
Published as a conference paper at ICLR 2025

ATTRIBUTE-TO-DELETE: MACHINE UNLEARNING VIA
DATAMODEL MATCHING

Kristian Georgiev1∗, Roy Rinberg2,3∗, Sung Min Park4∗, Shivam Garg5∗
Andrew Ilyas6, Aleksander Mądry1, Seth Neel2

1MIT EECS 2Harvard Business School 3Harvard SEAS 4Stanford CS
5Microsoft Research 6Stanford Statistics

ABSTRACT

Machine unlearning—efficiently removing the effect of a small "forget set" of
training data on a pre-trained machine learning model—has recently attracted
significant research interest. Despite this interest, however, recent work shows
that existing machine unlearning techniques do not hold up to thorough evaluation
in non-convex settings. In this work, we introduce a new machine unlearning
technique that exhibits strong empirical performance even in such challenging
settings. Our starting point is the perspective that the goal of unlearning is to
produce a model whose outputs are statistically indistinguishable from those of
a model re-trained on all but the forget set. This perspective naturally suggests a
reduction from the unlearning problem to that of data attribution, where the goal
is to predict the effect of changing the training set on a model’s outputs. Thus
motivated, we propose the following meta-algorithm, which we call Datamodel
Matching (DMM): given a trained model, we (a) use data attribution to predict
the output of the model if it were re-trained on all but the forget set points; then
(b) fine-tune the pre-trained model to match these predicted outputs. In a simple
convex setting, we show how this approach provably outperforms a variety of
iterative unlearning algorithms. Empirically, we use a combination of existing
evaluations and a new metric based on the KL-divergence to show that even in non-
convex settings, DMM achieves strong unlearning performance relative to existing
algorithms. An added benefit of DMM is that it is a meta-algorithm, in the sense
that future advances in data attribution translate directly into better unlearning
algorithms, pointing to a clear direction for future progress in unlearning.

1 INTRODUCTION

The goal of machine unlearning is to remove (or “unlearn”) the impact of a specific collection of
training examples from a trained machine learning model. Initially spurred by regulations such as the
EU’s Right to be Forgotten (Ginart et al., 2019), machine unlearning has found a variety of recent
applications including: removing the effect of toxic, outdated, or poisoned data (Pawelczyk et al.,
2024b; Goel et al., 2024); rectifying copyright infringement in generative models (Liu, 2024; Dou
et al., 2024); and even LLM safety training (Li et al., 2024; Yao et al., 2024).

This plethora of potential applications has prompted a growing line of research into better unlearning
algorithms. An unlearning algorithm takes as input a model θ (trained on a dataset S) and a “forget
set” SF ⊂ S, and outputs a model θUL that “looks like” it was trained on the so-called “retain set”
SR := S \ SF . Of course, one valid unlearning algorithm simply ignores the trained model θ and
trains a new model θUL from scratch on the retain set SR. This algorithm clearly succeeds at the
task of unlearning, since the generated θUL really is trained only on the retain set. But as model
and dataset sizes continue to increase, or unlearning requests become more frequent, this approach
becomes infeasible. The goal of unlearning is thus to approximate this naive retraining algorithm
while imposing a much lower computational burden.

∗Equal contribution

1

Published as a conference paper at ICLR 2025

For convex models (i.e., models obtained by empirical risk minimization over a loss convex in
parameter θ), there are fast unlearning algorithms that also enjoy provable guarantees (Neel et al.,
2021; Graves et al., 2021; Izzo et al., 2021b; Mu & Klabjan, 2025; Qiao et al., 2025)

For large neural networks, however—where efficient unlearning is arguably most relevant, given the
cost of training from scratch—the situation is considerably murkier. The only methods that obtain
provable guarantees tend to significantly degrade accuracy and/or require significant changes to
the training pipeline (Bourtoule et al., 2020a; Li et al., 2022). As a result, unlearning algorithms
for neural networks typically rely on heuristic approaches that fine-tune an initial model θ into an
“empirically unlearned” model θ̂UL. These approaches, however, have not yet led to consistently
reliable unlearning algorithms, as evidenced by a variety of empirical evaluations and benchmarks
(Hayes et al., 2024; Kurmanji et al., 2023; Pawelczyk et al., 2023). In particular, recent evaluations
such as U-LiRA (Hayes et al., 2024) demonstrate that the predictions of the empirically unlearned
model are often easily distinguishable from the “oracle” predictions by an adversary.

A pervasive challenge for fine-tuning-based approaches is what we refer to as the missing targets
problem. In order to “unlearn” a forget set point x ∈ SF , fine-tuning-based methods typically employ
some version of gradient ascent on x, starting from θ, and gradient descent on the retain set SR

in order to maintain performance. If left unrestricted, gradient ascent will continue to make the
loss on x arbitrarily high—what we want, however, is to increase the loss only until it reaches its
counterfactual value, i.e., the loss on x of a model trained on the retain set SR. Ideally, we could
terminate the algorithm when the model’s loss on x reaches this “target” value, but the problem is
that (a) we do not have access to the target; and (b) the optimal “stopping time” might be different for
different points x ∈ SF . The result is the well-documented phenomenon of unlearning algorithms
“undershooting” and “overshooting” the loss on different examples (Hayes et al., 2024).

This work. In this paper, we present a new unlearning algorithm that sidesteps the issue discussed
above, and (empirically) achieves state-of-the-art unlearning performance. Our algorithm resembles
prior techniques in that we rely on fine-tuning the trained model θ. We deviate from prior work,
however, through two main ideas:

1. Oracle Matching (OM). Consider the following thought experiment: what if we could
access the outputs (but not the parameters) of a model trained on the retain set SR? We
show that such “oracle” access directly enables an efficient, fine-tuning-based unlearning
algorithm. Rather than minimizing/maximizing loss on the retain/forget sets, this algorithm
directly minimizes the difference between model outputs and oracle outputs on a subsample
of the train set, thus sidestepping the aforementioned “missing targets” problem. Empirically,
we find that the fine-tuned model also generalizes beyond the fine-tuning points, and in
some way “distills” the target model into parameters θ′.

2. Oracle simulation. OM on its own is not an unlearning algorithm—it relies on the very
“oracle model” that it aims to replicate. Observe, however, that implementing OM does not
require access to the weights of an oracle model, but only to its outputs on a fixed number
of inputs. Thus, OM can be implemented efficiently given access to an efficient routine for
computing such outputs. Such a routine is precisely the target of predictive data attribution
methods (Ilyas et al., 2024), where the goal is exactly to predict how a model’s outputs
would change if its training dataset were modified. This leads to our second idea: instead of
fine-tuning on “oracle” outputs, we fine-tune on simulated outputs from a predictive data
attribution method. We show that despite these methods being imperfect, applying our OM
algorithm to simulated oracle outputs works nearly as well as using the true oracle outputs.

The resulting algorithm, datamodel matching (DMM), not only achieves current state-of-the-art
performance (Figure 1), but also introduces a reduction from unlearning to data attribution, allowing
us to translate future improvements in the latter field to better algorithms for the former.

The rest of our paper proceeds as follows. In Section 2, we formally introduce the unlearning problem,
as well as the field of (predictive) data attribution. In Section 3, we strengthen existing unlearning
evaluation by introducing a new metric called KL Divergence of Margins (KLoM). KLoM directly
adapts a formal definition of unlearning (Neel et al., 2021) to be computationally and statistically
tractable to estimate, and addresses some challenges faced by existing unlearning metrics. Then, in
Section 4, we combine the two insights above (Oracle Matching and Oracle Simulation) into a simple
algorithm called datamodel matching (DMM). Finally, in Section 5, we provide some theoretical

2

Published as a conference paper at ICLR 2025

justification for our algorithm using a case study of underdetermined ridge (linear) regression. In
particular, we show that in this simple setting, the oracle matching (OM) primitive can provably lead
to faster convergence. We conclude with a discussion of limitations and directions for future work.

0.0 0.5 1.0
0

5

10

C
IF

AR
-1

0

K
Lo

M
 (

)

Average

GA
GD
SCRUB
Do Nothing
Retrain
Oracle
DM-Direct
DM-Matching

0.0 0.5 1.0

Forget

0.0 0.5 1.0

Retain

0.0 0.5 1.0

Validation

0.0 0.5 1.0
0

5

10

LI
VI

N
G

-1
7

K
Lo

M
 (

)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Time (fraction of full re-training;)

Figure 1: Leveraging predictive data attribution enables effective unlearning. We apply differ-
ent approximate unlearning methods to trained DNNs to unlearn forget sets from CIFAR-10 and
ImageNet-Living-17. We measure unlearning quality using KLoM scores (y-axis), which quantifies
the distributional distance between unlearned predictions and oracle predictions (0 being perfect).
To contextualize each method’s efficiency, we also show the amount of compute relative to full
re-training (x-axis). We evaluate KLoM values over points in the forget, retain, and validation sets to
ensure that unlearning is effective across all datapoints, and report the 95th percentile in each group;
we also report their weighted average (1st column). Our new methods based on data attribution
(DM-DIRECT and DMM) dominate the pareto frontier of existing unlearning methods, and approach
the unlearning quality of oracle models (full re-training) at a much smaller fraction of the cost.

2 PRELIMINARIES

In this section, we introduce some preliminary notation, definitions, and results. Throughout the
section, we will let S ∈ Xn be a fixed dataset drawn from an example space X , and we define
a learning algorithm A : X ∗ → Θ as a (potentially random) function mapping from datasets to
machine learning models θ. Finally, for an example x ∈ X , we use fx : Θ→ Rk to denote a model
evaluation on the example x (for example, this may be the k-dimensional per-class probabilities).

2.1 MACHINE UNLEARNING

Consider a machine learning model θ ∼ A(S) trained on a dataset S. Given a “forget set” SF ⊂ S,
and a corresponding “retain set” SR = S \ SF , the goal of an exact unlearning algorithm is to
compute a sample from A(SR) starting from the trained model θ:

Definition 1 (Exact unlearning (Ginart et al., 2019)). An unlearning algorithm U : Θ× 2|S| → Θ
is said to be an exact unlearning algorithm if, for all SF ⊂ S, U(A(S), SF)

d
= A(SR), where d

=
represents equality in distribution over models.

Though compelling in theory, exact unlearning tends to be too stringent a criterion when applied to
deep learning, often leading to computational infeasibility or degradations in accuracy (Liu, 2024).
This motivates a look at approximate unlearning, which asks only for the distribution over unlearned
models to be (ϵ, δ)-indistinguishable from re-training:
Definition 2 ((ε, δ)-unlearning (Neel et al., 2021)). U is an (ϵ, δ)-approximate unlearning algorithm
if, for all O ⊂ Θ, SF ⊂ S we have that

Pr [U(A(S), SF) ∈ O] ≤ eϵ Pr [A(SR) ∈ O] + δ, (1)
Pr [A(SR) ∈ O] ≤ eϵ Pr [U(A(S), SF) ∈ O] + δ

This definition (intentionally) resembles differential privacy (Dwork & Roth, 2014), and asks for
the distribution of unlearned models to be statistically close to the distribution of re-trained “oracle”

3

Published as a conference paper at ICLR 2025

models. In particular, this condition guarantees than an adversary who observes the model returned
by the unlearning algorithm U cannot draw any inferences with accuracy that is much higher than if
the model was fully re-trained.

While unlearning algorithms achieving Definition 2 exist for convex models (Neel et al., 2021; Izzo
et al., 2021b; Guo et al., 2019), and for non-convex models when the training process is altered or
under stylized optimization conditions (Bourtoule et al., 2021; Chien et al., 2024; Gupta et al., 2021),
the bulk of ongoing work in unlearning evaluates Definition 2 empirically, rather than as a provable
property. We return to the problem of evaluating unlearning algorithms more carefully in Section 3.

2.2 PREDICTIVE DATA ATTRIBUTION (DATAMODELING)

Our work also draws on a separate line of work in machine learning called data attribution (Koh &
Liang, 2017; Hammoudeh & Lowd, 2024; Ilyas et al., 2024). Broadly, data attribution is an area
concerned with connecting training data samples to the predictions of the corresponding ML models.
Of particular relevance to our work is a particular type of data attribution called predictive data
attribution (also known as datamodeling (Ilyas et al., 2022; Park et al., 2023)).

In predictive data attribution, the goal is to produce an estimator (or datamodel) that takes as input a
training set, and as output accurately predicts the behavior of a machine learning model trained on
that training set. Using our existing notation: for an example x ∈ X , a datamodel for x is a function
f̂ : 2S → Rk such that, for any S′ ⊂ S,

f̂x(S
′) ≈ fx(A(S′)). (2)

In other words, f̂x(S′) directly predicts the result of applying the training algorithm A to the dataset
S′, and evaluating the function f on the resulting model.Despite the complexity of modern training
algorithms A (e.g., training deep neural networks with stochastic gradient descent), Ilyas et al. (2022)
empirically show that linear datamodels often suffice to accurately predict model behavior. In other
words, for an example x, one can compute a vector β ∈ R|S| such that, for subsets S′ ⊂ S,

f̂x(S
′) :=

∑
zi∈S′

βi ≈ fx(A(S′)).

To compute these coefficients, Ilyas et al. (2022) sample a variety of subsets S1, . . . , Sk at random
from S, and then solve the (regularized) regression problem

β = min
w∈Rn

1

m

m∑
i=1

(w⊤1Si − fx(A(Si)))
2 + λ∥w∥1. (3)

They show that despite the datamodel being constructed using random subsets Si ⊂ S, the function
f̂ remains remarkably accurate on non-random datasets (see Ilyas et al. (2022) for a full evaluation).
Linear datamodels are particularly appealing for two reasons. First, the coefficients βi have an
intuitive interpretation as the influence of the i-th training example on a model’s prediction on x
(Koh & Liang, 2017; Feldman, 2021). Second, they establish a connection to a class of statistical
techniques relating to influence functions, which has unlocked a suite of tools for estimating the
coefficients more effectively (Park et al., 2023; Grosse et al., 2023).

