ZipLLM: Efficient LLM Storage via Model-Aware Synergistic Data Deduplication
and Compression

Zirui Wang', Tingfeng Lan', Zhaoyuan Su', Juncheng Yang?, Yue Cheng!
1University of Virginia, 2Harvard University

Abstract

Modern model hubs, such as Hugging Face, store tens of
petabytes of LLMs, with fine-tuned variants vastly outnumber-
ing base models and dominating storage consumption. Exist-
ing storage reduction techniques—such as deduplication and
compression—are either LLM-oblivious or not compatible
with each other, limiting data reduction effectiveness.

Our large-scale characterization study across all publicly
available Hugging Face LLM repositories reveals several key
insights: (1) fine-tuned models within the same family exhibit
highly structured, sparse parameter differences suitable for
delta compression; (2) bitwise similarity enables LLM family
clustering; and (3) tensor-level deduplication is better aligned
with model storage workloads, achieving high data reduc-
tion with low metadata overhead. Building on these insights,
we design BitX, an effective, fast, lossless delta compression
algorithm that compresses the XORed difference between
fine-tuned and base LLMs. We build ZipLLM, a model storage
reduction pipeline that unifies tensor-level deduplication and
lossless BitX compression. By synergizing deduplication and
compression around LLM family clustering, ZipLLM reduces
model storage consumption by 54%, over 20% higher than
state-of-the-art deduplication and compression approaches.

1 Introduction

Large language models (LLMs) have become foundational
tools in modern artificial intelligence (AI). With the rapid
progress in open-source LLM development [35,45,47-49],
millions of LLMs are now publicly available through model
hubs such as Hugging Face [21] and TensorFlow Hub [26].
These platforms support uploads, downloads, and sharing of
base models and fine-tuned variants, enabling users to adapt
models to diverse downstream tasks with minimal effort.

This trend has led to an explosion in the number of hosted
models. As shown in Figure |, Hugging Face alone hosts over
14 petabytes (PB) of models (as of Q1 2025), with storage
volume growing exponentially, posing a serious threat to the
sustainability of machine learning (ML) infrastructure.

Two observations underscore this challenge. First, fine-
tuned LLMs vastly outnumber base models and contribute
disproportionately to overall storage footprint, despite being
only slight modifications. Second, LLM storage is dominated
by two floating-point formats: BF16 and FP32. While FP32
is popular in terms of model count (often in smaller models
such as those for computer vision), BF16 accounts for the

g Tensor Dedup

—
N
o

1034 - Model Count (x) r104

9 —— Total Size (TB) _.-/ s Layer Dedup 38
bt ’ 11038 2
=102 < 8 2
é 1 02 g &5 BltX\J‘} 9
n X Lg+
g 104 = ks ZipLL‘ﬁ 2
B 1013 g
S 1004 = @FastCDC 725
t100 @ zstd AZIpNN ”EE

202020212022202320242025 0 20 30 40 50 °
Year Data Reduction Ratio (%)

Figure 1: Left: Hugging Face’s model count and storage consump-
tion grow exponentially. Right: ZipLLM achieves both high data
reduction and throughput. ZipLLM represents the end-to-end system
throughput. while BitX shows the compression kernel throughput.

majority of total LLM storage size. These trends highlight
the need to prioritize LLM-specific storage patterns in future
optimizations.

We collect all public LLM repositories from Hugging Face
(Cutoff date March 2025) and conduct a first-of-its-kind, large-
scale study focusing on LLM storage. Our analysis leads to
the following insights:

* Element-wise weight deltas are small and structured
within LLM model families. Fine-tuned models derived
from the same base exhibit tiny differences, making them
ideal for lossless delta compression.

 Bitwise similarity enables LLM clustering and lineage
tracking. Bit distance, a new metric that we propose, based
on the bitwise Hamming distance, serves as a lightweight,
robust signal for identifying LLM families and potentially
supporting applications like model provenance, duplicate
detection, and clustering.

* Chunk-based deduplication is LLM-oblivious and sub-
optimal for modern model storage. Chunk-level dedupli-
cation, such as content-defined chunking (CDC) [53,56,82],
operates on raw byte streams without LLM structure aware-
ness, resulting in the loss of crucial information needed for
effective model-aware compression. It also scales poorly
with storage capacity.

