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of two non-parametric multivariate polynomials can be obtained
by dividing their product by the generator of the intersection of

I;?r}:vrs::ic multivariate polynomials two principal ideals generated by the polynomials. The second
Ged system algorithm is based on another simple insight that the gcd can be
Minimal comprehensive Grébner system extracted using the generator of the ideal quotient of a polynomial
Ideal intersection with respect to the second polynomial. Since the ideal intersection
Ideal quotient and ideal quotient in these cases are also principal ideals, their

generators can be obtained by computing minimal Grébner bases
of the ideal intersection and ideal quotient, respectively. To avoid
introducing new variables which can adversely affect the efficiency,
minimal Grobner bases computations are performed on modules.
Both of these constructions generalize to the parametric case as
shown in the paper. Comprehensive Grobner system constructions
are used for the parametric ideal intersection and ideal quotient
using the Kapur-Sun-Wang's algorithm. It is proved that whether
in a minimal comprehensive Grobner system of a parametric ideal
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intersection or in that of a parametric ideal quotient, each branch
of the specializations corresponds to a principal parametric ideal
with a single generator. Using this generator, the parametric gcd
of that branch is obtained by division. For the case of more than
two parametric polynomials, we can use the above two algorithms
to compute gcds recursively, and get an extended algorithm by
generalizing the idea of the second algorithm. Algorithms do not
suffer from having to apply expensive steps such as ensuring
whether parametric polynomials are primitive w.r.t. the main
variable as used in both the algorithms proposed by Nagasaka
(ISSAC, 2017). The resulting algorithms are not only conceptually
simple to understand but are more efficient in practice. The
proposed algorithms and both of Nagasaka’s algorithms have been
implemented in Singular, and their performance is compared on a
number of examples.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Multivariate polynomial gcd computation is one of the most important operations in computer
algebra as it is used in many algorithms and applications. The problem has been extensively investi-
gated and numerous algorithms have been developed to compute the gcd efficiently beyond Euclid’s
algorithm using division for univariate polynomials and its extension to multivariate polynomials us-
ing pseudo-division. The modular gcd algorithm from Brown (1971) was the first gcd algorithm that
avoided intermediate expression swell. For sparse polynomials Moses and Yun (1973) developed the
EZ GCD algorithm which is based on Hensel lifting. Zippel's sparse modular gcd algorithm (Zippel,
1979) used sparse interpolation. It is currently used in Maple, Magma, and Mathematica. We mention
also algorithms of Gianni and Trager (1985) and Sasaki and Suzuki (1992) which compute a gcd from
a Grobner basis. For sparse multivariate polynomials, Sanuki et al. (2016) utilized Extended Hensel
Construction to compute gcd and found that their algorithm to be comparable in performance to
Maple’s gcd routine.

Using the concept of parametric polynomials, there have also been many publications studying
how to compute the gcd of parametric polynomials. Abramov and Kvashenko (1993) used the sub-
resultant chain to compute a parametric univariate polynomial gcd. Ayad (2010) presented three
algorithms based on parametrization of the Gaussian elimination procedure to compute gcd of a
finite set of parametric univariate polynomials. At ISSAC 2017, Nagasaka (2017) extended the ideas
of Gianni and Trager (1985) as well as Sasaki and Suzuki (1992) to polynomials with parameters
for computing the gcd of parametric multivariate polynomials. The main tool used in Nagasaka’s al-
gorithms is the comprehensive Grobner system which is the parametric extension of Grobner basis,
introduced by Weispfenning (1992) (and independently by Kapur (1995) as parametric Grébner ba-
sis) and was improved by Suzuki and Sato (2006), Kapur et al. (2010, 2013) and Nabeshima (2012).
In Nagasaka’s paper, the algorithms to compute the gcd of parametric multivariate polynomials need
to consider whether parametric polynomials are primitive w.r.t. the main variable under different
parametric constraints. Moreover, he had to construct an ideal that is maximal for any specialization
based on extending Gianni and Trager’s results (Gianni and Trager, 1985). Both of these steps in his
algorithms can be extremely time consuming.

This paper presents two new efficient algorithms for the gcd computation of parametric multi-
variate polynomials. We first consider the non-parametric case, and then generalize to the parametric
case.
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Let k be a field, k[U][X] be the polynomial ring over k[U] in the variables X = {xq,...,x}." As-
sume that f; and f, are two nonzero polynomials in k[X]. The first algorithm is based on a simple
insight that the gcd of fi; and f, is equal to the product of f; and f, divided by the least common
multiple (Icm) of f; and f,. Since the intersection of (f1) and (f;) is generated by the principal
ideal generated by lcm(f1, f2), computing a minimal Grébner basis of (f1) N (f2) gives lcm(f1, f2).
Then, gcd(f1, f2) = % The main idea of the second algorithm is based on computing a mini-
mal Grobner basis G for the ideal quotient (f1) : (f2), which is also a principal ideal with G including

only one polynomial fi. Then, ged(fi, f2) = L In order to avoid introducing new variables for in-

fi
tersection and quotient computation, we use computations on modules to compute the generators of

ideal intersection and ideal quotient.

Most importantly, these constructions extend to the case of parametric polynomials in which Gréb-
ner bases computations for modules of the ideal intersection and ideal quotient are replaced by
comprehensive Grobner systems constructions for modules of parametric polynomials, respectively.
In Nabeshima (2010), algorithms based on the results in Suzuki and Sato (2006) are given for com-
puting parametric Grobner bases for modules and parametric syzygies. In this paper, we extend the
algorithms in Kapur et al. (2010, 2013) to the cases of parametric modules and syzygies.

To compute the gcd of more than two parametric polynomials, the above methods are repeated as
in the case of computing the gcd of a family of numbers. We also generalize the idea of the second
algorithm and obtain an algorithm which use a single comprehensive Grobner system to compute
gcds for a system of more than two parametric polynomials.

Compared with Nagasaka’s algorithms, the proposed algorithms have two advantages: there is no
need to check whether parametric polynomials are primitive w.r.t. main variable in each iteration,
and further, it is guaranteed that a parametric polynomial f f, is divisible by the result of the asso-
ciated ideal intersection as well as f; is divisible by the result of the associated ideal quotient. The
algorithms have been implemented and compared with Nagasaka’s algorithms and are shown to be
superior in performance.

This paper is organized as follows. In Section 2, we provide background about the gcd and the
comprehensive Grobner system computations for parametric multivariate polynomials. Nagasaka’s al-
gorithms are reviewed in Section 3. The two proposed algorithms are presented in Section 4. To
provide intuition and make the presentation simple, for each algorithm we first briefly discuss how
the gcd of non-parametric two polynomials can be computed using a minimal Grébner basis of a
principal ideal; then this is followed by extending this method to parametric polynomials, and the
new algorithm is presented. In Section 5, a non-trivial example is given to illustrate the key steps
of the two proposed algorithms. Some remarks and an algorithm which is an extension of the sec-
ond algorithm about computing the gcds for a system of more than two parametric polynomials are
given in Section 6. Experimental data and a comparison with Nagasaka’s algorithms are presented in
Section 7. We end with some concluding remarks in Section 8.

