in B’
that are permissible on the first block is one less than the number in B. The third block follows from a
completely symmetric argument.

For the second block, note that if 7(z1) = 6, then there are 3 functions ¥ € B with the property that
57, (¥) = 3, and otherwise there are only two such functions. In every case, either 7(z1) < 6 or by
Lemma 4.21, the second block contains a loop with no new permissible functions. Since the function in
B\ B’ is permissible on the second block, we see that the number of permissible functions on the second
block is one more than the number of loops. (Note that this holds even in the case where the second block
contains zero loops, in which case there is exactly one permissible function on the second block.)

(iii) Suppose that ¢;; € B is permissible on more than one block. First, consider the case where S
is a bridge of multiplicity one, and let / be the unique integer such that sy[h] = sp_;[h] — 1. If ¢;; is
permissible on more than one block, then j = h and either s;_, [2] +s,_,[i] = 5¢—1(6), or i =h and
2sé_1 [h] = sp_1(0) + 1. If =2 < s5¢[h] <5, then by Lemma 4.21, such an i exists if and only if £ # 5, 6,
and by construction, we have ¢y; ¢ B’. Similarly, if s¢[h] = —3, then by Lemma 4.22, such an i exists
if and only if £ > 8, and if sy[h] = 5, then such an i exists if and only if £ < 7. In both cases, we have

oni 8.

Next, consider the case where y; is a decreasing loop. By construction, Yy is either the first or last
loop in its block. Let & be the unique integer such that s;[i] = sg[h] — 1. If y; is the last loop in its
block and ¢;; is permissible on both the block containing y, and the next block, then j = & and either
sg[h] + s¢[i] = s¢(0), or i = h and 2s4[h] = s¢(0) + 1. But then ¢;; ¢ 5. Similarly, if y; is the first
loop in its block, and ¢;; is permissible on both the block containing y; and the preceding block, then
J = h and either sg[h] + s¢[i] = 541 (0), or 2s¢[h] = 541 (0) + 1. If £ # 7, then again ¢;; ¢ B5’. Finally,
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note that if y, is both the first and last loop in its block, then £ = 7, and the only functions ¢;; that are
permissible on y7 satisfy s;[i] + s;[j] = 3. The result follows.

(@iv) If y, is a lingering loop, then we follow the construction of the vertex-avoiding case of the previous
subsection, in which y, is the last loop in its block.

(v) Let y; be a decreasing loop, let /i be the unique integer such that s,/{ [h] = si[h] + 1, and let i’ be the
unique integer such that s; [1'] = s [h'] — 1. If gy is permissible, then @y ¢ B, as shown in the proof
of condition (i).

(vi) Let Bj be a decreasing bridge and let j is the unique value such that s;[j] < Sllc—1 [/]. If By is not
a bridge between blocks, then by construction either j = 0, k <7, and s;[0] = =3, 0r j =5, k > 8§,
and s [5] = 5. In both cases, by Lemma 4.22, we see that there is no 7 such that ¢;; € B’ is permissible
on Yi_i. |

This completes the proof of Theorem 4.2 in all cases where there is no switching loop for X.
4.3 Switching loops

We now consider the case where there is a switching loop y, that switches slope 4. This means that
sgli] = s,[i] for all 7, and there exists a function ¢ € R(D) satisfying

se(@) =s¢[h] and  sy(p) = sy[h] +1=s,[h +1].

In this case, we define z; and z, as follows:

¢ ifl <o,
Lo 7 if£<6,
z1 =15 if£ =6, and Zy = ¢ il 6
i .
6 if¢>6, N
As in Section 4.1, we will construct our independence 6 to satisfy

4 ifk <z,
(@) =143 ifzy <k <z,
2 ifzp <k <13.
In the preceding cases, we identified functions ¢; € ¥ with designated slope si (¢;) = s¢[i] along each
bridge Bj. When there is a switching loop, this is possible for i 7 &, h + 1, but such a function does not
necessarily exist for i = h,h + 1. Instead, we identify a collection of functions in X with designated
slope along some of the bridges, and with slopes along the remaining bridges in a restricted range.

Proposition 4.24 There is a pencil W C V with ¢4, ¢p and ¢c¢ in trop(W) such that
() s;.(pa) = s;[h] forall k < ¢,
(i) sx(pB) = sglh+ 1] forall k > ¢,
(iii) sx(pc) = sklh +1] forall k < ¢, and s; (¢c) = si|h] for all k > ¢,
(iv) sk(p.) € {sk[h], si[h + 1]} and s (@) € {5} [R], s} [ + 1]} for all k.
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Proof The proof is essentially the same as that of [19, Proposition 11.18]. We include the details for
completeness. First, there exists ¢4 € ¥ such that s’13_g (pg) < s’13_g [h] and s14(@4) > s14[h]. Since yy
is the only switching loop, we have s (94) < s; [h] for k < ¢, and s (94) > s; [h] for k > £. In particular,
sy(pa) = sylhl, so s, (pa) = 5,_,[h], and it follows that s;,_, (¢4) = s;,_, []. This proves (i), because
there are no switching loops to the left of y,. The proof of (ii) is similar.

We now prove (iii). Given ¢4 and ¢p in X satisfying (i) and (ii), choose f4 and fp € V tropicalizing to
@4 and @p, respectively. Let W be the pencil spanned by f4 and fp. Arguments similar to the proof
of (i) above show that s; (trop(W)) = (si[h], sk [k + 1]), for all k. Choose a function f € W such that
@ =trop( f') satisfies s¢(¢) = s¢[h + 1]. Then si (@) = sg [h + 1] for k < £. Similarly, choose ¢’ € trop(W)
such that 5;(¢") = s [h], which implies that sz (¢") = si[h] for k > £. Finally, by adding a scalar to ¢,
we may assume that ¢ and ¢’ agree on the loop yy, and set o¢ = min{gp, ¢'}. O

In three steps, we now construct a tropical independence among 20 pairwise sums of functions in
S:={g;j i #h.h+1}U{p4.¢B.0c}.

4.3.1 Step1 First, we identify a collection of simpler functions in R(D) that are not necessarily in X.
Unlike ¢4 and ¢p, these functions are completely explicit; they have fixed slopes at every point of the
graph, rather than slopes in a restricted range. Moreover, these functions generate a tropical submodule
containing ¢4, ¢p and ¢c.

Proposition 4.25 There are functions gog, (pg 4 and @,° in R(D) such that:
(1) sg ((pg) = s [h] and s,/c(qog) = s, [h] for all k.

(ii) sk(<p2+1) = s [h + 1] and s,’c(go}(l’ﬂ) = s;.[h + 1] for all k.

(iii) sk (%) = sklh] and s;_ (95°) = s;._,[h] for all k < ¢, and sp(95°) = si[h+1] and s, _ (9;°) =
Si_y[h+1] forall k > €.

(iv) The function @4 is a tropical linear combination of the functions (p,? and ¢;°, where the two
functions simultaneously achieve the minimum at a point to the right of y,.

(v) The function @p is a tropical linear combination of the functions go,? 4 and ®;,°, where the two
functions simultaneously achieve the minimum at a point to the left of ;.

(vi) The function ¢c is a tropical linear combination of the functions (p}? and <p2 41> Where the two
functions simultaneously achieve the minimum on the loop y, where they agree.

Proof The construction of the functions is essentially the same as in [19, Lemmas 11.7 and 11.19],
but we describe the essential argument here, for the reader’s convenience. To construct (p}fo, consider a
function that agrees with ¢4 to the left of y, and with ¢p to the right. Because the two functions agree
on Yy, they “glue” together to give a function in R(D). The construction of the other two functions is
similar. The verification that ¢4, ¢p and ¢¢ are tropical linear combinations as claimed is the same as in
[19, Lemmas 11.8 and 11.19]. O
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4.3.2 Step 2 Next, we choose a set B” of 20 pairwise sums of functions in

Ai={g;i i #hh+1}U{pp. o) 1. 050}

that satisfies conditions (i)—(vi) of Section 4.2. We will choose this set so that, moreover, the indepen-
dence 8 produced by the algorithm from Section 4.2 satisfies a technical condition involving the best
approximations of 6 by certain functions in R(D) that are not in the set (Lemma 4.30).

Start with the set B of pairwise sums of elements in A\ {¢;°}. Note that |B| = 21. As a first step toward
specifying B”, we choose one function y € B, of the form ¢; 4+ ¢; for i, j # h,h + 1, to exclude. If
¢ <7 and £ # 6, let ¥ be such a function that is permissible on the second block. If £ = 6, let ¥ € B
be a function that is permissible on the first block. Otherwise, if £ > 7, let ¥ € B be a function that is
permissible on the third block. This choice of ¥ guarantees that the number of functions in B’ := B\ {y/}
that are permissible on each block is one more than the number of loops in that block. In order to ensure
a certain technical condition in the next step (Lemma 4.30), in the cases where there is some j such that
splh 4+ 1]+ s,[j] = 5¢(8) + 1, we adjust B’ by removing one more function and replacing it with ¢p° + ¢
for some ¢ € A.

Suppose there is some ¢ € A\ {gp°} such that s;[h + 1] + 5, (¢) = s¢(6) + 1. Then we define

B":=BU{p® + ¢} \{op + ¢}

Otherwise, if there is no such ¢, let B” := B’.

