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Abstract

Standard multimodal self-supervised learning (SSL) algorithms re-
gard cross-modal synchronization as implicit supervisory labels
during pretraining, thus posing high requirements on the scale
and quality of multimodal samples. These constraints signi�cantly
limit the performance of sensing intelligence in IoT applications,
as the heterogeneity and the non-interpretability of time-series
signals result in abundant unimodal data but scarce high-quality
multimodal pairs. This paper proposes InfoMAE, a cross-modal
alignment framework that tackles the challenge of multimodal
pair e�ciency under the SSL setting by facilitating e�cient cross-
modal alignment of pretrained unimodal representations. InfoMAE
achieves e�cient cross-modal alignment with limited data pairs

through a novel information theory-inspired formulation that si-
multaneously addresses distribution-level and instance-level align-
ment. Extensive experiments on two real-world IoT applications
are performed to evaluate InfoMAE’s pairing e�ciency to bridge
pretrained unimodal models into a cohesive joint multimodal model.
InfoMAE enhances downstream multimodal tasks by over 60% with
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signi�cantly improved multimodal pairing e�ciency. It also im-
proves unimodal task accuracy by an average of 22% 1.
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1 Introduction

Multimodal Self-Supervised Learning (SSL) algorithms, although
achieving unprecedented performance in extensive sensing ap-
plications [11, 12, 32, 52], present unique data challenges rarely
encountered with unimodal SSL or vision-language domains due to
the complexity in acquiring high-quality multimodal pairs for IoT
signals. The inherent properties of sensory data common in Web
and Industrial sensing applications result in abundant unimodal
signals but scarce multimodal pairs. First, sensory modalities have

1The code is available at https://github.com/tomoyoshki/InfoMAE.
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Figure 1: Comparison of supervised learning, self-supervised

learning, and pair-e�cient self-supervised learning.

heterogeneous properties, such as sampling rate, timestamp, or
duration, that increase the likelihood of capturing asynchronous
events. For example, in vibration sensing applications (machine
monitoring, vehicle detection), multimodal sensors (geophone, mi-
crophone, thermometer, etc.) often operate at di�erent sampling
rates, leading to temporal misalignments that require manual cali-
bration [40]. Second, raw signals often lack intuitive interpretability.
Unlike images or text, where visual features can be easily matched
to textual captions, capturing useful signatures between sensing
modalities like motion or frequency waves is challenging. Prepro-
cessing and calibrating these signals requires modality-speci�c
domain knowledge, which is labor-intensive and susceptible to
operational errors. Finally, sensors for IoT are subject to varying
deployment conditions, leading to sparse and noisy data [36]. For
example, in human activity recognition (HAR) applications, wear-
able IMU sensors generate multimodal motion streams for real-time
monitoring, �tness tracking, or healthcare purposes. Each modal-
ity can be independently a�ected by device constraints, platform
heterogeneity, sensor failures, or variations in deployment environ-
ments, leading to missing or incomplete data streams. This hetero-
geneity often yields poor-quality uncorrelated multimodal pairs or
incomplete datasets with signi�cant gaps and missing data. As IoT
networks scale in quantity and the number of modalities, acquiring
large-scale, high-quality multimodal pairs becomes increasingly
time-consuming, error-prone, and less reliable.

Despite these challenges, most existing multimodal SSL frame-
works [1, 35, 48, 55] rely heavily on massive multimodal pairs to
learn robust joint representations during the pretraining, but their
capability could degrade signi�cantly with insu�cient synchro-
nized pairs [44, 71] or uninformative false-positive pairs [9, 49]
On the other hand, independently pretraining each modality on
their unimodal data and directly concatenating misaligned modal-
ity features for �netuning fails to capture cross-modal interactions
that are critical to downstream multimodal tasks [27, 68]. Instead,
we observe that with limited multimodal pairs, we can e�ectively
convert independently trained unimodal encoders into a coherent
model that sustains strong generalizability in multimodal tasks.
We refer to this process as pair-e�cient SSL. The relation of pair-
e�cient SSL for multimodal data compared to standard SSL draws

an analogy to the evolvement of SSL compared to supervised learn-
ing, as visualized in Figure 1. In supervised learning, manual labels
serve as supervision to train encoders for mapping inputs to task-
speci�c labels. Its performance depends heavily on the quantity
and quality of human annotations. Self-supervised learning (SSL)
mitigates label scarcity by �rst designating proxy labels from the
data properties to learn general semantics with massive unlabeled
data, then calibrating the pretrained model to a downstream task
with minimal human annotations. Similarly, in multimodal SSL con-
texts, cross-modal alignment acts as a special form of “supervision”,
where point-to-point modality correspondence is utilized to iden-
tify semantically meaningful and consistent sensory information.
Taking another step forward, pair-e�cient SSL takes advantage of
abundant unimodal data for “independent pretraining”, followed
by “cross-modal �netuning” with limited multimodal pairs to align
unimodal models into a cohesive multimodal model.

In this paper, we propose InfoMAE, a cross-modal learning frame-
work designed to enhance the alignment of unimodal representa-
tions using a limited number of multimodal pairs. The key idea be-
hind InfoMAE is to enforce alignment across modalities at both the
distribution and instance levels. Existing contrastive learning frame-
works adopt point-to-point alignment to map samples across di�er-
ent modalities to a proximate joint representation [40, 51, 54, 62].
These approaches focus on aligning individual samples, essentially
viewing alignment as a local optimization problem that aims to min-
imize the geometric distances between corresponding samples in
the representation space. However, such instance-level approaches
face signi�cant challenges with limited multimodal pairs, as they
may over�t to the speci�c pairs available and result in poor gen-
eralization with pairing biases. These hinder capturing complex
cross-modal relationships, especially when the multimodal pairs
are sparse and unevenly distributed. In contrast, InfoMAE takes a
more holistic approach by emphasizing distribution-level alignment,
considering the overall information content of the limited multi-
modal pairs rather than only focusing on the individual samples.
We present a comprehensive analysis of distribution alignment and
propose an information theory-based approach to formally de�ne
the distribution alignment problem in the factorized information
space. We formulate this as a di�erential learning objective to con-
struct (i) shared joint representations as a compact common variable
across modalities capable of performing any multimodal task and
(ii) private representations holding implicit modality-speci�c infor-
mation independent of shared representations. InfoMAE alleviates
the strict requirement of exact multimodal sample pairs and can
better accommodate potential misalignments in data collection or
temporal synchronization, improving the representations learned
even with a small-scale multimodal pair.