¢ Model-aware, tensor-level deduplication is well-suited
for LLM-aware lossless compressors, offering reasonable
data reduction, but with significantly higher performance
and lower metadata overhead compared to CDC.

This paper makes the following contributions:

* We conduct a comprehensive analysis of Hugging Face’s
massive-scale model repository, with a focus on how LLM

Table 1: Comparison of model storage reduction techniques. Note that existing solutions are limited to use either deduplication or compression.

Solution Compression Deduplication Cross-model Throughput Storage Reduction Cons & Pros

HuggingFace Xet [79] No Yes Yes Low High No compression support

ELF [70] Yes No No High High Lossy compression

ZipNN [30] Yes No No Medium Medium Ignores cross-model redundancy

FM-Delta [58] Yes No Yes Low Medium Requires identical model structure; lacks BF16 support
ZipLLM (ours) Yes Yes Yes High High Lossless and model structure-aware dedup and compression

family structure impacts storage redundancy and compres-
sion effectiveness.

* We introduce a novel metric, bit distance, to quantify the
similarity between fine-tuned models and their base models.

* Building on this, we design BitX, a highly effective, fast,
lossless delta compression algorithm that compresses LLM
variants by encoding XOR-based deltas.

» We identify a new ML system design principle: for modern
model storage systems, deduplication and lossless compres-
sion must be co-designed and unified to fully exploit model
structure and redundancy.

e We build ZipLLM, a model storage reduction pipeline that
synergizes tensor-level deduplication and lossless BitX com-
pression, achieving higher storage savings for large-scale
LLM repositories.

Evaluation results show that ZipLLM reduces the storage
size of 3,048 sampled LLMs by 54.1%, 20% higher than the
state-of-the-art methods. Meanwhile, ZipLLM achieves 2 x
higher compression throughput (Figure 1). Our implemen-
tation is publicly available at: https://github.com/ds2-
lab/ZipLLM.

2 Background and Related Work

This section reviews existing techniques for reducing data
storage, including both general-purpose and model-aware ap-
proaches. A high-level comparison of model storage compres-
sion and deduplication methods is summarized in Table 1.

2.1 Traditional Storage Reduction

General-purpose Compression. General-purpose data com-
pression techniques, such as Zstandard (zstd) [11] and
Brotli [5], are widely used in storage systems to reduce
data size by exploiting local byte-level redundancy through
methods like dictionary-based compression [77,91] and en-
tropy coding [16, 20, 32, 44, 62, 74]. While these methods
are data-type agnostic, further compression gains can be
achieved when the data type is known. For instance, run-
length encoding and delta encoding are highly effective for
low-entropy [69] and file changes [43, 73], and specialized
techniques have been developed for columnar and time-series
datasets [9,10,36,37,41,75].

Lossy compression methods—such as ZFP [18,40] and
SZ [17,38,71]—though effective in scientific domains, are
unsuitable for model storage due to their inability to guarantee
exact recovery. Similarly, while quantization is a popular lossy
compression approach for model inference [15,22,39, 83,87,
88], it is a user-driven choice and orthogonal to storage system

design. For model storage, lossless compression that preserves
floating-point precision remains essential for correctness.

General-purpose Deduplication. Deduplication is a widely
used technique for reducing storage footprint by identifying
and storing only unique data blocks, replacing duplicates
with references. File-level deduplication, used in systems
like Git LFS [25], eliminates exact file copies with mini-
mal metadata overhead but cannot detect partial redundancy.
Chunk-level deduplication, especially content-defined chunk-
ing (CDC) [53,59, 82], addresses this by splitting files into
variable-sized chunks based on content, enabling more ef-
fective duplicate detection despite insertions or shifts. CDC
has been adopted in production systems such as NetApp ON-
TAP [54,55] and Dell EMC Data Domain [13, 14]. However,
CDC is ill-suited for model storage due to high metadata
overhead from massive variable-sized chunks, making it im-
practical for processing large-scale model storage efficiently.

