
Journal of Symbolic Computation 102 (2021) 3–20
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Algorithms for computing greatest common

divisors of parametric multivariate polynomials✩

Deepak Kapur a, Dong Lu b,c, Michael Monagan d, Yao Sun e,
Dingkang Wang f,g

a Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
b Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191,
China
c School of Mathematics and Systems Science, Beihang University, Beijing 100191, China
d Department of Mathematics, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada
e SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
f KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
g School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 October 2018
Accepted 4 July 2019
Available online 18 October 2019

Keywords:
Parametric multivariate polynomials
Gcd system
Minimal comprehensive Gröbner system
Ideal intersection
Ideal quotient

Two new efficient algorithms for computing greatest common
divisors (gcds) of parametric multivariate polynomials over k[U][X]
are presented. The key idea of the first algorithm is that the gcd
of two non-parametric multivariate polynomials can be obtained
by dividing their product by the generator of the intersection of
two principal ideals generated by the polynomials. The second
algorithm is based on another simple insight that the gcd can be
extracted using the generator of the ideal quotient of a polynomial
with respect to the second polynomial. Since the ideal intersection
and ideal quotient in these cases are also principal ideals, their
generators can be obtained by computing minimal Gröbner bases
of the ideal intersection and ideal quotient, respectively. To avoid
introducing new variables which can adversely affect the efficiency,
minimal Gröbner bases computations are performed on modules.
Both of these constructions generalize to the parametric case as
shown in the paper. Comprehensive Gröbner system constructions
are used for the parametric ideal intersection and ideal quotient
using the Kapur-Sun-Wang’s algorithm. It is proved that whether
in a minimal comprehensive Gröbner system of a parametric ideal

✩ This paper is an extended version of the paper entitled “An Efficient Algorithm for Computing Parametric Multivariate
Polynomial GCD”, which was presented at ISSAC 2018 (Kapur et al., 2018).

E-mail addresses: kapur@cs.unm.edu (D. Kapur), donglu@amss.ac.cn (D. Lu), mmonagan@cecm.sfu.ca (M. Monagan),
sunyao@iie.ac.cn (Y. Sun), dwang@mmrc.iss.ac.cn (D. Wang).
https://doi.org/10.1016/j.jsc.2019.10.006
0747-7171/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jsc.2019.10.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:kapur@cs.unm.edu
mailto:donglu@amss.ac.cn
mailto:mmonagan@cecm.sfu.ca
mailto:sunyao@iie.ac.cn
mailto:dwang@mmrc.iss.ac.cn
https://doi.org/10.1016/j.jsc.2019.10.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2019.10.006&domain=pdf

4 D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20
intersection or in that of a parametric ideal quotient, each branch
of the specializations corresponds to a principal parametric ideal
with a single generator. Using this generator, the parametric gcd
of that branch is obtained by division. For the case of more than
two parametric polynomials, we can use the above two algorithms
to compute gcds recursively, and get an extended algorithm by
generalizing the idea of the second algorithm. Algorithms do not
suffer from having to apply expensive steps such as ensuring
whether parametric polynomials are primitive w.r.t. the main
variable as used in both the algorithms proposed by Nagasaka
(ISSAC, 2017). The resulting algorithms are not only conceptually
simple to understand but are more efficient in practice. The
proposed algorithms and both of Nagasaka’s algorithms have been
implemented in Singular, and their performance is compared on a
number of examples.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Multivariate polynomial gcd computation is one of the most important operations in computer
algebra as it is used in many algorithms and applications. The problem has been extensively investi-
gated and numerous algorithms have been developed to compute the gcd efficiently beyond Euclid’s
algorithm using division for univariate polynomials and its extension to multivariate polynomials us-
ing pseudo-division. The modular gcd algorithm from Brown (1971) was the first gcd algorithm that
avoided intermediate expression swell. For sparse polynomials Moses and Yun (1973) developed the
EZ GCD algorithm which is based on Hensel lifting. Zippel’s sparse modular gcd algorithm (Zippel,
1979) used sparse interpolation. It is currently used in Maple, Magma, and Mathematica. We mention
also algorithms of Gianni and Trager (1985) and Sasaki and Suzuki (1992) which compute a gcd from
a Gröbner basis. For sparse multivariate polynomials, Sanuki et al. (2016) utilized Extended Hensel
Construction to compute gcd and found that their algorithm to be comparable in performance to
Maple’s gcd routine.

Using the concept of parametric polynomials, there have also been many publications studying
how to compute the gcd of parametric polynomials. Abramov and Kvashenko (1993) used the sub-
resultant chain to compute a parametric univariate polynomial gcd. Ayad (2010) presented three
algorithms based on parametrization of the Gaussian elimination procedure to compute gcd of a
finite set of parametric univariate polynomials. At ISSAC 2017, Nagasaka (2017) extended the ideas
of Gianni and Trager (1985) as well as Sasaki and Suzuki (1992) to polynomials with parameters
for computing the gcd of parametric multivariate polynomials. The main tool used in Nagasaka’s al-
gorithms is the comprehensive Gröbner system which is the parametric extension of Gröbner basis,
introduced by Weispfenning (1992) (and independently by Kapur (1995) as parametric Gröbner ba-
sis) and was improved by Suzuki and Sato (2006), Kapur et al. (2010, 2013) and Nabeshima (2012).
In Nagasaka’s paper, the algorithms to compute the gcd of parametric multivariate polynomials need
to consider whether parametric polynomials are primitive w.r.t. the main variable under different
parametric constraints. Moreover, he had to construct an ideal that is maximal for any specialization
based on extending Gianni and Trager’s results (Gianni and Trager, 1985). Both of these steps in his
algorithms can be extremely time consuming.

This paper presents two new efficient algorithms for the gcd computation of parametric multi-
variate polynomials. We first consider the non-parametric case, and then generalize to the parametric
case.

D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20 5
Let k be a field, k[U][X] be the polynomial ring over k[U] in the variables X = {x1, . . . , xn}.1 As-
sume that f1 and f2 are two nonzero polynomials in k[X]. The first algorithm is based on a simple
insight that the gcd of f1 and f2 is equal to the product of f1 and f2 divided by the least common
multiple (lcm) of f1 and f2. Since the intersection of 〈 f1〉 and 〈 f2〉 is generated by the principal
ideal generated by lcm(f1, f2), computing a minimal Gröbner basis of 〈 f1〉 ∩ 〈 f2〉 gives lcm(f1, f2).
Then, gcd(f1, f2) = f1· f2

lcm(f1, f2)
. The main idea of the second algorithm is based on computing a mini-

mal Gröbner basis G for the ideal quotient 〈 f1〉 : 〈 f2〉, which is also a principal ideal with G including
only one polynomial f̄1. Then, gcd(f1, f2) = f1

f̄1
. In order to avoid introducing new variables for in-

tersection and quotient computation, we use computations on modules to compute the generators of
ideal intersection and ideal quotient.

Most importantly, these constructions extend to the case of parametric polynomials in which Gröb-
ner bases computations for modules of the ideal intersection and ideal quotient are replaced by
comprehensive Gröbner systems constructions for modules of parametric polynomials, respectively.
In Nabeshima (2010), algorithms based on the results in Suzuki and Sato (2006) are given for com-
puting parametric Gröbner bases for modules and parametric syzygies. In this paper, we extend the
algorithms in Kapur et al. (2010, 2013) to the cases of parametric modules and syzygies.

To compute the gcd of more than two parametric polynomials, the above methods are repeated as
in the case of computing the gcd of a family of numbers. We also generalize the idea of the second
algorithm and obtain an algorithm which use a single comprehensive Gröbner system to compute
gcds for a system of more than two parametric polynomials.

Compared with Nagasaka’s algorithms, the proposed algorithms have two advantages: there is no
need to check whether parametric polynomials are primitive w.r.t. main variable in each iteration,
and further, it is guaranteed that a parametric polynomial f1 f2 is divisible by the result of the asso-
ciated ideal intersection as well as f1 is divisible by the result of the associated ideal quotient. The
algorithms have been implemented and compared with Nagasaka’s algorithms and are shown to be
superior in performance.

This paper is organized as follows. In Section 2, we provide background about the gcd and the
comprehensive Gröbner system computations for parametric multivariate polynomials. Nagasaka’s al-
gorithms are reviewed in Section 3. The two proposed algorithms are presented in Section 4. To
provide intuition and make the presentation simple, for each algorithm we first briefly discuss how
the gcd of non-parametric two polynomials can be computed using a minimal Gröbner basis of a
principal ideal; then this is followed by extending this method to parametric polynomials, and the
new algorithm is presented. In Section 5, a non-trivial example is given to illustrate the key steps
of the two proposed algorithms. Some remarks and an algorithm which is an extension of the sec-
ond algorithm about computing the gcds for a system of more than two parametric polynomials are
given in Section 6. Experimental data and a comparison with Nagasaka’s algorithms are presented in
Section 7. We end with some concluding remarks in Section 8.

2. Preliminaries

Let k be a field, L be an algebraic closed field containing k, k[X] be the polynomial ring in the vari-
ables X = {x1, . . . , xn}, k[U] be the parameter ring in the parameters U = {u1, . . . , um}, and k[U][X]
be the polynomial ring over k[U] in X . It is assumed that X ∩ U = ∅, i.e., X and U are disjoint sets.
In some cases, we abbreviate {xi, xi+1, . . . , xn} to Xi (2 ≤ i ≤ n).

