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SIMPLIFIED WEAK GALERKIN METHODS FOR LINEAR
ELASTICITY ON NONCONVEX DOMAINS

CHUNMEI WANG AND SHANGYOU ZHANG

ABSTRACT. This paper presents a weak Galerkin (WG) finite element method
for linear elasticity on general polygonal and polyhedral meshes, free from con-
vexity constraints, by leveraging bubble functions as central analytical tools.
The proposed method eliminates the need for stabilizers commonly used in
traditional WG methods, resulting in a simplified formulation. The method is
symmetric, positive definite, and straightforward to implement. Optimal-order
error estimates are established for the WG approximations in the discrete H-
norm, assuming sufficient smoothness of the exact solution, and in the standard
L?-norm under regularity assumptions for the dual problem. Numerical ex-
periments confirm the efficiency and accuracy of the proposed stabilizer-free
WG method.

1. INTRODUCTION

This paper introduces a novel weak Galerkin finite element method for lin-
ear elasticity that eliminates the stabilizers traditionally required in WG methods.
The innovation of the proposed approach, compared to existing stabilizer-free WG
methods (e.g., [59]), lies in its effectiveness on general polygonal and polyhedral
meshes, including those with nonconvex geometries, as it operates without requir-
ing convexity assumptions.

Let Q ¢ R? (d = 2,3) be an open, bounded, and connected domain with a
Lipschitz continuous boundary 0f2, representing an elastic body subjected to an
exterior force f and a prescribed displacement boundary condition. The kinematic
model of linear elasticity aims to determine a displacement vector field u satisfying

-V .-o(u) =1, in ,
(1.1)
u=g, on 0,

where o(u) is the symmetric Cauchy stress tensor. For linear, homogeneous, and
isotropic materials, the stress tensor is expressed as

o(u) = 2pue(u) + A(V - u)l,

with e(u) = 3(Vu + Vu®) denoting the linear strain tensor, and p and A repre-
senting the Lamé constants. In the case of linear plane strain, the Lamé constants
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are defined as

- Ev B E
T O+va-2) Moy

where F is the elasticity modulus, and v is Poisson’s ratio.

The variational formulation of the model problem (L.I]) can be formulated as
follows: Find an unknown function u € [H!(£2)]? such that u = g on 9 and

(1.2) 2(pe(u), e(v)) + (AV-u,V-v) = (f,v), Vv € [H} (),
where H}(Q) = {v € H'(Q) : v =0 on 90Q}.

The Finite Element Method (FEM) and its variants are extensively used for
solving partial differential equations(PDEs) numerically. In the context of elas-
ticity problems, mixed FEMs are particularly popular; however, enforcing strong
symmetry on the stress tensor presents a significant challenge. To address this,
several strategies have been developed, including relaxing the symmetry constraint
on the stress tensor [31], constructing weakly symmetric mixed finite elements [5],
and designing nonconforming mixed FEMs [11, 13 4, [14 [54] [60 [61]. A breakthrough
was achieved with a family of conforming mixed elements featuring reduced degrees
of freedom, applicable in any dimension. This was accomplished by identifying a
critical structure within the discrete stress spaces of symmetric matrix-valued poly-
nomials on simplicial grids and establishing two fundamental algebraic results [16].
The Discontinuous Galerkin (DG) method has also been widely adopted for elastic-
ity problems [12] [53]. A key advantage of DG methods is their ability to discretize
problems on an element-by-element basis, seamlessly connecting elements through
numerical traces [2, [15]. For linear elasticity, innovative approaches include a three-
field decomposition method [6] and a novel hybridized mixed method [13]. Other
noteworthy methods, such as the tangential-displacement normal-stress method,
have demonstrated robustness against both shear and volume locking [29, [30].

The weak Galerkin finite element method has revolutionized the numerical land-
scape for solving partial differential equations (PDEs). By harnessing the power of
distributions and piecewise polynomials, WG transcends traditional finite element
approaches. Unlike its predecessors, WG relaxes the stringent regularity require-
ments for function approximations, instead leveraging carefully crafted stabilizers
to ensure method stability. Recent studies have exhaustively explored the versatil-
ity of WG in tackling diverse model PDEs, thereby casting the method as a robust
and reliable tool in computational science [18] [19] [49] [55] [20] (56
(10} 48, 27, [17), 33} 58], [43] [44] 1451 46| [50] 52]. Tts capacity to adapt to a wide

range of PDEs is underscored by its use of weak derivatives and weak continuities in
designing numerical schemes based on the weak forms of underlying PDEs. A key
advancement within the WG paradigm is the Primal-Dual Weak Galerkin (PDWG)
method 7,18, 191 261 [34], [35] 57, [111 391 [40, [38], . PDWG views numerical
solutions as constrained minimizations of functionals, with constraints that mimic
the weak formulation of PDEs using weak derivatives. This formulation results in
an Euler-Lagrange equation that integrates both the primal variable and the dual
variable (Lagrange multiplier), yielding a symmetric scheme.

This paper presents a simplified formulation of the WG finite element method
that eliminates the need for stabilizers. Unlike the existing stabilizer-free WG
methods [59], our approach is versatile, as it works on polytopal meshes without



convexity constraints, and supports flexible polynomial degrees. The critical in-
novation facilitating these advancements is the incorporation of bubble functions.
While this method requires the use of higher-degree polynomials for calculating the
discrete weak derivatives, which may pose challenges for certain practical applica-
tions, our focus is on the theoretical advancements, particularly in developing WG
methods with inherent stabilizers, specifically designed for non-convex elements in
finite element partitions.

Our method retains the size and global sparsity of the stiffness matrix, greatly
simplifying programming complexity in comparison to traditional stabilizer-dependent
WG methods. Theoretical analysis confirms that our WG approximations yield
optimal error estimates in both the discrete H' and L? norms. By providing a
stabilizer-free WG method that sustains high performance while reducing compu-
tational complexity, this paper makes a significant contribution to the development
of finite element methods on non-convex polytopal meshes.

The structure of this paper is as follows. Section 2 provides a concise review of
weak differential operators and their discrete counterparts. In Section 3, we present
the weak Galerkin scheme that eliminates the need for stabilizers. Section 4 proves
the existence and uniqueness of the solution. In Section 5, we derive the error
equation for the proposed scheme, followed by Section 6, which focuses on the error
estimate for the numerical approximation in the energy norm. Section 7 extends this
analysis to establish the error estimate in the L? norm. Finally, Section 8 presents
numerical tests to validate the theoretical findings from the previous sections.

