Timely Classification of Hierarchical Classes

Tarek Abdelzaher*

Sanjoy Baruah'

Alan Burnst Yigong Hu*

*University of Illinois ({zaher,yigongh2}@illinois.edu)
TWashington University in St. Louis (baruah@wustl.edu)
iThe University of York (alan.burns@york.ac.uk)

Abstract— An IDK classifier is a learning-enabled software
component that attempts to categorize each input provided to
it into one of a fixed set of base classes, returning IDK (“I
Don’t Know”) if it is unable to do so to a required level of
confidence. We consider the use of IDK classifiers in applications
where it is natural to consider the base classes as comprising
the leaves of a class hierarchy. Classification into higher levels
of such a hierarchy may be easier than classification into base
classes. Given a collection of different IDK classifiers that have
been trained to classify at different levels of a class hierarchy, we
derive algorithms for determining the order in which to use these
classifiers so as to minimize the expected duration to successful
classification (whilst guaranteeing to meet a hard deadline).

Keywords— Classification; Deep Learning; Edge AI; Safe Al

I. INTRODUCTION

This paper develops algorithms for real-time classification,
subject to latency and confidence constraints, in the important
case where the entities to be classified fall naturally into a
predefined class hierarchy. The work is timely as modern in-
telligent Cyber-Physical Systems (CPS) and Internet of Things
(IoT) applications are increasingly equipped with perception
modules for understanding their environment, context, or user.
Examples range from automatic target recognition [1], [2] to
human activity classification [3]. A recent trend is to perform
such processing at the point of need, meaning on an embedded
platform in the field [4], where the sensor data originate,
as opposed to a resource-rich server in the cloud. Such in
situ sensor data processing improves local autonomy and
reduces reliance on communication with a remote device, but
introduces a need for resource economy to reduce latency.

To reduce the average classification latency (especially on
low-end embedded platforms), it was suggested to replace
large monolithic classifiers with IDK classifier cascades, in-
spired by caching systems. An IDK classifier [5], [6] is a
well-calibrated classifier that returns a class if classification
confidence meets or exceeds a predefined threshold, and
returns an “IDK” (i.e., “I don’t know”) otherwise. An IDK
cascade [5] is a sequential arrangement specifying the order
in which IDK classifiers are applied to an input until a non-
IDK classification is obtained.! In a typical IDK cascade,
computationally efficient classifiers with a more limited ac-
curacy or repertoire (optimized for the common case) are

I In applications where every input must eventually receive a valid
classification, a deterministic classifier is added as the final stage of the IDK
cascade. If this deterministic classifier also fails to classify an input, the system
registers a fault, potentially triggering recovery mechanisms.

generally used first, resorting to more complex and resource-
intensive classifiers only when upstream classification fails
(i.e., returns an IDK). Besides reducing the mean latency to a
successful classification (by answering quickly in the common
case), IDK classifier cascades can also improve reliability and
trustworthiness [7], [8] by deferring uncertain or ambiguous
examples to a more reliable (albeit slower) fallback system
such as a larger model, a human expert, or a downstream
verifier. Note that, IDK classifier cascades can be regarded as
a special case of the popular mixture of experts models [9],
with the additional restriction that the experts are queried
sequentially (e.g., due to platform resource constraints).

Techniques for empirically calibrating arbitrary classifiers
to return confidence values that match their actual probability
of correctness have been proposed in literature [10] and can
be leveraged in this work. Note that, in the case of an IDK
classifier, only the desired confidence threshold needs to be
well-calibrated. Given labeled training data and any classifier
that returns, for each class, ¢, an output O, that monotonically
increases with confidence in that class, calibration simply
entails finding the output threshold, O™h such that for
instances where O, > OWresh | the empirical probability that
the input is of class ¢ (according to the labeled data) is equal
to the desired confidence. At run-time, the classifier returns
a non-IDK class, ¢, only when O, > O%eh, The calibration
ensures that non-IDK answers satisfy the desired confidence
threshold as long as run-time observations are drawn from the
same distribution as the training data (i.e., in the absence of
domain shift).

This paper extends prior work on optimizing the order
of classifiers in IDK cascades [11]-[15] to the important
case of class hierarchies. To appreciate the advantages of
exploiting class hierarchies, consider a toy example application
that requires us to classify automobiles, each of which is
guaranteed to be of one of four different models. Two of
the models, the Mazda MX5 and the Ford MUSTANG, are
COUPESs and the other two, the Mazda cX 30 and the Mercedes
Benz GLE 350, are Sports Utility Vehicles (SUVs), as shown
in Figure 1. Two observations are due:

« It is often easier to distinguish higher-level classes (e.g.,
an SUV from a COUPE) than it is to directly distinguish all
lower-level classes (e.g., a MUSTANG, a MX 5, a CX 30
and a GLE350). Indeed our experiments, described in
Section V-A, bear this out. The intuition is that higher-
level categories are more distinct from one another (and
thus easier to distinguish) than lower-level ones.

o It is also generally the case (again, borne out by our
experiments) that given an identified higher-level category
(i.e., whether a vehicle is a COUPE or an SUV), one can
use more accurate specialized classifiers for distinguish-
ing between the different members of that one category
(e.g., different COUPEs or different SUVs). Such special-
ized classifiers are trained exclusively on the specific
high-level category. Intuitively, they are generally more
accurate because the number of subclasses to distinguish
among is reduced (e.g., only SUVs or only COUPES, as
opposed to both types), thus simplifying the classification
problem.

These observations suggest that a hierarchical classification
approach can break a complex global classification problem
into a series of simpler ones. In the context of IDK cascades,
it might therefore appear that one can use prior optimization
results for IDK cascades [11] first to sequence high-level IDK
classifiers (e.g., those that classify vehicle as being either
SUVs or COUPES), then (depending on the identified high-level
class) sequence the corresponding specialized IDK classifiers,
thereby solving the original global problem.

Although one can indeed deal with class hierarchies by
solving a number of individual classification problems, one at
the top level of the hierarchy and another for each intermediate
class, it turns out that one can do better (in the sense of
achieving smaller average duration to successful classification)
by instead taking a holistic perspective: we show this in
Section II via a series of simple examples that also serve
to expose the reasons why this is the case. Intuitively, in
practice, the used higher-level categories might not always
be very well-separated (or there may be a lot of diversity
within one of the subcategories), rendering the hierarchical
decomposition less beneficial. The succession of intermediate
and specialized classifiers might take more time than a larger
global classifier. Hence a good cascade optimization algorithm
should have the flexibility to use not only classifiers designed
for individual levels of the class hierarchy, but also those
that flatten it into a single global classification problem.
Moreover, when classifiers at multiple levels of the hierarchy
are used, the IDK cascade sequencing problems at the different
levels might not be independent. The best order for classifiers
considered in a higher-level IDK cascade (to tell the higher-
level category) might correlate with the best order of IDK
classifiers to consider at the next level (e.g., due to common
influences such as external weather conditions). And while
our examples that illustrate these cases in Section II are
contrived, we have observed similar phenomena in several
real-life classification use-cases (some of which are discussed
in Section V). In short, the optimization of IDK cascades for
solving classification problems involving hierarchical classes
needs to be approached holistically, as it is not decomposable
into sequences of classification problems at individual levels of
the hierarchy. However, prior work does not allow for holistic
modeling or the exploitation of such naturally-occurring class
hierarchies. Our evaluation, based on empirical data obtained

root class

intermediate

Fig. 1: An example class hierarchy

from two different application use-cases shows that non-
trivial improvements in latency are attained when holistic IDK
cascade optimization is used for hierarchical classes.

To summarize, in this work, we seek to better understand
how to exploit class hierarchies, when they exist, in order to
achieve faster classification. Our specific contributions are:

1) We propose a formalization of the notion of a hierarchy of
classes in the context of classification.

