
Computer Networks 269 (2025) 111342

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

dApps: Enabling real-time AI-based Open RAN control
Andrea Lacava a,b ,∗, Leonardo Bonati a , Niloofar Mohamadi a, Rajeev Gangula a,
Florian Kaltenberger a,c , Pedram Johari a , Salvatore D’Oro a , Francesca Cuomo b ,
Michele Polese a, Tommaso Melodia a
a Institute for the Wireless Internet of Things, Northeastern University, Boston, MA, USA
b Sapienza University of Rome, 00184 Rome, Italy
c EURECOM, Sophia-Antipolis, France

A R T I C L E I N F O

Keywords:
Open RAN
dApps
Real-time control loops
Radio Resource Management (RRM)
Spectrum sharing
Positioning
Integrated Sensing and Communication (ISAC)

 A B S T R A C T

Open Radio Access Networks (RANs) leverage disaggregated and programmable RAN functions and open
interfaces to enable closed-loop, data-driven radio resource management. This is performed through custom
intelligent applications on the RAN Intelligent Controllers (RICs), optimizing RAN policy scheduling, network
slicing, user session management, and medium access control, among others. In this context, we have proposed
dApps as a key extension of the O-RAN architecture into the real-time and user-plane domains. Deployed
directly on RAN nodes, dApps access data otherwise unavailable to RICs due to privacy or timing constraints,
enabling the execution of control actions within shorter time intervals. In this paper, we propose for the first
time a reference architecture for dApps, defining their life cycle from deployment by the Service Management
and Orchestration (SMO) to real-time control loop interactions with the RAN nodes where they are hosted.
We introduce a new dApp interface, E3, along with an Application Protocol (AP) that supports structured
message exchanges and extensible communication for various service models. By bridging E3 with the existing
O-RAN E2 interface, we enable dApps, xApps, and rApps to coexist and coordinate. These applications can
then collaborate on complex use cases and employ hierarchical control to resolve shared resource conflicts.
Finally, we present and open-source a dApp framework based on OpenAirInterface (OAI). We benchmark its
performance in two real-time control use cases, i.e., spectrum sharing and positioning in a 5th generation (5G)
Next Generation Node Base (gNB) scenario. Our experimental results show that standardized real-time control
loops via dApps are feasible, achieving average control latency below 450microseconds and allowing optimal
use of shared spectral resources.

1. Introduction

The Open Radio Access Network (RAN) architecture promotes open,
multi-vendor, software-driven, and programmable cellular networks.
Formalized in the O-RAN ALLIANCE technical specifications, this novel
network architecture introduces the RAN Intelligent Controller (RIC),
a software component that leverages open interfaces to gather RAN
data, run inference, and enact control, adapting the network to current
demands, conditions, and requirements. O-RAN specifications discuss
two versions of the RIC. The Near-RT RIC oversees the RAN operations
via xApps that operate in the 10ms to 1 s timescale, while the Non-RT
RIC hosts rApps that operate at timescales higher than 1 s.

∗ Corresponding author at: Institute for the Wireless Internet of Things, Northeastern University, Boston, MA, USA.
E-mail addresses: lacava.a@northeastern.edu (A. Lacava), l.bonati@northeastern.edu (L. Bonati), n.mohamadi@northeastern.edu (N. Mohamadi),

r.gangula@northeastern.edu (R. Gangula), f.kaltenberger@northeastern.edu (F. Kaltenberger), p.johari@northeastern.edu (P. Johari), s.doro@northeastern.edu
(S. D’Oro), francesca.cuomo@uniroma1.it (F. Cuomo), m.polese@northeastern.edu (M. Polese), t.melodia@northeastern.edu (T. Melodia).

xApps and rApps enable a variety of use cases where the RAN
can be dynamically configured to optimally handle and adapt to vary-
ing network conditions. Wireless systems are characterized by rapidly
changing channel conditions, dynamic traffic patterns, user mobility,
and periodic or seasonal patterns in network utilization, to name a
few. Examples of RIC-enabled control include network slicing [1,2],
traffic steering [3,4], beamforming and mobility management [5],
advanced sleep modes [6], anomaly detection [7], and spectrum and
radio resource allocation [8].

The current O-RAN architecture, though, comes with two key limi-
tations: (i) xApps and rApps are primarily designed to handle control-
plane data and operations, thus not considering user-plane data, such
as I/Q samples and packets for inference and optimization; and (ii) does
https://doi.org/10.1016/j.comnet.2025.111342
Received 24 January 2025; Received in revised form 25 March 2025; Accepted 24
vailable online 3 June 2025
389-1286/© 2025 The Authors. Published by Elsevier B.V. This is an open access
c/4.0/).
April 2025

article under the CC BY-NC license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://orcid.org/0000-0001-9217-5956
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-3225-3569
https://orcid.org/0000-0001-9107-1418
https://orcid.org/0000-0002-7690-0449
https://orcid.org/0000-0002-9122-7993
mailto:lacava.a@northeastern.edu
mailto:l.bonati@northeastern.edu
mailto:n.mohamadi@northeastern.edu
mailto:r.gangula@northeastern.edu
mailto:f.kaltenberger@northeastern.edu
mailto:p.johari@northeastern.edu
mailto:s.doro@northeastern.edu
mailto:francesca.cuomo@uniroma1.it
mailto:m.polese@northeastern.edu
mailto:t.melodia@northeastern.edu
https://doi.org/10.1016/j.comnet.2025.111342
https://doi.org/10.1016/j.comnet.2025.111342
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2025.111342&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

A. Lacava et al.

f
h

Computer Networks 269 (2025) 111342
not enable control loops at timescales below the 10ms one enabled
by xApps. Indeed, as we will discuss in later sections of this paper,
being unable to process user-plane data and perform inference and
control below the 10ms timescale limits the application of O-RAN
technologies at the lower levels of the protocol stack, as well as the
introduction of novel use cases and applications (e.g., Radio Frequency
(RF) fingerprinting [9], one-shot beam steering, anomaly and attack
detection [10], spectrum sensing and incumbent detection [11], joint
sensing and communications [12,13], to name a few) which will be at
the center of 6G [14].

To overcome these limitations, we proposed the concept of dApps
[15]. Similarly to xApps and rApps, dApps are software components
that can execute as microservices, designed to be co-located with
Central Units (CUs) and Distributed Units (DUs), where user-plane
data is readily available. Currently, the adoption of dApps is under
investigation by the O-RAN next Generation Research Group (nGRG) as
a way to bring below 10ms Artificial Intelligence (AI)/Machine Learn-
ing (ML) routines to the RAN. The advantages introduced by dApps
are manifold: (i) they can execute real-time operations at the DU/CU
directly to achieve real-time control and monitoring of the RAN without
the need to involve the RICs; (ii) they have a lightweight lifecycle
management, and can be instantiated and deleted seamlessly to provide
functionalities as-a-service based on operator requirements; and (iii)
they have access to user-plane data that cannot leave the DU/CU due
to privacy concerns (e.g., user-related data) or impracticality (e.g., I/Q
streams require high bandwidth in the order of Gbps, which would
generate congestion over the other O-RAN interfaces [15]).

How to bring AI/ML to O-RAN and push inference toward the real-
time domain has received increasing interest in the last few years. Apart
from dApps, the literature offers different proposals that include the
concepts of real-time RIC and 𝜇Apps [16], zApps [17], tApps [18],
to name a few. In this direction, we recently edited an O-RAN nGRG
research report [19], with input and collaborations across academia
and industry aimed at exploring use cases and applications that would
benefit from dApps. These include real-time scheduler reconfiguration,
spectrum sensing, compute resource scaling for energy savings, channel
equalization, beam management and many others. Despite the well-
defined use cases, an architecture for implementing dApps in cellular
networks is still lacking. In particular, a comprehensive description of
the procedures, interfaces, modules, and their interactions with existing
O-RAN components – such as xApps, rApps, RICs, DUs, CUs, and open
interfaces (e.g., O1, O2, and E2) – is still missing.

Novelty and Contributions. In this paper, we fill this gap and
propose a reference architecture for dApps with the goal of foster-
ing design and prototyping of dApp-based use cases and applications
for O-RAN systems. Specifically, we propose an architecture that can
be seamlessly integrated with the existing O-RAN architecture with
minimal procedural changes. This minimizes the impact that dApps
have on O-RAN standardization, while still making their use feasible
and practical. We also propose a Lifecycle Management (LCM) for the
deployment and management of dApps in the O-RAN architecture.
Once deployed, we show that dApps can leverage already existing
interfaces and procedures to exchange data with the Near-RT RIC over
the E2 interface and perform monitoring and control tasks using a
custom E2Service Model (SM) model, i.e., E2SM-DAPP. We introduce
a novel E3 interface to allow dApps to interact in real time with DUs
and CU, for data and control exchange.

We develop and release as open-source1 a framework for dApps
integrated with the popular OpenAirInterface (OAI) 5G RAN frame-
work. We evaluate the framework on Colosseum [20] and Arena [21]
platforms, conducting an extensive performance analysis to benchmark

1 The framework is available at https://github.com/wineslab/dApp-
ramework. A tutorial on how to use the framework is available at
ttps://openrangym.com/tutorials/dapps-oai.
2
dApp execution and feasibility. Our results demonstrate that dApps
operate within real-time control intervals, efficiently processing both
vector data (e.g., I/Q arrays extracted from the RAN) and scalar values
in loops taking less than 450 microseconds—well below the 10ms
threshold required for real-time operations.

Additionally, we implement two distinct dApp use cases using
the proposed framework for Integrated Sensing and Communication
(ISAC): positioning and spectrum sharing. The results reveal that the
positioning dApp is able to compute the distance between the User
Equipment (UE) and the Next Generation Node Base (gNB) using the
UE Uplink (UL) Channel Impulse Response (CIR) collected by the gNB
in real-time, and with the advantage of plug-and-play, customizable
processing routines. Finally, the spectrum-sharing dApp effectively
detects incumbents in the 5th generation (5G) gNB RF context, enabling
more efficient spectrum utilization through real-time analysis.

If compared to [15], this paper provides a significantly more de-
tailed and practical architecture for dApps integrated with O-RAN
systems. Specifically, we provide details on procedures, messages, pro-
tocols, and data structures necessary for dApp operation. Additionally,
we provide a prototype implementation of dApps in OAI, demonstrating
real-time interactions between dApps and the RAN protocol stack.
Ultimately, we provide an extensive performance evaluation focusing
on real-time feasibility and practical benefits. Our results show that
dApps can perform inference within 10ms, classify incumbents within
450 μs, and enable real-time UE positioning.

We believe that the combination of architectural framework, open-
source reference library for dApps, and the thorough performance
evaluation will inspire further research and development efforts in the
real-time control domain.

The remainder of this paper is organized as follows. Section 2
presents the current state of the art for the real-time control loops in
O-RAN, highlighting the differences between our work and the real-
time RICs proposed in the literature. Section 3 describes the role of
the dApps within the O-RAN architecture and the use cases that can
benefit from their implementation. Section 4 presents the integration of
the dApps in the O-RAN architecture, introducing the E3 logic interface
and describing the message exchange between the dApps and the other
O-RAN components. Section 5 describes the lifecycle of the dApps, from
their onboarding through the Service Management and Orchestration
(SMO) to their deployment and in the RAN unit. In Section 6, we
provide a reference implementation of the architecture proposed based
on OAI and a custom Python framework to measure the real-time
control loop communication. We also discuss benchmarking results that
profile the performance of the control loop, demonstrating that our
real-time control loop can execute in less than 450 μs. In Section 7, we
use our framework to develop two dApp-powered use cases: Spectrum
Sharing and Sensing and Positioning. We evaluate their performance
and impact on the RAN, and show how dApps can detect incumbents
in a 5G network and enable spectrum sharing with them. Section 8
concludes the paper and envisions future developments for dApps.
Further clarifications on the dApp deployment process are discussed
in Appendix.

