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In this work, we consider the problem of learning a reduced-order
model of a high-dimensional stochastic nonlinear system with
control inputs from noisy data. In particular, we develop a hybrid
parametric/nonparametric model that learns the “average” linear
dynamics in the data using dynamic mode decomposition with
control (DMDc) and the nonlinearities and model uncertainties
using Gaussian process (GP) regression and compare it with total
least-squares dynamic mode decomposition (tlsDMD), extended
here to systems with control inputs (tlsDMDc). The proposed
approach is also compared with existing methods, such as DMDc-
only and GP-only models, in two tasks: controlling the stochastic
nonlinear Stuart-Landau equation and predicting the flowfield
induced by a jet-like body force field in a turbulent boundary layer
using data from large-scale numerical simulations.

[DOI: 10.1115/1.4065594]

1 Introduction

Control of high-dimensional nonlinear dynamical systems, such
as turbulent flows, which are expensive to model due to their large
state spaces, has led to the need for approximate models that are
computationally tractable and amenable to standard control
algorithms. Simulations and experiments of such complex and
uncertain dynamical systems typically yield large spatiotemporal
data that can be used to learn tractable reduced-order models suitable
for control.
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Data-driven model reduction of systems with high-dimensional
state spaces has typically been performed using proper orthogonal
decomposition (POD) [1]. POD computes the singular value
decomposition (SVD) of snapshots of the high-dimensional state
(e.g., flowfield) and identifies an optimal subspace containing the
most energetic modes on which the high-dimensional state space is
projected [2]. For systems with control inputs, POD variants, such as
balanced proper orthogonal decomposition [3], have also been
proposed, although balanced proper orthogonal decomposition
requires knowledge of the underlying equations of the system.
Dynamic mode decomposition (DMD) [4,5] is an attractive
alternative for modeling the spatiotemporal evolution of data,
such as fluid flows, from time-resolved snapshots of the high-
dimensional system. Extensions of DMD have included systems
with control inputs [6,7], noise-aware [8,9], and sparsity-promoting
variants [10], among others.

Dynamic mode decomposition-based approaches often fail to
capture the nonlinearities in the underlying dynamics due to the
assumption of linearity of the DMD models. For that reason,
Koopman operator theory—which is viewed as a generalization of
DMD—has been extensively explored both in the fluid dynamics
[11] and the controls community [12,13], with DMD-based [14,15],
kernel-based [16], and deep learning-based [17,18] approximations
of the Koopman operator proposed. Similar modeling efforts have
also led to new methods such as sparse identification of nonlinear
dynamics [19] and operator inference for model reduction [20].

Gaussian process (GP) regression [21] is a type of nonparametric
regression model describing distributions over functions condi-
tioned on the training data. They are ideal for learning arbitrary
nonlinear stochastic dynamics due to their flexibility and inherent
ability to provide uncertainty estimates capturing both process and
measurement noise, as well as model uncertainties. GP regression
and its scalable variants [22-25] have been successfully used for a
number of dynamical systems modeling [26,27] and control tasks
[28-30]. In the context of high-dimensional systems, GP regression
has been used in modeling the POD coefficients for systems with
varying parameters [31-34] as well as the reduced-order dynamics
after POD or auto-encoder-based order reduction [35,36].

In this brief, we propose a hybrid dynamic mode decomposition
with control (DMDc) + GP model for learning the nonlinearities and
model uncertainties in the reduced-order data that DMDc alone fails
to capture. In addition, total least-squares DMD [9] is extended to
systems with control inputs (tlsDMDc) to fairly compare the
proposed method with a noise-aware, linear-only DMD-based
approach that accounts for control inputs.

In Sec. 2, we first introduce DMDc and extend total least-squares
DMD [9] to systems with control inputs. Then, we introduce the
general framework of Gaussian process regression and the process
of training a DMDc + GP reduced-order model. In Sec. 3, we
demonstrate the advantages of the proposed models on two tasks:
modeling and controlling the nonlinear stochastic Stuart—Landau
equation from noisy data and predicting the wall-normal velocity
field induced by a jet-like body force field in a turbulent boundary
layer.