2) We develop a generalization of current formal models
for representing collections of IDK classifiers, to account
for class hierarchies and to allow for the more accurate
modeling of classifier properties upon such hierarchies.

3) We obtain algorithms for optimal (in the sense of minimum
average duration, whilst subject to a hard deadline) classi-
fication of inputs into classes of such class hierarchies.

4) We provide an experimental evaluation, including upon
real-world workloads, demonstrating the efficacy of our
classification algorithms.

Organization. The remainder of this manuscript is organized
in the following manner. In Section II we use a pair of exam-
ples to illustrate both opportunities that arise in classification
due to the presence of the class hierarchy, and challenges to
exploiting these opportunities. In Section III we formalize the
notion of a class hierarchy, and propose a hierarchy-cognizant
model for representing IDK classifiers. In Section IV, we
present pre-processing and runtime algorithms for hierarchical
classification using IDK classifiers. In Section V, we describe
experiments evaluating our algorithms upon real-world case
studies. We conclude in Section VI by summarizing our
contributions and suggesting directions for followup research.

II. SOME ILLUSTRATIVE EXAMPLES

We now step through a pair of simple examples on the auto-
mobile example class hierarchy of Figure 1 that highlight some
of the challenges that arise in multilevel classification using
IDK classifiers, beyond those that were identified (and dealt
with) in prior work on classification using IDK classifiers.

We emphasize that these examples have been explicitly
constructed for the purposes of exposing unique aspects of the
underlying classification problem — they are not intended to be
realistic. Real-world case studies are discussed in Section V.

Ko K1 Ko K3
COUPE IDK (base class) IDK
IDK COUPE IDK (base class)

TABLE I: Example discussed in Section II-A. Classifiers Ko and K classify
inputs as either COUPE or SUV; classifiers Ko and K3 are specialized to only
classify COUPEs. This table shows the different combinations of outcomes
that may occur for some application, for inputs for which the ground truth is
some COUPE (i.e., MUSTANG or MX 5).

A. Example I: Inter-level Dependences

Let us suppose that we have a pair of IDK classifiers K and
K that have been trained to distinguish COUPEs from SUVs.
Suppose that Ky and K; exhibit complementary behaviors
upon inputs where the ground truth is some COUPE: Ky tends
to return IDK on all those COUPEs for which K; returns a base
class, and vice versa — see the first two columns of Table I.

Suppose that we also have another pair K5 and K3 of IDK
classifiers that have been trained only on COUPEs, and hence
are suitable for use when the intermediate class has already
been identified as being COUPE. It further so happens that K
tends to return some base subclass of COUPE (i.e., MUSTANG
or MX 5) on those inputs for which K returns COUPE and IDK
on the other COUPE inputs; K3 in contrast, returns MUSTANG
or MX 5 on those inputs for which K; returns COUPE and
IDK on the other COUPE inputs — see the remaining columns
of Table I. This condition may naturally occur, for example, if
classifiers use different modalities (e.g., images versus sound).
It could be that, say, Ky and K use vision and thus both work
better at daytime, whereas K} and K3 use sound and thus both
work better at night.

Assuming that Ky and K; (K5 and K3, respectively) have
similar execution durations, it is evident that
o if K is the classifier that determines some input to be a

COUPE, then K> should be used for determining the base

class for that input; whereas
o if K7 is the classifier that determines some input to be of

a COUPE, then K3 should instead be used for determining

the base class for that input.

This example illustrates that the transition from the higher-
level classification problem (COUPE versus SUV) to the lower-
level one (MUSTANG versus MX5) is not history-free. Op-
timality is consequently lost if the hierarchical classification
problem is broken up into multiple non-hierarchical classifica-
tion problems (first determining which intermediate class, and
then one classification problem per intermediate class).

B. Example II: Additional “Global” Classifiers

Again with our automobile example class hierarchy of
Figure 1, let us suppose that: (1) A classifier K; has been
trained to distinguish between SUVs and COUPEs; (2) Another
classifier, Kcoupe, has only been trained on COUPEs; (3) Anal-
ogously, classifier Kgyy has only been trained on SUVs; and
(4) A deterministic classifier K 4o¢ has been trained on all four
of the base classes and so classifies an input as belonging to
one of the four base models. Suppose the execution durations
of these classifiers are as follows:

Classifier | K1 Kcoure Ksuv
WCET 10 50 20

Kdet
100

Input MUSTANG or MX 5

CX 30 or GLE 350

Fig. 2: A classification strategy for the example of Section II-B

Let us make the simplifying assumption that the classifiers
K1, Kcoupe, and Kgyy are all (almost) perfect at their respec-
tive classification tasks, in that they are extremely unlikely to
return IDK on any input. Furthermore, suppose that in our
intended application one is twice as likely to encounter an
SUV as one is to encounter a COUPE; hence on an input that
is drawn uniformly at random from the underlying probability
distribution characterizing the intended application, K returns
COUPE with probability (1/3) and suv with probability (2/3).
It is evident that with these three classifiers, the optimal
classification strategy? on any input is as shown in Figure 2:
first use K to classify the input as being either a COUPE or an
SUV, and then use the appropriate classifier Kcoupg OF Kgyy
to obtain a final base classification at an average duration of

1 2 50 2x20
(Cl + gCCOUPE + 3CSUV> = (10 + ? +) =40

3
(D

A global classifier. Now, suppose we also train another
classifier, Ky, as a “global” classifier —one that attempts to
directly classify its input as belonging to one of the four base
classes (or return IDK if it is unable to do so to the desired
level of confidence). As we’d stated in Section I, it is more
challenging to achieve accuracy in classifiers of this kind; let
us therefore suppose that on representative data, K returns
a base class with probability just 0.5, returning IDK with the
remaining probability (also 0.5). Let Cjy denote Ky’s WCET.
If we execute K prior to executing the classifiers as depicted
in Figure 2, Ky would return a base class with probability
0.5 and so the classifiers as depicted in Figure 2 would
only execute with probability 0.5. We’d previously determined
(Expression (1) above) that the average duration to successful
classification of the classifiers as depicted in Figure 2 is
40; we may conclude that consequently, the overall average
duration to successful classification is (Cy + 0.5 x 40), which,
for values of Cjy < 20, is smaller than the average duration to
successful classification when executing only the classifiers as
depicted in Figure 2. This argues in favor of using K prior
to using the classifiers as depicted in Figure 2 if Cy < 20.

2Indeed, since Kcoupr and Ksyy are only specialized to classify COUPEs
and SUVs respectively, the only alternative strategy is to directly use the
deterministic classifier Kget (at an expected execution duration of 100).

But is this conclusion valid? Let us suppose that closer
inspection of classifier Ky reveals that it actually performs
abysmally on COUPEs, return IDK with probability 1.0; in
contrast, it is far better at classifying SUVs, for which task
it returns IDK with probability only (1/4). So if we execute
K prior to executing the classifiers as depicted in Figure 2,
Kcoups would be called with probability (3 x 1) and Kgyy
with probability (% x 1) and hence the average duration
would actually be

1 1 2 1
Co + §C1 + <3 X 1> Ceours + (3 X 4> Csuy

1 1 1

= (C’o+5+50+10) =Cp+ 25
3 3
which is smaller than the average duration to successful
classification when executing the classifiers as depicted in
Figure 2 for Cy < 15 (and not 20, as concluded above). In
other words, executing classifier K prior to the configuration
of Figure 2 increases (rather than decreasing) average duration
for values of C satisfying 15 < Cjy < 20.

This example illustrates that while global classifiers —those
that do not exploit the class hierarchy but rather attempt to
classify an input as belonging to one of the base classes—
may be useful despite their far more limited accuracy, their
appropriate use requires careful analysis.

III. A MODEL FOR IDK CLASSIFIERS

We now formalize the notion of class hierarchies
(Sec. III-A) and propose extensions (Sec. III-B) to the formal
model for representing collections of IDK classifiers that is
commonly used in the real-time literature including [11]-
[15], so as to enable the accurate modeling of additional
aspects of the collections that were revealed, in the examples
of Section II, to be salient in the context of hierarchical
classification problems.

