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Abstract

The ability to make targeted updates to models, whether for unlearning, debiasing,
model editing, or safety alignment, is central to Al safety. While these interven-
tions aim to modify specific knowledge (e.g., removing virology content), their
effects often propagate to related but unintended areas (e.g., allergies). Due to
lack of standardized tools, existing evaluations typically compare performance on
targeted versus unrelated general tasks, overlooking this broader collateral impact
called the “ripple effect”. We introduce RippleBench, a benchmark for systemati-
cally measuring how interventions affect semantically related knowledge. Using
RippleBench, built on top of a Wikipedia-RAG pipeline for generating multiple-
choice questions, we evaluate eight state-of-the-art unlearning methods. We find
that all methods exhibit non-trivial accuracy drops on topics increasingly distant
from the unlearned knowledge, each with distinct propagation profiles. We release
our codebase for on-the-fly ripple evaluation as well as RippleBench-WMDP-Bio,
a dataset derived from WMDP biology, containing 9,888 unique topics and 49,247
questions.

1 Introduction

Al safety methods often seek to modify models’ knowledge, whether to unlearn harmful behaviors,
update facts, or debias outputs, but such interventions rarely remain isolated. Edits can spill over
to semantically relevant concepts and even those that are seemingly unrelated, this behaviour was
termed as “ripple effect” [1]. As noted in [2], even when specific capabilities (e.g., chemical synthesis
pathways or cybersecurity exploits) are removed, models can reconstruct them by recombining
fragments of benign knowledge. This stems from the compositional, interconnected nature of large
models: complex concepts are built from simpler components that often serve innocuous purposes, a
phenomenon sometimes described as “dual use.” Consequently, attempts to fully “unlearn” harmful
capabilities may also degrade otherwise safe information.

Standard evaluations of unlearning, model editing, or debiasing typically adopt a binary split between
the forget set (concepts to erase or edit) and the retain set (everything else) [3]. This framing overlooks
the continuum of semantic relationships, for example, the gradation between “bird flu” and “weapons
of mass destruction.” While prior work has highlighted the need to consider related knowledge [4],
comprehensive benchmarks for capturing these ripple effects are lacking.

We introduce RippleBench, a pipeline for systematically measuring the broader impact of targeted
interventions. By leveraging knowledge repositories to generate multiple-choice questions across a
spectrum of semantic proximity, RippleBench quantifies model performance not only on directly
unlearned information but also on neighboring concepts, offering insight into when interventions
cannot be treated independently.
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We use RippleBench to develop a benchmark for unlearning, RippleBench-WMDP-Bio, which we
use to evaluate eight popular unlearning methods applied to Llama3-8b-Instruct to unlearn dual-use
biology knowledge from the WMDP-Bio benchmark. While prior reports [5] show minimal utility
loss on unrelated benchmarks such as MMLU [6], we find consistent non-trivial degradation on
semantically distant topics, with most methods showing gradual decay as distance increases.

Finally, we release our code and a Wikipedia-RAG pipeline for generating ripple-effect evaluations
on arbitrary topics. We hope RippleBench enables more rigorous, topic-specific assessment of
ripple effects, fostering broader evaluation of unlearning and knowledge-editing methods. We also
release RippleBench-WMDP-Bio on Huggingface.

2 Related Work

Datasets and benchmarks. The two most widely used benchmarks for unlearning are the Weapons
of Mass Destruction Proxy (WMDP) [7] and the Task of Fictitious Unlearning (TOFU) [8]. WMDP
tests models’ ability to generate content about hazardous topics in biosecurity, cybersecurity, and
chemical security. TOFU provides synthetic data about fictitious authors, where the goal is to unlearn
subsets of these authors while retaining generic knowledge. However, both benchmarks are limited:
WMDP focuses narrowly on safety-critical topics, while TOFU evaluates only one synthetic task.
Neither captures fine-grained collateral effects across a broad range of concepts.

Unlearning methods. The primary approach to mitigating harmful behaviors in models has been to
teach refusal through fine-tuning ([9, 10, 11, 12]). This method, while effective in many scenarios,
trains the model to avoid certain outputs but does not necessarily remove the underlying capability. In
contrast, machine unlearning aims to selectively erase knowledge from models ([2, 13]). Approaches
include fine-tuning to induce forgetting [14, 15, 16, 17, 18] and mechanistic interventions that directly
ablate concepts [19, 20, 21, 22]. Recent work by [5] systematically compared eight unlearning
methods against eleven attack strategies, releasing 64 checkpoints that we leverage for evaluation.

Ripple effects. Editing knowledge in LLMs can produce unintended propagation, known as the ripple
effect [1]. Because knowledge is stored in interconnected representations, changing one fact (e.g.,
“Canberra is Australia’s capital”) requires consistent updates to related facts. Failure to do so often
yields contradictions and degraded multi-hop reasoning. Similar ripple effects appear in unlearning:
removing unsafe concepts (e.g., “WMDP bio threat”) can inadvertently degrade performance on
benign, related concepts (e.g., “biology”) [7, 23].