Throughout this paper, we adopt standard notations. Let D be any open
bounded domain in R? with a Lipschitz continuous boundary. The inner product,
semi-norm and norm in the Sobolev space H*(D) for any integer s > 0 are denoted
by (+,)s.0, | - |s,p and || - ||s,p, respectively. For simplicity, when the domain D
is chosen as D = 2, the subscript D is omitted from the notations of the inner
product and norm. For the case where s = 0, the notations (-,-)o.p, | - [o,p and
I - l]o.p are further simplified as (-,*)p, | - |p and || - || p, respectively.

2. DISCRETE WEAK STRAIN TENSOR AND DISCRETE WEAK DIVERGENCE

In this section, we briefly review the definition of weak strain tensor and weak
divergence, along with their discrete counterparts introduced in |56 [47].

Let T be a polytopal element with boundary 07. A weak function on 7' is
defined as v = {vq, v}, where v € [L3(T)]¢, vy, € [L?(OT)]?. The first component,
Vo, represents the value of v in the interior of 7', while the second component, vy,
corresponds to the value of v on the boundary of T. In general, v} is assumed to
be independent of the trace of vg. A special case arises when v, = vo|gr, where
the function v = {vg, v, } is fully determined by vo and can be simply denoted as
V = V.

Denote by W(T') the space of all weak functions on T} i.e.,
W(T) = {v = {vo, v} : vo € [L*(T)]%, v, € [L*(OT)]"}.

The weak gradient, denoted by V,,, is a linear operator from W (T') to the dual
space of [H1(T)]4*?. For any v € W(T), the weak gradient V,,v is defined as a
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bounded linear functional on [H(T)]?*¢ such that

(va, SO)T = —(VO, v : SO)T + <Vb7 "2 n>8T7 V‘P € [Hl (T)]dXd7
where n is an unit outward normal direction to 97
For any non-negative integer r, let P.(T') represent the space of polynomials on
T with total degree at most 7. A discrete weak gradient on 7', denoted by V., », 7,

is a linear operator from W (T) to [P,, (T)]**¢. For any v € W(T), V., 7V is the
unique polynomial matrix in [P, (T)]?*¢ satisfying

(vw)rth, LP)T = _(V07 v : (P)T + <Vb7 Lp : n>8T7 ch E [P’I‘l (T)]dXd'

We define the discrete weak strain tensor as follows:
1
ew,Tl,T(u) = §(vw7T1,Tu + vwﬂ“l,TuT)'

For any v € W(T), the discrete weak strain tensor, denoted by €, 7(v), is
the unique polynomial matrix in [P, (T)]4*? satisfying

(1) (ewnr(¥),@)r = (v, V- 5o+ ¢ + (vi, 50+ 97) mor,
for all € [P, (T)]4*.

For a smooth vy € [H'(T)]?, applying the usual integration by parts to the
first term on the right-hand side of ([2.1]) gives

(2.2) (€w,ri,7(V), )T = (€(V0), @) + (Vi — Vo, %(cp + 7)) -n)or.
for all € [P, (T)]4*.

The weak divergence of v € W(T), denoted by V,, - v, is a bounded linear
functional in the Sobolev space H'(T'), and its action on any ¢ € H(T) is given
by

(Vw v, 9)r = —(vo, V)1 + (v -1, d)or.

The discrete weak divergence of v.€ W(T'), denoted by V., ., 7V, is the unique
polynomial in P,,(T') satisfying
(23) (vw,rg,T *V, ¢)T = _(V07 v¢)T + <Vb -1, ¢>8T7
for any ¢ € P, (T).

For a smooth vy € [H'(T)]?, applying the usual integration by parts to the
first term on the right-hand side of ([2.3]) gives

(2.4) (Vo Vo) = (V- v0,0)1 + (Vo — Vo) - 1, d)or,
for any ¢ € P, (T).

3. WEAK GALERKIN ALGORITHMS WITHOUT STABILIZERS

Let 75, be a finite element partition of the domain Q C R? into polytopal
elements, where 7}, is assumed to be shape-regular as defined in [52]. Denote by
&y the set of all edges/faces in Ty, and let £ = &, \ 9Q be the set of interior
edges/faces. The diameter of an element T' € Ty, is denoted by hp, and the mesh
size of the partition is given by h = maxrep, hr.



For each element T' € T, we define the local weak finite element space as:
(3.1) V(k,T) = {{vo, vo} : vo € [Pu(T)]%, vy, € [P(e)]*}.

By assembling V(k,T') over all the elements T € T}, and enforcing continuity on
the interior interfaces £2, we define the global weak finite element space:

(3.2) Vi = {{vo,vs} : {vo,vu}|r € V(k,T),VT € T}

Additionally, we denote by V¥ the subspace of V}, with vanishing boundary value
on OS2

(3.3) Vi = {{vo,vs} € Vi : vi, = 0 on 00}
For simplicity, the discrete weak strain tensor €, ,, rv and the discrete weak

divergence V, », 7V are denoted by €, v and V,, - v, respectively. These quantities
are computed locally on each element T using definitions (2.I]) and (2.3)):

(€wV)|T = Ew,rl,T(VlT)a VT € 77“
(Vw V)t = Ve - (VIT), VT € Tp.

The WG numerical scheme without stabilizers, based on the weak formulation
([L2) for the elasticity problem (L)), is as follows:

Simplified Weak Galerkin Algorithm 3.1. Find u, = {ug,u,} € V}, such that
u, = Qpg on 0N and

(3.4) > 2(pew(un), €w(¥)r + AV - U, Vi - V)2 = Y (£,v0)r,
TeTh TEThH

for all v = {vo,vy,} € V2. Here Q, denotes the L? projection operator onto the
space Py(e).

This scheme directly solves the elasticity problem without introducing any sta-
bilization terms.