We extensively evaluate InfoMAE across various combinations
of pretrained unimodal domains. InfoMAE achieves exceptional per-
formance gain compared to the standard multimodal SSL paradigm
under limited multimodal pairs and outperforms existing works
when aligning the unimodal representations. Individual unimodal
encoders, in return, can also bene�t from the representational struc-
tures with improved downstream performance. Additionally, as the
number of multimodal pairs scale, InfoMAE also demonstrates ver-
satility as a standard multimodal SSL framework, achieving SOTA
performance across real-world IoT applications.
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2 Analysis of Cross-Modal Alignment

2.1 Notation

Consider " sets of unsynchronized sensory modality data X =

{-8 }8∈" , where each set -8 contains unlabeled samples of �xed-
length windows partitioned from the time-series signals of the 8-th
sensory modality. Let #8 = |-8 | denote the size of each set.

For the 9-th sample of modality set 8 , we apply Short-Time
Fourier Transform (STFT) to obtain its time-frequency represen-

tation, x8 9 ∈ R
�ğ×�×(ğ , where �8 is the number of input channels,

� is the number of time intervals within a sample window, and (8
is the spectrum length in the frequency domain. We have a set
of modality encoders E = {�1, �2, . . . , �" } to extract the modal-
ity embeddings of each sample and a set of modality decoders
D = {�1, �2, . . . , �" } to map the samples from the embedding

space back to the time-frequency domain X̂ = {-̂8 }8∈" as a part
of the reconstruction process. Additionally, there is a set of mul-
timodal data XB

= {-B
8 }8∈"ĩ consisting of a subset of modalities

"B ¦ "̂ , where samples across the modalities are synchronized
in time and have equal sizes |-B

1 | = · · · = |-B
"ĩ |. Note that each

synchronized data of modality 8 can also be a subset of the unsyn-
chronized unimodal set such that -B

8 ¦ -8 , as any synchronized
multimodal data is inherently unsynchronized when considered
independently. Finally, we have a set of labeled data for supervised
learning and �netuning on a much smaller scale, where each sample
has a corresponding label ~ 9 for each downstream task.

2.2 Problem De�nition

Prior multimodal SSL practices rely on large-scale, fully synchro-
nized multimodal sets XB to learn joint multimodal representations
for downstream tasks. However, these approaches overlook two
challenges: (i) Insu�cient multimodal data: When |XB | is small, ex-
isting methods struggle to learn e�ective joint representations, and
(ii) Unutilized unimodal data: The abundance of unimodal data is
often ignored. In IoT applications, synchronized multimodal sets
are limited due to signal heterogeneities, temporal misalignment,
or domain variances, leading to incomplete modalities. This results
in limited synchronized multimodal data compared to unimodal
data (|-B

8 | f |-8 |). To better leverage unimodal data, our problem
falls under the SSL setting with unimodal pretrained models and
limited multimodal pairs, consisting of two stages:

Stage 1: Independent Unimodal Pretraining. For each independent
modality data -8 , we train a corresponding unimodal encoder �8 .
The goal is to learn a holistic unimodal representation that maxi-
mizes downstream unimodal performance after �netuning. Since
modality sets -8 are independent, this pretraining is not limited by
the number of synchronized pairs and can, therefore, fully leverage
the abundant unimodal data.

Stage 2: E�cient Cross-Modal Alignment. Given a set of synchro-
nized modalities data XB of "B ¦ " modalities, we aim to align
the pretrained encoders e�ciently. This alignment projects uni-
modal representations into joint representations that maximize the
downstream multimodal performance after �netuning. The scale of
the multimodal alignment should be signi�cantly smaller than the
unimodal pretraining |-B

8 | j |-8 |. In contrast to prior multimodal
SSL works focusing on learning robust joint representations on

No Align Instance-Level Distribution-Level

Modality A Modality B

Figure 2: An illustration of instance-level vs. distribution-

level Cross-Modal Alignment

large-scale multimodal data, this work aims to improve the data
e�ciency of learning robust joint representations given only limited
multimodal pairs.

2.3 Factorization & Distributional Alignment

This section analyzes multimodal representation factorization in
the information space and demonstrates how it enables distribution-
level alignment of unimodal representations.

2.3.1 Connection between Factorization and Cross-modal Align-

ment. In aligning multimodal representations, prior approaches
often rely on contrastive learning to minimize themodality gap [39]
by pulling representations of di�erent modalities from the same
sample closer together while pushing representations from di�erent
samples further apart. However, due to the inherent heterogeneity,
each modality contains unique, modality-speci�c information, and
enforcing perfect alignment across modalities could potentially
hurt the performance in multimodal downstream tasks [28]. To
address these challenges, recent works [28, 37, 40] have proposed
factorizing modality representations into shared and private sub-
spaces. It preserves both common and modality-speci�c informa-
tion and allows for the alignment of shared representations while
maintaining independent private representations for downstream
tasks. However, these works operate on instance-level alignment

and do not explore scenarios with limited multimodal data. The
scarcity of paired samples introduces the risk of biased sampling,
potentially misleading the alignment process. With this in mind, we
analyze a di�erent approach that factorizes the representation in
the information space and enforces distribution-level alignment to
capture a more comprehensive correlation between modalities by
emphasizing their information content rather than just their geomet-

ric proximity. The intuition behind this is that instead of individual
sample pairs, we aim to align modalities by the global structure
(as shown in Figure 2). When the multimodal pairs are scarce, the
distributional alignment aims to be resilient to sampling biases and
capture meaningful cross-modal relationships.

2.3.2 Distributional Alignment through Information-theory based

Factorization. We now formally de�ne the factorization problem
in the information space. Without loss of generality, we state the
de�nitions for two modalities, X = {-1, -2}, but they can be gen-
eralized to more modalities.

First, we are interested in constructing a compact random vari-
able* (shared representation) that can perform any task that can
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be achieved using -1 separately and -2 separately. Formally, we
de�ne a su�cient common variable as follows.

De�nition 2.1. (Su�cient Common Variable) * is de�ned as
the su�cient common variable between -1, -2 if and only if * =

61 (-1) = 62 (-2) for some 61, 62, and

(∀51, 52 )
(

[ 51 (-1 ) = 52 (-2 ) ] =⇒ [(∃5 ) 5 (* ) = 51 (-1 ) = 52 (-2 ) ]
)

,

(1)

namely, any common (shared) function between -1, -2 can be com-
puted using * . Building on the su�cient common variable, we
de�ne the shared representation to be the most compact form of
* with the minimized entropy to ensure that* captures only the
essential shared features across modalities.

De�nition 2.2. (Shared Representation) We refer to a su�cient
common variable * with minimal entropy � (* ) as the shared
representation.