2. Related work and comparison with real-time RIC

The need for the introduction of real-time control loops in O-RAN
has been advocated in recent works to control lower-layer functionali-
ties of the gNB protocol stack [22,23]. In our previous work [15], we
introduced the concept of dApps to process data locally available at the
gNB, and the need for sub-10ms control loops. However, our prior work
primarily focused on advocating the benefits of such tighter control
loops for generic use cases. In this work, instead, we propose a complete
reference architecture and design for dApps, including interfaces for
interoperability of dApps with the rest of the O-RAN components. Then,
we showcase the capabilities and potential of dApps for use cases of
interest to Open RAN networks.

https://github.com/wineslab/dApp-framework
https://github.com/wineslab/dApp-framework
https://openrangym.com/tutorials/dapps-oai

A. Lacava et al. Computer Networks 269 (2025) 111342
Fig. 1. Comparison between RT RIC and dApp architectures.
Source: From [19].

The need for real-time control loops and inference in O-RAN has
also been highlighted by the broader community. For example, the
concept of Real-time RICs and its applications have been proposed
in [16–18]. Specifically, [17] proposes to embed CUs and DUs inside
the real-time RIC, as well as to further disaggregate their functional-
ities, where each one (e.g., Medium Access Control (MAC) scheduler,
channel estimators, and beam shapers) is carried out by a dedicated
application, namely zApp. [18] proposes TinyRIC, which runs close
to the CU/DU, and so-called tApps hosted therein. The latter aid the
CU/DU by performing functionalities spanning from the management
of non-3rd Generation Partnership Project (3GPP) interfaces (e.g., O1
and E2), to energy management, to providing primitives for data col-
lection. Similarly, [16] proposed EdgeRIC and its applications, 𝜇Apps,
that interface with the RAN to make decisions at Transmission Time
Interval (TTI) level. Although these approaches propose a viable way
to introduce real-time control in the RAN, they do so by replicating
functionalities typical of non- and Near-RT RICs, e.g., intelligence
orchestration, in a new RT RIC platform, which inherently increases
the network complexity, as well as resource utilization and energy
consumption. Our approach, instead, leverages existing RIC and well-
established routines to deploy and operate applications on the RAN
elements, while avoiding the additional complexity and resource uti-
lization that the additional RT controllers would require. Indeed, the
main difference between the above-mentioned solutions and dApps lies
in the way intelligent applications are hosted and executed. A high-
level architectural comparison of the two approaches is shown in Fig.
1, which highlights the placement of intelligent applications in the each
of them. While the above-mentioned applications require a dedicated
RT RIC entity, as well as additional layers of network abstractions,
dApps execute at the CU/DU directly. This minimizes the impact on the
E2 nodes and takes advantage of interfaces and functionalities already
defined in the O-RAN specifications.

Finally, [24] proposes Janus, a monitoring and control framework
that can load and execute custom real-time ‘‘codelets’’ on the CU and
DU. Even though this work—possibly the most similar to ours—extends
O-RAN to real-time control, Janus’s codelets require direct access to
the CU/DU protocol stack rather than interfacing with it, as dApps
instead do. In some cases, this can be a limitation as vendors might
need to host third-party codelets rather than exposing parameters via
interfaces to regulate access to CU/DU functionalities. Moreover, this
approach also requires the definition and deployment of a dedicated
controller on the RIC, instead of relying on standardized components
for the management of real-time RAN functions, as we instead do in
our dApp architecture.

Table 1 summarizes the key differences between dApps and other
real-time control solutions and the advantages of our proposal.
3
3. The role of dApps in the hierarchical O-RAN control architec-
ture

Achieving programmability of the cellular protocol stack via closed-
loop control is a fundamental innovation introduced by the O-RAN
architecture and, more in general, by the Open RAN vision [22]. With
closed-loop control, data-driven logic units executed in xApp and rApps
access RAN telemetry and process it to identify RAN configurations that
satisfy specific intents and objectives of the operator. The configuration
is then applied to the RAN nodes either in form of control (e.g., update
a certain RAN parameter) or as a policy, allowing the system to reach
the desired state.

Fig. 2 reports a simplified view of the O-RAN logical architecture
and control loops. This includes the RAN, with the Open CUs-Control
Plane (CP) and User Plane (UP), the DU, and the Radio Unit (RU).2
The F1 interface connects CU and DU, while the fronthaul interface
bridges the DU and the RU. The E1 interface is in between the CU-CP
and UP network functions. The O-RAN architecture leverages the Non-
RT RIC and the SMO framework for orchestration and policy definition,
through the O1 interface to all RAN nodes and the A1 interface to
the Near-RT RICs. The latter performs radio resource management
with direct control of the RAN nodes through the E2 interface. These
elements are deployed over a set of physical and virtualized resources
on a heterogeneous infrastructure (i.e., the O-Cloud). The O2 interface
from the SMO interacts with the O-Cloud to configure the compute
layer.

The current O-RAN architecture features two control loops, at the
non-real-time and the near-real-time scales. The first, exercised by the
Non-RT RIC, identifies policies that apply to the network considering
Key Performance Measurements (KPMs) reported on a scale of thou-
sands of end devices. It operates at a scale of 1 s or more. The second
loop runs between 10ms and 1 s, and is exercised by the Near-RT RIC.
It can perform control or deploy policies, potentially based on the ones
defined by non-real-time loops. Due to the tighter requirements on the
completion of the control loop, the Near-RT RIC usually targets tens of
base stations with hundreds of end devices [25].

These loops, however, share some limitations, as discussed in the
right portion of Fig. 2, such as the lack of control loops faster than
10ms, and the lack of interaction and programmability on the user-
plane data. Real-time interactions open up many fine-grained and
new customizable and programmable inference and control loop ca-
pabilities, including beam management, scheduling profile selection,
packet tagging, dynamic spectrum access, and Quality of Service (QoS)
enforcement, among others. Further, access to user-plane data would

2 For the purposes of this paper, we consistently refer to the Open RAN
units while omitting the prefix ‘‘O-’’.

A. Lacava et al. Computer Networks 269 (2025) 111342
Table 1
Comparison of dApps with RT RIC-based solutions and Janus.
 Feature dApps (this work) RT RIC-based Solutions

(zApps [17], tApps [18],
𝜇Apps [16])

Janus [24]

 Connectivity to RAN
stack

Disaggregated Disaggregated Integrated

 Timescale < 1ms from < 1ms (𝜇App, tApp)
to < 10ms (zApp)

< 1ms

 Deployment
Location

Directly on CU/DU Require dedicated RT RIC
platform

Directly modifies CU/DU
protocol stack

 Additional Network
Complexity

Minimal, leverages existing
RIC components

High, add new RIC layers High, modifies CU/DU stack

 Resource Utilization Optimized, avoids
additional overhead

Increased due to extra
control layers

High, requires additional
controllers

 Integration with
O-RAN

Use standardized interfaces
and components

Require additional network
abstractions

Limited, modifies protocol
stack instead of interfacing
with it

 Scalability High, built on existing
RAN elements

Limited, require new
infrastructure

Limited, protocol stack
modifications reduce
compatibility

 Modularity High, they interface with
CU/DU without modifying
stack

Medium, dependent on RT
RIC architecture

Low, tightly coupled with
CU/DU stack

 Flexibility Adapt to different CU/DU
implementations

Constrained by RT RIC
architecture

Low, as it relies on direct
modifications to protocol stack

 Use of Standard
O-RAN APIs

Yes, integrates with O-RAN
standard components

Partially, introduce custom
abstractions

No, modifies stack
implementation directly

Fig. 2. O-RAN control loops, limitations, and extensions to the real-time and user-plane domains.
Source: Adapted from [22].

enable direct interaction with waveforms and Packet Data Units (PDUs)
at different layer of the stack, as well as inference and control based
on the rich information that these elements carry. There is a sig-
nificant body of research demonstrating the benefit of inference and
classification based on raw I/Q samples for anomaly detection, spec-
trum sensing, fingerprinting, and beam management, among others [9,
11,26–28]. The same applies to user-plane units at higher layers,
i.e., transport blocks, Radio Link Control (RLC) and Packet Data Con-
vergence Protocol (PDCP) packets, e.g., for traffic classification and
slice identification [1,29].

However, O-RAN xApp/rApp-based control loops are not suitable
for real-time control. For example, transferring I/Q samples or, in
general, user data out of the RAN, is generally unfeasible due to
security, privacy, and timing/bandwidth constraints, as also mentioned
in Section 1. We discussed this in [15,19], estimating that transferring
I/Q samples through a rate-limited E2 interface would take seconds,
which is incompatible with real-time interactions, and can limit the ca-
pabilities of the E2SM for the Lower Layer Control (LLC) [30]. Bringing
programmability and observability to RAN nodes is, thus, paramount
to address both limitations. The bottom part of Fig. 2 illustrates the
4
role that dApps can play in future iterations of the O-RAN architecture.
dApps are lightweight and plug-and-play services that provide secure
and real-time access to the stack without introducing the overhead
that an additional real-time RIC would bring to network-oriented RAN
nodes.

Use cases for dApps and real-time control loops. In [19], recently pub-
lished as contributed research report by the O-RAN ALLIANCE, we
reviewed how dApps can complete the hierarchical structure of control
loops within the O-RAN architecture. The use cases can be classified
into four main groups, described next.

• Direct Processing of Waveforms and PDUs. Access to I/Q
samples can be used for physical layer security, e.g., through
anomaly detection to detect spoofing of base stations or legitimate
users [10], and with RF fingerprinting for secure authentication.
Similarly, information carried by I/Q samples on scheduled or
unscheduled symbols can be used to detect spectrum holes or
incumbents. This enables spectrum sharing but also remote in-
terference detection, including from other base stations in the
operator network. In both cases, information processed at the

A. Lacava et al.

Computer Networks 269 (2025) 111342
dApp level can be shared with the stack or xApps to coordinate
responses across multiple RAN nodes, paving the way for the RAN
to function as an ISAC system.

• Real-Time Scheduling and Beam Management. This includes
real-time scheduling reconfiguration to embed ad hoc policies
and Service Level Agreements (SLAs) for specific traffic patterns
and profiles (e.g., new slices), scheduling acceleration for efficient
massive Multiple Input, Multiple Output (MIMO) and multi-cell
coordination [31], and real-time sharing coordination with arbi-
tration across different entities [32]. Similarly, beam management
procedures can be enhanced and aided by direct access and
manipulation of reference and synchronization signals in the
DU [33]. In this context, dApps can extract real-time measure-
ments, perform data-driven inference at near-real-time periodic-
ity, and send the resulting data to an xApp, which uses it to
control beamforming via the existing E2SM LLC [30].

• RAN Nodes and Fronthaul Configuration. dApps can be used
to dynamically reconfigure and tune the RAN nodes underlying
compute and the fronthaul interface between the DU and RU.
For example, dApps can bridge real-time RAN telemetry from
the stack with the compute node configuration to dynamically
modify CPU pinning or CPU energy states for energy-efficiency
optimization. Similarly, the real-time telemetry can dynamically
affect how the fronthaul interface is configured, e.g., adapting the
compression level to save resources when users have good Signal-
to-Noise-Ratio (SNR) and providing uncompressed streaming for
users at the edge of the cell.

• Augmented Sensing and Channel Estimation. dApps can en-
able dynamic Channel State Information (CSI) compression in
coordination with UEs [34], as well as custom AI/ML models for
channel estimation that can be tailored to specific user condi-
tions and requirements. dApps can also be used to process ref-
erence and synchronization signals for use cases not traditionally
considered within RAN nodes, e.g., sensing and positioning [35].

4. dApp service-based architecture and integration with RAN
nodes

Based on the use cases and related requirements discussed in Sec-
tion 3, in the following paragraphs we discuss how the O-RAN archi-
tecture can be extended to support dApps as custom, pluggable RAN
microservices. We focus on three key elements: (i) the integration of
dApps with RAN nodes, extended via a service-based E3 interface;
(ii) the proposed E3 procedures that enable seamless message exchange
between the RAN and the dApps; and (iii) the interactions between
dApps and xApps, facilitated through our E3 interface and the O-RAN
E2 interface to the Near-RT RIC. Moreover, the E3 interface requires
two main components, the E3 API and E3 Agent. The E3 Application
Programming Interface (API) is the software implementation of the
E3 logical interface, providing the necessary functions for interaction.
Meanwhile, the E3 Agent is a entity that implements the E3 interface
using the E3 API to facilitate and manage communication. Further
discussion on the dApps lifecycle and the role of the O1 interface is
provided in Section 5. Finally, Section 6 describes a prototype of E3
Agent based on this architecture and the open-source OAI stack as a
reference.

