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Abstract— An IDK classifier is a learning-enabled software
component that attempts to categorize each input provided to
it into one of a fixed set of base classes, returning IDK (“I
Don’t Know”) if it is unable to do so to a required level of
confidence. We consider the use of IDK classifiers in applications
where it is natural to consider the base classes as comprising
the leaves of a class hierarchy. Classification into higher levels
of such a hierarchy may be easier than classification into base
classes. Given a collection of different IDK classifiers that have
been trained to classify at different levels of a class hierarchy, we
derive algorithms for determining the order in which to use these
classifiers so as to minimize the expected duration to successful
classification (whilst guaranteeing to meet a hard deadline).
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I. INTRODUCTION

This paper develops algorithms for real-time classification,

subject to latency and confidence constraints, in the important

case where the entities to be classified fall naturally into a

predefined class hierarchy. The work is timely as modern in-

telligent Cyber-Physical Systems (CPS) and Internet of Things

(IoT) applications are increasingly equipped with perception

modules for understanding their environment, context, or user.

Examples range from automatic target recognition [1], [2] to

human activity classification [3]. A recent trend is to perform

such processing at the point of need, meaning on an embedded

platform in the field [4], where the sensor data originate,

as opposed to a resource-rich server in the cloud. Such in

situ sensor data processing improves local autonomy and

reduces reliance on communication with a remote device, but

introduces a need for resource economy to reduce latency.

To reduce the average classification latency (especially on

low-end embedded platforms), it was suggested to replace

large monolithic classifiers with IDK classifier cascades, in-

spired by caching systems. An IDK classifier [5], [6] is a

well-calibrated classifier that returns a class if classification

confidence meets or exceeds a predefined threshold, and

returns an “IDK” (i.e., “I don’t know”) otherwise. An IDK

cascade [5] is a sequential arrangement specifying the order

in which IDK classifiers are applied to an input until a non-

IDK classification is obtained.1 In a typical IDK cascade,

computationally efficient classifiers with a more limited ac-

curacy or repertoire (optimized for the common case) are

1 In applications where every input must eventually receive a valid
classification, a deterministic classifier is added as the final stage of the IDK
cascade. If this deterministic classifier also fails to classify an input, the system
registers a fault, potentially triggering recovery mechanisms.

generally used first, resorting to more complex and resource-

intensive classifiers only when upstream classification fails

(i.e., returns an IDK). Besides reducing the mean latency to a

successful classification (by answering quickly in the common

case), IDK classifier cascades can also improve reliability and

trustworthiness [7], [8] by deferring uncertain or ambiguous

examples to a more reliable (albeit slower) fallback system

such as a larger model, a human expert, or a downstream

verifier. Note that, IDK classifier cascades can be regarded as

a special case of the popular mixture of experts models [9],

with the additional restriction that the experts are queried

sequentially (e.g., due to platform resource constraints).

Techniques for empirically calibrating arbitrary classifiers

to return confidence values that match their actual probability

of correctness have been proposed in literature [10] and can

be leveraged in this work. Note that, in the case of an IDK

classifier, only the desired confidence threshold needs to be

well-calibrated. Given labeled training data and any classifier

that returns, for each class, c, an output Oc that monotonically

increases with confidence in that class, calibration simply

entails finding the output threshold, Othresh
c , such that for

instances where Oc g Othresh
c , the empirical probability that

the input is of class c (according to the labeled data) is equal

to the desired confidence. At run-time, the classifier returns

a non-IDK class, c, only when Oc g Othresh
c . The calibration

ensures that non-IDK answers satisfy the desired confidence

threshold as long as run-time observations are drawn from the

same distribution as the training data (i.e., in the absence of

domain shift).

This paper extends prior work on optimizing the order

of classifiers in IDK cascades [11]–[15] to the important

case of class hierarchies. To appreciate the advantages of

exploiting class hierarchies, consider a toy example application

that requires us to classify automobiles, each of which is

guaranteed to be of one of four different models. Two of

the models, the Mazda MX 5 and the Ford MUSTANG, are

COUPEs and the other two, the Mazda CX 30 and the Mercedes

Benz GLE 350, are Sports Utility Vehicles (SUVs), as shown

in Figure 1. Two observations are due:

• It is often easier to distinguish higher-level classes (e.g.,

an SUV from a COUPE) than it is to directly distinguish all

lower-level classes (e.g., a MUSTANG, a MX 5, a CX 30

and a GLE 350). Indeed our experiments, described in

Section V-A, bear this out. The intuition is that higher-

level categories are more distinct from one another (and

thus easier to distinguish) than lower-level ones.



• It is also generally the case (again, borne out by our

experiments) that given an identified higher-level category

(i.e., whether a vehicle is a COUPE or an SUV), one can

use more accurate specialized classifiers for distinguish-

ing between the different members of that one category

(e.g., different COUPEs or different SUVs). Such special-

ized classifiers are trained exclusively on the specific

high-level category. Intuitively, they are generally more

accurate because the number of subclasses to distinguish

among is reduced (e.g., only SUVs or only COUPEs, as

opposed to both types), thus simplifying the classification

problem.

These observations suggest that a hierarchical classification

approach can break a complex global classification problem

into a series of simpler ones. In the context of IDK cascades,

it might therefore appear that one can use prior optimization

results for IDK cascades [11] first to sequence high-level IDK

classifiers (e.g., those that classify vehicle as being either

SUVs or COUPEs), then (depending on the identified high-level

class) sequence the corresponding specialized IDK classifiers,

thereby solving the original global problem.

Although one can indeed deal with class hierarchies by

solving a number of individual classification problems, one at

the top level of the hierarchy and another for each intermediate

class, it turns out that one can do better (in the sense of

achieving smaller average duration to successful classification)

by instead taking a holistic perspective: we show this in

Section II via a series of simple examples that also serve

to expose the reasons why this is the case. Intuitively, in

practice, the used higher-level categories might not always

be very well-separated (or there may be a lot of diversity

within one of the subcategories), rendering the hierarchical

decomposition less beneficial. The succession of intermediate

and specialized classifiers might take more time than a larger

global classifier. Hence a good cascade optimization algorithm

should have the flexibility to use not only classifiers designed

for individual levels of the class hierarchy, but also those

that flatten it into a single global classification problem.

Moreover, when classifiers at multiple levels of the hierarchy

are used, the IDK cascade sequencing problems at the different

levels might not be independent. The best order for classifiers

considered in a higher-level IDK cascade (to tell the higher-

level category) might correlate with the best order of IDK

classifiers to consider at the next level (e.g., due to common

influences such as external weather conditions). And while

our examples that illustrate these cases in Section II are

contrived, we have observed similar phenomena in several

real-life classification use-cases (some of which are discussed

in Section V). In short, the optimization of IDK cascades for

solving classification problems involving hierarchical classes

needs to be approached holistically, as it is not decomposable

into sequences of classification problems at individual levels of

the hierarchy. However, prior work does not allow for holistic

modeling or the exploitation of such naturally-occurring class

hierarchies. Our evaluation, based on empirical data obtained

(ROOT)

COUPE SUV

MUSTANG MX 5 CX 30 GLE 350

root class

intermediate
classes

base
classes

Fig. 1: An example class hierarchy

from two different application use-cases shows that non-

trivial improvements in latency are attained when holistic IDK

cascade optimization is used for hierarchical classes.

