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Abstract—The rise of multi-modal, multi-node foundation
models has revolutionized intelligent IoT sensing systems by
enabling general-purpose inference from distributed sensing
sources to support diverse downstream applications. However, the
high communication cost of transmitting raw sensor data from
distributed nodes to a central inference model remains a critical
bottleneck, particularly in bandwidth- or energy-constrained
environments. While existing compression methods can reduce
data volume, they often lack the adaptability needed to handle
variations in data relevance and redundancy across sources,
modalities, and time. To address this challenge, we introduce
ZipFM, a lightweight, plug-and-play middleware that dynamically
configures sensor data compression strategies on a per-node, per-
modality, and per-time-step basis to minimize network traffic
while preventing model degradation, taking model sensitivity
to different data sources into account. ZipFM is (i) compatible
with different pre-trained foundation models without requiring
access to their internal mechanisms or retraining, (ii) agnostic
to the underlying tools available for data compression, and
(iii) independent of the specific downstream inference tasks
performed. At its core, ZipFM uses the compression-induced
latent representation shift, produced by the foundation model’s
backbone, as a proxy for downstream accuracy degradation,
and enforces a system-wide optimal representation shift (in the
sense of minimizing compression-related degradation) through
a lightweight feedback control mechanism. Experiments on
three real-world IoT sensing datasets demonstrate that ZipFM
significantly reduces communication costs while preserving model
performance.

I. INTRODUCTION

The concept of multi-modal, multiview foundation models
has recently been proposed [1] to catalyze a new era in intelli-
gent Internet of Things (IoT) sensing systems [2], [3]. In these
models, the model’s backbone inherently recognizes not only
multiple data modalities but also multiple sensor vantage points.
The models learn the association of signals and locations to help
best interpret the multiview (also called multi-vantage) sensing
data. By understanding the impact of sensing vantage points
on received signals, these models are better equipped to reason
about spatial-temporal properties of the observed environment,
given the set of data streams emanating from sparsely and
irregularly deployed sensors used for data collection. As such,
they are poised to achieve advances in inference across many
IoT applications, ranging from earthquake localization [1] to
military target tracking [4]. However, multiview foundation
models introduce a critical systems challenge. Multi-modal,
multi-dimensional, and often redundant data are transmitted

from sensing devices to the central model. This creates a
communication bottleneck, particularly in bandwidth-limited
or energy-constrained environments. Naively transmitting all
raw data is unsustainable for large-scale deployments.

Prior work has explored a range of (lossy) compression
techniques' to reduce communication overhead [5], [6]. While
these approaches can be effective in specific scenarios, they
fall short in multi-modal multiview foundation model-based
IoT systems due to a fundamental issue: the relevance and
redundancy of data across different nodes, modalities, and
samples vary significantly over time, causing substantial time-
varying differences in model sensitivity to the degree of
compression of individual data streams. A fixed or global
compression policy inevitably leads to inefficiencies and/or
loss of fidelity.

To address this challenge, we propose ZipFM, a lightweight,
plug-and-play middleware designed for multi-modal, multi-
node IoT sensing systems powered by foundation models.
Instead of enforcing a one-size-fits-all policy, ZipFM dynam-
ically configures the choice of compression algorithm and
its parameters per node, per modality, and per time step, to
optimize the trade-off between communication cost and sensing
fidelity. ZipFM is designed to satisfy three criteria:

1) Plug-and-Play Model Compatibility: ZipFM is agnostic
to the structure, parameters, and training procedure of
the underlying foundation model. It requires no model
retraining or architectural modification.

2) Plug-and-Play Compression Algorithm Compatibility:
ZipFM can operate with any set of lossy (configurable)
user-defined compression tools (e.g., JPEG, ZFP), making
it easily extensible and domain-adaptable.

3) Task-Independence: ZipFM supports multiple concur-
rent downstream inference tasks without access to task-
specific labels or task logic, making it robust to a wide
range of workloads.