2. Preliminaries

Let k be a field, L be an algebraic closed field containing k, k[X] be the polynomial ring in the vari-
ables X = {xq,..., X}, k[U] be the parameter ring in the parameters U = {uq, ..., un}, and k[U][X]
be the polynomial ring over k[U] in X. It is assumed that XN U =, i.e, X and U are disjoint sets.
In some cases, we abbreviate {x;, Xj+1,...,Xp} to X; (2 <i <n).

We introduce some notations and definitions for non-parametric multivariate polynomials. Two
polynomials f, g € k[X] are associate if 3c € L such that f =c- g; we denote this equivalence relation
by f ~ g. For a polynomial f € k[X], the leading term, leading coefficient, leading monomial and
the total degree of f w.rt. a monomial order < are denoted by It(f), lc(f), Im(f) and tdeg(f)
respectively. We have It(f) =lc(f) - Im(f). The ideal in k[X], generated by fi,..., fs, is denoted by

<f1s"'sf$)'

T When n =1, we compute a minimal comprehensive Grobner system of parametric univariate polynomials, and then the
generator of each branch is the gcd of these polynomials. Hence, we only consider the case of n > 2 in this paper.
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Definition 1. Let fi,..., fs € k[X]. Then h € k[X] is called a greatest common divisor (gcd) of
f1,..., fs, denoted h = gcd(f1,..., fs), if

1. Vi (1 <i<5s), h divides f; and
2. if g is any polynomial which divides f1,..., fs, then g divides h.

Particularly, we define gcd(f1,..., fs) =gcd(fa,..., fs) if f1 =0, and gcd(0, 0) = 0, for convenience.

A gcd of polynomials is defined modulo associates. For any given polynomials f1,..., fs € k[X],
there exist f1,..., fs € k[X] such that f; =gcd(f1,..., fs)- fi foreachi=1,...,s, then f1,..., fs are
called the cofactors of fi,..., fs.

Definition 2. Let fq,..., f; € k[X]. Then g € k[X] is called a least common multiple (Ilcm) of
f1,..., fs, denoted g =Icm(fy,..., fs), if

1. Vi (1<i<5s), fi divides g and
2. g divides any polynomial which all f1,..., fs divide.

Definition 3. Let f € k[X]. f is said to be primitive w.r.t. x; if it is primitive as a polynomial in
k[X2]1[x1]. That is, its coefficients in k[X;] are co-prime.

Definition 4. A minimal Grobner basis for a polynomial ideal I C k[X] is a Grobner basis G for I such
that Im(p) ¢ (Im(G — {p})) for all p € G.

Definition 5. If I, | are ideals in k[X], then I: ] is the set

I:]={fek[X]]| fgelforallge J}

and is called the ideal quotient (or colon ideal) of I divided by J. If J is generated by one element
g, we use [ : g instead of I : (g) for convenience.

For example, in k[x1, X2, X3] we have (x1X3,X2x3) : X3 = {f € k[x1, X2, X3] | X3 f € (X1X3,X2x3)} ={f €
kix1,x2,x3] | X3 f = h1x1x3 + haxoxs} = {f € k[x1, X2, X3] | f = h1x1 + haX2} = (x1, x2), where hy,h; €
k[x1, x2, X3].

Next we introduce some notations for parametric multivariate polynomials. For a parametric poly-
nomial g € k[U][X], the leading term, leading coefficient, leading monomial and total degree of g
w.r.t. a monomial order <x are denoted by ltx(g), lcx(g), Imx(g) and tdegy (g) respectively. Whether
g ek[X] or g e k[U][X], we use Icy (g) to denote the leading coefficient of g w.r.t. x;.

A specialization of k[U] is a homomorphism o : k[U] — L. In this paper, we only consider the spe-
cializations induced by elements in L™. That is, for & = (a1, ..., o) € L™, the induced specialization
o0y is defined as

0a ¢ — (@),

where ¢ € k[U]. Every specialization o: k[U] — L extends canonically to a specialization o:
k[U1[X] — L[X] by applying o coefficient-wise.

For a set E C k[U], the variety defined by E in L™ is denoted by V(E) = {& € L™ | f(@) =
0 for all f € E}. In this paper, an algebraically constructible set A is defined as follows: A =
V(E) \ V(N), where E, N are subsets of k[U]. It is easy to see that the algebraically constructible
set A is not empty by ensuring that at least one f € N is not in the radical of (E).

For a parametric polynomial system, the definitions of comprehensive Grobner system and minimal
comprehensive Grobner system are given below.
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Definition 6. Let F be a set in k[U][X], and S be a subset of L™. Assume that G1,..., G, are subsets
of k[U][X], and Aq,..., A; are algebraically constructible subsets of L™ such that S = U$:1 A; and
AiNAj=9 for i # j. A finite set G = {(A1,G1),..., (A, G} is called a comprehensive Grobner
system (CGS) on S for F if 04(G;) is a Grobner basis for (o5(F)) C L[X] with @ € Ajandi=1,...,L
Each (Aj, G;) is called a branch of G. In particular, if S = L™, then G is called a comprehensive Grobner
system for F.

Definition 7. A comprehensive Grobner system G = {(A1, G1), ..., (A, G))} on S for F is said to be
minimal, if for eachi=1,...,1,
1. Ai ;ﬁ @;

2. 05(Gj) is a minimal Grébner basis for (o (F)) C L[X] with & € A;;
3. if G; # {0}, then for each g € G;, o5(lcx(g)) #0 for any & € A;.

Abramov and Kvashenko (1993) studied the parametric gcd of univariate polynomials with one
parameter. The definition of parametric gcd (one parameter) can be easily extended to the case m
(m=1).

Definition 8. Let F be a subset of k[U][X], and S be a subset of L™. Assume that gi,..., g, are

parametric polynomials in k[U][X], and Ay, ..., A, are algebraically constructible subsets of L™ such
that S =Ji_; Ai and A; N Aj =0 for i # j. A finite set {(A1, £1),..., (A, &)} is called a gcd system
on S for F, if for each i=1,...,r, 05(gi) is a gcd of o5(F) for any specialization oz with & € A;.

Moreover, if g; # 0, then we have o5 (Icx(gi)) # 0 for any & € A;. In particular, if S=L™, we simply
call it a gcd system for F.

3. Nagasaka’s algorithms

As stated in the introduction, the gcd of non-parametric polynomials have been extensively studied
in the literature because of the enormous importance of this operation in many symbolic computation
algorithms and applications; see Brown (1971); Moses and Yun (1973); Zippel (1979) for instance.
The main issue in the gcd computation is that of intermediate expression swell as analyzed in Knuth
vol. 2.

Gianni and Trager (1985) and Sasaki and Suzuki (1992) studied the gcd of non-parametric poly-
nomials by computing a Grobner basis. Nagasaka (2017) extended their results to polynomials with
parameters and proposed two algorithms to compute a gcd system of parametric multivariate poly-
nomials. In the following, we provide an overview of Nagasaka’'s algorithms and illustrate their
shortcomings; more details about the algorithms can be found in Nagasaka (2017).