To summarize, in this work, we seek to better understand

how to exploit class hierarchies, when they exist, in order to

achieve faster classification. Our specific contributions are:

1) We propose a formalization of the notion of a hierarchy of

classes in the context of classification.

2) We develop a generalization of current formal models

for representing collections of IDK classifiers, to account

for class hierarchies and to allow for the more accurate

modeling of classifier properties upon such hierarchies.

3) We obtain algorithms for optimal (in the sense of minimum

average duration, whilst subject to a hard deadline) classi-

fication of inputs into classes of such class hierarchies.

4) We provide an experimental evaluation, including upon

real-world workloads, demonstrating the efficacy of our

classification algorithms.

Organization. The remainder of this manuscript is organized

in the following manner. In Section II we use a pair of exam-

ples to illustrate both opportunities that arise in classification

due to the presence of the class hierarchy, and challenges to

exploiting these opportunities. In Section III we formalize the

notion of a class hierarchy, and propose a hierarchy-cognizant

model for representing IDK classifiers. In Section IV, we

present pre-processing and runtime algorithms for hierarchical

classification using IDK classifiers. In Section V, we describe

experiments evaluating our algorithms upon real-world case

studies. We conclude in Section VI by summarizing our

contributions and suggesting directions for followup research.

II. SOME ILLUSTRATIVE EXAMPLES

We now step through a pair of simple examples on the auto-

mobile example class hierarchy of Figure 1 that highlight some

of the challenges that arise in multilevel classification using

IDK classifiers, beyond those that were identified (and dealt

with) in prior work on classification using IDK classifiers.

We emphasize that these examples have been explicitly

constructed for the purposes of exposing unique aspects of the

underlying classification problem – they are not intended to be

realistic. Real-world case studies are discussed in Section V.



K0 K1 K2 K3

COUPE IDK (base class) IDK
IDK COUPE IDK (base class)

TABLE I: Example discussed in Section II-A. Classifiers K0 and K1 classify
inputs as either COUPE or SUV; classifiers K2 and K3 are specialized to only
classify COUPEs. This table shows the different combinations of outcomes
that may occur for some application, for inputs for which the ground truth is
some COUPE (i.e., MUSTANG or MX 5).

A. Example I: Inter-level Dependences

Let us suppose that we have a pair of IDK classifiers K0 and

K1 that have been trained to distinguish COUPEs from SUVs.

Suppose that K0 and K1 exhibit complementary behaviors

upon inputs where the ground truth is some COUPE: K0 tends

to return IDK on all those COUPEs for which K1 returns a base

class, and vice versa – see the first two columns of Table I.

Suppose that we also have another pair K2 and K3 of IDK

classifiers that have been trained only on COUPEs, and hence

are suitable for use when the intermediate class has already

been identified as being COUPE. It further so happens that K2

tends to return some base subclass of COUPE (i.e., MUSTANG

or MX 5) on those inputs for which K0 returns COUPE and IDK

on the other COUPE inputs; K3 in contrast, returns MUSTANG

or MX 5 on those inputs for which K1 returns COUPE and

IDK on the other COUPE inputs – see the remaining columns

of Table I. This condition may naturally occur, for example, if

classifiers use different modalities (e.g., images versus sound).

It could be that, say, K0 and K2 use vision and thus both work

better at daytime, whereas K1 and K3 use sound and thus both

work better at night.

Assuming that K0 and K1 (K2 and K3, respectively) have

similar execution durations, it is evident that

• if K0 is the classifier that determines some input to be a

COUPE, then K2 should be used for determining the base

class for that input; whereas

• if K1 is the classifier that determines some input to be of

a COUPE, then K3 should instead be used for determining

the base class for that input.

This example illustrates that the transition from the higher-

level classification problem (COUPE versus SUV) to the lower-

level one (MUSTANG versus MX 5) is not history-free. Op-

timality is consequently lost if the hierarchical classification

problem is broken up into multiple non-hierarchical classifica-

tion problems (first determining which intermediate class, and

then one classification problem per intermediate class).

B. Example II: Additional “Global” Classifiers

Again with our automobile example class hierarchy of

Figure 1, let us suppose that: (1) A classifier K1 has been

trained to distinguish between SUVs and COUPEs; (2) Another

classifier, KCOUPE, has only been trained on COUPEs; (3) Anal-

ogously, classifier KSUV has only been trained on SUVs; and

(4) A deterministic classifier Kdet has been trained on all four

of the base classes and so classifies an input as belonging to

one of the four base models. Suppose the execution durations

of these classifiers are as follows:

Classifier K1 KCOUPE KSUV Kdet

WCET 10 50 20 100

Execute K1 Execute KCOUPE

Execute KSUV

Input COUPE

SUV

MUSTANG or MX 5

CX 30 or GLE 350

Fig. 2: A classification strategy for the example of Section II-B

Let us make the simplifying assumption that the classifiers

K1,KCOUPE, and KSUV are all (almost) perfect at their respec-

tive classification tasks, in that they are extremely unlikely to

return IDK on any input. Furthermore, suppose that in our

intended application one is twice as likely to encounter an

SUV as one is to encounter a COUPE; hence on an input that

is drawn uniformly at random from the underlying probability

distribution characterizing the intended application, K1 returns

COUPE with probability (1/3) and SUV with probability (2/3).
It is evident that with these three classifiers, the optimal

classification strategy2 on any input is as shown in Figure 2:

first use K1 to classify the input as being either a COUPE or an

SUV, and then use the appropriate classifier KCOUPE or KSUV

to obtain a final base classification at an average duration of

(

C1 +
1

3
CCOUPE +

2

3
CSUV

)

=

(

10 +
50

3
+

2× 20

3

)

= 40

(1)

A global classifier. Now, suppose we also train another

classifier, K0, as a “global” classifier —one that attempts to

directly classify its input as belonging to one of the four base

classes (or return IDK if it is unable to do so to the desired

level of confidence). As we’d stated in Section I, it is more

challenging to achieve accuracy in classifiers of this kind; let

us therefore suppose that on representative data, K0 returns

a base class with probability just 0.5, returning IDK with the

remaining probability (also 0.5). Let C0 denote K0’s WCET.

If we execute K0 prior to executing the classifiers as depicted

in Figure 2, K0 would return a base class with probability

0.5 and so the classifiers as depicted in Figure 2 would

only execute with probability 0.5. We’d previously determined

(Expression (1) above) that the average duration to successful

classification of the classifiers as depicted in Figure 2 is

40; we may conclude that consequently, the overall average

duration to successful classification is (C0 + 0.5× 40), which,

for values of C0 < 20, is smaller than the average duration to

successful classification when executing only the classifiers as

depicted in Figure 2. This argues in favor of using K0 prior

to using the classifiers as depicted in Figure 2 if C0 < 20.