We start out with a brief description of the currently-used
model. In the standard model for IDK classifiers [11]-[15],
an instance comprises n distinct IDK classifiers denoted by
Ko, K1,Ko,...,K,_1, as well as a deterministic classifier
(see footnote 1) K 4et, all for the same classification problem.
The probabilistic behaviors of the different classifiers are
not assumed to be independent; rather, they are collectively
specified in tabular form in a table with 2" rows, with each row
corresponding to one of the 2" potential combinations of the n
IDK classifiers returning either a real class or IDK for an input.
While the exponential number of combinations may seem like
a limitation, the total number of used classifiers in practice
is small (not unlike the case with the number of levels used
in a cache hierarchy). After all, the goal is to save resources.
Table II depicts the table for the case n = 3. In this table,
po denotes the probability that on some input that is drawn
randomly from the underlying distribution characterizing the
application for which these classifiers have been trained, all
three IDK classifiers Ky, K1, and K5 will return IDK (and

Row# | Ko K4 Ko | Probability
0 0 0 0 Po
1 0 0 1 P1
2 0 1 0 P2
3 0 1 1 p3
4 1 0 0 P4
5 1 0 1 5
6 1 1 0 D6
7 1 1 1 pr

TABLE II: Tabular representation of the 2™ disjoint regions in the probability
space for three IDK classifiers (n = 3) and one deterministic classifier. A zero
(one, respectively) in a particular column denotes that the classifier labeling
that column returns IDK (a base class, respectively). pop—p7 are non-negative
real numbers summing to 1.

hence only K 4. is able to classify this input), while p7 denotes
the probability that all three classifiers would return a base
class on such a randomly-drawn input. Similarly, ps denotes
the probability that classifiers K, and K, would return a
base class, but K; would return IDK, on some randomly-
drawn input. Abdelzaher et al. [11] describe a measurement-
based methodology for accurately estimating the p; probability
values associated with each row of the table, by conducting
profiling experiments using representative training data. This
methodology characterizes the instance with the 2™ probability
values and (n + 1) WCET values Cy,Cq,...,Cph_1, Cyet,
with C; denoting the worst-case execution duration® of IDK
classifier K;, 0 < i < n, and Cyet denoting the worst-case
execution duration of the deterministic classifier K get.

Example 1. To illustrate the interpretation of these parameters,
consider an instance with three IDK classifiers (n = 3) and one
deterministic classifier — this is the instance of Table II. One
possible cascade we could synthesize for this example instance
is (Ko, Ko, Kqet); for this cascade, we can compute its
average duration to successful classification upon a randomly-
drawn input by the following reasoning.

o Ky will certainly execute.

o Rows 0-3 of Table II correspond to the outcome that Ky
returns IDK; hence there is a probability (po+ p1 +p2 +p3)
that K will need to execute.

o Of these four rows 0-3, Row 0 and Row 2 correspond to the
outcome that K returns IDK; hence there is a probability
(po + p2) that both K5 and K will return IDK and hence
Kget will need to execute

Therefore the expected duration to successful classification of

the cascade (Ko, Ko, Kqet) upon a randomly-drawn input is

equal to Co + (po + p1 + p2 + p3) X Co + (po + p2) X Cyet.

Obtaining optimal cascades. Given the specifications of an
instance as 2" probability values and (n + 1) WCET values,
Abdelzaher et al. [11] have derived an algorithm that synthe-
sizes a cascade that is optimal in the sense that this cascade
has the minimal average duration to successful classification
(subject to guaranteeing to always meet a hard deadline if one
is specified).

3This is a simplifying assumption; all our results readily extend to the more
general model [11, Sec. 3] that uses a pair of parameters, C; and C;, with
C; denoting the average execution duration and C; the worst-case duration.

A. Class Hierarchies

The goal in classification is to categorize each input as
belonging to one of a specified set of base classes. In this
paper, we extend prior work by assuming that these base
classes comprise a 2-level class hierarchy in the sense that
they can be partitioned into a set of k intermediate classes
denoted Iy, I1,...,1x_1, such that all the base classes in
each intermediate class possess a variety of common features.
Figure 1 (already introduced in Section I) provides a visual
representation of the class hierarchy for the example we have
considered in Sections I and II — here the two intermediate
classes (and hence, k = 2) are

def

I, ¢

def

I; = suv

COUPE = {MUSTANG, MX 5}
= {cx30,GLE 350}

It is often meaningful to define hierarchies that are deeper than
two levels. For ease of presentation we restrict our attention to
two-level hierarchies for now; extension to deeper hierarchies
is discussed in Section IV-E.

B. Class Hierarchies: Modelling IDK Classificaton

We now extend the formal model of [11]-[15] to incorporate
class hierarchies. Let k& denote the number of intermediate
classes in the sole intermediate level (i.e., intermdiate classes
Io, I, ..., I;_1 partition the base classes). The collection of
IDK classifiers is partitioned into (k + 2) distinct sets:

1) A set KC; of intermediate classifiers, each of which has been
trained to return some intermediate class I,, 0 < ¢ < k, or
IDK on any input;

2) A set Ky of global classifiers, each of which has been
trained to return either a base class or IDK upon any input.

3) For each ¢, 0 < ¢ < k, a set Ky of specialized classifiers,
each of which has been trained to return either a base
class that is € Iy, or IDK, on any input that has a priori
been determined to belong to the intermediate class I,
(presumably by some classifier in Kj).

For the example discussed in Section II-B (and, as stated
above, letting I ' COUPE and I « SUV), we would have

Kr= {Kl}JCd) = {KO}>ICO = {KCOUPE}7 and Ky = {KSUV}

In addition, there is a deterministic classifier K 4o; that never
returns IDK - it classifies each input to some base class. Each
classifier K; is characterized by a WCET C;. As in prior
work [11], the probabilistic behaviors of the classifiers are
specified in tabular form; we discuss the details below.

Initial table. This is a table with (|IC¢| +|K 1|) columns and

(2%l x (k + 1)/%11) rows specifying the probability space
for when one begins classifying an input and before the inter-
mediate class to which it belongs becomes known. One column
corresponds to each global classifier and each intermediate
classifier. Each global classifier may return some base class
or IDK, while each intermediate classifier may return one of
the k intermediate classes or IDK (for a total of (k + 1)

possibilities); hence the number of rows in the table is as stated
above.

Specialized tables. For each /, 0 < ¢ < k, there is a
K1+ 1Kol + K|

and (2(Fel+IKeD 5 (& 4+ 1)|’CI|) rows for specifying the
probability space when involving the intermediate class Ij.
Each column corresponds to one of the global classifiers,
one of the intermediate classifiers, or one of the specialized
classifiers in KCy. (Recall, from the illustrative example of
Section II-A, that the optimal choice of classifiers once the
intermediate class is known may depend upon the outcomes
of classifiers that were executed before the intermediate class
became known — hence information about the classifiers in
K¢ and K needs to be maintained in this probability table.)
The intermediate classifier either returns IDK or one of the
k intermediate classes; the base and the specialized classifiers
may return some base class or IDK, resulting in the number
of rows in the table stated above.

separate specialized table with () columns

Example 2. Table III lists the probability tables for our
example of Section II-B. For this example |[Ky| = 1, |[Ko| =
|1] = 1, and || = 1, and so the first table has 2 columns
and (2! x (24 1)) = (2 x 3) = 6 rows, while each of the
two specialized tables has 3 columns and 22 x 4! = 16 rows.