Lemma 4.26 The set B” satisfies conditions (i)—(vi) of Section 4.2, and therefore the algorithm in
Section 4.2 produces an independence 6 among the functions in B” with slopes s¢(0) as specified above.

Proof We first prove (i). First, note that, for any function ¢ € A, the functions ¢ + g02, 0+ g02 4 have
identical restrictions to the switching loop y,. Because these two functions have different slopes along ¢
and B¢ 1, however, we see that they cannot both be permissible on y;. In the case where p° +¢ € B”, we
see that the restriction of this function to a loop y; with k > £ agrees with that of the function (p,g 1 te
We note, however, that since sy[h + 1] + 5,(¢) = s¢(6) + 1, the function (pg 41 T ¢ is not permissible on
the loop yy if k > £.

If B” = B/, then condition (ii) holds by the same argument as Lemma 4.10. Otherwise, note that the
function in B” \ B’ is permissible on the same block as the function in B’ \ B”, so condition (ii) still
holds. Condition (iii) holds because the slopes functions in .A do not decrease from one bridge to the
next. Conditions (iv)—(vi) hold vacuously. By Proposition 4.20, therefore, there is an independence
among the functions in B”. O

4.3.3 Step 3 Finally, we choose a set 7 of 20 pairwise sums of functions in S and show that the best
approximation of the 6 by 7, defined as follows, is an independence.
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Definition 4.27 Let 7 be a finite subset of PL(I"). The best approximation of 6 € PL(T") by T is
(24) U7 :=min{p —c(¢,0) 0 €T},

where ¢(¢, 8) = min{p(v) —0(v) :v e T'}.
Note that 9 > 6, and every function ¢ € T achieves the minimum at some point.

Lemma 4.28 Let 0 = minyep/{{ + ay }. Suppose ¢ = miny-ec{y' + by}, where C C B”. Then the
best approximation of 6 by ¢ achieves equality on the entire region where some ' € C achieves the

minimum in 6.

Proof Let ¢ = miny/ec{by’ —ay}. Choose ¥ € C such that ¢ = by’ —ays. Then ¢ —c¢ > 6, with
equality at points where ¥/ achieves the minimum in 6. a

We now study the best approximation of 6 by various pairwise sums of function in S.

Lemma 4.29 Let ¢ € A\ {;°}. The best approximation of 6 by ¢c + ¢ achieves equality on the region
where either go,? + ¢ or go}? +1 1 ¢ achieves the minimum.

Proof If B” contains both gog + ¢ and (p}? 41 1@, then since pc + ¢ is a tropical linear combination of
these two functions, the result follows from Lemma 4.28. If not, then by construction B” does not contain
(pg + ¢, and 5[ + 1] + 57 (9) = 5¢(6) + 1. In this case, pc + ¢ has slope greater than 5¢(6) on By, so it
must achieve equality to the left of y,, where it agrees with (p,? 1 te |

Lemma 4.30 Let ¢ € A\ {g;°}. If 9° + ¢ ¢ B”, then the best approximation of 6 by ¢p° + ¢ achieves
equality on the region where either gog + ¢ or (pg 41 1 achieves the minimum.

Proof If (p}? + ¢ is assigned to a loop yx with k < £, then since ¢° > (p}? with equality to the left of yy,
we see that the best approximation of 6 by ¢° + ¢ achieves equality on the region where (pg + ¢ achieves
the minimum. Similarly, if (p}? 41 T ¢ is assigned to a loop yx with k > £, then the best approximation
of 6 by ¢;° + ¢ achieves equality on the region where <p2 41 1 achieves the minimum. It therefore
suffices to consider the case where 902 + ¢ is not assigned to a loop y; with k < £, but go,ol 41 teis. By
Lemma 4.21, on every loop yj in the same block as y, with k < £, there is a departing function. It follows
that

selh + 1]+ s¢(@) > s¢(0) + 1.

Since 902 + @ is not assigned to a loop y; with k < £, we must have equality in the expression above. By
construction, in this case ¢p° + ¢ € B”. O
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Remark 4.31 Tt is possible that the best approximation of 6 by ¢¢c + ¢ achieves equality on both the
region where (pg + ¢ achieves the minimum and the region where <p2 41 T @ achieves the minimum.
However, the set of independences is open in the set of all tropical linear combinations. In other words, if
the coefficients are varied in a sufficiently small neighborhood, the result is still an independence. One
can therefore choose the independence 6 to rule out this possibility.

We now describe our choice of the set 7. We will define sets 7; and T’ below, and define

T={g;eB i j ;éh,h+1}u( U Tj)UT’,
Jj#h,h+1
For j # h, h+ 1, if the best approximation of 6 by ¢c + ¢; achieves equality where gog + ¢; achieves the
minimum, let 7; = {¢B + ¢;, ¢c + ¢; }. Otherwise, if the best approximation of 6 by ¢c + ¢; achieves
equality where ¢ | + ¢, achieves the minimum, then let 7; = {p4 + ¢;, ¢c + ¢;}.

Similarly, we define 77 to be a set of three pairwise sums of elements of {@4, ¢, ¢c }, with our choice
depending on where certain functions achieve equality in the best approximation. In all cases, pc +¢c € T".
The other functions in 7" are determined by the following rules:

e If the best approximation of 8 by ¢c + ¢¢c achieves equality at a point to the left of y;, then
@4+ @c € T'. Otherwise, g +¢c € T'.

e Suppose 4 + ¢c € T'. If the best approximation of 6 by g4 + ¢¢ achieves equality at a point to
the left of yg, then @4 + @4 € T'. Otherwise, 4 + @B € T'.

e Suppose g + ¢¢c € T'. If the best approximation of 6 by ¢p + ¢¢ achieves equality at a point to
the left of y,, then g4 + @p € T'. Otherwise, g + g € T'.

Theorem 4.32 The best approximation ¥ is an independence, and ¥+ = 6 as functions.

Proof We show that there is a bijection F: 7 — B” with the property that each ¥ € T achieves the
minimum in ¥ on exactly the same region where F (/) achieves the minimum in 6. From this it follows
that 9+ is an independence, and that 95 = 6.

Fori, j #h,h+1, we set F(g;;) = ¢;;j. Next, consider a value j # h, h 4 1. We describe the restriction
of F to the subset 7;. The restriction of F to 7’ admits a similar description. By Lemma 4.29, the
best approximation of 6 by ¢c + ¢; achieves equality on the region where either (pg +¢j or (pg 1t
achieves the minimum (but not both, see Remark 4.31). If it achieves equality on the region where go}? +o;
achieves the minimum, set F'(¢c + ¢;) = (pg + ¢;. Otherwise, set F(¢c + ¢;) = (pg 1 te

Suppose that F'(¢c +¢;) = gog 41 1@ The case where F(¢c +¢;) = <p2 + ¢; follows from a similar (in
fact, simpler) argument. Since ¢¢ agrees with (pg 41 at points on or to the left of y;, we have ¢4 +¢; € T.
If p;° +¢; € B”, then we set F(p4 +¢;) = ¢;° + ;. In this case, we have s, [1] +s,[j] = s¢(0). Since
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Ye is the last loop in its block, we see that the slope of ¢4 + ¢; is greater than that of 6 on the right half
of B¢+1. Thus, the best approximation of & by ¢4 + ¢; must achieve equality to the left of By, where
@4 + @; agrees with 9° + @;.

If 9p° + ¢; ¢ B”, then set F(pq + ¢;) = (p}? + ¢;, and consider the best approximation 6" of 6 by
B" U{p;° + ¢;}. Note that the coefficient of ¢4 + ¢; is the same in the best approximation of 6" by
@4 + @; and the best approximation of 6 by ¢4 + ¢;. By Lemma 4.30, ¢° + ¢; achieves equality in 6’
on the region where either <p2 + ¢j or (pg +1 1 ¢ achieves the minimum in 0. Then, since @4 is a linear
combination of (pg and ¢;°, by Lemma 4.28, it follows that the best approximation of 6 by ¢4 + ¢;
achieves equality on the region where either gog + ¢j or (pg 41 1 ¢ achieves the minimum. But ¢4 and
@c do not agree at any point to the left of y,, so the best approximation of 6 by ¢4 4 ¢; must achieve
equality on the region where either (p,(l’ + ¢; achieves the minimum. a

5 Effectivity of the virtual class

Recall that 97(13 is an open substack of the moduli stack of stable curves, and g; is a stack of gen-
eralized limit linear series of rank r and degree d over 91;3. There is a morphism of vector bundles
¢: Sym?(€) — F over 52, whose degeneracy locus is denoted by 4l.

The case of Theorem 4.2 where g = 13 shows that the pushforward o [{{]V'" under the proper forgetful
map o : %:i — M ¢ 1s a divisor, not just a divisor class. In our proof that o [4( virt i3 effective, we will
use the additional cases where g = 11 or 12. Theorem 4.2 implies the following result.

Theorem 5.1 Let X be a general curve of genus g € {11, 12,13}, and let p € X be a general point. Let
V € HO(X, L) be a linear series of degree 16 and rank 5. Assume that

(i) if g =12, thenal (p) > 2, and
(i) if g =11, then eithera} (p) >3, or a} (p) +ay (p) > 5.

Then the multiplication map ¢y : Sym? V — H(X, L®?) is surjective.