2.2 Model-aware Storage Reduction

Model-aware Compression. State-of-the-art model-aware
compression methods exploit model parameter distribution
patterns and focus on the IEEE 754 floating-point format [2],
which represents each number using a sign bit, an exponent,
and a mantissa. By exploiting the fields with high redundancy,
different compression strategies are proposed to reduce model
storage space [30,58,70].

ELF [70] eliminates exponent bits by mapping weights into
anormalized range, but it is inherently lossy and unsuitable for
model hubs that require exact recovery. ZipNN [30] improves
compressibility by reordering float bytes to isolate compress-
ible fields like sign and exponent bits. Although it could ex-
ploit cross-model redundancy, the released implementation
only supports files with identical sizes, preventing compres-
sion when layer dimensions differ (e.g., modified embedding
layers). FM-Delta [58] targets cross-model redundancy by
computing weight deltas between fine-tuned and base models.
However, it requires strict architectural alignment, lacks BF16
support, and achieves low throughput (around 100 MB/s), lim-
iting its applicability at scale. DeltaZip [86] and BitDelta [42]
are two recently proposed techniques that also explore cross-
model redundancy. However, both methods are lossy: they
approximate or quantize weight differences to reduce GPU
memory cost, making them unsuitable for model hubs that
require exact recovery of model weights.

Despite being model-aware, ELF, ZipNN, FM-Delta,
DeltaZip, and BitDelta require intact model structures (e.g.,
aligned tensors and parameters) to function effectively. How-

https://github.com/ds2-lab/ZipLLM
https://github.com/ds2-lab/ZipLLM

ever, once a model is partially deduplicated at the chunk level
(e.g., via CDC [53]), the remaining unmatched regions lose
their structural boundaries and appear as fragmented byte se-
quences. As a result, these residual parts can no longer be
processed by compressors that require intact model structure,
preventing them from exploiting redundancy.

Model-aware Deduplication. Hugging Face employs a two-
stage deduplication strategy that combines file-level and
chunk-level techniques, including CDC [79]. File-level dedu-
plication removes exact duplicates by comparing content
hashes, which is effective for detecting re-uploaded files.
To address inefficiencies in handling large files with minor
changes—common in fine-tuning and checkpointing—CDC
divides files into variable-sized chunks using a rolling hash,
enabling only modified chunks to be uploaded. This chunk-
based approach, backed by content-addressed storage (CAS),
significantly reduces redundancy. Their early findings report
up to a 50% reduction in storage usage and improved upload
and download speeds compared to Git LFS [80].

3 Characterizing Hugging Face Model Storage

The number of public LLM repositories has grown rapidly in
recent years, driven by the popularity of open-source model
families (e.g., Llama [27,89], Mistral [35]) and the widespread
practice of fine-tuning base models for domain-specific tasks.
This proliferation is further fueled by community sharing
and continuous model versioning. As a result, the demand
for scalable and efficient storage systems has significantly
increased. Public model hubs such as Hugging Face [21]
and TensorFlow Hub [26] now host millions of LLMs, with
the number growing exponentially. This exploding growth
places substantial demands on backend storage systems, both
in terms of capacity and bandwidth. To better understand
this landscape, we characterize all publicly accessible LLMs
hosted by Hugging Face, the world’s largest model hub.

3.1 Model Storage Explosion

We define LLM model storage as the storage of parameter
files associated with LLMs. Compared to auxiliary files such
as configuration files or tokenizers, parameter files dominate
the overall storage footprint. These files are typically stored
using cloud-based object storage services [4, 6, 31], which
provide efficient access and scalability.

To quantify this growth, we examine statistics from Hug-
ging Face. As shown in Figure 1 (left), the number of public
models (including LLMs and non-LLM models) on Hugging
Face has surpassed 1.5 million in 2025, up from 500K just one
year earlier. The storage footprint grew nearly 6x during the
same period, exceeding 14 PB for public models (excluding
private ones) in early 2025. Public models are just the tip of
the iceberg—a significant portion of models hosted on the
platform are private repositories, which are inaccessible to the
public. Our observation corroborates with a recent Hugging
Face blog [79].

Implications

This exponential growth trajectory continues to place
mounting pressure on model hubs. Looking ahead, we
project that by the end of 2025, model storage demand
will continue its exponential trajectory. This data explosion
poses a grand challenge to the long-term sustainability of
ML/AI infrastructure.