ZipFM is built on two key insights: (1) Latent Representa-
tion Shift as a Proxy for Accuracy Loss: Foundation models
use a backbone-head architecture, where a shared backbone
extracts semantic latent representations used across tasks. We

"'While lossless compression has also been used, it is not adaptive to the
amount of resources available, which is a challenge in IoT environments where
available network bandwidth can dynamically change. Thus, when we refer to
compression in this paper, we mean lossy compression by default.



show that the shift in these latent representations strongly
correlates with downstream performance degradation. This
enables task-agnostic, label-free performance monitoring. (2)
Convexity of Latent Shift with Respect to Compression:
Empirically, we find that the latent representation shift behaves
as a convex function of communication bitrate. This observation
enables principled, convex optimization for per-source bitrate
allocation.

Building on these insights, ZipFM casts bitrate assignment
as a constrained convex optimization problem: minimize total
communication while ensuring the latent representation shift
remains within a tolerable range. From this formulation,
we derive a system-wide optimality principle: the marginal
decrease in distortion per bit should be equal across all data
sources. ZipFM enforces this principle using a lightweight
feedback-control loop, which estimates the derivative via
runtime probing and adjusts compression settings accordingly.

We evaluate ZipFM on three diverse, real-world IoT sensing
datasets: M3N-VC (vehicle classification) [7], RealWorld
HAR (human activity recognition) [8], and the Ridgecrest
Seismicity Dataset (earthquake localization) [9]. Results
show that ZipFM can achieve significant communication
traffic reduction, while preserving the original model’s sensing
accuracy.

To summarize, the paper tackles the challenging problem
of lossy data compression to support network-efficient multi-
modal multiview foundation model inference, while minimizing
quality degradation. Our contributions are recapped as follows:

« We propose a novel inference-task-independent measure of
quality degradation based on compression-induced latent
representation shift.

o We propose a novel system-wide optimality principle that
minimizes degradation by equalizing marginal shift in
distortion per bit.

o We develop ZipFM, a new middleware that implements the
above principle to attain adaptive, task-agnostic optimal
data compression, independent of model architecture and
compression specifics, that minimizes degradation.

« We demonstrate its effectiveness using multiple real-world
datasets, achieving large communication savings while
preserving quality of inference.

The rest of this paper is organized as follows. Section II
reviews related work. Section III describes the analytical
foundations behind ZipFM and presents its design. Section IV
describes the evaluation results. A discussion is presented in
Section V, followed by conclusions in Section VI.

II. RELATED WORK

Foundation Models for Multi-Modal, Multi-Node IoT
Systems. Recent advances in pretraining for IoT have produced
foundation models that generalize across sensing tasks using
unlabeled, heterogeneous data from multiple modalities. These
include contrastive approaches such as Cosmo [10], Cocoa [11],
and FOCAL [12], which align modality-specific views in a
shared space, and more recent systems like ImageBind [13],
MMBind [14], and InfoMAE [15], which extend to loosely

paired or unpaired modalities. Generative methods, including
Ti-MAE [16], MOMENT [17], TS-MAE [18], FreqMAE [4],
PhyMask [19], and SPAR [1], apply masked reconstruction to
time-series and frequency-domain data for robust, transferable
features. LLM-inspired approaches such as LIMU-BERT [20],
IoT-LM [21], LLMSense [22], and Penetrative Al [23] enable
zero-/few-shot inference via prompting, summarization, or
adapters. While effective, these works assume full-resolution
sensor inputs and do not address the communication bottlenecks
in real IoT deployments. In contrast, our middleware enables
scalable use of such models under bandwidth constraints.

Communication Traffic Reduction Methods for IoT. To
address bandwidth and energy limitations in IoT deployments,
data reduction strategies generally fall into three categories:
Data Compression (DC), Data Prediction (DP), and Data Ag-
gregation (DA) [5]. DC methods encode raw sensor data before
transmission. Lossless techniques like Huffman coding [24] or
LZW [25] preserve full fidelity but offer modest compression ra-
tios. Lossy methods [6] achieve higher reductions by discarding
redundant information, though they often apply fixed policies
without considering data relevance to downstream models. DP
methods build models to predict sensor readings and send only
unexpected or divergent measurements [26], [27]. Single and
dual prediction frameworks [28], often based on lightweight
ML models, can greatly reduce volume but are sensitive to dis-
tribution shifts and noisy environments. DA techniques reduce
redundancy by summarizing data across spatial or temporal
dimensions, often at edge gateways [29], [30]. Aggregation
functions like mean or min/max are computationally cheap
and energy-efficient [31], but discard fine-grained information
critical to high-resolution sensing tasks. While each class of
methods offers benefits, none dynamically adapts compression
to heterogeneous, time-varying model sensitivities as in our
work.