To see that these probability tables do indeed represent the
instance described in Section II-B, observe that

e K7 is assumed to never return IDK; hence, Rows 1-2 of
the leftmost table have zero probability.

e SUVs are twice as likely as COUPEs, and hence in the
leftmost table Rows 2—-3 sum to 1/3, and Rows 4-5 to 2/3.

o K is bad at COUPEs: Row 3 of the first table has probability
zero; Row 9 of the second has probability 1.0

e Ky returns IDK with probability (1/4) on Suvs: Row 10
of the third table has probability 1/4 (and Row 14 as the
remaining probability of 3/4)

Generating these tables. These probability tables are obtained
using a measurement-based methodology that is a generaliza-
tion of the one developed by Abdelzaher et al. [11]. We record
the classification decisions made by each of the IDK classifiers
upon a large number of representative inputs.* We associate
a count, instantiated to zero, with each row of the tables,
and for each input increment the appropriate counts. Since
each specialized classifier K; € Ky is only trained to classify
inputs in I, we derive its confidence threshold using only such
inputs. However, when generating the probability tables, we
include all inputs and record the true outputs, including those
outside I,, to accurately capture the classifier’s behavior in
deployment. Once all the inputs have been processed in this
manner, the probability value associated with each row of the
probability table is set equal to its count divided by the total

4Each of the classifiers will have undergone training and validation upon
representative inputs prior to this profiling phase; in many cases, this training
data can be reused here, thereby eliminating the need for additional data. If
new data is necessary it must also be representative of the expected inputs
during deployment.

Row# | Kcoure K1 Ko | Prob Row# | Ksyv K1 Ko | Prob
0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
2 0 2 0 2 0 2 0
Row# K Ko Prob 3 0 3 0 3 0 3 0
0 0 0 4 0 0 1 4 0 0 1
1 0 1 5 0 1 1 5 0 1 1
2 1 0 1/3 6 0 2 1 6 0 2 1
3 1 1 7 0 3 1 7 0 3 1
4 2 0 1/6 8 1 0 0 8 1 0 0
5 2 1 172 9 1 1 0 1.0 9 1 1 0
10 1 2 0 10 1 2 0 1/4
11 1 3 0 11 1 3 0
12 1 0 1 12 1 0 1
13 1 1 1 13 1 1 1
14 1 2 1 14 1 2 1 3/4
15 1 3 1 15 1 3

TABLE III: Probability tables for the example of Section II-B. (Only non-zero probabilities shown — all other entries in the “Prob.” columns are zeros.) A “0”
in K7’s column denotes that it returns IDK, a “1” that it returns COUPE, and a “2” that it returns SUV. For any other classifier, a “1” in its column denotes
that it returns the intermediate class labeling the column, a “0” denotes that it returns IDK.

number of relevant inputs. (Section V-A details the application
of this method upon one of our real-world use cases.)

A minor generalization. The model above is easily gener-
alized to use-cases where some intermediate classifiers may
additionally return some base classes. An example use-case of
this kind is discussed in Section V-A, where some intermediate
classifiers return either COUPE or SUV, denoting a vehicle of
the corresponding subclass, or “BACKGROUND”, denoting the
absence of a vehicle. In this case, “BACKGROUND” can be
thought of as a base class: a “BACKGROUND” object needs no
further classification.

IV. ALGORITHMS

In this section, we will develop a recursive formulation to
the problem of determining an optimal strategy for choosing
the order in which to execute IDK classifiers so as to minimize
the average duration to successful classification whilst guar-
anteeing to always complete classification within a specified
hard deadline D. (For ease of presentation we first focus on
minimizing the average classification duration; in Section IV-C
we explain how to incorporate consideration of the deadline
D.) Algorithm 1 applies Dynamic Programming to speed up
the recursion by avoiding unnecessary re-computations and
thereby obtain a reasonably efficient implementation.

A. An Overview

We start out with a high-level overview of our approach.
We assume a 2-level class hierarchy (as in Figure 1) with &
intermediate classes Iy, I1,...,,Ir_1. As described in Sec-
tion III-B, there are (k + 2) disjoint sets of IDK classifiers:
the global classifiers K4, the intermediate classifiers K;, and
the specialized classifiers Ko, Ky, . .., Kr_1. In addition, there
is a single deterministic classifier Kge;. Each classifier is
characterized by its worst-case execution time (WCET), with
classifier K;’s WCET denoted C;. The probabilistic behaviors
of the IDK classifiers are characterized by (k -+ 1) probability
tables: an initial table, and one specialized table for each of
the k intermediate classes — see Section III-B.

Preprocessing. Prior to classification time we will construct,

by a pre-processing algorithm that implements recursive search

via dynamic programming

o An initial cascade that is an ordered list comprising a subset
of (Ky UKy), terminated by Kqet; and

o For each intermediate classifier K; in this initial cascade and
each intermediate class Iy, a specialized_cascade(K;, Iy)
that is an ordered list comprising a subset of (KCy U Ky)
and terminated by K get.

Section IV-B explains how these cascades are synthesized.

Classification. Upon construction, these cascades are stored
and used for classification during runtime in the following
manner. Given an input that is to be classified,

« We start out attempting to classify this input via the classi-
fiers in the initial cascade (in the order in which they appear
in the cascade), until a non-IDK classification is obtained.

o If this non-IDK classification is to a base class, then we
return this base class and are done. Else, some intermediate
classifier K; in the initial cascade must have returned some
intermediate class Iy.

« Henceforth we attempt to classify the input by using the
classifiers in the specialized_cascade(K;, I;) in order, until
a non-IDK classification is obtained. This non-IDK classifi-
cation is guaranteed to be some base class — this is returned,
and we are done.

In Example 3 below, we discuss the example instances of
Section II in terms of initial and specialized cascades.

Example 3. Recall that the instance of Section II-A assumes
that intermediate classifiers Ky and K7 both have about the
same execution duration, while classifiers K5 and K3, both
specialized for COUPEs, offer complementary coverage (see
Table I); hence the initial cascade may be (Ko, K1, Kqet),
and

« specialized_cascade(K(, COUPE) = (K2, Kqet)
« specialized_cascade(K7, COUPE) = (K3, Kqet)

For the instance of Section II-B, recall that we use the global
classifier K if its WCET (|, < 15, and then the classification

strategy of Figure 2. This translates to an initial cascade of
<K0, K17 Kdet>a and

« specialized_cascade(K7, COUPE) = (Kcoupe, Kdet)

« specialized_cascade(K1,SUV) = (Ksyy, Kdet)
whereas if Cy > 15, the initial cascade does not include K
(it’s simply (K7, Kqet)) while the specialized cascades remain
the same.

B. The Cascade-synthesis Algorithms

We now describe our dynamic-programming algorithms for
constructing the initial cascade and the specialized cascades.
We focus here primarily on explaining the intuition behind our
algorithms; the algorithms themselves are provided in pseudo-
code form as Algorithms 1 and 2 (and as Python code in the
separately-uploaded supplementary material).

When starting out classifying some input we will not
generally know beforehand the intermediate class to which it
belongs, and so may only attempt to classify it by using clas-
sifiers in (K; U Ky U {Kqet }). Hence, these are the classifiers
considered in synthesizing the initial cascade.

Let S denote the classifiers in the prefix of the initial cascade
that we have constructed so far (initially, S = 0)). Suppose they
all returned IDK on some input. Below we will define a func-
tion EXPAND(S) (in Algorithm 1) for determining the classifier
K, € (KrUKy) \ S) to execute next, so as to minimize the
average remaining duration to successful classification; a call
to EXPAND(.S) will additionally return this minimum average
remaining duration to successful classification.

If this classifier K} returns IDK, then we add K; to S
and repeat the call to EXPAND(.S). If K, determines that the
input belongs to some base class, then we are done. Else, it
must be the case that K} is an intermediate classifier (i.e.,
K}y, € Kr), and it has declared that the input belongs to some
intermediate class I,. Below we will define another function,
EXPAND'(S, Iy, T, K}) (Algorithm 1, line 21), for determining
the classifier to execute in this case in order to minimize the
average remaining duration to successful classification, where

¢ S has the same interpretation as above: it is the set of
classifiers, S C (Cf U KCy), that we have used thus far but
they have all returned IDK;

o K, is the intermediate classifier that has returned I, on the
input; and

« T is the set of specialized classifiers for intermediate class
I; (i.e., T C Kp) that we have used in an attempt to classify
the input (after K had identified it as belong to class Iy),
but they have all returned IDK (initially, 7' = 0).