2 Method

2.1 Dynamic Mode Decomposition With Control. Assume
that the unknown stochastic nonlinear and, possibly, high-
dimensional system we want to model has discrete-time dynamics
of the form
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y(k+ 1) = f(y(k), u(k), w(k)) M

where y € R™ is the state, u € R"™ is the control input, w € R™ is
the independent and identically distributed Gaussian white noise,
and f(-) is the nonlinear operator that propagates the state y(k) by
one time-step.

Our goal is to identify a reduced-order model of the underlying
dynamics when Eq. (1) is unknown and only a limited number of
noisy experimental or numerical data is available, as is typical in
fluid dynamics applications.

In particular, given a set of p training data tuples {(y“ ), ul, f(y,
ul), W))W where y, i = 1, ..., p, are not necessarily sequential,
the data can be arranged as

Y= [y(l) y(p)} c RM*P (2@)
Y = [f(y(l),u(l)’w(n) f(y(l’),u(p)’w(p))] c RmxP (Zb)
U= [u(l) u(p)] c Rmuxp 20)

2.1.1 Model Order Reduction. A common way to reduce the
dimensionality of the data when n, > 1 is to project the high-
dimensional state y(k) onto the POD modes given by the SVD of the
data matrix Y = UZVT, where the columns of matrix U € R™”*” are
the orthonormal eigenvectors of YYT or POD modes arranged by their
energy content, i.e., their singular value, the columns of V € R”* are
the orthonormal eigenvectors of YTY, and X € R is the diagonal
matrix containing the singular values of Y arranged by their magnitude.

Projecting the high-dimensional snapshots y(k) on the range
space of the matrix Upop € R™*™ formed by the first (most
energetic) n, POD modes corresponding to the n, largest singular
values of Y is a common choice in model reduction methods that
focuses the modeling efforts on the most important modes of the
high-dimensional system and ignores the least energetic (and,
typically, noisy) ones. The high-dimensional state can then be
approximated as

where x(k) € R™ is the amplitude vector of the POD modes at time-
step k. In general, x(k) is approximated in the least-squares sense as
x(k) = Ulopy (k). The snapshot matrices (2a) and (2b) are also
reduced as

X =UpopY. X =UppY
where X, X’ are the POD mode amplitude matrices for the training
data (2a) and (2b).

2.1.2  Dynamic Mode Decomposition With Control. In order to
capture the linear part of the controlled dynamical system, the POD
mode amplitudes x(k) are modeled as a discrete-time linear state
space system of the form

x(k+ 1) = Ax(k) + Bu(k) + e(x(k), u(k), w(k)) (4

where A € R™ and B € R™ ™ are the state and control
transition matrices, and e(-) is the linearization error from the
unmodeled nonlinear and process noise part of the dynamics. The
linear part of the dynamics can be computed by solving the
following least-squares minimization problem:

. / 2
min X'~ AX - U} ©

whose minimizer is given by

(A B —xm ©)

where T denotes the Moore—Penrose inverse. Now, the linear part of
the dynamics can be modeled by setting e(-) = 0 in Eq. (4), which is
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the approach that DMDc follows [6]. The full-dimensional snapshot
y(k) at time-step k can then be approximated from Eq. (3).