Lossy Data Compression Methods for IoT. Among the above
strategies, lossy compression offers particularly strong potential
for large reductions in communication traffic by selectively
removing redundancy. Existing approaches can be grouped
into four categories: lossy-lossless hybrids, Al-based encoders,
interpolation-based methods, and transform-based methods.
Hybrid schemes [32]-[34] switch between lossy and lossless
modes depending on factors such as energy availability or
data criticality. Al-based methods [35], [36] employ models
like autoencoders to learn compact representations, excelling
on high-dimensional or nonlinear data but incurring train-
ing and inference costs unsuitable for constrained devices.
Interpolation-based techniques [37], [38] use linear or nonlinear
approximations to summarize signals under error bounds; they
are lightweight but struggle with abrupt changes or high-
frequency content. Transform-based methods [39] leverage
domain conversions (e.g., wavelet or cosine transforms) to
sparsely represent structured signals, but often generalize
poorly across modalities. While effective in specific contexts,
these methods typically lack per-node, per-modality adaptivity
to foundation model sensitivities—a gap addressed by our



proposed middleware.

III. ALGORITHM DESIGN

In this section, we present the design and implementation
of ZipFM, a lightweight middleware that enables efficient,
adaptive compression for multi-modal, multi-node IoT sensing
systems built on foundation models. ZipFM dynamically
configures compression strategies—per node, per modality, per
time step—to minimize communication cost without sacrificing
sensing accuracy. Crucially, ZipFM satisfies the three criteria
described in Section I: it is Agnostic to Models, Agnostic
to Compression Algorithms, and Agnostic to Tasks. These
properties make ZipFM broadly applicable, plug-and-play, and
robust in real-world deployments.

The core idea behind ZipFM is to monitor and control
the latent representation shift—a measure of how much
the latent representation of the input data (as produced by
the foundation model’s backbone) changes when the input
is compressed. We show that this shift is a good indicator
of inference performance degradation, and that it behaves as
a convex function with respect to the compression rate. By
modeling this relationship and controlling it through feedback,
ZipFM is able to intelligently balance communication efficiency
and model fidelity.

For clarity, we adopt the following notation convention
throughout the paper: scalars are denoted by lowercase or
uppercase letters (e.g., t,T"), vectors by bold lowercase letters
(e.g., ), and sets by calligraphic uppercase letters (e.g., X).

A. Latent Representation Shift as an Effective Proxy for Sensing
Accuracy Degradation

Consider a system with /N edge nodes, each collecting data
from M different modalities over T' time steps. Let x; ;¢
denote the raw, uncompressed data from node ¢, modality j,
at time ¢, and let the complete multi-node, multi-modal input
at time ¢ be

X =A@ j1tim1,. N j=1,..M-

In a sensing system based on a multi-modal, multi-node
foundation model, the input data &, is gathered from edge
nodes into a central server and then processed by a pre-
trained backbone network fy, which extracts a joint latent
representation fy(X;). This latent representation captures high-
level semantic information and is then passed to multiple task-
specific heads to generate outputs yy ., where k € {1,..., K}
indexes different sensing tasks. For instance, in a vehicle mon-
itoring system, seismic signals and acoustic signals collected
from various roadside nodes may be fused into a single latent
representation. And one task head may then perform vehicle
type classification, while another localizes the vehicle spatially.

To reduce bandwidth usage, each node compresses its data
before transmission. Let @] ; , denote the compressed version
of x; ; ¢, and let the compressed system input be:

/ e / . . 1
Xy =A{z;; ti=1,. N j=1,...M-

When A} is replaced with X/, the backbone’s output fp(X})
may differ from the original one, potentially harming task
performance.

However, directly measuring the drop in task accuracy
requires labels and task-specific logic, which is not practical
in real-time deployments. Instead, we propose a task-agnostic,
label-free proxy: the latent representation shift, defined as the
squared Euclidean distance between the latent representation
computed from the original and the compressed inputs:

de = || fo(Xs) = fo(X))]3.