3 EMPIRICALLY EVALUATING UNLEARNING

In Section 2, we introduced the unlearning problem, culminating in a formal definition of the problem
(Definition 2). As stated, evaluating whether Definition 2 holds for a given unlearning algorithm is a
difficult problem for several reasons. First, given the overparameterized nature of large-scale models,
fully satisfying Definition 2 is likely impossible, and verifying it involves comparing distributions in
a space with millions or billions of dimensions. Secondly, the definition generally needs to hold over
arbitrary forget sets SF , or at least across a range of forget sets SF likely to occur in practice.

The current evaluation paradigm. To deal with these problems, one typically evaluates unlearning
by focusing on model outputs fx1 rather than model parameters, and testing for the implications of

1A common choice of model output used in prior work, which we will also use, is the margin of the classifier.

4

Published as a conference paper at ICLR 2025

Definition 2 rather than for the definition directly. In particular, the strongest existing unlearning
evaluation for supervised learning, called U-LiRA (Hayes et al., 2024), takes inspiration from
membership inference attacks (MIAs) (Carlini et al., 2022) and evaluates the ability of an adversary
to distinguish between the distribution of outputs of an unlearned model on (a) validation examples
and (b) unlearned examples.

A more direct evaluation. Recall from Section 2 that traditionally the target of unlearning algorithms
has been (ε, δ)-approximate unlearning (Definition 2). Note that in essence, Definition 2 simply asks
for the distribution induced by the unlearning algorithm be “close” to a distribution of models that
have never been trained on SF . In particular, we can view it as a special case of the condition

∆δ(U(A(S), SF), safe(SF)) ≤ ϵ, (4)

where ∆δ is a statistical divergence measure parameterized by δ > 0, and safe(SF) is a distribution
of “safe” models (i.e., models that have not been trained on SF). We can recover Definition 2 exactly
by letting safe(SF) be exactly A(S \ SF), i.e., the distribution of models trained on all but the forget
set and setting ∆δ appropriately.

We make two observations about (4). First, the choice of safe(SF) is somewhat arbitrary, and in
particular any distribution that does not depend on SF , and produces a useful model would suffice.
This includes, for example, distributions A′(S \ SF) for algorithms A′ ̸= A, or distributions of
ensembles of models A(S \ SF). Second, while the ∆δ used in Definition 2 has an appealing privacy
interpretation, it is sensible (especially given our focus on empirical evaluation) to consider other
divergences that are easier to estimate. These two observations inspire a metric that we call KLoM
for empirical unlearning evaluation. KLoM corresponds to Definition 2 where we (a) use ∆ = KL
divergence, (b) allow for an arbitrary “reference distribution” safe(SF), and (c) as in U-LiRA, study
distributions of model outputs fx rather than parameters.
Definition 3 (KL divergence of margins (KLoM)). For an unlearning algorithm U , reference distribu-
tion safe(SF), and input x, the KL divergence of margins (KLoM) is given by

KLoM(U , safe(SF), x) :=DKL(safe(SF), fx(U(A(S), SF))) .

Despite the arbitrariness of safe(SF), unless otherwise noted we will mirror Definition 2 and take
safe(SF) := A(S \ SF). Throughout the rest of this work, we primarily evaluate unlearning algo-
rithms via computing KLoM for different inputs x from the forget set, retain set, and validation set.
We also evaluate our algorithms with U-LiRA, and defer these results to the Appendix.

Compared to U-LiRA, KLoM is simpler to implement, has a natural correspondence with our
original Definition 2, and importantly, does not suffer from catastrophic unlearning: observe that
an unlearning algorithm U that transforms its input into a random classifier will pass an U-LiRA
evaluation, as the random classifier will treat unlearned points and validation points identically. In
contrast, by forcing us to explicitly specify safe(SF), KLoM explicitly compares unlearned models
to a baseline whose performance we know a priori. Crucially, both KLoM and U-LiRA evaluate
unlearning algorithms using point-specific distributional estimates, which as observed in Hayes et al.
(2024) makes these evaluations far more stringent than prior approaches.

4 DMM: UNLEARNING BY SIMULATED ORACLE MATCHING

Having defined an evaluation apparatus, we now introduce our algorithm for machine unlearning.
We first motivate the algorithm by observing a common challenge in existing methods. We then,
in Section 4.2, propose an effective hypothetical algorithm for unlearning, under the unrealistic
assumption that we have access to outputs of the “oracle” model. In Section 4.3, we show how to
accurately simulate such oracle outputs using data attribution methods. Finally, in Section 4.4, we
combine these insights and present our final algorithm, datamodel matching (DMM), and demonstrate
its effectiveness and efficiency.

4.1 MOTIVATION: THE MISSING TARGETS PROBLEM

Recall that the goal of unlearning is to approximate an oracle model, i.e., a model that was never
trained on a given “forget set” of data. In strongly convex settings, this oracle model is unique, since

5

Published as a conference paper at ICLR 2025

it corresponds to the minimizer of a strongly convex loss function over the complement of the forget
set (called the retain set). Thus, running gradient descent (GD) on the retain set loss yields a provable
(and in some cases, efficient (Neel et al., 2021)) unlearning algorithm.

In the context of deep neural networks, however, GD alone is insufficient. In these settings, the loss
function and training data alone do not fully specify the final model. In particular, once we have
already minimized loss on the forget set, applying GD on the retain set does not significantly alter
forget set predictions, preventing us from recovering the oracle model. Many unlearning methods for
deep neural networks (Triantafillou et al., 2023; Kurmanji et al., 2023) thus actively increase loss on
the forget set (e.g., via gradient ascent) while maintaining performance on the retain set.

This general approach comes with a significant set of drawbacks, which we collectively refer to as
the missing targets problem. First, the assumption that forget set points will increase in loss after
unlearning and retain set points will not is not necessarily correct. For example, if there are duplicated
points across the forget and retain sets, then loss on points in the retain set might increase, while
loss on points in the forget set might not change. Second, even for a forget set point whose loss does
increase under the oracle model, our goal is not to increase loss arbitrarily, but instead only until it
reaches its “target value” under the model. Since we lack access to these values, it is challenging
to know when a given forget set point has been “unlearned.” Prior work tries to address this by
devising heuristic regularization schemes, e.g., via early stopping, but nevertheless often overshoot or
undershoot the target loss for a given data point. Figure 2 illustrates this phenomenon for a popular
unlearning algorithm called SCRUB: over iterations of the algorithm, different points are unlearned
(and then subsequently “overshot”) at different points in time (Hayes et al., 2024).

2 4 6 8 10
Epoch

0

10

20

30

40

50

Pr
ob

ab
ili

ty
 o

f m
ar

gi
n

w
ith

in
 o

ra
cl

e
di

st
ri

bu
tio

n

Forget set

2 4 6 8 10
Epoch

0

10

20

30

40

50
Retain set

2 4 6 8 10
Epoch

0

10

20

30

40

50
Validation set

SCRUB

Figure 2: The missing targets problem. We apply the SCRUB (Kurmanji et al., 2023) algorithm to
unlearn a forget set of CIFAR-10, and measure how well different (random) points are unlearned over
time. To quantify how well a given point x is unlearned, we fit a Gaussian distribution to the outputs
of oracle models on x, and compute the likelihood of the average outputs from unlearned models
under this distribution. For many examples in the forget set (shown in red), unlearning quality is hurt
by training for too long as we lack access to oracle targets.

4.2 THE ORACLE MATCHING ALGORITHM

In essence, the underlying challenge is that we do not know the oracle model’s behavior a priori. But
what if we did have access to its predictions? In particular,

Given access to sample outputs from the oracle model (re-trained without the forget set), can we
efficiently fine-tune an existing model (trained on the full dataset) to match the outputs out of sample?

While assuming access to oracle outputs is unreasonable—since our goal is to produce an oracle
model in the first place—later in Section 4.4, we will replace oracle access with an efficient proxy
using data attribution. For now, we simply assume we have direct access to oracle predictions, and
focus on understanding whether gradient-based optimization can match predictions of the oracle.
Even in this idealized setting, it is not clear how fast (if at all) gradient descent can converge to an
oracle model. For example, whether we can do this efficiently with a small sample is unclear; it is
possible that fine-tuning the trained model can match the oracle predictions on the sampled points,
but fail to generalize when evaluated on held-out points.

Formally, we assume access to predictions of an oracle model f oracle(x) := fx(A(SR)), where again
SR is the retain set and fx is the evaluation of the model on input x (e.g., in classification settings one
can take f to be the logits of the neural network). The Oracle Matching (OM) algorithm runs gradient
descentto minimize the MSE between the output logits from the model fx(θ) and oracle predictions
f oracle(x) on samples x from the forget and retain sets; see the pseudocode in Algorithm C.1.

6

Published as a conference paper at ICLR 2025

Evaluating oracle matching. We evaluate OM on various forget sets on two image classification
tasks: ResNet-9 models trained on CIFAR-10 and ResNet-18 models trained on an ImageNet subset
Living-17 (Santurkar et al., 2020). We compare OM to the following unlearning baselines:2 gradient
ascent (GA) on forget set, gradient descent (GD) on retain set, SCRUB (Kurmanji et al., 2023), a
no-op “Do Nothing” baseline, and partial or full re-training. We evaluate all methods using KLoM
(Section 3) over distribution of 100 unlearned (method-specific) and 100 re-trained models (see
Appendix F for more details).

0.0 0.5 1.0
0

5

10

C
IF

AR
-1

0

K
Lo

M
 (

)

Average

GA
GD
SCRUB
Do Nothing
Retrain
Oracle
Oracle Matching

0.0 0.5 1.0

Forget

0.0 0.5 1.0

Retain

0.0 0.5 1.0

Validation

0.0 0.5 1.0
0

5

10

LI
VI

N
G

-1
7

K
Lo

M
 (

)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Time (fraction of full re-training;)

Figure 3: Oracle matching can efficiently approximate re-training. The KLoM metric (y-axis)
measures the distributional difference between unlearned predictions and oracle predictions (0 being
perfect). We also show the amount of compute relative to full re-training (x-axis). We evaluate
KLoM values over points in the forget, retain, and validation sets and report the 95th percentile in
each group; we also report the average across groups (1st column).

The results (Figure 3) demonstrate that OM is able to efficiently match the predictions of the oracle.
Models unlearned with OM closely match the oracle distribution—as measured by KLoM scores—
across all splits of the dataset (forget, retain, and validation sets), significantly outperforming all of
the prior gradient-based approaches. Importantly, OM achieves effective unlearning while using less
than 5% of the compute of full-retraining. In contrast, matching the performance of OM on the forget
set by retraining requires spending more than 60% of full retraining time. The success of OM implies
that for any given trained model θ and the forget sets we studied: i) there exists another model θ′
close in parameter space that yields similar predictions as an oracle retrained without the forget set;
and ii) θ can be fine-tuned to quickly converge to θ′ with a sufficient sample of oracle outputs. We
find that using a sufficiently high ratio of forget points in the fine-tuning set and a sufficient fraction
of retain points (but still much smaller than the full train set) is able to provide enough guidance (see
Appendix G for exact details).

4.3 AN EFFICIENT PROXY FOR ORACLES: DATAMODELS

We saw that OM is highly effective at approximating oracle outputs, but OM is not a practical
algorithm as it assumes access to oracle outputs. To now turn this into a practical algorithm, we
leverage methods for predictive data attribution (introduced in Section 2) to simulate oracle outputs.

Recall that a datamodel f̂x predicts the counterfactual output of the model on input x when trained on
an arbitrary subset S \ SF : f̂x(S \ SF) ≈ fx(A(S \ SF)). In the case of linear datamodels, we can
parameterize the datamodel with a vector β(x) so that f̂x(S \ SF) :=

∑
i∈S\SF

βi(x). Leveraging
linearity, we can re-write this as

∑
i∈S βi(x)−

∑
i∈SF

βi(x), and we also replace the first term with
the starting model output fx(θ0). Our general algorithm, DM-DIRECT (Appendix C.2), simulates the
oracle outputs as h(x) := fx(θ0)−

∑
i∈SF

βi(x).

Estimating datamodels. To estimate datamodels, we follow the approach in (Ilyas et al., 2022):
we train models random subsamples of the full training set and use sparse linear regression to fit
datamodel vectors β(x) (later in Appendix G.2 we explore alternative estimators).

2See Appendix D.4 for detailed descriptions of each.

7

Published as a conference paper at ICLR 2025

Evaluating DM-DIRECT. In Figure 4, we compare model outputs on random forget and retain
examples; the histograms show that the unlearned outputs from DM-DIRECT closely approximate
the true oracle outputs. KLoM evaluations (Figure 1) show that DM-DIRECT (green line) in produces
outputs close in distribution to that from oracle re-training for almost all points in the data distribution.

5 0 5 10
0.0

0.1

0.2

0.3

D
en

si
ty

Forget example 1

10 5 0 5 10
0.0

0.1

0.2

0.3

Forget example 2

5 0 5 10
0.0

0.1

0.2

0.3

0.4
Forget example 3

5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

Retain example 1
oracle
unlearned
null

Margin

Figure 4: Datamodels predict oracle outputs. For random samples from the forget and retain sets,
we compare the distribution (across multiple runs) of margins when evaluted on that example across
three settings: i) null (model on full dataset); ii) oracle (model re-trained without forget set); and
iii) unlearned (using DM-DIRECT). In every case, the predicted outputs (orange) closely match the
ground-truth (oracle), demonstrating the effectiveness of datamodels as a proxy for oracle outputs.

4.4 ORACLE MATCHING WITH DATAMODELS

Now that we have an efficienty proxy for oracle outputs via datamodels, we revisit the OM algorithm
from earlier. Our final algorithm, datamodel matching (DMM), first uses datamodels to generate
approximations of oracle predictions on a subset of retain points and the forget points, and then runs
OM on the datamodel predictions (see Appendix C.3 for pseudocode).