2.1.3  Total Least-Squares Dynamic Mode Decomposition With
Control. In Ref. [9], total least-squares dynamic mode decom-
position (tlsDMD) was proposed in order to account for the presence
of measurement and process noise in the data. Following Ref. [9], we
start by assuming that the snapshots (2a) and (2b) can be
decomposed in a mean and noise part as

Y:?—FE}/, Y/:Y/-"-Eyf

where Y, Y’ are the mean snapshots, and Ey, Ey are the noise and
modeling errors e(-) stacked similarly to Egs. (2a) and (2b). After
projection on the POD modes, we get

X=X+Ey, X =X +Ey

According to Ref. [9], the least-squares minimization approach of
Eq. (5) in DMD (and, consequently, DMDc) accounts only for the
noise Ey: in the plus-one time-step data X', leading to a bias in the
estimate of the dynamics that depends on Ey. Alternatively, one can
use total least-squares DMD to account for noise in both matrices X
and X'. The approximation of the dynamics can be expressed as

X' +Ey = A(X +Eyx) +BU 7

and the error in both components can be minimized simultaneously
by solving the least-squares minimization problem

min [[[Ex  Ex]|[; ®

Equation (7) can be reformulated as
X + Ey

[A B -I|]| U
X +Ej

=0 )

and the solution to Eq. (8) can be computed using the truncated SVD

X+E
+ B _ « U Un||[Zi 0|V,
U UV =1y v 0 0|V
X +E, 21 Un 2

where only the first n, + n, singular values are kept, leading to an
unbiased estimate of A and B
(4 B]=UaUy (10)
The above is an extension of tlsDMD to systems with control
inputs (tlsDMDc).

2.2 Gaussian Process Regression. Once we model the linear
dynamics of the unknown system with DMDc or tlIsDMDc and we
obtain matrices A and B, we can then learn the nonlinear and process
noise terms e(-) of the dynamics (4) that DMDc (and tlsDMDc) fails
to capture. With A and B known, we can estimate the linear
approximation error of each snapshot as

e=X —-AX-BU (11)

While DMDc and tlsDMDc assume that the error term e(+) in Eq.
(4) is zero, here we attempt to model the error with GP regression
trained on the data in Eq. (11). In particular, we seek to model the
error term e(x(k),u(k),w(k)) in Eq. (4) with a nonparametric
Gaussian process regression model as follows.

2.2.1 Exact Gaussian Process Inference. We start by consid-
ering a single component of the vector function e(-) which, for
clarity, we will refer to as e(+). The input to this function at time-step
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k is the concatenation of the state x(k) and control input u(k) at that
time-step, i.e., z(k) = [x" (k) uT(k)]T € R™, with n, = n, +n,. If
we have noisy observations ¢; of the unknown scalar-valued function
e(-) : R™ — R at known inputs z;, for all Z = {z;}}_,, we collect
these observations in a vector €.

Let the measurement likelihood p(ei\e(zi)) be zero-mean
Gaussian and let e be the (unknown) vector containing the values
of e(-) at the points Z. We introduce a Gaussian prior
e(z) ~ N (e(z)|m(z), k(z,z)), where m(-) : R" — R is the mean
function (typically chosen to be the zero function) and k(-,):
R™ x R™ — R is the kernel function (typically, a squared
exponential) that measures the closeness between two input points
and specifies the smoothness and continuity properties of the
underlying unknown function e(-).

The prior over the entire vector e can now be written as

p(e|Z) = N (e|m(Z),k(Z,Z)) (12)
with the mean vector defined as [m(Z)], = m(z;) and the covariance
[k(Z, Z)]IJ = k(Z,‘, Z/').

The joint density of vectors € (known) and e (unknown) is

p(e,e|Z) = p(ele, Z)p(e|Z)

With Gaussian likelihood p(ele,Z) = N (ele, 621), the marginal
likelihood

(13)

p(el2) = [plele.Zptelz)de

=N (e|m(Z),k(Z,Z) + o*I)

(14)

is analytically computed and the hyperparameters ® = {0,,, 0y, o, }
that define the Gaussian process mean, kernel, and likelihood
functions can be found by minimizing the negative log-likelihood of
the training data

O, = arg mén (—log p(e|Z)) (15)

Prediction of €, on a new state-input pair z, is done by
conditioning on the training data

plelz., e,Z) = Jp(s*,8|z*,Z)d8 = N(e.lu,,0.)

where

= m(z,) + k(z,,Z) [K(Z,Z) + o2 71(8 —m(Z))
0. = k(2.,2.) — k(z.,2) [K(Z,Z) + 621) ' K(Z,2.)