We introduce some notations and definitions for non-parametric multivariate polynomials. Two
polynomials f , g ∈ k[X] are associate if ∃c ∈ L such that f = c · g; we denote this equivalence relation
by f ∼ g . For a polynomial f ∈ k[X], the leading term, leading coefficient, leading monomial and
the total degree of f w.r.t. a monomial order ≺ are denoted by lt(f), lc(f), lm(f) and tdeg(f)
respectively. We have lt(f) = lc(f) · lm(f). The ideal in k[X], generated by f1, . . . , f s , is denoted by
〈 f1, . . . , f s〉.

1 When n = 1, we compute a minimal comprehensive Gröbner system of parametric univariate polynomials, and then the
generator of each branch is the gcd of these polynomials. Hence, we only consider the case of n ≥ 2 in this paper.

6 D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20
Definition 1. Let f1, . . . , f s ∈ k[X]. Then h ∈ k[X] is called a greatest common divisor (gcd) of
f1, . . . , f s , denoted h = gcd(f1, . . . , f s), if

1. ∀i (1 ≤ i ≤ s), h divides f i and
2. if g is any polynomial which divides f1, . . . , f s , then g divides h.

Particularly, we define gcd(f1, . . . , f s) = gcd(f2, . . . , f s) if f1 = 0, and gcd(0, 0) = 0, for convenience.

A gcd of polynomials is defined modulo associates. For any given polynomials f1, . . . , f s ∈ k[X],
there exist f̄1, . . . , f̄ s ∈ k[X] such that f i = gcd(f1, . . . , f s) · f̄ i for each i = 1, . . . , s, then f̄1, . . . , f̄ s are
called the cofactors of f1, . . . , f s .

Definition 2. Let f1, . . . , f s ∈ k[X]. Then g ∈ k[X] is called a least common multiple (lcm) of
f1, . . . , f s , denoted g = lcm(f1, . . . , f s), if

1. ∀i (1 ≤ i ≤ s), f i divides g and
2. g divides any polynomial which all f1, . . . , f s divide.

Definition 3. Let f ∈ k[X]. f is said to be primitive w.r.t. x1 if it is primitive as a polynomial in
k[X2][x1]. That is, its coefficients in k[X2] are co-prime.

Definition 4. A minimal Gröbner basis for a polynomial ideal I ⊆ k[X] is a Gröbner basis G for I such
that lm(p) /∈ 〈lm(G − {p})〉 for all p ∈ G .

Definition 5. If I, J are ideals in k[X], then I : J is the set

I : J = { f ∈ k[X] | f g ∈ I for all g ∈ J }
and is called the ideal quotient (or colon ideal) of I divided by J . If J is generated by one element
g , we use I : g instead of I : 〈g〉 for convenience.

For example, in k[x1, x2, x3] we have 〈x1x3, x2x3〉 : x3 = { f ∈ k[x1, x2, x3] | x3 f ∈ 〈x1x3, x2x3〉} = { f ∈
k[x1, x2, x3] | x3 f = h1x1x3 + h2x2x3} = { f ∈ k[x1, x2, x3] | f = h1x1 + h2x2} = 〈x1, x2〉, where h1, h2 ∈
k[x1, x2, x3].

Next we introduce some notations for parametric multivariate polynomials. For a parametric poly-
nomial g ∈ k[U][X], the leading term, leading coefficient, leading monomial and total degree of g
w.r.t. a monomial order ≺X are denoted by ltX (g), lcX (g), lmX (g) and tdegX (g) respectively. Whether
g ∈ k[X] or g ∈ k[U][X], we use lcxi (g) to denote the leading coefficient of g w.r.t. xi .

A specialization of k[U] is a homomorphism σ : k[U] → L. In this paper, we only consider the spe-
cializations induced by elements in Lm . That is, for ᾱ = (α1, . . . , αm) ∈ Lm , the induced specialization
σᾱ is defined as

σᾱ : ϕ → ϕ(ᾱ),

where ϕ ∈ k[U]. Every specialization σ : k[U] → L extends canonically to a specialization σ :
k[U][X] → L[X] by applying σ coefficient-wise.

For a set E ⊂ k[U], the variety defined by E in Lm is denoted by V(E) = {ᾱ ∈ Lm | f (ᾱ) =
0 for all f ∈ E}. In this paper, an algebraically constructible set A is defined as follows: A =
V(E) \ V(N), where E, N are subsets of k[U]. It is easy to see that the algebraically constructible
set A is not empty by ensuring that at least one f ∈ N is not in the radical of 〈E〉.

For a parametric polynomial system, the definitions of comprehensive Gröbner system and minimal
comprehensive Gröbner system are given below.

D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20 7
Definition 6. Let F be a set in k[U][X], and S be a subset of Lm . Assume that G1, . . . , Gl are subsets
of k[U][X], and A1, . . . , Al are algebraically constructible subsets of Lm such that S = ⋃l

i=1 Ai and
Ai ∩ A j = ∅ for i �= j. A finite set G = {(A1, G1), . . . , (Al, Gl)} is called a comprehensive Gröbner
system (CGS) on S for F if σᾱ(Gi) is a Gröbner basis for 〈σᾱ(F)〉 ⊂ L[X] with ᾱ ∈ Ai and i = 1, . . . , l.
Each (Ai, Gi) is called a branch of G . In particular, if S = Lm , then G is called a comprehensive Gröbner
system for F .

Definition 7. A comprehensive Gröbner system G = {(A1, G1), . . . , (Al, Gl)} on S for F is said to be
minimal, if for each i = 1, . . . , l,

1. Ai �= ∅;
2. σᾱ(Gi) is a minimal Gröbner basis for 〈σᾱ(F)〉 ⊂ L[X] with ᾱ ∈ Ai ;
3. if Gi �= {0}, then for each g ∈ Gi , σᾱ(lcX (g)) �= 0 for any ᾱ ∈ Ai .

Abramov and Kvashenko (1993) studied the parametric gcd of univariate polynomials with one
parameter. The definition of parametric gcd (one parameter) can be easily extended to the case m
(m ≥ 1).

Definition 8. Let F be a subset of k[U][X], and S be a subset of Lm . Assume that g1, . . . , gr are
parametric polynomials in k[U][X], and A1, . . . , Ar are algebraically constructible subsets of Lm such
that S = ⋃r

i=1 Ai and Ai ∩ A j = ∅ for i �= j. A finite set {(A1, g1), . . . , (Ar, gr)} is called a gcd system
on S for F , if for each i = 1, . . . , r, σᾱ(gi) is a gcd of σᾱ(F) for any specialization σᾱ with ᾱ ∈ Ai .
Moreover, if gi �= 0, then we have σᾱ(lcX (gi)) �= 0 for any ᾱ ∈ Ai . In particular, if S = Lm , we simply
call it a gcd system for F .

3. Nagasaka’s algorithms

As stated in the introduction, the gcd of non-parametric polynomials have been extensively studied
in the literature because of the enormous importance of this operation in many symbolic computation
algorithms and applications; see Brown (1971); Moses and Yun (1973); Zippel (1979) for instance.
The main issue in the gcd computation is that of intermediate expression swell as analyzed in Knuth
vol. 2.

Gianni and Trager (1985) and Sasaki and Suzuki (1992) studied the gcd of non-parametric poly-
nomials by computing a Gröbner basis. Nagasaka (2017) extended their results to polynomials with
parameters and proposed two algorithms to compute a gcd system of parametric multivariate poly-
nomials. In the following, we provide an overview of Nagasaka’s algorithms and illustrate their
shortcomings; more details about the algorithms can be found in Nagasaka (2017).

3.1. Extending Gianni and Trager’s algorithm

Nagasaka extended Proposition 2 in Gianni and Trager (1985) to state:

Lemma 9. Let f1, . . . , f s, g ∈ k[X] be primitive w.r.t. x1 , J be a maximal ideal in k[X2] such that 1 ∈
〈 f1, . . . , f s, J 〉 and 1 ∈ 〈lcx1 (g fi), J 〉 for some i. Let G be a Gröbner basis for 〈g f1, . . . , g fs, J r〉 w.r.t. any
total degree order, where r is a positive integer. Then, the polynomial ĝ in G of least total degree is an associate
of g if the least total degree of the elements in J r is larger than tdeg(g)2 .

Nagasaka further extended Lemma 9 to the case of parametric polynomials for which additional
conditions on the ideal J ⊂ k[U][X2] for each specialization σᾱ must be satisfied:

1. σᾱ(f1), . . . , σᾱ(f s) are primitive w.r.t. x1;
2. σᾱ(J) is a maximal ideal in L[X2];

8 D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20
3. 1 ∈ 〈lcx1 (σᾱ(f i)), σᾱ(J)〉 for some i;
4. 1 ∈ 〈 f̄1, . . . , f̄ s, σᾱ(J)〉, where each f̄ i ∈ L[X] is the cofactor of σᾱ(f i).

To satisfy these conditions, the parametric space Lm needs to be decomposed into branches such
that F ⊂ k[U][X] and each J have the following properties.

Definition 10. For any given F = { f1, . . . , f s} ⊂ k[U][X] with S ⊂ Lm and J ⊂ k[U][X2], we introduce
the following.