In Figure 1, we contextualize the performance of DMM against baselines and DM-DIRECT from earlier.
DMM achieves levels of unlearning similar to that of fully retraining the model (as measured by
KLoM scores), while using significantly less compute.3 Using datamodels allow us to recover the
performance of OM, and outperforms all prior gradient-based approaches. Importantly, DMM also
matches the test accuracy of the oracle model and maintains accuracy on the points in the retain set
(Appendix H.4), a common failure mode in prior methods. In particular, DMM is significantly more
effective than partially re-training given the same computational budget. We do not include the cost of
computing datamodels as this is a one-time cost and hence amortized over many unlearning requests.
4 This is possible because once a predictive datamodel has been constructed (either via re-sampling
as done here or influence function-like approximations, which we explore in Appendix G.2), the
datamodel generalizes well to new forget sets in practice.

To better understand DMM, in Appendix G, we ablate different components of oracle matching and
datamodel estimation. We show that OM addresses the motivating problem of missing targets, leading
to stability in optimization. We also show that leveraging more efficient estimators for datamodels
such as TRAK (Park et al., 2023) still yields effective unlearning via DMM.

5 ORACLE MATCHING FOR LINEAR MODELS

We have seen that empirically OM outperforms standard gradient-based unlearning methods, and we
have highlighted the missing targets problem as one possible explanation. Are there other factors that
contribute to the success of OM relative to prior methods gradient-based methods, and can we better
understand what settings we expect OM to perform well? This motivates studying a setting where
the missing targets problem is neutralized: when the objective is strongly convex. In this setting,
the unlearned model is the unique empirical risk minimizer on XR, and GD initialized at the current
model is a provably effective unlearning algorithm (Neel et al., 2020). Even in the setting when GD
on its own can converge, does providing “guidance” from an oracle help?

We answer this affirmitively: First, in Subsection 5.1, empirically identify two factors that influence
whether OM outperforms GD: the degree of regularization and stochasticity in optimization. Next, in

3We only count the finetuning cost; the cost of computing datamodels is amortized across unlearning updates.
4The practice of not including pre-computation costs is standard in literature, e.g., Izzo et al. (2021a).

8

Published as a conference paper at ICLR 2025

Subsection 5.2, we theoretically characterize the exact convergence rates of full batch OM and GD to
the unlearned model in terms of the degree of regularization and the relative eigenmass on the forget
and retain sets. Unlike in the full-batch setting where both algorithms converge at a linear rate, in the
stochastic setting we show that OM converges exponentially faster than SGD, which sheds light on the
superior performance of stochastic OM in our empirical results.

Setting. We consider the following ridge regression algorithm, given by

A(S) := argmin
θ

∑
(xi,yi)∈S

(
θ⊤xi − yi

)2
+ λ∥θ∥22, (5)

where xi ∈ Rd are the training inputs, yi ∈ R are the corresponding labels, and the setting is
overparameterized, so d > |S|. Given a model θfull = A(S) trained on a full dataset S, our goal is to
unlearn the forget set SF ⊂ S by obtaining a model that minimizes the objective on the retain set
SR = S \ SF . For convenience, we use X , XR, and XF to denote the covariate matrices for the full
dataset S, the retain set SR, and the forget set SF respectively. We choose the under-determined ridge
regression for three reasons: (a) The objective (5) is strongly convex, and so GD on XR is guaranteed
to compute the (unique) unlearned model if ran for sufficiently many iterations; (b) the least-squares
objective is amenable to theoretical analysis; and (c) the over-parameterized setting is most relevant
to modern deep learning models where d≫ n.

Unlearning algorithms. Let θ∗ = A(SR) be the minimizer of the ridge regression objective on
the retain set (i.e., the unlearning target). Starting from θfull = A(S), we evaluate several iterative
first-order unlearning algorithms in terms of their ability to recover θ∗: (i) GD minimizes the ridge
regression objective on the retain set SR using gradient descent with constant step size, starting
from θfull, (ii) GDA incorporates forget set points in the gradient descent updates, combining gradient
descent on the retain set with gradient ascent on the forget set; (iii) OM assumes query access to an
unlearned model θ∗, and uses gradient descent (with constant step size) to minimize squared error
with respect to “oracle” predictions x⊤

i θ
∗ on the full dataset, aiming to minimize ||Xθ −Xθ∗||2;

OMRS performs gradient descent on the squared error from oracle predictions but only on the retain
set, thereby minimizing the objective ∥XRθ

∗−XRθ∥2. We analyze both the full-batch and stochastic
versions of these methods. See Appendix E.3 for details on the setup of the algorithms we evaluate.

OM OM retain set GD GD+GA

0 50 100 150 200
number of steps

0.0

0.2

0.4

0.6

0.8

1.0

R
(

t)

(a) small λ, full-batch

0 5 10 15 20 25 30
number of steps

0.0

0.2

0.4

0.6

0.8

1.0

R
(

t)

(b) large λ, full-batch

0 50 100 150 200 250 300
number of steps

0.0

0.2

0.4

0.6

0.8

1.0

R
(

t)

(c) small λ, stochastic

0 50 100 150 200 250 300
number of steps

0.0

0.2

0.4

0.6

0.8

1.0

R
(

t)

(d) large λ, stochastic

Figure 5: Comparing unlearning methods for a linear model with d = 400, n = 100, |SF | = 5. The
y-axis shows the relative squared distance to the optimal unlearned model R(θt) =

∥θ∗−θt∥
∥θ∗−θfull∥ , where

θt is the iterate at time t, θfull is the model trained on all data, and θ∗ is the optimal unlearned model.

5.1 LINEAR MODEL EXPERIMENTS

Figure 5a depicts the performance of the four unlearning algorithms we consider with low regular-
ization (λ = 4) in the full-batch setting. We observe that OM converges to the unlearned solution
much faster GD, while GDA and OMRS both fail to converge even as t → ∞. Given that OMRS
makes negligible progress, we can conclude that the success of OM is due to inclusion of the forget
points. Investigating further, we observe that during unlearning, the model parameters change the
most in directions orthogonal to the retain set: despite the fact that 24% of the mass of the forget set
points lies in the span of the retain set, this span actually captures less than 0.01% of the mass of the
ground-truth update θ∗ − θfull. GD is only able to make progress orthogonally to the retain set due to
the the ℓ2 regularization term, and when λ is low, this rate of progress is slow. On the other hand, OM
makes rapid progress in these directions due to the inclusion of forget set points. In Figure 5b, we
consider the same setting as above but set λ to a much larger value of 400. Here, GD converges slightly
faster than OM due to the stronger ℓ2 regularization, which aids GD in converging along directions

9

Published as a conference paper at ICLR 2025

orthogonal to the retain set. Thus, OM converges faster than GD when λ is moderate but can be
slower with large λ. In both settings OMRS and GDA do not successfully converge, but GDA—guided
by the heuristic use of the forget set points—initially makes significant progress towards θ∗ before
eventually diverging. In Figures 5c and 5d, we replicate the experiments above with stochastic
variants of the unlearning algorithms. As in the non-stochastic case, we see the OM on the retain set
fails to make any progress, and that GDA makes quick progress but then diverges. However, unlike in
the full-batch setting, SOM outperforms SGD in both the large and small λ settings (see Appendix
E.3 for a discussion). This surprising finding is characterized in Theorem 2 below, where we show
that SOM converges exponentially faster than SGD.

5.2 CONVERGENCE THEORY

We now turn to studying the algorithms theoretically, starting with the full-batch case, corresponding
to Figures 5a and 5b above; then the stochastic/minibatched case (Figures 5c and 5d). In all cases, we
will focus on the two convergent algorithms above: oracle matching and ridge gradient descent.

Full-batch case. In Theorem 1, we provide a theoretical analysis of the convergence rates of GD and
OM. The key takeaway here is that the convergence rate for both algorithms depends on both (a) the
relative eigenmass of the forget and retain sets; and (b) the strength of the ridge regularization.
Theorem 1 (Proof in Appendix E.1). Let S and SR be the full training set and the retain set
respectively, with input matrices X and XR and corresponding labels y and yR. Additionally, let θfull
and θ∗ denote the optima of the ridge objective (5) for the full data S and retain set SR respectively.
After t iterations of unlearning starting from θfull, the iterate θt satisfies

θt − θ∗ =

(I − 2ηλ)
t
(
I − 2η

1−2ηλX
⊤
RXR

)t
(θfull − θ∗) for ridge gradient descent (GD).(

I − 2ηX⊤X
)t
(θfull − θ∗) for oracle matching (OM).

Theorem 1 shows that both (full-batch) OM and GD exhibit linear convergence, albeit at different
rates. Indeed, in directions orthogonal to the retain set, the middle term in the GD convergence rate
disappears, and so the rate depends only on ηλ. Thus, as long as the learning rate η is set high enough
(i.e., not to cancel out the λ) higher regularization will cause GD to converge faster.

Stochastic case. In our experimental analysis, we saw that unlike the full-batch case, the stochastic
version of oracle matching was consistently more effective than that of gradient descent. In Theorem 2
we show that, at least in the setting of under-determined ridge regression we consider here, this
observation is strongly supported by theory. In particular, we show that while OM converges at a
linear rate (i.e., exponentially fast in t), we can show a Ω(1

t2) lower bound on the convergence of
SGD, giving a strong separation between the two methods.
Theorem 2 (Proof in Appendix E.2). Consider the setting of Theorem 1, where θt is the iterate after
t steps of unlearning initialized at θfull. Further let γmin, γmax denote the minimum and maximum
eigenvalues of X⊤X , and let A and B be lower and upper bounds on the norm of the covariates (i.e.,
B ≥ ∥xi∥ ≥ A for all i). Then, as long as the learning rate η ∈ (0, 2

5(γmax+λ)) and rank(X) > 1,

E
[
∥θt − θ∗∥2

]
∥θfull − θ∗∥2

∈
{
O ((1− γminη)

t) for oracle matching (OM).
Ω
(

1
t2

)
for ridge gradient descent (GD).

(6)

The intuition is as follows. In each update step, stochastic OM updates the model parameters only in
the span of the random subset of points used for that update. In contrast, stochastic GD decays the
model parameters in other directions due to the regularization term. (Recall that this is what led to
GD’s improved convergence in the high-regularization setting.) While this shrinkage is beneficial
in the subspace orthogonal to the retain set, stochastic GD also decays the parameters along the
directions spanned by retain set points that are not in the current batch. So, while increasing λ
improves full-batch GD’s convergence speed, this advantage does not hold for stochastic GD.

6 CONCLUSION

In this work, we have shown that reducing unlearning to predictive data attribution yields a general
and effective framework for unlearning.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

We thank Jamie Hayes and Ilia Shumailov for discussions on machine unlearning and ULIRA. We
thank Salil Vadhan for some useful discussions throughout the paper. RR was supported in part
by NSF grant BCS-2218803. Additionally, we acknowledge Harvard SEAS and MIT CSAIL for
providing computational resources.

REFERENCES

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate
unrolled differentation. arXiv preprint arXiv:2405.12186, 2024.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning, 2020a. URL
https://arxiv.org/abs/1912.03817.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning, 2020b. URL
https://arxiv.org/abs/1912.03817.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pp.
141–159. IEEE, 2021. doi: 10.1109/SP40001.2021.00019. URL https://doi.org/10.
1109/SP40001.2021.00019.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897–1914. IEEE, 2022.

Eli Chien, Haoyu Wang, Ziang Chen, and Pan Li. Stochastic gradient langevin unlearning, 2024.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
gpt? llm-scale data valuation with influence functions. arXiv preprint arXiv:2405.13954, 2024.

Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding, and Eric Wong. Avoiding copyright infringe-
ment via machine unlearning, 2024. URL https://arxiv.org/abs/2406.10952.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy, aug 2014. ISSN
1551-305X. URL https://doi.org/10.1561/0400000042.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms. arXiv
preprint arXiv:2310.02238, 2023.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
with datamodels, 2024.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail, 2021. URL
https://arxiv.org/abs/1906.05271.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
gradient methods. arXiv preprint arXiv:2301.11235, 2023.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making ai forget you: Data
deletion in machine learning. In Proceedings of the 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), 2019.

11

https://arxiv.org/abs/1912.03817
https://arxiv.org/abs/1912.03817
https://doi.org/10.1109/SP40001.2021.00019
https://doi.org/10.1109/SP40001.2021.00019
https://arxiv.org/abs/2406.10952
https://doi.org/10.1561/0400000042
https://arxiv.org/abs/1906.05271

Published as a conference paper at ICLR 2025

Shashwat Goel, Ameya Prabhu, Amartya Sanyal, Ser-Nam Lim, Philip Torr, and Ponnurangam
Kumaraguru. Towards adversarial evaluations for inexact machine unlearning. arXiv preprint
arXiv:2201.06640, 2022.

Shashwat Goel, Ameya Prabhu, Philip Torr, Ponnurangam Kumaraguru, and Amartya Sanyal. Cor-
rective machine unlearning, 2024. URL https://arxiv.org/abs/2402.14015.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2021.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. In International Conference on Machine Learing (ICML), 2019.

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris
Waites. Adaptive machine unlearning. ArXiv, abs/2106.04378, 2021. URL https://api.
semanticscholar.org/CorpusID:235367846.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
Machine Learning, 113(5):2351–2403, 2024.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact
unlearning needs more careful evaluations to avoid a false sense of privacy, 2024.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry.
Datamodels: Predicting predictions from training data. CoRR, abs/2202.00622, 2022. URL
https://arxiv.org/abs/2202.00622.

Andrew Ilyas, Kristian Georgiev, Logan Engstrom, and Sung Min (Sam) Park. Data attribution
at scale: Icml 2024 tutorial, 2024. URL https://ml-data-tutorial.org/. Accessed:
2024-09-24.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2021a.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models, 2021b.