3.1. Extending Gianni and Trager’s algorithm

Nagasaka extended Proposition 2 in Gianni and Trager (1985) to state:

Lemma 9. Let fq,..., fs, g € k[X] be primitive w.r.t. x1, | be a maximal ideal in k[X3] such that 1 €
(f1,.... fs, J) and 1 € (Icx, (gfi), J) for some i. Let G be a Grébner basis for (gf1,...,&fs, J') w.rt. any
total degree order, where r is a positive integer. Then, the polynomial g in G of least total degree is an associate
of g if the least total degree of the elements in J" is larger than tdeg(g)?.

Nagasaka further extended Lemma 9 to the case of parametric polynomials for which additional
conditions on the ideal | C k[U][X>] for each specialization oz must be satisfied:

1. 05(f1),...,05(fs) are primitive w.r.t. x1;
2. 05(]J) is a maximal ideal in L[X3];
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1 € (ley, (0w (fi)), 0a(J)) for some i;
1€ (fi,..., fs,0a())), where each f; € L[X] is the cofactor of og (f;).

To satisfy these conditions, the parametric space L™ needs to be decomposed into branches such

that F C k[U][X] and each | have the following properties.

Definition 10. For any given F ={f1,..., fs} Ck[U][X] with S C L™ and ] C k[U][X3], we introduce
the following.

G A WN —~

. F is said to be S-primitive if V& € S, 05(f1),...,05(fs) are primitive w.r.t. x1;

. J is said to be S-maximal if V& € S, 05(J) is a maximal ideal in L[X>];

. F is said to be S-nonvanishlc if Yo € S, Icx, (05 (fi)) = og(Icx, (fi)) for each i;

. F is said to be S-nondegenerate if V& € S, 1 € (Icx, (05 (fi)), 0a(J)) for some i;

. J is said to be S-luckyprime if V& € S, 1€ (f1,..., fs, 04(J)), where each f; € L[X] is the cofac-

tor of oz (fi).

Under these conditions, Nagasaka proposed an algorithm to compute a gcd system for F by com-

bining Lemma 9 and Definition 10, which we call henceforth, the Nagasaka-GT algorithm.

Step 1: compute the S-primitive part of F w..t. X1;

Step 2: decompose S such that F is S-nonvanishlc;

Step 3: construct a maximal ideal J C k[U][X2] such that F is S-nondegenerate;

Step 4: compute a minimal CGS for (F U J") on S, where r satisfies the condition of Lemma 9;
Step 5: check whether | is a S-luckyprime, if not, return to the Step 3;

Step 6: obtain the gcd system for F on S.

As the reader will notice, the above conditions are complicated and not easy to appreciate. Further,

while implementing the Nagasaka-GT algorithm in Singular, we discovered the following shortcom-
ings. We assume in the following examples that U = {a, b}, X = {x1, x2, x3} and consider the lexico-
graphic order >x with x; > X > x3.

e In Step 1, Nagasaka needs to call this algorithm repeatedly to compute the primitive part of

each parametric polynomial. For example, computing the primitive part of f = (1 — a)x?x% +
a(b — Dx3x2x3 + (@ — )x1x3 + (@ — b)x1x3 + (a — Dx3 + a(b — x2x3 + ax3 wort. x; on C2,
we must know a gcd system for the coefficients of f w.rt. x; on C?, ie., we have to call this
algorithm to compute the gcd system of f11, f12, f13, where f11 =(1 —a)x% +a(b —1)x2x3, f12 =
(@® —a)x3+(a—b)xs and fi3 = (a—1)x3+a(b—1)x2x3 +ax3. As the number of variables increases,
this becomes more and more tedious, resulting in computational inefficiency.

Step 2 is not necessary. Step 1 has ensured that the leading coefficient of f w.r.t. x; is not zero on
each branch Sj, i.e., lcx, (05 (f)) = 0g(cx, (f)) for any & € S;. Therefore, Step 2 can be removed.
If the parameter space S is divided into many small areas, more and more maximal ideals need to
be constructed in Step 3. Although Nagasaka proved that a maximal ideal J C k[U][x2, x3] which
is S-nondegenerate and S-luckyprime can be constructed in a finite number of steps, we do not
know how much time it takes to construct so many maximal ideals.

Since we do not know the polynomial g in Lemma 9, we need to estimate the value of r in
Step 4. Without any loss of generality, we often let r = min{tdegy (f;)> + 1| f; € F}. For instance,
let F={f1,f2} and J = (xo —c2,X3 — c3), where fi =ax3x3x3 + (1 —b)(x3 +x3), fo=(1 —
a)x3x3x3 + b(X3 + x3). Then, r = 37. There are two problems: first, it will take more time to
compute the minimal CGS of (F U J37) which sometimes does not terminate in an hour; second,

since ¢;, c3 € C are chosen randomly, sometimes c,.37 is a large integer.
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3.2. Extending Sasaki and Suzuki’s algorithm

Sasaki and Suzuki (1992) also used a Grobner basis construction to compute the gcd of non-
parametric polynomials, by improving upon Gianni and Trager’s results. They obtained a similar
theorem, but did not need to use a maximal ideal J C k[X>].

Theorem 11. (Theorem 1 in Sasaki and Suzuki (1992)) Let f1, f, € k[X] be primitive w.r.t. x1, and G be the
Grobner basis for ( f1, f2) w.r.t. any block order such that x; 3> X». Then, there exists a polynomial h € k[X3]
such that g =h - gcd(fy, f2), where g is the polynomial in G of least degree in X.

Using the insight in Theorem 11, Nagasaka proposed an other algorithm (henceforth called,
Nagasaka-SS algorithm) to compute a gcd system for F C k[U][X].

Step 1: compute an S-primitive decomposition of F;

Step 2: compute a minimal CGS for an S-primitive of F;

Step 3: compute a gcd system for the coefficients of candidate factor;
Step 4: compute the primitive part in each branch;

Step 5: obtain the gcd system for F on S.

There are similarities between Nagasaka-SS algorithm and Nagasaka-GT algorithm which are also
sources of inefficiency: both need to compute S-primitive decompositions and make recursive calls
to compute a gcd system for the coefficients of parametric polynomials in F. Nagasaka-SS algorithm
has been observed to be more efficient than Nagasaka-GT algorithm, since Nagasaka-SS algorithm
does not need to construct many maximal ideals and only needs to compute the minimal CGS of (F)
rather than (FU J").

4. New parametric GCD algorithms

As stated above, there are many well-known algorithms for computing the gcd of non-parametric
multivariate polynomials starting from Euclid’s algorithm improved by Collins using reduced poly-
nomial remainder sequences (PRS), Brown and Traub and Brown’s subresultant PRS with EZGCD
algorithm in MACSYMA for non-parametric polynomials in general and Zippel's algorithm based on
sparse interpolation which is more efficient for sparse polynomials. There are also algorithms based
on Grobner basis computations. We are, however, interested in algorithms which generalize to para-
metric multivariate polynomials. To our knowledge, algorithms based on the Grobner bases are most
suited to generalize to the parametric case.

In this section, we propose two new algorithms which are based on comprehensive Grobner sys-
tems for computing a gcd system of two parametric multivariate polynomials. To present the key
ideas, in each subsection we first give the method for the non-parametric case and then we extend it
to the parametric case.