2.2.2  Multiple Outputs. So far, the error ¢; € R we have
considered has been a scalar. In the general case, the error in
Eq. (4) will be a vector e; € R"™. We can train the hyperparameters
of an exact GP using the estimated error snapshots € in Eq. (11) and
defining the matrix E as the matrix containing the function values
e(z;) at the ith row. The latent functions are now ¢,(-) : R™ — R,
ford =1, ...,n,, and an independent exact GP is learned for each
component of the error vector e(-) in Eq. (4). Alternatively, one
could train a multitask GP regression model [37] to learn similarities
in the outputs of the GP or use scalable variational GP regression
[25] to decouple the inference cost from the size of the training data.

2.3 Dynamic Mode Decomposition With Gaussian Process
Correction. In the hybrid DMDc + GP method, the error term e(r)
in Eq. (4) is modeled with GP regression. The training steps are:

(1) Perform model order reduction using POD (optional).
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(2) Compute A and B matrices to capture the “average” linear
dynamics in Eq. (4) with DMDc.

(3) Train an exact GP to learn the nonlinear and noisy terms e(-)
in Eq. (4).

One could use either DMDc or tlsDMDc for learning the linear
part of the dynamics. However, as it is demonstrated in the
numerical experiments, both choices perform similarly, with
DMDc + GP having a slight advantage over tlsDMDc + GP. The
use of GP regression for correcting the DMDc predictions offers a
number of advantages, such as flexibility and uncertainty awareness.
In particular, if we evaluate the dynamics away from the training
dataset, the DMDc model will take over, while the uncertainty of the
GP inference will increase, indicating less confidence in the GP
predictions.

3 Numerical Experiments

3.1 Stuart-Landau Equation. We start by demonstrating the
proposed tlsDMDc and DMDcGP methods on the stochastic
Stuart-Landau equation (considered to be a proxy for the flow
oscillations behind a cylinder [38]), which is anonlinear system with
discrete-time dynamics in polar coordinates given by

rlk 4+ 1) = r(k) 4 de(ur(k) — > (k) + u, (k) + w,(k))
0k + 1) = 0(k) + dt(y — pr2 (k) + ug(k) + wo(k) /r(k))

where (k) is the radius and 0(k) the angle at time-step &, u, (k) and
ug(k) are the control inputs, and w,(k), wy(k) ~ N(0,0) are
independent and identically distributed Gaussian noise terms. The
parameters in this experiment are dr=0.01, pn =0.1, f=1, and
vy =1, while ¢ varies from 0 to 0.1.

3.1.1 Collecting Data. The state space is encoded as x(k) =
[r(k) sin(0)  cos(0) ]T € R? in order to capture the periodic
behavior of the angle 0(k). We assume that we have perfect state
measurements and the only noise source is the process noise. We
collect data for 13,000 time-steps and use the first 10,000 time-steps
for training and the rest 3000 for testing. For the training split of the
data, the control inputs are periodic with increasing frequency, in
order to excite the different modes of the system. For the test part, the
inputs are again periodic with increasing, but lower, frequency. The
train/test split is shown in Fig. 1. The GP uses a squared exponential
kernel and is trained on every fifth data point, in order to keep the
inference cost low.

3.1.2 Model Evaluation. We train five different models
(DMDc, tlsDMDc, DMDcGP, tlsDMDcGP, and GP-only) on the
training split of the data and evaluate on the test split. In order to test
the predictive performance of the models on systems with noise, we
evaluate each model on three different noise settings: ¢ =0 (no
noise), ¢ = 0.05 (low noise), and ¢ = 0.1 (highnoise). Evaluation is
performed as follows: first, we select 64 uniformly distributed states
from the test split as initial conditions; then, we simulate the state
dynamics forward for N =256 time-steps; finally, we compute the
average L, norm of the state prediction error as a percentage of the
actual state, i.e.,