However, it is not clear how to �nd a su�cient common vari-
able or a shared representation. We show that an approximation of
the shared representation can be obtained by solving the follow-
ing optimization problem, and later in Section 3, we propose the
di�erentiable loss objectives with proof provided in Appendix A.

min � (* ) s.t. -1 §§ -2 | * , (∃B1, B2) * = B1 (-1) = B2 (-2) (2)

The conditional independence in Equation 2 enforces a form of
distributional alignment, ensuring that given the shared representa-
tion* is the most compact aligned representation such that -1, -2

provide no additional information about each other. Moreover, we
de�ne the private representations +1,+2 between -1, -2 as follows.

De�nition 2.3. (Private Representation)+1,+2 is the private repre-
sentation of-1, -2 if they have minimal entropy among the random
variables satisfying: +1 = ?1 (-1),+2 = ?2 (-2) for some ?1, ?2 and
there exist functions61, 62 such that-1 = 61 (+1,* ), -2 = 62 (+2,* ),
where* is the shared representation.

Similarly, we look for approximate representations. In particular,
we replace equalities with a distance constraint3 , and independence
is replaced by small mutual information. In Section 3, we discuss
the detailed implementation of a di�erentiable loss function to �nd
the approximate representations.

3 InfoMAE

This section introduces InfoMAE, a novel cross-modal alignment
framework that e�ciently aligns unimodal representations at the
distribution and instance levels. We provide a detailed overview of
InfoMAE’s cross-modal alignment module in Figure 3.

3.1 Unimodal Pretraining

Unlike standard multimodal SSL that pretrains on synchronized
multimodal pairs, we �rst initiate unimodal pretraining on large-
scale unsynchronized unimodal data. In the �rst stage, we pretrain
each encoder �8 independently on unimodal data -8 with masked
reconstruction, de�ned as the following for each modality 8 ∈ " :

Lunimodal
8 = | |-̂8 − -8 | |

2 | -̂8 = �8 (�8 (-8 )) . (3)

The pretrained unimodal encoders �8 extract a generalized rep-
resentation for each modality"8 . However, they do not guarantee

information compatibility between modalities when used together
in the downstream tasks. In the following sections, we present
InfoMAE’s di�erent components (as illustrated in Figure 4) to cal-
ibrate the encoders to explicitly align the modalities in both the
distribution-level and instance-level with only a limited amount of
multimodal pair XB .

3.2 Distribution-level Alignment

We begin with the di�erentiable objective function that we opti-
mize to obtain the (approximate) shared (* ) and private represen-
tations (+ ) de�ned in Section 2.3.2. To extract * that is a function
of both -1, -2, we equivalently extract*1 = � shared1 (�1 (-1)),*2 =

� shared2 (�2 (-2)), where �1, �2 are 2-layer MLP projectors that maps
the general representation into factorized representations, and
enforce a constraint that *1 = *2. Similarly, we extract +1 =

�
private
1 (�1 (-1)),+2 = �

private
2 (�2 (-2)). U = {*1,*2} and V =

{+1,+2} denote the shared and private representations, respectively.

3.2.1 Shared Representation. As described in Section 2, we aim
to �nd the shared representation * that solves the optimization
problem in De�nition (2.2). However, due to the di�culty of the op-
timization problem 2 and the possibility that a shared representation
does not exist, we instead approximate the shared representation
by minimizing the following objective

Lshared
info =U3 (*1,*2 ) + V (� (*1 ) +� (*2 ) )

+ � (-1;-2 | *1 ) + � (-1;-2 | *2 ),
(4)

where U and V are the hyperparameters controlling the weight
of each term, and 3 (·) is a distance measure. The �rst two terms
in the loss function aim to �nd *1 = *2 with minimal entropy,
while the last two terms aim to impose conditional independence
of -1, -2 given *1 or *2. We would like to note that the entropy
and conditional mutual information listed in Eq. (4) are not easy to
compute or di�erentiate. To alleviate this, we reduce these terms
into probabilistic density functions below:

Lshared
info = U3 (*1,*2 ) +

2
∑

ğ=1

EĔ1,Ĕ2,đğ

[

log
?Ĕ1,Ĕ2,đğ

?Ĕ1?Ĕ2?đğ

+(1 − V ) log
?Ĕğ ,đğ

?Ĕğ?đğ

+ log
?Ĕ3−ğ ,đğ

?Ĕ3−ğ?đğ

]

.

(5)

Due to the space limit, we leave the detailed proof and discus-
sion in Appendix A. To further enhance the di�erentiability of
Eq. (5) by avoiding directly computing the probabilistic density

(e.g., log
?Ĕ1,Ĕ2,đğ

?Ĕ1?Ĕ2?đğ
), we follow [31, 50, 59] and utilize the density-

ratio trick to train a discriminator R, which given-1, -2,* , outputs
the probability that -1, -2,* are generated from ?-1,-2,*ğ

, instead
of ?-1

?-2
?*ğ

. The density ratio can then be estimated as

log
?Ĕ1,Ĕ2,đ1

?Ĕ1?Ĕ2?đ1

= log
R(-1;-2;*1 )

1 − R(-1;-2;*1 )
. (6)

We train the discriminators jointly with the encoders and de-
scribe the training for both in Appendix D.

2The optimization problem in De�nition (2.2) is non-convex with a possibly in�nite
number of variables.
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3.2.2 Private Representation. As the decoders take both the shared
and private representations as input, the self-reconstruction ob-
jective would enforce the private representations + to capture the
implicit modality-speci�c information. Following De�nition 2.3,
we minimize the entropy of the private representations (+1,+2). In
addition, for each modality, we expect the private and shared repre-
sentations to be independent. To better guide the learning process,
we explicitly minimize their mutual information. The objectives of
the private representations can be summarized as the following:

L
private
info

= W� (+1) + W� (+2) + n� (+1;*1) + n� (+2;*2), (7)

where W and n are used as the hyperparameters for private entropy
and shared private independence. Similar to Eq.(5), we apply density-
ratio trick (Eq.(6)) to estimate each term in Eq. (7).

While the formulation e�ectively aligns modality representa-
tions within the information space, it depends on further learning
objectives to ensure they are meaningful for downstream tasks.
Next, we will describe the additional components of InfoMAE that
are designed to capture meaningful representations.

3.3 Self Reconstruction
InfoMAE applies the masked reconstruction objective to enforce
that the learned representation captures the critical semantical
information through reconstruction loss. Following MAE[23], we
mask out 75% of the patched input. To ensure both the shared and
private representation are meaningful, the decoder takes in the
concatenated shared and private representations h8 9 = u8 9 | |v8 9 to
reconstruct the input x̂8 9 . We compute the MSE on the masked
portion of the reconstructed x̂8 9 and the original input x8 9 with X

as the hyperparameter and �8 (·) as the decoder for modality 8 .