Louis A Jaeckel. The infinitesimal jackknife. Bell Telephone Laboratories, 1972.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma,
and Sijia Liu. Model sparsity can simplify machine unlearning, 2024. URL https://arxiv.
org/abs/2304.04934.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan
Zhu. Ablating concepts in text-to-image diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 22691–22702, 2023.

12

https://arxiv.org/abs/2402.14015
https://api.semanticscholar.org/CorpusID:235367846
https://api.semanticscholar.org/CorpusID:235367846
https://arxiv.org/abs/2202.00622
https://ml-data-tutorial.org/
https://arxiv.org/abs/2304.04934
https://arxiv.org/abs/2304.04934

Published as a conference paper at ICLR 2025

Meghdad Kurmanji, Peter Triantafillou, and Eleni Triantafillou. Towards unbounded machine
unlearning. arXiv preprint arXiv:2302.09880, 2023.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D. Li,
Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-Burger,
Rassin Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass, Oliver Zhang,
Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao, Ariel Herbert-Voss,
Cort B. Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika, Zifan Wang, Palash
Oswal, Weiran Lin, Adam A. Hunt, Justin Tienken-Harder, Kevin Y. Shih, Kemper Talley, John
Guan, Russell Kaplan, Ian Steneker, David Campbell, Brad Jokubaitis, Alex Levinson, Jean Wang,
William Qian, Kallol Krishna Karmakar, Steven Basart, Stephen Fitz, Mindy Levine, Ponnurangam
Kumaraguru, Uday Tupakula, Vijay Varadharajan, Ruoyu Wang, Yan Shoshitaishvili, Jimmy Ba,
Kevin M. Esvelt, Alexandr Wang, and Dan Hendrycks. The wmdp benchmark: Measuring
and reducing malicious use with unlearning, 2024. URL https://arxiv.org/abs/2403.
03218.

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners, 2022. URL https://arxiv.org/abs/2110.05679.

Ken Ziyu Liu. Machine unlearning in 2024, Apr 2024. URL https://ai.stanford.edu/
~kzliu/blog/unlearning.

Siqiao Mu and Diego Klabjan. Rewind-to-delete: Certified machine unlearning for nonconvex
functions, 2025. URL https://arxiv.org/abs/2409.09778.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning, 2020.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. In Proceedings of the 32nd International Conference on Algorithmic
Learning Theory (ALT), 2021.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale, 2023.

Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
as few shot unlearners, 2023.

Martin Pawelczyk, Jimmy Z Di, Yiwei Lu, Gautam Kamath, Ayush Sekhari, and Seth Neel. Machine
unlearning fails to remove data poisoning attacks. arXiv preprint arXiv:2406.17216, 2024a.

Martin Pawelczyk, Jimmy Z Di, Yiwei Lu, Gautam Kamath, Ayush Sekhari, and Seth Neel. Machine
unlearning fails to remove data poisoning attacks, 2024b.

Daryl Pregibon. Logistic regression diagnostics. The annals of statistics, 9(4):705–724, 1981.

Xinbao Qiao, Meng Zhang, Ming Tang, and Ermin Wei. Hessian-free online certified unlearning,
2025. URL https://arxiv.org/abs/2404.01712.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D Cotterell. Linear adversarial concept
erasure. In International Conference on Machine Learning, pp. 18400–18421. PMLR, 2022.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpopulation
shift. In ArXiv preprint arXiv:2008.04859, 2020.

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable
algorithmic definitions for machine unlearning. In 31st USENIX Security Symposium (USENIX
Security 22), pp. 4007–4022, 2022.

Eleni Triantafillou, Fabian Pedregosa, Isabelle Guyon, Sergio Escalera, Julio C. S. Jacques Ju-
nior, Gintare Karolina Dziugaite, Peter Triantafillou, Vincent Dumoulin, Ioannis Mitliagkas,
Lisheng Sun Hosoya, Meghdad Kurmanji, Kairan Zhao, Jun Wan, and Peter Kairouz. Neurips
2023 machine unlearning challenge. https://unlearning-challenge.github.io,
2023. Accessed: 2024-05-29.

13

https://arxiv.org/abs/2403.03218
https://arxiv.org/abs/2403.03218
https://arxiv.org/abs/2110.05679
https://ai.stanford.edu/~kzliu/blog/unlearning
https://ai.stanford.edu/~kzliu/blog/unlearning
https://arxiv.org/abs/2409.09778
https://arxiv.org/abs/2404.01712
https://unlearning-challenge.github.io

Published as a conference paper at ICLR 2025

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
models. In International Conference on Machine Learning, pp. 10355–10366. PMLR, 2020.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning, 2024. URL https:
//arxiv.org/abs/2310.10683.

Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen.
Mquake: Assessing knowledge editing in language models via multi-hop questions. arXiv preprint
arXiv:2305.14795, 2023.

14

https://arxiv.org/abs/2310.10683
https://arxiv.org/abs/2310.10683

Published as a conference paper at ICLR 2025

Appendices
A Limitations 16

B Related work 16

C Pseudocode 18
C.1 Oracle Matching . 18
C.2 Datamodel Direct . 18
C.3 Datamodel Matching . 18

D Experimental setup 19
D.1 Training setup . 19
D.2 Constructing forget sets . 19
D.3 Datamodel estimation . 19
D.4 Unlearning Baselines . 19

E Linear model analysis 21
E.1 Proof of Theorem 1 . 21
E.2 Proof of Theorem 2 . 21
E.3 Experiment details . 24
E.4 Additional experiments . 25

F Unlearning evaluation 27
F.1 KL Divergence of Margins (KLoM) . 27
F.2 U-LiRA . 28
F.3 Comparing U-LiRA to KLoM . 30
F.4 Sensitivity of unlearning to models and forget sets 31

G Understanding effectiveness of datamodel matching 32
G.1 Unlearning stability of OM . 32
G.2 Datamodel ablations . 33

H Additional results 36
H.1 Hyperparameter sensitivity of unlearning algorithms 36
H.2 Per-sample unlearning over time . 37
H.3 Full KLoM evaluation . 38
H.4 Model accuracy after unlearning . 39

15

Published as a conference paper at ICLR 2025

A LIMITATIONS

In this work, we presented a general framework for reducing unlearning to the related problem of
predictive data attribution. Our fine-grained evaluations using KLoM—which directly measures the
quality of unlearning in terms of the difference in the distributions of the unlearned model’s outputs
from oracle counterparts—demonstrate that DMM significantly outperforms prior gradient-based
unlearning methods and approaches the performance of oracle re-training. To conclude, we discuss
some limitations and promising directions for future work:

Extending techniques and evaluations beyond classification. While our methods perform well in
classification settings with few classes, extending them to work in settings with more classes (e.g.,
full ImageNet or language-modeling) would make them more practical. Extending our techniques
directly (i.e., attributing and estimating all class logits) would incur a heavy computational cost, so
additional techniques will be necessary to make the algorithms more scalable.

Improving and understanding oracle matching. As we saw in ??, OM and DMM can sometimes
cause a mismatch on the retain set due to “reversing the overfitting.” [Roy: todo- provide a reference
to where this is defined.] Better understanding the dynamics of the OM algorithm and leveraging
other insights (e.g., from the model distillation literature) would be valuable for making the matching
part of our framework more stable. One potential direction is to understand when and how better
sampling strategies (instead of random subsampling of the retain set) can improve general matching
algorithms. [Sam: + more clever sampling strategies]

Reducing computational costs. Even the most efficient data attribution methods require a non-trivial
computational cost (at least on the same order as training the original model). Can we design other
cheaper alternatives for data attribution that we can still leverage for—and are possibly tailored
to—practical unlearning scenarios without the full computational cost?

Applying to more practical scenarios. In our analysis, we only considered single unlearning requests
(i.e., removing one forget set). A natural way of extending them to multiple unlearning requests is
to apply DMM sequentially. However, it is plausible that after too many unlearning updates with
DMM, the model diverges far enough so that we need to “recalibrate“ the pre-computed datamodels.
Analyzing how well existing unlearning algorithms and DMM compose under multiple unlearning
requests and other practical scenarios can be valuable for understanding the practicality and failure
modes of these methods.

B RELATED WORK

We provide a high level overview of prior works most relevant to our setting. For a more extensive
survey of unlearning, see Liu (2024).

Machine unlearning: goals and evaluations. While other lines of work also study unlearning
“concepts” or “knowledge” (Ravfogel et al., 2022; Eldan & Russinovich, 2023; Kumari et al., 2023;
Zhong et al., 2023), we focus on the data-driven notion of unlearning (Cao & Yang, 2015; Ginart
et al., 2019; Wu et al., 2020; Neel et al., 2021; Bourtoule et al., 2020b). Our focus is on approximate
unlearning methods. However, other works (e.g., Bourtoule et al. (2020b)) aim for exact unlearning
(e.g., by careful data partitioning and ensembling or leveraging differential privacy). While these
approaches come with provable guarantees, they often come at the cost of accuracy (Bourtoule et al.,
2020b), so most unlearning algorithms for deep learning are approximate. This approximate nature
necessitates empirical evaluations in lieu of a provable guarantee. One line of work adapts membership
inference attacks (MIAs) to evaluate machine unlearning (Golatkar et al., 2020; Goel et al., 2022;
Hayes et al., 2024). Complementary to that, Pawelczyk et al. (2024a) evaluate machine unlearning
methods’ ability to remove backdoor attacks from the training set. More broadly, evaluation in these
setting can be nuanced: Thudi et al. (2022) argue that due to the stochastic nature of deep learning
optimization, approximate evaluation of machine unlearning is only well-defined on an algorithmic
level, and not on an individual model instance level.

Prior unlearning approaches in deep learning. Due to challenges of developing rigorous un-
learning methods in non-convex settings, typical approaches involve some form of gradient-based

16

Published as a conference paper at ICLR 2025

optimization. Strategies include: partial fine-tuning (Goel et al., 2022), combinations of gradient
descent and ascent (Kurmanji et al., 2023), and sparsity-regularized fine-tuning (Jia et al., 2024)
among others. Our approach also employs fine-tuning, but differs primarily in that we address the
common problem of “missing targets.” Other approaches employ parameter updates based on a local
quadratic approximation (Golatkar et al., 2020; ?) or influence function approximations (?); these
can be interpreted as also leveraging different forms of data attribution. However, our approach is
unique in its use of predictive data attribution only as guidance and still employing fine-tuning, which
is a more flexible and robust strategy than direct parameter updates.

The primary method we compare against is SCRUB (and SCRUB+R) as it achieves the current state-
of-the-art on strong unlearning evaluations Hayes et al. (2024). At a high level, SCRUB finetunes the
original model to: i) maximize the KL divergence between the probabilities of the original model
and the new model on forget points; ii) minimize the KL divergence on retain points; and iii) also
minimize test loss. Despite their alternative design choices from other fine-tuning approaches (e.g.,
use of KL divergence), our analyses suggest that it suffers from similar underlying challenges.

Data attribution. Key to our framework is a reduction to the problem of predictive data attribu-
tion (Ilyas et al., 2022; Park et al., 2023). More broadly, the problem of attributing model predictions
back to training data has been extensively studied in recent machine learning literature (Koh & Liang,
2017; Park et al., 2023; Engstrom et al., 2024; Grosse et al., 2023; Choe et al., 2024; Bae et al., 2024),
with some of the ideas originating from statistics (Hampel, 1974; Jaeckel, 1972; Pregibon, 1981). For
an extensive survey on the topic, refer to Hammoudeh & Lowd (2024); Ilyas et al. (2024).

Model distillation. Our approach of fine-tuning on (simulated) oracle predictions has some similarity
to a different line of work on knowledge distillation (?), e.g., distilling an existing “teacher” model
(possibly an ensemble) to a “student” model (often smaller). We can cast oracle matching as distilling
an oracle model into the current model. The main difference, however, is that in our setting, the
model we fine-tune is already trained on the full dataset, and our goal is only to apply a small update
to this model.

17

Published as a conference paper at ICLR 2025

C PSEUDOCODE

C.1 ORACLE MATCHING

Algorithm C.1 Oracle Matching (OM)

1: Input: Trained model θ0; oracle predictions f oracle(x); fine-tuning set size r
2: Output: Unlearned model θ
3: for t = {1, ..., T} do ▷ T epochs
4: S′

R ← S \ SF ▷ Sub-sample r points from retain set
5: Sfine-tune = SF

⋃
S′
R

6: for x ∼ Sfine-tune do ▷ mini-batch
7: L(θt) = ∥fx(θt)− f oracle(x)∥2 ▷ Compute loss
8: θt+1 = θt − ηt · ∇θL(θt) ▷ Perform update with gradient
9: end for

10: end for
11: Return Model θ = θT

C.2 DATAMODEL DIRECT

Algorithm C.2 DM-DIRECT

1: Input: Trained model θ0; datamodels β(x) for each x ∈ S; forget set SF

2: Output: A predictor h(·) : S 7→ Rk

3: h(x) := fx(θ0)−
∑

i∈SF

βi(x)

4: End

C.3 DATAMODEL MATCHING

Algorithm C.3 Datamodel Matching (DMM)

1: Input: Trained model θ0; datamodels β(·); fine-tuning set size r
2: Output: Unlearned model θ
3: S′

R ← S \ SF ▷ Sub-sample r points from retain set
4: Sfine-tune = SF

⋃
S′
R

5: h← DM-DIRECT(θ0, β, Sf) ▷ Simulate oracles with datamodels
6: for t = {1, ..., T} do ▷ T epochs
7: for x ∼ Sfine-tune do ▷ mini-batch
8: L(θt) = ∥fx(θt)− h(x)∥2 ▷ Compute loss
9: θt+1 = θt − ηt · ∇θL(θt) ▷ Perform update with gradient

10: end for
11: end for
12: Return Model θ = θT

18

Published as a conference paper at ICLR 2025

D EXPERIMENTAL SETUP

D.1 TRAINING SETUP

For CIFAR-10, we train ResNet-9 models5 for 24 epochs with SGD with a batch size of 512,
momentum 0.9, and weight decay 5e − 4. We set learning rate initially at 0.4, and a single-peak
cosine schedule peaking at the 5th epoch. We use a momentum of 0.9 and a weight decay of 5e− 4.