We now prove that il is generically finite over each component of o [{]V'™, which implies that o [£(]"I"
is effective. Our argument follows closely that of [19, Section 12]. Indeed, several of the lemmas and
propositions along the way are identical, and we omit those proofs. As in [19, Section 12], we suppose
that Z C M3 is an irreducible divisor and that o |g has positive-dimensional fibers over the generic point
of Z. Let jo: My,1 — M3 be the map obtained by attaching an arbitrary pointed curve of genus 2 to a
fixed general pointed curve (X, p) of genus 11. Since g = 13 is odd, by [19, Proposition 2.2], it suffices
to show the following:

(a) Z is the closure of a divisor in M3,
(b) j;(Z)=0,and

(¢) Z does not contain any codimension 2 stratum A, ;.

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill-Noether divisor on M3 and the Kodaira dimension of Ris 843

The only irreducible boundary divisors in MB are Ag and A7. Therefore, item (a), that Z is the closure
of a divisor in M3, is a consequence of the following.

Proposition 5.2 The image of the degeneracy locus 1 does not contain Ag or A§.
Proof The proof is identical to [19, Proposition 12.3]. |
The proofs of (b) and (c) use the following lemma.

Lemma 5.3 If[X] € Z and p € X, then there is a linear series V € Gf6 (X)) that is ramified at p such
that ¢y is not surjective.

Proof The proof is identical to [19, Lemma 12.4]. O

5.1 Pulling back to M, ;

In order to verify (b), we consider the preimage of Z under the map j,.
Lemma 5.4 The preimage j, 1(Z) is contained in the Weierstrass divisor W5 in /Wz,].
Proof The proof is identical to [19, Lemma 12.5]. O

To prove that 7 (Z) = 0, we consider the following construction. Let I" be a chain of 13 loops with the
following restrictions on edge lengths:

(1) my = £, (that is, the second loop has torsion index 2),
(i) n3 > na, and
(iii) Lry1 <K my L Ly K ngyq L ny forall k # 2.
The last condition says that, subject to the constraints of conditions (i) and (ii), the edge lengths otherwise
satisfy (20). Let X be a smooth curve of genus 13 over K whose skeleton is I". We first note the following.
Lemma 5.5 If [X]¢ Z, then j5(Z) =0.
Proof This proof is identical to the first part of the proof of [19, Proposition 12.6]. a

Proposition 5.6 We have j;(Z) =0.

Proof By Lemma 5.5, it suffices to show that [X] ¢ Z. We divide I" into two subgraphs [Vand T, to
the left and right, respectively, of the midpoint of the long bridge B3. Let ¢ € X be a point specializing
to v14. If [X] € Z, by Lemma 5.3 there is a linear series in the degeneracy locus over X that is ramified
at ¢g. We now show that this impossible.
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Letl{ = (L,V) € Gf6(X) be a linear series ramified at g. We may assume that L = O(Dy), where
D = Trop(Dy) is a break divisor, and consider ¥ = trop(V'). We will show that there are 20 tropically
independent pairwise sums of functions in X using a variant of the arguments in Section 4. It follows that
the multiplication map ¢y is surjective, and hence [X] cannot be in Z.

To produce 20 tropically independent pairwise sums of functions in 3, following the methods of Section 4,
we first consider the slope sequence along the long bridge 3. First, suppose that either s3[4] < 2 or
53[3] + s3[5] < 5. In this case, even though the restriction of X to [ is not the tropicalization of a linear
series on a pointed curve of genus 11 with prescribed ramification, it satisfies all of the combinatorial
properties of the tropicalization of such a linear series. The proof of Theorem 4.2 then goes through
verbatim, yielding a tropical linear combination of 20 functions in X such that each function achieves the
minimum uniquely at some point of rcr.

For the remainder of the proof, we therefore assume that s3[4] > 3 and s3[3]+s3[5] > 6. Since deg D|i =5,
we see that s3[5] < 5. Moreover, since the divisor D|f” — s3[4]w, has positive rank on I, and no divisor
of degree one on [ has positive rank, s3[4] must be exactly 3. Since the canonical class is the only divisor
class of degree two and rank one on I, we see that D\t ~ Kz, + 3w. This yields an upper bound on
each of the slopes s3[i], and these bounds determine the slopes for i > 2:

s3[5]1=5, s3[4=3, s33]=1, s3[2]=0.

Moreover, we must have sé [i[] = s3[i] for 2 <i < 5. Since £ is ramified at g, we also have s14[5] > 6.
These conditions together imply that the sum of the multiplicities of all loops and bridges on [ is at
most one.

To construct an independence on I', we first construct an independence among 5 functions on [ This is
done exactly as in [19, Figure 39], and we omit the details.

Next, we construct an independence among 15 pairwise sums of functions in X restricted to T, with the
property that any function ¥ that obtains the minimum on I satisfies s5(Y¥) < 4. Note that each of the
functions ¥ that obtains the minimum on [ satisfies 53 () = 5. Since the bridge B3 is very long, it
follows that no function that obtains the minimum on one of the two subgraphs can obtain the minimum
on the other. Thus, we have constructed a tropical linear combination of 20 pairwise sums of functions
in ¥ in which 5 achieve the minimum uniquely at some point of I and 15 achieve the minimum uniquely
at some point of [.In particular, this is an independence, as required.

It remains to construct an independence among 15 pairwise sums of functions in X restricted to T.To
do this, we run the algorithm from [19], with one change. (Indeed, one could imagine that I" is simply
the first 13 loops in a chain of 23 loops; we construct the independence from [19, Section 12.3], and
restrict it to I'.) At the start, we skip the step named “start at the first bridge”. Instead, we do not assign
any function ¢ with s3(¥) > 5, and we start with the loop subroutine applied to y3. Following this
construction, there will only be two blocks, and there will be two functions with slope 2 along the last
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bridge B14. We eliminate one of these functions from B, and assign the other to 814. The rest of the
argument is exactly the same as that of [19]. |

5.2 Higher-codimension boundary strata
It remains to verify (c), that Z does not contain any of the codimension 2 boundary strata Ay j € M;3.
Proposition 5.7 The component Z does not contain any codimension 2 stratum A ;.

Proof The proof is again a variation on the independence constructions from the proof of Theorem 4.2.
We fix £ = 11— j. Let Y; be a smooth curve of genus 2 over K whose skeleton I7 is a chain of 2 loops
with bridges, and let p € Y1 be a point specializing to the right endpoint of I'1. Similarly, let Y, and
Y3 be smooth curves of genus £ and j, respectively, whose skeletons I and I3, are chains of £ loops
and j loops with edge lengths satisfying (20). Suppose further that the edges in the final loop of I, are
much longer than those in the first loop of I'5. Let p, g € Y5 be points specializing to the left and right
endpoints of I3, respectively, and let ¢ € Y3 be a point specializing to the left endpoint of [3. We show
that [Y'] = [Y1 Up Y2 U, Y3] € Ay ; is not contained in Z.

As in the proof of [19, Proposition 12.6], if [Y'] € Z, then Z contains points [X] corresponding to
.
In particular, there is an X € Z with skeleton a chain of loops I'y whose edge lengths satisfy all the

smooth curves whose skeletons are arbitrarily close to the skeleton of Y in the natural topology on M

conditions of (20), except that the bridges B3 and B, are exceedingly long in comparison to the other
edges. Let I be the subgraph of Iy to the right of the midpoint of the bridge 83. Note that I is a chain
of 11 loops, labeled ys, ..., y13, with bridges labeled B3, ..., f14.

By Lemma 5.3, there is a linear series V' of degree 16 and rank 5 on X that is ramified at a point x
specializing to the right-hand endpoint v14, and such that ¢y is not surjective. We will show that this is
not possible, using the tropical independence construction from Section 4. Let 3 = trop(V'). We have that
either s5[4] <2 or 55[3] + s55[4] < 5. Also, since V is ramified at x, we have s14[5] > 6. These conditions
imply that the multiplicity of every loop and bridge is zero. In particular, for each i there is a function g;
satisfying
k(i) = 851 (i) = sgli] = s,_,[i] forall k.

These functions have constant slope along bridges, and the slopes sz (¢;) are nondecreasing in k. These
properties guarantee that, even though the bridge B, is very long, a function ¢;; can only obtain the
minimum on a loop or bridge where it is permissible.

Even though the restriction of X to I' is not the tropicalization of a linear series on a curve of genus 11
with prescribed ramification at two specified points specializing to the left and right endpoints of T, it
satisfies all of the combinatorial properties of the tropicalization of such a linear series, and we may apply
the algorithm from Section 4. Because we are in a situation where the relative lengths of the bridges do
not matter (Remark 4.17) the construction yields an independence among 20 pairwise sums of functions
in X, and the proposition follows. |
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6 The Bertram—Feinberg—Mukai conjecture in genus 13

The aim of this section is to prove the existence part of the Bertram—Feinberg—Mukai conjecture on M 3.
For a smooth curve X of genus g, we denote by SUy (2, w) the moduli space of S—equivalence classes of
semistable rank-two vector bundles £ on X with det(£) = wy. For an integer k > 0, the Brill-Noether
locus
SUx(2,w.k) :={E € SUx(2,w) : h'°(X,E) > k}
has the structure of a Lagrangian degeneracy locus and each component of SUy (2, w, k) has dimension
at least
k+1
gk =35-3- ("3 ):

see [38]. Furthermore, SUyx (2, w, k) is smooth of dimension 8(2, g, k) at a point [E] corresponding to a
stable vector bundle if and only if the Mukai—Petri map (1) is injective. Of particular interest to us is the case

g=13 and k=S8,

in which case B(2, 13, 8) = 0. First, using linkage methods, we show that a general curve of genus 13
carries a stable vector bundle £ € SUx (2, w, 8). Then using a Hecke correspondence, we compute the
fundamental class of SUx (2, w, 8).