2Indeed, since KCOUPE and KSUV are only specialized to classify COUPEs
and SUVs respectively, the only alternative strategy is to directly use the
deterministic classifier Kdet (at an expected execution duration of 100).



But is this conclusion valid? Let us suppose that closer

inspection of classifier K0 reveals that it actually performs

abysmally on COUPEs, return IDK with probability 1.0; in

contrast, it is far better at classifying SUVs, for which task

it returns IDK with probability only (1/4). So if we execute

K0 prior to executing the classifiers as depicted in Figure 2,

KCOUPE would be called with probability
(

1
3 × 1

)

and KSUV

with probability
(

2
3 × 1

4

)

and hence the average duration

would actually be

C0 +
1

2
C1 +

(

1

3
× 1

)

CCOUPE +

(

2

3
×

1

4

)

CSUV

=

(

C0 +
1

2
× 10 +

1

3
× 50 +

1

6
× 20

)

=

(

C0 + 5 +
50

3
+

10

3

)

= C0 + 25

which is smaller than the average duration to successful

classification when executing the classifiers as depicted in

Figure 2 for C0 < 15 (and not 20, as concluded above). In

other words, executing classifier K0 prior to the configuration

of Figure 2 increases (rather than decreasing) average duration

for values of C0 satisfying 15 < C0 < 20.

This example illustrates that while global classifiers —those

that do not exploit the class hierarchy but rather attempt to

classify an input as belonging to one of the base classes—

may be useful despite their far more limited accuracy, their

appropriate use requires careful analysis.

III. A MODEL FOR IDK CLASSIFIERS

We now formalize the notion of class hierarchies

(Sec. III-A) and propose extensions (Sec. III-B) to the formal

model for representing collections of IDK classifiers that is

commonly used in the real-time literature including [11]–

[15], so as to enable the accurate modeling of additional

aspects of the collections that were revealed, in the examples

of Section II, to be salient in the context of hierarchical

classification problems.

We start out with a brief description of the currently-used

model. In the standard model for IDK classifiers [11]–[15],

an instance comprises n distinct IDK classifiers denoted by

K0,K1,K2, . . . ,Kn−1, as well as a deterministic classifier

(see footnote 1) Kdet, all for the same classification problem.

The probabilistic behaviors of the different classifiers are

not assumed to be independent; rather, they are collectively

specified in tabular form in a table with 2n rows, with each row

corresponding to one of the 2n potential combinations of the n
IDK classifiers returning either a real class or IDK for an input.

While the exponential number of combinations may seem like

a limitation, the total number of used classifiers in practice

is small (not unlike the case with the number of levels used

in a cache hierarchy). After all, the goal is to save resources.

Table II depicts the table for the case n = 3. In this table,

p0 denotes the probability that on some input that is drawn

randomly from the underlying distribution characterizing the

application for which these classifiers have been trained, all

three IDK classifiers K0,K1, and K2 will return IDK (and

Row# K2 K1 K0 Probability

0 0 0 0 p0
1 0 0 1 p1
2 0 1 0 p2
3 0 1 1 p3
4 1 0 0 p4
5 1 0 1 p5
6 1 1 0 p6
7 1 1 1 p7

TABLE II: Tabular representation of the 2
n disjoint regions in the probability

space for three IDK classifiers (n = 3) and one deterministic classifier. A zero
(one, respectively) in a particular column denotes that the classifier labeling
that column returns IDK (a base class, respectively). p0–p7 are non-negative
real numbers summing to 1.

hence only Kdet is able to classify this input), while p7 denotes

the probability that all three classifiers would return a base

class on such a randomly-drawn input. Similarly, p5 denotes

the probability that classifiers K2 and K0 would return a

base class, but K1 would return IDK, on some randomly-

drawn input. Abdelzaher et al. [11] describe a measurement-

based methodology for accurately estimating the pi probability

values associated with each row of the table, by conducting

profiling experiments using representative training data. This

methodology characterizes the instance with the 2n probability

values and (n + 1) WCET values C0, C1, . . . , Cn−1, Cdet,

with Ci denoting the worst-case execution duration3 of IDK

classifier Ki, 0 f i < n, and Cdet denoting the worst-case

execution duration of the deterministic classifier Kdet.

Example 1. To illustrate the interpretation of these parameters,

consider an instance with three IDK classifiers (n = 3) and one

deterministic classifier – this is the instance of Table II. One

possible cascade we could synthesize for this example instance

is ïK2,K0,Kdetð; for this cascade, we can compute its

average duration to successful classification upon a randomly-

drawn input by the following reasoning.

• K2 will certainly execute.

• Rows 0–3 of Table II correspond to the outcome that K2

returns IDK; hence there is a probability (p0+p1+p2+p3)
that K0 will need to execute.

• Of these four rows 0–3, Row 0 and Row 2 correspond to the

outcome that K0 returns IDK; hence there is a probability

(p0 + p2) that both K2 and K0 will return IDK and hence

Kdet will need to execute

Therefore the expected duration to successful classification of

the cascade ïK2,K0,Kdetð upon a randomly-drawn input is

equal to C2 + (p0 + p1 + p2 + p3)× C0 + (p0 + p2)× Cdet.

Obtaining optimal cascades. Given the specifications of an

instance as 2n probability values and (n + 1) WCET values,

Abdelzaher et al. [11] have derived an algorithm that synthe-

sizes a cascade that is optimal in the sense that this cascade

has the minimal average duration to successful classification

(subject to guaranteeing to always meet a hard deadline if one

is specified).

3This is a simplifying assumption; all our results readily extend to the more

general model [11, Sec. 3] that uses a pair of parameters, C̃i and Ci, with

C̃i denoting the average execution duration and Ci the worst-case duration.



A. Class Hierarchies

The goal in classification is to categorize each input as

belonging to one of a specified set of base classes. In this

paper, we extend prior work by assuming that these base

classes comprise a 2-level class hierarchy in the sense that

they can be partitioned into a set of k intermediate classes

denoted I0, I1, . . . , Ik−1, such that all the base classes in

each intermediate class possess a variety of common features.

Figure 1 (already introduced in Section I) provides a visual

representation of the class hierarchy for the example we have

considered in Sections I and II — here the two intermediate

classes (and hence, k = 2) are

I0
def

= COUPE = {MUSTANG, MX 5}

I1
def

= SUV = {CX 30, GLE 350}

It is often meaningful to define hierarchies that are deeper than

two levels. For ease of presentation we restrict our attention to

two-level hierarchies for now; extension to deeper hierarchies

is discussed in Section IV-E.

B. Class Hierarchies: Modelling IDK Classificaton

We now extend the formal model of [11]–[15] to incorporate

class hierarchies. Let k denote the number of intermediate

classes in the sole intermediate level (i.e., intermdiate classes

I0, I1, . . . , Ik−1 partition the base classes). The collection of

IDK classifiers is partitioned into (k + 2) distinct sets:

1) A set KI of intermediate classifiers, each of which has been

trained to return some intermediate class Iℓ, 0 f ℓ < k, or

IDK on any input;

2) A set Kϕ of global classifiers, each of which has been

trained to return either a base class or IDK upon any input.