Lreconstruction = X
∑

ğ∈ĉ

∑

Ġ ∈þ

| |xğ Ġ − x̂ğ Ġ | |
2 | x̂ğ Ġ = �ğ (hğ Ġ ) . (8)

3.4 Instance-level Alignment
Augmentations are primarily used to generate di�erent views for
private-space contrastive learning in most existing works [28, 37,
40]. However, we argue that the transformation invariance prop-
erty should be re�ected in both private and shared representations
to understand the instance variances. Thus, InfoMAE adds a con-
trastive loss on the concatenated representation of the shared and
private spaces h8 9 by treating two randomly di�erent augmented
views as the positive pairs with _ and g as the hyperparameters.

Laug = _
∑

ğ∈ĉ

∑

Ġ ∈þ

log
exp

(

hğ Ġ · h
′
ğ Ġ /g

)

∑

ġ≠Ġ ∈þ exp
(

hğ Ġ ·hğġ
ă

)

+
∑

ġ∈þ exp
(

hğ Ġ ·h
′
ğġ

ă

) . (9)

3.5 Temporal Locality
We apply a simple ranking constraint to learn temporal locality of
time-series signals. During pretraining, a sequence sampler ran-
domly selects a batch of sequences consisting of a �xed number of
consecutive samples, while the samples across sequences are dis-

tant in time. We de�ne �G~′ =
∑!
8=1

∑!
9=1 3 (G8 , ~ 9 ), as the average

Euclidean distance (d) of all sample embedding pairs between the
sequence B and B′ of length !. Then, the temporal constraint with a
hyperparameter [ can be de�ned as::

Ltemp = [
∑

ĩ∈þ

∑

ĩ′≠ĩ∈þ

max (�ĩĩ − �ĩĩ′ + 1, 0) (10)

where �BB and �BB′ measure the average intra-sequence (�0) and
inter-sequence (�4 ) distances . The added 1 is the margin indicating
the minimum gap between the two distances. [ is used as the
hyperparameter to control the weight of the temporal constraint.

Finally, the overall training objective of InfoMAE for the cross-
modal alignment stage can be summarized as follows:

L = Lshared
info + L

private
info

+ Lreconstruction + Laug + Ltemp . (11)
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Table 1: Linear probing performance of Moving Object Detection on domain M. We align pretrained unimodal encoders from

di�erent domains. �(48 | |��2> means seismic encoder from domain A and acoustic encoder from domain B are aligned.

Framework
Aligned Domains )(48 | | "�2> �(48 | | )�2> )(48 | | )�2> �(48 | | "�2> )(48 | | ��2>

Joint
Pretrain

Modal
Alignment

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Unimodal Concat : : 0.6731 0.6699 0.5392 0.5281 0.4454 0.4366 0.7247 0.7217 0.6584 0.6543

CMC [62] : ✓ 0.6792 0.6702 0.4313 0.4356 0.4173 0.4032 0.6919 0.6877 0.6497 0.6335
FOCAL [40] : ✓ 0.7462 0.7432 0.6249 0.6249 0.5613 0.5579 0.7549 0.7527 0.7194 0.7160
GMC [54] : ✓ 0.7354 0.7317 0.6591 0.6523 0.4756 0.4720 0.8044 0.8053 0.7247 0.7211
SimCLR [6] : ✓ 0.3061 0.2742 0.2873 0.2609 0.2974 0.2758 0.2981 0.2698 0.2800 0.2308
TNC [63] : ✓ 0.1969 0.0815 0.1788 0.1312 0.1855 0.1021 0.1929 0.0896 0.1949 0.1041

TSTCC [14] : ✓ 0.3001 0.2706 0.2639 0.2393 0.2867 0.2432 0.3048 0.2842 0.2860 0.2337

InfoMAE : ✓ 0.7950 0.7929 0.6986 0.7007 0.5928 0.5908 0.8326 0.8324 0.7636 0.7537

Joint Pretrain ✓ : Acc: 0.3329 F1: 0.3039

InfoMAE adopts both distribution-level and instance-level align-
ment of each modality’s factorized shared and private representa-
tions. Since the cross-modal alignment of InfoMAE is also a gener-
alized multimodal framework, we would also like to note that this
objective can be used as the joint multimodal pretraining objective.

4 Evaluation

4.1 Experimental Setup

4.1.1 Backbone Encoder. We adopt the SWIN Transformer (SW-T)
[41] as the backbone encoder for our framework. SW-T computes lo-
cal attention within shifted windows on input spectrogram patches
to extract comprehensive time-frequency representations.

4.1.2 Datasets. Our experiments focus on Moving Object Detec-
tion (MOD) and Human Activity Recognition (HAR). The MOD
application contains vibration-based datasets using seismic and
acoustic sensors. The HAR application consists of publicly released
IMU sensor datasets collected from human subjects performing
various daily activities. To evaluate cross-modal alignment, we
simulate a practical scenario where the pretrained domains di�er
signi�cantly to re�ect the diverse signals across di�erent IoT do-
mains. Under this setting, we have unsynchronized unimodal data
from di�erent domains: MOD consists of data from three separately
collected domains (" , � , ) ), each with di�erent targets, terrains,
and environmental conditions. HAR consists of two datasets (RW-
HAR [61] and PAMAP2 [56]). We pretrain unimodal encoders with
only the unimodal data from each domain and then use small-scale
synchronized multimodal pairs for cross-modal alignment. For joint
pretraining, we pretrain on the massive available synchronized mul-
timodal pairs. We summarize and describe these applications and
domains in more detail in Appendix B.

4.1.3 Baselines. We compare InfoMAE with di�erent SOTA SSL
baselines including unimodal CL (SimCLR[7], MoCo[8]), multi-
modal CL (CMC[62], GMC[54], FOCAL [40]), temporal CL (TNC[63],
TSTCC[14]), andMAE based frameworks (MAE[23], CAV-MAE[17]).

4.2 Cross-Modal Alignment Evaluation

4.2.1 Moving Object Detection. We evaluate InfoMAE against prior
CL works [7, 14, 40, 54, 62, 63] on cross-modal alignment with
various combinations of unimodal encoders (seismic and acoustic)

pretrained with di�erent domains. We align the encoders with a
small scale of multimodal pairs (5% of the unimodal data scale) and
an even smaller subset of labeled multimodal pairs from domain M
for �netuning. MOD application involves two modalities (seismic
and acoustic). Therefore we represent the domains of the unimodal
representations with two letters (e.g.,)Sei | |�Aco represents aligning
the seismic encoder pretrained on domain T and acoustic encoder
pretrained on domain G).