Theorem 6.1 A general curve X of genus 13 caries a stable vector bundle E of rank two with det E = wx
and h°(X,E) =8.

As a first step towards proving Theorem 6.1, we determine the extension type of the vector bundles in
question.

Proposition 6.2 For a general curve X of genus 13, every vector bundle E € SUx (2, w,8) can be
represented as an extension

(25) 0— Ox(D)—> E - wx(—D)—0,

where D is an effective divisor of degree 6 on X, such that L .= wx(—D) € W168 (X) is very ample and
the map ¢r.: Sym? H°(X, L) — H%(X, L®?) is not surjective. Conversely, a very ample L € W168 (X)
with ¢, not surjective induces a stable vector bundle E € SUyx (2, w, 8).

Proof Using a result of Segre — see [39] or [33, Proposition 3.1] for modern proofs — every semistable
vector bundle £ on X of rank two and canonical determinant carries a line subbundle Ox (D) < E with
deg D > %(g —2). Therefore, in our case deg D > 6.

If h°(X,Ox (D)) > 2, since h°(X, Ox (D)) + h°(X,wx(—D)) > h°(X, E) = 8 it follows from the
Brill-Noether theorem and Riemann—Roch that deg D = 8, hence wyx (—D) € W156 (X). It follows that
the extension (25) lies in the kernel of the map

Ext! (wx (—D), D) - H%(wx (—=D))Y ® H' (D).
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This implies that the multiplication map ¢, (—p): Sym? H°(X,wx (—D)) - H°(X,02*(-2D)) is
not surjective, which contradicts Theorem 1.5. Therefore 2°(X, Ox (D)) = 1, in which case necessarily
deg D = 6 and h°(X, E) = h%(X, Ox (D)) + h®(X, wx (—D)). Setting L := wx(—D) € WS(X), an
extension E satisfies #°(X, E) = 8 if and only if the extension class of E in Ext' (L, D) lies in the kernel
of the linear map

Ext' (L, D) — H°(L)V @ H'(D).

Thus, an extension (25) exists if and only if the multiplication map
ér: Sym> H(L) - H°(X, L®?) ~ Ext!(L, D)V

is not surjective. We claim that L is very ample. Otherwise, there exist points x,y € X such that
L :=L(-x—-y)e W156(X ). Since X is general, by Theorem 1.5 the multiplication map

¢r:Sym* HO(X, L) — HO(X, (L)®?)

is surjective, implying the inclusion H%(X, (L)®2(x + y)) € Im(¢,). We deduce that [E] lies in the
kernel of the map
Ext!(L, D) — Ext!(L(-x —y), D).

That is, the vector bundle E can also be represented as an extension
0—>L(—x—y)—>E—>0x(D+x+y)—0,
thus contradicting the semistability of £. We conclude that L has to be very ample.

Conversely, each very ample linear system L € W168 (X), for which the map ¢y, is not surjective induces
a stable vector bundle E; see also [14, 7.2]. Indeed, let us assume E is not semistable. In view of the
extension (25), a maximally destabilizing line subbundle of E is of the form L(—M), where M is an
effective divisor on X with deg M < 6. Therefore, apart from (25), E can also be realized as an extension

0— L(—M) — E — Ox(D + M) — 0.

By applying Riemann—Roch, one can then write
HOX,L)
HO(X,L(—M))

hO(X, L(—~M)) +h' (X, L(=M)) = h°(X, L) + h' (X, L) — 2dim + deg(M).

Since
(X, L)+ h'(X,L) = h°(X, E) <h®°(X,L(-M)) + h (X, L(-M)),
it follows that
HO(L)
HO(L(=M))
Since L is very ample, we find deg M € {4, 5, 6}. In each case, the Brill-Noether number of L(—M) is
negative, contradicting the generality of X. Therefore E is stable. |

deg M > 2dim
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Proof of Theorem 6.1 By Proposition 6.2, it suffices to show that for a general curve X of genus 13,
there exists a very ample linear system L € W168 (X) such that ¢y, is not surjective. We use a method
inspired by Verra’s proof [47] of the unirationality of M14. To illustrate the idea behind the proof, first
suppose that there exists an embedding @7 : X < P given by L W168 (X), such that the map ¢y, is not
surjective. In particular, X C P lies on at least 5 = (3) — 7%(X, L®2) — 1 quadrics. We expect the base
locus of this system of quadrics to be a reducible curve (of degree 32), containing X as a component and
accordingly write
X + C =Bs|Iy/ps(2)].

Assuming that X and C intersect transversally, we obtain that X 4 C is a complete intersection curve
in P®. Therefore C is a curve of degree 14 = 2> — deg(X) and applying the adjunction formula
2g(X) —2g(C) = (10 — 7)(deg(X) — deg(C)) = 12 (see for instance [47, page 1429]), we obtain
g(C)="1.

We now reverse this procedure and start with a general curve C € P° of genus 7 embedded by a 7—
dimensional linear system V C H°(C, L¢), where L¢ € Pic'4(C) is a general line bundle, therefore
h°(C, L¢) = 8. Consider the multiplication map

¢y : Sym*(V) — H(C,LE?)

and observe that Ker(¢y) has dimension at least 6 = dim Sym?(V) — hO(ng). Choose a general
5—dimensional system of quadrics W € G(S ,HO(PS, T /Ip6(2))). We then expect

(26) Bs|W|=C+ X C P®

to be a nodal curve, and the curve X linked to C to be a smooth curve of degree 18 and genus 13. Setting
L:=0x(1)e W168 (X), by construction L is very ample and the embedded curve X C IP° lies on at least
5 quadrics, therefore ¢7, is not surjective.

To carry this out, one needs to check some transversality statements. Let Pic%”’ be the universal Picard
variety parametrizing pairs [C, L¢], where C is a smooth curve of genus 7 and L¢ € Pic'#(C). As
pointed out in [47, Theorem 1.2], it follows from Mukai’s work [37] that 73ic%4 is unirational. We
introduce the variety

Y:={[C,Lc.V.W]:[C,Lc] e Pict*, V e G6, H*(C, Lc)), W € G(5,Ker(¢y))}

The forgetful map Y — 791'c%4 has the structure of an iterated locally trivial projective bundle over Pic%“,
therefore ) is unirational as well. Moreover,

dim Y = dim Pic}* +dim G(7,8) + dim G(5,6) =4-7—-3+ 745 = 37.
One has a rational linkage map
XY - SU2,0,8), [C,Lc,V,W] [X,L,E]

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill-Noether divisor on M3 and the Kodaira dimension of Ris 849

where X is defined by (26), L := Ox (1) € W168 (X) and E € SUx (2, w, 8) is the rank-two vector bundle
defined uniquely by the extension 0 > wy ® LY — E — L — 0.

To show that y is well defined it suffices to produce one example of a point in ) for which all these
assumptions are realized. To that end, we consider 11 general points pp,..., psandqq, ..., ge respectively
in P2 and the linear system

H =06h—2(Ep, +--+ Eps) = (Eq, + -+ Eg)

on the blowup S = Bl (IP?) at these points. Here / denotes the pullback of the line class from P2. Via

Macaulay? one checks that S AL P65 an embedding and the graded Betti diagram of S is

1 — — — —
-5 — — _
- — 1516 15

Next we consider a general curve C C S in the linear system
C =10h—=4(Ep, + Ep, + Epy + Ep,) =3Eps = 2(Eq, + Eg,) = (Eqy + Eqy + Eqs + Ege).

Via Macaulay?2, we verify that C is smooth, g(C) = 7 and deg(C) = 14. Furthermore, using that
H'(P® Zg,ps(2)) = 0, we have an exact sequence

0— H(P®, Zg/ps(2)) > H*(P®. Z¢ ps(2)) > HO(S.0s(2H — C)) — 0.

Since Os(2H —C) = Os(2h—Eps— Eqy— Eg, — Eqs— Eg), clearly h°(S, Os (2H —C)) = 1, therefore
hO(IP’6,IC/]P>6(2)) = 6. That is, C C P® is a 2-normal curve.

One also verifies with Macaulay?2 that C C P is scheme-theoretically cut out by quadrics. Using
[47, Proposition 2.2], C lies on a smooth surface ¥ C P® which is a complete intersection of four
quadrics containing C. Furthermore, the linear system |Oy (2H — C)| is basepoint-free, so a general
element X € |Oy (2H — C)| is a smooth curve of genus 13 meeting C transversally. Finally, a standard
argument using the exact sequence 0 — Oy (H — X) — Oy (H) — Ox(H) — 0 shows that since C
is 2-normal, the residual curve X is 1-normal. That is, 2! (X, Ox (1)) = 1. This implies that the map
x:Y -->SU13(2, w, 8) is well defined and dominant. a

Corollary 6.3 The parameter space SU13(2, w, 8) is unirational.
Proof This follows from the proof of Theorem 6.1 and from the unirationality of ). |

6.1 The fundamental class of SUy (2, w, 8) for a general curve

It is essential for our calculations to determine the degree of the map
O:SU3 (2, 0,8) —> Mz, (X, E]) = [X].
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We fix a general curve X of genus g and a point p € X. Since the moduli space SUy (2, w) is singular, in
order to determine the fundamental class of the nonabelian Brill-Noether locus SUx (2, w, k), following
[40; 33; 38] one uses instead the Hecke correspondence relating SUy (2, w) to the smooth moduli space
SUx (2, w(p)) of stable rank-two vector bundles F on X with det(F) = wx (p).