4.1. dApps data, telemetry, and control flows

In Fig. 3, dApps are shown as standalone pluggable microservices
with a southbound E3 interface to the RAN node (either DU and CU)
that is also bridged with the RAN E2 termination for cooperation with
the xApps. The southbound interface, which we design as a service-
based API, discussed below, can be used to expose a variety of data
and telemetry from the RAN. Data can be accessed through streams, by
polling, and with different periodicity and granularity.
5
The DU RAN function can provide the dApp with access to a variety
of information elements in the data plane. I/Q samples can be accessed
pre- or post-equalization, depending on the dApp requirements, at
different levels of granularity and periodicity. Such data can be col-
lected from various channels such as Physical Uplink Control Channel
(PUCCH) or Physical Uplink Shared Channel (PUSCH), and can include
all subcarriers or specific subsets. The Buffer Status Reports (BSRs),
exchanged by MAC and RLC instances, provide real-time information
about buffer conditions and can be streamed at different intervals
(e.g., per slot or subframe) or accessed on-demand. Channel Quality
Information (CQI) values are generated based on O-DU processing
and can be streamed immediately or polled on demand to support
dynamic resource allocation. CSI can be similarly streamed in real-time
or accessed on-demand for adaptive modulation and coding decisions.
Finally, uplink Sounding Reference Signal (SRS), transmitted by the UE
and processed by the O-DU, can be made available either continuously
or on request, providing insights for uplink resource configuration.

The DU and CU-UP RAN functions can also expose transport blocks
or PDUs at the MAC, RLC, PDCP, and Service Data Adaptation Protocol
(SDAP) layers according to configurable policies, which may involve
streaming a subset of packets at certain intervals or polling them on
demand. In the control plane, the dApps can access MAC Downlink
Control Information (DCI) and Uplink Control Information (UCI) in
the DU. These indications can be streamed when scheduling decisions
are made, or retrieved on request to inform dApps of the current
state of resource allocation. Additional information is represented by
compute telemetry, i.e., information on CPU, RAM, and accelerator
utilization that can be streamed at high frequency (e.g., hundreds of
microseconds) to monitor system performance, or polled on demand for
less frequent assessments, and fronthaul configuration, to be polled as
needed to ensure that the network setup aligns with the requirements of
various dApps. The CU-CP can expose information on slice and bearers
configuration, user sessions, among others. Finally, KPMs from CU-CP,
CU-UP, and DU, which are available over E2 [36–38], can also be
provided to the dApps.

In the opposite direction, dApps can provide the RAN functions
with control actions, which must be applied within a short interval
(e.g., 0.5ms) from the time a configuration is selected in the dApp.
The areas identified for control in the RAN nodes include elements to
enable the use cases in Section 3. The following examples illustrate
the capabilities of dApps but are not exhaustive and can be extended
as needed. Within the DU, dApps can configure various aspects of
the MAC scheduler, including prioritization parameters, scheduling
policies, and acceleration configurations. They can also manage beam-
forming weights, codebooks, Synchronization Signal (SS) blocks and
bursts, and Channel State Information - Reference Signal (CSI-RS), as
well as update mapping tables for Signal to Interference plus Noise
Ratio (SINR)-to-Modulation and Coding Scheme (MCS), apply Physical
Resource Block (PRB) masking or nulling, and control DCIs and UCIs.
At the CU-UP and CU-CP levels, dApps enable interactions with slice
and cell configurations, allowing dynamic adjustments to network slices
and modifications to parameters such as transmit power and carrier
frequency at the cell level.

4.2. Service-based dApps E3 API endpoint

As depicted in Fig. 3, dApps are deployed as services coexisting
with RAN nodes. An E3 API endpoint (or E3 agent) bridges the RAN
functions with the dApps. This agent provides a standardized API layer
that supports functionalities such as dApp setup, configuration, data
streaming or polling, and control. By encapsulating RAN function ca-
pabilities, the E3 agent ensures dApp independence from specific RAN
implementations. In addition to interfacing with dApps, the E3 agent
coordinates with the E2 termination within the RAN node, enabling
seamless communication between dApps and xApps. This facilitates the
synchronization of control and adaptation processes across the Near-RT

A. Lacava et al. Computer Networks 269 (2025) 111342
Fig. 3. O-RAN Near-RT RIC integration with dApps and a generic RAN node.

n

RIC and dApps at varying timescales, ensuring efficient and dynamic
network management.

The architecture supports multiple dApps interacting with the same
RAN function, provided there are no conflicts. Conflict resolution is
addressed holistically within the network as part of the dApp lifecycle
(Section 5). Moreover, the E3 agent, in collaboration with the O-
Cloud and SMO, monitors available compute resources on the O-Cloud
physical node. It ensures that RAN workloads are prioritized to meet
SLAs while maintaining resource allocation for dApps.

To streamline dApp operations, the E3 agent consolidates access to
RAN data, such as telemetry or data-plane units (e.g., I/Q samples).
A centralized subscription manager within the agent handles the dis-
patching of the management messages between the dApps and the RAN,
i.e., the initial pairing, the subscription request and response, and the
eventual de-registration of the dApp. This unified access mechanism
eliminates redundant protocol stack calls and ensures efficient coor-
dination by allowing dApps to register callbacks for querying control
and data functionalities. The design simplifies interactions and main-
tains low latency, supporting seamless integration with RAN operations
without introducing overhead. With The E3 APIs enable dApps to
extract necessary RAN data and deliver computed control actions or
inferences without disrupting RAN operations. The API design ensures
concurrent functionality across multiple dApps while maintaining op-
erational integrity. Given the co-location of CUs/DUs and dApps on
the same host, the E3 API leverages Inter-Process Communication (IPC)
mechanisms – such as shared memory, logical First In First Out (FIFO)
queues, function calls, or system-domain sockets – instead of network
PDUs or sockets. This approach is demonstrated in our prototype
implementation (Section 6).

4.3. dApp and RAN interactions over E3

An example of the interaction flow between a dApp and the RAN
E3 agent is shown in Fig. 4. Similar to the O-RAN approach for the
E2 interface, we introduce a procedural API, called E3 Application
Protocol (AP) (E3AP) consisting of two distinct logical steps to establish
the association between a single dApp and a RAN node with its data.

When deployed for the first time, the dApp triggers the E3 Setup
procedure to perform the authentication and pairing with the RAN
node. Then, the E3 Subscription procedure enables the dApp to query
and subscribe to the data and control functionalities supported by the
RAN function, as defined through the E3 SMs APIs.
6
Fig. 4. Message exchanges for a real time control loop between a dApp and the RAN
ode through the E3 interface.

In order to enable the exposure of data or telemetry and the control
of specific RAN functionalities, the E3SM are introduced as modular
abstractions implemented through two dedicated APIs. The first API is
for the E3 Indication Message, to let the RAN function expose data to the
dApp. Access to this API is coordinated by the subscription manager in
the E3 agent, as discussed above. Similarly, the control generated by
the dApp is delivered to the RAN function for processing in the stack
using the E3 Control Message API. In Section 7.1, we will provide a
practical use case where control messages from the dApp are used to
avoid interfering signals via PRB nulling.

4.4. E2SM-DAPP: a service model for managing interactions between dApps
and xApps

Apart from control actions that actively reconfigure RAN param-
eters based on input data, dApps can also perform forecasting and
prediction tasks. The outcome of these tasks is important because it
builds contextual awareness on RAN operations and conditions and,
for this reason, it might be useful to make it available to higher layers
of the protocol stack, e.g., xApps executing at the Near-RT RIC. This
can be achieved by forwarding dApp inference outcomes to xApps
in the form of enrichment information transmitted over the RAN E2
interface (e.g., similarly to how the A1 interface is used to forward

A. Lacava et al. Computer Networks 269 (2025) 111342
Fig. 5. Interactions between a dApp, the E2 RAN node, and an xApp through the E3 interface and the E2SM-DAPP custom Service Model.

useful information from the Non-RT RIC to the Near-RT RIC). From
the E2 perspective, the data exposed by dApps is managed through a
novel, custom E2 SM [38], which we call E2SM-DAPP, identified by a
unique RAN function ID during the E2 Setup Request.

Fig. 5 summarizes the interactions between the dApps, the E2 RAN
node, and the xApps. To initiate these procedures, the xApps onboarded
on the Near-RT RIC can send an E2 Subscription Request to the RAN
node, which responds via an E2 Subscription Response with a message
that includes the IDs of the dApps currently executing on the node.
These discovery procedures are executed continuously throughout the
xApp lifecycle, enabling the discovery of new dApps as they become
available.

xApps that are willing to receive inference data (e.g., spectrum sens-
ing outcomes, real-time channel estimations, scheduling information)
from the dApp can send an additional E2 Subscription Request with the
same dApp ID and a payload specifying the data they want to collect
from the dApp.

Once this pairing is established, the dApp periodically collects real-
time data from the RAN using the real-time control loop procedures
described in Section 4.3, performs near-real-time inference (e.g., spec-
trum classification), and transmits these inferences to the xApp using
the E3 Report API, which connects the dApp to xApps leveraging an E2
Indication Message via the RAN E2 interface.

It is also worth mentioning that xApps can configure how dApps
take decisions and perform inference by specifying high-level parame-
ters and policies. These policies influence how the dApp operates and
can be used by xApps to influence decisions. For example, in the case of
a dApp performing scheduling operations, an xApp can specify which
scheduling profile to use (e.g., round-robin, proportional fairness) as
well as defining priority weights for scheduling UEs and prioritizing
certain types of traffic. To enable this, the xApp sends an E2 Control
Message to the RAN node, which is then relayed over the E3 interface
using the xApp Control Message to the target dApp.

5. dApp lifecycle and interaction with Near-RT RIC, Non-RT RIC,
and SMO

In this section, we discuss how the LCM of dApps can be inte-
grated into LCM practices defined within the O-RAN architecture and
processes. We follow and extend the specifications outlined in [39,
40], which describe the standard procedures for the LCM of O-RAN
applications, cloudification, and orchestration use cases for deploying
virtualized O-RAN solutions. The LCM process follows a structured 7-
stage model for the Software Development Lifecycle (SDLC) to ensure
7
that applications are developed, onboarded, and operated in a stan-
dardized way. It begins with Need to identify requirements, followed by
Ideation to brainstorm potential solutions, Analysis to assess feasibility,
Develop to build the application, Deliver to deploy the solution, Validate
to test for quality, and finally Operate to maintain the application in
production.

This structured LCM approach is divided into three main phases:
(i) Development, in which applications are designed and built; (ii) On-
boarding, in which applications are integrated into the target envi-
ronment; and (iii) Operations, in which applications are managed and
maintained in production [39]. Fig. 6 provides a high-level represen-
tation of dApp LCM, with particular focus on the onboarding and
operations phases. While the development process is common to all
types of applications (i.e., xApps, rApps, and dApps), Fig. 6 focuses
specifically on unique aspects related to onboarding and operation of
dApps. While the SMO is responsible for deploying the dApp, once
deployed, the dApp can operate independently or be managed by other
entities, such as an xApp, through the E2SM-DAPP. In the following, we
provide a detailed overview of how these phases can be extended and
adapted to dApp LCM.

5.1. Development

The development phase of the dApp LCM aligns with the Solu-
tion App Lifecycle and Solution AppPackage Lifecycle outlined in the
LCM model in [39]. The Solution App Lifecycle covers the end-to-
end process of designing, developing, deploying, and managing the
dApp, ensuring its smooth operation across its entire lifecycle. The
Solution AppPackage Lifecycle focuses specifically on the packaging,
onboarding, and management of the application package, including
the creation of deployment and management descriptors to standardize
the process. The process begins with defining the use case, require-
ments, and features, followed by the integration of components such
as intelligent logic, telemetry, and Key Performance Indicators (KPIs)
of the dApp. The dApp is then containerized using tools like Docker
for efficient deployment in cloud environments such as Kubernetes
or OpenShift. Once containerized, the Solution AppPackage is cre-
ated to ensure proper onboarding, containing key descriptors like the
DeploymentDescriptor and ManagementDescriptor, which standardize
deployment and management processes for seamless orchestration.