4.1. Algorithm based on ideal intersection

The main idea of the first algorithm is that compute the least common multiple (Icm) of two
non-parametric polynomials by computing the intersection of two principal ideals generated by one
polynomial and another polynomial respectively. Since the intersection of two principal ideals is also a
principal ideal, the generator can be obtained by a minimal Grébner basis computation. This generator
is the Icm of the two polynomials, and the gcd of the two polynomials is equal to the product of the
two polynomials divided by this generator. To avoid introducing a new variable, we use the technique
of module to compute the generator of the intersection of two principal ideals. For the parametric
case, we only need to extend the results in non-parametric case to parametric case, and obtain a gcd
system for two parametric polynomials by computing a minimal CGS of a module in k[U][X]3.
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4.1.1. Computing intersection of principal ideals
We first introduce the following proposition which plays an important role in the first proposed
algorithm.

Proposition 12. (pp. 189-190, Cox et al. (1992))

1. The intersection I N | of two principal ideals I, ] C k[X], is a principal ideal.
2. fI=(f1), J={(f2)and IN ] =(f), then f =lem(f1, f2).
3. Let f1, fo € k[X], then lem(fy, f2) - ged(f1, f2) = f1- fo.

When f; - fo #0, it follows immediately from Proposition 12 that

fi-fa
lem(f1, f2)°
This gives an algorithm for computing the gcd of f; and f>. Namely, we first compute Icm( f1, f2)
and then divide it into the product of f; and f, using the division algorithm. Proposition 12 tells us
that the generator of the intersection of (f1) and (f;) is lem(f1, f2). The following is an important
theorem for dealing with the computation of ideal intersection.

gcd(f1, fa) =

Theorem 13. (pp. 187, Cox et al. (1992)) Let I, | be ideals in k[ X], then

INJ=w-I1+0-v)-])Nk[X],

where v is a new variable which is different from X.

The above theorem and Elimination Theorem (Theorem 2, pp. 116, in Cox et al. (1992)) lead to
the following method for computing lcm(f1, f2): introduce a new variable v and consider the ideal
(vf1,(1 —v)fa), compute a minimal Grobner basis w.r.t. a monomial order in which v is greater
than X, then the element of this Grobner basis which do not contain the variable v is the lcm of f;
and f7.

Given that the complexity of Grobner basis computations is heavily influenced by the number of
variables and the total degrees of polynomials (Mayr and Meyer, 1982; Moller and Mora, 1984; Dubé,
1990; Bayer and Mumford, 1993), we believe that the computation of ideal intersection over modules
in the Chapter 5 of Cox et al. (2005) is likely to be more efficient. This has also been verified by the
performance of comparing our implementations.

Let e; = (1,0,0)T, e; = (0,1,0)T and e3 = (0,0, 1)T, then {e;, e,,e3} is a free basis of k[X]3,
where T stands for transposition. That is, for any element v in k[X]?, it can be expressed as v =
hy -e1 +hy-e; +hs - e3 where hy, hy, h3 € k[X]. For any submodule W of k[X]?, we can also compute
the Grébner basis of W. The module case follows the ideal case almost exactly. However, we need to
extend the notion of monomial orders to the free module k[X]3. Let < be a term order on k[X], then
extend < to the k[X]? in a position over term fashion with e3 < e, < e;.

Theorem 14. Let f1, f, be two nonzero polynomials in k[X] and < be a monomial order on k[X]. Suppose
W C k[X1? is a k[X]-module generated by {e; + e, + e3, fi - e1, f> - €2} and G is a minimal Grobner basis
of W w.r.t. an order extended from < in a position over term fashion with e3 < e, < ey. Then there exists a
unique nonzero polynomial f € k[X] such that f -e3 € G and (f) = (f1) N {f2).

Proof. Let F ={f e k[X]| f-e3 € G}. As f1 and f, are both nonzero by assumption, it is easy to
verify that the set F is not empty. We prove (F) = (f1) N (f2) below.

We first show (f1) N (fy) C (F). For any given polynomial f in (f1) N (f,), there exists two poly-
nomials p,q € k[X] such that f = pfi =qf,. Then, f-e3 = f(e; +e;+e3) — p(fi-e1) —q(f2-eq)
implies f -e3 € W. Since G is a minimal Grébner basis of W, it follows that f € (F).

For the converse, suppose f’ € (F). Then there exist polynomials p1,..., pr, g1, ..., & € k[X] such
that f/=Yi_; (pig) and g;-e3 € G for 1 <i <r. Thus, we have f’-e; € (G), which implies f'-e; =
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hi(e1 + e +e3) +hy(f1-e1) + hs(f,-ep) for some polynomials hq, hy, hs € k[ X]. From this equation
we can obtain the following equations:

0=h1+hyf1,
0=hq + h3 f2,
f=h.

It can easily be seen that f’ € (f1) N (f2).

Therefore, we have (F) = (f1) N {f2). Proposition 12 implies that (F) is a principal ideal and (F) =
(f), where f =lcm(fy, f2). Besides, G is a Grobner basis of W, there must exist a polynomial g €
k[X]\ {0} such that g-e3 € G and Im(g) = Im(f). Moreover, we have g = f as G is minimal, because
otherwise there should exist another element in G that divides (g — llgé—% f) -e3 and has a smaller
leading monomial than Im(f)-e3. O

Based on the results of Proposition 12 and Theorem 14, we can get the gcd of f; and f, by using
the following corollary.

Corollary 15. Let f1, f> be two polynomials in k[ X] and < be a monomial order on k[ X]. Suppose W C k[X]3
is a k[ X]-module generated by {e, + e; + es, f1 - e, fo - €3} and G is a minimal Grébner basis for W w.r.t.
an order extended from < in a position over term fashion with es < e, <eq.Let F={f ek[X]| f -e3 € G}.
Then

1. IfF isempty, then f - f, = 0. In this case, gcd( f1, f2) is equal to 0 or f’ which satisfies f'- (0,1, )T € G,
where * stands for 0 or 1.

2. If F is not empty, then F = {lcm(f1, f2)} and gcd(f1, f2) = %

Proof. If f{ = f, =0, then G ={e; + ey +e3} and F is empty. In this case, gcd(f1, f2) =0.1If f1 =0
and f, #0, then G ={e; + e, +e3, f,-e} and F is empty. In this case, gcd(f1, f2) = fo. If f1 #0
and f, =0, then G ={e; +e,+e3, f1-(ex+e3)} and F is empty. In this case, gcd(f1, f2) = f1. In the
case of f1 and f, being nonzero, the result follows Theorem 14. O

4.1.2. Algorithm 1 for computing a gcd system of two parametric polynomials
The nice thing about using the intersection of two principal ideals for computing the gcd is that
Corollary 15 generalizes easily to the parametric case.

Theorem 16. Given f1, f> € k[U][X] and an algebraically constructible set A =V(E) \V(N) C L™. Let G =
{(A;, G,~)}f.:1 be a minimal comprehensive Grébner system of the module W = (e1 +e, +e3, f1-e1, f2-€3)
on A w.r.t. an order extended from <yx in a position over term fashion with e3 < e, < eq. For each branch
(Ai, Gj), let Fi={f € k[U][X]| f - e3 € G;}. Then we have the following results:

1. If F; is empty, then gcd(05 (f1), 0a(f2)) is equal to 0 or oz (f') which satisfies f'- (0,1, )T € G; for any
& € Aj, where x stands for 0 or 1.
2. If F; is not empty, then F; = {f} and gcd(o5(f1), 0a(f2)) = %&{2) forany o € A;.