Recall that SUy (2, w(p)) is a fine moduli space. Hence there is a universal rank-two vector bundle F on
X xSUx (2, w(p)) and we consider the Hecke correspondence

P :=P(Fipyxsux 2.0(p):
endowed with the projection 71 : P — SUyx (2, w(p)). The points of P are exact sequences
27) 0—-FE—>F—K(p)—0,
where F € SUx (2, w(p)), and therefore det(E) = wy. One has a diagram
P
2

SUx (2, w(p)) SUx (2, w)

where p assigns to a sequence (27) the semistable vector bundle E. Set
h:=c1(Op(1)) = p*c1(Ley),

where L.y is the determinant line bundle on SUy (2, w), associated to the effective divisor

©®:={E eSUx(2,w): H*(X, E) #0}.

Set o 1= c1(Lodd) € HZ(SUX (2,w(p)), Z), where Ly4q is the ample generator of Pic(SUX (2, w(p))).
Note that Pic(P) is generated by / and by 7] ().
For each k € N, the nonabelian Brill-Noether locus

Bp(k):={0—>E —>F > K(p) >0l e P:h°X,E)>k}
has the structure of a Lagrangian degeneracy locus of expected codimension (2, g, k)+1=3g—2— (k;L 1);
see [38, Section 5; 33, Section 2]. As such, its virtual class [Bp (k)] € H*(P,Q) can be computed in
terms of certain tautological classes, whose definition we recall now.

Following [40], we consider the Kiinneth decomposition of the Chern classes of F, using that det(F) =
wx (p) W Logq, and write

c1(F)=a+Q2g—1)¢ and c2(F)=y+v+ga®q,

where ¢ € H2(X, Q) is the fundamental class of the curve, x € H*(SUx (2, w(p)). Q) and ¥ is in
H3(SUX 2,w(p)), Q) ® H'(X, Q). Finally, we define the class

ye H6(SUx(2, w(p)). Q)
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by the formula 92 = y ® ¢. One has the relation
2 2 4
h* =ah—3(@*—p) e HY(P.Q),

from which we can recursively determine all powers of .. We summarize as follows.

Proposition 6.4 For each n > 2, the following relation holds in H* (P, Q):

_ h(—za+2h)ﬂ+a2—2ah+ﬁ(a+ \/B)" N h(za—zh)\/ﬁwz—zamﬁ(a— \/B)"
VB@*—p) 2 VB@*—p) 2 )

hl’l

In this formula \/F is a formal root of the class 8. Applying [33, Section 3] or [38], one can endow
Bp (k) with the structure of a Lagrangian degeneracy locus as follows. Let £ be the vector bundle on

X x P defined by the exact sequence
0—> & — (idxm)"(F) = (p2)«(Op(1)) = 0,

where py: X x P — P is the projection. Choose an effective divisor D of large degree on X and also
denote by D its pullback under X x P — X. Then (p2)«(E/E(—D)) and (p2)«(E(D)) are Lagrangian
subbundles of (p2)«(E(D)/E(—D)). For each point ¢ := [0 - E — F — K(p) — 0] € P, one has

(p2)(E(D)(1) N (p2)(E/E(=D)) (1) = HO(X, E).

Assume from now on g = 13 and k = 8, therefore we expect Bp(8) to be one-dimensional. Applying
the formalism for Lagrangian degeneracy loci [38, Proposition 1.11], we find the following determinantal

formula for its virtual fundamental class:

¢g C9 C10 C11 C12 C13 C14 C15
Ce C7 Cg C9 C10 C11 C12 C13
Cq4 C5 C6 C7 Cg C9 C10 C11
; Cp C3 C4 C5 Cg C7 Cg C
(28) Be@®I™ =" 0 2Dl e ol
cp C1 Cp €3 C4 Cjs
0 0 cp C1 Cp2 (3
0 0 0 0 co C1

where the ¢; € H? (P, Q) are defined recursively by the following formulas, see [33, Corollary 4.2]:
29) co=2. c1=h =102 es=Lt(ARP+1ph—1y). ca=L(Lh*+1p0%— Loyh),
and for eachn > 1,

(30) (n+4)cnra— 31+ 2 Bcnsz + (5B) 1w = hewrs — (18h + 37)cntr.

In order to evaluate the determinant giving [Bp (8)]'™™, we shall use Proposition 6.4 coupled with the
formula of Thaddeus [46] determining all top intersection numbers of tautological classes on SUy (2, w(p)).
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Precisely, for m + 2n + 3p = 3g — 3, one has
g!m!
(&—p)q!

where ¢ =m + p +1— g and B, denotes the Bernoulli number; those appearing in our calculation are

G1) | @By = (—1)EP 228270 (00 _2),,
SUx (2,0(p))

1 —_ 1 — 1 —_1 — 5 — _ 691
32_6’ B4— 30° B6—427 BS— 30° BIO—66’ BIZ— 2730°

_ 7 _ 3617 _ 43867 _ 174611 _ 854513 _ 236364091
Bia = 6’ Bis = 510 * Big = 798 ° Bao = 330 Bas = 138 ° Bay = 2730 -

Theorem 6.5 For a general curve X of genus 13, the locus SUy (2, w, 8) consists of three reduced points
corresponding to stable vector bundles.

Proof As explained, the Lagrangian degeneracy locus Bp(8) is expected to be a curve and we write

[Bp®)]"™ = f(a.B.y)+h-u(@B,y),

where f(o, 8, y) and u(«, B, y) are homogeneous polynomials of degrees 36 = 3g — 3 and 35 = 3g — 4,
respectively.

Observe that if £ € SUy (2, w, 8) then necessarily E is a stable bundle. Otherwise E is strictly semistable,
in which case E = B ® (wx ® BY), where B € W132 (X)), which contradicts the Brill-Noether theorem
on X. Since p is a P!—fibration over the locus of stable vector bundles, it follows that Bp(8) is a
P! —fibration over SUy (2, @, 8). Furthermore, applying [45], the Mukai—Petri map £ is an isomorphism
for each vector bundle E € SUx (2, w, 8), therefore SUy (2, w, 8) is a reduced zero-dimensional cycle.
We denote by a its length, thus we can write

(32) [Bp(8)] = [Bp(®)]"™ = ap*([Eo]) = f(a, B, ) + h-u(e,B,y),
where [Ey] € SUx (2, w) is general. Intersecting both sides of (32) with &, we obtain
h-fla.B.y)=—h-au(a.B.y).

Next observe that p*([Eo]) -« = 2. Indeed, since p is a P !—fibration over the open locus of stable bundles
and wp = p*(Ley) ® m*(—), it follows that

—2 =deg(wp|p*((Eo)) = @P - P ([Eo]) = —a - p* ([Eo)).

Intersecting both sides of (32) with «, we find 2a = h-au(a, B,y) = —h- f(a, B,y), so

a=SUxC.08) =5 [ wepp=5[  jepp

We are left with the task of computing the degree 36 polynomial f(c, 8, y), which is a long but elementary
calculation. We consider the determinant (28) computing the class of Bp(8). First we substitute for each
of the classes c1, . .., c15 the expression in terms of &, 8, y and & given by the recursion (30), starting with
the initial conditions (29). Evaluating this determinant, we obtain a polynomial of degree 36 in the classes
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o, B, y and h. We recursively express all the powers 2" with n > 2 and obtain a formula of the form
[Bp(®)] = f(o,B,y)+h-u(a, B,y). We set h =0 in this formula and then we evaluate each monomial
of degree 36 in «, B and y using Thaddeus’ formulas (31). At the end, we obtain f(«, B, y) = —6, which
completes the proof of Theorem 6.5.4 |

7 The nonabelian Brill-Noether divisor on ./WB

In this section we determine the class of the nonabelian Brill-Noether divisor MP;3, and prove
Theorem 1.1. The results in this section also lay the groundwork for the proof that R is of general type.

7.1 Tautological classes on the universal nonabelian Brill-Noether locus

Definition 7.1 Let i)ﬁ‘?3 be the open substack of 9t;3 consisting of

(i) smooth curves X of genus 13 with SUx (2, w,9) = &, or
(i) 1-nodal irreducible curves [X/y ~ g], where X is a 7-gonal smooth genus 12 curve, y,q € X, and

the multiplication map ¢, : Sym* HO(X, L) — H®(X, L®2) is surjective for each L € W (X).

Let /\/lq3 be the open subset of M3 coarsely representing 9:11‘}3.

Note that M‘i 5 and M13 U Ag agree in codimension one, in particular we identify CH 1(/\/l%) with
Q(A,80). We let 6!1123(2,@8) be the moduli stack of pairs [X, E], where [X] € ML and E is a
semistable rank-two vector bundle on X with det(E) = wy and h°(X, E) > 8. Let SU 33(2, w, 8) be the
coarse moduli space of 62,[%(2, w, 8). We still denote by 9 : 611%(2, w,8) — Emﬁ the forgetful map.