To ensure secure onboarding, digital signatures and checksums are
added to verify the package source, preventing unauthorized modifi-
cations and ensuring the application integrity as it transitions through
different environments.

A. Lacava et al. Computer Networks 269 (2025) 111342
Fig. 6. dApps LCM diagram.

5.2. Onboarding

The onboarding phase begins with the transfer of the dApp App-
Package, generated during the development phase, from the market-
place where it was stored. This package undergoes verification and
validation to ensure it is authorized and secure. Once validated, the
AppPackage is unpacked, and its components are stored in a catalog
within the SMO (Step 1, Fig. 6). Following this, each recommended
configuration of the dApp is certified and published to a runtime library
(Step 2).

The initiation of the onboarding process can typically be triggered
either by the SMO or directly by an operator, who queries the runtime
library to locate certified deployment options for the dApp. In certain
scenarios, this decision may also be delegated to xApps or rApps if
they are equipped with the necessary intelligence and reliability to
orchestrate and control dApp execution. Indeed, it can be advantageous
for an xApp to be able to initiate the deployment of dApps. This allows
the xApp to use the available dApp for tasks requiring real-time control.
The process flow involves the xApp querying the available dApps in the
Run-Time Library through the O1 interface, and requesting the dApp
deployment via the O1 interface (Step 3).

However, in Fig. 6, the process for xApp-initiated onboarding is
not explicitly shown as this procedure requires ad-hoc service models,
procedures and functionalities that are not yet available in the O-RAN
specifications, and we hope to cover in future research.

5.3. Deployment

In contrast to the deployment of xApps and rApps, hosted in the
Near-RT and Non-RT RICs, dApps require a different deployment pro-
cedure, as they are directly hosted in the DU/CU. dApps are de-
ployed as Cloud-Native Functions (CNF), adhering to the standard
Network Functions (NF) deployment procedures set out by the O-RAN
ALLIANCE [40].

Using the SMO framework and the O-Cloud, the dApp is managed
through the O2 interface, which facilitates communication between
the SMO and the Deployment Management Services (DMS) of the
CU/DU. This direct deployment model allows the dApp to utilize the
real-time processing capabilities of the CU/DU while also leveraging
the flexibility and scalability of the O-Cloud infrastructure. However,
this deployment diverges significantly from that of xApps and rApps,
as it is executed outside of the RIC environments, focusing instead
on efficient resource allocation and real-time operations directly at
the CU/DU level. This approach integrates dApps seamlessly into the
CU/DU environment while adhering to the cloud-native principles and
ensuring optimal network function performance. The deployment steps
of dApps in the LCM workflow are shown in Steps 4, 5, and 6 in Fig.
6.

The information flow for deploying the dApp follows a structured
sequence, beginning with a service request initiated by the Network
Function Install Project Manager to the SMO for deploying a new
dApp instance on the CU/DU. The SMO processes this request by
decomposing it, identifying the required dApps and their deployment
8
order, and determining the deployment parameters based on policies
or explicit input. The SMO retrieves the CloudNativeDescriptor for the
dApp from the runtime library and directs the O-Cloud Deployment
Management Service (DMS) to create the dApp deployment.

The DMS allocates the necessary compute, storage, and network
resources on the CU/DU, deploys the dApp container(s), and notifies
the SMO upon successful instantiation, providing a Deployment ID. The
SMO then updates its inventory with the deployment status, and the
dApp instance reads its configuration and begins operation. Following
deployment, the SMO continuously monitors the dApp’s health, perfor-
mance, and connectivity, managing its lifecycle, scaling, and updates
as required. Finally, the SMO informs the Network Function Install
Project Manager of the overall success or failure of the deployment
request. For a detailed breakdown of these steps, please refer to Table
A.4 in Appendix.

Finally, we also consider the case where xApps can also request the
SMO to deploy a new dApp, and connect to it, whenever there is a
need to perform real-time control. Deployment is performed following
the procedures described above.

6. A reference open-source dApp framework

In this section, we present a reference implementation and pro-
totype of the proposed dApp architecture (Section 4), based on OAI
and a Python framework. We also present an exhaustive benchmarking
analysis with results that confirm RAN control loop latencies well below
1ms (i.e., below the target threshold of 10ms). The reference imple-
mentation supports real-time control loops. The open-source library can
thus be used for real-time Open RAN control prototypes. The use-cases
developed as a proof of concept for our framework and their evaluation
are discussed in Section 7.

6.1. dApp framework

We define a reference dApp framework written in Python, imple-
menting the E3AP as described in previous sections. Fig. 7 illustrates
the Unified Modeling Language (UML) diagram of our framework.
We design three main classes composing the dApp framework to im-
plement diverse functions: the DApp, the E3Interface, and the
E3Connector classes.

The DApp Class – First, we define the DApp abstract class for
the management of the E3SM operations. For each use case, this class
will be extended to include functionalities, parameters and operations
specific to the use case. This class wraps all the E3SM functionali-
ties into a single entity to simplify and streamline the generation of
new children classes and enable the extension to new use cases. The
SpectrumSharingDApp and the PositiningDApp reported in
Fig. 7 are two examples of children classes implementing the operations
reported in the spectrum sharing use case of Section 7.1 and the
positioning use case of Section 7.2. The abstract DApp class uses the
E3Interface class for the communication between with the RAN
node.

A. Lacava et al. Computer Networks 269 (2025) 111342
Fig. 7. Unified Modeling Language (UML) diagram of the dApp framework with its components and the two dApps presented in this work used as example.
Fig. 8. Design of the E3Connector sockets.

The abstract DApp class leverages the E3Interface class to
facilitate communication with the RAN node. The E3AP operations
and interactions between the RAN and dApps utilize a publish-and-
subscribe mechanism, where dApps register callbacks to access RAN
data through specific RAN function IDs. These data are published via
the E3Interface, which is a private variable of the abstract class,
as illustrated in Fig. 7. The setup_connection() class method
initializes the E3 interface and the dApp callback, while the con-
trol_loop() method is designed to implement the data polling and
periodically trigger the core logic of the dApp.

The E3Interface Class – The E3Interface class provides stan-
dardized APIs for accessing the E3 interface. It manages the E3AP
and facilitates the dispatch of data from the RAN node to dApps,
enabling both analysis and control operations via function calls. The
class implements a singleton pattern, ensuring that all dApps deployed
on the same RAN node share the same E3 interface.

The DApp class interacts with the E3Interface by invoking
methods such as add_callback() and remove_callback() to
manage subscriptions to RAN data. Additionally, it uses
schedule_control() to schedule the delivery of E3 Control Ac-
tions to the RAN and schedule_report() to send E3 Report
Messages to xApps. Once a dApp has initiated its control loop, the
E3Interface exposes RAN data to the dApps through the han-
dle_incoming_data() method.
9
The E3Connector Class – Ensuring fast and reliable connectivity
between dApps, the RAN and xApps is crucial to enable dApp oper-
ations and real-time monitoring and control of the network. For this
reason, to understand what are the trade-offs and the best protocols to
achieve real-time control loops, we have implemented and compared
several connectivity solutions and protocols. These efforts have been
synthesized in the E3Connector class, which is an abstract class
that the E3Interface uses to create the socket connections between
the dApps and the RAN node. The E3Connector exposes a set of
methods that are used to perform the initial pairing between the dApp
and the RAN node, receive the messages from the RAN node and send
the messages to it. As shown in Fig. 8, which represents the different
logical pairings between the configurations of the connectors according
to the protocols used, the E3Connector creates and manages three
different sockets: the first one is for the initial E3 Setup Request–
Response and the E3 Subscription Request–Response exchanges; the
second one for receiving the inbound messages from the RAN unit,
i.e., the E3 Indication Message and the xApp Control Message, and the
last one for delivering to the RAN node the outbound messages of the
dApps, i.e., the dApp Control Messages and the dApp Report Messages.

In this work, we have created two mutual children classes of the
E3Connector, the ZMQConnector and the POSIXConnector,
each one implementing a different data link layer and several transport
layers. The first one is the POSIXConnector implements the message

A. Lacava et al.

Computer Networks 269 (2025) 111342
exchange using the classic POSIX system functions based on the Linux
kernel socket implementation. Such functions expose low-level APIs for
IPC like shared memory, pipes, message queues, and sockets and they
require detailed handling for synchronization, data serialization, and
transport, focusing on one system or tightly coupled systems. All the
sockets implemented by the POSIXConnector follow a client–server
pattern, having the receiving entity set as a server and the delivering
entity acting as a client.

The ZMQConnector class uses ZeroMQ as the link layer, an high-
performance asynchronous messaging library, aimed at use in dis-
tributed or concurrent applications [41]. ZeroMQ abstracts the com-
plexity of operations such as connection management and data seri-
alization via simple APIs calls, and it is designed for both intra- and
inter-machine communication with flexible built-in patterns, as dis-
cusses below. As illustrated in Fig. 8, our approach leverages ZeroMQ.
Specifically, the initial E3 setup employs a request-reply (REQ-REP)
pattern – where the dApp issues the request (REQ) and the RAN side
provides the reply (REP) – since this procedure occurs only once during
the dApp’s lifecycle. In contrast, subsequent outbound and inbound
data exchanges adopt a publish–subscribe (PUB-SUB) pattern, with the
data-generating entity acting as the publisher (PUB) and the data-
processing entity as the subscriber (SUB). This choice reflects the need
to support continuous data transfer between the RAN and the dApp, in
contrast to the one-time setup operation.

Both classes implement three transport-layer protocols –
Transmission Control Protocol (TCP), IPC (using Unix Domain sockets),
and Stream Control Transmission Protocol (SCTP) – to facilitate com-
munication between local and remote hosts. While the implementation
can support other transport protocols, in our design we focus on those
that offer reliable message delivery (even if this introduces overhead)
and excludes those, e.g., User Datagram Protocol (UDP), that do not
guarantee data delivery and are not reliable enough for RAN opera-
tions. Furthermore, to maintain consistency, the ZMQConnector class
includes SCTP support, despite the ZeroMQ link layer not yet offering
full SCTP compatibility [41,42]. It is also worth mentioning that we
decided to maintain the possibility to have a connection for the E3
to a remote virtual host, not co-located with the RAN node, since in
the O-RAN vision the disaggregation of the network functions may also
happen across diverse physical nodes in the network.

Data received through the E3Connector socket, regardless of
the underlying link and transport layers, is processed by a callback
mechanism operated by the subscription manager. This mechanism
associates newly available data with the registered dApps that require
it, thus enabling real-time data handling and avoiding data duplication.
For the PDUs used for establishing communications between the RAN
node and dApps, we employ Abstract Syntax Notation One (ASN.1)
definitions for message formatting in the E3AP and E3SM, adhering
to established standard 3GPP and O-RAN message exchange protocols.
ASN.1 enables efficient, rapid, and compact serialization of data. Each
class extending our DApp abstract class should implement its own SM
and intelligent logic according to its use case, as shown in Fig. 7.

In this work, we propose two different use cases leveraging dApps
based on this framework with further implementation details discussed
in Section 7.

6.2. OpenAirInterface and T-tracer

OAI is an open-source project that implements a 3GPP-compliant
full 5G New Radio (NR) stack on general-purpose computing hardware
and off-the-shelf Software-defined Radios (SDRs) [43,44] It supports
both CU-DU split and monolithic deployments, enabling flexibility in
testing and development of RAN functions. Additionally, OAI provides
implementations for key RAN components, including gNB and UE,
offering a robust platform for validating 5G network functionalities
and integrating advanced features such as slicing and AI/ML-based
optimizations.
10
The project implements Open RAN-compliant functionalities, in-
cluding code functions to connect with the Near-RT RIC (both the
O-RAN Software Community (OSC) [45] version and custom versions
such as FlexRIC [46]) and the Non-RT RIC.

We have extended the original OAI codebase by introducing a new
E3 Agent module that facilitates exchanges based on the architecture
proposed in this paper, with a particular attention to the message
exchange between the dApp and the xApps over the E3AP, and the RAN
control functionalities employed by the proposed use cases.