Proof. Since G is a minimal comprehensive Grobner system, for each branch (A;, G;), the set 05(G;)
is a minimal Grobner basis of (o5 (W)) for any & € A;. Besides, there are no elements in G; that can
specialize to 0 because the leading coefficients of all elements in G; are nonzero under specialization.
Therefore, it is easy to derive the results from Corollary 15. O

Note that in Theorem 16 (2), the expression Zgg; is a polynomial in L[X] for any & € A;, but the
expression g/ f is not necessarily a parametric polynomial in k[U][X], where g = f; - f,. However,
since lcx(f) is a nonzero polynomial in k[U] that does not vanish for any specialization o in the

branch, we can use the following division in k[U][X] to compute an associate of Zgg;
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To compute q € k[U][X] such that og(q) ~ 05(g)/0a(f), g is multiplied by lcx(f) repeatedly
during division so that

(ex(f)'g=q- f+h,

and no monomial in h is divisible by the leading monomial Imyx (f), where A is a non-negative integer.
Theorem 16 can guarantee that oy (h) is zero for any & € A;. This operation is similar to the division
algorithm in Montes (2002); Montes and Schoenemann (2016).

The pseudo-division algorithm in polynomial rings requires a main variable to be specified. Ob-
viously, the above division is not the same as the pseudo-division, so we call it special division
algorithm in k[U][X], and denote by Quo(g, f) the quotient q.

We use a simple example to illustrate this algorithm. Let g = x> —by +b, f = ax with ¢ = Quo(g, f)
and an algebraically constructible set A =V(ab) \ V(a). Using the lexicographic order on X, where
X ={x,y}and x > y, f special-divides g in k[U][X], giving lcx(f)-g =x- f +h, where h = —aby +ab.
It is obvious that h is zero on A. Thus q = x. Moreover, for any « € A, ZZ((% = %x. Therefore, o5 (q) ~
oa(g)/oa(f).

Now, the first algorithm is given below and is called “Ideal Intersection Based GCD”.

Proposition 17. Algorithm 1 works correctly.

Proof. The proof follows directly from Theorem 16. O

Algorithm 1 Ideal Intersection Based GCD

Input : f, f, € k[U][X], a constructible set A C L™, and two monomial orders <yx, <y.
Output: a gcd system {(A;, hi)}ﬁzl, where gcd(og (f1), 0a(f2)) = oy (h;) for any & € A; and uﬁ.zlA,- =A.
begin
compute a minimal CGS {(A,~,G,~)}f.:1 on A for (e; +e; +es3, f - e, fo-e3) Ck[U][X]? in a position over term with
e3 <e) <eq,
for i from1to! do
Fi:={f eklUIIX]| f -e3 € Gi};
if F; is not empty then

Fi:={f}
hi :==Quo(fi - f2, f) on Aj;
else
|_ h; :==0 or f’ which satisfies f’- (0,1, € G; on A;;

| return {(A;, hp)l_,.

4.2. Algorithm based on ideal quotient

The key idea of the second algorithm is well-known: compute the cofactor by computing the
ideal quotient of one polynomial with respect to the other polynomial. This ideal quotient is known
to be principal and has a single generator which can be computed by a single minimal Grébner
basis computation. This generator, which is the cofactor of the first polynomial, is used to obtain the
gcd by dividing the polynomial by its cofactor. For the parametric case, a minimal comprehensive
Grobner system of a module in k[U][X]?® is computed, leading to multiple branches for different
specializations; for each branch, the generator is used to obtain the gcd for the associated parametric
specializations.

4.2.1. Computing ideal quotient
The second algorithm is based on the following theorem.

Theorem 18. Consider two polynomials f1, f> € k[X] \ {0} such that fi =d - fi and f, =d - fo, where
d=gcd(f1, f2) and gcd(f1, f2) = 1. Then, (f1) = (f1) : f2 and (f2) = (f2) : f1.
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Proof. We only prove (f1) = (f1) : fa, the proof of (f2) = (f2) : f1 follows in a similar manner.

Since faf1 =df2f1 = f2f1 € (f1), then (f1) € (f1) : f2. In the other direction, if there exists a
polynomial g € (fy) : f, such that f;tg, then by division algorithm in k[X], g is written as g =
pfi1+r, where p,r € k[X], and none of the monomials in r is divisible by Im(f1). Note that gfs € (f1)
implies (pf1 +71) fo = hf1, where h € k[X]. Hence, (h — pf2) fi =rf, by dividing both sides by d and
ged(f1, f2) = 1. This would require that f; | r giving a contradiction. Hence (f1): fo € (fi1). O

Theorem 18 implies that (f7) : f> is a principal ideal. A minimal Grébner basis G of (f1): fo w.r.t.
a monomial order < is {g} such that gcd(f1, f2) = f1/g. Depending upon the structure of f1, f, and
the degree of their gcd relative to the degrees of f; and f,, computing (f1) : f2 or {f2): f1 can have
varied performance.

A ideal quotient can be computed using ideal intersection which involves introducing a new vari-
able to construct a new ideal in a bigger polynomial ring. In the following, we introduce a new
method to compute the ideal quotient (f1) : f>.

Theorem 19. Let f1, f2 be two polynomials in k[X] \ {0} and < be a monomial order on k[ X]. Suppose W C
k[X1? is a k[X]-module generated by {fi - €1, f - 81 — 2} and G is a minimal Grébner basis of W w.r.t. an
order extended from < in a position over term fashion with &, < &, where é; = (1,0)T and é; = (0, 1)T.
Then there exists a unique polynomial g € k[X]\ {0} such that g - €3 € G and (g) = (f1) : f.

Proof. Let H={h ck[X]|h-é; € G}. As f1 and f, are both nonzero by assumption, it is easy to check
that the set H is not empty. We prove (H) = (f1) : f2 below.

We first show (fy) : fo C (H). For any given polynomial p in (f1) : f2, there exists a polynomial
q € k[X] such that pf, =qfi. Then, p-é, =q(f1-€1) — p(f2 - €1 — &;) implies p -é, € W. Since G is a
minimal Grobner basis of W, it follows that p € (H).

For the converse, suppose h € (H). Then there exist polynomials g1, ..., g, P1, ..., Ps € k[X] such
that h=3"}_; (pig) and g;-€; € G for 1 <i <s. Thus, we have h - &, € (G), which implies h - &, =
h1(f1 -€1) +ha(fo - €1 —é>) for some polynomials hy, hy € k[X]. From this equation we can obtain the
following equations:

0=h1f1+haf2,
h=—hy.

Therefore, we have h € (f1) : fo. _ B

In sum, we have (H) = (f1) : f2. By Theorem 18, we obtain (H) = (f1), where f; is the cofactor
of f1 Besides, G is a Grobner basis of W, there must exist a polynomial g € k[X] \ {0} such that
g-6,€G and Im(g) = lm(fl) Moreover, we have g = f1 as G is minimal, because otherwise there

should exist another element in G that divides (g — llcc((}g)) f1) -8 and has a smaller leading monomial

than Im(f1)-8,. O

Theorem 19 only discusses the case when f; and f, are both nonzero polynomials. We can extend
the result to more general cases.