Proposition 7.2 The map v : GBiltlt3 2,w,8)— S)ﬁ’f 5 1s proper. Moreover, for each [X, E]€ SU Flt 3(2,0,8)
the corresponding vector bundle E is globally generated.

Proof Suppose X — T is a flat family of stable curves of genus 13, whose generic fiber X3 is smooth and
the special fiber X corresponds to a 1-nodal curve in Mﬁy The moduli space SUy, (2, w) specializes to
a moduli space SUx, (2, w) that is a closed subvariety of the moduli space Uy, (2, 24) of S—equivalence
classes of torsion-free sheaves of rank-two and degree 24 on Xo. The points in SUy, (2, w) are described
in [42].

We claim that if E € SUy, (2, w) satisfies 21°(Xo, E) > 8, then necessarily E is locally free, in which
case \’E wyx,. Suppose v: X — X is the normalization map, let y, g € X denote the inverse images
of the node p of X and assume E is not locally free at p. Denoting by m, C Oy, , the maximal ideal,
either

(i) Ep=m,®dmy,or
(i) Ep = Ox,,p ®my.

4The Maple file describing all calculations explained here is at https://www.mathematik hu-berlin.de/farkas/gen13bn.mw.
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In the first case, £ = v«(F), where F is a vector bundle of rank two on X with det(F) =~ wy, that is,
SUx (2, w, 8) # @. Note that

hO(X,det(F)) = 12 <2h%(X, F) — 4,

implying that F has a subpencil A < F.> Then A € W} (X) and L := wx ® AY € W5(X) is such that
¢r: Sym? HO(X, L) — H°(X, L®?) is not surjective. This is ruled out by the definition of Mﬁ3. In
case (ii), when Ej, = Oy, » ® m,, one has an exact sequence

0—>E—>v*(F~)—>K(p)—>O,

where F = v*(E)/Torsion is a vector bundle on the smooth curve X and satisfies det(F) = wy (y), or
det(F) = wyx (g); see also [42, 1.2]. Observe that also in this case F necessarily carries a subpencil, and
we argue as before to rule out this possibility.

We now turn out to the last part of Proposition 7.2. Choose [X, E] € Suﬁ3(2, w, 8) and assume for
simplicity X is smooth (the case when X is 1-nodal being similar). Assume E is not globally generated at
apoint g € X. Then there exists a vector bundle F € SUyx (2, w(—q), 8), obtained from E by an elementary
transformation at ¢. Note that h1°(X, det F) < 2h%(X, F)—4, which forces F to have a subpencil A < F.
Necessarily, deg(4) = 7. Since h°(F) = h®(A4) + h®(wx ® AY(—q)), setting L := wx ® A € W& (X),
it follows that the multiplication map

H°(X.L)® H°(X. L(—q)) — H°(X, L®**(—q))

is not surjective, and in particular the map Sym? H%(X, L) — H°(X, L®?) is not surjective either. Then
X possesses a stable rank-two vector bundle with canonical determinant and 9 = h°(X, A) + h°(X, L)
sections, which is not the case. O

Let us consider the universal genus 13 curve
p et s eut2,0.8),

then let & be the universal rank-two bundle over the stack 611?3(2, w, 8). Note that we can normalize &
in such a way that det(¢) = w,,.

Definition 7.3 We define the tautological class y := gx(c2(¢)) € CH! (611*113(2, w, 8)).

We aim to determine the pushforward to M% of the class y in terms of A and §¢. To that end, we begin
with the following:

Proposition 7.4 The pushforward g4 (€) is a locally free sheaf of rank 8 and
c1(+(€) =" (1) — 3y € CH' (64352, 0.9)).

. . . 2 . .
5Use that for dimension reasons the determinant map d : NH 0(X, F) — HY(X, det(F)) must necessarily vanish on a pure
element 0 # 51 A 57, with 51,55 € HO(X, F). The subpencil in question is then generated by the sections s1 and s5.
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Proof The fact that g« (&) is locally free follows from [29]. We apply Grothendieck—Riemann—Roch to

the curve g @{3 — 611%(2, w, 8) and to the vector bundle € to obtain

ch(1(€)) = [ (2+¢1(E) + 2 (cF (@) —262(&) +--) - (1 - L1 (L) + 15 (T QL) +ea(@L) +--)].
We consider the degree-one terms in this equality. Using [27, page 49], observe that
c1(Qp) =c1(wp) and  Pu(73(c1(Qp) +c2(Qp)) =¥ ().
By Serre duality, observe that R o (&) = p.(€)V, therefore one can write
2¢1(9x(€) = c1(92(€)) —c1 (R 94 (€)) = 20" (1) — 394(cT (0p)) + 30(cT (0p)) — .

which leads to the claimed formula. O

In view of our future applications to R 13, we introduce the rank-six vector bundle

Me := Ker{p™ (9« (€)) — €}.
The fiber Mg := M¢[X, E] over a point [X, E] € SL{%(Z, w, 8) sits in an exact sequence
(33) 0> Mg — HYX,E)®QOx =5 E — 0,

where exactness on the right is a consequence of Proposition 7.2.

Proposition 7.5 The following formulas hold:
c1(Me) = p* (3" (1) — 3y) —c1(wp).
c2(Me) = p"c2(p€) — c2(€) —c1(wp) - " (9" (1) — 37) + i (wp).

Proof This follows from the splitting principle applied to M, coupled with Proposition 7.4. |

7.2 The resonance divisor in genus 13

A general curve X of genus 13 has 3 stable vector bundles £ € SUy (2, @, 8). In this case h%(X, det(E)) =
2h°(X, E) — 3, which implies that requiring E to carry a subpencil defines a divisorial condition on
the moduli space SU13(2, w, 8) and thus on Mj3. For a vector bundle E € SUy (2, w), we denote its
determinant map by

d: NHYX,E) - H°(X, wy).

Definition 7.6 The resonance divisor 9‘{85?3 is the locus of curves [X] € M% for which
G2, H°(X,E))NP(Ker(d)) # @

for some vector bundle £ € SUy (2, , 8). In other words, ﬂ%esﬁ 5 is the locus of [X] for which there
exists an element 0 # 51 A 53 € /\2HO(X, E) such that d(s1 A s2) = 0.
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We set Resi3 = 9%5?3 N M 3. Note that %esﬁ 5 comes with an induced scheme structure under the
proper map ¥ : GL(%(Z, w,8) —> sm‘{ 5. The points in %esﬁ 5 correspond to those curves X for which a
vector bundle E € SUy (2, w, 8) carries a subpencil (which is generated by the sections s, 5o € H(X, E)
with d(s1 A s2) = 0). The class [9%65%] can be computed in terms of certain tautological classes over
611?3(2, w, 8). On the other hand, we have a geometric characterization of points in $Rest3, and it turns
out that the resonance divisor coincides with ®13 away from the heptagonal locus ./\/li3’7.

Proof of Theorem 1.7 We show that one has the following equality of effective divisors

on Mi3. Indeed, let us assume that [X] € Resy3 \Mi3’7, and let £ € SUx (2, w, 8) be the vector bundle
which can be written as an extension

(34) 0>A—FE—>wy®AY =0,

where h%(X, A) > 2. Since gon(X) = 8, and since 8 < h%(X, E) < h%(X, A) + h°(X,wx ® AY), it
follows that A € W81 (X)and L :=wyxy ® AV € W156 (X). If such an extension exists, then the map ¢y, is
not surjective, therefore [X] € D;3.

Conversely, if [X] € D13, there is some L € W156 (X) such that the multiplication map ¢y, is not surjective.
For [X] a general point of an irreducible component of ©;3, we may assume that the multiplication
map ¢; has corank one, for otherwise ¢7 : X < P> lies on a (2, 2, 2) complete intersection in P>, which
is a (possibly degenerate) K 3 surface. But the locus of curves [X] € M3 lying on a (possibly degenerate)
K3 surface cannot exceed g + 19 = 32 < 3g — 4, a contradiction. We let

E e P(Ext!(L,wx ® L))

be the unigue vector bundle with h°(X, E) = h®(X,L) + h°(X,wx ® LY) = 8. The argument of
Proposition 6.2 shows that E is stable, otherwise there would exist an effective divisor M of degree 4 on X
such that L(—M) € W132(X). Since p(13, 3, 12) = —3, the locus of curves [X]| € M3 with W132(X) e %]
has codimension at least three in M3, hence this situation does not occur along a component of 3.
Summarizing, away from the divisor ./\/l}3,7, the divisors SRes;3 and D13 coincide.

We now show that M}3’7 appears with multiplicity 3 inside $ies13. Let X be a general 7—gonal curve of
genus 13 and let 4 € W71 (X) denote its (unique) degree 7 pencil. Set L := wy ® AV € W167(X ). Each
vector bundle £ € SUy (2, w, 8) that has a subpencil appears as an extension

(35) 0>A—>E-sL 0.

In this case 1% (X, E) = hO(X, A)+h°(X, L)—1. Thatis, V := Im{H®(E) > HO(L)} is 6-dimensional.
Furthermore, the multiplication map

py:VeHYX, L)— H(X, L®?)
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is not surjective. Conversely, each 6-dimensional subspace V € H°(X, L) such that j1y is not surjective
leads to a vector bundle E € P(Ext!(L, A)) with h°(X, E) = 8. The corresponding bundle E is stable
unless V is of the form H°(X, L(—p)) for a point p € X, in which case E can also be realized as an
extension

0— L(—p)—> E— A(p) — 0.