3) For each ℓ, 0 f ℓ < k, a set Kℓ of specialized classifiers,

each of which has been trained to return either a base

class that is ∈ Iℓ, or IDK, on any input that has a priori

been determined to belong to the intermediate class Iℓ
(presumably by some classifier in KI ).

For the example discussed in Section II-B (and, as stated

above, letting I0
def

= COUPE and I1
def

= SUV), we would have

KI = {K1},Kϕ = {K0},K0 = {KCOUPE}, and K1 = {KSUV}

In addition, there is a deterministic classifier Kdet that never

returns IDK – it classifies each input to some base class. Each

classifier Ki is characterized by a WCET Ci. As in prior

work [11], the probabilistic behaviors of the classifiers are

specified in tabular form; we discuss the details below.

Initial table. This is a table with
(

|Kϕ|+ |KI |
)

columns and
(

2|Kϕ| × (k + 1)|KI |
)

rows specifying the probability space

for when one begins classifying an input and before the inter-

mediate class to which it belongs becomes known. One column

corresponds to each global classifier and each intermediate

classifier. Each global classifier may return some base class

or IDK, while each intermediate classifier may return one of

the k intermediate classes or IDK (for a total of (k + 1)

possibilities); hence the number of rows in the table is as stated

above.

Specialized tables. For each ℓ, 0 f ℓ < k, there is a

separate specialized table with
(

|KI |+ |Kϕ|+ |Kℓ|
)

columns

and
(

2(|Kϕ|+|Kℓ|) × (k + 1)|KI |
)

rows for specifying the

probability space when involving the intermediate class Iℓ.
Each column corresponds to one of the global classifiers,

one of the intermediate classifiers, or one of the specialized

classifiers in Kℓ. (Recall, from the illustrative example of

Section II-A, that the optimal choice of classifiers once the

intermediate class is known may depend upon the outcomes

of classifiers that were executed before the intermediate class

became known – hence information about the classifiers in

Kϕ and KI needs to be maintained in this probability table.)

The intermediate classifier either returns IDK or one of the

k intermediate classes; the base and the specialized classifiers

may return some base class or IDK, resulting in the number

of rows in the table stated above.

Example 2. Table III lists the probability tables for our

example of Section II-B. For this example |Kϕ| = 1, |K0| =
|K1| = 1, and |KI | = 1, and so the first table has 2 columns

and
(

21 × (2 + 1)1
)

= (2× 3) = 6 rows, while each of the

two specialized tables has 3 columns and 22 × 41 = 16 rows.

To see that these probability tables do indeed represent the

instance described in Section II-B, observe that

• K1 is assumed to never return IDK; hence, Rows 1–2 of

the leftmost table have zero probability.

• SUVs are twice as likely as COUPEs, and hence in the

leftmost table Rows 2–3 sum to 1/3, and Rows 4–5 to 2/3.

• K0 is bad at COUPEs: Row 3 of the first table has probability

zero; Row 9 of the second has probability 1.0

• K0 returns IDK with probability (1/4) on SUVs: Row 10

of the third table has probability 1/4 (and Row 14 as the

remaining probability of 3/4)

Generating these tables. These probability tables are obtained

using a measurement-based methodology that is a generaliza-

tion of the one developed by Abdelzaher et al. [11]. We record

the classification decisions made by each of the IDK classifiers

upon a large number of representative inputs.4 We associate

a count, instantiated to zero, with each row of the tables,

and for each input increment the appropriate counts. Since

each specialized classifier Ki ∈ Kℓ is only trained to classify

inputs in Iℓ, we derive its confidence threshold using only such

inputs. However, when generating the probability tables, we

include all inputs and record the true outputs, including those

outside Iℓ, to accurately capture the classifier’s behavior in

deployment. Once all the inputs have been processed in this

manner, the probability value associated with each row of the

probability table is set equal to its count divided by the total

4Each of the classifiers will have undergone training and validation upon
representative inputs prior to this profiling phase; in many cases, this training
data can be reused here, thereby eliminating the need for additional data. If
new data is necessary it must also be representative of the expected inputs
during deployment.



Row# K1 K0 Prob

0 0 0
1 0 1
2 1 0 1/3
3 1 1
4 2 0 1/6
5 2 1 1/2

Row# KCOUPE K1 K0 Prob

0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
4 0 0 1
5 0 1 1
6 0 2 1
7 0 3 1
8 1 0 0
9 1 1 0 1.0
10 1 2 0
11 1 3 0
12 1 0 1
13 1 1 1
14 1 2 1
15 1 3 1

Row# KSUV K1 K0 Prob

0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
4 0 0 1
5 0 1 1
6 0 2 1
7 0 3 1
8 1 0 0
9 1 1 0
10 1 2 0 1/4
11 1 3 0
12 1 0 1
13 1 1 1
14 1 2 1 3/4
15 1 3 1

TABLE III: Probability tables for the example of Section II-B. (Only non-zero probabilities shown – all other entries in the “Prob.” columns are zeros.) A “0”
in K1’s column denotes that it returns IDK, a “1” that it returns COUPE, and a “2” that it returns SUV. For any other classifier, a “1” in its column denotes
that it returns the intermediate class labeling the column, a “0” denotes that it returns IDK.

number of relevant inputs. (Section V-A details the application

of this method upon one of our real-world use cases.)

A minor generalization. The model above is easily gener-

alized to use-cases where some intermediate classifiers may

additionally return some base classes. An example use-case of

this kind is discussed in Section V-A, where some intermediate

classifiers return either COUPE or SUV, denoting a vehicle of

the corresponding subclass, or “BACKGROUND”, denoting the

absence of a vehicle. In this case, “BACKGROUND” can be

thought of as a base class: a “BACKGROUND” object needs no

further classification.

IV. ALGORITHMS

In this section, we will develop a recursive formulation to

the problem of determining an optimal strategy for choosing

the order in which to execute IDK classifiers so as to minimize

the average duration to successful classification whilst guar-

anteeing to always complete classification within a specified

hard deadline D. (For ease of presentation we first focus on

minimizing the average classification duration; in Section IV-C

we explain how to incorporate consideration of the deadline

D.) Algorithm 1 applies Dynamic Programming to speed up

the recursion by avoiding unnecessary re-computations and

thereby obtain a reasonably efficient implementation.

A. An Overview

We start out with a high-level overview of our approach.

We assume a 2-level class hierarchy (as in Figure 1) with k
intermediate classes I0, I1, . . . , , Ik−1. As described in Sec-

tion III-B, there are (k + 2) disjoint sets of IDK classifiers:

the global classifiers Kϕ, the intermediate classifiers KI , and

the specialized classifiers K0,K1, . . . ,Kk−1. In addition, there

is a single deterministic classifier Kdet. Each classifier is

characterized by its worst-case execution time (WCET), with

classifier Ki’s WCET denoted Ci. The probabilistic behaviors

of the IDK classifiers are characterized by (k+1) probability

tables: an initial table, and one specialized table for each of

the k intermediate classes — see Section III-B.