Empirical evidence, as shown in Fig. 1, Fig. 2, and Fig. 3 in
Section IV-A, reveals that d; strongly correlates with actual
drops in task performance across datasets and sensing tasks.
This is because the backbone’s latent representation encodes
general, task-agnostic features that are sensitive to information
loss.

Why Correlation is Expected: A Rate-Distortion Theory
Perspective. This approach can be grounded in rate-distortion
theory [40], which formalizes the trade-off between compres-
sion efficiency (rate) and retained task-relevant information
(distortion). In our setting, the goal is to minimize communica-
tion bandwidth, measured by the mutual information between
the original and compressed inputs I(X;; X;/), while ensuring
that compression does not excessively degrade the information
needed for downstream tasks. Formally, we pose this as:

min  I(X; X/)

1
st I(yps; X | X)) <c forall k. )

Directly computing the distortion I(yy ;X | A7) for all
tasks is impractical, as it would require full access to each task
head’s structure. To resolve this, we observe that in foundation
model-based systems, the backbone output fy(X;) serves as
a task-agnostic, sufficient statistic for all downstream tasks.
Therefore, we can obtain the following bound by applying the
Data Processing Inequality:

Iyrp: X | X)) < I(fo(Xe); X | X)),

Thus, we can ensure that the distortion with respect to any
downstream task is constrained by constraining the distortion on
the backbone’s latent representation. Formally, we can reframe
the optimization problem in (1) as:

min  I(X; X)) st I(fo(X); X | X)) <ec.

In practice, ZipFM approximates the I(fp(X;); X: | X/)
term using the latent representation shift d; as we described
above. This approximation is efficient and deployable, and still

conforms to rate-distortion theoretical principles.

B. Convexity of Latent Representation Shift Enables Optimal
Compression Budget Allocation

A key insight enabling ZipFM’s adaptive control is that, in
most cases, the latent shift d; behaves convexly with respect to
communication bitrate. This empirical observation is supported
by the results shown in Fig. 1, Fig. 2, and Fig. 3 in Section I'V-A.



For each node ¢, modality j, and time ¢, let b; ; ; be the number
of bits used to transmit x; ; ,. We observe empirically that,
as compression is reduced (i.e., b; ;; increases), the marginal
improvement in d; diminishes.

This insight enables us to formulate a principled optimization
problem: how should we assign bit budgets to each data
source—i.e., each combination of node ¢ and modality j—to
minimize total communication cost, while keeping the overall
distortion (as measured by latent representation shift) under a
desired threshold?

To express this formally, let By = {b; j +}i=1,... . N;j=1,...M
denote the set of bitrates used to encode each data stream at
time ¢, and let d;(B;) denote the resulting latent shift under
this allocation. Our objective is to find the bitrate allocation
that minimizes total bandwidth while ensuring the induced
distortion does not exceed a predefined threshold c:

i b; ; Lo di(By) <c.
WLt st d(B) <
2Y)

As we describe above, our systems satisfy the Convexity:
The distortion function d:(B;) is convex with respect to each
bitrate b; ; ;. Besides, they also satisfy the Feasibility: When
there is no compression, d;(5;) = 0, which means Slater’s
condition holds.

Therefore, standard results from Karush-Kuhn-Tucker (KKT)
conditions [41] tell us that a solution B} is optimal in our
systems if and only if the following conditions hold for all ¢
and j:

Ody 1
=—— and d;(B})=c,
8sz7t U t( t)

where p > 0 is the Lagrange multiplier associated with the
distortion constraint. This result has an elegant interpretation:
at the optimal allocation, the marginal decrease in distortion
per additional bit should be equal across all data sources.
This principle underpins the adaptive compression mechanism
implemented in ZipFM.

Importantly, in our setting, the distortion threshold c and the
multiplier ¢ are mutually dependent. As a result, we propose to
set 1 as a hyperparameter in ZipFM, leaving the corresponding
¢ automatically induced. This simplifies the deployment and
tuning of ZipFM.