For ImageNet Living17 (Santurkar et al., 2020), we train ResNet-18 models for 25 epochs using SGD
with a batch size of 1024, momentum 0.9, and weight decay 5e− 4. Label smoothing is set to 0.1.

D.2 CONSTRUCTING FORGET SETS

We evaluate methods across various types and sizes of forget sets to test the robustness of unlearning.
Our selection of unlearning scenarios span both random and non-random forgets of different sizes;
that said, we view the non-random sets as practically more interesting. Compared to prior work, our
target sets are harder to unlearn as we remove a small coherent subpopulation as opposed to an entire
class.

On CIFAR-10, we use 9 different forget sets: sets 1,2,3 are random forget sets of sizes 10,100,1000
respectively; sets 4-9 correspond to semantically coherent subpopulations of examples (e.g., all dogs
facing a similar direction) identified using clustering methods.

On ImageNet Living-17, we use three different forget sets: set 1 is random of size 500; sets 2
and 3 correspond to 200 examples from a certain subpopulation (corresponding to a single original
ImageNet class) within the Living-17 superclass.

D.3 DATAMODEL ESTIMATION

Regression-based. We re-train models on random 50% subsets of the full train dataset, and use
between 1,000 and 20,000 models. We use the sparse linear regression based solvers from Ilyas et al.
(2022) to estimate each datamodel vector. Though our main results are computed with 20,000 models,
we find that using just 1,000 models suffice effective unlearning with DMM.

TRAK. We compute TRAK scores using 300 model checkpoints and 16328 projection dimensions
using the code provided in Park et al. (2023).

D.4 UNLEARNING BASELINES

Most unlearning algorithms are highly sensitive to the choice of forget set; thus, so for each of the
unlearning algorithms we compare to, we evaluate over a grid of hyperparameters and report the
best KLoM scores for each forget set. Below we describe each algorithm and indicate the respective
hyperparameter grid.

I. Full/partial Re-training
Full retraining discards the original model and trains a new model from scratch using only the retain
set SR. By definition, this achieves perfect unlearning. As additional baselines to tradeoff time and
unlearning accuracy, we re-train for different number of epochs (on the same learning rate schedule),
but keep all the other hyperparameters the same as in Appendix D.1.

II. Gradient Ascent (GA)
Gradient ascent iteratively updates model parameters to increase loss on the forget set. Starting
from a trained model θ, the algorithm computes the gradient of the loss L with respect to the model
parameters over examples Dforget. These gradients are then used to iteratively adjust θ in the direction
that increases L.

Hyperparameters: For each forget set, we sweep over the following hyperparameters:

5https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/
cifar10.py

19

https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py
https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

Published as a conference paper at ICLR 2025

1. Learning rate (η): [10−5, 10−4, 10−3, 10−2].
2. Total unlearning epochs: [1, 3, 5, 7, 10].

III. Gradient Descent (GD)
Gradient descent achieves unlearning by fine-tuning the original model on the retain set SR. We note
that in the convex setting this algorithm provides provable unlearning guarantees Neel et al. (2021).

Hyperparameters: For each forget set, we swept over the following hyperparameters:

1. Learning rate (η): [10−5, 10−4, 10−3, 10−2].
2. Total unlearning epochs: [1, 3, 5, 7, 10].

IV. SCRUB
SCRUB (Kurmanji et al., 2023), the current state-of-the-art unlearning method, combines variants
of GA and GD-based heuristics. During the first phase, it runs a GA-like algorithm on the forget
set while simultaneously running GD-like on the retain set; in the second phase, it runs additional
iterations of GD on the retain set. For the first phase, SCRUB specifically maximizes/minimizes the
KL divergence between the logits of the original model’s predictions and the new unlearned model’s
predictions. See the original paper for more details.

Hyperparameters:
For each forget set, we sweep over the following hyperparameters:

1. Momentum parameter β was set to 0.999
2. Retain batch size: 64
3. Forget batch size: 32, 64
4. Number of epochs for GA-based unlearning (maximization epochs) : 1,3,5,7,9
5. Learning rates: [3 × 10−1, 10−1, 3 × 10−2, 10−2, 3 × 10−3, 10−3, 3 × 10−4, 10−4, 3 ×

10−5, 10−5, 3× 10−6, 10−6].
6. Number of total epochs: [5, 7, 10]

V. Do-nothing
This is a “no-op” that simply returns the original (fully-trained) model. We include this as a baseline
as: i) typically this is what is currently done in practice and ii) many existing methods (as our
evaluations show) perform worse than this trivial baseline.

Implementations for all methods are available at:
bit.ly/unlearning-via-simulated-oracles

20

bit.ly/unlearning-via-simulated-oracles

Published as a conference paper at ICLR 2025

E LINEAR MODEL ANALYSIS

E.1 PROOF OF THEOREM 1

We restate Theorem 1 below.
Theorem 1 (Proof in Appendix E.1). Let S and SR be the full training set and the retain set
respectively, with input matrices X and XR and corresponding labels y and yR. Additionally, let θfull
and θ∗ denote the optima of the ridge objective (5) for the full data S and retain set SR respectively.
After t iterations of unlearning starting from θfull, the iterate θt satisfies

θt − θ∗ =

(I − 2ηλ)
t
(
I − 2η

1−2ηλX
⊤
RXR

)t
(θfull − θ∗) for ridge gradient descent (GD).(

I − 2ηX⊤X
)t
(θfull − θ∗) for oracle matching (OM).

Proof. Note that by using the Taylor expansion of the ridge gradient descent objective around θ∗, we
can rewrite it as follows:

∥XRθ − yR∥22 + λ∥θ∥2 (7)

= ∥XRθ∗ − yR∥2 + λ∥θ∗∥22 + (θ − θ∗)
⊤ (

X⊤
RXR + λI

)
(θ − θ∗) (8)

= c+ (θ − θ∗)
⊤ (

X⊤
RXR + λI

)
(θ − θ∗) , (9)

where c = ∥XRθ∗ − yR∥2 + λ∥θ∗∥2 is a constant independent of θ. Similarly, we can write oracle
matching objective as

∥Xθ −Xθ∗∥2 = (θ − θ∗)
⊤ (

X⊤X
)
(θ − θ∗) . (10)

Note that both the ridge gradient descent and the oracle matching objectives can be written as

(θ − θ∗)
T (

ZT Z
)
(θ − θ∗) + c (11)

for some PSD matrix ZTZ and some constant c. Gradient descent update on objective 11 can be
written as:

θt = θt−1 − 2η Z⊤Z(θt−1 − θ∗). (12)

Subtracting θ∗ from both sides,

θt − θ∗ = (I − 2ηZ⊤Z)(θt−1 − θ∗). (13)

Unrolling the recursion, squaring both sides, and simplifying then yields the desired result.

E.2 PROOF OF THEOREM 2

Theorem 2 (Proof in Appendix E.2). Consider the setting of Theorem 1, where θt is the iterate after
t steps of unlearning initialized at θfull. Further let γmin, γmax denote the minimum and maximum
eigenvalues of X⊤X , and let A and B be lower and upper bounds on the norm of the covariates (i.e.,
B ≥ ∥xi∥ ≥ A for all i). Then, as long as the learning rate η ∈ (0, 2

5(γmax+λ)) and rank(X) > 1,

E
[
∥θt − θ∗∥2

]
∥θfull − θ∗∥2

∈
{
O ((1− γminη)

t) for oracle matching (OM).
Ω
(

1
t2

)
for ridge gradient descent (GD).

(6)

Proof. We will begin with a more general setting than the theorem. In particular, consider an arbitrary
convex optimization problem of the form

min
θ

f(θ), where f(θ) =
1

n

n∑
i=1

fi(θ),

where the function f is α-strongly convex, and each fi is β-smooth. In other words, we have that for
any θ and θ′,

⟨∇f(θ)−∇f(θ′), θ − θ′⟩ ≥ α∥θ − θ′∥ (f is α-strongly convex)

∥∇fi(θ)−∇fi(θ′)∥ ≤ β∥θ − θ′∥ for all i ∈ [n]. (each fi is β-smooth)

21

Published as a conference paper at ICLR 2025

Note that without loss of generality, we can restrict our attention to the subspace spanned by X , in
which case both oracle matching and ridge gradient descent are instances of this setting—for GD,
α = γmin + λ and β = γmax + λ, and for OM α = γmin and β = γmax.

We further define a quantity σ2
f called gradient disagreement, measured as

σ2
f := Ei

[
∥∇fi(θ∗)− E[∇fi(θ∗)]∥2

]
= Ei

[
∥∇fi(θ∗)∥2

]
,

where θ∗ is the optimum of f .

Upper bound for OM. With these quantities defined, let us begin with the OM upper bound. In
fact, this follows directly from a standard SGD convergence proof, e.g., Theorem 5.8 of (Garrigos &
Gower, 2023), restated below:

Theorem 3 (Theorem 5.8 of (Garrigos & Gower, 2023)). Suppose f is a α-strongly convex sum
of β-smooth convex functions. Consider the sequence of iterates {θt}t∈N generated by stochastic
gradient descent with a fixed step size η ∈ (0, 1

2β). For t ≥ 0,

E
[
∥θt − θ∗∥2

]
≤ (1− ηα)t∥θ0 − θ∗∥2 +

2η

α
· σ2

f .

A few observations conclude the proof. First, any step size η ≤ 2
5(γmax+λ) also satisfies η ≤ 1

2γmax

and we can thus apply the Theorem to our case. Second, for oracle matching, we have that

∇fi(θ) = 2
(
x⊤
i θ − x⊤

i θ∗
)
xi,

which means that∇fi(θ∗) = 0 and thus σ2
f = 0, concluding the proof.

Lower bound for GD. We now show that for the same set of learning rates, the stochastic version of
ridge gradient descent on the retain set cannot converge faster than 1/t2. Key to our analysis will be
that, for GD, the gradient disagreement σ2

f is non-zero, so long as the dataset is non-degenerate. In
particular,

σ2
f = Ei

[
∥∇fi(θ∗)∥2

]
≥ 1

n
max

i
∥∇fi(θ∗)∥2

=
4

n
max

i

∥∥(x⊤
i θ∗ − yi)xi + λθ∗

∥∥2 .
To see that this is strictly positive, we can proceed by contradiction. Suppose that σ2

f = 0. Observe
that if x⊤

i θ∗ = yi for any i ∈ [n], then the corresponding ∥∇fi(θ∗)∥2 = 4λ2∥θ∗∥2, and so σ2
f > 0.

Thus, x⊤
i θ∗ ̸= yi for all i. In this case, however, we must have that

(x⊤
i θ∗ − yi)xi = −λθ∗,

meaning that θ∗ is parallel to xi. If rank(X) > 1, this is a contradiction and so σ2
f > 0.

We can now continue with the rest of the proof. We start with some algebraic manipulation of the
gradient update. In particular, for a random i ∈ [n],

θt − θ∗ = θt−1 − θ∗ − η∇fi(θt−1)

∥θt − θ∗∥2 = ∥θt−1 − θ∗∥2 − 2η⟨θt−1 − θ∗,∇fi(θt−1)⟩+ η2∥∇fi(θt−1)∥2.

Taking an expectation conditioned on θt−1,

E
[
∥θt − θ∗∥2

]
= ∥θt−1 − θ∗∥2 − 2η⟨θt−1 − θ∗,∇f(θt−1)⟩+ η2E

[
∥∇fi(θt−1)∥2

]
.

Now, we treat the second and third terms separately. In particular, for the second term,

2η⟨θt−1 − θ∗,∇f(θt−1)⟩ ≤ 2η∥θt−1 − θ∗∥∥∇f(θt−1)∥ (Cauchy-Schwarz)
= 2η∥θt−1 − θ∗∥∥∇f(θt−1)−∇f(θ∗)∥ (Gradient at optimum is zero)

≤ 2ηβ∥θt−1 − θ∗∥2. (Smoothness)

22

Published as a conference paper at ICLR 2025

For the third term, we use the identity ∥u − v∥2 ≤ 2∥u∥2 + 2∥v∥2, which we can rearrange to be
∥u∥2 ≥ 1

2∥u− v∥2 − ∥v∥2. Letting u = ∇fi(θt−1) and v = ∇fi(θt−1)−∇fi(θ∗),

η2E
[
∥∇fi(θt−1)∥2

]
≥ η2

2
E
[
∥∇fi(θ∗)∥2

]
− η2E

[
∥∇fi(θt−1)−∇fi(θ∗)∥2

]
≥ η2

2
E
[
∥∇fi(θ∗)∥2

]
− η2β2 ∥θt−1 − θ∗∥2

=
η2σ2

f

2
− η2β2 ∥θt−1 − θ∗∥2 .

Combining everything so far,

E
[
∥θt − θ∗∥2

]
≥
(
1− 2ηβ − η2β2

)
∥θt−1 − θ∗∥2 +

η2σ2
f

2

Taking an expectation with respect to previous iterates yields

E
[
∥θt − θ∗∥2

]
≥
(
1− 2ηβ − η2β2

)t ∥θ0 − θ∗∥2 +
η2σ2

f

2
·
t−1∑
τ=0

(
1− 2ηβ − η2β2

)τ
≥
(
1− 2ηβ − η2β2

)t ∥θ0 − θ∗∥2 +
η2σ2

f

2

≥
(
1− 12

5
ηβ

)t

∥θ0 − θ∗∥2 +
η2σ2

f

2
since η ≤ 2

5β
.