1. F is said to be S-primitive if ∀ᾱ ∈ S , σᾱ(f1), . . . , σᾱ(f s) are primitive w.r.t. x1;
2. J is said to be S-maximal if ∀ᾱ ∈ S , σᾱ(J) is a maximal ideal in L[X2];
3. F is said to be S-nonvanishlc if ∀ᾱ ∈ S , lcx1 (σᾱ(f i)) = σᾱ(lcx1 (f i)) for each i;
4. F is said to be S-nondegenerate if ∀ᾱ ∈ S , 1 ∈ 〈lcx1 (σᾱ(f i)), σᾱ(J)〉 for some i;
5. J is said to be S-luckyprime if ∀ᾱ ∈ S , 1 ∈ 〈 f̄1, . . . , f̄ s, σᾱ(J)〉, where each f̄ i ∈ L[X] is the cofac-

tor of σᾱ(f i).

Under these conditions, Nagasaka proposed an algorithm to compute a gcd system for F by com-
bining Lemma 9 and Definition 10, which we call henceforth, the Nagasaka-GT algorithm.

Step 1: compute the S-primitive part of F w.r.t. x1;
Step 2: decompose S such that F is S-nonvanishlc;
Step 3: construct a maximal ideal J ⊂ k[U][X2] such that F is S-nondegenerate;
Step 4: compute a minimal CGS for 〈F ∪ J r〉 on S , where r satisfies the condition of Lemma 9;
Step 5: check whether J is a S-luckyprime, if not, return to the Step 3;
Step 6: obtain the gcd system for F on S .

As the reader will notice, the above conditions are complicated and not easy to appreciate. Further,
while implementing the Nagasaka-GT algorithm in Singular, we discovered the following shortcom-
ings. We assume in the following examples that U = {a, b}, X = {x1, x2, x3} and consider the lexico-
graphic order �X with x1 > x2 > x3.

• In Step 1, Nagasaka needs to call this algorithm repeatedly to compute the primitive part of
each parametric polynomial. For example, computing the primitive part of f = (1 − a)x31x

2
2 +

a(b − 1)x31x2x3 + (a2 − a)x1x22 + (a − b)x1x3 + (a − 1)x22 + a(b − 1)x2x33 + ax3 w.r.t. x1 on C2,
we must know a gcd system for the coefficients of f w.r.t. x1 on C2, i.e., we have to call this
algorithm to compute the gcd system of f11, f12, f13, where f11 = (1 −a)x22 +a(b − 1)x2x3, f12 =
(a2−a)x22+(a −b)x3 and f13 = (a −1)x22+a(b −1)x2x33+ax3. As the number of variables increases,
this becomes more and more tedious, resulting in computational inefficiency.

• Step 2 is not necessary. Step 1 has ensured that the leading coefficient of f w.r.t. x1 is not zero on
each branch S j , i.e., lcx1 (σᾱ(f)) = σᾱ(lcx1 (f)) for any ᾱ ∈ S j . Therefore, Step 2 can be removed.

• If the parameter space S is divided into many small areas, more and more maximal ideals need to
be constructed in Step 3. Although Nagasaka proved that a maximal ideal J ⊂ k[U][x2, x3] which
is S-nondegenerate and S-luckyprime can be constructed in a finite number of steps, we do not
know how much time it takes to construct so many maximal ideals.

• Since we do not know the polynomial g in Lemma 9, we need to estimate the value of r in
Step 4. Without any loss of generality, we often let r = min{tdegX (f i)2 + 1 | f i ∈ F }. For instance,
let F = { f1, f2} and J = 〈x2 − c2, x3 − c3〉, where f1 = ax31x

2
2x3 + (1 − b)(x22 + x3), f2 = (1 −

a)x31x
2
2x3 + b(x22 + x3). Then, r = 37. There are two problems: first, it will take more time to

compute the minimal CGS of 〈F ∪ J37〉 which sometimes does not terminate in an hour; second,
since c2, c3 ∈ C are chosen randomly, sometimes c37i is a large integer.

D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20 9
3.2. Extending Sasaki and Suzuki’s algorithm

Sasaki and Suzuki (1992) also used a Gröbner basis construction to compute the gcd of non-
parametric polynomials, by improving upon Gianni and Trager’s results. They obtained a similar
theorem, but did not need to use a maximal ideal J ⊂ k[X2].

Theorem 11. (Theorem 1 in Sasaki and Suzuki (1992)) Let f1, f2 ∈ k[X] be primitive w.r.t. x1 , and G be the
Gröbner basis for 〈 f1, f2〉 w.r.t. any block order such that x1 � X2 . Then, there exists a polynomial h ∈ k[X2]
such that ĝ = h · gcd(f1, f2), where ĝ is the polynomial in G of least degree in x1.

Using the insight in Theorem 11, Nagasaka proposed an other algorithm (henceforth called,
Nagasaka-SS algorithm) to compute a gcd system for F ⊂ k[U][X].

Step 1: compute an S-primitive decomposition of F ;
Step 2: compute a minimal CGS for an S-primitive of F ;
Step 3: compute a gcd system for the coefficients of candidate factor;
Step 4: compute the primitive part in each branch;
Step 5: obtain the gcd system for F on S .

There are similarities between Nagasaka-SS algorithm and Nagasaka-GT algorithm which are also
sources of inefficiency: both need to compute S-primitive decompositions and make recursive calls
to compute a gcd system for the coefficients of parametric polynomials in F . Nagasaka-SS algorithm
has been observed to be more efficient than Nagasaka-GT algorithm, since Nagasaka-SS algorithm
does not need to construct many maximal ideals and only needs to compute the minimal CGS of 〈F 〉
rather than 〈F ∪ J r〉.

4. New parametric GCD algorithms

As stated above, there are many well-known algorithms for computing the gcd of non-parametric
multivariate polynomials starting from Euclid’s algorithm improved by Collins using reduced poly-
nomial remainder sequences (PRS), Brown and Traub and Brown’s subresultant PRS with EZGCD
algorithm in MACSYMA for non-parametric polynomials in general and Zippel’s algorithm based on
sparse interpolation which is more efficient for sparse polynomials. There are also algorithms based
on Gröbner basis computations. We are, however, interested in algorithms which generalize to para-
metric multivariate polynomials. To our knowledge, algorithms based on the Gröbner bases are most
suited to generalize to the parametric case.

In this section, we propose two new algorithms which are based on comprehensive Gröbner sys-
tems for computing a gcd system of two parametric multivariate polynomials. To present the key
ideas, in each subsection we first give the method for the non-parametric case and then we extend it
to the parametric case.

4.1. Algorithm based on ideal intersection

The main idea of the first algorithm is that compute the least common multiple (lcm) of two
non-parametric polynomials by computing the intersection of two principal ideals generated by one
polynomial and another polynomial respectively. Since the intersection of two principal ideals is also a
principal ideal, the generator can be obtained by a minimal Gröbner basis computation. This generator
is the lcm of the two polynomials, and the gcd of the two polynomials is equal to the product of the
two polynomials divided by this generator. To avoid introducing a new variable, we use the technique
of module to compute the generator of the intersection of two principal ideals. For the parametric
case, we only need to extend the results in non-parametric case to parametric case, and obtain a gcd
system for two parametric polynomials by computing a minimal CGS of a module in k[U][X]3.

10 D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20
4.1.1. Computing intersection of principal ideals
We first introduce the following proposition which plays an important role in the first proposed

algorithm.

Proposition 12. (pp. 189-190, Cox et al. (1992))

1. The intersection I ∩ J of two principal ideals I, J ⊂ k[X], is a principal ideal.
2. If I = 〈 f1〉, J = 〈 f2〉 and I ∩ J = 〈 f 〉, then f = lcm(f1, f2).
3. Let f1, f2 ∈ k[X], then lcm(f1, f2) · gcd(f1, f2) = f1 · f2 .

When f1 · f2 �= 0, it follows immediately from Proposition 12 that

gcd(f1, f2) = f1 · f2
lcm(f1, f2)

.

This gives an algorithm for computing the gcd of f1 and f2. Namely, we first compute lcm(f1, f2)
and then divide it into the product of f1 and f2 using the division algorithm. Proposition 12 tells us
that the generator of the intersection of 〈 f1〉 and 〈 f2〉 is lcm(f1, f2). The following is an important
theorem for dealing with the computation of ideal intersection.

Theorem 13. (pp. 187, Cox et al. (1992)) Let I, J be ideals in k[X], then
I ∩ J = (υ · I + (1− υ) · J) ∩ k[X],

where υ is a new variable which is different from X.

The above theorem and Elimination Theorem (Theorem 2, pp. 116, in Cox et al. (1992)) lead to
the following method for computing lcm(f1, f2): introduce a new variable υ and consider the ideal
〈υ f1, (1 − υ) f2〉, compute a minimal Gröbner basis w.r.t. a monomial order in which υ is greater
than X , then the element of this Gröbner basis which do not contain the variable υ is the lcm of f1
and f2.

Given that the complexity of Gröbner basis computations is heavily influenced by the number of
variables and the total degrees of polynomials (Mayr and Meyer, 1982; Möller and Mora, 1984; Dubé,
1990; Bayer and Mumford, 1993), we believe that the computation of ideal intersection over modules
in the Chapter 5 of Cox et al. (2005) is likely to be more efficient. This has also been verified by the
performance of comparing our implementations.