Why Convexity is Expected: A Rate-Distortion Theory
Perspective. We further provide a theoretical argument, within
the same rate—distortion framework mentioned above, to explain
why the latent shift d; often exhibits convex behavior with
respect to communication bitrates. Specifically, the distortion,
approximated by d;, can be expressed as:

dp =I(fo(X); X | XY)
=I(fo(X); Xy, X)) — I(Xys fo (X))
=1(fo(X2); X) — I(/Yt/; fo(&4))
Here, I(fo(X:); X;) is constant with respect to compression, so
the bitrate dependence lies entirely in I(X/; fo(X};)). Modern

compression methods are deterministic and designed to preserve
semantic content, so we adopt a simplifying and idealized

+

(@)

assumption that X/ retains the most information of fp(X;).
Under this assumption, we can have:

I(Xf; fo(Xh)) = min(H (fo(Xy)), H(X)))

= min(H (fo(X)), Zbi,j,t) )
1,J

Substituting this into (2) shows that d, becomes a piecewise
linear, convex function of each b; ; ¢, providing a theoretical
rationale for the convex patterns observed in our experiments.

C. Enforcing Optimal Compression Budget Allocation with
Feedback Control

To enforce the principle of equalizing the marginal decrease
in distortion per additional bit across all data sources, ZipFM
implements a feedback-control mechanism that adjusts the
compression algorithm and the associated compression levels
based on how far each data source is from the ideal point f%.

Let uw; ;+ € {1,...,U} represent the compression level
applied to node 7, modality j, at time ¢, where higher values
of u correspond to more aggressive compression (i.e., fewer
bits transmitted). Given a compression algorithm, u; ; ; maps
to a specific bitrate b; ; ;. Periodically, ZipFM updates u; ; ¢
using the following rule:

o if _0de 1~ .
u’b,],t L if Ob; ¢t + w S h’ uZaJvt >1
y — o if _0dy 1 o
Ui jt+1 = § Wi gt +1 if Db st + m > h, Uj gt < U
Ui 5t otherwise

Here, h > 0 is a tolerance margin that prevents unnecessary
oscillations. This simple control rule nudges each stream’s
compression toward the system-wide ideal point —i.

Estimating the Derivative in Practice. To compute the
required derivative agf_l; - at runtime, ZipFM periodically
instructs a node to send two versions of the same data—using
compression levels w; ;; and w; ;¢ +1 (u; 5 —1if u; 5, = U),
respectively. The rest of the system operates normally, so
any change in d, is attributable solely to that source. The
central server measures the square Euclidean distance in latent
representation between these two versions, denoted as Ady,
and the corresponding difference in bitrate, denoted as Ab; ; ;.
The derivative is then estimated as:
ady  Ady
ijr  Abijs

Compression Algorithm Selection. In our design, the choice
of the compression algorithm is performed for each modality
only during the first control round and then fixed throughout the
operation. Specifically, all the nodes send both the original data
and a version compressed with the lowest available compression
level for each candidate algorithm. ZipFM selects the algorithm
with the lowest ratio of latent representation shift per bit saved.
This design helps ensure that the chosen algorithm is suited
to the characteristics of the data modality, while introducing
minimal overhead.

Hybrid Scheduling for Fast and Efficient Adaptation. To
limit overhead while maintaining adaptability, ZipFM uses a




hybrid scheduling strategy. Each stream begins in a warm-up
phase, where compression level updates are frequent, enabling
rapid convergence to an appropriate compression level. Once
the compression setting stabilizes over multiple rounds, the
node transitions to a steady-state phase, with updates happening
less frequently to save bandwidth. This approach ensures that
ZipFM can rapidly adapt to new environments at the beginning
of the deployment, while minimizing long-term communication
cost.

In summary, ZipFM combines a principled understanding of
representation robustness, rate-distortion theory, KKT condition,
and feedback control to deliver a practical, scalable solution
for bandwidth-efficient operation in foundation model-powered
multi-node multi-modal IoT sensing systems.

IV. EXPERIMENTS

To evaluate the effectiveness of ZipFM in real-world IoT
sensing scenarios, we conducted extensive experiments across
multiple datasets, tasks, and modalities. Our goals were to
validate the key insights underlying ZipFM, and quantify
its ability to reduce communication cost while preserving
model performance. Below, we detail the datasets, experimental
protocols, and results supporting our claims.