4. SOLUTION EXISTENCE AND UNIQUENESS

To begin, we recall the essential trace inequalities. Given that 7 is a shape-
regular finite element partition of the domain 2, the following trace inequality holds
for any element T' € T}, and function ¢ € H*(T) [52]:

(4.1) I6l3r < C(hztI¢lF + hrlIVelZ).
For polynomials ¢, a simplified trace inequality is used [52]:
(4.2) I9l3r < Chzt(18lI7-

Next, we define two norms that are crucial in the error analysis. For any
v = {vo,Vp} € V}, we define the following discrete energy norm

N[

(4.3) IVl = (3 Cuewv)ew)r + (A0 v, Vur - v)r)
TeTh
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and the following discrete H! semi-norm

[N

(44) [¥llin = (D ue(vo),e(vo))r + (A - vo, V- vo)z + ' vo = vol3r )
TEThH

Lemma 4.1. [36] For v = {vq, vy} € V},, there exists a constant C such that

le(vo)llr < Cllew (V)7

Proof. Let T € Ty, be a polytopal element with N edges/faces denoted by eq, - , en.
It is important to emphasis that the polytopal element T can be non-convex. For
each edge/face e;, we construct a linear equation [;(x) such that [;(x) = 0 on e;,
defined as follows:

ll(l') = %zﬁ -1y,

where A = (Ay, -+, Ag_1) is a given point on the edge/face e;, X = (x1,- -+ ,24-1)
is an arbitrary point on the edge/face e;, n; is the normal direction to the edge/face
e;, and hp represents the size of the element 7.

The bubble function of the element T can be defined as
Op = 1B(x)3(x)---1%(2) € Pon(T).

It is straightforward to verify that &5 = 0 on the boundary 97. The function
®p can be scaled so that ®p(M) = 1 where M represents the barycenter of the
element T'. Additionally, there exists a sub-domain T C T such that &5 > po for
some constant py > 0.

For v = {vo, vy} € Vi, let 11 = 2N + k — 1 and set ¢ = ®pe(vo) € [P, (T)]4*¢
in (2.2). We then obtain:

(ew(v), ®Be(vo))r

(4.5)  =(e(vo), Ppe(vo))r + (Vo — Vo, %(‘I’Be(vo) +®pe(vo)”) - m)or

=(e(vo), ®pe(vo))r,
where we used &g = 0 on 0T

From the domain inverse inequality [52], there exists a constant C' such that
(4.6) (€(vo), Be(vo))r = C(e(vo), €(Vo))r-
Using the Cauchy-Schwarz inequality along with (4.3])-(4.6]), we have
(€(vo), €(vo))r < Clew(v), Ppe(vo))r < Cllew(V)llzl|®pe(vo)llr < Cllew(v)lizlle(vo)llr,
which implies
le(vo)llr < Cllew(¥)]ir-

This completes the proof of the lemma. (I

Lemma 4.2. For v = {vq, vy} € V},, there exists a constant C' such that

IV -volr <OV - vz

Proof. The proof follows the same approach as in Lemma [4.1} O
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Remark 4.1. If the polytopal element T is convez, the bubble function in Lemma

can be simplified to

(I)B = ll(l')lg(l') s ZN(,T)
It can be verified that there exists a sub-domain T C T, such that dp > po for
some constant pg > 0, and ®g = 0 on the boundary OT. Lemmas[4.1{4.2 can be

proved in the same manner using this simplified construction. In this case, we take
rm=N+k—1andro=N+k—1.

Recall that T is a d-dimensional polytopal element and e; is a (d—1)-dimensional
edge/face of T. We construct an edge/face-based bubble function
Gei = Uyt N prili ().
It can be verified that (1) ¢., = 0 on the edge/face e, for k # i, (2) there exists a

subdomain é; C e; such that ., > p; for some constant p; > 0.

Lemma 4.3. For v = {vo, vy} € Vi, let ¢ = (vi, — vo)nT ., where n is the unit
outward normal direction to the edge/face e;. The following inequality holds:

(4.7) l@l3 < Chr / ((vy — vo)nT)?ds.

i

Proof. We first extend vy, defined on the (d — 1)-dimensional edge/face e;, to the
entire d-dimensional polytopal element T" and claim that v, remains a polynomial
vector on T after extension. Next, let vi.qce denote the trace of vg on e; and
extend Vipqce to the entire element T'. Like vy, Vipqce remains a polynomial after
the extension. For details on these extensions, see [36, 37].

Now, define ¢ = (v, — vo)nT¢p,,. We have

loll2 = /T P2dT = /T (Vb — Virace)n"ge,dT

SOhT/ ((Vb - Vtrace>nT@ei)2dS

i

SC’hT/ ((vp — Vo)nT)2dS,

€4

where we used (1) p., = 0 on the edge/face ey, for k # 4, (2) there exists a subdomain
é; C e; such that ¢., > p; for some constant p; > 0, and applied the properties of
the projection.

This completes the proof of the lemma.

O

Lemma 4.4. For v = {vg,vp} € Vi, let ¢ = (Vi — Vo) - npe,, where n is the unit
outward normal direction to the edge/face e;. The following inequality holds:

(45) o1 < Chr [ (v = vo)?ds.

Proof. This proof follows similarly to Lemma [4.3] d
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Lemma 4.5. There exists positive constants Cy and Co such that for any v =
{vo,vs} € V), we have
(4.9) Crlvlin < vl < Cal[vif1n-
Proof. Note that the polytopal element T can be non-convex. Recall that an
edge/face-based bubble function is defined as
e = Mmoo N il ().
We extend vy, from e; to T', and similarly extend vi,qce (trace of vo one;) to 7.

We denote these extensions as vy, and v for simplicity. Details of the extensions
can be found in Lemma [4.3] and [36] [37].

By choosing ¢ = (v, — vo)nT ., in ([2.2)), we have:

(cw(¥), @)1 =(e(v0), @)1 + (v = Vo, 50 + &) - o

—(e(vo), @)1 + / Ve — vol%ge.ds,

€i

(4.10)

where we used ., = 0 on ey, for k # i and the fact that ., > p; for some constant
p1 > 0 in a subdomain é; C e;.

Using Cauchy-Schwarz inequality, (4.10), the domain inverse inequality [52],
and Lemma [4.3] gives

/ |V, — vol?ds SC/ [V, — Vol e, ds
<C(lew™)lr + lle(vo)l[7)llellr

<Chi(lew() |z + IIE(Vo)IIT)(/ ((vo = vy))*ds)?,

€i

which, from Lemma [4.1] gives

(4.11) hz! / v = vol*ds < C(llew(V)II7 + lle(vo)[7) < Cllew (V)7

Choosing ¢ = (vp — Vo) - ny,, in (2.4), gives
(V’LU ©V, (b)T = (V * Vo, (b)T + <(Vb - VO) - n, ¢>8T

4.12
(4.12) =(V-vo,9)r +/ [V, — vo|*¢e, ds,

where we used (1) ., = 0 on the edge/face ey, for k # 4, (2) there exists a subdomain
€; C e; such that ., > p; for some constant p; > 0.