Let e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and e3 = (0, 0, 1)T , then {e1, e2, e3} is a free basis of k[X]3,
where T stands for transposition. That is, for any element �v in k[X]3, it can be expressed as �v =
h1 · e1 + h2 · e2 + h3 · e3 where h1, h2, h3 ∈ k[X]. For any submodule W of k[X]3, we can also compute
the Gröbner basis of W . The module case follows the ideal case almost exactly. However, we need to
extend the notion of monomial orders to the free module k[X]3. Let ≺ be a term order on k[X], then
extend ≺ to the k[X]3 in a position over term fashion with e3 < e2 < e1.

Theorem 14. Let f1, f2 be two nonzero polynomials in k[X] and ≺ be a monomial order on k[X]. Suppose
W ⊂ k[X]3 is a k[X]-module generated by {e1 + e2 + e3, f1 · e1, f2 · e2} and G is a minimal Gröbner basis
of W w.r.t. an order extended from ≺ in a position over term fashion with e3 < e2 < e1 . Then there exists a
unique nonzero polynomial f ∈ k[X] such that f · e3 ∈ G and 〈 f 〉 = 〈 f1〉 ∩ 〈 f2〉.

Proof. Let F = { f ∈ k[X] | f · e3 ∈ G}. As f1 and f2 are both nonzero by assumption, it is easy to
verify that the set F is not empty. We prove 〈F 〉 = 〈 f1〉 ∩ 〈 f2〉 below.

We first show 〈 f1〉 ∩ 〈 f2〉 ⊂ 〈F 〉. For any given polynomial f in 〈 f1〉 ∩ 〈 f2〉, there exists two poly-
nomials p, q ∈ k[X] such that f = pf1 = qf2. Then, f · e3 = f (e1 + e2 + e3) − p(f1 · e1) − q(f2 · e1)
implies f · e3 ∈ W . Since G is a minimal Gröbner basis of W , it follows that f ∈ 〈F 〉.

For the converse, suppose f ′ ∈ 〈F 〉. Then there exist polynomials p1, . . . , pr, g1, . . . , gr ∈ k[X] such
that f ′ = ∑r

i=1 (pi gi) and gi · e3 ∈ G for 1 ≤ i ≤ r. Thus, we have f ′ · e3 ∈ 〈G〉, which implies f ′ · e3 =

D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20 11
h1(e1 + e2 + e3) + h2(f1 · e1) + h3(f2 · e2) for some polynomials h1, h2, h3 ∈ k[X]. From this equation
we can obtain the following equations:⎧⎨

⎩
0 = h1 + h2 f1,
0 = h1 + h3 f2,
f ′ = h1.

It can easily be seen that f ′ ∈ 〈 f1〉 ∩ 〈 f2〉.
Therefore, we have 〈F 〉 = 〈 f1〉 ∩ 〈 f2〉. Proposition 12 implies that 〈F 〉 is a principal ideal and 〈F 〉 =

〈 f 〉, where f = lcm(f1, f2). Besides, G is a Gröbner basis of W , there must exist a polynomial g ∈
k[X] \ {0} such that g · e3 ∈ G and lm(g) = lm(f). Moreover, we have g = f as G is minimal, because
otherwise there should exist another element in G that divides (g − lc(g)

lc(f) f) · e3 and has a smaller
leading monomial than lm(f) · e3. �

Based on the results of Proposition 12 and Theorem 14, we can get the gcd of f1 and f2 by using
the following corollary.

Corollary 15. Let f1, f2 be two polynomials in k[X] and ≺ be a monomial order on k[X]. Suppose W ⊂ k[X]3
is a k[X]-module generated by {e1 + e2 + e3, f1 · e1, f2 · e2} and G is a minimal Gröbner basis for W w.r.t.
an order extended from ≺ in a position over term fashion with e3 < e2 < e1 . Let F = { f ∈ k[X] | f · e3 ∈ G}.
Then

1. If F is empty, then f1 · f2 = 0. In this case, gcd(f1, f2) is equal to 0 or f ′ which satisfies f ′ · (0, 1, �)T ∈ G,
where � stands for 0 or 1.

2. If F is not empty, then F = {lcm(f1, f2)} and gcd(f1, f2) = f1· f2
lcm(f1, f2)

.

Proof. If f1 = f2 = 0, then G = {e1 + e2 + e3} and F is empty. In this case, gcd(f1, f2) = 0. If f1 = 0
and f2 �= 0, then G = {e1 + e2 + e3, f2 · e2} and F is empty. In this case, gcd(f1, f2) = f2. If f1 �= 0
and f2 = 0, then G = {e1 + e2 + e3, f1 · (e2 + e3)} and F is empty. In this case, gcd(f1, f2) = f1. In the
case of f1 and f2 being nonzero, the result follows Theorem 14. �
4.1.2. Algorithm 1 for computing a gcd system of two parametric polynomials

The nice thing about using the intersection of two principal ideals for computing the gcd is that
Corollary 15 generalizes easily to the parametric case.

Theorem 16. Given f1, f2 ∈ k[U][X] and an algebraically constructible set A = V(E) \ V(N) ⊂ Lm. Let G =
{(Ai, Gi)}li=1 be aminimal comprehensive Gröbner system of the module W = 〈e1 + e2 + e3, f1 · e1, f2 · e2〉
on A w.r.t. an order extended from ≺X in a position over term fashion with e3 < e2 < e1 . For each branch
(Ai, Gi), let Fi = { f ∈ k[U][X] | f · e3 ∈ Gi}. Then we have the following results:

1. If Fi is empty, then gcd(σᾱ(f1), σᾱ(f2)) is equal to 0 or σᾱ(f ′) which satisfies f ′ · (0, 1, �)T ∈ Gi for any
ᾱ ∈ Ai , where � stands for 0 or 1.

2. If Fi is not empty, then Fi = { f } and gcd(σᾱ(f1), σᾱ(f2)) = σᾱ(f1· f2)
σᾱ(f) for any ᾱ ∈ Ai .

Proof. Since G is a minimal comprehensive Gröbner system, for each branch (Ai, Gi), the set σᾱ(Gi)

is a minimal Gröbner basis of 〈σᾱ(W)〉 for any ᾱ ∈ Ai . Besides, there are no elements in Gi that can
specialize to 0 because the leading coefficients of all elements in Gi are nonzero under specialization.
Therefore, it is easy to derive the results from Corollary 15. �

Note that in Theorem 16 (2), the expression σᾱ(g)
σᾱ(f) is a polynomial in L[X] for any ᾱ ∈ Ai , but the

expression g/ f is not necessarily a parametric polynomial in k[U][X], where g = f1 · f2. However,
since lcX (f) is a nonzero polynomial in k[U] that does not vanish for any specialization σ in the
branch, we can use the following division in k[U][X] to compute an associate of σᾱ(g)

σ (f) .
ᾱ

12 D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20

1
2

3
4
5
6
7

8
9

10
To compute q ∈ k[U][X] such that σᾱ(q) ∼ σᾱ(g)/σᾱ(f), g is multiplied by lcX (f) repeatedly
during division so that

(lcX (f))λg = q · f + h,

and no monomial in h is divisible by the leading monomial lmX (f), where λ is a non-negative integer.
Theorem 16 can guarantee that σᾱ(h) is zero for any ᾱ ∈ Ai . This operation is similar to the division
algorithm in Montes (2002); Montes and Schoenemann (2016).

The pseudo-division algorithm in polynomial rings requires a main variable to be specified. Ob-
viously, the above division is not the same as the pseudo-division, so we call it special division
algorithm in k[U][X], and denote by Quo(g, f) the quotient q.

We use a simple example to illustrate this algorithm. Let g = x2−by +b, f = ax with q = Quo(g, f)
and an algebraically constructible set A = V(ab) \ V(a). Using the lexicographic order on X , where
X = {x, y} and x > y, f special-divides g in k[U][X], giving lcX (f) · g = x · f +h, where h = −aby +ab.
It is obvious that h is zero on A. Thus q = x. Moreover, for any ᾱ ∈ A, σᾱ(g)

σᾱ(f) = 1
a x. Therefore, σᾱ(q) ∼

σᾱ(g)/σᾱ(f).
Now, the first algorithm is given below and is called “Ideal Intersection Based GCD”.

Proposition 17. Algorithm 1 works correctly.

Proof. The proof follows directly from Theorem 16. �
Algorithm 1 Ideal Intersection Based GCD
Input : f1, f2 ∈ k[U][X], a constructible set A ⊂ Lm , and two monomial orders ≺X , ≺U .
Output: a gcd system {(Ai , hi)}li=1, where gcd(σᾱ(f1), σᾱ(f2)) = σᾱ(hi) for any ᾱ ∈ Ai and ∪l

i=1 Ai = A.
begin

compute a minimal CGS {(Ai , Gi)}li=1 on A for 〈e1 + e2 + e3, f1 · e1, f2 · e2〉 ⊂ k[U][X]3 in a position over term with
e3 < e2 < e1;

for i from 1 to l do
Fi := { f ∈ k[U][X] | f · e3 ∈ Gi};
if Fi is not empty then

Fi := { f };
hi := Quo(f1 · f2, f) on Ai ;

else
hi := 0 or f ′ which satisfies f ′ · (0, 1, �)T ∈ Gi on Ai ;

return {(Ai , hi)}li=1.

4.2. Algorithm based on ideal quotient

The key idea of the second algorithm is well-known: compute the cofactor by computing the
ideal quotient of one polynomial with respect to the other polynomial. This ideal quotient is known
to be principal and has a single generator which can be computed by a single minimal Gröbner
basis computation. This generator, which is the cofactor of the first polynomial, is used to obtain the
gcd by dividing the polynomial by its cofactor. For the parametric case, a minimal comprehensive
Gröbner system of a module in k[U][X]2 is computed, leading to multiple branches for different
specializations; for each branch, the generator is used to obtain the gcd for the associated parametric
specializations.