3 Method

Traditional evaluation of unlearning methods often relies on synthetic or limited test sets that fail
to capture the full spectrum of a model’s knowledge. To address this limitation, we ground our
evaluation in factual information extracted from authoritative sources by creating a pipeline to
automatically generate test sets from individual facts taken from Wikipedia. By leveraging Wikipedia
as a comprehensive knowledge repository, we can systematically evaluate a model’s understanding
across diverse topics and varying semantic distances from the unlearning target. Furthermore, this
pipeline circumvents the need to manually craft evaluation questions for the topic of interest and
other semantically relevant concepts, thus scaling to thousands of topics and hundreds of thousands
of questions while maintaining quality and consistency.

3.1 Benchmark Generation via Wikipedia

To efficiently navigate Wikipedia’s vast knowledge repository and identify semantically related
topics, we developed Wiki-RAG (Wikipedia Retrieval-Augmented Generation), a specialized retrieval
system optimized for semantic neighbor discovery. Wiki-RAG combines dense retrieval with efficient
indexing to enable rapid identification of related topics across millions of Wikipedia articles. The
pipeline consists of the following parts:

Topic Extraction: We start by mapping questions from source materials, such as a question about
"the mechanism of anthrax toxin production" from the WMDP dataset, to topics, such as "Bacillus
anthracis" with a large language model. This extraction process must balance specificity (to maintain
precision in retrieval) with generality (to ensure adequate coverage in Wikipedia). We then map these
target topics to relevant Wikipedia articles.
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Figure 1: The RippleBench pipeline. Starting from an unlearned topic (e.g., Viral Evolution),
Wiki-RAG retrieves related topics, factual statements are extracted, and language models generate
multiple-choice questions. While we focus on WMDP-Bio in this work, the pipeline applies to any
model-editing or unlearning task.

Semantic Expansion: Using a FAISS index [24] containing dense semantic embeddings produced
by SentenceTransformers for over 10 million Wikipedia articles, our Wiki-RAG system retrieves
topics spanning a spectrum of semantic similarity to the originals, capturing both closely and distantly
related knowledge. Wiki-RAG’s architecture is specifically designed to support the iterative expansion
process required for RippleBench generation, where each topic serves as a seed for discovering
additional neighbors.

Fact and Question Generation: For each topic, we extract key factual statements and employ
language models to convert these into multiple-choice questions with plausible distractors.

This process creates a scalable, up-to-date benchmark that can assess ripple effects for arbitrary topics
and unlearning interventions.

3.2 Quantifying Ripple Effects

Central to measuring ripple effects is the notion of semantic distance between the unlearned knowl-
edge and potentially affected information. We define this distance using a topic’s rank within a
Wikipedia-based RAG system. To build intuition, we provide an empirical example of this ranking
function in Section A.1. By evaluating model accuracy across questions at varying distances from the
unlearning target, we can assess both intended and unintended knowledge changes.

This distance metric serves three purposes: (1) it organizes evaluation topics along a continuum from
directly targeted to unrelated, (2) it enables quantitative analysis of how unlearning effects decay with
distance, and (3) it supports controlled experiments that measure the relationship between semantic
proximity and unlearning impact.

4 Experiments

We apply the RippleBench pipeline to construct RippleBench-WMDP-Bio, an evaluation set derived
from WMDP-Bio. Our experiments measure how unlearning harmful knowledge about biological
and chemical agents impacts performance on related topics at varying semantic distances.

4.1 Experimental Setup

Unlearning Methods and Model. We use Llama3-8b-Instruct [25], a fine-tuned version of Llama
3 optimized for helpful assistant behavior. We evaluate eight approaches: Gradient Difference
(GradDiff) [26], Random Misdirection for Unlearning (RMU) [27], RMU with Latent Adversarial
Training (RMU+LAT) [16], Representation Noising (RepNoise) [18], Erasure of Language Memory
(ELM) [28], Representation Rerouting (RR) [15], Tamper Attack Resistance (TAR) [17], and PullBack
& proJect (PB&J) [29].
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Figure 2: Ripple effects of unlearning methods on model performance across semantic distances. The
base model (black) maintains consistently high accuracy, while unlearning methods show varying
degrees of collateral degradation. ELM exhibits a smooth recovery with distance, whereas methods
like TAR and GradDiff cause steep and persistent drops across all distances.

Evaluation. Models are evaluated on the full RippleBench dataset of 229,648 questions across 46,351
topics. When multiple unlearned questions map to the same higher-level topic (e.g., Vaccines and
Anthrax under Biology), regenerated items can yield near-duplicates. A deduplicated version contains
9,888 topics and 49,247 questions.!