Using Cauchy-Schwarz inequality, (4.12]), the domain inverse inequality [52],
and Lemma [4.4] gives

Vp — Vo 2ds <C vy — Vo 2<pe,ds
2
e;

€i

<C(||[Vw vl + IV - vol7)ll¢llr

<ChE(|V - Viiz + IV - vollz)( / (vo — vi)?ds)’}

€4



which, from Lemma [£.2] gives
(4.13) hEl/ v = vo?ds < C([Vw - v[[7 + IV - voll7) < IV - v[7-
This, together with (A.11]), ({13]), Lemmas [4.104.2] ([A3]) and [@4]), gives
Cullvllen < IVl

Next, from (2.2), Cauchy-Schwarz inequality and the trace inequality (4.2]), we
conclude:

1
(€w(v), <P)T‘ < llevo)lzllellr + Chy?[lve = vollor || (# + ¢7) -1z,
which yields
(4.14) lew (W17 < C(llevo)llF + hz'lve — voll3r).

From (2.4), Cauchy-Schwarz inequality and the trace inequality (4.2]), we have

1

(Vo - v, 0)r| <[V -vollz[dllr + Chy2[|(ve = vo) - nllar ¢l
which yields
(4.15) IV - vI7 < CUV - voll 7 + hy' v = voll3r),

Using (4.14)-(.15), @.3) and (4.4), gives

Vil < Calivilvn-

This completes the proof of the lemma. O

Remark 4.2. If the polytopal element T is convex, the edge/face-based bubble func-
tion in Lemmas simplifies to

o = Tt i),

It can be verified that (1) @., = 0 on the edge/face ey, for k # i, (2) there exists a
subdomain é; C e; such that @, > p1 for some constant p1 > 0. Lemmas
can be derived similarly using this simplified construction.

Remark 4.3. For any d-dimensional polytopal element T, there exists a hyperplane
H C R? such that a finite number 1 of distinct (d — 1)-dimensional edges/faces
containing e; are contained within H. In such cases, Lemmas can be proved
with additional techniques. For more details, see |36l [37], which can be generalized

to Lemmas 4.5,

Lemma 4.6. [56, [47] (Second Korn’s Inequality) Let Q0 be a connected, open,
bounded domain with a Lipschitz continuous boundary. Assume T'y C 02 is a
nontrivial portion of the boundary 02, with dimension d — 1. For any fized real
number 1 < p < oo, there exists a constant C' such that

(4.16) Ivllv < C(lleM)llo + IVllze ),
for any v € [H*()]%.

Theorem 4.7. The Weak Galerkin Algorithm without Stabilizers|[3.1 has a unique
solution.
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Proof. Since the number of equations equals the number of unknowns in (3.4), it
suffices to prove the uniqueness of the solution. Assume u( ) e V5, and uz) e W

are two distinct solutions of the WG Algorithm 3.1l Define iy, = ugll) ( ) e VY.
Then, n;, satisfies the equation

Z 2(pew(Mn), €w(v))T + AV - Mpy Vi - V)7 = 0.
TETh

By setting v = n,, we obtain [|ns|| = 0. Using the fact that ||n,]| = 0 and ([£.9),
we have

l[7nll1,n = 0.
This implies that e(ng) = 0 and V - 19 = 0 on each element T', and that ng = n,
on each OT.

Since €(ng) = 0 on each element T, it follows that ny € RM(T) C [P (T)]%
Consequently, 1o = n;, on each 9T and 1 is continuous across the domain €. Using
the fact that 1, = 0 on 052, we conclude that 19 = 0 on 092. Applying the second

Korn’s inequality ([4.16), we conclude that ny = 0 in 2. Since 19 = 7 on each 9T,

we have 1, = 0 in ). Therefore, ugll) = ugf).

Finally, note that this result holds for any A > 0, completing the proof. 0

5. ERROR EQUATIONS

On each element T € Ty, let Qo denote the L? projection onto Py (T). On each
edge/face e C OT, recall that Q) is the L? projection operator onto Py (e). For any
w € [H(2)]?, we define the L? projection into the weak finite element space Vj,
denote by Qpw, such that

(Qnw)|7 = {Qo(W|1), Qv(Wlar)}, VT € Th.

We also denote by Q,, and Q,., the L? projection operators onto the finite element
spaces of piecewise polynomials of degrees r1 and 79 respectively.

Lemma 5.1. The following property holds:
(5.1) ew(W) = Qr e(W), vw € [H(T)]"

Proof. For any w € [HY(T)]?, using ([2.2)), we obtain

(ew(W), @)1 =(e(W), p)r + (Wlor — W|r, ;(cp +¢") n)or
=(e(w), )7
=(Qr e(W), @)1,
for any ¢ € [P, (T)]**?. This completes the proof of this lemma. O
Lemma 5.2. The following property holds:
(5.2) Vi - W=0Q,(V-w), VYwe[H ()"

Proof. The proof of this lemma follows similarly to that of Lemma [5.1] O
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Let u and uy, € V3, denote the exact solution of the elasticity problem (LI) and
its numerical approximation arising from the WG Algorithm B.1] respectively. We
define the error function ey, as follows

(5.3) ep=u—u; V.

Lemma 5.3. The error function e, given in (5.3) satisfies the following error
equation:

(5.4) Z (2uew(en), €w(V))r + (AVy - en, Vi - v)p = £(u, v), v e V2,

TeT
where
K(u, V) = Z <Vb — Vo, 2M(QT1 - I)E(U.) 'n>6T + <(Vb - VO) -1, )\(QTQ - I)(v : u)>6T'
TeT

Proof. Using (G.1)), (5.2), and letting ¢ = Q,,e(u) in 2.2) and ¢ = @Q,,(V - u) in
B, gives

3" @pew(w), 60 (¥)r + AV -0, Vi, - V)1

TET:

= Z (2MQT16(U)7 6wV)T + ()\QTQ (V : u)? Vi V)T
TETh

= 3 (). Q)+ (21a(¥s — Vo). 2(Qryelw) + Quye()”) -y
TEThH

+ ()‘V * Vo, Qm (V : u))T + <)‘(Vb - VO) -1, QT2 (V ! u)>3T
(55) = O @uelvo).cw)r + (2(vs — v0).Qryc(n) -n)or

TEThH

+ (AV v, V-u)r + (AMvy — Vo) - 1n,Q, (V- u))ar
= 3 (£,v0) + (2ue(w) - 1, vo)or + AV - u,vo - )y

TEThH

+ (v — v0, 2uQr () - Yo7 + (Ve — Vo) - 1, AQr, (V - u))or
= 3 (£,v0) + (v — Vo0, 2@, — De(uw) - mor

T€Th
+ (Vo = vo) -0, AM(Qr, = I)(V - w))or,

where we used (L1]), the usual integration by parts, and the fact that } .. (2ue(u)-
n, vy)ar = (2ue(u)-n, vp)oq = 0 and ZTGT}L()\V-u, vi-n)gr = (AV-u, vy n)gg =0
since vy = 0 on 0f2.