4.2.1. Computing ideal quotient
The second algorithm is based on the following theorem.

Theorem 18. Consider two polynomials f1, f2 ∈ k[X] \ {0} such that f1 = d · f̄1 and f2 = d · f̄2 , where
d = gcd(f1, f2) and gcd(f̄1, f̄2) = 1. Then, 〈 f̄1〉 = 〈 f1〉 : f2 and 〈 f̄2〉 = 〈 f2〉 : f1 .

D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20 13
Proof. We only prove 〈 f̄1〉 = 〈 f1〉 : f2, the proof of 〈 f̄2〉 = 〈 f2〉 : f1 follows in a similar manner.
Since f2 f̄1 = d f̄2 f̄1 = f̄2 f1 ∈ 〈 f1〉, then 〈 f̄1〉 ⊆ 〈 f1〉 : f2. In the other direction, if there exists a

polynomial g ∈ 〈 f1〉 : f2 such that f̄1 � g , then by division algorithm in k[X], g is written as g =
p f̄1 + r, where p, r ∈ k[X], and none of the monomials in r is divisible by lm(f̄1). Note that g f2 ∈ 〈 f1〉
implies (p f̄1 + r) f2 = hf1, where h ∈ k[X]. Hence, (h − p f̄2) f̄1 = r f̄2 by dividing both sides by d and
gcd(f̄1, f̄2) = 1. This would require that f̄1 | r giving a contradiction. Hence 〈 f1〉 : f2 ⊆ 〈 f̄1〉. �

Theorem 18 implies that 〈 f1〉 : f2 is a principal ideal. A minimal Gröbner basis G of 〈 f1〉 : f2 w.r.t.
a monomial order ≺ is {g} such that gcd(f1, f2) = f1/g . Depending upon the structure of f1, f2 and
the degree of their gcd relative to the degrees of f1 and f2, computing 〈 f1〉 : f2 or 〈 f2〉 : f1 can have
varied performance.

A ideal quotient can be computed using ideal intersection which involves introducing a new vari-
able to construct a new ideal in a bigger polynomial ring. In the following, we introduce a new
method to compute the ideal quotient 〈 f1〉 : f2.

Theorem 19. Let f1, f2 be two polynomials in k[X] \ {0} and ≺ be a monomial order on k[X]. Suppose W ⊂
k[X]2 is a k[X]-module generated by { f1 · �e1, f2 · �e1 − �e2} and G is a minimal Gröbner basis of W w.r.t. an
order extended from ≺ in a position over term fashion with �e2 < �e1 , where �e1 = (1, 0)T and �e2 = (0, 1)T .
Then there exists a unique polynomial g ∈ k[X] \ {0} such that g · �e2 ∈ G and 〈g〉 = 〈 f1〉 : f2 .

Proof. Let H = {h ∈ k[X] | h · �e2 ∈ G}. As f1 and f2 are both nonzero by assumption, it is easy to check
that the set H is not empty. We prove 〈H〉 = 〈 f1〉 : f2 below.

We first show 〈 f1〉 : f2 ⊂ 〈H〉. For any given polynomial p in 〈 f1〉 : f2, there exists a polynomial
q ∈ k[X] such that pf2 = qf1. Then, p · �e2 = q(f1 · �e1) − p(f2 · �e1 − �e2) implies p · �e2 ∈ W . Since G is a
minimal Gröbner basis of W , it follows that p ∈ 〈H〉.

For the converse, suppose h ∈ 〈H〉. Then there exist polynomials g1, . . . , gs, p1, . . . , ps ∈ k[X] such
that h = ∑s

i=1 (pi gi) and gi · �e2 ∈ G for 1 ≤ i ≤ s. Thus, we have h · �e2 ∈ 〈G〉, which implies h · �e2 =
h1(f1 · �e1) +h2(f2 · �e1 − �e2) for some polynomials h1, h2 ∈ k[X]. From this equation we can obtain the
following equations:{

0 = h1 f1 + h2 f2,
h = −h2.

Therefore, we have h ∈ 〈 f1〉 : f2.
In sum, we have 〈H〉 = 〈 f1〉 : f2. By Theorem 18, we obtain 〈H〉 = 〈 f̄1〉, where f̄1 is the cofactor

of f1. Besides, G is a Gröbner basis of W , there must exist a polynomial g ∈ k[X] \ {0} such that
g · �e2 ∈ G and lm(g) = lm(f̄1). Moreover, we have g = f̄1 as G is minimal, because otherwise there
should exist another element in G that divides (g − lc(g)

lc(f̄1)
f̄1) · �e2 and has a smaller leading monomial

than lm(f̄1) · �e2. �
Theorem 19 only discusses the case when f1 and f2 are both nonzero polynomials. We can extend

the result to more general cases.

Corollary 20. Let f1, f2 be two polynomials in k[X] and ≺ be a monomial order on k[X]. Suppose W ⊂ k[X]2
is a k[X]-module generated by { f1 · �e1, f2 · �e1 − �e2} and G is a minimal Gröbner basis for W w.r.t. an order
extended from ≺ in a position over term fashion with �e2 < �e1 . Let H = {h ∈ k[X] | h · �e2 ∈ G}. Then

1. If H is empty, then f1 = 0 and f2 �= 0. In this case, gcd(f1, f2) = f2 .
2. If H is not empty, then H = { f̄1} and gcd(f1, f2) = f1/ f̄1 .

Proof. If f1 = 0, f2 �= 0, then H can be checked to be empty. If f1 = f2 = 0, then H = {1}. If f1 �= 0
and f2 = 0, then H = {1} and gcd(f1, f2) = f1. In the case of f1 and f2 being nonzero, the result
follows Theorem 19. �

14 D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20

1
2
3
4
5
6
7

8
9

10
Table 1
The comparison of two new algorithms.

Algorithm 1 Algorithm 2

approach ideal intersection ideal quotient
gcd in k[X] f1 f2/lcm(f1, f2) f1/ f̄1
k[U][X]-module k[U][X]3 k[U][X]2
minimal CGS 〈e1 + e2 + e3, f1 · e1, f2 · e2〉 〈 f1 · �e1, f2 · �e1 − �e2〉

By Corollary 20, the gcd of f1 and f2 can be obtained from the Gröbner basis G directly without
any knowledge of f1 or f2 being zero or not.

4.2.2. Algorithm 2 for computing a gcd system of two parametric polynomials
Now, we generalize Corollary 20 to the parametric case.

Theorem 21. Given f1, f2 ∈ k[U][X] and an algebraically constructible set A = V(E) \ V(N) ⊂ Lm, let G =
{(Ai, Gi)}li=1 be a minimal comprehensive Gröbner system of the module W = 〈 f1 · �e1, f2 · �e1 − �e2〉 on A
w.r.t. an order extended from ≺X in a position over term fashion with �e2 < �e1 . For each branch (Ai, Gi), let
Hi = {h ∈ k[U][X] | h · �e2 ∈ Gi}. Then we have the following results.

1. If Hi is empty, then gcd(σᾱ(f1), σᾱ(f2)) = σᾱ(f2) for any ᾱ ∈ Ai .
2. If Hi is not empty, then Hi = {gi} and gcd(σᾱ(f1), σᾱ(f2)) = σᾱ(f1)

σᾱ (gi)
for any ᾱ ∈ Ai .

Proof. The proof is similar to that of Theorem 16. �
Now, the second algorithm based on ideal quotient construction is given below.

Algorithm 2 Ideal Quotient Based GCD
Input : f1, f2 ∈ k[U][X], a constructible set A ⊂ Lm , and two monomial orders ≺X , ≺U .
Output: a gcd system {(Ai , hi)}li=1, where gcd(σᾱ(f1), σᾱ(f2)) = σᾱ(hi) for any ᾱ ∈ Ai and ∪l

i=1 Ai = A.
begin

compute a minimal CGS {(Ai, Gi)}li=1 on A for 〈 f1 · �e1, f2 · �e1 − �e2〉 ⊂ k[U][X]2 in a position over term with �e2 < �e1;
for i from 1 to l do

Hi := {h ∈ k[U][X] | h · �e2 ∈ Gi};
if Hi is not empty then

Hi has exactly one polynomial, say gi ;
hi := Quo(f1, gi) on Ai ;

else
hi := f2 on Ai ;

return {(Ai , hi)}li=1.

Proposition 22. Algorithm 2 works correctly.

Proof. The proof follows directly from Theorem 21. �
4.3. Comparison of ideal intersection and ideal quotient GCD algorithms

As we see in the above two subsection, we proposed two algorithms to compute a gcd system of
two parametric polynomials. Comparing the two proposed algorithms, we get the following results.

Table 1 shows the differences between the two proposed algorithms. Obviously, they have the
following similarities: we use the method of module instead of introducing a new variable to com-
pute the ideal intersection and quotient ideal, thus reducing the computation cost; use the special

D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20 15
division algorithm proposed in subsection 4.1.2 to compute the gcd system on different algebraically
constructible sets. In Algorithm 1 and Algorithm 2, if f1 (or f2) vanishes on the constructible set A,
we only need to compute a minimal comprehensive Gröbner system {(Ai, hi)}li=1 of f2 (or f1), and
then the gcd of σᾱ(f1) and σᾱ(f2) on each branch Ai is σᾱ(hi).