o — i iiuiﬁ HXpred(k) - Xexact(k)H (16)
" T 64256 oz | Xexact (k)|

The results are shown in Table 1. First, we notice that tisDMDc tends
to perform better than DMDc in all noise levels. Second, we see a big
improvement in the prediction errors when a GP is introduced, with
DMDcGP performing slightly better than tlsDMDcGP in all noise
levels. Third, a GP-only model (without a linear DMDc or tisDMDc
part) has good performance in the presence of noise, with the caveat
that when the GP approaches a location of the state and input space
that is away from the training data, the predictions collapse to zero,
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Fig. 1 Stuart-Landau equation. Train/test data split. Control
input: —, state: —.

Table1 Stuart-Landau equation

Model [ DMDc tIsDMDc  DMDcGP  tIsDMDcGP  GP
er, % 0 19.2 6.6 0.3 0.3 52.6
0.05 19.5 6.5 2.5 2.6 13.5
0.1 19.8 6.6 51 7.0 6.3

L, error for a prediction horizon of N =256, averaged over 100 initial
conditions.

Minimum errors per case are indicated with bold.

pushing the rest of the predictions off (as seen in the zero-noise case,
where the error is significantly large). For demonstration purposes,
we also experiment with a more challenging 3000 time-step
prediction using tlIsDMDc and DMDcGP, as shown in Fig. 2.

3.1.3 Model Predictive Control. We further test the use of the
learned models on a model predictive control task, where the mean
state is required to follow a given trajectory {Xges(0), ..., Xaes(T) }

0.6 —0-6

(@

under the presence of process noise. We formulate the following
optimal control problem:

k+N—1
. N2 . . 2
min ; lu(@)[z + [1xG + 1) = Xaes i + Dl

s.t. X(i 4+ 1) = (A + AA X)) + (B + AB)u(i) + di (i)
—02<u(i)<02
x(k) = x;

where the terms AAy, ABy, and dy, result from the linearization of the
Gaussian process [30] at time-step &, the inputs are constrained to be
between —0.2 and 0.2, and the initial condition x; at each solution of
the optimal control problem is an exact measurement of the state
(alternatively, it could be a state estimate derived from Kalman
filtering a noisy partial state measurement). The actuation and state
costs are chosen to be R = 107315, and Q = I343, respectively, the
receding horizon is N =50, and the optimal control problem is
solved at each time-step as a quadratic program with inequality
constraints [39].

We run the model predictive controller for 2000 time-steps, with a
desired trajectory as shown in Fig. 3. The control task is executed
with high noise (¢ = 0.1) in order to demonstrate the robustness of
the learned DMDcGP model. Using the tlsDMDc model leads to
large tracking errors (Fig. 3(a)), compared to DMDcGP where, after
afew time-steps, the state x(k) ends up close to the desired trajectory
(Fig. 3(b)).

3.2 Near-Wall Jetin a Turbulent Boundary Layer. Next, we
test the proposed tlsDMDc and DMDcGP methods on a more
challenging model order reduction task for a high-dimensional
system. In particular, we want to model the wall-normal velocity
field that a jet in a turbulent boundary layer induces. Such a model is
useful for model-based turbulent flow control tasks, where the cost
of simulations is prohibitively large (e.g., 36,000 CPU hours to
collect the present dataset) for real-time control [40,41]. We perform
large eddy simulations of a turbulent boundary layer at a Reynolds
number based on the momentum thickness of about Rey = 2000.
The near-wall jet is modeled as a body force with Gaussian
distribution in space, a 45 deg pitch angle toward the wall and in the
direction of the flow, and magnitude that is controlled by a scalar
control input, u(k) € [0, 1]. We perform a set of ten different large
eddy simulations for pulsed inputs as shown in Fig. 4 and ensemble-
average the data collected from these simulations, in order to
minimize the effect of the background turbulence on the data and
focus on the mean effect that the jet has on the flow. The high-
dimensional state is the wall-normal velocity at a grid of size 61 x
16 x 15 around the force field, yielding a high-dimensional state y of
size n, = 14,640.