Finally, subtracting (8.4]) from (5.5 completes the proof of the lemma. O

6. ERROR ESTIMATES

Lemma 6.1. Let Ty, be a finite element partition of the domain § that satisfies
the shape regular assumption outlined in [52]. For any 0 < s<1,0<m <k+1,



12 CHUNMEI WANG AND SHANGYOU ZHANG

and 0 < n < k, there holds

(6.1) o hEle() = Qre)iy < CRPP|ul?,
TEThH
(6.2) DEEIV-u-Q,V ully < CR7ul,
T€7-h
(6.3) YohFlu—-Qoully < CRR|ulfry,.
T€7-h

Lemma 6.2. Assume the exact solution u of the elasticity problem (L) is suf-
ficiently regular, such that u € [H**1(Q)]?. Then, there exists a constant C such
that the following estimate holds:

(6.4) lu— Qnull < Ch*|[ulfis1.
Proof. Recall that p and A are the Lamé constants. Using (2.2)), the Cauchy-

Schwarz inequality, the trace inequalities (4.I)-(4.2), and the estimate (6.3) with
n =k and s =0, 1, we obtain:

> (2pew(u— Quu), @)1

TE€Th
= 3 (2pelu— Qow) ) + (20(Qou — Qo). 39 +#7) mor
TeTh
< (3 Peueta—Quiz) (3 el
TeTh TETh
(3 u@uu- Qi) (X lel)”
TeTh TeTh
<o Y letu-qulp) (X lel)’
TeTh TETh
+0( 3 hrtIQou—uld + hrlQou —uli2) (3 hr'llel)”
TeTh T€Th
< Crullia (Y llel3)”,

T€7-h
for any ¢ € [P, (T)]%*.
Letting ¢ = €,,(u — Qpu) yields

37 (2uew(u— Qru), eu(u— Quu))r

TeThH

<O fulli (Y llew(u - Quu)l3)

TeTh

(6.5)

Using (2.4),the Cauchy-Schwarz inequality, the trace inequalities (4.I))-(4.2),
and the estimate (6.3) with n =k and s = 0, 1, we have
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> (V- (u—Quu),d)r

TETh
= > (AV - (u—Qou), ¢)r + (A(Qou — Quu) - 1, §)or
TeTh
< (X @) (X 198)’
TeTh TETh
(3 Qo - Q- nl3) (X ol3e)
TeTh TETh
<o L Iv-m-euip) (X 191)
TETh TeTh
+0( 3 hptlQou =l + hrlQou— vl )" (S rr'lol})’
TETh T€Th
< Chulli (Y Nl6l3),

TEThH
for any ¢ € P, (T).
Letting ¢ = V,, - (u — Qpu) gives

> (AW - (u—Quu),Vy - (u—Quu))r

TeTh

<ChMullisn (Y 1V - (0= Quu)ll})

TeTh

(6.6)

Nl

Combining (6.5) and (6.6]), we conclude that

flu— hu||| < Ch’C |u|\k+1(( Z ll€w(u—Qpu) ||T> ( Z V- Qhu)HQT)%)

TETh TETh

This completes the proof of the lemma. O

Theorem 6.3. Assume the exact solution u of the elasticity problem (1)) is suf-
ficiently regular such that u € [H**1(Q)]?. Then, there exists a constant C, such
that the following error estimate holds:

(6.7) lla = wil < CR* s

Proof. For the right-hand side of the error equation (5.4)), using the Cauchy-Schwarz
inequality, the trace inequality (A1), the estimates (6.1)-(6.2) with m =k + 1 and
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s=0,1, and (&9), we have
| > (=0, 2u(Qr, = De(w) - mor
TETh
(V6= v0) -1 A(Qry = 1)V - W)or

1

<C( 3 120(Qr, = De(w) - nll3 + B120(Qr, — De(w) -mlE )"

TeThH
(3 mative = voli3r)
(6.8) TET,,
+C( X2 M@ = DV - W} + BN = DV W) r)
T€7-h
(X mtve = woll3r)”
TeTh

<Ch*||ullp4 v
<Ch*|[ullerallvll.
Substituting ([6.8]) into (B.4]) gives

(6.9) > Quewlen), ew(v))r + AV - en, Vi - )7 < ChF [ ||V
TeTh

1,h

Now, applying the Cauchy-Schwarz inequality and letting v = Qpu — uy, in
(6.9), along with the estimate (6.4), we obtain
2
o — ]
= Y (uew(u—up), eu(u— Quu))r + (2pew(u — up), €u(Qnu — up))r

T€ETh
+ ()‘vw : (u - uh)? Vw : (U. - Qhu))T + ()‘vw : (u - U—h)7 vw : (Qhu - uh))T

(3 2pleuti—wi3)* (X 2mlentn - Qul)’

2
TeTh TETh

(AT ) (X M (- Q)

TETh TETh
+ 3 uew(u—up), €0 (@ —up))r + (AVy - (0 =), Vo - (Quu— )7
TeT

<Jlu — unflllu — Quull + CA*[ullir[|Qru — unl]
<Jlu = wnlln* ullirr + CRF[ullrr (|Qnu — ull + Jlu — usl)
<Jlu = wnlln* [ullirr + CRF[ullirahF[ullirr + ChE [k fla = us]l.

This simplifies to
Il = will < CH¥julls

Thus, the proof of the theorem is complete.
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7. ERROR ESTIMATES IN L? NORM

The standard duality argument is applied to derive the L? error estimate.
Recall that the error function e, = u — u, = {eg, ep} represents the difference
between the exact solution u and the computed solution uy,. Additionally, we

define ¢, = Qnru — up = {Co, G}

The dual problem for the elasticity problem (L1l seeks w such that
(7.1) =V 2ue(w) + A(V - w)I) =(o, in Q,
w =0, on 0.
Assume that the dual problem (Z.I)) satisfies the following regularity estimate:
(72) [Wll1+a < Cllcoll,
where % <a<l.