To experimentally compare the two proposed algorithms with both of Nagasaka’s algorithms, we
have implemented them all in Singular on a single platform so that their comparative performance
can be fairly analyzed (Section 7).

4.4. Gcd systems for more than two parametric polynomials

Given parametric polynomials f1, . . . , f s ∈ k[U][X] with s ≥ 3 and a constructible set A, their gcd
system can also be computed by successively computing the gcd systems of two polynomials at a
time. That is, given a monomial order, we first compute a gcd system {(Ai , hi)}li=1 of f1 and f2 on A,
where A = ∪l

i=1Ai . Then, for each branch we compute a gcd system {(Aij, hij)}lij=1 of hi and f3 on Ai ,

where Ai = ∪li
j=1Aij . Repeating the above process, we can get a gcd system of f1, f2, . . . , f s on the

different branch of A.
We recognize that many tricks can be applied to the both proposed algorithms. For example, when

we get the gcd system {(Ai, hi)}li=1 of f1 and f2, then we can compute the gcd systems of hi and
f3 on Ai for i = 1, . . . , l at the same time. The difference in polynomial selection can make a big
difference in Algorithm 2, we often choose the polynomial with the lowest total degree w.r.t. X as
the first polynomial. This is because the total degree of intermediate gcds goes down substantially as
computations proceed.

5. An illustrative example

We illustrate the two proposed algorithm with a simple example.

Example 23. Let f1, f2, f3 ∈C[U][X] be as follows:⎧⎪⎨
⎪⎩

f1 = ax2 + bxy + a2xz + abx+ abyz + b2 y,

f2 = ax2 + bxy + (ab − a)xz − a2x+ (b2 − b)yz − aby,

f3 = ax2 + bxy + a2xz + (a2 − ab)x + abyz + (ab − b2)y,

where U = {a, b}, X = {x, y, z}, ≺X and ≺U are all lexicographic orders with z < y < x and b < a,
respectively.

5.1. Algorithm 1 for Example 23

Step 1: compute a minimal CGS G1 for 〈e1 + e2 + e3, f1 · e1, f2 · e2〉 on C2.
There are six branches in G1. The first branch of G1 is (A1, G1) = (C2 \ V(a(a − b + 1)), {(ax +

by)(x + az + b)(x + (b − 1)z − a) · e3, (f1 − f2) · e2 + f1 · e3, f2 · e2, e1 + e2 + e3}). Then, F1 = {(ax +
by)(x + az + b)(x + (b − 1)z − a) ∈C[U][X] | (ax + by)(x + az + b)(x + (b − 1)z − a) · e3 ∈ G1} and the
gcd of f1 and f2 on A1 is h1 = Quo(f1 · f2, (ax +by)(x +az+b)(x + (b −1)z−a)) = ax +by. Similarly,
we can get the gcds of f1 and f2 on other five branches.

Step 2: compute a minimal CGS G2 for 〈e1 + e2 + e3, h1 · e1, f3 · e2〉 on A1.
There is only one branch: (A1, G2) = (C2 \V(a(a −b +1)), { f3 ·e3, (ax +by) ·(e2+e3), e1+e2+e3}).

Then H2 = { f3} and the gcd of h1 and f3 on A1 is h2 = Quo(h1 · f3, f3) = ax + by. It follows that the
gcd of f1, f2 and f3 on A1 is ax + by.

Step 3: repeat Step 2 and obtain the following result.

5.2. Algorithm 2 for Example 23

Step 1: Computing a minimal CGS G1 for 〈 f1 · �e1, f2 · �e1 − �e2〉 on C2.

16 D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20
Table 2
The gcd system of f1, f2, f3.
No. Ai gcd

1 C2 \ V(a(a − b + 1)) ax+ by
2 V(a − b + 1) \ V((2b − 1)(b − 1)) (b − 1)x+ by
3 V(2a + 1,2b − 1) x− y
4 V(a) \ V(b(b − 1)) y
5 V(a,b − 1) y
6 V(a,b) 0

There are six branches in G1. The first branch of G1 is (A1, G1) = (C2 \ V(a(a − b + 1)), {(x +
az + b) · �e2, ((a2 − ab + a)xz + (a2 + ab)x + (ab − b2 + b)yz + (ab + b2)y) · �e1 + �e2, f2 · �e1 − �e2}). Then,
H1 = {x +az+b ∈C[U][X] | (x +az+b) · �e2 ∈ G1} and the gcd of f1 and f2 on A1 is h1 = Quo(f1, x +
az + b) = ax + by. Similarly, we can get the gcds of f1 and f2 on other five branches.

Step 2: Computing a minimal CGS G2 for 〈h1 · �e1, f3 · �e1 − �e2〉 on A1.
There is only one branch: (A1, G2) = (C2 \ V(a(a − b + 1)), {�e2, h1 · �e1}). Then H2 = {1} and the

gcd of h1 and f3 on A1 is h2 = Quo(h1, 1) = ax + by. It follows that the gcd of f1, f2 and f3 on A1 is
ax + by.

Step 3: Repeat Step 2 and obtain the gcds of f1, f2 and f3 on other five branches. The result is
the same as that in Table 2.

6. Extending ideal quotient to a system of more than two polynomials

Currently, we compute a gcd system of a pair of parametric polynomials whose output is a fi-
nite set of constructible sets with the corresponding gcds. For each such branch, the gcd is used to
compute its gcd with the next polynomial leading to more branches. However, we can use a single
comprehensive Gröbner system to compute a gcd system of more than two parametric polynomials.

In general, the equation gcd(f1, . . . , f s) = f1··· fs
lcm(f1,..., fs)

does not hold for s ≥ 3. For example,
let f1 = x21x2x

2
3, f2 = x32x3, and f3 = x31x

4
3. Then, lcm(f1, f2, f3) = x31x

3
2x

4
3, gcd(f1, f2, f3) = x3, and

lcm(f1, f2, f3) · gcd(f1, f2, f3) �= f1 f2 f3. Hence, we cannot extend Algorithm 1 directly to the case
of more than two parametric polynomials. However, we can generalize the method of Algorithm 2
to the case of more than two parametric polynomials. We first consider the gcd of non-parametric
polynomials.

Theorem 24. Let I = 〈 f1〉 and J = 〈 f2, . . . , f s〉 be ideals in k[X], where f1 �= 0 and s ≥ 3. Then the ideal
quotient I : J is a principal ideal. If I : J generated by a polynomial g ∈ k[X], then gcd(f1, . . . , f s) is an
associate of f1

g .

Proof. According to Theorem 18 and Proposition 12, it follows from I : J = ⋂s
i=2(〈 f1〉 : f i) that I : J

is a principal ideal. Suppose that I : J = 〈g〉, then g �= 0 by the assumption. Since I ⊂ I : J , we have
f1 ∈ 〈g〉. This implies that g | f1. Let gcd(f1, . . . , f s) = d, in the following we prove that f1

g | d and
d | f1

g .

Let 〈 f1〉 : f i = 〈 f1i〉, where f1i ∈ k[X] \ {0} and i = 2, . . . , s. Then 〈g〉 = ⋂s
i=2〈 f1i〉. This implies that

for each i, we have f1i | g and f1
g | f1

f1i
. From the equation

gcd(f1, . . . , f s) = gcd(gcd(f1, f2), . . . ,gcd(f1, f s)),

we have d = gcd(
f1
f12

, . . . , f1
f1s

) and f1
g | d. On the other hand, since d | f1

f1i
we have f1i | f1

d for i =
2, . . . , s. This implies that f1

d ∈ ⋂s
i=2〈 f1i〉 = 〈g〉. Hence, g | f1

d implies that d | f1
g . �

The most important thing in Theorem 24 is to compute the generator of the ideal quotient 〈 f1〉 :
〈 f2, . . . , f s〉. Theorem 19 cannot be generalized to the case of s ≥ 3 directly. For example, let f1 =

D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20 17
x2 yz2, f2 = xy2, f3 = y3z, � be the lexicographic order with x > y > z, and �3 denotes the position
over term extension of � to k[X]3. A minimal Gröbner basis for the module 〈 f1 · �e1, f2 · �e1 − �e2, f3 ·
�e1 −�e3〉 w.r.t. �3 has an element x2z · �e3. However, the ideal quotient 〈x2 yz2〉 : 〈xy2, y3z〉 is generated
by x2z2, which leads to a contradiction. Next, we use syzygies to compute the ideal quotient I : J .

Theorem 25. Let I = 〈 f1〉 and J = 〈 f2, . . . , f s〉 be ideals in k[X], where f1 �= 0 and s ≥ 3. A polynomial h1 ∈
k[X] is an element of I : J if and only if h1 appears as the first component of a syzygy (h1, . . . , hs)

T ∈ k[X]s in
the module Syz(M) = {�u ∈ k[X]s | M · �u = �0}, where M is a polynomial matrix as follows:

⎛
⎜⎜⎜⎝

f2 f1 0 · · · 0
f3 0 f1 · · · 0
...

...
. . .

...

f s 0 0 · · · f1

⎞
⎟⎟⎟⎠ .

Proof. Let �vi ∈ k[X]s−1 be the i-th column of matrix M , where i = 1, . . . , s. Suppose that h1�v1 +
h2�v2 + · · · + hs�vs = �0. From the j-th component, we obtain an equation h1 f j+1 + h j+1 f1 = 0, so
h1 ∈ 〈 f1〉 : f j+1, where j = 1, . . . , s − 1. Therefore, h1 ∈ ⋂s−1

j=1(〈 f1〉 : f j+1) = I : J .