Corollary 20. Let f1, f be two polynomials in k[X] and < be a monomial order on k[ X]. Suppose W C k[X]>
is a k[ X]-module generated by {f1 - €1, f> - €1 — €2} and G is a minimal Grébner basis for W w.r.t. an order
extended from < in a position over term fashion with e, < €1. Let H ={h e k[X] | h - € € G}. Then

1. If H is empty, then f1 =0 and f> # 0. In this case, gcd(f1, f2) = fo.
2. If H is not empty, then H = { f1} and gcd(f1, f2) = f1/f1.

Proof. If f{ =0, fo #0, then H can be checked to be empty. If f{ = f, =0, then H={1}. If f{ #0
and f; =0, then H = {1} and gcd(f1, f2) = f1. In the case of f; and f, being nonzero, the result
follows Theorem 19. O
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Table 1
The comparison of two new algorithms.
Algorithm 1 Algorithm 2
approach ideal intersection ideal_ quotient
ged in k[X] f1f2/lem(f1, f2) fi/f
k[UI[X]-module  k[U][X]? k[U][X)?
minimal CGS (e1+ex+es, fi-e, fr-e) (fi €, fa-81—€)

By Corollary 20, the gcd of f1 and f, can be obtained from the Grobner basis G directly without
any knowledge of f1 or f, being zero or not.

4.2.2. Algorithm 2 for computing a gcd system of two parametric polynomials
Now, we generalize Corollary 20 to the parametric case.

Theorem 21. Given f1, f> € k[U][X] and an algebraically constructible set A=V(E) \ V(N) C L™, let G =
{(A;, Gi)}i.ﬂ be a minimal comprehensive Grébner system of the module W = (f; - €1, fo -1 — é2) on A
w.r.t. an order extended from <yx in a position over term fashion with €, < é1. For each branch (A;, G;), let
Hi ={h ek[U]1[X]| h - &, € G;}. Then we have the following results.

1. If H; is empty, then gcd(o5 (f1), 0a(f2)) = 05 (f2) for any a € A;.

2. If H; is not empty, then H; = {g;} and gcd(og (f1), 0a(f2)) = %for any @ € A;.

Proof. The proof is similar to that of Theorem 16. O

Now, the second algorithm based on ideal quotient construction is given below.

Algorithm 2 Ideal Quotient Based GCD

Input : f, f, € k[U][X], a constructible set A C L™, and two monomial orders <y, <y.
Output: a gcd system {(A;, hl')}i':]' where gcd(og (f1), 0a(f2)) = 0y (h;) for any & € A; and uL]A,- =A.
begin
compute a minimal CGS {(A;, G,-)}f.:1 on A for (f; -8, f2 -1 —é2) C k[U][X]? in a position over term with &, < &1;
for i from 1 to| do
Hi:={h e k[U][X]| h-& € Gi};
if H; is not empty then
H; has exactly one polynomial, say g;;
L hi := Quo(fi, gi) on Aj;
else
| hi:=faon A

| return {(A;, hil_y.

Proposition 22. Algorithm 2 works correctly.
Proof. The proof follows directly from Theorem 21. O

4.3. Comparison of ideal intersection and ideal quotient GCD algorithms

As we see in the above two subsection, we proposed two algorithms to compute a gcd system of
two parametric polynomials. Comparing the two proposed algorithms, we get the following results.

Table 1 shows the differences between the two proposed algorithms. Obviously, they have the
following similarities: we use the method of module instead of introducing a new variable to com-
pute the ideal intersection and quotient ideal, thus reducing the computation cost; use the special
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division algorithm proposed in subsection 4.1.2 to compute the gcd system on different algebraically
constructible sets. In Algorithm 1 and Algorithm 2, if f1 (or f;) vanishes on the constructible set A,
we only need to compute a minimal comprehensive Grébner system {(A,~,h,-)}f.:1 of f, (or f1), and
then the gcd of 05(f1) and o4 (f2) on each branch A; is oy (h;).

To experimentally compare the two proposed algorithms with both of Nagasaka’s algorithms, we
have implemented them all in Singular on a single platform so that their comparative performance
can be fairly analyzed (Section 7).

4.4. Gcd systems for more than two parametric polynomials

Given parametric polynomials fy,..., fs € k[U][X] with s > 3 and a constructible set A, their gcd
system can also be computed by successively computing the gcd systems of two polynomials at a
time. That is, given a monomial order, we first compute a gcd system {(A;, h,~)}£.:1 of f1 and f, on A,

where A = U£:1Ai. Then, for each branch we compute a gcd system {(A;j, h,-j)}lj‘i:1 of hj and f3 on A;,

where A; = Ul}:lAij. Repeating the above process, we can get a gcd system of f1, f>,..., fs on the
different branch of A.

We recognize that many tricks can be applied to the both proposed algorithms. For example, when
we get the gcd system {(A,',h,-)}i.z] of f1 and f,, then we can compute the gcd systems of h; and
f3 on A; for i =1,...,1 at the same time. The difference in polynomial selection can make a big
difference in Algorithm 2, we often choose the polynomial with the lowest total degree w.r.t. X as
the first polynomial. This is because the total degree of intermediate gcds goes down substantially as
computations proceed.

5. An illustrative example

We illustrate the two proposed algorithm with a simple example.

Example 23. Let f1, f2, f3 € C[U][X] be as follows:

f1 = ax® + bxy + a®xz + abx + abyz + b2y,
fo =ax? + bxy + (ab — a)xz — a®*x + (b* — b)yz — aby,
f3 = ax? + bxy + a?xz + (a> — ab)x + abyz + (ab — b?)y,

where U = {a, b}, X ={x,y,z}, <x and <y are all lexicographic orders with z<y <x and b < a,
respectively.

5.1. Algorithm 1 for Example 23

Step 1: compute a minimal CGS G; for (e; + e +e3, f1 -eq, f>-e3) on C2.

There are six branches in Gi. The first branch of G; is (A1, G1) = (C2\ V(a(a — b + 1)), {(ax +
by)(x+az+b)(x+ (b —1)z—a)-es3, (f1 — f2) -e2+ f1-e3, f2-€,e1 + e, +e3}). Then, Fq = {(ax +
by)(x+az+b)(x+ (b—1)z—a) e C[U][X] | (ax+ by)(x +az+b)(x+ (b — 1)z —a) - e3 € G1} and the
gcd of f1 and fo on A7 is hy =Quo(fy - f2, (ax+by)(x+az+b)(x+ (b —1)z —a)) = ax+ by. Similarly,
we can get the gcds of f1 and f, on other five branches.

Step 2: compute a minimal CGS G, for (e + e, +es3,hy -eq, f3-€3) on Aq.

There is only one branch: (A1, G) = (C2\V(a(a—b+1)), {f3-es, (ax+by)-(ez+e3), e; +e;+e3}).
Then H, ={f3} and the gcd of h; and f3 on Ay is hy = Quo(h; - f3, f3) =ax + by. It follows that the
gcd of f1, fo and f3 on Aj is ax+ by.

Step 3: repeat Step 2 and obtain the following result.