It is worth mentioning that OAI integrates T-tracer [47], a pro-
grammable toll that provides an external connection via TCP sockets,
enabling developers to extract and collect metrics during RAN opera-
tions for debugging and analysis purposes. Our module integrates with
the T-tracer tool, enabling real-time data sensing and extraction, and
making this data accessible through the E3 interface. We extended
the T-tracer socket utilities to support IPC via Unix domain sockets,
enhancing the communication and reducing the overhead generated
in the data exchange and, consequently, the latency. Moreover, we
developed a C-language implementation of the E3Connector to in-
tegrate it into the OAI codebase through a merge request, avoiding
external dependencies between the dApp framework and cellular stack.
This component works in the very same way as its Python counterpart,
enabling different link- and transport-layer tests over different virtual
hosts by design. We will propose the integration of this connector in
the OAI main codebase upon acceptance of this manuscript. Finally,
we extended the OAI codebase to implement the data extraction and
the RAN control of the use cases discussed in Section 7, supporting
real-time control loops.

6.3. Evaluating real-time capabilities of dApps

We ran more than two hundreds experiments on two different
testbeds to assess and evaluate the capabilities of our framework exe-
cuting the SpectrumSharingDapp. A detailed discussion of the use
case is provided in Section 7.1. In the following paragraphs we focus
specifically on the benchmarking of the framework in terms of real-time
control capabilities.

The first test bench for this evaluation is the Colosseum testbed, a
wireless network emulator [20] consisting of SDR-equipped servers and
a channel emulator capable of reproducing real-world wireless channel
effects, such as path loss and fading. The second is Arena [21], a
publicly available over-the-air indoor testbed deployed in an laboratory
environment. Both systems used the same version of OAI and our dApp
prototype, running on Dell PowerEdge R730 servers and Universal
Software Radio Peripheral (USRP) x310 SDRs. On Arena, the UE is
a One Plus Nord 5G AC2003, while on Colosseum we use the OAI
softUE. We use the OAI configuration for the Frequency Range 1 (FR1)
band n78, with a center frequency of 3.6192GHz and a bandwidth of
40MHz.

Each experiment has a duration of six minutes. However, for the
scope of the measurements reported, we only consider the five-minute
window where UE downlink transmissions are active (i.e., we exclude
the network bootstrap, UE attachment and setup phases). We present
the results related to the performance of the real-time control loop.

One column for the table We evaluated different options for min-
imizing overhead, focusing on the link layer and the transport layer.
Specifically, we considered the two E3Connector implementation
options based on raw POSIX functions and ZeroMQ. Moreover, we have
implemented and evaluated three different options for the transport
layer built on top of these two links, i.e., the TCP protocol, the SCTP
protocol and the IPC based on Unix Domain sockets.

Table 2 presents a summary of the overheads introduced by the
different transport layers protocols, i.e., the number of bytes introduced
by the protocol stack to guarantee message delivery. The first protocol
we consider is TCP, which is commonly used for inter-process commu-
nication of application that can scale over different virtual hosts. The

A. Lacava et al. Computer Networks 269 (2025) 111342
Table 2
Overhead introduced in the E3AP message exchange using the E3Connector.
 Protocol Overhead percentage (no ASN) Overhead percentage (with ASN)
 TCP 20% 20.05%
 SCTP 42% 42.05%
 IPC 0% 0.05%

additional overhead caused by TCP is 20%, making it a good candidate
in the case where the dApp is connected across virtual hosts over the
same network. As a second candidate, we evaluated the SCTP protocol
since it is an affirmed transport-layer protocol for cellular networks.
Results show that SCTP introduces significant overhead, which reduces
goodput, increases latency, and can potentially slow down the control
loop process and result in late control action enforcement. While this
overhead is essential for other message exchange procedures in O-RAN,
such as E2AP, dApps can instead leverage IPC. This approach elimi-
nates overhead entirely, as IPC allows direct communication between
processes on the same host. Unlike network-based protocols, IPC avoids
the need for data encapsulation and transmission across multiple net-
work hosts, significantly reducing latency and processing requirements.
Indeed, SCTP brings many benefits such as multi-homing support, path
Maximum Transmission Unit (MTU) discovery, redundant transmission
for reliability. However, these come with additional overhead, e.g., due
to encapsulation and decapsulation of link and transport layers, that
can slow down the flow of the dApp, which make IPC a better candidate
to deliver real-time control over the same host.

Finally, we report the overhead generated by the ASN.1 implemen-
tation of the E3AP-SM PDUs application layer. In the design of such
definitions, we opted for a minimalist approach that ensures the correct
implementation of the architectural framework by providing only the
necessary PDUs (i.e., Setup, Subscription, Indication, and Control) to
enable a closed control loop, while using an architecture that can be
extended with more PDUs in the future if needed. The ASN.1 implemen-
tation offers a structured messaging infrastructure, but ASN.1 structures
and its padding generates overhead. This overhead is the necessary
trade-off for representing the advanced logical interactions between the
dApps and the RAN through the E3SMs. To reduce overhead, in our
implementation we use the Packet Encoding Rule (PER), which is a
more compact representation of ASN.1 that minimizes the overhead by
omitting extra information such as tags and lengths of packet fields.
For instance, if fields have a limited number of possible values, the
encoding will use just enough bits to represent those values, making
the encoded data smaller compared to other encoding rules. In our
experiments, the ASN.1 PDUs generate a constant 0.05% overhead
across all protocols, which adds to the overhead generated by each
protocol.

Fig. 9 reports latency measurements for all operations required to
perform dApp-based control using our prototype. Specifically, we mea-
sure the latency required to perform the four fundamental operations
of dApp control: Collect Data, Process Data, Create Control, and Deliver
Control. We also report the Cumulative latency, defined as the sum of
all the previous operations. Initially, upon the generation of the RAN
measurements, the dApp must Collect Data from the RAN using the T-
tracer and the E3 Indication Message. Subsequently, it moves to Process
Data, where the measurements are analyzed through either a heuristic
or data-driven approach. Following this, the dApp proceeds to Create
Control, which involves generating the control action and formulating
the E3 Control Message. Finally, in the Deliver Control stage, this message
is transmitted back to the RAN function.

To evaluate our prototype in a practical use case that relies on
real-time operations and inference, we provide results obtained by
executing the spectrum sharing dApp (described in Section 7.1). As
we will discuss later, the input data to be retrieved consists of I/Q
samples, and the output of the dApp corresponds to the list of PRBs
that the MAC scheduler should not allocate due to the presence of
external interference (e.g., incumbents or jammers). We also consider

11
the implementation that provided the best performance which is the
case of an ZMQConnector-based E3 interface serving data through
IPC and ASN.1, and provide results for varying dApp input and output
sizes. Specifically, we considered 16different configurations by varying
two parameters: (i) the size of the payload in the E3 Indication Messages
(i.e., input of the dApp); and (ii) the size of the E3 Control Messages
(i.e., output of the dApp). For the Indication Messages, each I/Q sample
is encoded using 4 bytes, and we evaluated four payload sizes of 1536,
3072, 6144, and 8192 bytes, which correspond to 384, 768, 1536, and
2048 I/Q samples, respectively. For the Control Messages, we defined
payload lengths in bytes based on the number of PRBs blocked by the
dApp of the aforementioned use case: 0 (no PRBs), 4 PRBs (16 bytes and
about 1MHz of blocked bandwidth), and 8 PRBs (32 bytes and about
2MHz). It is worth mentioning that the list of PRBs to be blocked is of
variable size and depends on the resolution of the Indication Message
(i.e., how many I/Q samples in the frequency domain are fed to the
dApp). For this reason, we also consider the maximum number of PRBs
that can be blocked based on the amount of I/Qs being included in the
Indication message size. Specifically, for Indication Message size of 384,
768, 1536, and 2048 we consider Control Messages of maximum size
128, 256, 208, and 380bytes, respectively.

Results in Fig. 9 demonstrate that our dApp prototype achieves
real-time control loops with an average aggregated latency of 400 μs,
consistently remaining below 450 μs. As expected, the usage of IPC
through ZeroMQ substantially reduces the impact of the socket oper-
ations on the total control loop time, making the operation of Data
Collection the indication message and Control Delivery the fastest op-
erations in the loop. The major contribution to the elapsing time of
the loop is represented by the Elaboration of the Indication Message,
i.e., the ASN.1 decode and the intelligent control logic implemented
by the dApp to analyze the data. This behavior is also highlighted
in the case of Control Messages with size 64 and 95bytes, shown in
Figs. 9(b) and 9(d), respectively, where the presence of padding in the
E3AP PDU causes additional memory allocation, thus increasing the
elaboration time. The average total elapsed time for each of the 16 cases
is consistently below the 1ms threshold as shown in Fig. 9, which is
defined as the limit for real-time use cases involving the manipulation
of I/Q samples (see Fig. 2, Section 3).

7. Empowering RAN control through dApps: use cases

After demonstrating that dApps can indeed enable real-time infer-
ence in O-RAN systems, in this section, we showcase two relevant RAN
control use cases that benefit from dApps. These examples illustrate
how the data extraction and dApp-driven control capabilities provided
by our approach can enhance network performance and make network
management more agile.

7.1. Use case: Spectrum sharing

Dynamic spectrum sharing among multiple wireless access technolo-
gies is expected to play a major role in the next-generation wireless
system design. Currently, a popular spectrum sharing example in the
U.S. is the case of the Citizens Broadband Radio Service (CBRS) band,
where mobile network operators may coexist with high-priority in-
cumbent federal radar and satellite systems users in the 3.55–3.7 GHz
frequency range. When considering 5G NR systems, the CBRS band is
a subset of the bands n77 and n78.

A. Lacava et al.

Fig. 9. Latency measurements for the real-time control loops using dApps with E3AP over ZeroMQ and IPC.

Fig. 10. Intelligent real-time control loop for the PRB blacklisting. We omit in this figure the initial E3AP procedures.

Computer Networks 269 (2025) 111342

12

A. Lacava et al.

a

Computer Networks 269 (2025) 111342
Fig. 11. Spectrum sharing dApp cases evaluated in the experiments: Sensed Spectrum of a 5G gNB-UE communication with the incumbent invading the spectrum of the gNB with
nd without the dApp.

In our recent work [48], we leveraged our dApp framework to
implement a real-time RAN-driven spectrum sharing system. In this
system, the gNB can communicate while simultaneously performing the
spectrum sensing task in the CBRS band. Moreover, the gNB can adapt
its communication parameters (e.g., frequencies or the list of PRBs to
not be used for scheduling purposes due to presence of high interfer-
ence) whenever a primary incumbent user is detected. The spectrum
sharing dApp that we developed follows the prototype mentioned in
the previous section and illustrated in Fig. 10. The dApp connects with
the gNB using the E3 and performs the following tasks:

1. Extract I/Q samples from dedicated symbols reserved for spec-
trum sensing at the gNB through a callback registered with the
E3Interface, enabling real-time sensing and data extraction;

2. Leverage an inference algorithm to process the I/Q samples
and detect incumbent users by computing the magnitude of the
samples and comparing each magnitude with a fixed threshold
previously calibrated;

3. If an incumbent is detected, create a list of the PRBs affected
by the incumbent and that should not be used by the gNB to
schedule transmissions;

4. Deliver such list to the RAN node as a control action through the
E3 interface.

We analyzed three different configurations of the spectrum in Fig.
11 using a Keysight EXA Spectrum Analyzer N9010B as an external
observer. The first one, shown in Fig. 11(a), depicts an unbounded TCP
downlink transmission of a 5G gNB to one UE.

In this case, the MAC scheduler of the gNB is allowed to use all
possible PRBs. Fig. 11(b) introduces a narrowband incumbent in the
spectrum of the gNB, making the 5G RF signal clash with the incumbent
RF signal and degrading the gNB-UE performance. When the spectrum
sharing dApp interacts with the gNB, its control logic analyzes the
sensed I/Qs and is able to detect the presence of the incumbent and
to create a control action to block the clashing PRBs, making them
unavailable to the scheduler. Finally, the dApp delivers the control
action to the RAN, vacating the affected portion of the spectrum, as

13
shown in Fig. 11(c). Under these conditions, 5G communication can
continue to coexist with the incumbent, albeit with certain limitations.