Theorem 7.1. Let u be the exact solution of the elasticity problem (L)), assuming
sufficient regularity such that u € [H**1(Q)]4. Let w, € Vi, be the numerical
solution of the WG Algorithm[3.1. If the regularity assumption ([L.2) holds for the
dual problem (L)), then there exists a constant C' such that

leoll < CH** [l |41
Proof. Testing (1)) with ¢ gives
1€ol* =(=V - (2ne(w) + A(V - W)I), Co)
= Z (2ue(w) + MV - W)L, V(o)1 — (2ue(w) - 1, Co)or

TETn
(7.3) — (AV - w, o - n)or
=Y (2ue(w),€(Co))r + AV - w, V- Co)r
TeTn

= (2pe(w) - n, Go — Glar — (AV - w, (Co — C) - m)or,
where integration by parts has been used along with the fact that ZTeTh (2ue(w) -

n, G)or = (2ue(w)m, Gloa = 0and Y rer, (AV-W, §rm)or = (AV-w, §-m)sq = 0
since ¢, = Qpu — up = 0 on ).

Letting u = w and v = ¢, in (6.5), we get:

Z (2,LL€w(W), €w (Ch))T + (/\vw * W, Vi - Ch))T
TEThH

= (2ue(Co), e(W))r + (211(Sp — €0)s @y €(W) - 1oy

TeTh
+(AV -0, V- w)r 4+ (MG — Co) -1, Qr, (V- W))or.
This can be rewritten as:

> 2ue(Go)s W)z + AV - €0, V- W)

TeThH

= Z (2M6w(W), ew(Ch))T + ()‘vw W, Vi - Ch)T
TeTh

- <2N(Cb - CO)v QTle(W) ’ n>(9T - <)‘(Cb - CO) -1, QTz (v : W)>6T'



16 CHUNMEI WANG AND SHANGYOU ZHANG

Substituting this equation into (8.1)) and using (5.4), we obtain:

[[¢oll?
=Y (2pew(w), ew(Cr))r + (AVu - W, Vi - Gn)1

TETh
= (20(C = €o), (@r, — I)e(W) - m)or
- /\<(Cb - CO) "1, (QTz - ) V- W)>

(
= Z (2u€w (W), €w(en))T + AV - W, Vo - €)1

TETh
+ (2pew (W), e (Qru — 1)) + (AVy - W,V - (Qpu —u))7
- K(W, Ch)
= D @nuew(Quw), cw(en))r + (2puew(W — Quw), u(en))r
(7.4) i
+ (AVuy - Quw, Vi - ep)r + (AVy - (W — Quw), Vi - ep)r
+ (2uew (W), €4 (Qru—u))r + (AVy, - W,V - (Qru —u))r
—4(w,Cn)
=0(u, Quw) + > (2pew(W — Quw), cwlen))r
TeThH
+ AV - (W = QrwW), Vi - en)7 + (210 (W), €w(Qru — 1))
+ ()‘v’w * W, vw : (Qhu - u))T - E(W, Ch)
6
=> Ji
i=1
We will estimate the six terms J; for ¢ = 1,---,6 on the last line of (Z.4)
individually.

Regarding to Ji, using the Cauchy-Schwarz inequality, the trace inequality
(4.1), the estimate (6.1) with m =k + 1 and s = 0, 1, and the estimate (6.3]) with
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n = «, we have:

Jl :é(ua Qhw)
<[ Y (Qvw = Qow, 2u(Qr, — I)e(u) - m)or|
TeTh
+1 D (@w = Qow) -1, A\(Q, — I)(V - u))or|
TE€Th
<( 3 lQww = Qowlir) " (D 1120(Qry = De(w) - mlf3r )’
TeTh T€Th
(3 1@w - @ow) nl3) " (3 INQu - DV i)
TeTh T€Th
<('X2 nztlw — Qowllp + hrllw — Qowl3 1)
TETh
(X Bt 12mQr, — Detw) i+ hrl|20(Qr, — De(w) 3 )
TETh
(3 maw — Qow) i+ hrl(w — Qow) - mllE )
TeTh

N[

2
1,T

(2 B M@ = DV - Wl + | N@r, = 1)(V - )|
TETh
<CR R B2 w1

<CR* [l [Wll14a-

For J3, using the Cauchy-Schwarz inequality, (6.4) with £ = « and (6.1]), we

obtain:
Jo < [lw = Quwllllenll < CR¥[[ullpr1h®([Wlhita < CR* [ullkia[[Wllita-
For J3, using the Cauchy-Schwarz inequality, (6.4) with k = «, and (6.7)), we
find:
J3 < Cllw — Quwllllenll < CL* [ullis1h%([Wlli+a < CR* [l [|W][14a-
For Jy, let Q° denote the L2?-projection onto [Py(T')]. Using ([2.1)), we get:
(21Q° (e (W), €0 (Qnu — )7

(7.5) =~ (2u(Qou — 1),V - (Q°(ew(W)))r
+ (21(Qpu — 1), Q°(ew(W)) - m)ar = 0.
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Using (Z.3), Cauchy-Schwarz inequality, (5.1]) and (6.4)), gives

Jy <| Z (2pew (W), €w(Qru — 1)) 7|

TeThH

= Y Culew(w) = Q°(ew(W))), cuw(@nu — )|

T€eTh

= Y 2u(Qre(w) = Q(Qr e(W))), €uw(Qru — )7

TETh

(3 1@new) - Q@) 1w~ ul

TETh
<CP*ullk1h®[W14a

<CR* a1 [ Wl 4a-

Similar to the estimate for Jy, we obtain:

Js < CR* 1 |[wlh o

For Jg, using the Cauchy-Schwarz inequality, the trace inequality (4.1)), Lemma
[4.5 and the estimates (6.1))-(6.2) with m = 1+« and s = 0, 1, along with (6.4) and
(6.1), we obtain:
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Jﬁ :é(W,Ch)
<| 7 (6 — €. 20(Qu, = De(w) - mor |
TeTh
| D6 =60 m M@ = DV - W)or |
T€Th
<( 2 N6 =Goll3r) " (X2 126(@n = Detw) -mll3r)”
TeTh TETh
(- nlr) (3 IM@e — DY Wl )
TeTh T€Th
<(X nzte - Goli3r)”
TETh

Nl=

(D2 126(@Qr, — De(w) - nl3 + W3120(Qr, — De(w) nll3z)

TeThH

(X G - 6 - mley)

TETh

(D2 IAQrs = DV W)+ BHIAQr, = DV - W)l 1)

TeTh
<CR[[wll1rallCrllrn
<Ch¥||wll1+allCnll
<CR[wllira(lla —unl| + [lu = Qnul))
SCh(|Wll 4o (R [ullesr + h*[ullira)

<CR* [ wll14allulleer.