In addition to the prior CL baselines, we also show the perfor-
mance for direct concatenation of the pretrained unimodal represen-
tations without any alignment and for Joint Multimodal Pretraining
on the same amount of synchronized multimodal pairs. We present
the �netune accuracy and F1-score in Table 1, InfoMAE consis-
tently outperforms the unimodal concatenation by a signi�cant
margin since direct concatenation fails to exploit cross-modal cor-
respondence. CMC and other unimodal SSL frameworks even have
negative impacts compared to direct concatenation, indicating that
unimodal objectives or simply aligning the multimodal represen-
tations without considering the modality discrepancy could hurt
the downstream performance. InfoMAE also achieves better re-
sults than FOCAL and GMC, underscoring the bene�ts of enforcing
distribution-level alignment over instance-level alignment in down-
stream tasks with limited multimodal data. When the same amount
of multimodal data is used for Joint Multimodal Pretraining, the
signi�cant gap between the aligned unimodal models and the joint
pretrained multimodal model suggests the feasibility of transferring
pretrained unimodal representations to multimodal representations
with only limited (5%) synchronized multimodal data. Note that
some domain combinations (e.g., , �sei | |)aco, )sei | |)aco, )sei | |�aco)
do not even overlap with the alignment and �netuning domain" .

4.2.2 Human Activity Recognition. Besides MOD application, we
also evaluate InfoMAE on HAR applications. In contrast to MOD
evaluation, which aligns unimodal encoders pretrained on di�erent
domains, we analyze how additional unsynchronized data from
the same domains could assist the downstream performance given
the limited number of multimodal pairs. Here, we independently
pretrain all unimodal encoders on unsynchronized IMU data from
either PAMAP2, RW-HAR, or Combined, which is the concatenation
of the former two. Then, we use a small portion of the synchronized
multimodal data pairs from PAMAP2 for cross-modal alignment
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Table 2: Alignment performance (MM) with di�erent multimodal pair ratios from MOD.

Multimodal Data
Supervised Joint Pretrain CMC GMC FOCAL InfoMAE

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

5%

0.5740 0.5663

0.3329 0.3039 0.7087 0.6989 0.8614 0.8616 0.8694 0.8668 0.8828 0.8808

15% 0.6142 0.6104 0.8111 0.8062 0.8781 0.8753 0.8727 0.8703 0.9049 0.9028

25% 0.7071 0.7938 0.8433 0.8372 0.8774 0.8759 0.8848 0.8831 0.9290 0.9270

50% 0.8942 0.8920 0.8754 0.8724 0.8948 0.8938 0.9009 0.8994 0.9377 0.9367

Table 3: Linear probing performance of HAR on PAMAP2 by

aligning pretrained unimodal encoders.

Unimodal
Pretrain Domain

Combined PAMAP2 RW-HAR

Multimodal
Alignment Domain

PAMAP2 PAMAP2 PAMAP2

Metric Acc F1 Acc F1 Acc F1

Concat 0.7843 0.7000 0.7763 0.6210 0.5675 0.4187
CMC 0.7334 0.6508 0.7285 0.6788 0.7010 0.5956
FOCAL 0.7922 0.7129 0.7354 0.6327 0.7643 0.6243
GMC 0.7314 0.5915 0.7344 0.5869 0.7414 0.5816

SimCLR 0.7299 0.6190 0.7075 0.5426 0.7225 0.5581
TNC 0.5431 0.4080 0.5889 0.4824 0.6378 0.5167

TSTCC 0.7299 0.6003 0.7065 0.5773 0.7354 0.5864

InfoMAE 0.8261 0.7303 0.8117 0.7175 0.7912 0.6901
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Figure 5: Unimodal linear probing accuracy of MODwith and

without cross-modal alignment.

and downstream �netuning. We present the results in Table 3. Info-
MAE consistently achieves the best performance, with an average
of 4.09% and 5.16% improvements in accuracy and the F1-score com-
pared to the best-performing baseline, FOCAL. The improvement is
most signi�cant in aligning unimodal encoders pretrained on RW-
HAR, which completely di�ers from the alignment set (PAMAP2).
This further demonstrates InfoMAE’s robustness as an alignment
framework with a limited amount of multimodal pairs, re�ecting
its superior ability to utilize the unimodal data better even when
they are from di�erent domains.

4.3 Unimodal Evaluation

We analyze how incorporating the multimodal correspondences
into each unimodal encoder after alignment could bene�t the down-
stream tasks. Figure 5 shows the accuracy for seismic and acoustic
modalities before and after cross-modal alignment in the MOD ap-
plication. With limited multimodal pairs, the pretrained unimodal
encoders could gain the most signi�cant performance improve-
ments with InfoMAE. This emphasizes the InfoMAE’s superior e�-
ciency in enforcing cross-modal correspondence to each modality

Domain G
0.4
0.6
0.8
1.0

Domain T Domain G Domain T
Accuracy F1-Score

CMC
FOCAL

GMC
MoCo

SimCLR
TNC

TSTCC
MAE

CAV-MAE
InfoMAE

Figure 6: Performance of Joint Pretraining on MOD (seismic

and acoustic) dataset and then �netuned on unseen domains.

to improve their downstream performance, with only a few multi-
modal pairs required. With InfoMAE, the aligned unimodal model
can generate the most holistic representations through distribu-
tional alignment compared to geometric alignment (CMC, FOCAL).

4.4 Multimodal Pairing E�ciency

We also evaluate InfoMAE’s alignment performance at varying
amounts of multimodal data for MOD application in Table 2. We
align both encoders pretrained from domain M ("sei | |"aco) and
compare them to standard joint pretraining with di�erent ratios of
multimodal data. Additionally, we provide supervised performance
on the same amount of labeled data used for �netuning. InfoMAE
consistently achieves superior multimodal data e�ciency, with
minimal degradation as we reduce the number of multimodal pairs.
InfoMAE has an average of 3.42% gain over the highest-performing
baselines and over 60% compared to joint model pretraining, which
performs poorly in the absence of multimodal data. Joint pretrain-
ing even performs worse than the supervised approach with only
5% of multimodal data, indicating the standard self-supervised pre-
training fails to learn e�ective representations with an insu�cient
amount of synchronized multimodal data. In contrast, the two-stage
learning paradigm of InfoMAE leveraging widely available unsyn-
chronized unimodal data could e�ectively mitigate this problem.

4.5 Standard Mutimodal Pretraining on
Large-scale Synchronized Dataset

While InfoMAE excels as an e�cient cross-modal alignment frame-
work under limited pairs, it also demonstrates remarkable �exibility
as a standard multimodal SSL framework. We evaluate InfoMAE
against prior state-of-the-art works on Joint Multimodal Pretrain-
ing using abundant multimodal pairs, as shown in Figure 6. We use
synchronized, unlabeled multimodal data from the MOD dataset
to pretrain backbone encoders. Then we freeze the pretrained en-
coders and perform linear probing using labeled multimodal data
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Table 4: Ablation accuracy of MOD cross-modal alignment.