4.2 Main Results: The Ripple Effect

Figure 2 shows how performance varies across semantic distances. As a sanity check, the base model,
Llama3, maintains consistently high accuracy, while unlearning methods display clear ripple effects,
impacting nearby topics. In this evaluation, no method came out clearly ahead, as methods generally
tradeoff better unlearning on WMDP against a stronger ripple effect (i.e., more effect on topics
semantically further from the unlearned dataset).

At the directly unlearned topics (distance 0), GRADDIFF and TAR show the steepest drops (over 25%
below baseline), with measurable degradation persisting well beyond distance 50. These patterns
highlight the importance of evaluating collateral effects when designing unlearning strategies.

We also see that reported unlearned accuracies on WMDP-Bio, as shown by the stars on the left-hand
side of Figure 2, differ significantly from accuracies on similar questions (distance 0 on RippleBench-
WMDP-Bio). This highlights that the evaluated unlearning methods do not generalize beyond the
distribution of questions in WMDP-Bio to the actual underlying topics.

5 Conclusion

We introduced RippleBench, a general-purpose evaluation framework, together with RippleBench-
WMDP-Bio, a dataset of 9,888 unique topics across 49,247 unique questions for measuring ripple
effects in machine unlearning. Our analysis shows that current unlearning methods often create sharp
discontinuities rather than smooth gradients, where unlearning is more strongly correlated with the
binary “Is WMDP Topic” label rather than with any continuous notion of semantic distance.

This reveals two challenges: defining semantic distance in a way that aligns with model behavior,
and designing methods that prevent blunt collateral damage to related concepts. By combining
a systematic evaluation pipeline with a Wikipedia-RAG infrastructure, RippleBench provides a
foundation for developing unlearning techniques that achieve precise, predictable forgetting while
mitigating unintended ripple effects.

"Dataset size is reduced by natural filtering: starting from 1,273 WMDP questions, we extracted 586 unique
topics after deduplication. Further attrition occurred during fact extraction, where topics with insufficient
Wikipedia content or API failures were excluded.
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A Supplementary Material

The unlearning methods evaluated by Che et al. (2025) can be broadly categorized based on their
underlying mechanism. Below, we briefly summarize each technique as described in their work.

Gradient and Loss-Based Fine-Tuning These methods adapt the standard fine-tuning process by
modifying the loss function to de-emphasize or penalize unwanted knowledge.

* Gradient Difference (GradDiff): Inspired by [26], this approach trains the model to
maximize the difference between the loss on the data to be forgotten and the loss on data to
be retained.

* Representation Noising (RepNoise): Proposed by [18], this method adds a noise-inducing
loss term. It encourages the model’s internal representations for harmful inputs to match a
simple Gaussian noise distribution.

* Erasure of Language Memory (ELM): Introduced by [23], ELM trains a model to mimic
the behavior of an "unknowledgeable" model on the target domain, effectively erasing the
specific concepts.

Representation and Activation Manipulation These techniques intervene more directly on the
model’s internal activations to suppress or redirect information flow related to the unwanted concepts.

* Random Misdirection for Unlearning (RMU): From [30], this technique involves perturb-
ing model activations for harmful inputs while explicitly preserving activations for benign
ones.

* RMU with Latent Adversarial Training (RMU+LAT): An extension by [16], this method
strengthens RMU by using adversarial attacks in the latent space during training on the
forget set.

* Representation Rerouting (RR): Also known as "circuit breaking" ([15]), this technique
trains the model to map latent states associated with unwanted topics to orthogonal, unrelated
representations.

* K-FAC for Distribution Erasure (K-FADE): This approach from [31] learns a set of
projections in the activation space that maximally degrade performance on the forget set
while minimally impacting a broader retain distribution.
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Meta-Learning for Robustness This category focuses on training the model to be inherently
resistant to tampering attacks.

» Tamper Attack Resistance (TAR): Proposed by [17], TAR is a meta-learning approach that
preemptively trains a model to be robust against a fine-tuning adversary, making it harder to
undo the unlearning.

A.1 Translating RAG Scores into Semantic Distance

To operationalize semantic distance, we rely on RAG rank. In this section we aim to build some
intuition for how RAG ranks are constructed from underlying cosine similarity scores between
Wikipedia article embeddings retrieved by Wiki-RAG. Figure 3 illustrates this process for the seed
topic Anthrax. High-scoring neighbors such as Anthrax weaponization or Bacilli appear at low
ranks, indicating close semantic proximity. As rank increases, retrieved topics gradually become less
relevant (e.g., Lobar pneumonia) before eventually diverging to unrelated entries (e.g., List update
problem, List of years in politics). This curve highlights the long tail of retrieval and motivates
our bucketization of distances: low ranks capture tightly connected knowledge, while higher ranks
provide semantically distant or noisy contexts.
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Figure 3: Example of RAG similarity scores for the seed topic Anthrax. Closely related neighbors
(left) receive high similarity scores, while more distant or irrelevant topics (right) appear at lower

scores and higher ranks. This mapping provides intuition for how semantic distance is defined and
bucketized in RippleBench.
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