3000
2500
2000 &
3
1500 &
£
1000

500

0.6

TR o6
06 ~

(b)

Fig. 2 Stuart-Landau equation. Long-term state predictions of 3000 time-steps on the test
dataset. Exact: noisy line, predicted: smooth line. (a) tisDMDc and (b) DMDcGP.
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Fig.3 Stuart-Landauequation. Trajectory tracking model predictive control with noise 6=0.1, using the
learned tisDMDc and DMDcGP models. 1st and 2nd row: Optimal input. 3rd-6th row: state x(k): —,

desired state Xges: ——. (@) tisDMDc and (b) DMDcGP.

300 400 600 700

Timestep

0 100 200 500

Fig. 4 Jet in a turbulent boundary layer. Control input for
generating the training and test dataset.

3.2.1 Training. First, we reduce the dimensionality of the data
by projecting the high-dimensional states y onto the first n, =5 POD
modes, which have been observed to capture the main flow
structures in the data. Then, we model the POD mode amplitudes
using both tIsDMDc and DMDcGP, computed on the train split
shown in Fig. 4.

3.2.2  Prediction. The task here is to predict the flowfield over
the next 250 time-steps for a pulse input that lasts a different amount
of time (800 time-steps) than the pulses that were used in the training
split (400 and 1200 time-steps). This problem is particularly
challenging since the dynamics are transient. If we look at the POD
mode amplitudes predicted by the tiIsDMDc model in Fig. 5, we
notice that although the predicted amplitudes for the dominant
modes are closely tracking their corresponding best POD approx-
imation, the less dominant modes are not well approximated. The
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__1.01
Y4
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~3
X 0+ =
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e —— DMDcGP
©
& s | I | -—- lExact
0 50 100 150 200
Timestep k

Fig. 5 Jet in a turbulent boundary layer. Reduced-order state
predictions (—) versus the projection of the exact flowfield onto
the POD modes (- -).

latter leads to tlsDMDc underestimating both the downwash (flow
toward the wall) and the upwash (flow away from the wall)
downstream of the domain (Fig. 6(a)). On the contrary, DMDcGP
not only approximates the amplitude of these weaker modes better

NOVEMBER 2024, Vol. 146 / 064501-5



Table 2 Jetin a turbulent boundary layer

Model DMDc tIsDMDc DMDcGP tIsDMDcGP GP

er,% 324 26.7 6.3 8.1 8.5

L, error for a prediction horizon of N =250 in the test split.
Minimum errors per case are indicated with bold

@

P

£0.
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Streamwise
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wn

gC

—
Streamwise

(b)

[

0.5
ST

“
Streamwise

(c)

0
-
Streamwise

(d)

%4
€

Fig. 6 Jet in a turbulent boundary layer. Wall-normal velocity
field induced by the jet after a pulse input. Isosurfaces of flow
moving toward (inner isosurfaces) and away (outer isosurfaces)
from the wall. The DMDcGP approach follows the evolution of the
average jet pulse closer than tisDMDc. (a) tisDMDc, (b) DMDcGP,
(c) best POD approximation, and (d) exact.

but its predicted flowfield (Fig. 6(b)) closely matches both the
closest POD approximation (Fig. 6(c)) as well as the exact
(ensemble-averaged) flowfield (Fig. 6(d)). The mean state predic-
tion errors (in the L,-norm sense) are given in Table 2.

4 Conclusion

We presented an extension of the noise-aware total least-squares
dynamic mode decomposition to systems with control inputs and a
hybrid approach combining dynamic mode decomposition with control
and Gaussian process regression for learning reduced-order models for
high-dimensional stochastic nonlinear systems. Both approaches were
shown to yield improved results in prediction and control tasks over
existing methods. Future work will leverage these hybrid models in
flow control applications, such as in Refs. [40] and [41].
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