5.2. Algorithm 2 for Example 23

Step 1: Computing a minimal CGS Gy for (f; - €1, f2 -1 —é3) on C2,
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Table 2
The gcd system of fq, f2, f3.
No. A; ged
1 C%\V((a—b+1)) ax + by
2 Va—b+1D\V(@b—1)(b—-1)) (b—1)x+by
3 VQ2a+1,2b—-1) xX—y
4 V(@) \V(b(b - 1)) y
5 V(a,b—1) y
6 V(a, b) 0

There are six branches in G;. The first branch of G; is (A1, G1) = (C2\ V(a(a — b + 1)), {(x +
az+b) - e, ((a® — ab + a)xz + (a> + ab)x + (ab — b% + b)yz + (ab + b2)y) - €1 + &2, f2 - €1 — &2}). Then,

={x+az+be C[U]I[X]| (x+az+Db)-é; € G1} and the gcd of f; and f, on Aq is h; = Quo(f1, x+
az+b) =ax+ by. Similarly, we can get the gcds of f1; and f, on other five branches.

Step 2: Computing a minimal CGS G, for (hy - €1, f3-€; —€3) on Aj.

There is only one branch: (Aq, Gy) = (C?\ V(a(a — b + 1)), {é2, h1 - 81}). Then Hp = {1} and the
gcd of hy and f3 on Aq is h, =Quo(hy, 1) =ax + by. It follows that the gcd of f1, fo and f3 on A is
ax+by.

Step 3: Repeat Step 2 and obtain the gcds of f1, fo and f3 on other five branches. The result is
the same as that in Table 2.

6. Extending ideal quotient to a system of more than two polynomials

Currently, we compute a gcd system of a pair of parametric polynomials whose output is a fi-
nite set of constructible sets with the corresponding gcds. For each such branch, the gcd is used to
compute its gcd with the next polynomial leading to more branches. However, we can use a single
comprehensive Grobner system to compute a gcd system of more than two parametric polynomials.

In general, the equation gcd(fy,..., fs) = W does not hold for s > 3. For example,

let f1 =x3x2x3, fo =x3x3, and f3 = x3x5. Then, lem(f1, fo, f3) = x3x3x3, ged(f1, f2, f3) = x3, and
lem( f1, f2, f3) - gcd(f1, f2, f3) # f1f2 f3. Hence, we cannot extend Algorithm 1 directly to the case
of more than two parametric polynomials. However, we can generalize the method of Algorithm 2
to the case of more than two parametric polynomials. We first consider the gcd of non-parametric
polynomials.

Theorem 24. Let [ = (f1) and | = (f2,..., fs) be ideals in k[X], where f1 # 0 and s > 3. Then the ideal

quotient I : J is a principal ideal. If I : | generated by a polynomial g € k[X], then gcd(fy,..., fs) is an
associate of %‘.

Proof. According to Theorem 18 and Proposmon 12, it follows from [ : | = ﬂ _({(f1): fi) that I: ]

is a prmcnpal ideal. Suppose that I : | = (g), then g # 0 by the assumption. Since I C I : J, we have
f1 € (g). This implies that g | f;. Let gcd(f1,...,fs) =d, in the following we prove that %‘ | d and
d| f—l

i

Let (f1): fi = (f1i), where f1; €k[X]\ {0} and i =2 ,s. Then (g) = (M;_,(f1i). This implies that

for each i, we have fi;| g and % | f1 . From the equatlon

ged(fi, ..., fs):ng(ng(fl f2), ... gaed(f1, fo)),

we have d _gcd(f12 f1 L) and f‘ | d. On the other hand, since d | fl we have f1; | I ofori=
2,...,s. This implies that ’;1 € ﬂ,zz fl, = (g). Hence, g | {} implies that d | Q. a

The most important thing in Theorem 24 is to compute the generator of the ideal quotient (f1) :
(f2,..., fs). Theorem 19 cannot be generalized to the case of s > 3 directly. For example, let f; =
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x2yz%, fo =xy?, fa=y3z, > be the lexicographic order with x > y > z, and >3 denotes the position
over term extension of > to k[X]>. A minimal Grébner basis for the module (f; - 81, fo -1 — &3, f3 -
81 —e3) W.r.t. >3 has an element x2z - é5. However, the ideal quotient (x2yz2) : (xy2, y3z) is generated
by x%z2, which leads to a contradiction. Next, we use syzygies to compute the ideal quotient I: J.

Theorem 25. Let | = (f1) and ] = (f2, ..., fs) be ideals in k[ X], where f1 # 0 and s > 3. A polynomial h1 €
k[X]is an element of I : | if and only if hq appears as the first component of a syzygy (h1, ..., hs)T € k[X]® in
the module Syz(M) = {ii e k[ X]* | M - ii = 0}, where M is a polynomial matrix as follows:

fo f 0 - 0
fs 0 fr -~ 0
fs 0 0 - fi
Proof. Let v; € k[X]s:1 be the i-th column of matrix M, where i =1,...,s. Suppose that h1vq{ +

hyVy 4 -+ 4 hgvs = 0. From the j-th component, we obtain an equation hj fj41 + hjy1f1 =0, so
hi € (f1): fj+1, where j=1,...,s — 1. Therefore, h; € ﬂj:]((ﬁ) fip)=1:].

On the other hand, for any given polynomial g € I: J, we have g € ﬂj;]l((fl) : fj+1). That is,
Vi A<j<s—1), ge(f1): fj+1. This implies that there exists a polynomial ¢; € k[X] such that
gfivi=9jf1. Let i=(g, —¢1,..., gos,l)T, then M - ii = 0. It follows that g el: ] appears as the first
component in Syz(M). O

Remark 26. In Cox et al. (2005), Proposition 3.11 (pp. 230, Chapter 5, Modules) uses syzygies to
compute the intersection of two ideals. Theorem 25 is similar to Proposition 3.11 and is an answer
to Exercise 10 in Cox et al. (2005) (pp. 232) which uses Proposition 3.11 to give an algorithm for
computing [ : J. Furthermore, according to Exercise 15 in Cox et al. (2005) (pp. 233), we have the
following method to compute Syz(M). Let ¢q,...,¢xs_1 be the standard basis of the free module
k[X1?5~1, and consider the submodule W c k[X]*~! generated by

—»T T .
wi= (7.0, 0, 11410, 0T, i=1,....5,

where w; € k[X]*~! and 1,_14; in w; stands for 1 in the (s — 1 + i)-th component. Let G be a
minimal Grébner basis of W w.r.t. >35_1, where >3s_1 denotes the position over term extension of >
to k[X]>*~1. Then, the set Go = {ii e k[X1* | (0T, uT)T € G} is a minimal Grobner basis w.r.t. >4 for the
syzygy module Syz(M). Since (f1): (f2,..., fs) is a principal ideal, Go has only one element ii. Then
the first component of u is the generator of (f1): (f2,..., fs). The computer algebra system Singular
command syz makes use of this idea (Decker and Lossen, 2006).

Now, we extend Theorem 24 and Theorem 25 to the case of parametric polynomials.

Theorem 27. Given f1, ..., fs € k[U][X] and an algebraically constructible set A =V(E) \V(N) C L™, where
for any specialization og the polynomial o (f1) is nonzero with & € A. Let G = {(A;, G]-)}’j:l be a minimal
comprehensive Grobner system of the module W C k[U][X]%~1 generated by {w;};_; on A w.r.t. an order
extended from >x in a position over term fashion with exs_1 < --- < eq. For each branch (A}, Gj), let Hj =
{i e k[UI[XT® | (0T, uT)T € G;}. Then we have the following results.