1
2

Substituting the estimates for J; for i = 1,--- , 6 into (L.4]) and using (Z.2)) gives
16oll? < CRM wllisallulerr < O uflsallCo]l-

This gives
1Goll < CR* ¥ Jul|r1,
which, using triangle inequality and (6.3)) with n = &, gives

leoll < Gl + [lu = Qoull < CA***[ul|j+1-

This completes the proof of the theorem. O

8. NUMERICAL VERIFICATION

In the first test, we solve the linear elasticity equation ([8.4) with p =1 on the
unit square domain Q = (0,1) x (0,1). We choose f and g in (8.4]) such that the
exact solution is
(8.1) . ( (22 — 22° + 2%)(2y — 6y% + 49°) ) .

—(y? = 2y3 + yH) (22 — 622 + 423)
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Grid 1: Grid 2: Grid 3:

FIGURE 1. The first three grids for the computation in Tables [[-{2

We compute the finite element solutions for the solution (8.1]) on uniform trian-
gular grids shown in Figure [Il by the P, WG finite elements, defined in (B.1)—-(3.3),
for k = 1,2,3 and 4. The results are listed in Tables [[{2l The optimal order of
convergence is achieved for all solutions in all norms. Further, the method is shown
pressure robust as the convergence is independent of A in (3.4]).

TABLE 1. The error and the computed order of convergence for
the solution (8.1) on Figure [[lmeshes: (a) P, WG, A=1; (b) P,
WG, A =107% (c) P, WG, A=1; (d) P, WG, A =107,

Method Grid | [u—ugllo OM") | [lu—up|| O(R")

5 |0.824E-04 2.0 |00944E-02 1.0
(a) 6 |0207E-04 20 |0473E-02 1.0
7 | 0517E-05 2.0 |0237E-02 1.0
5 |0.101E-03 2.0 |0.102E-01 1.0
(b) 6 |0.254E-04 2.0 |0.513E-02 1.0
7 | 0.632E-05 2.0 |0256E-02 1.0
5 |0.144E-05 3.0 |0.416E-03 2.0
() 6 |0.180E-06 3.0 |0.104E-03 2.0
7 | 0.224E-07 3.0 |0261E-04 2.0
4 [0129E-04 3.0 |0.169E-02 1.9
(d) 5 |0.160E-05 3.0 |0.425E-03 2.0
6 |0.212E-06 2.9 |0.107E-03 2.0
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TABLE 2. The error and the computed order of convergence for
the solution (8.1I) on Figure [[lmeshes: (a) Ps WG, A=1; (b) Ps
WG, A =107 (¢) Py WG, A=1; (d) P, WG, A =10".

Method Grid | [u—ugllo OK") | [lu—up|| O(R")
4 0.427E-06 4.0 | 0.102E-03 3.0
(a) b) 0.267E-07 4.0 | 0.128E-04 3.0
6 0.167E-08 4.0 | 0.160E-05 3.0
4 0.457E-06 4.0 | 0.102E-03 3.0
(b) b) 0.310E-07 3.9 | 0.127E-04 3.0
6 0.135E-03 0.0 | 0.253E-02 0.0
3 0.549E-06 5.0 | 0.968E-04 4.0
(c) 4 0.169E-07 5.0 | 0.601E-05 4.0
5 0.523E-09 5.0 | 0.375E-06 4.0
3 0.568E-06 5.0 | 0.964E-04 4.0
(d) 4 0.173E-07 5.0 | 0.599E-05 4.0
b) 0.567E-09 4.9 | 0.375E-06 4.0

We next compute the finite element solutions for (8.1I]) on non-convex polygonal
grids shown in Figure 2 by the P, WG finite elements, defined in B.1)-([B.3), for
k = 1,2,3 and 4. The results are listed in Tables BH4 The optimal order of
convergence is achieved for all solutions in all norms. And the convergence is
independent of the impressible parameter A in (3.4]).

Grid 1: Grid 2: Grid 3:

FIGURE 2. The first three non-convex polygonal grids for the com-
putation in Tables [3-J4
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TABLE 3. The error and the computed order of convergence for
the solution (8.1]) on Figure 2] non-convex polygonal meshes: (a)
PL WG, A=1; (b) PL WG, A=10% (c) P, WG, A=1; (d) P,
WG, A = 10°.

Method Grid | [[u—ugllo O(") | lu—wun|| O(R")
) 0.393E-03 1.8 | 0.332E-01 1.0
(a) 6 |0.104E-03 19 |0.166E-01 1.0
7 0.265E-04 2.0 | 0.829E-02 1.0
) 0.320E-03 1.8 | 0.339E-01 1.0
(b) 6 |0831E-04 19 |0.170E-01 1.0
7 0.210E-04 2.0 | 0.850E-02 1.0
4 0.116E-03 2.9 |0.241E-01 1.9
(c) 5 0.147E-04 3.0 | 0.613E-02 2.0
6 0.184E-05 3.0 | 0.154E-02 2.0
4 0.116E-03 2.9 |0.240E-01 1.9
(d) 5 0.146E-04 3.0 | 0.612E-02 2.0
6 | 0.183E-05 3.0 |O0.154E-02 2.0

TABLE 4. The error and the computed order of convergence for
the solution (B.I) on Figure 2 non-convex polygonal meshes: (a)
Py WG, A=1; (b) Ps WG, A=10% (c) P, WG, A=1; (d) P,
WG, A = 10°.
Method Grid | [u—1ugllo O") | lu—wun|| O(R")
4 0.203E-04 3.9 | 0.684E-02 2.9

(a) ) 0.129E-05 4.0 |0877E-03 3.0
6 0.811E-07 4.0 |0.110E-03 3.0
3 0.298E-03 3.4 |0494E-01 2.3
(b) 4 | 0.203E-04 3.9 |0.684E-02 2.9
) 0.130E-05 4.0 |0.876E-03 3.0
3 0.109E-03 4.8 | 0.254E-01 3.7
(c) 4 | 0353E-05 4.9 |0.165E-02 3.9
) 0.111E-06 5.0 |0.104E-03 4.0
3 0.109E-03 4.8 | 0.254E-01 3.7
(d) 4 | 0374E-05 4.9 | 0.165E-02 3.9
) 0.427E-05 0.0 |0.109E-03 3.9

In the 3D numerical computation, the domain for problem (B.4) is the unit
cube © = (0,1) x (0,1) x (0,1). We choose an f and an g in (8.4]) so that the exact
solution is

eyt

(8.2) u= | e*t*
eerz
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We compute the finite element solutions for (8.2)) on the tetrahedral grids shown
in Figure[3 by the P, WG finite elements, defined in (8.1)—(B.3), for k = 1,2,3 and 4.
The results are listed in Tables [BH6l The optimal order of convergence is achieved
for all solutions in all norms. And the numerical results indicate the method is
pressure robust.