Frameworks )sei | |"aco �sei | |)aco )sei | |)aco �sei | |"aco )sei | |�aco

noTemp 0.6946 0.5881 0.5044 0.7435 0.6651
noShared 0.7683 0.6504 0.5298 0.8125 0.7395
noPrivate 0.5479 0.4180 0.2873 0.6259 0.5399
noAug 0.7863 0.6973 0.5881 0.8232 0.7924

InfoMAE 0.7950 0.6986 0.5928 0.8326 0.8326

from domains � and ) , as described in Section 4.1. InfoMAE con-
sistently outperforms the MAE-based framework and achieves bet-
ter performance than other contrastive baselines. We leave more
evaluation on Joint Multimodal Pretraining across four real-world
datasets to Appendix E. Prior works, primarily designed for joint
multimodal pretraining, often struggle with limited multimodal
pairs and show signi�cant performance degradation. In contrast,
InfoMAE not only improves multimodal pairing e�ciency but main-
tains high performance with minimal performance degradation.

4.6 Ablation Study

Finally, we study how each module of InfoMAE contributes to its
performance through ablation studies. We evaluate four variants of
InfoMAE by removing temporal, shared, private, and augmentation
components in Table 4. The absence of either shared or private com-
ponents leads to a signi�cant degradation, implying the signi�cance
of factorized representation for cross-modal alignment. The drop
in performance after removing temporal locality constraints also
indicates the importance of learning temporal correspondence for
time-series signals. Without temporal locality, the learned represen-
tations lose crucial temporal correspondence and can signi�cantly
compromise the ability to learn multimodal correspondences on
top of the unimodal representations. Conversely, InfoMAE with-
out augmentations does not signi�cantly reduce the performance,
demonstrating its robustness toward augmentation choices, in con-
trast to many contrastive learning frameworks that require careful
selection of augmentations to avoid representational collapses.

5 Related Work

Self-Supervised Multimodal Learning. Self-supervised learning
(SSL) techniques, such as Contrastive Learning (CL) and masked
reconstructions, have achieved signi�cant success in visual, textual,
and time-series representation learning [5, 14, 15, 18, 55, 58, 63,
74, 76, 78]. Masked reconstruction learns informative representa-
tions by reconstructing masked inputs [4, 13, 23, 34, 73], with vari-
ous masking strategies explored [2, 30, 77], and extended to time-
frequency spectrograms [26, 29] and videos [19, 64]. Multimodal
representation learning has become increasingly important with
diverse applications [3, 38, 56, 57, 79]. Recent works leverage CL to
learn correspondences between modalities [11, 51, 53, 54, 62, 66, 80],
and others pretrain uni�ed encoders for multimodal representa-
tions [25, 47]. Factorized Multimodal Learning [24, 28, 37, 40, 67]
further decouples multimodal learning by acknowledging both
modality-speci�c and modality-shared information. FOCAL [40]
proposed contrastive learning objectives to learn shared and private
representation in the orthogonal space. FactorizedCL [37] separates

the shared and private space based on their relevance to the down-
stream tasks. Some works [17, 70] combine CL with MAE to capture
cross-modal correspondence. Yet, these works minimize the geo-
metric modality gap to learn cross-modal correspondences and rely
on massive amounts of multimodal data for joint multimodal pre-
training. In contrast, InfoMAE minimizes the information modality
gap to further enhance the downstream performance. In reducing
multimodal data pairs for training, many works [45, 65, 69] pro-
pose to impute missing modality pairs through feature generations.
Wang et al. [71] proposes using CL to align multimodal encoders
through an anchor modality yet still overlooking unimodal data. In
contrast, InfoMAE minimizes the reliance on multimodal data by
taking advantage of a large amount of unimodal data.
Multimodal Information Theory. There has been a long history
of exploring common information between random variables in
information theory [16, 72, 75], and it is still an active research
�eld [20–22, 60]. However, it remains challenging to compute the
common information in practical applications. Kleinman1 et al. [33]
combines Variational Autoencoders with Gacs-Korner Common
Information. Mai et al. [46] proposes to measure the information
redundancy for multimodal data. However, they do not explicitly
consider the unique information for factorization. InfoMAE adopts
the informational factorization considering both private and shared
information to construct a joint representation in a task-agnostic
manner rather than extracting task-related information like [37].

6 Discussion & Conclusion

In this paper, we proposed InfoMAE, a pairing-e�cient multi-stage
SSL paradigm for multimodal IoT sensing. It �rst pretrains indepen-
dent modality encoders on large-scale unimodal data sets. Then, it
leverages a novel information theory-based optimization to achieve
distributional cross-modal alignment with only limited multimodal
pairs. Extensive evaluations compared to standard multimodal SSL
frameworks demonstrated the superior e�ciency and e�ectiveness
of InfoMAE across multiple real-world IoT applications. We believe
it opens new opportunities for developing more data-e�cient and
qualitative self-supervised multimodal models. In the Appendix,
we provide additional evaluations and describe more details on the
proof, datasets, implementation, and limitations.
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Appendix

A Information Formulation

A.1 Proof of the Equivalence between (1) and (2)

We �rst show the equivalence between the condition (1) and the
constraints in (2) by proving the following proposition.

Proposition A.1. For random variables -1, -2, if * = B1 (-1) =
B2 (-2), and there exists, = 61 (-1) = 62 (-2) such that -1 §§ -2 |
, , then the following two statements are equivalent.

(a) (∀Ĝ1, Ĝ2 )
(

[ Ĝ1 (Ĕ1 ) = Ĝ2 (Ĕ2 ) ] =⇒ [(∃Ĝ ) Ĝ (đ ) = Ĝ1 (Ĕ1 ) = Ĝ2 (Ĕ2 ) ]
)

.

(b) There is a one-to-one mapping betweenē andđ (i.e., Ĕ1 §§ Ĕ2 | đ ).

Proof. We �rst prove the direction (b) =⇒ (a) using properties
of basic information-theory measures (Chapter 2 in [10]). For any
51, 52 such that 51 (-1) = 52 (-2), we have

0
(ğ )
= ą (Ĕ1;Ĕ2 |đ )

(ğğ )
g ą (Ĝ1 (Ĕ1 ) ; Ĝ2 (Ĕ2 ) |đ )

(ğğğ )
g 0, (12)

where (8) follows that -1 and -2 are independent conditioned
on * ; (88) is due to the data processing inequality of mutual in-
formation; and (888) is because the mutual information is always
non-negative. (12) implies that � (51 (-1); 52 (-2) |* ) = 0. In addition,
since � (51 (-1); 52 (-2) |* ) = � (51 (-1) |* ) − � (51 (-1) |52 (-2),* )

and � (51 (-1) |52 (-2),* ) = 0, we have � (51 (-1) |* ) = 0. This
concludes that there exist a deterministic function 5 such that
5 (* ) = 51 (-1) = 52 (-2).