For ease of notation, let C = 12
5 β. Note that log(1− x) ≥ x2−2x

1−x for x < 1, and so

E
[
∥θt − θ∗∥2

]
≥ exp

(
t · (−Cη)

2− Cη

1− Cη

)
∥θ0 − θ∗∥2 +

η2σ2
f

2
. (14)

We now derive the learning rate η that minimizes (14), and show that at this optimal learning rate (14)
= Ω(1/t2). Note we can see this by inspection even without the formal derivation, because for (14)
to be O(1

t2) we need η = O(1t) so that the right hand term is O(1/t2), which forces the first term

exp
(
t · (−Cη) 2−Cη

1−Cη

)
= O(1). Now, to minimize the right hand side above with respect to η, we

take the derivative and set to zero (note that at the extreme points η = 0 and η = 2
5β we are left with

a constant amount of error). The result of this calculation is the fixed learning rate that optimizes the
error at time t. Again for ease of notation, let g(η) = 2−Cη

1−Cη , so that

0 =
d

dη

[
exp (t · (−Cη)g(η)) ∥θ0 − θ∗∥2 +

η2σ2
f

2

]
= −Ct (g(η) + ηg′(η)) exp (t · (−Cη)g(η)) ∥θ0 − θ∗∥2 + ησ2

f

ησ2
f = Ct (g(η) + ηg′(η)) exp (t · (−Cη)g(η)) ∥θ0 − θ∗∥2

log(ησ2
f) = log(t) + log(C(g(η) + ηg′(η))∥θ0 − θ∗∥)− Ctη · g(η)

Ctη · g(η)− log(t) = log(C(g(η) + ηg′(η))∥θ0 − θ∗∥)− log(ησ2
f)

Ctη · g(η) ≥ log(C(g(η) + ηg′(η))∥θ0 − θ∗∥)− log(ησ2
f)

≥ log

(
C(g(η) + ηg′(η))∥θ0 − θ∗∥

σ2
f

)
+ log(1/η)

t ≥
log
(

C(g(η)+ηg′(η))∥θ0−θ∗∥
σ2
f

)
+ log(1/η)

Cη · g(η)

23

Published as a conference paper at ICLR 2025

Now, by definition of g(η), we have that for η ∈ (0, 2
5β), g(η) ≤ 26 and g(η) + η · g′(η) ≥ 2. Thus:

t ≥
log
(

2C∥θ0−θ∗∥
σ2
f

)
+ log(1/η)

26Cη

26Ct ≥
log
(

2C∥θ0−θ∗∥
σ2
f

)
+ log(1/η)

η

Using the fact that log(1/x) ≥ 1− x for x ∈ (0, 1) yields:

26Ct ≥
log
(

2C∥θ0−θ∗∥
σ2
f

)
+ 1

η
− 1

η ≥
log
(

2C∥θ0−θ∗∥
σ2
f

)
+ 1

26Ct+ 1
.

Plugging this result into (14) yields the desired Ω(1/t2) lower bound.

E.3 EXPERIMENT DETAILS

Details of unlearning algorithms

We consider the various iterative algorithms for unlearning starting from θfull. For all of them, we
consider their full-batch as well as the stochastic version. For the stochastic versions, we use a
mini-batch size of 5. We search for the learning rate from {10, 10

2 , 10
22 , · · · ,

10
220 }. We describe the

algorithms below:

1. Ridge Gradient Descent (GD): This involves minimizing the ridge regression objective
with the retain set points (Xretain, yretain) using gradient descent.

2. Ridge Gradient Descent + Ascent (GD+GA): This method aims to incorporate forget set
points in the ridge gradient descent updates. Each step involves moving in a direction that is
a linear combination of the gradient descent step on the retain set and the gradient ascent
step on the forget set. That is, we set

θt = θt−1 − η(gradretain(θt−1)− α ∗ gradforget(θt−1)).

Here, gradretain(θ) = 2XT
retain(Xretainθ−yretain)+2λθ and gradforget(θ) = 2XT

forget(Xforgetθ−
yforget). We do a hyperparameter search for α in {0.01, 0.1, 1, 10}.
In the stochastic setting, in each update step, we draw minibatch points uniformly at random
from the full dataset, and calculate the ascent step term only if the drawn points include
points from the forget set.

3. Oracle Matching (OM): Here, we assume oracle access to predictions made using the
optimal model θ∗. This method involves using gradient descent to minimize the the squared
error from the oracle predictions on the full dataset: ||Xfullθ −Xfullθ∗||22. We include a full
algorithm of this in Algorithm C.1.

4. Oracle Matching on retain set (OM retain set): This involves using gradient descent
to minimize the squared error from the oracle predictions only on the retain set points:
||Xretainθ −Xretainθ∗||22.

Slow convergence with stochastic gradient descent.

In Section 5, we saw that in the stochastic setting, OM converges much faster than GD, even when
λ is large. Here, we dig deeper into the large λ experiment considered in Section 5 to understand
this. We observe that stochastic GD remains stable only at small learning rates with large λ, which
results in slower progress. Specifically, while the optimal learning rate for full-batch GD is similar
in both large and small λ regimes, for stochastic GD, it is about 100 times smaller in the large λ
regime. Using a higher learning rate for stochastic GD in the large λ regime leads to instability and
non-convergence, an issue not seen with stochastic OM.

24

Published as a conference paper at ICLR 2025

In each update step, stochastic OM adjusts the model parameters only within the span of the random
subset of points used for that update. On the other hand, stochastic GD decays the model parameters
in other directions due to the regularization term. Although we want the parameters to decay in
the subspace orthogonal to the span of the retain set, stochastic GD also decays the parameters in
directions spanned by the retain set points that are not part of the current update set. As a result,
using a high learning rate for stochastic GD in the large λ regime disrupts parameters in the span of
the retain set. Therefore, while increasing λ improves full-batch GD’s convergence speed and could
potentially make it faster than OM, this advantage does not apply to stochastic GD, which has to use
a much smaller learning rate.

In Figure E.1a, we illustrate how stochastic GD at high learning rates disrupts the model parameters
within the span of the retain set. We plot the progression of relative squared distance to the optimal
unlearned parameter within the span of retain set points, ||Pretain(θt−θ)||22

||θfull−θ∗||22
. Here θt is the iterate at time

t, θfull is the model trained on the full dataset, θ∗ is the optimal unlearned model, and Pretain is the
projection matrix onto the retain set span. We show this for iterates with the optimal learning rate, as
well as for learning rates 4 times faster and 4 times slower. As the learning rate increases, the iterates
tend to diverge in the span of the retain set.

In Figure E.1b, we plot the progression of relative squared distance to the optimal unlearned parameter
orthogonal in the subspace orthogonal to the retain set points, ||Porth-retain(θt−θ∗)||22

||θfull−θ∗||22
, where Porth-retain is

the projection matrix for the orthogonal subspace. Here, we observe that increasing the learning rate
beyond the optimal rate leads to faster convergence. Thus, while increasing the learning rate beyond
the optimal value accelerates convergence in the subspace orthogonal to the retain points, it harms
progress in the span of the retain set points. Therefore, in the large λ regime, stochastic GD must
operate at small learning rates to avoid disrupting the model parameters in the span of the retain set.

0 50 100 150 200 250 300
number of steps

0.0

0.5

1.0

1.5

2.0

di
st

 w
ith

in
 r

et
ai

n

(a)

0 50 100 150 200 250 300
number of steps

0.0

0.5

1.0

1.5

2.0

di
st

 o
rt

ho
go

na
l t

o
re

ta
in GD opt lr

GD 4x opt lr
GD 0.25x opt lr

(b)

Figure E.1: Stochastic Gradient Descent performance in the large λ regime with varying learning
rates. (a) The y-axis shows the relative squared distance to the optimal unlearned parameter within
the span of retain set points, ||Pretain(θt−θ)||22

||θfull−θ∗||22
, where θt is the iterate at time t, θfull is the model trained

on the full dataset, θ∗ is the optimal unlearned model, and Pretain is the projection matrix onto the
retain set span. Larger learning rates lead to divergence within this span. (b) The y-axis shows the
relative squared distance to the optimal unlearned parameter in the subspace orthogonal to the retain
set points, ||Porth-retain(θt−θ∗)||22

||θfull−θ∗||22
, where Porth-retain is the projection matrix for the orthogonal subspace.

Larger learning rates result in faster convergence in this subspace.

E.4 ADDITIONAL EXPERIMENTS

In section 5, we discussed an example with linear models that highlighted the qualitative differences
between oracle matching and other unlearning methods. Here, we show the comparison for another
example with different covariance structure. We draw 100 training points (xi, yi) where xi are drawn
i.i.d. from N(0,Σ) in 400 dimensions where covariance matrix Σ = diag(1, 1/2, 1/3, · · · , 1/400)
(diag(.) represents a diagonal matrix with the specified entries on the diagonal). yi = θTxi + ϵi,
where θ is drawn from N(0, I) and ϵi is drawn from N(0, 1/4). These 100 points form (Xfull, yfull).
We fit these points to minimize the ridge regression objective with λ = 1/4 (for the small λ case) or
λ = 5 (for the large λ case), to obtain the model θfull. Here λ = 1/4 is the λ value that minimizes the

25

Published as a conference paper at ICLR 2025

expected squared prediction error. We want to unlearn 5 training points chosen uniformly at random.
We show the performance of various methods (in both the stochastic and full-batch setting with small
and large λ) in Figure E.2. Even here, we obtain the same qualitative patterns as in Figure E.2.

OM OM retain set GD GD+GA

0 50 100 150 200 250 300
number of steps

0.0

0.2

0.4

0.6

0.8

1.0

R
(

t)

(a) small λ, full batch

0 20 40 60 80 100
number of steps

0.0

0.2

0.4

0.6

0.8

1.0

R
(

t)

(b) large λ, full batch

0 200 400 600 800
number of steps

0.0

0.2

0.4

0.6

0.8

1.0

R
(

t)

(c) small λ, stochastic

0 200 400 600 800
number of steps

0.0

0.2

0.4

0.6

0.8

1.0

R
(

t)

(d) large λ, stochastic

Figure E.2: Another example comparing the performance of various unlearning methods with linear
models.

26

Published as a conference paper at ICLR 2025

F UNLEARNING EVALUATION

F.1 KL DIVERGENCE OF MARGINS (KLOM)

Below we formally define the KLoM evaluation, which computes the distance between the distribution
of outputs for unlearned models and re-trained models. For output, we use the classification margin.
We also include a visual representation of our algorithm in Figure F.1.

Algorithm F.1 KLoM
1: Input Number of models N , dataset D, forget set F ⊆ D, retain set R ⊆ D (such that

D = F ∪R), and a validation dataset V , training algorithm A, unlearning algorithm U , margin
function ϕ, and histogram function H(S) .

2: Train N models (Oracles) on the entire dataset, excluding the forget set. Θo = {A(D \ F)},
|Θo| = N .

3: Train N models (Unlearned-models) on the entire dataset, then for each model unlearn forget set
F , Θf = {U(A(D), F)}, |Θf | = N .

4: Initialize a vector of results with all zeros r⃗.
5: for each point x in {Forget, Retain, Validation} set do
6: Compute the margins for each oracle Mo = {ϕ(θoi (x))|θoi ∈ Θo}.
7: Compute the margins for each unlearned-model Mf = {ϕ(θfi (x))|θ

f
i ∈ Θf}

8: Assign r⃗[x] = KL(Hist(Mo), Hist(Mf))
9: end for

10: return r⃗

Note that in order to approximate the KL divergence, we compute a histogram H(S) that takes a set
of real numbers and returns an empirical probability distribution by truncating and binning samples
from S.

Retain Set

Forget Set
U_i

Train Oracles on Retain Set O_i O_i

U_iTrain Full Model Unlearn Forget Set

For each point x, define out measure f(x)

N
times

#
(scalar)

Generate histogram of f(x) values,
for points of interest

KL Divergence

Figure F.1: Visual diagram of KLoM

In practice, we compute KLoM using N = 100 oracles compared to N = 100 unlearned models. For
each point we evaluate we clip the N margins to a range of [−100, 100] to exclude outliers (some
methods, like SCRUB, result in extremely large margins) into 20 bins. Then the KL-divergence is
computed between the binned histogram of the oracles and the binned histogram of the unlearned
models. For any region of the support where one histogram has no support, and the other does, the
bin with no support is set to a non-zero probability of ϵ = 10−5. We note, that for this reason, KLoM
scores are artificially rescaled and capped at value around≈ 12. This cap can be changed by changing
the number of bins or the minimum value ϵ.

27

Published as a conference paper at ICLR 2025

F.2 U-LIRA

At a high-level U-LiRA measures the distinguishability of predictions of an unlearned model
from that of retrained models based on adapting membership inference attacks. Implementing the
Algorithm F.2, as written, would be computationally infeasible in most cases, as it involves unlearning
and retraining T times for each point (x, y). In practice, Hayes et al. (2024) computes U-LiRA using
the method Algorithm F.4.

Omitting a few details, the main idea is as follows: consider an unlearning algorithm U and a training
algorithm A. Start from a model θ0 trained on a random subset S ∼ Pn, and unlearn one specific
(random) forget set, to produce θF . Next, construct a collection of shadow models by that producing
many unlearned models from random training sets and random forget sets. Lastly for a collection
of points in the retain set and in the forget set ({x|x ∈ SF ∪ S}) compare how θF compares to the
subset of shadow models that never-saw-x distribution of margins for models that unlearned-x. Now
if U perfectly unlearns SF , then θ0 no longer depends on SF , and so even conditioned on θ0 the
marginal distribution of x ∈ SF |θ0 is still P ; the same distribution as any x ∈ SV . Operationalizing
this intuition, U-LiRA with probability 1

2 draws either x ∈ SF or x ∈ SV , and measures the output
y = fx(θ0). An (optimal) adversary observes y, and tries to guess whether the corresponding x
was an unlearned point or a validation point, e.g. whether x ∈ SF or SV . More generally, if U
is an (ϵ, δ)-unlearning algorithm, the two distributions y|x ∈ SF , θ0 and y|x ∈ SV , θ0 would be
(ϵ, δ)-indistinguishable by post-processing, and so even the optimal adversary couldn’t have accuracy
greater than 1

2e
ϵ + δ. The optimal adversary can be implemented by training models with/without

x, unlearning SF , and then measuring the output y. For a more detailed description of U-LiRA
and overview of similar MIA-based approaches, we refer the reader to (Hayes et al., 2024) (Section
4.2), and we include the pseudocode for the computationally efficient version of this evaluation
Efficient-ULIRA in Appendix F.2.