Grid 1: Grid 2: Grid 3:

FIGURE 3. The first three grids for the computation in Tables [5HGl

TABLE 5. The error and the computed order of convergence for
the solution (8.2) on Figure [3, tetrahedral meshes: (a) Pz WG,
A=1; (b) Ps WG, A = 10% (¢) P, WG, A = 1; (d) Py WG,
A =10%

Method Grid | Jlu—ugllo OM") | [lu—un|| O(L")
3 0.107E-01  1.90 | 0.625E+00 0.90

(a) 4 0.267E-02  2.00 | 0.322E4+00 0.96
) 0.663E-03 2.01 | 0.163E4+00 0.98

3 0.157E-01  1.89 | 0.672E+00 0.97

(b) 4 0.389E-02  2.01 | 0.338E4+00 0.99
) 0.966E-03 2.01 | 0.170E4+00 0.99

3 0.516E-03 2.87 | 0.373E-01  1.90

(c) 4 0.662E-04 2.96 | 0.956E-02  1.96
) 0.835E-05 2.99 | 0.241E-02 1.98

2 0.493E-02 2.29 | 0.151E+00 1.77

(d) 3 0.604E-03 3.03 | 0.391E-01  1.95
4 0.741E-04 3.03 | 0.992E-02 1.98

We next compute the finite element solutions for (8.2) on the nonconvex poly-
hedral grids shown in Figure[d by the P, WG finite elements, defined in (3.1)—(3.3),
for k = 1,2 and 3. The results are listed in Table[. The optimal order of conver-
gence is achieved for all solutions in all norms. And the numerical results indicate
the method is pressure robust.



24

CHUNMEI WANG AND SHANGYOU ZHANG

TABLE 6. The error and the computed order of convergence for
the solution (8.2) on Figure B, tetrahedral meshes:
A=1; (b) P WG, A = 10% (c) P, WG, A = 1; (d) P, WG,

(a) P WG,

A =10%

Method Grid | [[lu—ugllo OM") | lu—wun|] O(R")
2 0.298E-03 3.61 | 0.136E-01 2.74

(a) 3 0.203E-04 3.88 | 0.17T9E-02 2.92

4 | 0.131E-05 3.96 | 0.229E-03 2.97

2 0.328E-03  3.91 | 0.140E-01 2.80

(b) 3 0.215E-04 3.93 | 0.181E-02 2.95

4 | 0.138E-05 3.96 | 0.230E-03 2.98

2 0.187E-04 4.70 | 0.106E-02  3.80

(c) 3 | 0.629E-06 4.89 | 0.692E-04 3.94

4 | 0.202E-07 4.96 | 0.439E-05 3.98

1 0.620E-03  0.00 | 0.156E-01  0.00

(d) 2 | 0.200E-04 4.95 | 0.108E-02 3.85

3 | 0.650E-06 4.95 | 0.697E-04 3.95

Grid 1: Grid 2:

A N L9 D S

FIGURE 4. The first three grids for the computation in Table [7



TABLE 7. The error and the computed order of convergence for
the solution (8.2)) on Figure [l nonconvex polyhedral meshes: (a)
PL WG, A=1; (b) PL WG, A=10% (c) P, WG, A=1; (d) P,
WG, A =10% (e) Ps WG, A =1; (f) P53 WG, X = 10

Method Grid | lu—ugllo O(R") | [lu—un| O(")
(a) 4 0.185E-01 20 |0.217E+01 1.0
5) 0.466E-02 2.0 | 0.109E+01 1.0
(b) 4 0.190E-01 20 |0.217E+01 1.0
) 0.480E-02 2.0 | 0.109E+01 1.0
(©) 4 | 0.859E-03 3.0 |0.159E4+00 2.0
5 | 0.109E-03 3.0 | 0.401E-01 2.0
(d) 3 0.672E-02 29 | 0.620E+00 1.9
4 | 0.861E-03 3.0 |0.159E4+00 2.0
(o) 2 0.719E-02 3.8 | 0497E+00 2.8
3 0.484E-03 3.9 0.656E-01 2.9
(0 2 | 0.716E-02 3.8 | 0.496E+00 2.8
3 0.481E-03 3.9 0.656E-01 2.9

We finally compute the finite element solutions for ([8.2) on the nonconvex
polyhedral grids shown in Figure[5 by the P, WG finite elements, defined in (3.1)—
B.3), for £ = 1 and 3. The results are listed in Table 8. The optimal order of
convergence is achieved for all solutions in all norms. And the numerical results
indicate the method is pressure robust.

Grid 1: Grid 2:

FIGURE 5. The first three grids for the computation in Table
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TABLE 8. The error and the computed order of convergence for
the solution (8.2)) on Figure [l nonconvex polyhedral meshes: (a)
PL WG, A=1; (b) PL WG, A=10% (c) P, WG, A=1; (d) P,
WG, )\ = 10%.

Method Grid | |[u—uollo O(") | |lu—wun| O(R")
3 0.520E-01 2.0 | 0.386E+01 1.0
(a) 4 | 0.127E-01 2.0 |0.191E+01 1.0
5 0.314E-02 2.0 | 0.952E400 1.0
2 0.309E+00 1.9 | 0.104E+02 1.0
(b) 3 0.808E-01 1.9 | 0.517E4+01 1.0
4 0.207E-01 2.0 | 0.252E+01 1.0
2 0.289E-01 2.9 | 0.135E+401 1.9
() 3 | 0.341E-02 3.1 |0.336E+00 2.0
4 0.408E-03 3.1 | 0.835E-01 2.0
1 0.355E+00 0.0 | 0.811E+01 0.0
(d) 2 0.421E-01 3.1 0.166E+01 2.3
3 0.487E-02 3.1 | 0.389E+4+00 2.1
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