Specifically, we would like to mention that the currently avail-
able OAI scheduler implements a type 1 resource allocation scheme
as defined in the 3GPP Technical Specification (TS) 38.214 Section
6.1.2.2 [49], which requires that the PRBs assigned to a single UE
form a contiguous, non-interleaved sequence of virtual resource blocks.
As a consequence, when we mute a set of PRBs already occupied by
the incumbent, we notice that the scheduler also blocks all scheduling
activities in the PRBs occupying the rightmost part of the spectrum.
Although this is a limitation that does not pertain our spectrum sensing
dApp, it is also fair to point out that this specific implementation based
on type 1 scheduler might reduce unnecessarily the list of PRBs that
can be used for data transmission. However, we also point out that in
the same specifications, precisely in Section 6.1.2.1 [49], the standard
defines resource allocation of type 0, which allows for the allocation of
noncontiguous PRBs to the same UE. Unfortunately, this latter type is
not implemented in OAI at the time of this writing, and the evaluation
of our dApp under this configuration is left for future studies.

As we will discuss in the next section, the results reported in Table 3
show that, although OAI’s type 1 scheduler results in an unused portion
of the spectrum (right portion of the spectrum in Fig. 11(c)), the usage
of a reduced portion of the spectrum does not significantly reduce UE
downlink performance.

Performance Evaluation – Table 3 summarizes the experiment
results of the Spectrum Sharing use case for the two testbeds and the
different test configurations considered. A 95% confidence interval,
using a Z-value of 1.96, was applied to the results and it is reported
along with the averages of each measurements. Given the radio config-
uration of the experiments presented in Section 6.3, the incumbent may
interfere with the gNB spectrum if transmitting between 3.5992GHz
and 3.6392GHz. We present the throughput results across various
configurations: with and without the incumbent, and with and without
the spectrum sharing dApp. These results highlight the scenarios where
spectrum is shared and where it is not. For these experiments, the
incumbent signal has been created using the uhd_siggen software
set up to generate an uniform noise transmitted at 3.63GHz with a

A. Lacava et al. Computer Networks 269 (2025) 111342
Table 3
Summary of the performance of OAI and spectrum sharing dApp. Average throughput reported with the 95% confidence interval.
 Testbed dApp Incumbent Throughput (Mbps) Shared spectrum?
 Colosseum N N 71.34 ± 1.28 N/A (gNB only)
 Colosseum Y N 71.53 ± 0.76 N/A (gNB only)
 Colosseum N Y 49.52 ± 3.37 No coordination
 Colosseum Y Y 53.78 ± 1.55 Shared spectrum
 Arena N N 77.98 ± 1.31 N/A (gNB only)
 Arena Y N 76.37 ± 1.87 N/A (gNB only)
 Arena N Y 38.97 ± 2.95 No coordination
 Arena Y Y 43.86 ± 1.52 Shared spectrum

sampling rate of 1MHz, an amplitude of 0.5 and gain of 90 dB on Arena
and 60 dB on Colosseum. A dBm threshold used to determine whether
to block the PRBs was calibrated specifically for each experimental
environment. It is worth mentioning that each testbed is characterized
by different radios with diverse sensitivity, and different RF conditions.
For this reason, we set the noise floor for the two testbeds considered in
our analysis to two different value. Specifically, we set the noise floor
to 20dBm and 53dBm for Arena and Colosseum, respectively.

The choice of these values is conservative. Indeed, a too high of
a threshold value might fail in detecting incumbent activities in low
SINR regimes, and might result in gNB transmissions that overlap with
the incumbent and cause severe interference. Similarly, a too low of a
threshold might misinterpret noise as incumbent signals, and block all
PRBs. In our case, we have evaluated the thresholds heuristically via
experiments and data analytics. Note that, in general, a conservative
threshold is to be preferred as incumbents have always priority and
gNBs must vacated promptly the spectrum.

Results in Table 3 show that the execution of the dApp (cases where
dApp = Y and Incumbent = N) does not introduce any significant
impact on throughput if compared to the case where the dApp is not
enabled (cases where dApp = N and Incumbent = N). Specifically,
in the Colosseum testbed, the average throughput measured without
the dApp is 71.34Mbps, while we measure an average throughput
of 71.53Mbps when the dApp is enabled. Similarly, in the Arena
testbed, the throughput decreases slightly from 77.98Mbps without
the dApp to 76.37Mbps with the dApp. Although the average values
may suggest performance degradation, the confidence intervals in Table
3 indicate that throughput takes values within the same confidence
range, demonstrating that the dApp introduces minimal overhead and
maintains performance parity.

In the case where the Incumbent is present (i.e., when Incumbent =
Y), the RF signals of gNB and incumbent interfere with each other. The
lack of spectrum sharing (cases where dApp = N and Incumbent = Y)
causes the gNB to use PRBs affected by interference, which significantly
degrades the UE throughput by nearly 50% across both testbeds. We
instead notice that the presence of the spectrum sharing dApp (cases
where dApp = Y and Incumbent = Y) is beneficial, as the blocking of
PRBs affected by interference allows the sharing of a portion of the
spectrum with the incumbent while preventing disruptive interference.
This brings a slight improvement of the UE throughput because pre-
venting the use of interfered PRBs results in less interference, lower
errors and reduced need for retransmissions.

7.2. Use case: Sensing and positioning

Cellular operations at higher frequencies enable the use of wider
bandwidths (e.g., Frequency Range 2 (FR2), Frequency Range 3 (FR3),
and THz) and massive antenna arrays. Thanks to these technologies,
beyond 5G systems are expected to offer not only higher data rates
but also high-resolution positioning and environment sensing capabil-
ities [50]. In current UL-based positioning methods, the gNB derives
specific positioning-related measurements (defined in 3GPP standards)
from the UL channel estimates and forwards them to the Location

14
Management Function (LMF) entity within the 5G core network. These
measurements can be encoded into a few bits and are generally derived
from low-complexity signal processing algorithms to comply with the
real-time nature of the gNB.

On the other hand, super-resolution and ML-based algorithms offer
precise sensing and positioning capabilities that outperform conven-
tional algorithms [51,52]. However, they usually require data that is
not accessible from outside the RAN, such as the CIR. Therefore, dApps
are a natural tool to address this problem.

In our recent work [53], we have used the dApp framework in an
UL ranging/positioning system, where the distance between the UE and
gNB is computed based on the UE’s UL CIR available at the gNB and
exposed to the dApp. To demonstrate this method, we have developed
a testbed consisting of an OAI gNB (enhanced with the E3 agent), a
ranging dApp, and OAI UE. The dApp connects with the OAI gNB using
the E3 agent and performs the following tasks: (i) extracts multiple
wideband UL CIR measurements of a UE from the gNB; and (ii) runs a
super-resolution algorithm [53] on the collected CIR measurements to
find the distance between the UE and the gNB.

The above described ranging dApp framework is tested and val-
idated with real-world experiments. The experimental setup consists
of a single antenna gNB and a UE communicate over a line-of-sight
channel. The gNB and the UE rely on the OAI protocol stack and
USRP B210 software-defined boards. Furthermore, the SC2430 NR
signal conditioning module is used as an external RF front-end at the
gNB [54]. The system operates at band n78 with a carrier frequency of
3.69GHz and a bandwidth of 40MHz.

Performance Evaluation – The performance of the proposed rang-
ing scheme is evaluated in terms of empirical Cumulative Distribution
Function (CDF) of the distance estimation error at an UL SNR of −20
dB. The CDF is obtained from 48,000 CIR measurements by fixing the
position of the gNB and moving the UE in a straight line between 3 to
10 meters with a 1-meter increment. At every point, a total of 6000
measurements are collected. The ranging dApp is used to extract these
measurements as shown in Fig. 12. The CDF of the range estimation
error with a super resolution Multiple Signal Classification (MUSIC)
algorithm with 𝑀=20 to 60 number of CIR measurements is shown
in Fig. 13. For details on ranging algorithms and prototype design,
we refer the readers to [53]. While the ranging dApp here is used to
collect measurements during the experiment, which are then processed
offline to obtain the range error CDF, it is important to highlight that
it can also be used for real-time CIR collection and distance evaluation.
The measurement collection latency performance is similar to that
described in Section 6.3.

8. Conclusions

In this paper, we introduced an extension of the O-RAN architecture
focused on enabling (i) real-time control in the RAN, and (ii) the
interaction of the O-RAN stack with the user-plane of the network. This
is achieved through dApps, lightweight microservices co-located with
DUs and CUs, and holistically managed through components such as the
RICs and SMO. We first described the role that dApps have in enabling

A. Lacava et al. Computer Networks 269 (2025) 111342
Fig. 12. Setup for the Sensing and Positioning dApp and UL CIR extracted by the dApp.
Fig. 13. Cumulative Distribution Function (CDF) of the range estimation error.

new use cases for RAN optimization, including inference based on I/Q
samples, reference signals available at the physical layer, or as complex
ISAC systems. Based on the data and control requirements defined by
these use cases, we discussed the architecture for the integration of
dApps and RAN nodes. We also provided insights on the design and im-
plementation of a set of APIs that RAN nodes need to expose to dApps,
coordinated by an API broker called E3 agent. We then discussed
the LCM for dApps, including steps for development, onboarding, and
deployment of dApps, as well as procedures for interaction with the
RICs and SMO.

Then, we proposed a reference implementation for dApps based on
OAI, which is publicly available to enable research and development
15
of applications and use cases relying on real-time control loops in
Open RAN. We described the dApp framework, based on Python, and
the integration with OAI. We then presented two use cases based on
our reference implementation. For the spectrum sharing one, a dApp
performs spectrum sensing at the DU, understands which portions of
the spectrum are occupied by incumbents, and coordinates with the
DU scheduler to avoid scheduling over it. In the analysis of this use
case, results show that while the presence of a continuous incumbent
affects the performance of the 5G network, the use of a dApp enables
the sharing of the spectrum bringing a slight improvement of the 5G
network performance.

A. Lacava et al.

Computer Networks 269 (2025) 111342
For the positioning use case, the dApp processes uplink reference
signals to extract the uplink channel response and perform ranging
for the UE. We profiled the performance of our dApp framework,
demonstrating that real-time control loops under 1ms are achievable
in O-RAN. In our implementation, the average control loop duration is
slightly less than 400 μs, on average.

As part of our future work, we are extending the dApp framework to
other open stacks, including NVIDIA ARC-OTA [55], and integrate the
dApps in a continuous integration, deployment, and testing framework
to continuously test it on and up-to-date gNB protocol stack.

CRediT authorship contribution statement

Andrea Lacava: Writing – review & editing, Writing – original draft,
Software, Resources, Methodology, Data curation. Leonardo Bonati:
Writing – review & editing, Writing – original draft, Software, Method-
ology. Niloofar Mohamadi: Writing – original draft, Formal analysis.
Rajeev Gangula: Software, Conceptualization. Florian Kaltenberger:
Writing – review & editing, Supervision. Pedram Johari: Writing
– review & editing, Project administration, Formal analysis. Salva-
tore D’Oro: Writing – review & editing, Validation, Investigation.
Francesca Cuomo: Supervision. Michele Polese: Writing – original
draft, Validation, Supervision, Project administration, Funding acqui-
sition. Tommaso Melodia: Writing – review & editing, Validation,
Supervision, Project administration, Investigation, Funding acquisition.
16
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This article is based upon work partially supported by OUSD(R&E)
through Army Research Laboratory Cooperative Agreement Number
W911NF-24-2-0065. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein. The work
was also partially supported by SERICS (PE00000014) 5GSec project,
CUP B53C22003990006, under the MUR National Recovery and Re-
silience Plan funded by the European Union - NextGenerationEU, and
by the U.S. National Science Foundation under grants CNS-1925601,
CNS-2117814, and CNS-2112471.

Appendix. dApp deployment process

The following table provides a detailed breakdown of the LCM
process for the dApp, outlining the steps, roles, and conditions involved
in its deployment and operation.
Table A.4
dApp Deployment.
 Use case stages and Evolution/Specification
 Goal To instantiate and configure a dApp on theCU/DU, facilitating

its deployment, management, and operationalization directly
via the SMO and the CU/DU.