Algorithm F.2 U-LiRA (LiRA adapted for machine unlearning) (Hayes et al., 2024)
Args: model parameters to evaluate θ∗, learning algorithm A, unlearning algorithm U , number of
shadow models T , example (x, y), logit function ϕ, function that returns probabilities f(·, θ) given
model parameters θ.
Observations: O ← {}, Ô ← {}
while t ≤ T do

• D ← sample a dataset that includes (x, y)
• θ0 ← A(D) train a model

• θ′ ← U(θ0, (x, y)) unlearn (x, y)

• θ′′ ← A(D \ (x, y)) retrain without (x, y)

• O[t]← ϕ(f(x; θ′))

• Ô[t]← ϕ(f(x; θ′′))

end while
µ, σ ← fit Gaussian(O)

µ̂, σ̂ ← fit Gaussian(Ô)
o← ϕ(f(x, θ∗))

pmember ← N(o;µ,σ2)
N(o;µ,σ2)+N(o;µ̂,σ̂2)

if pmember ≥ 1
2 then

• return Predict (x, y) is a member of training
else

• return Predict (x, y) is not a member of training

In the original U-LiRA paper (Hayes et al., 2024), they report results for Efficient U-LiRA for N=
256, forgettable points F all points of class 5, nf = 40 random forget sets per base model, and each
forget set m = 20. The N base models that they are train are trained on ResNet-18 for 100 epochs,
and so are highly overparameterized.

28

Published as a conference paper at ICLR 2025

Algorithm F.3 Sub algorithm: Membership Prediction

1: Input: Sets A,B of real-valued numbers, and point x ∈ R.
2: (µ, σ ← fit Gaussian(A)
3: (µ̂, σ̂ ← fit Gaussian(B)

4: pmember ← N (x;µ,σ2)
N (x;µ,σ2)+N (x;µ̂,σ̂2)

5: if pmember >
1
2 then

6: return Predict (x, y) is a member of set A
7: else
8: return Predict (x, y) is not a member of set A
9: end if

Algorithm F.4 Efficient-ULIRA

1: Input Number of base models N, set of forgettable points F (default: all points of class 5),
Number of random forget sets per base model nf , size of each forget set m (default 200)

2: Train N base models on random 50% subsets of the dataset
3: for each base model θi do
4: construct nf random forget sets of size m, denoted Fi,j .
5: for each random forget set Fij do
6: Unlearn forget set Fij

7: end for
8: end for
9: Split the nf ·N unlearned models into two sets, Shadow models S and Target models T

10: initialize accuracy vector a⃗ ∈ R|T |, with all 0’s.
11: for each target model θ⊔ ∈ T do
12: Construct Df from m from the m points that θt unlearned
13: Construct Dv from m from the m points that θt was not trained on.
14: let D = Df ∪Dv

15: Let c = 0
16: for each point x ∈ D do
17: Let SA be the set of shadow models that were trained on x.
18: Let SB be the set of shadow models that unlearned x
19: Construct sets A = {θ′(x)|θ′ ∈ SA}, B = {θ′(x)|θ′ ∈ SB}
20: Run sub-algorithm Membership Prediction F.3 with inputs (A,B, x), returning l ∈ {1, 0}
21: if (thenl = 1 and x ∈ Df) OR (l = 0 and x ∈ Dr)
22: c+ = 1
23: end if
24:
25: end for
26: Average the model accuracy across all predictions in D, at = c/(2m)
27: end for
28: Average the accuracy-per-model over all the target models Return mean(⃗a)

29

Published as a conference paper at ICLR 2025

For our evaluation, U-LiRA paper (Hayes et al., 2024), we run Efficient U-LiRA for N= 50, nf = 40
random forget sets per base model, and then we vary the training setting, the forget size nf , and total
set of forgettable points F . Specifically, we try 3 settings

1. ResNet-18 trained for 100 epochs, evaluated on forget sets of size 200, with the forgettable
points F being 1000 points in class 5.

2. ResNet-9 trained for 25 epochs, evaluated on forget sets of size 200, with the forgettable
points F being 1000 points in class 5.

3. ResNet-9 trained for 25 epochs, evaluated on forget sets of size 50, with the forgettable
points F being 500 random points in the dataset.

F.3 COMPARING U-LIRA TO KLOM

In this paper we propose a new method for evaluating unlearning, KLoM. Here, we argue that this is a
superior measure to existing measures, in particular compared to U-LiRA. The advantages of KLoM
are :

1. KLoM requires fewer unlearning trials (on the order of 100) than U-LiRA (which is generally
on the order of 2000).

2. KLoM returns a distribution of differences, rather than a binary assignment of if one particular
model was more like an unlearned model or a retrained model. This is valuable because it
tells you how a method unlearns individual points (e.g. is bad on average, or just bag on
specific points)

3. KLoM does not assume the margins can be fit well by a Gaussian. Anecdotally, for U-LiRA,
we find this is a decent but not great assumption, and it’s currently unclear how much error
this really introduces.

4. KLoM has the capacity to look at an unlearning algorithm’s ability to handle coherent sets of
points, not just random subsets of some set of forgettable points.

5. U-LiRA does not capture closeness to unlearned model, and thus one can force U-LiRA
score to go down (implying better unlearning) by having the unlearning method destroy the
original model, thus U-LiRA scores must be traded-off against an accuracy drop. KLoM
measures distance directly, and thus unlearning can be evaluated with a single measure. We
expand on this point below. And is illustrated by figure F.2.

A Toy Example Where U-LiRA Fails:

Consider your unlearning method returns a constant function f (e.g. such that that the margin
is always some constant, e.g. 7). In such a situation, the distribution of unlearned models will
look radically different from the distribution of models that were fully retrained; in theory, a good
unlearning measure should return that this is a bad unlearning method. However, U-LiRA will
actually return a nearly perfect unlearning score (≈ 50%). In U-LiRA, one does 2 sets of likelihood
ratio tests, first on points the unlearned model unlearned, then on points the unlearned model never saw.
The first set of likelihood ratio tests, U-LiRA will get 100% (or nearly), because at margin is constant
(7), and so it will be at the unlearned-models peak; thus we get 100% accuracy on these points. Now,
on set 2, U-LiRA will get 0% (or nearly), because U-LiRA compute the likelihood ratio at the
margin of the unlearned model’s prediction, which in this case is a constant (7), thus it will still be at
the unlearned-models peak. Thus, U-LiRA will not predict that anything is “not-in-the-training-set,”
achieving 0% on this set.

However, the problem is that 100 +0 /2 = 50%, which appears to be a perfect unlearning score, but in
reality is just a classifier that thinks everything is from an unlearned model.

Advantages of U-LiRA:

1. It is worth noting that our measure requires binning, and some assumptions there. U-LiRA
does not (because it makes the Gaussian approximation assumption)

30

Published as a conference paper at ICLR 2025

Figure F.2: U-LiRA accuracy vs Validation accuracy of the unlearned model, for Gradient Ascent
method, for a model trained on CIFAR-10. Unlearning occurs on a random forget sets of size 200
in class 5. Observe that it is possible to achieve nearly perfect U-LiRA accuracy (50%) by simply
dropping the validation accuracy of the model by 20%. With Gradient Ascent specifically, this is
achieved by increasing the learning rate beyond the optimal learning rate, causing the gradient ascent
updates to be too significant.

Figure F.3: Results for Efficient-ULIRA run with parameters specified in F.2. The validation
accuracies are presented above the bar for the each method-forget set pairing. Observe that Gradient
Ascent method is able to achieve an excellent U-LiRA score, but does so at the cost of the validation
accuracy of the unlearned model.

2. U-LiRA reports an accuracy for 1 particular model, and then averages that across multiple
unlearning models. this correctly captures individual model performance, rather than
aggregate unlearning algorithm performance.

F.4 SENSITIVITY OF UNLEARNING TO MODELS AND FORGET SETS

See Figure F.3.

31

Published as a conference paper at ICLR 2025

G UNDERSTANDING EFFECTIVENESS OF DATAMODEL MATCHING

We saw that datamodel matching is an effective and efficient algorithm for unlearning. Here, we aim
to better understand the effectiveness of datamodel matching (DMM). Since DMM consists of i) oracle
matching (the finetuning algorithm) and ii) datamodels (approximation to oracle outputs), we study
each component separately. First, in Appendix G.1, we analyze the stability of OM across time and to
different choices of hyperparameters and show:

• OM is stable across time: We show that once OM unlearns an example, the example
generally stays unlearned after further iterations, addressing the original "missing targets
problem." As a result, OM is also much more stable than prior methods with respect to the
choice of optimization hyperparameters.

• OM generalizes from a small sample: Though OM introduces additional design parameters
(sampling ratios for forget and retain sets), we find that OM is effective as long as we include
a sufficiently large sample of both. In particular, we only need to sample a small fraction of
the retain set, making OM efficient.

Next, in Appendix G.2, we ablate different components of the datamodel estimators to better
understand necessary ingredients for DMM and show:

• Necessity of modeling interactions between datapoints: Datamodels (linearly) model the
effect of different training examples on other inputs. We show that using only the “diagonal”
entries (i.e., modeling only the self-influence) is much less effective.

• Effectiveness of fast approximate data attribution methods: We show that replacing
regression-estimated datamodels with much faster alternatives like TRAK still yield effective
unlearning algorithms, albeit with worse performance than well-estimated datamodels.

G.1 UNLEARNING STABILITY OF OM

To motivate our approach, we demonstrated earlier that existing fine-tuning approaches suffer from
the problem of different unlearning rates due to lacking meaningful targets to converge to. In Figure
G.1, we find that OM no longer suffers from the same problem, since unlearning quality generally only
improves over time (there is no risk of overshooting), even if points are still unlearned at different
rates. Because of this, we find that OM is much more robust to the choice of optimization parameters
such as learning rate and number of epochs compared to prior gradient ascent based methods (see
Appendix H.1).

2 4 6 8 10
Epoch

0

10

20

30

40

50

Pr
ob

ab
ili

ty
 o

f m
ar

gi
n

w
ith

in
 o

ra
cl

e
di

st
ri

bu
tio

n

SCRUB

2 4 6 8 10
Epoch

0

10

20

30

40

50
Oracle Matching

Figure G.1: Oracle matching circumvents the stopping time problem. We revisit the earlier plot
and apply the same analysis to oracle matching. The red lines highlight examples in the forget set
whose unlearning quality is hurt by training longer. This happens frequently when running SCRUB,
but goes away nearly entirely when using oracle matching.

Generalization of OM. OM fine-tunes on samples from both the forget and retain sets. The efficiency
of OM hinges on whether it can generalize from a small sample. Ablations (Appendix G.1) show i)
OM succeeds as long as the ratio of forget set points in the fine-tuning set is sufficiently high, and ii)
a small fraction (≥ 0.04) of retain set suffices to guide OM to converge towards an oracle on most

32

Published as a conference paper at ICLR 2025

retain set samples. That is, OM is able to effectively generalize from a small sample of oracle outputs.
This implies that we only need to approximate oracle predictions on a small fraction of the training
data, increasing the efficiency of the OM algorithm.

0.00 0.05 0.10
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

K
Lo

M

mean
retain ratio

0.01
0.04
0.2
0.8

0.00 0.05 0.10
0

1

2

3

4

5

6

7

forget set

0.00 0.05 0.10

3.0

3.5

4.0

4.5

5.0

5.5

retain set

0.00 0.05 0.10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

val set

time (fraction of re-training)

Figure G.2: Varying the fraction of retain set sampled for oracle match-
ing. A sufficiently large sample (≥ 0.04) appears to be sufficient in
enabling OM to generalize to out-of-sample.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
ratio of forget set examples for fine-tuning

2

4

6

8

10

K
Lo

M
 (9

9t
h

pe
rc

en
til

e
of

 fo
rg

et
 s

et
)

Figure G.3: Varying the ra-
tio of forget set samples in
the fine-tuning set for oracle
matching.

Challenge of overfitting.

We hypothesize that OM struggles on the retain set of Living-17 due to models being more overfit.
A further investigation showed the lack of use of data augmentation as the main cause of overfit-
ting.6 Under new hyperparameter settings that are identical except the use of standard image data
augmentation (random cropping and flips), the trained models overfit much less. In this new setting,
we re-trained oracle models and applied oracle matching with the same exact hyperparameters as
before (so they are not optimized for the new setup). The resulting KLoM scores on the retain set are
significantly lower (95th percentile decreasing from 2.88 to 0.62; see Appendix G.1), supporting our
hypothesis that significant overfitting caused OM to perform worse on the retain set on Living-17.

0 1 2 3 4 5 6 7
KLoM (train set)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

de
ns

ity

original (no DA)
new (trained w/ DA)

Figure G.4: Oracle matching struggles more on overfit predictions. We contrast the performance
of oracle matching on the train set in two different hyperparameters settings, differing only in their
use of data augmentation (DA). OM struggles much more on models that are overfit when data
augmentation is turned off.

G.2 DATAMODEL ABLATIONS

Given the stability of OM, the success of DMM essentially only depends on the fidelity of datamodel
approximation to oracle outputs. We now study which components of the datamodel are in fact
necessary.

6We had turned off data augmentation for all of our experiments as this was done on all major prior works on
(empirical) unlearning for DNNs.