As was the case with EXPAND(S), a «call to
EXPAND'(S, I, T, Kj) will additionally return the minimum
average remaining duration to successful classification.

The function EXPAND(S). Recall that S denotes the set of
classifiers, S C (K; U Ky), that we have used in an attempt
to classify the input but they have all returned IDK.

The first if-condition of EXPAND(S) (Line 2) checks
whether we have already considered this case; if so, we would
have stored the minimum average remaining time to successful

Algorithm 1: EXPAND() and EXPAND'()

EXPAND(S)
if S.cost has already been computed then
| return S.cost

w N =

4 if (S == (Ky UK;)) then
5 S.cost = Cget; S.next = Kqet
6 return S.cost

7 S.cost = 00; Snext = Koo // Koo:
s for each K; € (K1 \ S) do

9 Pr = CONDPR(S, K;)

10 tmpCost = C; + Pr|[0] x EXPAND(S U {Kj;}) +

a placeholder

k—1
> (Pre+1] x EXPAND(S, Ir, 0, K;)
=0

u if (tmpCost < S.cost) then

1 | S.cost = tmpCost; S.next = K

i3 for each K; € (K4 \ S) do

14 Pr = CONDPR(S, K)

15 tmpCost = C; + Pr[0] x EXPAND(S U {Kj;})
16 if (tmpCost < S.cost) then

1 L S.cost = tmpCost; S.next = K

18 if (Caet < S.cost) then
19 L S.cost = Cget; S-next = Kot

20 return S.cost

EXPAND' (S, I,, T, K1)

if (8,1, T, Kp).cost has already been computed then
L return (S, I;, T, K}).cost

2u if ((S @] T) == (IC(@] /C¢)) then

25 (S, I, T, Kp).cost = Caet; (S, I, T, Kp).next = Kqet

2 | return cost

z (S, 1, T, Ky).cost = o0; (S, I, T, Kp).next = Koo

2 for each K; € ((/C[@] /C¢) \ (S @] T) do

2 Pr = CONDPR'(S, I;, T, h, K;)

30 if(KjG’C¢) then

31 tmpCost =

C;+ (Pr X EXPAND' (S U {K}, Io, T, Kh)>

2

=

2

N

2.

<

=

EY else /Must be K; € K,
3 tmpCost =
C; + (Pr X EXPAND'(S, I, T U {K;}, Kh)>

3 if ((S,¢,T,h).cost > tmpCost) then
3s (S, I¢, T, Kp,).cost = tmpCost,
(S, 1, T, Kh).next = Kj

o if ((S, e, T, Kp).cost > Cget) then
¥ L (S, I, T, Kp).cost = Caes; (S, 1o, T, Kp).next = Kaes

s return (S, I, T, Kp).cost

@

@

classification in the variable S.cost. (Thus, this if-condition
is essentially implementing a top-down — memoized — dynamic
program.)

The next if-condition (Line 4) checks whether we have
exhausted the available supply of global and intermediate
classifiers; if so, we must use the deterministic classifier K get.

The remainder of the pseudo-code considers the remaining
intermediate (the for-loop at line 8) and global (the for-loop at

line 13) classifiers one at a time, seeking to identify the one
to execute next in order to minimize the remaining average
duration to successful classification.

If we execute classifier K; € ((K7 U Ky) \ S), the proba-
bility of K; returning a particular output (IDK or some inter-
mediate class for K; € Kr; IDK or some base class for K; €
K4) can be computed as the ratio (Numerator/Denominator),
where

e Denominator is the sum of the probabilities of all those
rows of the initial probability table in which all the columns
corresponding to classifiers in S are labeled IDK; and

o Numerator is the sum of the probabilities of all those rows
of the initial probability table in which all the columns
corresponding to classifiers in S are labeled IDK, and the
column corresponding to K; is labeled with that particular
output.5

This computation is implemented by a function
CONDPR(S, K;) (pseudo-code omitted, since it does
exactly what is described above) that is called at Lines 9
and 14. Let Pr{IDK} denote the probability that this outcome
is IDK, and Pr{l,} that this outcome is intermediate class
I, (and hence the probability of a base class being returned
equals [1.0 — Pr{IDK} — (k-2 Pr{Ig}”).

Lines 10 and 15 compute the average remaining duration to
successful classification of the input as follows:

C; + (Pr{IDK} X EXPAND(S U {Kj}))

k—1
+ <Z (Pr{I,} x EXPAND/'(S, Ie,V),Kj))>

£=0

Here, the first term represents the execution duration of clas-
sifier K, the second, the remaining expected duration if K
returns IDK, and each individual term within the summation
in the third, the remaining expected duration if K; returns a
particular intermediate class I,.

Finally, the if-condition at Line 18 checks whether it would
be faster to simply directly execute the deterministic classifier.

The function EXPAND' (S, Iy, T, K},) is essentially understood
in much the same manner as EXPAND(S) above. Let S, I,, T
and K}, have the interpretations discussed earlier: S denotes
the set of classifiers in (S C (K7 UKy)) that have returned
IDK while K}, € K has returned the intermediate class Ip; T
(initially when EXPAND'() is first called — see Line 10) de-
notes the set of classifiers in Xy that have returned IDK. If we
were to now execute classifier K; € ((K,\T)U (K4 \S5)),
two outcomes are possible: IDK or some base class. The
probability of K; returning IDK can be computed as the ratio
(Numerator /| Denominator), where

o Denominator is the sum of the probabilities of all those rows
of the probability table for intermediate class I, in which

SEquivalently, it is the sum of the probabilities of all those rows that satisfy
the conditions for Denominator above, that additionally have the column
corresponding to K; labeled with that particular output.

Algorithm 2: Synthesizing the cascades

1 Call EXPAND(0)

2 // Synthesizing the initial cascade

3 Initialize the cascade to be empty

4 S=0

5 repeat

6 Kip = S.next

7 Append K, to the end of the cascade

8 S = SU{Kmp} // Assume Kim returns IDK
9 until (K == Kaet);

10 // Synthesizing specialized_cascade(K;,Ir)
11 Initialize the cascade to be empty

12 S = the classifiers preceding K; in the initial cascade
BT =20

14 repeat

15 Kpp = (S, 1, T, K¢).next

16 Append K, to the end of the cascade

17 if Kimp € Ky then

18 L S = SU{Ktmp}

19 else
20 L T =TU{Kump}

until (Kyyp == Kaet);

jamy

2

[y

all the columns corresponding to classifiers in (S UT) are
labeled IDK while the column corresponding to the classifier
K}, is labeled with a designation indicating that it returns
the correct intermediate class (which is, of course, Iy); and
o Numerator is the sum of the probabilities of all those rows
of the probability table for intermediate class I, that satisfy
all the conditions above (for Denominator), and the column
corresponding to K is labeled with IDK.
As before, let Pr{IDK} denote the probability that the out-
come is IDK (and so the probability of a base class being
returned is (1 — Pr{IDK})).
We can compute the average remaining duration to success-
ful classification of the input as

C + (Pr{IDK} x EXPAND' (S U {K;}, I, T, Kh))
if K; € Ky, and

C;+ (Pr{IDK} X EXPAND'(S, Iy, T U{K;}, Kh))
if K; € K.

Synthesizing the cascades. A call to EXPAND()) will make
the needed recursive calls to EXPAND() and EXPAND'() with
the appropriate parameter settings, which in turn will result
in the cost and next variables being assigned appropriate
values. The manner in which the cascades are then synthesized
is straightforward, and is presented in pseudo-code form in
Algorithm 2.