Datasets. We conducted experiments on three real-world IoT
datasets. (1) The M3N-VC dataset [7] includes synchronized
audio and seismic signals collected from six spatially distributed
nodes across six outdoor scenes. Audio signals are transmitted
as spectrograms, while seismic signals are transmitted as time-
series segments. (2) The Ridgecrest Seismicity Dataset [9]
comprises three-component seismic waveforms from 16 nodes,
recorded with high-gain broadband seismometers and high-gain
accelerometers, and sent to the server in spectrogram form. (3)
The RealWorld-HAR dataset [8] provides time-series data from
six body-mounted nodes, including acceleration, gyroscope,
and magnetic field modalities.

Tasks and Metrics. Consistent with [1], we evaluate single-
vehicle localization on M3N-VC using the average distance
error, and assess multi-vehicle joint classification and localiza-
tion using mAP@r, which computes the mean average precision
across all vehicle classes, considering a prediction correct only
if both the class label is correct and the predicted location lies
within a distance r of the ground truth. For the Ridgecrest
Seismicity Dataset, we measure earthquake event localization
performance using distance error. On the RealWorld-HAR
dataset, we evaluate multi-class human activity recognition
via classification accuracy. These metrics reflect realistic IoT
sensing objectives while supporting rigorous performance
comparisons.

Foundation Model. For all experiments, we adopt the multi-
modal, multi-node foundation model proposed in [1].2 This
model is pre-trained with placement awareness, enabling strong

2Note that, preprint [1] is currently undergoing blind review for another
publication. If accepted, we shall cite the accepted paper. The focus in that
paper (see [1]) is on the model training architecture, which is orthogonal to
the contribution of the current work (that lies in the data compression policy).

6.5

0.018]

0.014

°
°
2
N

5.0
0.008

Localization Distance Error (m)
Latent Representation MSE
°
4 <
2
5

0.006

0.004

0.1 0.3 0.4 0.5 0.6

¥ X 1000 1500 2000 2500 3000 3500 4000
presentation MSE

02
Latent Re Data Size (Bytes)

Fig. 1. Analysis of latent representation shift on the M3N-VC dataset.
Left: Relationship between latent representation shift and actual drops
in localization performance. Right: The latent representation shift
exhibits convex behavior with respect to communication bitrate.
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generalization in diverse scenarios. Throughout our evaluation,
the foundation model remains fixed.

Compression Methods. For all our experiments, we employ
three widely used lossy compression algorithms for sensory
data: JPEG, WebP, and ZFP. For baseline comparisons, we
consider uniform compression policies, where all nodes, modal-
ities, and time steps use the same compression method and
compression level.

A. Empirical Validation of Our Insights

To empirically validate the use of latent representation shift
as a proxy for task performance degradation, and to confirm
its convex behavior with respect to communication bitrate, we
present an analysis on all three evaluation datasets. Fig.1, Fig.2,
and Fig. 3 illustrate these patterns for the M3N-VC, Ridgecrest
Seismicity, and RealWorld-HAR datasets, respectively.

For each dataset, the left panel shows the relationship
between the latent representation shift and the actual drops in
task performance (localization error or classification accuracy).
The consistently strong correlation across diverse modalities
and tasks supports the viability of latent shift as a task-agnostic,
label-free proxy for inference performance.

The right panel in each figure demonstrates the convex trend
of latent representation shift as a function of communication
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bitrate. As compression is reduced (i.e., bitrate increases),
the marginal benefit in reducing latent shift diminishes. This
empirical convexity underpins the optimal bitrate allocation
mechanism in ZipFM, enabling principled, feedback-based
control.

B. Evaluation on M3N-VC Dataset

We begin our evaluation on the M3N-VC dataset, focusing
on the single-vehicle localization task. As shown in Fig. 4, ZFP
achieves the lowest ratio of latent representation shift per bit
saved for the seismic signals, while JPEG performs best for the
audio modality. Accordingly, ZipFM selects these algorithms
for their respective modalities. As illustrated in Fig. 5, ZipFM
achieves a localization error of 4.19 meters while transmitting
only about 4% of the original total data traffic. This represents
a better trade-off between compression and accuracy compared
to baselines that apply a single compression algorithm and
compression level uniformly across all nodes, modalities, and
time steps. These results highlight the advantage of adaptive
algorithm and level selection in achieving a more favorable
balance between model performance and communication cost.