33

Published as a conference paper at ICLR 2025

Necessity of modeling interactions between datapoints. Datamodels model the effect of different
training examples on a given model output. By leveraging them, we were able to accurately simulate
the oracle model outputs. Inspecting the weights of linear datamodels show that the dominant entry
for the datamodel of a training input corresponding the example itself (i.e., excluding that training
example has the largest negative effect on the model prediction on itself). The corresponding weight
is what is also known as the memorization score in prior work Feldman (2021). Could memorization
scores suffice to linearly model oracle outputs? In Figure G.6, we evaluate the quality of oracle
predictions when using the full datamodel vector vs. only the memorization scores, and find the
following:

• Insufficiency of memorization scores for unlearning non-random forget sets: Using only
the diagonal entries hurts unlearning quality for non-random forget sets (5), particularly for
examples in the tail (dotted line). Intuitively, this is because the other weights in datamodels
(the “non-diagonal” entries) capture important cross-example correlations (e.g., similar
examples should have reinforcing effect on one another). Moreover, globally scaling the
memorization scores (orange lines) cannot account for the missing non-diagonal entries. On
the other hand, this is less important for random forget sets (3), as two random examples
are in general unrelated to one another. Hence, to effectively unlearn forget sets that arise
in practice via our approach, it seems necessary to model interactions between different
datapoints.

• Consistency of best scaling: As an artifact, we also find that scaling down the datamodel
weights globally by a factor (≈0.9 here) improves unlearning quality marginally. Fortunately,
the scale seems consistent across different types of forget sets; one could calibrate this scale
using a “held-out” forget as part of a pre-computation stage, and subsequently apply to all
forget sets.

0.6 0.8 1.0 1.2 1.4
multiplier

0.5

1.0

1.5

2.0

2.5

K
Lo

M

forget set 3
Diagonal only

False
True

0.6 0.8 1.0 1.2 1.4
multiplier

0.5

1.0

1.5

2.0

2.5

3.0

3.5

forget set 5

Figure G.5: The effect of non-diagonal entries and re-scaling on the unlearning effectiveness of
DM-DIRECT for two different types of forget set on CIFAR-10 (left is random; right is non-random).
Solid and dotted lines correspond to the mean and 95%-percentile KLoM scores. Diagonal-only
indicates that we only use the memorization scores (the “diagonal” of the datamodel matrix).

Scaling with estimation cost. Though we excluded the cost of estimating datamodels in our analysis
in Section 4.4 (as it is a one-time cost), practically we need to account for them as estimating
predictive datamodels is computationally expensive. But estimating them is not all or nothing:
we can tradeoff the computational cost and the datamodel predictiveness by varying the number
of re-trained models. Here, we investigate how varying the computational resources affects both
datamodel predictiveness (LDS) and unlearning performance (as measured by KLoM). In Figure G.6,
we show the result of varying the computational cost by orders of magnitude: we can observe that
while the datamodel predictiveness (as measured by the linear datamodeling score (Park et al., 2023))
continues increase at the same rate, KLoM—averaged across various forget sets—begins to saturate.

We hypothesize that this is due to the following difference in the distribution of counterfactual subsets
being evaluated: while achieving high LDS requires predicting model outputs on the same distribution
of random subsets of the training data that the datamodels were trained on, achieving high KLoM

34

Published as a conference paper at ICLR 2025

103 104

datamodel estimation cost
(# re-trained models)

0.7

0.8

K
Lo

M
103 104

datamodel estimation cost
(# re-trained models)

0.2

0.3

0.4

0.5

LD
S

Figure G.6: The effect of estimation cost on unlearning performance and datamodel predictive-
ness. On CIFAR-10, we show how unlearning performance of DM-DIRECT (measured by KLoM; lower
is better) and datamodel predictiveness (measured by the linear datamodeling score; higher is better)
scales with datamodel estimation cost (number of re-trained models, in {103, 104, 2× 104, 4× 104}).
KLoM is averaged over different forget sets.

0.0 0.5 1.0
0

2

4

6

8

10

12

C
IF

AR
10

K
Lo

M
 (

)

Average

GA GD SCRUB Do Nothing Retrain Oracle DM-Matching DM-Matching (TRAK)

0.0 0.5 1.0

Forget

0.0 0.5 1.0

Retain

0.0 0.5 1.0

Validation

0.0 0.5 1.0
0

2

4

6

8

10

12

C
IF

AR
10

K
Lo

M
 (

)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Time (fraction of full re-training;)

Figure G.7: Datamodel-Matching with more efficient estimators. In the same set up as in Figure 1,
we evaluate the effectivness of DM-DIRECT and DMM when a different, more efficient estimator
(TRAK) for datamodels. Though the equality of unlearning degrades, our algorithms still outperform
prior methods. Note that the computational savings from using TRAK is not reflected on the x-axis, as
computation of datamodels considered separately from the fine-tuning cost of DMM.

scores requires predicting over small non-random forget sets. In practice, this suggests that for the
purposes of unlearning, cheaper alternatives (either by using the same regression-based estimator
with reduced computational resources or by using a different estimator) may perform nearly as well
as computationally expensive methods.

Efficient unlearning with TRAK. While datamodels estimated using the regression approach of
Ilyas et al. (2022) are predictive, and can be pre-computed prior to unlearning, they nonetheless are
expensive to compute. Since the work of Ilyas et al. (2022), follow-up works (Park et al., 2023; Grosse
et al., 2023) have shown that efficient alternative methods can be quite effective with substantially
lower computational costs.

Here we investigate whether DMM is still effective when datamodels are estimated with TRAK,
which is based on a particular approximation to the influence function. In Figure G.7 we run OM
with predictions generated by TRAK estimators with x1000 less compute than the regression-based
datamodels. As expected DMM with TRAK performs worse in terms of KLoM than when datamodels
are used, but we find that this drastically cheaper alternative to DMM still outperforms all prior
methods significantly. These results highlight that improving the accuracy of TRAK in order to close
the gap in KLoM scores with datamodels represents an important direction for developing even more
efficient and effective unlearning algorithms.

35

Published as a conference paper at ICLR 2025

H ADDITIONAL RESULTS

H.1 HYPERPARAMETER SENSITIVITY OF UNLEARNING ALGORITHMS

Methods that involve something akin to gradient ascent, like SCRUB, where unlearning for longer or
with a larger learning rate can reduce the utility of the model; as opposed to gradient descent based
methods, like Oracle Matching, where if the learning rate is sufficiently small, unlearning for longer
does not hurt the model. We illustrate this by showing how much the same unlearning algorithm is
affected by changing the learning rate, in Figure H.1, where we plot the 85th percentile of KLoM
score as a function of learning rate7.

Figure H.1: KLOM sensitivity to learning rate. SCRUB is trained for 10 epochs, with the first “Maximization
Epochs” used for Gradient Ascent; Oracle Matching is trained for ‘Epochs’, both demarcated in the legend. Both
algorithms are evaluated on Forget Set 5, which is a non-random forget set of size 100. The red lines denotes the
learning rate at which the KLOM score drops below 6 (an arbitrarily chosen threshold which we deemed as the
largest value approaching a “reasonable” unlearning). Left red line indicates the largest forget that achieves a
reasonable unlearning for Forget points, and the right red line indicates the smallest learning rate that achieves a
reasonable unlearning for Validation and Retain points. The line is darker if that subset is the limiting factor for
the thresholding.

The key takeaway is that the range of learning rates for SCRUB is much smaller (less than an order of
magnitude), while Oracle Matching not only performs significantly better, the range of learning rates
that attain good KLOM scores is much larger dynamic range. We do note that because this is a log-
scale, the range for the SCRUB learning rates is larger in magnitude; however, the critical observation
is how flat the KLOM scores are as a function of learning rate and the relative ranges of learning rates.
Flatter and wider ranges (even on a log-scale) make hyperparameter tuning dramatically simpler and
significantly more likely to choose a learning rate in a good range.

7We choose the 85th percentile for KLOM scores, because SCRUB generally performs significantly worse
than Oracle Matching, and we found that for higher percentiles, the effect was weaker because SCRUB never
achieved particularly good KLOM scores.

36

Published as a conference paper at ICLR 2025

2 4 6 8 10
Epoch

0

10

20

30

40

50

Pr
ob

ab
ili

ty
 o

f m
ar

gi
n

w
ith

in
 o

ra
cl

e
di

st
ri

bu
tio

n

Forget set

2 4 6 8 10
Epoch

0

10

20

30

40

50
Retain set

2 4 6 8 10
Epoch

0

10

20

30

40

50
Validation set

Oracle Matching

2 4 6 8 10
Epoch

0

10

20

30

40

50

Pr
ob

ab
ili

ty
 o

f m
ar

gi
n

w
ith

in
 o

ra
cl

e
di

st
ri

bu
tio

n

Forget set

2 4 6 8 10
Epoch

0

10

20

30

40

50
Retain set

2 4 6 8 10
Epoch

0

10

20

30

40

50
Validation set

Datamodels Matching

Figure H.2: Plotting unlearning quality over time for Oracle Matching and Datamodels matching.
We observe that different points unlearn at different rates. However, unlike for gradient ascent based
methods like SCRUB, for gradient descent based methods like Datamodels matching and oracle
matching, one a data point is unlearned, it tends to remain unlearned. The red lines highlight examples
whose final quality of unlearning is more than 10% worse than their maximum unlearning quality.

H.2 PER-SAMPLE UNLEARNING OVER TIME

We present the rate of unlearning individual data points as a function of epochs in the unlearning
algorithm for both Oracle Matching and Data Models matching, which we contrast with SCRUB
unlearning, presented in Figure 2.

See Figure H.2.

37

Published as a conference paper at ICLR 2025

H.3 FULL KLOM EVALUATION

Building on this point that the effectiveness of different methods is forget set specific, we now share
all the KLoM scores for the different methods, below in Figures H.3 and H.4.

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 1

 (
) Average

0.0 0.5 1.0

Forget

0.0 0.5 1.0

Retain

0.0 0.5 1.0

Validation

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 2

 (
)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 3

 (
)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 4

 (
)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0 0.5 1.0
0

5

10

K
Lo

M
Fo

rg
et

 S
et

 5
 (

)

GA
GD
SCRUB
Do Nothing
Retrain
Oracle
DM-Direct
DM-Matching
DM-Matching (TRAK)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 6

 (
)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 7

 (
)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 8

 (
)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 9

 (
)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Time (fraction of full re-training;)

Figure H.3: KLoM results for all forget sets 1-9 on CIFAR-10. The pareto frontier for each method is
in a line plot, but each KLoM data point for each method is plotted.

38

Published as a conference paper at ICLR 2025

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 1

 (
) Average

0.0 0.5 1.0

Forget

0.0 0.5 1.0

Retain

0.0 0.5 1.0

Validation

0.0 0.5 1.0
0

5

10

K
Lo

M
Fo

rg
et

 S
et

 4
 (

)
GA
GD
SCRUB
Do Nothing
Oracle
DM-Direct
DM-Matching

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0 0.5 1.0
0

5

10

Fo
rg

et
 S

et
 5

 (
)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Time (fraction of full re-training;)

Figure H.4: KLoM results for all forget sets 1-3 on Living-17. The pareto frontier for each method is
in a line plot, but each KLoM data point for each method is plotted.

Observe that Gradient Descent tends to perform very well for the retain and validation sets, but
leaves the forget set relatively unchanged. This is parametrizable through hyperparameters like
weight-decay, but not explored in this plot.

H.4 MODEL ACCURACY AFTER UNLEARNING

For some measures of unlearning it is possible to do well on the machine unlearning measure-of-
success, while at the same time doing completely terribly on the target task, resulting in terrible
generalization and large validation error. We note that our measure of success, KLoM, does not suffer
from this problem, as a machine unlearning algorithm is measured on its ability to match the margins
of a retrained model, which is assumed to do well in general. However, for completeness, we include
a table of the model accuracies for each unlearning methods, evaluated for the method that achieves
the lowest KLoM 99th-percentile score on the forget set.

Index GA GD Scrub Retrain an Oracle DM-Direct DM-Matching
1 88.34 88.44 88.29 88.48 89.97 89.90
2 88.48 88.49 88.36 88.51 89.98 89.70
3 88.25 88.48 87.55 88.25 89.96 89.61
4 87.85 88.44 88.26 88.53 89.95 89.46
5 88.07 88.48 81.99 88.51 89.93 89.86
6 84.20 88.47 85.65 88.42 89.86 89.47
7 87.98 88.44 88.26 88.49 89.98 89.88
8 88.30 88.49 81.62 88.43 90.03 89.93
9 10.92 88.48 85.36 88.46 89.99 89.89

Table H.1: Model Accuracy Results

We note that the pareto optimality curve is computed separately for each forget set. This is because
because we observe that unlearning is quite model-specific and forget-specific; as such, it’s reasonable
that a practitioner should have a different set of hyperparameters for each unlearning depending
on the forget set. Thus, having the pareto-frontier be specified per-forget-set gives each unlearning
method the best opportunity to perform in that setting.

39

	Introduction
	Preliminaries
	Machine unlearning
	Predictive data attribution (Datamodeling)

	Empirically evaluating unlearning
	dmm: Unlearning by Simulated Oracle Matching
	Motivation: the missing targets problem
	The oracle matching algorithm
	An efficient proxy for oracles: datamodels
	Oracle matching with Datamodels

	Oracle Matching for Linear Models
	Linear model experiments
	Convergence Theory

	Conclusion
	Appendix
	
	Limitations
	Related work
	Pseudocode
	Oracle Matching
	Datamodel Direct
	Datamodel Matching

	Experimental setup
	Training setup
	Constructing forget sets
	Datamodel estimation
	Unlearning Baselines

	Linear model analysis
	Proof of Theorem 1
	Proof of thm:somsep
	Experiment details
	Additional experiments

	Unlearning evaluation
	KL Divergence of Margins (KLoM)
	U-LiRA
	Comparing U-LiRA to KLoM
	Sensitivity of unlearning to models and forget sets

	Understanding effectiveness of datamodel matching
	Unlearning stability of om
	Datamodel ablations

	Additional results
	Hyperparameter sensitivity of unlearning algorithms
	Per-sample unlearning over time
	Full KLoM evaluation
	Model accuracy after unlearning