C. Incorporating Hard Deadlines

If a hard deadline D is additionally specified with the
interpretation that classification must always complete within
D time units, the procedures EXPAND() and EXPAND'()

of Algorithm 1 are modified to each accept an additional
parameter D, denoting the remaining duration to deadline.
When EXPAND() is called for the first time (Line 1 of Algo-
rithm 2), this parameter is set equal to D (i.e., Line 1 of Algo-
rithm 2 is modified to “EXPAND((), D)”). Within EXPAND()
and EXPAND'(), IDK classifier K; is only considered for
possible execution if its execution duration C; > D + Cget;
if it is considered, then the corresponding recursive call (in
Lines 10, 15, 31, or 33) is made with the deadline parameter
set to (D — ;).

A note: Recall (footnote 3) that we’ve been using a simplified
model for IDK classifiers thus far: the model given in [11,
Sec. 3] actually characterizes each classifier’s execution du-
ration via a pair of parameters, C; and C;, with C; denoting
the average execution duration and C; the worst-case duration.
Thus it is the C; values (rather than the C;’s) that are used
in Algorithms 1 and 2 for minimizing average classification
duration; however, the C; values —-WCET characterizations—
are used in the tests (“if C; > D + Cye”) that check whether
it is safe to execute a classifier ;.

D. Run-time Complexity

There are two aspects to the computational complexity of
our approach. Pre-runtime complexity accounts for the time
required to (i) train the classifiers; (ii) populate the initial
and the specialized probability tables; and (iii) synthesize the
cascades. Classification complexity concerns the time taken to
classify a single input during runtime.

The pre-runtime complexity of our approach is high, as
is the norm in most deep-learning based computational ap-
proaches. Effective training of the IDK classifiers requires
the collection of large amounts of representative training
data, upon which each classifier must be trained. Populating
the probability tables also requires that large amounts of
representative data be classified by the different classifiers. The
cascade-synthesis algorithm has running time exponential in
the number of classifiers — Section V-C provides some example
measurements. This is not surprising: earlier cascade synthesis
algorithms [11]-[15] that did not exploit hierarchical structure
already had exponential running time.

When it comes to classification complexity, however, our
approach is very efficient : assuming that all the classifiers
are pre-loaded and indexed in some manner that allows for
constant-time retrieval, the time to classify any input is linear
in the number of classifiers needed to classify it optimally (i.e.,
with minimum average execution time). Thus our complexity
tradeoff is entirely consistent with the paradigm in DL-based
edge Al: trade off considerable pre-runtime complexity for
very efficient (in fact, optimal) runtime use.

E. Generalizing to Deeper Hierarchies

Both the IDK model of Section III and the algorithms
discussed earlier in this section readily generalize to deeper
hierarchies — generalizations of Figure 1 with the hierarchy
represented as a tree with more levels, with each leaf de-
noting a base class and each non-leaf node representing an

intermediate class. Different IDK classifiers are trained for
different purposes: top-level classifiers classify any input into
one of the intermediate classes immediately below the root;
intermediate classifiers for each non-leaf node are trained to
classify inputs determined to belong to the intermediate class
associated with that node into the classes immediately below
that node.® Probability tables are associated with each non-
leaf node, specifying the probability space of classification
outcomes for the classifiers that are specialized to that class,
conditioned on the outcomes of classifiers associated with each
intermediate class associated with nodes between the node and
the root of the classification tree.

V. EVALUATION

We evaluate our algorithm on two real-world applications:
vehicle detection using multi-modal sensory inputs, and hu-
man activity recognition (HAR) using wearable sensors. This
section presents our experience and findings; the data and code
used have been uploaded as Supplementary Material (and will
be offered for Artifact Evaluation if this paper is accepted).

A. Vehicle Detection Case Study

Data collection and pre-processing. We use the M3N-VC
dataset [16], a large-scale vehicle monitoring dataset with
acoustic and seismic signals recorded from multiple moving
vehicles. As described in [16], sensor nodes equipped with a
microphone (acoustic, 1.6 kHz), geophone (seismic, 200 Hz),
and GPS (1 Hz) were deployed in six distinct environments,
with 6-8 nodes per scene. Vehicles were driven around the
area while the sensor nodes recorded signals and synchronized
their clocks via GPS. Only the acoustic and seismic signals
are used in this study.

For this study, we considered four base vehicle types:
MUSTANG, MX 5, €X 30, and GLE 350, organized into the
hierarchy of Figure 1. We use a 3.43-hour subset of data
from six nodes and segment it into 2-second windows, while
segments with missing sensor readings are discarded. The
segmented data is transformed into spectrograms using Short-
Time Fourier Transform (STFT). By combining three com-
plexity levels of DeepSense [4] classifiers (varying convo-
lutional/recurrent layer width and depth) with two sensor
modalities, we generate 12 model variants. Using these model
variants, we train three types of classifiers: (i) global classifiers
that predict one of the four base vehicle classes or BACK-
GROUND, (ii) intermediate classifiers that classify samples as
either SUV, COUPE, or BACKGROUND, and (iii) specialized
classifiers that classify samples into base classes within the
SUV or the COUPE group. Each classifier outputs a predicted
label and confidence score. We set a required confidence
threshold of 0.90 for global classifiers, and 0.95 for both
intermediate and specialized classifiers (so that the cumulative
error at the end of both stages is at most 10%, similar to

5The idea of the global classifiers (those in Kg) generalizes as follows:
such a classifier may be associated with any node of the classification tree
that is above the two levels levels, and classifies an input into any class,
intermediate or base, in the subtree that is rooted at that node.

Classifiers Intermediate Global Suv COUPE
Ko K K> K3 Ky Ks K¢ Kyet
Modality, params | Both, 129698 Both, 356610 | Both, 130469 Both, 1217109 | Acoustic, 80355 | Acoustic, 80355 Both, 129955 -
Success rate 76.1 87.6 66.8 99.9 1 91.1 94.9 1
Execution time 80.8 317.0 104.7 869.9 80.9 80.9 104.5 10000
TABLE IV: Classifiers for the vehicle detection case study (Section V-A).
Cumulative Distribution Function (CDF)
400 31.0
. E 0.8
@ 300 g
§ § 0.6
é 20 - S\I::):rlchy % 04
- ast firs 2
KZ } 100 = Eoffi;\enttfirst §0.2 1 \?VZT::afossia
ptimal 0.0

Ko 1 K —1Kaa]

Fig. 3: Optimal cascade for the vehicle detection case Study (Section V-A).

global). If the confidence of a classifier exceeds the threshold,
a label is returned; otherwise, the classifier outputs IDK.

Profiling. By examining the Pareto front of classifiers consid-
ering both the success rate and execution time, we select two
intermediate classifiers (K and K7), two global classifiers
(K2, K3), one specialized classifier for the SUV class (Ky),
and two specialized classifiers for the COUPE class (K5 and
Kg). These selected classifiers are applied to the test data to
obtain class predictions and confidence scores. Using these,
we construct empirical probability tables as described in
Section III, and record average and worst-case execution times.
A summary of the classifiers with the number of parameters
and modality choices can be found in Table IV.

Findings. We compare the optimal cascade generated by
the proposed algorithm (labeled Optimal) to four baselines:
(1) Global: Best cascade using only global classifiers. (2) Hi-
erarchy: Best cascade using only intermediate and specialized
classifiers. (3) Fast first: Classifiers ordered by increasing exe-
cution time. (4) Efficient first: Classifiers ordered by increasing
(Non-IDK rate)/(execution time).