Next, we evaluate ZipFM on a more complex setting: the
multi-vehicle joint classification and localization task. As shown
in Fig. 6, ZipFM maintains an almost unchanged mAP@6m
while using only about 4% of the original data traffic. It outper-
forms all baselines that apply uniform compression algorithms
and levels, which either suffer degraded performance or require
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Fig. 5. Localization performance versus communication cost on the
M3N-VC dataset. The plot shows the trade-off between localization
distance error (y-axis) and the percentage of total traffic (x-axis).
Baselines include JPEG (green curve) and ZFP (blue curve), where
all nodes and modalities apply a uniform compression setting. The
gray dashed line indicates the model performance with original data.
ZipFM, marked by a red star, achieves a better balance between
localization accuracy and transmission efficiency.
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Fig. 6. Localization performance versus communication cost on the
M3N-VC dataset. The plot shows the trade-off between 1-mAP@6m
(y-axis) and the percentage of total traffic (x-axis). Baselines include
JPEG (green curve) and ZFP (blue curve), where all nodes and
modalities apply a uniform compression setting. The gray dashed
line indicates the model performance with the original data. ZipFM,
marked by a red star, achieves a better balance between localization
accuracy and transmission efficiency.

significantly more bandwidth. These results further confirm that
adaptive, modality-specific compression generalizes effectively
to more complex, multi-target scenarios, consistently achieving
superior trade-offs between performance and communication
efficiency.

To better understand the design choices of ZipFM, we
conduct ablation studies focusing on two key aspects: the
impact of the warm-up phase and the effect of node availability.
First, we evaluate a variant that eliminates the warm-up phase,
allowing the system to enter the steady-state phase directly. As
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shown in Table I, this slows convergence and results in more
high-quality data being transmitted during the early stages,
ultimately increasing total communication traffic. Second, we
examine the system’s performance when one of the six nodes
is completely removed, resembling a scenario similar to sparse
attention in a transformer-based foundation model backbone.
This modification leads to degraded localization performance,
underscoring that even the small fraction of compressed data
retained is critical for the foundation model to accurately
interpret events.

We further analyze how the hyperparameter 7% influences
the trade-off between model performance and transmission
cost in ZipFM. As shown in Fig. 7, decreasing —ﬁ promotes
stronger compression, reducing transmission traffic but in-
creasing localization error. This transition is monotonic and
smooth, making hyperparameter tuning easier in practice and
allowing users to adjust the setting according to their specific
requirements.

C. Evaluation on Ridgecrest Seismicity Dataset

In the next experiment, we evaluate ZipFM on the Ridgecrest
Seismicity Dataset, focusing on earthquake event localization.
This scenario involves relatively high node variability, since
different events may not be uniformly detected across all nodes.
In this setting, ZipFM selects JPEG for seismometer signals
and WebP for accelerometer signals. As shown in Fig. §,
ZipFM achieves low localization error while maintaining a low
transmission rate, outperforming the baselines by achieving a
more favorable balance between efficiency and accuracy.

To facilitate understanding, we further illustrate the evolution
of compression levels over time for several nodes in Fig. 9. As
shown, different nodes dynamically adjust their compression
levels in response to local signal conditions, enhancing the
overall efficiency of the system.

D. Evaluation on Realworld HAR Dataset

Finally, we assess ZipFM on the RealWorld-HAR dataset to
evaluate its effectiveness for human activity recognition. In this
setting, ZipFM selects WebP for accelerometer signals and ZFP

—=— JPEG
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* Our Method
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Fig. 8. Localization performance versus communication cost on the
Ridgecrest Seismic Dataset. The plot shows the trade-off between
localization distance error (y-axis) and the percentage of total traffic
(x-axis). Baselines include JPEG (green curve) and WebP (orange
curve), where all nodes and modalities apply a uniform compression
setting. The gray dashed line indicates the model performance with
original data. ZipFM, marked by a red star, achieves a better balance
between localization accuracy and transmission efficiency.
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Fig. 9. Evolution of compression levels over time for selected nodes
in the Ridgecrest Seismicity Dataset.

for both gyroscope and magnetic field data. As shown in Fig. 10,
ZipFM achieves low classification error while maintaining a
relatively low transmission cost. Baseline configurations either
suffer from higher errors at comparable traffic levels or require
greater bandwidth to achieve similar performance. These results
highlight the adaptability and effectiveness of ZipFM for IMU
data and human activity recognition tasks.