1. Hj has only one element ﬁj € k[U][X]®; and
2. let gj € K[U1[X] be the first componentofﬁj, then gcd(og (f1),...,0a(fs)) = ZZE—Q; forany a € A;.

Proof. The proof is similar to that of Theorem 16. O
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Remark 28. When we check whether f; is nonzero on A, we only need to check whether the in-
tersection of A and the variety generated by the coefficients of f; w.rt. X is empty. For example,
fi=ax+by e C[a,b][x,y] and A = C2. Let Ag, be the variety generated by the coefficients of f;
w.rt. x, y, then Ag =V(a, b). Therefore, for any specialization oz the polynomial og(f1) is nonzero
with @ e C2\ Ay,, and we can use Theorem 27 to compute the gcd system of f1,..., fs on C2\ Af,.
For any @ € Af,, we have ged(oa(f1), 0a(f2), - ... 0a(fs)) =ged(oa(f2). ..., 0a(fs)).

According to Theorem 27, we can obtain an extended algorithm for computing gcd systems of more
than two parametric polynomials. Of course, the extended algorithm is still valid when the number of
parametric polynomials is two. We can get the same result by using the extended algorithm to solve
Example 23. We implemented the extended algorithm and compared it with other four algorithms in
the following section.

7. Comparative performance with Nagasaka’s algorithms

The two proposed algorithms, the extended algorithm and Nagasaka’s algorithms (Nagasaka-GT al-
gorithm and Nagasaka-SS algorithm) have been implemented by us in the computer algebra system
Singular (4-0-3) (Decker et al., 2016). The implementations of five algorithms have been tried on a
number of examples including the examples in Nagasaka (2017). The following table compares our
implementations with Nagasaka’s two algorithms for computing gcd systems of parametric multivari-
ate polynomials. The parametric polynomials for the examples are given below:

o Fi={ax}+(a® —a+1Dx2y+ (@ +2)xy% + (3a% —3)y3, ax® + (a+ 1)x%y +4xy? +3y3}, X = {x, y},
U ={a};

o Fy ={(x+ay+bz)®+c(x+ay+bz)+d,3(x+ay +bz)?> +c,3a(x +ay + bz)?> +ac,3b(x +ay +

bz)2 +bc}, X =1{x,y,z}, U=1{a,b,c,d};

F3={axz+ (a—1)yz, (a — 1)x2 +axy}, X ={x,y,z}, U ={a};

Fa={ax*y’z+ (1 =b)(y* +2). 1 — )X’ y’z+b(y* + 2)}, X ={x, y.z}, U ={a, b};

Fs={(1—a)y? —bx*> —cxy, (1 —b)x* —ay? —cxy}, X ={x, y}, U={a, b, c};

Fg = {ax® + bxy + a?xz + abx + abyz + b2y, ax? + bxy + (ab — a)xz — a®x + (b> — b)yz — aby, ax*® +

bxy + a?xz + (a® — ab)x + abyz + (ab — b%)y}, X = {x, y,z}, U = {a, b};

o F7={ax’y +bx+ y3,ax’y + bxy +cx, y> + bx*y + cxy}, X ={x, y}, U ={a, b, c};

o Fg={ax3y +cxz%, x2y +3dy + z, cx® + bxy, x2y% + ax?}, X ={x, y,z}, U ={a, b, c, d};

e Fg={(ax+by)(x+a)(y —b), (aby? + b — 1)(bx +ay)(x + b)(y — a), (axy + a®x — 3a)(ax+ by)(x +
b), (bx +ay)(ax +by)(ax + b)(by + @)}, X = {x, y}, U ={a, b};

o Fio={(1—a)x?y +bx?+y2, ax’y + (1 —b)xy +cx, y> +bx*y + (1 —c)xy}, X ={x, y}, U ={a, b, c}.

For all these examples, the monomial orders used on U and X are lexicographic orders, respec-
tively. For interested readers, more comparative examples can be generated by the codes at: http://
www.mmrc.iss.ac.cn/~dwang/software.html.

In Table 3, entry labeled “E-Algorithm” is for the extended algorithm of Algorithm 2. Timings were
obtained on an Intel(R) Xeon(R) CPU E7-4809 v2 @ 1.90 GHz and 756 GB of RAM. As is evident from
Table 3, our algorithms perform better than Nagasaka’s algorithms. Since our algorithms are quite dif-
ferent from Nagasaka’s algorithms, it is hard to analyze in theory where the improvements come from.
In our opinion, the avoidance of checking primitive part contributes to most of the improvements.

The reasons that Algorithm 2 performs better than Algorithm 1 are as follows: choosing the
polynomial with lowest total degree w.rt. X as the first polynomial in each iteration, which can
reduce the computations of Quo(fy, f1); computing Quo(f1, f1) takes less time than computing
Quo(fi - f2, f); computing a minimal CGS for (f; - €1, f2 - 81 — €3) in k[U][X]? is faster than that
for (e; + ey +es3, fi-eq, f2-e) in k[U][X]3. When the number of polynomials in F; is greater than
two, E-Algorithm is the fastest. This is because under the assumption of fi; # 0, we only need to
compute a minimal CGS for the module constructed by f1, fa, ..., fs (s > 2). Since Nagasaka-SS algo-
rithm does not need to construct maximal ideals in different parameter spaces, it performs better in
practice than Nagasaka-GT algorithm for most of the examples.
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Table 3
Comparative Performance of Parametric GCD Algorithms(sec).

Examples  Algorithm 1 Algorithm 2 E-Algorithm  Nagasaka-GT  Nagasaka-SS

Fq 0.134 0.127 0.129 1.428 0.442
F> 0.889 0.391 0.135 30.985 12.771
F3 0.151 0.145 0.146 6.159 1.836
Fy 0.271 0.183 0.190 > 1h 7148
Fs 0.843 0.561 0.572 6.210 2426
Fe 0.615 0.571 0.327 > 1h 8.401
F7 0.755 0.605 0.361 > 1h > 1h
Fg 1.188 1.005 0.537 > 1h 20.407
Fg 1.669 1.487 1173 > 1h 5.105
F1o 1.426 1164 0.893 > 1h > 1h

8. Concluding remarks

Two new algorithms for computing gcd systems of parametric polynomials have been proposed.
Using module comprehensive Grobner system, the gcd systems of multivariate polynomials can be
computed. The experimental data in Table 3 suggests that the two proposed algorithms are superior
in practice in comparison with both the algorithms proposed by Nagasaka. We think this is because
our methods do not compute the primitive part of polynomials in different parameter spaces, and our
theorem guarantees that a parametric polynomial is special divisible by another parametric polyno-
mial on various algebraically constructible sets. Since the computational efficiency of our algorithms
depends on the number of branches in a module comprehensive Grobner system, we believe that the
two proposed algorithms can be further improved by removing inessential polynomials from compre-
hensive Grobner system computations as discussed in Kapur and Yang (2014). This will be further
studied in the future along with heuristics to minimize the number of branches to be considered for
computing gcd systems of parametric multivariate polynomials.
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