The expected execution duration of all algorithms is com-
pared in Figure 4a. The proposed algorithm finds the cascade
with the minimum expected execution duration. Compared
with the best baseline algorithm, it reduces latency by 11.2%.
A cumulative latency distribution of all possible cascades in a
reduced setting (with fewer classifiers) is shown in Figure 4b,
with the latency of the optimal cascade our algorithm found
and the latency of the worst cascade highlighted. Compared
with the other possible cascades, the optimal one has signif-
icantly shorter expected execution time. The worst cascade
takes significantly longer to execute, showing that organizing
the classifiers in the wrong way can lead to poor performance.
A reduced setting is used here because the total number of
possible cascades grows exponentially with the number of
classifiers, making exhaustive evaluation infeasible in the full
setting. The optimal classification strategy determined by our

400 500 600 700 800 900 1000

Algorithms Latency (ms)

(a) Latency comparison of the algorithms. (b) Latency distribution of all cascades.
Fig. 4: Vehicle detection case study results (Section V-A).

algorithm for this case study is shown in Figure 3. This
is not a strategy one would intuitively have considered: a
global classifier (K3) is used before any intermediate classifier.
While the first intermediate classifier is the fastest and most
efficient, it is not selected first. The optimal cascade also
differs from both the Fast first policy and the Efficient first,
where the selected cascades are Ko — K9 — K7 — K3 and
Ky — Ky — K3 — K, respectively.

B. HAR Case Study

Data collection and pre-processing. For this case study, we
use the RealWorld-HAR dataset [17], a dataset for human
activity recognition with data from sensors attached to 7
positions on the human test subjects, while they perform one
of the 8 activities. The dataset provides the accelerometer data
(used in our study), as well as GPS, gyroscope, light, magnetic
field, and sound level measurements, all collected at SOHz.

We group the 8 activity types into two categories:
intermediate class MOVING including CLIMBING-UP,
CLIMBING-DOWN, WALKING, JUMPING, and RUNNING;
intermediate class STATIC including STANDING, SITTING,
and LYING. We use only the accelerometer data collected
from the shin sensor and segment the data into 4-second
windows. Similarly, we convert the sensor input into STFT
form and train 3 types of DeepSense-based IDK classifiers:
(1) global classifiers that classify inputs into one of the 8
base activity classes, (ii) intermediate classifiers that classify
inputs as either STATIC or MOVING, and (iii) specialized
classifiers that classify inputs within the STATIC or MOVING
group.

In addition to the three model sizes used in the vehicle study,
we introduce a smaller classifier, observing that it achieves
high accuracy with low cost, especially for the intermediate
classification task. We assume a required classification accu-
racy of 0.85 and use required precision of 0.85 for the global
classifiers, 0.94 for the intermediate classifiers, and 0.91 for
the specialized classifiers to compute per-classifier confidence
thresholds, leading to at most 15% error, no matter which
classifiers are used.

Classifiers Intermediate ‘ Global ‘ STATIC ‘ MOVING ‘
Ko Ky Ko K3 Ky Ks Kg K~ Ksg Ky Ko Ky Kger
Parameters 5134 22978 | 77320 360072 1111256 | 5167 23043 76035 5233 23173 76549 358533 -
Success rate (%) 40.2 99.9 67.2 924 1 84.3 924 97.1 52.0 69.0 91.7 95.5 1
Execution time (ms) 31.3 47.0 77.0 2422 571.8 31.1 46.4 69.6 30.9 50.8 69.8 241.3 10000

TABLE V: Classifiers for the HAR case study (Section V-B).

Profiling. We select two intermediate classifiers (K and K7),
3 global classifiers (K2, K3 and K}), 3 specialized classifiers
(K5, Kg and K7), for the STATIC class, and 4 specialized
classifiers, (Kg, K9, K19 and K;1), for the MOVING class.
Similar to the previous case study, we evaluate all classifiers
on the test set, record their predictions and confidence levels,
construct the empirical probability tables, and measure both
average and worst-case execution times. A summary of the
classifiers can be found in Table V.

Findings. The expected execution duration of all algorithms
is compared in Figure 6a. Our algorithm produces the cascade
with the lowest expected execution time, reducing latency
by 7.4% compared with the best baseline. Figure 6b shows
the latency distribution across all cascades in a reduced-
scale setting. Compared with the other possible cascades, the
optimal one selected by our algorithm has significantly shorter
expected execution time. The optimal cascade is shown in
Figure 5. It is different from the one for the vehicle case
study, and it is also counterintuitive. Instead of starting with
any global classifier, or starting with the smaller intermediate
classifier Ky, it directly goes to the larger but more efficient
intermediate classifier K;. Then it skipped classifiers K5 and
K3, and directly selected K4. In the STATIC branch, the
selected optimal cascade skipped the specialized classifier K,
which differs from the one generated by Fast first and Efficient
first: Ks - K¢ - K7y - K9 — K3 — K4. In the MOVING
branch, the cascade generated by the Fast first and Efficient
ﬁrst is Kg > Kg > Kig —» Koy > K1 - K3 — K4. In
contrast, the optimal cascade delays classifier Ky until after the
slower special classifier Kg, and also after the much slower
global classifiers Ko and Ks. It also skips classifier K
altogether, even though it is faster than both Ky and K3. This
demonstrates that due to the complex probability dependencies
in the data, one cannot easily determine the optimal cascade
by looking at the classifier performance metrics.

C. Algorithm Execution Times

We profile the time and memory required by the cascade-
synthesis algorithm to find the optimal cascade, using the vehi-
cle detection example. Experiments are run on a workstation
computer (Lambda Labs Vector with an AMD Threadripper
Pro 3975WX at 3.50 GHz, 128GB of RAM, running Ubuntu
20.04). For a problem with 5 intermediate classifiers, 5 global
classifiers, and 5 specialized classifiers for each intermediate
class, the algorithm takes 155 minutes and a maximum mem-
ory of 128 MB to derive the optimal solution.

VI. CONCLUSIONS

The research discussed in this paper extends the use of
IDK cascades for purposes of real-time classification to the
case of class hierarchies. It establishes that hierarchical IDK

| Ko] K3 || Ka | Kaa|
STATIC
| & Ky o Kael
MOVING | T T L
Ky | Kio || K2 || K5 || Ko || Kyt |

Fig. 5: Optimal cascade for the HAR case study (Section V-B).

Cumulative Distribution Function (CDF)

200

- I

Global
Hierarchy
Fast first
Efficient first
Optimal

°c o =
o ® o

Latency (ms)
=
o
o
S
e

v
o
o
)

Optimal: 125
== Worst: 1045

Cumulative Probability

o
=)

200 400 600 800
Latency (ms)

1000
Algorithms

(a) Latency comparison of the algorithms. (b) Latency distribution of all cascades.

Fig. 6: HAR case study results (Section V-B).

classification is not decomposable to a sequence of flat IDK
cascade classification problems without loss of optimality.
Optimal holistic algorithms are therefore derived for exploiting
the hierarchical class structure, and evaluated on real classi-
fiers and sensor data from two application domains. Results
demonstrate the advantages of holistic optimization.

This work may be extended in several directions. While
we have focused on IDK classifiers primarily due to the large
body of pre-existing work on them in the real-time community,
our ideas and techniques generalize to other situations where
hierarchical structure may be exploited to reduce latency.
With minor modifications, our algorithms can be adapted
to provide optimal classification strategies using early exit
classifiers [18]-[20] (rather than IDK ones). They can also
be extended to handle mixture-of-experts [21]-[24] situations,
where resource constraints prevent the invocation of all experts
at the same time, calling for optimally staged processing, with
one (or a bounded number of) experts per stage.

The work in this paper focused on scenarios where a single
class label is sufficient to describe the environment at any
given time. In reality, many perception problems involve multi-
label classification (e.g., recognizing all car types in a video
frame). One solution to handle such problems might be to
decompose them into single-label problems. For example,
background subtraction can be used to identify the approxi-
mate locations of all moving objects in a frame, then pass each
object to a different classifier cascade. Another solution could
be to extend this work to cascades of multi-label classifiers.