V. DISCUSSION

While ZipFM demonstrates promising results in improving
communication efficiency for multi-node, multi-modal [oT
foundation model systems, there are several limitations and
future exploration directions to consider.

First, ZipFM relies on periodic probing of the latent
representation shift to estimate derivatives, which incurs some



TABLE I
ABLATIONS OF ZIPFM.

M3N-VC (H24)

Method
Total Traffic (Bytes) (/)  Percentage Save (%) (1)  Overhead Traffic (Bytes) ({)  Localization MSE (m?) (/)  Localization Dist. Err. (m) (})
ZipFM 16,783,155 95.9 544,739 12.49 415
ZipFM w/o warm-up phase 17,417,683 95.8 470,796 12.50 4.16
ZipFM w/ one node dropped 14,183,109 96.5 498,398 13.95 4.37
uaranteed for modern, highly non-linear neural networks.
141 Ry ZFP
WebP Systematically identifying potential failure modes and devel-
_ * Our Method oping corresponding mitigation strategies would be a valuable
13 direction for future work.
[] . . . . .
= Finally, our lightweight feedback control mechanism, while
-4 . : . .
5 simple and effective in practice, has not been formally proven
L2 to be stable or evaluated under extreme, rapidly varying
s data distributions. Extending the control framework to offer
T theoretical convergence guarantees and enhanced adaptivity
= 11 . . . . ..
"5 Q1 in highly dynamic environments also represents a promising
8 research opportunity.
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Fig. 10. Activity classification performance versus communication
cost on the RealWorld-HAR dataset. The plot shows the trade-off
between classification error rate (y-axis) and the percentage of total
traffic (x-axis). Baselines include ZFP (blue curve) and WebP (orange
curve), where all nodes and modalities apply a uniform compression
setting. The gray dashed line indicates the model performance with
original data. ZipFM, marked by a red star, achieves a better balance
between classification accuracy and transmission efficiency.

additional bandwidth and latency overhead. Although our
hybrid scheduling strategy mitigates this cost, highly dynamic
environments with rapidly changing data patterns may still ex-
perience performance degradation if frequent probing becomes
necessary. Developing more lightweight probing techniques
remains an important future direction.

Second, ZipFM employs a fixed compression algorithm per
modality after an initial selection round. While this design
enhances the robustness of the system and simplifies the oper-
ations, there may be scenarios where switching compression
algorithms over time would be beneficial (e.g., when data
characteristics evolve substantially after deployment).

Third, the current formulation of ZipFM assumes a shared
backbone running entirely on the central server. In more
distributed or hierarchical computing paradigms, such as
edge computing or fog computing, the coordination of latent
representation monitoring and bitrate allocation could become
more complex. Exploring how to develop middleware for these
scenarios is an important area for future research.

Fourth, although we have provided both consistent empirical
evidence and a rate—distortion—based theoretical rationale
for the correlation between latent shift and downstream
performance, as well as for the convex behavior of the shift
with respect to bitrate, these properties cannot be universally

This paper introduces ZipFM, a lightweight, adaptive mid-
dleware that enables foundation-model-based multi-modal,
multi-node 10T sensing systems to operate more efficiently.
By dynamically configuring compression strategies per node,
per modality, and per time step, ZipFM achieves significant
reductions in communication traffic while maintaining high
inference performance. The design of ZipFM is grounded in
a novel use of latent representation shift as a proxy for task-
agnostic accuracy degradation, together with convex optimiza-
tion principles and feedback control to balance compression
rates across distributed data streams. Extensive experiments
on three real-world IoT datasets validate the effectiveness of
ZipFM, demonstrating its ability to achieve superior trade-
offs between communication efficiency and model fidelity.
As intelligent IoT sensing systems incorporate ever more
nodes and modalities while increasingly depending on large-
scale foundation models, we believe ZipFM can inspire future
research on scalable, adaptive, and communication-efficient
sensing infrastructures.
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