Preprocessing. Prior to classification time we will construct,

by a pre-processing algorithm that implements recursive search

via dynamic programming

• An initial cascade that is an ordered list comprising a subset

of (Kϕ ∪ KI), terminated by Kdet; and

• For each intermediate classifier Ki in this initial cascade and

each intermediate class Iℓ, a specialized cascade(Ki, Iℓ)
that is an ordered list comprising a subset of (Kϕ ∪ Kℓ)
and terminated by Kdet.

Section IV-B explains how these cascades are synthesized.

Classification. Upon construction, these cascades are stored

and used for classification during runtime in the following

manner. Given an input that is to be classified,

• We start out attempting to classify this input via the classi-

fiers in the initial cascade (in the order in which they appear

in the cascade), until a non-IDK classification is obtained.

• If this non-IDK classification is to a base class, then we

return this base class and are done. Else, some intermediate

classifier Ki in the initial cascade must have returned some

intermediate class Iℓ.
• Henceforth we attempt to classify the input by using the

classifiers in the specialized cascade(Ki, Iℓ) in order, until

a non-IDK classification is obtained. This non-IDK classifi-

cation is guaranteed to be some base class – this is returned,

and we are done.

In Example 3 below, we discuss the example instances of

Section II in terms of initial and specialized cascades.

Example 3. Recall that the instance of Section II-A assumes

that intermediate classifiers K0 and K1 both have about the

same execution duration, while classifiers K2 and K3, both

specialized for COUPEs, offer complementary coverage (see

Table I); hence the initial cascade may be ïK0,K1,Kdetð,
and

• specialized cascade(K0, COUPE) = ïK2,Kdetð
• specialized cascade(K1, COUPE) = ïK3,Kdetð

For the instance of Section II-B, recall that we use the global

classifier K0 if its WCET C0 < 15, and then the classification



strategy of Figure 2. This translates to an initial cascade of

ïK0,K1,Kdetð, and

• specialized cascade(K1, COUPE) = ïKCOUPE,Kdetð
• specialized cascade(K1, SUV) = ïKSUV,Kdetð

whereas if C0 g 15, the initial cascade does not include K0

(it’s simply ïK1,Kdetð) while the specialized cascades remain

the same.

B. The Cascade-synthesis Algorithms

We now describe our dynamic-programming algorithms for

constructing the initial cascade and the specialized cascades.

We focus here primarily on explaining the intuition behind our

algorithms; the algorithms themselves are provided in pseudo-

code form as Algorithms 1 and 2 (and as Python code in the

separately-uploaded supplementary material).

When starting out classifying some input we will not

generally know beforehand the intermediate class to which it

belongs, and so may only attempt to classify it by using clas-

sifiers in (KI ∪ Kϕ ∪ {Kdet}). Hence, these are the classifiers

considered in synthesizing the initial cascade.

Let S denote the classifiers in the prefix of the initial cascade

that we have constructed so far (initially, S = ∅). Suppose they

all returned IDK on some input. Below we will define a func-

tion EXPAND(S) (in Algorithm 1) for determining the classifier

Kh ∈ ((KI ∪ Kϕ) \ S) to execute next, so as to minimize the

average remaining duration to successful classification; a call

to EXPAND(S) will additionally return this minimum average

remaining duration to successful classification.

If this classifier Kh returns IDK, then we add Kh to S
and repeat the call to EXPAND(S). If Kh determines that the

input belongs to some base class, then we are done. Else, it

must be the case that Kh is an intermediate classifier (i.e.,

Kh ∈ KI ), and it has declared that the input belongs to some

intermediate class Iℓ. Below we will define another function,

EXPAND
′(S, Iℓ, T,Kh) (Algorithm 1, line 21), for determining

the classifier to execute in this case in order to minimize the

average remaining duration to successful classification, where

• S has the same interpretation as above: it is the set of

classifiers, S ¢ (KI ∪ Kϕ), that we have used thus far but

they have all returned IDK;

• Kh is the intermediate classifier that has returned Iℓ on the

input; and

• T is the set of specialized classifiers for intermediate class

Iℓ (i.e., T ¢ Kℓ) that we have used in an attempt to classify

the input (after Kh had identified it as belong to class Iℓ),
but they have all returned IDK (initially, T = ∅).

As was the case with EXPAND(S), a call to

EXPAND
′(S, Iℓ, T,Kh) will additionally return the minimum

average remaining duration to successful classification.

The function EXPAND(S). Recall that S denotes the set of

classifiers, S ¢ (KI ∪ Kϕ), that we have used in an attempt

to classify the input but they have all returned IDK.

The first if-condition of EXPAND(S) (Line 2) checks

whether we have already considered this case; if so, we would

have stored the minimum average remaining time to successful

Algorithm 1: EXPAND( ) and EXPAND
′( )

1 EXPAND(S)
2 if S.cost has already been computed then
3 return S.cost

4 if (S = = (Kϕ ∪ KI)) then
5 S.cost = Cdet; S.next = Kdet

6 return S.cost

7 S.cost = ∞; S.next = K∞ // K∞: a placeholder

8 for each Kj ∈ (KI \ S) do
9 Pr = CONDPR(S,Kj)

10 tmpCost = Cj + Pr[0]× EXPAND(S ∪ {Kj}) +
k−1
∑

ℓ=0

(

Pr[ℓ+ 1]× EXPAND
′(S, Iℓ, ∅,Kj

)

11 if (tmpCost < S.cost) then
12 S.cost = tmpCost; S.next = Kj

13 for each Kj ∈ (Kϕ \ S) do
14 Pr = CONDPR(S,Kj)
15 tmpCost = Cj + Pr[0]× EXPAND(S ∪ {Kj})
16 if (tmpCost < S.cost) then
17 S.cost = tmpCost; S.next = Kj

18 if (Cdet < S.cost) then
19 S.cost = Cdet; S.next = Kdet

20 return S.cost

21 EXPAND
′(S, Iℓ, T,Kh)

22 if (S, Iℓ, T,Kh).cost has already been computed then
23 return (S, Iℓ, T,Kh).cost

24 if ((S ∪ T ) = = (Kℓ ∪ Kϕ)) then
25 (S, Iℓ, T,Kh).cost = Cdet; (S, Iℓ, T,Kh).next = Kdet

26 return cost

27 (S, Iℓ, T,Kh).cost = ∞; (S, Iℓ, T,Kh).next = K∞

28 for each Kj ∈ ((Kℓ ∪ Kϕ) \ (S ∪ T ) do
29 Pr = CONDPR

′(S, Iℓ, T, h,Kj)
30 if (Kj ∈ Kϕ) then
31 tmpCost =

Cj +
(

Pr × EXPAND
′(S ∪ {Kj}, Iℓ, T,Kh)

)

32 else //Must be Kj ∈ Kℓ

33 tmpCost =

Cj +
(

Pr × EXPAND
′(S, Iℓ, T ∪ {Kj},Kh)

)

34 if ((S, ℓ, T, h).cost > tmpCost) then
35 (S, Iℓ, T,Kh).cost = tmpCost;

(S, Iℓ, T,Kh).next = Kj

36 if ((S, Iℓ, T,Kh).cost > Cdet) then
37 (S, Iℓ, T,Kh).cost = Cdet; (S, Iℓ, T,Kh).next = Kdet

38 return (S, Iℓ, T,Kh).cost

classification in the variable S.cost. (Thus, this if-condition

is essentially implementing a top-down – memoized – dynamic

program.)