 Actors and Roles ∙ SMO (Service Management and Orchestration):
Orchestrates the deployment, configuration, and lifecycle
management of the dApp.
∙ DU (Distributed Unit): Possible host of the dApp and
provides necessary network and compute resources for its
operation.
∙ CU (Central Unit): Possible host the dApp and provides
necessary network and compute resources for its operation.
∙ Network Function Orchestration (NFO): Interfaces with the
DU for deploying and configuring the dApp.
∙ Deployment Management Services (DMS): Manages the
deployment resources on the DU.

 Assumptions ∙ The SMO and CU/DU are available and operational.
∙ The dApp package has been validated, verified, and
cataloged in the SMO’s runtime library.
∙ The DU is pre-configured and ready to host dApp instances.

 Preconditions ∙ The dApp is onboarded and certified within the SMO.
∙ The CU/DU has the necessary resources and access to the
container images required for the dApp deployment.

 Begins When A Network Function Install Project Manager initiates a request
to the SMO for deploying a new dApp instance on the CU/DU.

 Step 1 (M) The SMO receives a service request to deploy the dApp
instance on the CU/DU.

 Step 2 (M) The SMO decomposes the service request and identifies all
dApps to be deployed and their deployment order.

 Step 3 (M) The SMO determines which DU, or CU, and deployment
parameters to use. This is based on policies or explicit input
from the Network Function Install Project Manager.

 Step 4 (M) The SMO retrieves the CloudNativeDescriptor for the dApp
from the runtime library.

 (continued on next page)

A. Lacava et al. Computer Networks 269 (2025) 111342
Table A.4 (continued).
 Use case stages and Evolution/Specification
 Step 5 (M) The SMO directs the O-Cloud DMS using O2 to create the

dApp deployment.

 Step 6 (M) DMS allocates the necessary compute, storage, and network
resources on the CU/DU as per the dApp deployment request.

 Step 7 (M) The SMO sets up the initial configuration for the dApp, such
as environment variables, network policies, and access
parameters.

 Step 8 (M) DMS deploys the dApp container(s) on the CU/DU, setting up
the necessary resources and connectivity.

 Step 9 (M) DMS notifies the SMO that the dApp deployment has been
successfully instantiated and provides a Deployment ID.

 Step 10 (M) The SMO updates its dApp inventory with the new
Deployment ID and deployment status.

 Step 11 (M) The deployed dApp instance reads its initial configuration
from the provided parameters and begins its operation.

 Step 12 (O) The SMO continuously monitors the dApp’s health,
performance, and connectivity. It can also perform scaling,
updates, or redeployment as required.

 Step 13 (M) The SMO informs the Network Function Install Project
Manager of the overall success or failure of the request.

 Ends When The dApp instance is successfully deployed, configured, and
operational on the CU/DU, with the SMO actively managing
its lifecycle.

 Post Conditions ∙ The dApp is actively running and functional on the CU/DU.
∙ The SMO has an updated inventory reflecting the deployed
dApp, and lifecycle management is in place.

 Exceptions If the deployment fails, the DMS notifies the SMO, and the
SMO informs the Network Function Install Project Manager to
take corrective actions.

Data availability

Data will be made available on request.

References

[1] D. Johnson, D. Maas, J. Van Der Merwe, NexRAN: Closed-loop RAN slicing in
POWDER-A top-to-bottom open-source open-RAN use case, in: Proceedings of the
15th ACM Workshop on Wireless Network Testbeds, Experimental Evaluation &
CHaracterization, 2022, pp. 17–23.

[2] M. Polese, L. Bonati, S. D’Oro, S. Basagni, T. Melodia, ColO-RAN: Developing ma-
chine learning-based xApps for open RAN closed-loop control on programmable
experimental platforms, IEEE Trans. Mob. Comput. 22 (10) (2022) 5787–5800.

[3] A. Lacava, M. Polese, R. Sivaraj, R. Soundrarajan, B.S. Bhati, T. Singh, T. Zugno,
F. Cuomo, T. Melodia, Programmable and customized intelligence for traffic
steering in 5G networks using open RAN architectures, IEEE Trans. Mob. Comput.
23 (4) (2024) 2882–2897.

[4] M. Dryjański, Ł. Kułacz, A. Kliks, Toward modular and flexible open ran
implementations in 6G networks: Traffic steering use case and O-RAN xApps,
Sensors 21 (24) (2021) 8173.

[5] K. Suzuki, J. Nakazato, Y. Sasaki, K. Maruta, M. Tsukada, H. Esaki, Toward
B5G/6G connected autonomous vehicles: O-RAN-Driven millimeter-wave beam
management and handover management, in: IEEE Conference on Computer
Communications Workshops, INFOCOM WKSHPS, 2024, pp. 1–6.

[6] L. Kundu, X. Lin, R. Gadiyar, Towards energy efficient RAN: From industry
standards to trending practice, 2024, arXiv preprint arXiv:2402.11993.

[7] O.T. Başaran, M. Başaran, D. Turan, H.G. Bayrak, Y.S. Sandal, Deep autoencoder
design for RF anomaly detection in 5G O-RAN near-RT RIC via xApps, in: 2023
IEEE International Conference on Communications Workshops, ICC Workshops,
IEEE, 2023, pp. 549–555.

[8] A. Tripathi, J.S.R. Mallu, M.H. Rahman, A. Sultana, A. Sathish, A. Huff,
M. Roy Chowdhury, A.P. Da Silva, End-to-end O-RAN control-loop for radio
resource allocation in SDR-based 5G network, in: IEEE Military Communications
Conference, MILCOM, 2023, pp. 253–254.

[9] A. Al-Shawabka, F. Restuccia, S. D’Oro, T. Jian, B.C. Rendon, N. Soltani, J.
Dy, S. Ioannidis, K. Chowdhury, T. Melodia, Exposing the fingerprint: Dissecting
the impact of the wireless channel on radio fingerprinting, in: IEEE INFOCOM
2020-IEEE Conference on Computer Communications, IEEE, 2020, pp. 646–655.

[10] S.-D. Wang, H.-M. Wang, C. Feng, V.C.M. Leung, Sequential anomaly detection
against demodulation reference signal spoofing in 5G NR, IEEE Trans. Veh.
Technol. 72 (1) (2023) 1291–1295.
17
[11] D. Uvaydov, S. D’Oro, F. Restuccia, T. Melodia, Deepsense: Fast wideband
spectrum sensing through real-time in-the-loop deep learning, in: IEEE INFOCOM
2021-IEEE Conference on Computer Communications, IEEE, 2021, pp. 1–10.

[12] R. Chen, J.-M. Park, Y.T. Hou, J.H. Reed, Toward secure distributed spectrum
sensing in cognitive radio networks, IEEE Commun. Mag. 46 (4) (2008) 50–55.

[13] F. Liu, Y. Cui, C. Masouros, J. Xu, T.X. Han, Y.C. Eldar, S. Buzzi, Integrated
sensing and communications: Toward dual-functional wireless networks for 6G
and beyond, IEEE J. Sel. Areas Commun. 40 (6) (2022) 1728–1767.

[14] Z. Qadir, K.N. Le, N. Saeed, H.S. Munawar, Towards 6G Internet of Things:
Recent advances, use cases, and open challenges, ICT Express 9 (3) (2023)
296–312.

[15] S. D’Oro, M. Polese, L. Bonati, H. Cheng, T. Melodia, dApps: Distributed
applications for real-time inference and control in O-RAN, IEEE Commun. Mag.
60 (11) (2022) 52–58.

[16] W.-H. Ko, U. Ghosh, U. Dinesha, R. Wu, S. Shakkottai, D. Bharadia, EdgeRIC:
Empowering real-time intelligent optimization and control in nextg cellular
networks, in: 21st USENIX Symposium on Networked Systems Design and
Implementation, NSDI 24, 2024, pp. 1315–1330.

[17] P.S. Upadhyaya, N. Tripathi, J. Gaeddert, J.H. Reed, Open AI cellular (OAIC):
An open source 5G O-RAN testbed for design and testing of AI-based RAN
management algorithms, IEEE Netw. 37 (5) (2023) 7–15.

[18] C. Liu, G. Aravinthan, A. Kak, N. Choi, TinyRIC: Supercharging O-RAN base
stations with real-time control, in: Proceedings of the 29th Annual International
Conference on Mobile Computing and Networking, in: ACM MobiCom ’23,
Association for Computing Machinery, New York, NY, USA, 2023.

[19] Northeastern University, NVIDIA, Mavenir, MITRE, Qualcomm, dApps for
Real-Time RAN Control: Use Cases and Requirement, Research Report, O-
RAN next Generation Research Group (nGRG), 2024, report ID: RR-2024-10,
[Online]. Available: https://mediastorage.o-ran.org/ngrg-rr/nGRG-RR-2024-10-
dApp%20use%20cases%20and%20requirements.pdf.

[20] M. Polese, L. Bonati, S. D’Oro, P. Johari, D. Villa, S. Velumani, R. Gangula, M.
Tsampazi, C.P. Robinson, G. Gemmi, et al., Colosseum: The open RAN digital
twin, IEEE Open J. Commun. Soc. (2024).

[21] L. Bertizzolo, L. Bonati, E. Demirors, A. Al-shawabka, S. D’Oro, F. Restuccia,
T. Melodia, Arena: A 64-antenna SDR-based ceiling grid testing platform for
Sub-6GHz 5G-and-beyond radio spectrum research, Comput. Netw. 181 (2020)
107436, [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1389128620311257.

[22] M. Polese, L. Bonati, S. D’oro, S. Basagni, T. Melodia, Understanding O-RAN:
Architecture, interfaces, algorithms, security, and research challenges, IEEE
Commun. Surv. Tutor. (2023).

http://refhub.elsevier.com/S1389-1286(25)00309-3/sb1
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb1
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb1
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb1
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb1
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb1
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb1
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb2
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb2
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb2
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb2
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb2
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb3
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb3
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb3
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb3
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb3
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb3
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb3
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb4
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb4
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb4
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb4
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb4
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb5
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb5
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb5
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb5
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb5
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb5
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb5
http://arxiv.org/abs/2402.11993
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb7
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb7
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb7
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb7
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb7
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb7
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb7
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb8
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb8
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb8
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb8
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb8
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb8
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb8
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb9
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb9
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb9
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb9
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb9
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb9
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb9
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb10
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb10
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb10
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb10
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb10
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb11
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb11
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb11
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb11
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb11
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb12
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb12
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb12
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb13
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb13
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb13
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb13
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb13
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb14
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb14
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb14
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb14
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb14
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb15
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb15
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb15
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb15
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb15
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb16
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb16
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb16
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb16
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb16
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb16
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb16
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb17
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb17
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb17
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb17
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb17
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb18
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb18
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb18
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb18
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb18
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb18
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb18
https://mediastorage.o-ran.org/ngrg-rr/nGRG-RR-2024-10-dApp%2520use%2520cases%2520and%2520requirements.pdf
https://mediastorage.o-ran.org/ngrg-rr/nGRG-RR-2024-10-dApp%2520use%2520cases%2520and%2520requirements.pdf
https://mediastorage.o-ran.org/ngrg-rr/nGRG-RR-2024-10-dApp%2520use%2520cases%2520and%2520requirements.pdf
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb20
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb20
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb20
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb20
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb20
https://www.sciencedirect.com/science/article/pii/S1389128620311257
https://www.sciencedirect.com/science/article/pii/S1389128620311257
https://www.sciencedirect.com/science/article/pii/S1389128620311257
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb22
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb22
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb22
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb22
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb22

A. Lacava et al.

Computer Networks 269 (2025) 111342
[23] A.S. Abdalla, P.S. Upadhyaya, V.K. Shah, V. Marojevic, Toward next generation
open radio access networks: What O-RAN can and cannot do! IEEE Netw. 36 (6)
(2022) 206–213.

[24] X. Foukas, B. Radunovic, M. Balkwill, Z. Lai, Taking 5G RAN analytics and
control to a new level, in: Proceedings of the 29th Annual International
Conference on Mobile Computing and Networking, in: ACM MobiCom ’23,
Association for Computing Machinery, New York, NY, USA, 2023.