Next, we prove the other direction (a) =⇒ (b). Note that,
given in the proposition statement satis�es, = 61 (-1) = 62 (-2)

and therefore, from (a), we know that there exist a function ℎ1 such
that, = ℎ1 (* ). Since, also satis�es that -1 §§ -2 | , and
* = B1 (-1) = B2 (-2), then applying the direction (b) =⇒ (a), we
have that * = ℎ2 (, ) for some function ℎ2. Therefore, there is a
one-to-one mapping between, and* . □

Note that it is di�cult to obtain a random variable * that sat-
is�es (a) (i.e. the su�cient common variable in De�ned 2.2). The
Proposition A.1 allows us to �nd a random variable, (if it exists)
instead. And the one with minimum entropy can be obtained by
solving the optimization problem (2).

A.2 Derivation of the Shared Loss (4)
We �rst group the terms that only depend on*1 or*2 as follows.

Lshared
info = ĂĚ (đ1,đ2 ) + ÿ (Ą (đ1 ) +Ą (đ2 ) ) + ą (Ĕ1;Ĕ2 | đ1 ) (13)

+ ą (Ĕ1;Ĕ2 | đ2 )

= ĂĚ (đ1,đ2 ) + L(đ1 ) + L(đ2 ), (14)
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Table 5: Statistical summaries of domains and datasets

Dataset Modalities (Freq) Sample Length Overlap Classes
#Pretrain
Samples

Used for
Alignment

#Alignment
Samples

# Finetune
Samples

Domain M acoustic (8kHz) seismic (100Hz) 2 sec 0% 5 sec 39,609 ✓ 1981 734
Domain G acoustic (8kHz) seismic (100Hz) 2 sec 0% 2 sec 35,168 : - 3136 (joint)
Domain T acoustic (8kHz) seismic (100Hz) 2 sec 0% 4 43,819 : - 4205 (joint)

PAMAP2 acc, gyro, mag, lig (all 50Hz) 5 sec 50% 18 9,611 ✓ 4805 961
RW-HAR acc, gyr, mag (all 100Hz) 2 sec 50% 8 12,887 : - -

where 3 (*1,*2) can be measured using the Euclidean distance or
other distance measures. And

L(đ1 ) = ą (Ĕ1;Ĕ2 |đ1 ) + ÿĄ (đ1 )

(ğ )
= ą (Ĕ1;Ĕ2 |đ1 ) + ÿą (Ĕ1;đ1 )

(ğğ )
= Eđ1

[

ĀćĈ (ĦĔ1,Ĕ2 |đ1
| |ĦĔ1 |đ1

ĦĔ2 |đ1
)
]

(15)

+ ÿĀćĈ (ĦĔ1,đ1 | |ĦĔ1Ħđ1 )

= EĔ1,Ĕ2,đ1

[

log
ĦĔ1,Ĕ2 |đ1

ĦĔ1 |đ1
ĦĔ2 |đ1

]

+ ÿEĔ1,đ1

[

log
ĦĔ1,đ1

ĦĔ1Ħđ1

]

= EĔ1,Ĕ2,đ1

[

log
ĦĔ1,Ĕ2,đ1Ħđ1

ĦĔ1,đ1ĦĔ2,đ1

]

+ ÿEĔ1,đ1

[

log
ĦĔ1,đ1

ĦĔ1Ħđ1

]

= EĔ1,Ĕ2,đ1

[

log
ĦĔ1,Ĕ2,đ1

ĦĔ1ĦĔ2Ħđ1

+ log
ĦĔ1Ħđ1

ĦĔ1,đ1

+ log
ĦĔ2Ħđ1

ĦĔ2,đ1

]

(16)

+ ÿEĔ1,đ1

[

log
ĦĔ1,đ1

ĦĔ1Ħđ1

]

= EĔ1,Ĕ2,đ1

[

log
ĦĔ1,Ĕ2,đ1

ĦĔ1ĦĔ2Ħđ1

(17)

+(1 − ÿ ) log
ĦĔ1,đ1

ĦĔ1Ħđ1

+ log
ĦĔ2,đ1

ĦĔ2Ħđ1

]

, (18)

where (8) follows the relation between mutual information an
entropy that � (-1;*1) = � (*1) − � (*1 |-1) and � (*1 |-1) = 0
because*1 is a deterministic function of -1; (88) is by de�nition of
the conditional mutual information; and the remaining equalities
use the Bayes’ rule. Similarly, we have

L(đ2 ) = ą (Ĕ1;Ĕ2 |đ2 ) + (1 − ÿ )Ą (đ2 )

= EĔ1,Ĕ2,đ2

[

log
ĦĔ1,Ĕ2,đ2

ĦĔ1ĦĔ2Ħđ2

+ log
ĦĔ1,đ2

ĦĔ1Ħđ2

+ ÿ log
ĦĔ2,đ2

ĦĔ2Ħđ2

]

(19)

Combining (14), (18) and (19), we can obtain

Lshared
info = ĂĚ (đ1,đ2 ) +

2
∑

ğ=1

EĔ1,Ĕ2,đğ

[

log
ĦĔ1,Ĕ2,đğ

ĦĔ1ĦĔ2Ħđğ
(20)

+(1 − ÿ ) log
ĦĔğ ,đğ
ĦĔğĦđğ

+ log
ĦĔ3−ğ ,đğ

ĦĔ3−ğĦđğ

]

. (21)

A.3 Derivation of the Private Loss (7)
Similar to (18), since � (+1 |-1) = � (+2 |-2) = 0, we have that

L
private
info

= ĀĄ (Ē1 ) + ĀĄ (Ē2 ) + Ċą (Ē1;đ1 ) + Ċą (Ē2;đ2 ),

= Āą (Ĕ1;Ē1 ) + Āą (Ĕ2;Ē2 ) + Ċą (Ē1;đ1 ) + Ċą (Ē2;đ2 ),

=

∑

ğ

EĔğ ,Ēğ ,đğ

[

Ā log
ĦĔğ ,Ēğ
ĦĔğĦĒğ

+ Ċ log
ĦĒğ ,đğ
ĦĒğĦđğ

]

.

(22)

B Datasets

This section describes the cross-modal alignment and joint multi-
modal pretraining datasets from two applications: Moving Object
Detection (MOD) and Human Activity Recognition (HAR). Table 5
provides the statistical values of each domain.