To determine the number of such subspaces V € H°(X, L), we consider the projective space P® :=
P(H(X, L)) and consider the vector bundle A on P with fiber
Ve HYX,L)
NV
over a point [V] € PS. There exists a bundle morphism : A— H?(X, L®2)®0O pe given by multiplication

AV) =

and the subspaces [V] € P® for which py is not surjective (or, equivalently, 1" is not injective) are
precisely those lying in the degeneracy locus of u, that is, for which rk(u(V)) = 21. Applying the
Porteous formula we find

[Z21(0)] = ¢6(H*(X, L®?)Y ® Ops — AY) = c6(—A).

To compute the Chern classes of A, we recall that via the Euler sequence the rank-six vector bundle
M pe on P8 with Mpe(V) =V € H°(X, L) can be identified with Q ps(1). Then A is isomorphic to
Mpe ® H(X, L)//\szs. From the exact sequence

0— ANMps > NHX,L)® Op7 — Mps(1) = 0,

recalling that ¢, (M ps) = 1/(1+h), where h = ¢1(Ops (1)), we find Ctot(/\zMPG) =(14+2h)/(1+h)7,

therefore . a h)7 .
+ 6 16
Z = . = =2 'h :64
[Z21(W)] [(1+h)7 1+ 2h ]6 [1+2hL

From this, we subtract the excess contribution corresponding to the locus X L, P®, parametrizing
the subspaces VV = H%(X, L(—p)) corresponding to unstable bundles. Via the excess Porteous formula
[24, Example 14.4.7], this locus appears in the class [Z31(p)] with a contribution of

c1(Ker(u”) ® Coker(1”) — Ny, po) = —5c1(Ker(n")) + c1(Ay) — c1(Nx, pe).

The restriction to X € P® of the kernel bundle of 1V can be identified with LV, whereas Cl(A|\3() =
—2c¢1(Mpe|x) = 2 deg(L). Furthermore ¢1(Ny,ps) = 7deg(L) +2g(X) —2. All in all, the excess
contribution to [Z21 ()] coming from X equals

10deg(L) + 2deg(L) —7deg(L) —2g(X)—2=5-17—24 =61.

Therefore, for a general curve [X] € Mi 3,7 there are 3 = 64 — 61 vector bundles E € SUx (2, », 8)
having A as a subpencil, which finishes the proof. |
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We are now in a position to explain how Theorems 1.3 and 1.7 provide enough geometric information to
determine the pushforward to Dﬁﬁ3 of the class y.

Proposition 7.7 One has ¥« (y) = l}igsk 11548328 e CH! (/\/l 13)-

Proof The divisor 9%513 is defined as the pushforward under ¥ : Syt 132, 0,8) — mt§3 of the locus
where the fibers of the morphism of vector bundles

d: N pu(€) > pa(wp)

contain a rank-two tensor in their kernel. To compute the class of this locus, we use Proposition 7.4 in
combination with [22, Theorem 1.1]:°

[Resh ] = 132(c1 (px (@) — Be1 (94 (€) = 132(=29* (1) + L2y).
Us1ng [27], we write [M] 13,71 = 6+ (484 =789 —---) for the class of the heptagonal locus, while the class
[’)313] is computed by Theorem 1.4. Since deg(¥) = 3, we then find

Duy) = 43 (5220 — 28950 + 32 + 35 (484 — 760)) = 122 — 13825, o

7.3 The class of the nonabelian Brill-Noether divisor on M3

In the introduction, we defined the nonabelian Brill-Noether divisor /\/IPit3 as the locus of curves
[X] e M§3 for which there exists £ € SUyx (2, w, 8) such that the map

pwe: Sym?> HO(X, E) > H°(X, Sym? E)

is not an isomorphism, or equivalently, the scheme SUy (2, w, 8) is not reduced. We now compute the
class of this divisor.

Proof of Theorem 1.1 The locus /\/1731'13 is the pushforward under the proper map ¢ of the degeneracy
locus of the following map of vector bundles over 611?3(2, w, 8):

Sym® P4 (€) — «(Sym” €).
Using Grothendieck—Riemann—Roch for g Q% — 611;13(2, w, 8), we compute
c1(px(Sym?® €)) = [ (3+43c1(€) + 3 (5¢3(€) —8c2(€))) - (1 - 2e1(QY) + 5 (T QL) + 2 () ],-
Using again that 12 (c%(Q}p) +c2 (Qé)) = 1¥*(4), we conclude that
c1 (9« (Sym?® €)) = 30*(1) + pu(cf(wp)) — 4y = ¥ (151 — 8o) — 4y.
Via Proposition 7.4, we have ¢1(Sym? p«(€)) = 9¢1 (p«(€)) = 9(19*()L — %y), yielding
[MP]3] = 04 (c1(94(Sym? €) — Sym? ..(€))) = 3(6A — 80) + 3P (y).
Substituting via Proposition 7.7, we find [./\/177 3l = 143 (82184 — 12206). |

%The result in [22] is stated for a morphism of vector bundles of the form Sym2 (£) = F. An immediate inspection of the proof
shows though that the same formula applies also in the setting of a morphism of the form /\2(5 ) —> F.
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8 The Kodaira dimension of R 3

We turn our attention to showing that the Prym moduli space R13 is a variety of general type. We begin
by recalling basics on the geometry of the moduli of Prym variety, referring to [20] for details. We denote
by ﬁg = EJTIg (BZ5) the Deligne—-Mumford stack of Prym curves of genus g classifying triples [Y, , B],
where Y is a nodal curve of genus g such that each of its rational components meets the rest of the
curve in at least two points, 17 € Pic®(Y) is a line bundle of total degree 0 such that nr = Or(1) for
every rational component R C Y with |[R N m| = 2 (such a component is called exceptional), and
B:n®? — Oy is a morphism which is generically nonzero along each nonexceptional component of Y.
Let R be the coarse moduli space of Rg. One has a finite cover

m:Rg — Mg.
8.1 The boundary divisors of R,

The geometry of the boundary of R is described in [20]; we recall some facts. If [Xy; = X/y ~ ¢]
in Ag € My is such that [X, y,q] € Mg_1 2, denoting by v: X — X, the normalization map, there
are three types of Prym curves in the fiber 71 ([X yql). First, one can choose a nontrivial 2—torsion
point 1 € Pic®(X,,4). If v*(n) # Ox, this amounts to choosing a 2—torsion point ny € Pic®(X)[2]\ {Ox}
together with an identification of the fibers nx (y) and nx (¢) at the points y and g, respectively. As we
vary [X, y, q], points of this type fill up the boundary divisor A in Rg. The Prym curves corresponding
to the situation v*(17) = Oy fill up the boundary divisor Aj. Finally, choosing a line bundle nx on X
with 715?2 =~ Ox(—y —q) leads to a Prym curve [Y := X Uy 4 R, 1, B], where R is a smooth rational curve
meeting X at y and ¢, and € Pic®(Y) is a line bundle such that nx = nx and n g = Og(1). Points of
this type fill up the boundary divisor AG™ of ﬁg, which is the ramification divisor of the morphism 7.

Denoting by 8; := [Ag], §; := [Ag] and 6§™ := [§{"™] the corresponding divisor classes, one has the
following relation in CH ! (Rg) =~ CH 1 (ﬁg), see [20]:

7*(80) = 8o + 8¢ + 285
The finite morphism 7 : Ry — M, being ramified only along the divisor AE™, one has

Lg/2]
(36) Kﬁg =134 _2(86 +86/) _386am_2 Z (51' +8g—i +8i:g—i) - (81 +8g—1 +51:g—1),

i=1

where 7*(8;) = 8; + 8g—i + 8i:g—i; see [20, Theorem 1.5] for details.

8.2 The universal theta divisor on 7_21 3

For a semistable vector bundle £ € SUx (2, w) on a smooth curve X of genus g, its Raynaud theta divisor
O :={£ € Pic®(X) : HO(X, E ® £) # 0} is a 20—divisor inside the Jacobian of X; see [41].
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Definition 8.1 The universal theta divisor ®13 on R 13 is defined as the locus of smooth Prym curves
[X, n] € R13 for which there exists a vector bundle E € SUx (2, w, 8) such that H°(X, E ® ) # 0.

We first show that, as expected, this definition gives rise to a divisor on R 3.

Proposition 8.2 For a general Prym curve [X, n] € R13, one has H(X, E ® ) = 0 for all vector bundles
E € SUx (2, w, 8). It follows that ©13 is an effective divisor on R13.

Proof Consider the subvariety of R13 X ;5 SU13(2, w, 8) given by
Z:={[X.n.E]: H*(X,E ®n) # 0.

Assume for contradiction that Z surjects onto Rj3. Then Z is a union of irreducible components
of R13 X3 SU13(2, 0, 8). In particular, Z surjects onto the irreducible variety SU/13(2, w, 8); see
Corollary 6.3. Therefore, for every pair [X, E] € SU13(2, w, 8), there exists a 2—torsion point 7 on X
with HO(X, E ® n) # 0.