[25] S. Maxenti, S. D’Oro, L. Bonati, M. Polese, A. Capone, T. Melodia, ScalO-RAN:
Energy-aware network intelligence scaling in open RAN, in: Proc. of IEEE Intl.
Conf. on Computer Communications, INFOCOM, 2024.

[26] L. Baldesi, F. Restuccia, T. Melodia, ChARM: NextG spectrum sharing through
data-driven real-time O-RAN dynamic control, in: IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications, 2022, pp. 240–249.

[27] D. Villa, D. Uvaydov, L. Bonati, P. Johari, J.M. Jornet, T. Melodia, Twinning
Commercial Radio Waveforms in the Colosseum Wireless Network Emulator,
in: Proceedings of the 17th ACM Workshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization, 2023, pp. 33–40.

[28] M. Polese, F. Restuccia, T. Melodia, DeepBeam: Deep waveform learning for
coordination-free beam management in mmWave networks, in: Proceedings of
the Twenty-Second International Symposium on Theory, Algorithmic Founda-
tions, and Protocol Design for Mobile Networks and Mobile Computing, 2021,
pp. 61–70.

[29] J. Groen, M. Belgiovine, U. Demir, B. Kim, K. Chowdhury, TRACTOR: Traffic
analysis and classification tool for open RAN, in: ICC 2024 - IEEE International
Conference on Communications, 2024, pp. 4894–4899.

[30] O-RAN Working Group 3, O-RAN E2 service model (E2SM), lower layers control
1.0, 2025, ORAN-WG3.TS.E2SM-LLC-R004-v01.00 Technical Specification.

[31] Y. Chen, Y.T. Hou, W. Lou, J.H. Reed, S. Kompella, M3: A sub-millisecond
scheduler for multi-cell MIMO networks under C-RAN architecture, in: IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications, 2022, pp.
130–139.

[32] Qualcomm, Dell Technologies, Spectrum Sharing based on Shared O-RUs, Re-
search Report, O-RAN next Generation Research Group (nGRG), 2023, Report ID:
RR-2023-05, [Online]. Available: https://mediastorage.o-ran.org/ngrg-rr/nGRG-
RR-2023-05-Spectrum_Sharing_with_Shared_O-RU-v1_0.pdf.

[33] M. Giordani, M. Polese, A. Roy, D. Castor, M. Zorzi, A tutorial on beam
management for 3GPP NR at mmWave frequencies, IEEE Commun. Surv. &
Tutorials 21 (1) (2019) 173–196.

[34] H. Cheng, P. Johari, M.A. Arfaoui, F. Periard, P. Pietraski, G. Zhang, T. Melodia,
Real-time AI-enabled CSI feedback experimentation with open RAN, in: 2024
19th Wireless on-Demand Network Systems and Services Conference, WONS,
2024, pp. 121–124.

[35] I. Palamà, S. Bartoletti, G. Bianchi, N.B. Melazzi, 5G positioning with SDR-based
open-source platforms: Where do we stand? in: 2022 IEEE 11th IFIP International
Conference on Performance Evaluation and Modeling in Wireless and Wired
Networks, PEMWN, 2022, pp. 1–6.

[36] 3GPP, Management and Orchestration; 5G Performance Measurements, Technical
Specification (TS) 28.552, 3rd Generation Partnership Project (3GPP), 2022,
Version 17.6.0, [Online]. Available: http://www.3gpp.org/DynaReport/28552.
htm.

[37] 3GPP, Telecommunication Management; Performance Management (PM); Per-
formance Measurements Evolved Universal Terrestrial Radio Access Network
(E-UTRAN), Technical Specification (TS) 32.425, 3rd Generation Partnership
Project (3GPP), 2021, Version 17.1.0, [Online]. Available: http://www.3gpp.org/
DynaReport/32425.htm.
18
[38] O-RAN Working Group 3, O-RAN near-real-time RAN intelligent controller E2
service model 2.00, 2021, ORAN-WG3.E2SM-v02.00 Technical Specification.

[39] O-RAN Working Group 10, O-RAN 0perations and maintenance architecture,
2024, ORAN-WG10O.OAM-Architecture-R004 Technical Specification.

[40] O-RAN Working Group 6, Cloudification and orchestration use cases and require-
ments for O-RAN virtualized RAN, 2024, O-RAN-WG6.ORCH-USE-CASES-R003-
v11.00 Technical Specification.

[41] P. Hintjens, ZeroMQ: Messaging for Many Applications, O’Reilly Media, 2013.
[42] zhchai, libzmq not support SCTP transport, 2017, Github issue on the

ZeroMQ project repository, [Online]. Available: https://github.com/zeromq/
libzmq/issues/2620.

[43] F. Kaltenberger, T. Melodia, I. Ghauri, M. Polese, R. Knopp, T.T. Nguyen,
S. Velumani, D. Villa, L. Bonati, R. Schmidt, et al., Driving innovation in
6G wireless technologies: The OpenAirInterface approach, 2024, arXiv preprint
arXiv:2412.13295.

[44] F. Kaltenberger, A.P. Silva, A. Gosain, L. Wang, T.-T. Nguyen, OpenAirIn-
terface: Democratizing innovation in the 5G era, Comput. Netw. 176 (2020)
107284, [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1389128619314410.

[45] F.A. Bimo, F. Feliana, S.-H. Liao, C.-W. Lin, D.F. Kinsey, J. Li, R. Jana, R.
Wright, R.-G. Cheng, OSC community lab: The integration test bed for O-RAN
software community, in: 2022 IEEE Future Networks World Forum, FNWF, 2022,
pp. 513–518, ISSN: 2770-7679, [Online]. Available: https://ieeexplore.ieee.org/
document/10056724.

[46] R. Schmidt, M. Irazabal, N. Nikaein, FlexRIC: an SDK for next-generation
SD-RANs, in: Proceedings of the 17th International Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT ’21, Association for Computing
Machinery, New York, NY, USA, 2021, pp. 411–425, http://dx.doi.org/10.1145/
3485983.3494870.

[47] R. Mundlamuri, R. Gangula, F. Kaltenberger, R. Knopp, 5G NR positioning
with OpenAirInterface: Tools and methodologies, in: 20th Wireless on-Demand
Network Systems and Services Conference, WONS, 2025.

[48] R. Gangula, A. Lacava, M. Polese, S. D’Oro, L. Bonati, F. Kaltenberger, P.
Johari, T. Melodia, Listen-While-Talking: Toward dApp-based Real-Time Spec-
trum Sharing in O-RAN, in: MILCOM 2024-2024 IEEE Military Communications
Conference, MILCOM, IEEE, 2024, pp. 651–652.

[49] 3GPP, NR; Physical Layer Procedures for Data, Technical Specification (TS)
38.214, 3rd Generation Partnership Project (3GPP), 2024, Version 18.4.0,
[Online]. Available: http://www.3gpp.org/DynaReport/38214.htm.

[50] A. Bourdoux, A.N. Barreto, B. van Liempd, C. de Lima, D. Dardari, D. Belot, E.-S.
Lohan, G. Seco-Granados, H. Sarieddeen, H. Wymeersch, et al., 6G White Paper
on Localization and Sensing, 2020, arXiv preprint arXiv:2006.01779.

[51] A. Nessa, B. Adhikari, F. Hussain, X.N. Fernando, A survey of machine learning
for indoor positioning, IEEE Access 8 (2020) 214945–214965.

[52] X. Li, K. Pahlavan, Super-resolution TOA estimation with diversity for indoor
geolocation, IEEE Trans. Wirel. Commun. 3 (1) (2004) 224–234.

[53] R. Gangula, T. Melodia, R. Mundlamuri, F. Kaltenberger, Round trip time
estimation utilizing cyclic shift of uplink reference signal, 2024, arXiv preprint
arXiv:2410.04528.

[54] SignalCraft, https://www.signalcraft.com/products/test-measurement/
microwave-systems/sc2430/.

[55] D. Villa, I. Khan, F. Kaltenberger, N. Hedberg, R.S. da Silva, S. Maxenti, L. Bonati,
A. Kelkar, C. Dick, E. Baena, et al., X5G: An open, programmable, multi-vendor,
end-to-end, private 5G O-RAN testbed with NVIDIA ARC and OpenAirInterface,
2024, arXiv preprint arXiv:2406.15935.

http://refhub.elsevier.com/S1389-1286(25)00309-3/sb23
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb23
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb23
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb23
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb23
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb24
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb24
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb24
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb24
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb24
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb24
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb24
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb25
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb25
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb25
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb25
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb25
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb26
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb26
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb26
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb26
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb26
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb27
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb27
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb27
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb27
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb27
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb27
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb27
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb28
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb28
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb28
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb28
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb28
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb28
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb28
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb28
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb28
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb29
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb29
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb29
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb29
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb29
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb30
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb30
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb30
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb31
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb31
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb31
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb31
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb31
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb31
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb31
https://mediastorage.o-ran.org/ngrg-rr/nGRG-RR-2023-05-Spectrum_Sharing_with_Shared_O-RU-v1_0.pdf
https://mediastorage.o-ran.org/ngrg-rr/nGRG-RR-2023-05-Spectrum_Sharing_with_Shared_O-RU-v1_0.pdf
https://mediastorage.o-ran.org/ngrg-rr/nGRG-RR-2023-05-Spectrum_Sharing_with_Shared_O-RU-v1_0.pdf
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb33
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb33
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb33
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb33
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb33
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb34
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb34
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb34
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb34
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb34
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb34
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb34
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb35
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb35
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb35
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb35
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb35
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb35
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb35
http://www.3gpp.org/DynaReport/28552.htm
http://www.3gpp.org/DynaReport/28552.htm
http://www.3gpp.org/DynaReport/28552.htm
http://www.3gpp.org/DynaReport/32425.htm
http://www.3gpp.org/DynaReport/32425.htm
http://www.3gpp.org/DynaReport/32425.htm
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb38
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb38
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb38
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb39
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb39
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb39
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb40
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb40
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb40
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb40
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb40
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb41
https://github.com/zeromq/libzmq/issues/2620
https://github.com/zeromq/libzmq/issues/2620
https://github.com/zeromq/libzmq/issues/2620
http://arxiv.org/abs/2412.13295
https://www.sciencedirect.com/science/article/pii/S1389128619314410
https://www.sciencedirect.com/science/article/pii/S1389128619314410
https://www.sciencedirect.com/science/article/pii/S1389128619314410
https://ieeexplore.ieee.org/document/10056724
https://ieeexplore.ieee.org/document/10056724
https://ieeexplore.ieee.org/document/10056724
http://dx.doi.org/10.1145/3485983.3494870
http://dx.doi.org/10.1145/3485983.3494870
http://dx.doi.org/10.1145/3485983.3494870
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb47
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb47
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb47
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb47
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb47
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb48
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb48
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb48
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb48
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb48
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb48
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb48
http://www.3gpp.org/DynaReport/38214.htm
http://arxiv.org/abs/2006.01779
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb51
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb51
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb51
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb52
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb52
http://refhub.elsevier.com/S1389-1286(25)00309-3/sb52
http://arxiv.org/abs/2410.04528
https://www.signalcraft.com/products/test-measurement/microwave-systems/sc2430/
https://www.signalcraft.com/products/test-measurement/microwave-systems/sc2430/
https://www.signalcraft.com/products/test-measurement/microwave-systems/sc2430/
http://arxiv.org/abs/2406.15935

	dApps: Enabling real-time AI-based Open RAN control
	Introduction
	Related Work and Comparison with Real-time RIC
	The Role of dApps in the Hierarchical O-RAN Control Architecture
	dApp Service-based Architecture and Integration with RAN Nodes
	dApps Data, Telemetry, and Control Flows
	Service-Based dApps E3 api Endpoint
	dApp and RAN interactions over E3
	E2SM-DAPP: a service model for managing interactions between dApps and xApps

	dApp Lifecycle and Interaction with Near-RT RIC, Non-RT RIC, and SMO
	Development
	Onboarding
	Deployment

	A Reference Open-Source dApp Framework
	dApp Framework
	OpenAirInterface and T-tracer
	Evaluating real-time capabilities of dApps

	Empowering ran control through dApps: use cases
	Use Case: Spectrum Sharing
	Use Case: Sensing and Positioning

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. dApp Deployment Process
	Data availability
	References