B.1 Cross-modal Alignment Datasets

B.1.1 Moving Object Detection. We have seismic and acoustic sig-
nals describing di�erent vehicles on three di�erent domains. For
simplicity, we use one letter to represent each domain.
Domain M is a publicly released [40] moving object detection
dataset consisting of signals from 7 di�erentmoving vehicles, recorded
at three di�erent distances and four di�erent speeds.
Domain G contains a self-collected dataset on state park grounds
near an outdoor research facility with four sensor nodes deployed.
The dataset contains four distinct targets navigating the neighbor-
hood near the sensors in some arbitrary order.
Domain T has a similar setup asMOD but involves di�erent targets
and scenes. This set contains data collected from a paved parking lot,
unpaved trails, and gravel roads within a park. Vibration signals of
2 standard-size SUVs from di�erent manufacturers, one lightweight
sports car, and one muscle car were recorded. One hour of data for
each vehicle was collected at each scene. use the �rst 50 minutes
for training and the last 10 minutes for validation and testing.

B.1.2 Human Activity Recognition. Unlike the MOD application,
where we used data from di�erent domains for unimodal pretrain-
ing, we leveraged two di�erent HAR datasets for unimodal pretrain-
ing and cross-modal alignment to evaluate the scenario in which
IMU data has high degrees of heterogeneity.
RW-HAR [61] is a public dataset with accelerometer, gyroscope,
magnetometer, and light signals sampled at 50Hz. It includes data
from 15 subjects performing 8 human activities. We use the data
collected from the subjects’ waist and randomly select ten subjects
for training, 2 for validation, and 3 for testing.
PAMAP2 [56] contains inertial data from 18 human daily activities
performed by 9 subjects. PAMAP2 includes 9,611 instances, with
data captured using inertial measurement units (IMUs) placed on
the chest, the wrist of the dominant arm, and the dominant side’s
ankle. We use the data collected from the wrist. The signal is col-
lected at a sampling rate of 100Hz. 7 random subjects are used for
training, and 2 subjects for testing.
Combined is a concatenated dataset of RealWord-HAR and PAMAP2.
Since PAMAP2 does not contain any light signals, we drop the light
modality and only use the three IMU modalities for evaluation.
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Table 6: Inference pro�ling on Raspberry Pi 4 device.

App. P99 (s) Average (s) Model Size (MB) # Parameters (M)

MOD 0.5803 0.2259 47.9820 12.565831
HAR 0.1728 0.1690 17.8810 4.669818

Table 7: Cross-modal alignment with sparse pairs.

Framework GMC FOCAL InfoMAE

Ratio Acc F1 Acc F1 Acc F1

0.01 0.8252 0.8247 0.8573 0.8556 0.8794 0.8786

0.02 0.8305 0.8272 0.8580 0.8573 0.8821 0.8811

0.03 0.8667 0.865 0.8560 0.8529 0.8875 0.8841

C Data Preprocessing

We partition the time-series data into segments of uniform length.
Each segment is subdivided into intervals with overlaps. We ap-
ply the Fourier transform to the signal in each interval to derive
its spectral content, thereby retaining both temporal and spectral
characteristics. During training, we adopt the same augmentations
as FOCAL [40] to the input before and after the fourier-transform.

D Experiment and Implementation Details

During pretraining, we randomly sample a batch of sequences of !
consecutive samples. We jointly optimize the backbone encoders
and decoders with AdamW [43] optimizer and Cosine scheduler
[42]. We also train discriminators for density-ratio estimations [31,
59]. We apply convolution blocks to map the time-frequency sample
into a one-dimensional embedding to match the input dimension
-1 with their shared and private representations +1,*1, followed
by 5-layer MLP to their density ratio.

While InfoMAE’s training requires additional computation due
to the discriminators and the MAE architecture, we would like to
note that InfoMAE incurs no extra inference overhead. We eval-
uated InfoMAE’s inference performance on a Raspberry Pi 4 de-
vice and present the computational overhead in Table 6. The result
demonstrates that InfoMAE achieves real-time inference in less than
1 second, making it suitable for real-time deployment in WoT/IoT
applications where only low-end devices are available.
Computation. We conducted our experiments on NVIDIA RTX
4090 GPUs (24GB). The training time varies from minutes for �ne-
tuning to 2 days for pretraining. The training time for cross-modal
alignment is faster with fewer multimodal pairs.

E Additional Evaluation

E.1 Evaluation: Sparse cross-modal alignment

We conduct additional experiments to evaluate InfoMAE under
extremely sparse conditions, reducing the availability of multimodal
pairs to as low as 1%, 2%, and 3%. These results, presented in Table 7,
highlight that InfoMAE continues to outperform top-performing
baselines across these extremely constrained scenarios. The �ndings
illustrate InfoMAE’s robustness in aligning representations under
sparse multimodal pairing conditions.

0.4
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Figure 7: Joint Multimodal Pretraining compared with previ-

ous joint pretraining SSL frameworks on four datasets.

Table 8: Ablation accuracy with Joint Pretraining.

Frameworks MOD RW-HAR PAMAP2

woTemp 0.8734 0.8442 0.6948
woShared 0.9531 0.8771 0.8095
woPrivate 0.9082 0.9100 0.8080

woAugmentation 0.9538 0.9106 0.8163

InfoMAE 0.9826 0.9411 0.8478

E.2 Joint Multimodal Pretraining

Although InfoMAE is primarily designed for learning settingswhere
the multimodal pairs are scarce, InfoMAE demonstrates strong �ex-
ibility and generalization as a standard multimodal SSL framework
when abundant multimodal pairs are available. Figure 7 presents
additional �netuning performance on joint multimodal pretraining.
InfoMAE signi�cantly exceeds the MAE-based SSL framework and
achieves comparable or superior performance to the SOTA base-
lines. It is noteworthy that these baselines are mainly designed for
joint multimodal pretraining. InfoMAE is a universal framework
for cross-modal alignment that achieves comparable performance
as multimodal SSL with few sacri�ces.

E.3 Additional Ablation Studies

In Table 8, we present additional ablation accuracy on joint multi-
modal pretraining, evaluating variants InfoMAE when abundant
multimodal data is available. We �nd the results consistent with
the performance presented in Section 4.6

F Limitations and Future Work

Pretraining Overhead and E�ciency. Compared to contrastive
SSL (e.g., FOCAL, CMC, etc.), InfoMAE incurs additional compu-
tational overhead due to its autoencoder architecture and density
ratio estimation. While this enhances multimodal alignment, it
increases training complexity. Future work could explore concur-
rent unimodal pretraining, optimized attention mechanisms like
FlashAttention, and alternative density ratio estimation techniques
without training discriminators to improve e�ciency.
Potential Bias and Robustness Under Sparse Sampling. Info-
MAE demonstrates resilience under sparse multimodal settings (Ap-
pendix E.1). However, we would like to note that distribution-based
alignment cannot completely eliminate sampling biases, which can
a�ect learned representations. Further research is required to de-
velop more robust alignment methods that mitigate sampling errors
and improve generalization under extreme data sparsity.
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