The next if-condition (Line 4) checks whether we have

exhausted the available supply of global and intermediate

classifiers; if so, we must use the deterministic classifier Kdet.

The remainder of the pseudo-code considers the remaining

intermediate (the for-loop at line 8) and global (the for-loop at



line 13) classifiers one at a time, seeking to identify the one

to execute next in order to minimize the remaining average

duration to successful classification.

If we execute classifier Kj ∈ ((KI ∪Kϕ) \ S), the proba-

bility of Kj returning a particular output (IDK or some inter-

mediate class for Kj ∈ KI ; IDK or some base class for Kj ∈
Kϕ) can be computed as the ratio (Numerator/Denominator),
where

• Denominator is the sum of the probabilities of all those

rows of the initial probability table in which all the columns

corresponding to classifiers in S are labeled IDK; and

• Numerator is the sum of the probabilities of all those rows

of the initial probability table in which all the columns

corresponding to classifiers in S are labeled IDK, and the

column corresponding to Kj is labeled with that particular

output.5

This computation is implemented by a function

CONDPR(S,Kj) (pseudo-code omitted, since it does

exactly what is described above) that is called at Lines 9

and 14. Let Pr{IDK} denote the probability that this outcome

is IDK, and Pr{Iℓ} that this outcome is intermediate class

Iℓ (and hence the probability of a base class being returned

equals
[

1.0− Pr{IDK} −
(

∑k−1
ℓ=0 Pr{Iℓ}

)]

).

Lines 10 and 15 compute the average remaining duration to

successful classification of the input as follows:

Cj +
(

Pr{IDK} × EXPAND(S ∪ {Kj})
)

+

(

k−1
∑

ℓ=0

(Pr{Iℓ} × EXPAND
′(S, Iℓ, ∅,Kj))

)

Here, the first term represents the execution duration of clas-

sifier Kj , the second, the remaining expected duration if Kj

returns IDK, and each individual term within the summation

in the third, the remaining expected duration if Kj returns a

particular intermediate class Iℓ.
Finally, the if-condition at Line 18 checks whether it would

be faster to simply directly execute the deterministic classifier.

The function EXPAND
′(S, Iℓ, T,Kh) is essentially understood

in much the same manner as EXPAND(S) above. Let S, Iℓ, T
and Kh have the interpretations discussed earlier: S denotes

the set of classifiers in (S ¢ (KI ∪ Kϕ)) that have returned

IDK while Kh ∈ KI has returned the intermediate class Iℓ; T
(initially ∅ when EXPAND

′( ) is first called – see Line 10) de-

notes the set of classifiers in Kℓ that have returned IDK. If we

were to now execute classifier Kj ∈ ((Kℓ \ T ) ∪ (Kϕ \ S)),
two outcomes are possible: IDK or some base class. The

probability of Kj returning IDK can be computed as the ratio

(Numerator/Denominator), where

• Denominator is the sum of the probabilities of all those rows

of the probability table for intermediate class Iℓ in which

5Equivalently, it is the sum of the probabilities of all those rows that satisfy
the conditions for Denominator above, that additionally have the column
corresponding to Kj labeled with that particular output.

Algorithm 2: Synthesizing the cascades

1 Call EXPAND(∅)
2 // Synthesizing the initial cascade

3 Initialize the cascade to be empty
4 S = ∅
5 repeat
6 Ktmp = S.next

7 Append Ktmp to the end of the cascade
8 S = S ∪ {Ktmp} // Assume Ktmp returns IDK

9 until (Ktmp = = Kdet);

10 // Synthesizing specialized_cascade(Ki, Iℓ)
11 Initialize the cascade to be empty
12 S = the classifiers preceding Ki in the initial cascade
13 T = ∅
14 repeat
15 Ktmp = (S, Iℓ, T,Kℓ).next
16 Append Ktmp to the end of the cascade
17 if Ktmp ∈ Kϕ then
18 S = S ∪ {Ktmp}

19 else
20 T = T ∪ {Ktmp}

21 until (Ktmp = = Kdet);

all the columns corresponding to classifiers in (S ∪ T ) are

labeled IDK while the column corresponding to the classifier

Kh is labeled with a designation indicating that it returns

the correct intermediate class (which is, of course, Iℓ); and

• Numerator is the sum of the probabilities of all those rows

of the probability table for intermediate class Iℓ that satisfy

all the conditions above (for Denominator), and the column

corresponding to Kj is labeled with IDK.

As before, let Pr{IDK} denote the probability that the out-

come is IDK (and so the probability of a base class being

returned is (1− Pr{IDK})).
We can compute the average remaining duration to success-

ful classification of the input as

Cj +
(

Pr{IDK} × EXPAND
′(S ∪ {Kj}, Iℓ, T,Kh)

)

if Kj ∈ Kϕ, and

Cj +
(

Pr{IDK} × EXPAND
′(S, Iℓ, T ∪ {Kj},Kh)

)

if Kj ∈ Kℓ.

Synthesizing the cascades. A call to EXPAND(∅) will make

the needed recursive calls to EXPAND( ) and EXPAND
′( ) with

the appropriate parameter settings, which in turn will result

in the cost and next variables being assigned appropriate

values. The manner in which the cascades are then synthesized

is straightforward, and is presented in pseudo-code form in

Algorithm 2.

C. Incorporating Hard Deadlines

If a hard deadline D is additionally specified with the

interpretation that classification must always complete within

D time units, the procedures EXPAND( ) and EXPAND
′( )



of Algorithm 1 are modified to each accept an additional

parameter D, denoting the remaining duration to deadline.

When EXPAND( ) is called for the first time (Line 1 of Algo-

rithm 2), this parameter is set equal to D (i.e., Line 1 of Algo-

rithm 2 is modified to “EXPAND(∅,D)”). Within EXPAND( )
and EXPAND

′( ), IDK classifier Ki is only considered for

possible execution if its execution duration Ci g D + Cdet;

if it is considered, then the corresponding recursive call (in

Lines 10, 15, 31, or 33) is made with the deadline parameter

set to (D − Ci).

A note: Recall (footnote 3) that we’ve been using a simplified

model for IDK classifiers thus far: the model given in [11,

Sec. 3] actually characterizes each classifier’s execution du-

ration via a pair of parameters, C̃i and Ci, with C̃i denoting

the average execution duration and Ci the worst-case duration.