We now specialize to the case when E is a strictly semistable vector bundle of the type
E =A% @ (wy ® A®Y),

where [X, A] is a general tetragonal curve of genus 13. Note that 2°(X, A®3) =4, by [13, Proposition 2.1].
In particular, h°(X, E) = 8. Using [8] the space R13 X (5 Mi 3,4 barametrizing Prym curves over
tetragonal curves of genus 13 is irreducible, therefore H%(X, A®3 ® 1) # 0 for every triple [X, n, A] €
R13 XMy Mi3’4. We now further specialize the tetragonal curve X to a hyperelliptic curve and
A= Ao(x +y), where Ag € W21 (X) and x, y € X are general points, whereas

n= Ox(p1+ p2+ p3+ pa—q1—q2 —q3 —qa) € Pic®(X)[2],

where p1,..., pa,q1,...,q4 are mutually distinct Weierstrass points of X. It immediately follows that
for these choices H%(X, A®3 ® n) = 0, which is a contradiction. |

We consider the open substack SR?S =1 (937%) of M3 and let R% be its associated coarse moduli
space. We identify CH ! (R%) with the space Q(A, &, 87, 65™™). In what follows we extend the structure
on the universal theta divisor ®;3 to R§3 and realize it as the pushforward of the degeneracy locus of a
map of vector bundles of the same rank over the fiber product

RSUE (2, 0.8) 1= R, xamt, G142, 0. 8).

We start with a triple [X, n, E] € 9%82/[%(2, w, 8). Via Proposition 7.2 the vector bundle E is globally
generated and we let Mg := Ker{ H°(X, E) ® Ox — E}. By tensoring with 7 and taking cohomology
in the exact sequence (33), we observe that H%(X, E ® ) # 0 if and only if the coboundary map

(37) viHY X, Mg ®n) — H(X,E)®@ H* (X, wx ® 1)
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is not injective. Since clearly H%(X, Mg ® n) = 0, it follows that
W' (X, Mg ®n) = —deg(Mg)+6(g—1)=96=28-12=h"X,E)-h°(X, wx ®1n).
That is, v is a map between vector space of the same dimension.
By slightly abusing notation, we still denote by
o1t S rsut (2, 0.8)

the universal curve of genus 13 over 9{821;1‘3 (2, w, 8). It comes equipped with a universal rank-two vector
bundle ¢ such that \?¢ =~ wg and py (€) is locally free of rank 8 (cf Proposition 7.4), as well as with a
universal Prym line bundle £ with £ ,—1(1x,p,£7) = 7 for any point [X, 7, E] € %SL{%(Z, w, 8).

We consider the rank-six vector bundle Mg on RC 313 defined by the exact sequence
0— Mg — 0™ (p+€) - ¢ —0,
then introduce the following sheaves over SRSU §3 2,w,8):
A:=R'p.(Me®L) and B:= p«(€) ® px(wp @ L)".

Using the fact that the map v defined in (37) is a morphism between two vector spaces of the same
dimension for every point [X, n, E] € %SZ/{%(Z, w, 8), via Grauert’s theorem we conclude that both .4
and B are locally free of the same rank 96, and there exists a morphism

(38) viA—B

whose fiber restrictions are the maps (37). Recall that the forgetful map ¢ : %SLI%(Z, w,8) —> D%ﬁg, is
generically finite of degree 3. We denote by @% the pushforward to R% of the degeneracy locus of the
morphism v given by (38). Observe that ®§3 NMiz = 0q3.

Theorem 8.3 The class of the universal theta divisor ®§3 on R13 is given by

[©%,] = 15 (10430% — 1582(5) + 87) — 222265™) € CH ' (RE,).

Proof From Proposition 8.2 it follows that v is generically nondegenerate, therefore
(%] = c1(B-A).

Computing the class c1(B) is straightforward. We find that ¢1 (g« (wp ® £)) = 19*(1 — %S{f‘m), using
[20, Proposition 1.7]. Then via Proposition 7.4, we compute

c1(B) = 12¢1 (9« €) — 8¢ 1 (P (wp ® L)) = 12(3*(X) — 1y) —8(* (X — $85™)) = 9™ (41 +285™) — 6.

To determine c; (A) we apply Grothendieck—Riemann—Roch to the morphism g:

(39) ch(p(Me ® L)) = p«[(6+ c1(Me ® L) + 3(cF(Me ® L) —2c2(Me ® L)) + )
H(1=3e1(Qp) + 15 (T QL) + 2@ ++-4)].
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Observe by direct calculation that the formulas

ci(Me® L) =c1(Meg) +6c1(£) and  c2(Me ® L) = ca(Me) + 5c1(Me) - c1(L) + 15¢3(L)
hold, therefore

P (3 (T (Me ® £) = 2c2(Me ® £))) = o« (5 (cf (Me) —2c2(Me)) + c1(Me) - c1 (L) + 3cF (L))

=y — 39:(cT(@p)) = y — 50" (124 — 8, — 87 —265™).
where in the last formula we have used Proposition 7.5, Mumford’s formula [27] for the class g (c%(a)@)),
and 2« (c%(ﬁ)) = —0*(85"™); see [20, Proposition 1.6].
Substituting in the equation (39), coupled with Proposition 7.5 and also using that via the push—pull
formula one has px (p*(ﬁ*(k) — %y) -1 (a)@)) =(@g-1)-(3*)— %y), we obtain
c1(A) = =Ty + 9*(6A + 355™).
Putting everything together we find
[0%,] = Dact (B—A) = 94 (y — 24 + 285™) = 20,(y) — 61 + 285,

Finally, Proposition 7.7 gives 1439 (y) = 112884 —1582(8, + &, +265"™) and the conclusion follows. O

We can now complete the proof that R13 is of general type.

Proof of Theorem 1.2 It is shown in [20, Theorem 6.1] that any g pluricanonical forms defined on Rg
automatically extend to any resolution of singularities, therefore 7_2g is of general type if and only if the
canonical class Kz, is big, that is, it can be expressed as a positive rational combination of an ample and
an effective class on Rg. To that end we shall use, in addition to the closure ®13 in R13 of the universal
theta divisor ®13, the divisor D13.» on Rj3 consisting of pairs [X, ] where the 2—torsion point 7 lies in
the divisorial difference variety

X6 — X6 ={Ox(D—E):D,E € X¢} CPic®(X).
It is shown in [20, Theorem 0.2] that up to a positive rational constant, the closure of Dj3.> inside Ri3
is given by [D13:2] = 194 — 3(8}) + §;) — L285™ — ... € CH!(R13). Observe that by construction, ®§3
differs from the restriction of ©13 to M% by a (possibly empty) effective combination of the divisors
Ag, Ag and AG™; hence, using Theorem 8.3 we can write

[O13] = 155 (104304 — b8y — by 8y — bE™SE™ —--+) € CH' (R13).

where bj, > 1582, by > 1582 and bi™ > Sszﬂ. We consider the effective divisor, on R;3,

12 6
. 65 11531 _ 1B ner ram gram Q. . Q. .
D= &%[013] + 3735 [D13:2] = ak —apdy —andy —ag 8y — E a;d;i — E a;j13-i6i:13—i,

i=1 i=1
__ 4362 ! " ram . :
where a = S, dg = 2, ap > 2 and ag™ > 3. By an argument using pencils on K3 surfaces, one
can show that each of the coefficients ay,...,a12 orai,i2,...,ae,7 is at least equal to 3. Indeed, each

boundary divisor A; or A;.13—; of R 13 is covered by pencils of reducible Prym curves consisting of two
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components, of which one moves in a suitable Lefschetz pencil on a fixed K3 surface. The intersection
numbers of these pencils with the generators of CH'! (7_€g) were computed in [20, Proposition 1.8]. Since
D is the closure in R13 of an effective divisor on R 3, the intersection number of each such pencil with D
is nonnegative. For instance, for 1 <i < 6 we obtain, in this way, the inequality

arz—i > ag(6i +18)—a(i +1) > 2(6i +18) — LL(i + 1) > 3.

The inequalities for the remaining coefficients of D can be handled similarly; see also [20, Proposition 1.9].
Since a = 12.943 ... < 13, comparing the class of D to that of K7 . given in (36), we conclude that
K%, can be written as a positive combination of [D] and a multiple of A, hence it is big. O

8.3 The Kodaira dimension of ./ng,,,,

We indicate how our results on divisors on M3 can be used to determine the Kodaira dimension of the
moduli space JW13,,,.

Proof of Theorem 1.6 It suffices to show that M 3.9 is of general type to conclude that the same holds for
/\_/113,,1 when n > 10. We use the divisor Dy3:04,15 considered by Logan [36] and defined as the Gg—orbit
(under the action permuting the marked points) of the locus of pointed curves [X, p1,..., po] € Mi3,9
such that

hO(X,0x2p1+--+2pa+ ps+-+ p9)) = 2.

Up to a positive constant the class of the closure in Mj3,9 of Dy3.54 15 equals

9
[2_913:24’15] =—-A+ % Z Vi — %50;2 —.-- € CHI(./\_/113,9).
i=1
(See [17] or [36] for the standard notation on the generators of CHI(Mg’n).) If m: /W13,9 — Mis is
the map forgetting the marked points, a routine calculation shows that the canonical class Kz , , can be
expressed as a positive linear combination of [D3.54 5] and 7*([D]), where D € Eff(M;3) if and only

if 2s(D) — % < 13. Observe that the class of the nonabelian Brill-Noether divisor [MP3] verifies this
inequality, and the result follows. O
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