Finally, domain shift is a key problem with all machine-
learning, including IDK classifiers. When input data are from
a substantially different distribution than the one used for train-
ing, the confidence values returned by the IDK classifiers may

be incorrect. Out-of-distribution detection techniques [25]—
[27] may be needed to detect domain shift and force classifiers
to return an IDK instead. These topics will be investigated in
our future work.

ACKNOWLEDGMENTS

Research reported in this paper was sponsored in part
by the United States National Science Foundation (CNS
20-38817, CNS-2141256, CNS-2229290, and CNS-2502855),
DEVCOM ARL under Cooperative Agreement W911NF-172-
0196, the Boeing Company, and Innovate UK SCHEME
project (10065634). EPSRC Research Data Management: No
new primary data was created during this study.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

REFERENCES

D. Neupane and J. Seok, “A review on deep learning-based approaches
for automatic sonar target recognition,” Electronics, vol. 9, no. 11, p.
1972, 2020.

K. El-Darymli, E. W. Gill, P. Mcguire, D. Power, and C. Moloney,
“Automatic target recognition in synthetic aperture radar imagery: A
state-of-the-art review,” IEEE access, vol. 4, pp. 6014-6058, 2016.

K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep learning
for sensor-based human activity recognition: Overview, challenges, and
opportunities,” ACM Computing Surveys (CSUR), vol. 54, no. 4, pp.
1-40, 2021.

S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense: A
unified deep learning framework for time-series mobile sensing data
processing,” in Proceedings of the 26th international conference on
world wide web, 2017, pp. 351-360.

X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, and J. E.
Gonzalez, “IDK cascades: Fast deep learning by learning not to
overthink,” CoRR, vol. abs/1706.00885, 2017. [Online]. Available:
http://arxiv.org/abs/1706.00885

——, “IDK cascades: Fast deep learning by learning not to overthink,”
in Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence. AUAI Press, August 2018. [Online]. Available:
http://arxiv.org/abs/1706.00885

N. Kashani Motlagh, J. Davis, T. Anderson, and J. Gwinnup, “Learning
when to say “I Don’t Know”,” in Advances in Visual Computing,
G. Bebis, B. Li, A. Yao, Y. Liu, Y. Duan, M. Lau, R. Khadka, A. Crisan,
and R. Chang, Eds. Cham: Springer International Publishing, 2022, pp.
196-210.

R. Cohen, K. Dobler, E. Biran, and G. de Melo, “I don't know:
Explicit modeling of uncertainty with an IDK token,” in Advances
in Neural Information Processing Systems, A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang,
Eds., vol. 37. Curran Associates, Inc., 2024, pp. 10935-10958.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2024/file/14c018d2e72¢521605b0567029ef0efb- Paper- Conference.pdf
W. Cai, J. Jiang, F. Wang, J. Tang, S. Kim, and J. Huang, “A survey on
mixture of experts,” arXiv preprint arXiv:2407.06204, 2024.

S. Yao, Y. Zhao, H. Shao, A. Zhang, C. Zhang, S. Li, and T. Abdelzaher,
“Rdeepsense: Reliable deep mobile computing models with uncertainty
estimations,” Proceedings of the ACM on interactive, mobile, wearable
and ubiquitous technologies, vol. 1, no. 4, pp. 1-26, 2018.

T. Abdelzaher, K. Agrawal, S. Baruah, A. Burns, R. I. Davis, Z. Guo,
and Y. Hu, “Scheduling IDK classifiers with arbitrary dependences
to minimize the expected time to successful classification,” Real-Time
Systems, Mar. 2023.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

S. Baruah, A. Burns, R. Davis, and Y. Wu, “Optimally ordering
IDK classifiers subject to deadlines,” Real Time Syst., 2022. [Online].
Available: https://doi.org/10.1007/s11241-022-09383-w

T. Abdelzaher, S. Baruah, 1. Bate, A. Burns, R. I. Davis, and Y. Hu,
“Scheduling classifiers for real-time hazard perception considering func-
tional uncertainty,” in Proceedings of the 31st International Conference
on Real-Time Networks and Systems, ser. RTNS 2023. New York, NY,
USA: Association for Computing Machinery, 2023.

S. Baruah, A. Burns, and R. I. Davis, “Optimal synthesis of
robust IDK classifier cascades,” in 2023 International Conference on
Embedded Software, EMSOFT 2023, Hamburg, Germany, September
2023, C. Pagetti and A. Biondi, Eds. ACM, 2023. [Online]. Available:
https://doi.org/10.1145/3609129

S. Baruah, I. Bate, A. Burns, and R. Davis, “Optimal synthesis of fault-
tolerant IDK cascades for real-time classification,” in Proceedings of
the 30th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2024). 1EEE, 2024.

J. Li, Y. Chen, R. Wang, T. Kimura, T. Wang, Y. Lyu, H. Zhao, B. Sun,
S. Wu, Y. Hu, D. Kara, B. Tian, K. Nahrstedt, S. Diggavi, J. H. Kim,
G. Kimberly, G. Wang, M. Wigness, and T. Abdelzaher, “RestoreML:
Practical unsupervised tuning of deployed intelligent iot systems,” in
2025 21st International Conference on Distributed Computing in Smart
Systems and the Internet of Things (DCOSS-1oT). IEEE, 2025.

T. Sztyler and H. Stuckenschmidt, “On-body localization of wearable
devices: An investigation of position-aware activity recognition,” in 2016
IEEE international conference on pervasive computing and communi-
cations (PerCom). 1EEE, 2016, pp. 1-9.

S. Teerapittayanon, B. McDanel, and H. Kung, “BranchyNet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR), 2016, pp.
2464-2469.

Y. Sepehri, P. Pad, A. Caner Yiiziigiiler, P. Frossard, and L. Andrea Dun-
bar, “Hierarchical training of deep neural networks using early exiting,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 36,
no. 4, pp. 6271-6285, 2025.

F. Ilhan, S. E Tekin, S. Hu, T. Huang, K.-H. Chow, and L. Liu,
“Hierarchical deep neural network inference for device-edge-cloud
systems,” in Companion Proceedings of the ACM Web Conference
2023, ser. WWW ’23 Companion. New York, NY, USA: Association
for Computing Machinery, 2023, p. 302-305. [Online]. Available:
https://doi.org/10.1145/3543873.3587370

R. A. Jacobs, M. L. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural computation, vol. 3, no. 1, pp. 79-87,
1991.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le,
W. Chen, M. Norouzi, and J. Dean, “Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer,” arXiv preprint
arXiv:1701.06538, 2017.

W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” Journal of
Machine Learning Research, vol. 23, no. 127, pp. 1-39, 2022.

D. Lepikhin, H. Xu, Y. Hoffmann, Y. Aharoni, D. Chen, M. Johnson,
0. Lee, A. Metzler, Z. Qi, J. Smith et al., “Gshard: Scaling giant models
with conditional computation and automatic sharding,” arXiv preprint
arXiv:2006.16668, 2020.

W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution
detection,” Advances in neural information processing systems, vol. 33,
pp. 21464-21475, 2020.

J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. Depristo, J. Dillon,
and B. Lakshminarayanan, “Likelihood ratios for out-of-distribution
detection,” Advances in neural information processing systems, vol. 32,
2019.

J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution
detection: A survey,” International Journal of Computer Vision, vol.
132, no. 12, pp. 5635-5662, 2024.

	Introduction
	Some Illustrative Examples
	Example I: Inter-level Dependences
	Example II: Additional "Global" Classifiers

	A model for IDK classifiers
	Class Hierarchies
	Class Hierarchies: Modelling IDK Classificaton

	algorithms
	An Overview
	The Cascade-synthesis Algorithms
	Incorporating Hard Deadlines
	Run-time Complexity
	Generalizing to Deeper Hierarchies

	Evaluation
	Vehicle Detection Case Study
	HAR Case Study
	Algorithm Execution Times

	Conclusions
	References