Thus it is the C̃i values (rather than the Ci’s) that are used

in Algorithms 1 and 2 for minimizing average classification

duration; however, the Ci values –WCET characterizations–

are used in the tests (“if Ci g D+Cdet”) that check whether

it is safe to execute a classifier Ki.

D. Run-time Complexity

There are two aspects to the computational complexity of

our approach. Pre-runtime complexity accounts for the time

required to (i) train the classifiers; (ii) populate the initial

and the specialized probability tables; and (iii) synthesize the

cascades. Classification complexity concerns the time taken to

classify a single input during runtime.

The pre-runtime complexity of our approach is high, as

is the norm in most deep-learning based computational ap-

proaches. Effective training of the IDK classifiers requires

the collection of large amounts of representative training

data, upon which each classifier must be trained. Populating

the probability tables also requires that large amounts of

representative data be classified by the different classifiers. The

cascade-synthesis algorithm has running time exponential in

the number of classifiers – Section V-C provides some example

measurements. This is not surprising: earlier cascade synthesis

algorithms [11]–[15] that did not exploit hierarchical structure

already had exponential running time.

When it comes to classification complexity, however, our

approach is very efficient : assuming that all the classifiers

are pre-loaded and indexed in some manner that allows for

constant-time retrieval, the time to classify any input is linear

in the number of classifiers needed to classify it optimally (i.e.,

with minimum average execution time). Thus our complexity

tradeoff is entirely consistent with the paradigm in DL-based

edge AI: trade off considerable pre-runtime complexity for

very efficient (in fact, optimal) runtime use.

E. Generalizing to Deeper Hierarchies

Both the IDK model of Section III and the algorithms

discussed earlier in this section readily generalize to deeper

hierarchies – generalizations of Figure 1 with the hierarchy

represented as a tree with more levels, with each leaf de-

noting a base class and each non-leaf node representing an

intermediate class. Different IDK classifiers are trained for

different purposes: top-level classifiers classify any input into

one of the intermediate classes immediately below the root;

intermediate classifiers for each non-leaf node are trained to

classify inputs determined to belong to the intermediate class

associated with that node into the classes immediately below

that node.6 Probability tables are associated with each non-

leaf node, specifying the probability space of classification

outcomes for the classifiers that are specialized to that class,

conditioned on the outcomes of classifiers associated with each

intermediate class associated with nodes between the node and

the root of the classification tree.

V. EVALUATION

We evaluate our algorithm on two real-world applications:

vehicle detection using multi-modal sensory inputs, and hu-

man activity recognition (HAR) using wearable sensors. This

section presents our experience and findings; the data and code

used have been uploaded as Supplementary Material (and will

be offered for Artifact Evaluation if this paper is accepted).

A. Vehicle Detection Case Study

Data collection and pre-processing. We use the M3N-VC

dataset [16], a large-scale vehicle monitoring dataset with

acoustic and seismic signals recorded from multiple moving

vehicles. As described in [16], sensor nodes equipped with a

microphone (acoustic, 1.6 kHz), geophone (seismic, 200 Hz),

and GPS (1 Hz) were deployed in six distinct environments,

with 6–8 nodes per scene. Vehicles were driven around the

area while the sensor nodes recorded signals and synchronized

their clocks via GPS. Only the acoustic and seismic signals

are used in this study.

For this study, we considered four base vehicle types:

MUSTANG, MX 5, CX 30, and GLE 350, organized into the

hierarchy of Figure 1. We use a 3.43-hour subset of data

from six nodes and segment it into 2-second windows, while

segments with missing sensor readings are discarded. The

segmented data is transformed into spectrograms using Short-

Time Fourier Transform (STFT). By combining three com-

plexity levels of DeepSense [4] classifiers (varying convo-

lutional/recurrent layer width and depth) with two sensor

modalities, we generate 12 model variants. Using these model

variants, we train three types of classifiers: (i) global classifiers

that predict one of the four base vehicle classes or BACK-

GROUND, (ii) intermediate classifiers that classify samples as

either SUV, COUPE, or BACKGROUND, and (iii) specialized

classifiers that classify samples into base classes within the

SUV or the COUPE group. Each classifier outputs a predicted

label and confidence score. We set a required confidence

threshold of 0.90 for global classifiers, and 0.95 for both

intermediate and specialized classifiers (so that the cumulative

error at the end of both stages is at most 10%, similar to

6The idea of the global classifiers (those in Kϕ) generalizes as follows:
such a classifier may be associated with any node of the classification tree
that is above the two levels levels, and classifies an input into any class,
intermediate or base, in the subtree that is rooted at that node.



Classifiers
Intermediate Global SUV COUPE

K0 K1 K2 K3 K4 K5 K6 Kdet

Modality, params Both, 129698 Both, 356610 Both, 130469 Both, 1217109 Acoustic, 80355 Acoustic, 80355 Both, 129955 -
Success rate 76.1 87.6 66.8 99.9 1 91.1 94.9 1

Execution time 80.8 317.0 104.7 869.9 80.9 80.9 104.5 10000
TABLE IV: Classifiers for the vehicle detection case study (Section V-A).
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Fig. 3: Optimal cascade for the vehicle detection case Study (Section V-A).

global). If the confidence of a classifier exceeds the threshold,

a label is returned; otherwise, the classifier outputs IDK.

Profiling. By examining the Pareto front of classifiers consid-

ering both the success rate and execution time, we select two

intermediate classifiers (K0 and K1), two global classifiers

(K2, K3), one specialized classifier for the SUV class (K4),

and two specialized classifiers for the COUPE class (K5 and

K6). These selected classifiers are applied to the test data to

obtain class predictions and confidence scores. Using these,

we construct empirical probability tables as described in

Section III, and record average and worst-case execution times.

A summary of the classifiers with the number of parameters

and modality choices can be found in Table IV.

Findings. We compare the optimal cascade generated by

the proposed algorithm (labeled Optimal) to four baselines:

(1) Global: Best cascade using only global classifiers. (2) Hi-

erarchy: Best cascade using only intermediate and specialized

classifiers. (3) Fast first: Classifiers ordered by increasing exe-

cution time. (4) Efficient first: Classifiers ordered by increasing

(Non-IDK rate)/(execution time).

The expected execution duration of all algorithms is com-

pared in Figure 4a. The proposed algorithm finds the cascade

with the minimum expected execution duration. Compared

with the best baseline algorithm, it reduces latency by 11.2%.

A cumulative latency distribution of all possible cascades in a

reduced setting (with fewer classifiers) is shown in Figure 4b,

with the latency of the optimal cascade our algorithm found

and the latency of the worst cascade highlighted. Compared

with the other possible cascades, the optimal one has signif-

icantly shorter expected execution time. The worst cascade

takes significantly longer to execute, showing that organizing

the classifiers in the wrong way can lead to poor performance.