On the other hand, for any given polynomial g ∈ I : J , we have g ∈ ⋂s−1
j=1(〈 f1〉 : f j+1). That is,

∀ j (1 ≤ j ≤ s − 1), g ∈ 〈 f1〉 : f j+1. This implies that there exists a polynomial ϕ j ∈ k[X] such that
g f j+1 = ϕ j f1. Let �u = (g, −ϕ1, . . . , ϕs−1)

T , then M · �u = �0. It follows that g ∈ I : J appears as the first
component in Syz(M). �
Remark 26. In Cox et al. (2005), Proposition 3.11 (pp. 230, Chapter 5, Modules) uses syzygies to
compute the intersection of two ideals. Theorem 25 is similar to Proposition 3.11 and is an answer
to Exercise 10 in Cox et al. (2005) (pp. 232) which uses Proposition 3.11 to give an algorithm for
computing I : J . Furthermore, according to Exercise 15 in Cox et al. (2005) (pp. 233), we have the
following method to compute Syz(M). Let e1, . . . , e2s−1 be the standard basis of the free module
k[X]2s−1, and consider the submodule W ⊂ k[X]2s−1 generated by

wi = (�vT
i ,0, . . . ,0,1s−1+i,0, . . . ,0)

T , i = 1, . . . , s,

where wi ∈ k[X]2s−1 and 1s−1+i in wi stands for 1 in the (s − 1 + i)-th component. Let G be a
minimal Gröbner basis of W w.r.t. �2s−1, where �2s−1 denotes the position over term extension of �
to k[X]2s−1. Then, the set G0 = {�u ∈ k[X]s | (�0T , �uT)T ∈ G} is a minimal Gröbner basis w.r.t. �s for the
syzygy module Syz(M). Since 〈 f1〉 : 〈 f2, . . . , f s〉 is a principal ideal, G0 has only one element �u. Then
the first component of �u is the generator of 〈 f1〉 : 〈 f2, . . . , f s〉. The computer algebra system Singular
command syz makes use of this idea (Decker and Lossen, 2006).

Now, we extend Theorem 24 and Theorem 25 to the case of parametric polynomials.

Theorem 27. Given f1, . . . , f s ∈ k[U][X] and an algebraically constructible set A = V(E) \V(N) ⊂ Lm, where
for any specialization σᾱ the polynomial σᾱ(f1) is nonzero with ᾱ ∈ A. Let G = {(A j, G j)}lj=1 be a minimal

comprehensive Gröbner system of the module W ⊂ k[U][X]2s−1 generated by {wi}si=1 on A w.r.t. an order
extended from �X in a position over term fashion with e2s−1 < · · · < e1 . For each branch (A j, G j), let H j =
{�u ∈ k[U][X]s | (�0T , �uT)T ∈ G j}. Then we have the following results.

1. H j has only one element �u j ∈ k[U][X]s; and
2. let g j ∈ k[U][X] be the first component of �u j , then gcd(σᾱ(f1), . . . , σᾱ(f s)) = σᾱ(f1)

σᾱ(g j)
for any ᾱ ∈ A j .

Proof. The proof is similar to that of Theorem 16. �

18 D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20
Remark 28. When we check whether f1 is nonzero on A, we only need to check whether the in-
tersection of A and the variety generated by the coefficients of f1 w.r.t. X is empty. For example,
f1 = ax + by ∈ C[a, b][x, y] and A = C2. Let A f1 be the variety generated by the coefficients of f1
w.r.t. x, y, then A f1 = V(a, b). Therefore, for any specialization σᾱ the polynomial σᾱ(f1) is nonzero
with ᾱ ∈ C2 \ A f1 , and we can use Theorem 27 to compute the gcd system of f1, . . . , f s on C2 \ A f1 .
For any ᾱ ∈ A f1 , we have gcd(σᾱ(f1), σᾱ(f2), . . . , σᾱ(f s)) = gcd(σᾱ(f2), . . . , σᾱ(f s)).

According to Theorem 27, we can obtain an extended algorithm for computing gcd systems of more
than two parametric polynomials. Of course, the extended algorithm is still valid when the number of
parametric polynomials is two. We can get the same result by using the extended algorithm to solve
Example 23. We implemented the extended algorithm and compared it with other four algorithms in
the following section.

7. Comparative performance with Nagasaka’s algorithms

The two proposed algorithms, the extended algorithm and Nagasaka’s algorithms (Nagasaka-GT al-
gorithm and Nagasaka-SS algorithm) have been implemented by us in the computer algebra system
Singular (4-0-3) (Decker et al., 2016). The implementations of five algorithms have been tried on a
number of examples including the examples in Nagasaka (2017). The following table compares our
implementations with Nagasaka’s two algorithms for computing gcd systems of parametric multivari-
ate polynomials. The parametric polynomials for the examples are given below:

• F1 = {ax3 + (a3 −a +1)x2 y + (a2 +2)xy2 + (3a2 −3)y3, ax3 + (a +1)x2 y +4xy2 +3y3}, X = {x, y},
U = {a};

• F2 = {(x + ay + bz)3 + c(x + ay + bz) + d, 3(x + ay + bz)2 + c, 3a(x + ay + bz)2 + ac, 3b(x + ay +
bz)2 + bc}, X = {x, y, z}, U = {a, b, c, d};

• F3 = {axz + (a − 1)yz, (a − 1)x2 + axy}, X = {x, y, z}, U = {a};
• F4 = {ax3 y2z + (1 − b)(y2 + z), (1 − a)x3 y2z + b(y2 + z)}, X = {x, y, z}, U = {a, b};
• F5 = {(1 − a)y2 − bx2 − cxy, (1 − b)x2 − ay2 − cxy}, X = {x, y}, U = {a, b, c};
• F6 = {ax2 + bxy + a2xz + abx + abyz + b2 y, ax2 + bxy + (ab − a)xz − a2x + (b2 − b)yz − aby, ax2 +

bxy + a2xz + (a2 − ab)x + abyz + (ab − b2)y}, X = {x, y, z}, U = {a, b};
• F7 = {ax2 y + bx + y3, ax2 y + bxy + cx, y2 + bx2 y + cxy}, X = {x, y}, U = {a, b, c};
• F8 = {ax3 y + cxz2, x2 y + 3dy + z, cx2 + bxy, x2 y2 + ax2}, X = {x, y, z}, U = {a, b, c, d};
• F9 = {(ax + by)(x + a)(y − b), (aby2 + b − 1)(bx + ay)(x + b)(y − a), (axy + a2x − 3a)(ax + by)(x +

b), (bx + ay)(ax + by)(ax + b)(by + a)}, X = {x, y}, U = {a, b};
• F10 = {(1 −a)x2 y +bx2 + y2, ax2 y + (1 −b)xy + cx, y2 +bx2 y + (1 − c)xy}, X = {x, y}, U = {a, b, c}.

For all these examples, the monomial orders used on U and X are lexicographic orders, respec-
tively. For interested readers, more comparative examples can be generated by the codes at: http://
www.mmrc .iss .ac .cn /~dwang /software .html.

In Table 3, entry labeled “E-Algorithm” is for the extended algorithm of Algorithm 2. Timings were
obtained on an Intel(R) Xeon(R) CPU E7-4809 v2 @ 1.90 GHz and 756 GB of RAM. As is evident from
Table 3, our algorithms perform better than Nagasaka’s algorithms. Since our algorithms are quite dif-
ferent from Nagasaka’s algorithms, it is hard to analyze in theory where the improvements come from.
In our opinion, the avoidance of checking primitive part contributes to most of the improvements.

The reasons that Algorithm 2 performs better than Algorithm 1 are as follows: choosing the
polynomial with lowest total degree w.r.t. X as the first polynomial in each iteration, which can
reduce the computations of Quo(f1, f̄1); computing Quo(f1, f̄1) takes less time than computing
Quo(f1 · f2, f); computing a minimal CGS for 〈 f1 · �e1, f2 · �e1 − �e2〉 in k[U][X]2 is faster than that
for 〈e1 + e2 + e3, f1 · e1, f2 · e2〉 in k[U][X]3. When the number of polynomials in Fi is greater than
two, E-Algorithm is the fastest. This is because under the assumption of f1 �= 0, we only need to
compute a minimal CGS for the module constructed by f1, f2, . . . , f s (s > 2). Since Nagasaka-SS algo-
rithm does not need to construct maximal ideals in different parameter spaces, it performs better in
practice than Nagasaka-GT algorithm for most of the examples.

http://www.mmrc.iss.ac.cn/~dwang/software.html
http://www.mmrc.iss.ac.cn/~dwang/software.html

D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20 19
Table 3
Comparative Performance of Parametric GCD Algorithms(sec).