A reduced setting is used here because the total number of

possible cascades grows exponentially with the number of

classifiers, making exhaustive evaluation infeasible in the full

setting. The optimal classification strategy determined by our
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Fig. 4: Vehicle detection case study results (Section V-A).

algorithm for this case study is shown in Figure 3. This

is not a strategy one would intuitively have considered: a

global classifier (K2) is used before any intermediate classifier.

While the first intermediate classifier is the fastest and most

efficient, it is not selected first. The optimal cascade also

differs from both the Fast first policy and the Efficient first,

where the selected cascades are K0 → K2 → K1 → K3 and

K0 → K2 → K3 → K1, respectively.

B. HAR Case Study

Data collection and pre-processing. For this case study, we

use the RealWorld-HAR dataset [17], a dataset for human

activity recognition with data from sensors attached to 7

positions on the human test subjects, while they perform one

of the 8 activities. The dataset provides the accelerometer data

(used in our study), as well as GPS, gyroscope, light, magnetic

field, and sound level measurements, all collected at 50Hz.

We group the 8 activity types into two categories:

intermediate class MOVING including CLIMBING-UP,

CLIMBING-DOWN, WALKING, JUMPING, and RUNNING;

intermediate class STATIC including STANDING, SITTING,

and LYING. We use only the accelerometer data collected

from the shin sensor and segment the data into 4-second

windows. Similarly, we convert the sensor input into STFT

form and train 3 types of DeepSense-based IDK classifiers:

(i) global classifiers that classify inputs into one of the 8

base activity classes, (ii) intermediate classifiers that classify

inputs as either STATIC or MOVING, and (iii) specialized

classifiers that classify inputs within the STATIC or MOVING

group.

In addition to the three model sizes used in the vehicle study,

we introduce a smaller classifier, observing that it achieves

high accuracy with low cost, especially for the intermediate

classification task. We assume a required classification accu-

racy of 0.85 and use required precision of 0.85 for the global

classifiers, 0.94 for the intermediate classifiers, and 0.91 for

the specialized classifiers to compute per-classifier confidence

thresholds, leading to at most 15% error, no matter which

classifiers are used.



Classifiers
Intermediate Global STATIC MOVING
K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 Kdet

Parameters 5134 22978 77320 360072 1111256 5167 23043 76035 5233 23173 76549 358533 -
Success rate (%) 40.2 99.9 67.2 92.4 1 84.3 92.4 97.1 52.0 69.0 91.7 95.5 1

Execution time (ms) 31.3 47.0 77.0 242.2 571.8 31.1 46.4 69.6 30.9 50.8 69.8 241.3 10000
TABLE V: Classifiers for the HAR case study (Section V-B).

Profiling. We select two intermediate classifiers (K0 and K1),

3 global classifiers (K2, K3 and K4), 3 specialized classifiers

(K5, K6 and K7), for the STATIC class, and 4 specialized

classifiers, (K8, K9, K10 and K11), for the MOVING class.

Similar to the previous case study, we evaluate all classifiers

on the test set, record their predictions and confidence levels,

construct the empirical probability tables, and measure both

average and worst-case execution times. A summary of the

classifiers can be found in Table V.

Findings. The expected execution duration of all algorithms

is compared in Figure 6a. Our algorithm produces the cascade

with the lowest expected execution time, reducing latency

by 7.4% compared with the best baseline. Figure 6b shows

the latency distribution across all cascades in a reduced-

scale setting. Compared with the other possible cascades, the

optimal one selected by our algorithm has significantly shorter

expected execution time. The optimal cascade is shown in

Figure 5. It is different from the one for the vehicle case

study, and it is also counterintuitive. Instead of starting with

any global classifier, or starting with the smaller intermediate

classifier K0, it directly goes to the larger but more efficient

intermediate classifier K1. Then it skipped classifiers K2 and

K3, and directly selected K4. In the STATIC branch, the

selected optimal cascade skipped the specialized classifier K6,

which differs from the one generated by Fast first and Efficient

first: K5 → K6 → K7 → K2 → K3 → K4. In the MOVING

branch, the cascade generated by the Fast first and Efficient

first is K8 → K9 → K10 → K2 → K11 → K3 → K4. In

contrast, the optimal cascade delays classifier K9 until after the

slower special classifier K10, and also after the much slower

global classifiers K2 and K3. It also skips classifier K11

altogether, even though it is faster than both K2 and K3. This

demonstrates that due to the complex probability dependencies

in the data, one cannot easily determine the optimal cascade

by looking at the classifier performance metrics.

C. Algorithm Execution Times

We profile the time and memory required by the cascade-

synthesis algorithm to find the optimal cascade, using the vehi-

cle detection example. Experiments are run on a workstation

computer (Lambda Labs Vector with an AMD Threadripper

Pro 3975WX at 3.50 GHz, 128GB of RAM, running Ubuntu

20.04). For a problem with 5 intermediate classifiers, 5 global

classifiers, and 5 specialized classifiers for each intermediate

class, the algorithm takes 155 minutes and a maximum mem-

ory of 128 MB to derive the optimal solution.

VI. CONCLUSIONS

The research discussed in this paper extends the use of

IDK cascades for purposes of real-time classification to the

case of class hierarchies. It establishes that hierarchical IDK

K1

K5

K8

STATIC

MOVING

K4 Kdet

K7 K2 K3 K4 Kdet

K10 K2 K3 K9 Kdet
Fig. 5: Optimal cascade for the HAR case study (Section V-B).
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Fig. 6: HAR case study results (Section V-B).

classification is not decomposable to a sequence of flat IDK

cascade classification problems without loss of optimality.

Optimal holistic algorithms are therefore derived for exploiting

the hierarchical class structure, and evaluated on real classi-

fiers and sensor data from two application domains. Results

demonstrate the advantages of holistic optimization.

This work may be extended in several directions. While

we have focused on IDK classifiers primarily due to the large

body of pre-existing work on them in the real-time community,

our ideas and techniques generalize to other situations where

hierarchical structure may be exploited to reduce latency.

With minor modifications, our algorithms can be adapted

to provide optimal classification strategies using early exit

classifiers [18]–[20] (rather than IDK ones). They can also

be extended to handle mixture-of-experts [21]–[24] situations,

where resource constraints prevent the invocation of all experts

at the same time, calling for optimally staged processing, with

one (or a bounded number of) experts per stage.

The work in this paper focused on scenarios where a single

class label is sufficient to describe the environment at any

given time. In reality, many perception problems involve multi-

label classification (e.g., recognizing all car types in a video

frame). One solution to handle such problems might be to

decompose them into single-label problems. For example,

background subtraction can be used to identify the approxi-

mate locations of all moving objects in a frame, then pass each

object to a different classifier cascade. Another solution could

be to extend this work to cascades of multi-label classifiers.

Finally, domain shift is a key problem with all machine-

learning, including IDK classifiers. When input data are from

a substantially different distribution than the one used for train-

ing, the confidence values returned by the IDK classifiers may



be incorrect. Out-of-distribution detection techniques [25]–

[27] may be needed to detect domain shift and force classifiers

to return an IDK instead. These topics will be investigated in

our future work.
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