Examples Algorithm 1 Algorithm 2 E-Algorithm Nagasaka-GT Nagasaka-SS

F1 0.134 0.127 0.129 1.428 0.442
F2 0.889 0.391 0.135 30.985 12.771
F3 0.151 0.145 0.146 6.159 1.836
F4 0.271 0.183 0.190 > 1h 7.148
F5 0.843 0.561 0.572 6.210 2.426
F6 0.615 0.571 0.327 > 1h 8.401
F7 0.755 0.605 0.361 > 1h > 1h
F8 1.188 1.005 0.537 > 1h 20.407
F9 1.669 1.487 1.173 > 1h 5.105
F10 1.426 1.164 0.893 > 1h > 1h

8. Concluding remarks

Two new algorithms for computing gcd systems of parametric polynomials have been proposed.
Using module comprehensive Gröbner system, the gcd systems of multivariate polynomials can be
computed. The experimental data in Table 3 suggests that the two proposed algorithms are superior
in practice in comparison with both the algorithms proposed by Nagasaka. We think this is because
our methods do not compute the primitive part of polynomials in different parameter spaces, and our
theorem guarantees that a parametric polynomial is special divisible by another parametric polyno-
mial on various algebraically constructible sets. Since the computational efficiency of our algorithms
depends on the number of branches in a module comprehensive Gröbner system, we believe that the
two proposed algorithms can be further improved by removing inessential polynomials from compre-
hensive Gröbner system computations as discussed in Kapur and Yang (2014). This will be further
studied in the future along with heuristics to minimize the number of branches to be considered for
computing gcd systems of parametric multivariate polynomials.

Declaration of competing interest

Authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China under
Grant No. 11371356 and No. 61877058, the Chinese Academy of Sciences Key Project QYZDJ-SSW-
SYS022, the National Science Foundation DMS-1217054, the CAS-SAFEA International Partnership
Program for Creative Research Teams, the Strategy Cooperation Project AQ-1701, and the Beijing Ad-
vanced Innovation Center for Big Data and Brain Computing, Beihang University.

References

Abramov, S., Kvashenko, K., 1993. On the greatest common divisor of polynomials which depend on a parameter. In: Proceedings
of the 1993 ACM International Symposium on Symbolic and Algebraic Computation, pp. 152–156.

Ayad, A., 2010. Complexity of algorithms for computing greatest common divisors of parametric univariate polynomials. Int. J.
Algebra 4 (4), 173–188.

Bayer, D., Mumford, D., 1993. What can be computed in algebraic geometry? In: Eisenbud, D., Robbiano, L. (Eds.), Computational
Algebraic Geometry and Commutative Algebra. Cambridge University Press, Cambridge, pp. 1–48.

Brown, W., 1971. On Euclid’s algorithm and the computation of polynomial greatest common divisors. J. ACM 18, 478–504.
Cox, D., Little, J., O’shea, D., 1992. Ideals, Varieties, and Algorithms, third edition. Undergraduate Texts in Mathematics. Springer,

New York.
Cox, D., Little, J., O’shea, D., 2005. Using Algebraic Geometry, second edition. Undergraduate Texts in Mathematics. Springer, New

York.
Decker, W., Greuel, G.-M., Pfister, G., Schoenemann, H., 2016. SINGULAR 4.0.3. a computer algebra system for polynomial com-

putations, fb mathematik der universitaet, d-67653 kaiserslautern https://www.singular.uni -kl .de/.

http://refhub.elsevier.com/S0747-7171(19)30112-9/bib414B3933s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib414B3933s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4179616432303130s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4179616432303130s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib62617965723933s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib62617965723933s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib42726F3731s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib434C4F31393932s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib434C4F31393932s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib434C4F32303035s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib434C4F32303035s1
https://www.singular.uni-kl.de/

20 D. Kapur et al. / Journal of Symbolic Computation 102 (2021) 3–20
Decker, W., Lossen, C., 2006. Computing in Algebraic Geometry: A Quick Start Using SINGULAR. Algorithms and Computation in
Mathematics (AACIM), vol. 16. Springer, New York.

Dubé, T., 1990. The structure of polynomial ideals and Gröbner bases. SIAM J. Comput. 19, 750–775.
Gianni, P., Trager, B., 1985. GCDs and factoring multivariate polynomials using Gröbner bases. In: Proceedings of EUROCAL ’85,

European Conference on Computer Algebra. In: Lecture Notes in Computer Science, vol. 204. Springer, Berlin, Heidelberg,
pp. 409–410.

Kapur, D., 1995. An approach for solving systems of parametric polynomial equations. In: Saraswat Hentenryck, V. (Ed.), Princi-
ples and Practices of Constraint Programming. MIT Press, pp. 217–244.

Kapur, D., Lu, D., Monagan, M., Sun, Y., Wang, D., 2018. An efficient algorithm for computing parametric multivariate polynomial
GCD. In: Proceedings of the 2018 ACM on International Symposium on Symbolic and Algebraic Computation, pp. 239–246.

Kapur, D., Sun, Y., Wang, D., 2010. A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of the 2010
ACM International Symposium on Symbolic and Algebraic Computation, pp. 29–36.

Kapur, D., Sun, Y., Wang, D., 2013. An efficient algorithm for computing a comprehensive Gröbner system of a parametric
polynomial system. J. Symb. Comput. 49, 27–44.

Kapur, D., Yang, Y., 2014. An algorithm for computing a minimal comprehensive Gröbner basis of a parametric polynomial
system. In: Proceedings of Conference Encuentros de Algebra Computacionaly Aplicaciones (EACA).

Mayr, E., Meyer, A., 1982. The complexity of the word problems for commutative semigroups and polynomial ideals. Adv.
Math. 46 (3), 305–329.

Möller, H., Mora, F., 1984. Upper and lower bounds for the degree of Gröbner bases. In: Fitch, J. (Ed.), EUROSAM 1984. In:
Lecture Notes in Computer Science, vol. 174. Springer-Verlag, New York, pp. 172–183.

Montes, A., 2002. A new algorithm for discussing Gröbner bases with parameters. J. Symb. Comput. 33 (2), 183–208.
Montes, A., Schoenemann, H., 2016. grobcov.lib http://www.singular.uni -kl .de /Manual /latest /sing _900 .htm.
Moses, J., Yun, D., 1973. The EZ GCD algorithm. In: Proceedings of ACM’73. ACM Press, New York, pp. 159–166.
Nabeshima, K., 2010. On the computation of parametric Gröbner bases for modules and syzygies. Jpn. J. Ind. Appl. Math. 27 (2),

217–238.
Nabeshima, K., 2012. Stability Conditions of Monomial Bases and Comprehensive Gröbner Systems. Proceedings of the Interna-

tional Conference on Computer Algebra in Scientific Computing, vol. 7442. Springer-Verlag, pp. 248–259.
Nagasaka, K., 2017. Parametric greatest common divisors using comprehensive Gröbner systems. In: Proceedings of the 2017

ACM on International Symposium on Symbolic and Algebraic Computation, pp. 341–348.
Sanuki, M., Inaba, D., Sasaki, T., 2016. Computation of GCD of sparse multivariate polynomials by extended hensel construction.

In: Proceedings of the 2016 IEEE International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
pp. 34–41.

Sasaki, T., Suzuki, M., 1992. Three new algorithms for multivariate polynomial GCD. J. Symb. Comput. 13 (4), 395–411.
Suzuki, A., Sato, Y., 2006. A simple algorithm to compute comprehensive Gröbner bases using gröbner bases. In: Proceedings of

the 2006 ACM International Symposium on Symbolic and Algebraic Computation, pp. 326–331.
Weispfenning, V., 1992. Comprehensive Gröbner bases. J. Symb. Comput. 14 (3), 669–683.
Zippel, R., 1979. Probabilistic algorithms for sparse polynomials. In: Proceedings of EUROSAM’79. Springer-Verlag, pp. 216–226.

http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4465636B657232303036s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4465636B657232303036s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib6475626531393930s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib47543835s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib47543835s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib47543835s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4B6170757250617261s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4B6170757250617261s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib6B617075723138s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib6B617075723138s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4B535732303130s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4B535732303130s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4B535732303133s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4B535732303133s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4B59454143413134s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4B59454143413134s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib6D6179723832s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib6D6179723832s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib6D6F726131393834s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib6D6F726131393834s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4D6F6E74657332303032s1
http://www.singular.uni-kl.de/Manual/latest/sing_900.htm
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib59756E3733s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4E61626532303130s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4E61626532303130s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4E61626532303132s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4E61626532303132s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4E61676173616B613137s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib4E61676173616B613137s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib53495332303136s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib53495332303136s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib53495332303136s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib53533932s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib535332303036s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib535332303036s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib5765697331393932s1
http://refhub.elsevier.com/S0747-7171(19)30112-9/bib5A69703739s1

	Algorithms for computing greatest common divisors of parametric multivariate polynomials
	1 Introduction
	2 Preliminaries
	3 Nagasaka's algorithms
	3.1 Extending Gianni and Trager's algorithm
	3.2 Extending Sasaki and Suzuki's algorithm

	4 New parametric GCD algorithms
	4.1 Algorithm based on ideal intersection
	4.1.1 Computing intersection of principal ideals
	4.1.2 Algorithm 1 for computing a gcd system of two parametric polynomials

	4.2 Algorithm based on ideal quotient
	4.2.1 Computing ideal quotient
	4.2.2 Algorithm 2 for computing a gcd system of two parametric polynomials

	4.3 Comparison of ideal intersection and ideal quotient GCD algorithms
	4.4 Gcd systems for more than two parametric polynomials

	5 An illustrative example
	5.1 Algorithm 1 for Example 23
	5.2 Algorithm 2 for Example 23

	6 Extending ideal quotient to a system of more than two polynomials
	7 Comparative performance with Nagasaka's algorithms
	8 Concluding remarks
	Acknowledgements
	References