3.2 Model Storage Format

The shift in model storage formats has significant implications
for deduplication and compression. As shown in Figure 2a,
safetensors [34] and GGUF [24] have become the dominant
formats on Hugging Face, together accounting for over 90%
of total storage in 2025.

Safetensors Format. Safetensors introduces structured
metadata and consistent tensor layouts, which enable model-
aware compression and deduplication. Unlike legacy formats
like .bin or .h5 [1], which often serialize data with model-
specific headers and variable alignment, Safetensors format
is also zero-copy and metadata-aware, supporting parallel ac-
cess to individual tensors without scanning the full file. This
enables high-throughput model loading.

GGUF Format. GGUF is a lightweight, extensible format
for storing quantized models, featuring structured metadata
for modern tooling compatibility. It addresses limitations of
earlier formats and has become the standard for quantized
LLMs.

Implications

These two formats reflect the dual nature of modern LLM
workflows: high-precision models are used for training and
fine-tuning, while quantized models are used for resource-
efficient inference. This dichotomy presents distinct storage
patterns and optimization opportunities. As a result, our
compression and deduplication techniques are specifically
designed to target these formats, which are central to both
current and future usage of model storage systems.

3.3 Data Type Distribution

To better understand which floating-point types contribute
most to model storage, we analyze the distribution of data
types across models. As shown in Figure 2b, BF16 is the
dominant format in terms of storage consumption, while FP32
is the most common in terms of model count.

This discrepancy arises because many models use mixed
precision: a few layers in FP32 while the majority are BF16 ',
or they are small non-LLM models (e.g., CV or traditional
NLP models) that used FP32. As a result, while FP32 appears
in many models, these models are often small in size. In con-
trast, BF16 is the standard format for large LLM checkpoints,
contributing to its substantial share of total storage.

!In our analysis, if a model contains multiple data types (e.g., both FP16
and FP32), it is counted in each corresponding category.

— - 0.6
m File Format
E6,000 = bin 0.5,
Q —e— .onnx
n —e— _safetensors 80.4*
q>) 4,000 gguf 5
= —— h5 @
g 2,000 -msgpack o
=i m—

2019 2021 2023 2025 0.0-

Year ’ F32 BF16

(a) Cumulative model storage by file format.

(b) Top data types by size and model count.

S?ze - LLMs 83000 Bf’;lse Size A | 400KQ
i Size - Non-LLMs = Fine-tuned Size S
mm Count - LLMs o Base Count '300K§
P - 4 . [}
w77 Count - Non-LLMs | ¢ 2000 Fine-tuned Count O
[}
2 200K
o ©
=1000/ =
g r100K g
=4 E
O ®)
01 rOK
2019 2021 2023 2025

F16 FP8 U8 Year

(¢) Growth of base and fine-tuned models.

Figure 2: Measurement of model repositories on Hugging Face. Note that non-LLMs contribute to a tiny fraction of storage consumption.

Given these findings, we focus our compression experi-
ments on BF16 and FP32, as they are the most prevalent for-
mats in modern repositories. Both use 8-bit exponents, which
simplifies our system design and allows unified handling of
their binary representations. While we focus our evaluation
on BF16, our compression techniques are data-type-agnostic
and can be generalized to other formats.

The vast majority of storage consumption comes from LLMs,
particularly those using the BF 16 format. Non-LLMs con-
tribute minimally in size. As such, future storage optimiza-
tions should prioritize LLM-specific formats and patterns
to maximize storage efficiency.

3.4 LLM Families
3.4.1 Base and Fine-tuned LLMs

Beyond data types, another key factor influencing storage
footprint is model lineage [57,90]. It is well known that the
majority of today’s LLMs are derived from a very small set
of base models [29, 52]. This observation motivates our next
analysis, which focuses on LLM families—groups of fine-
tuned models that share a common base. Understanding this
structure is essential for identifying approximate redundancy’
and guiding targeted storage reduction strategies.

Figure 2c shows the cumulative count and storage size of
base models and fine-tuned models over time. We observe
that fine-tuned models have rapidly outpaced base models in
both quantity and storage footprint. As of early 2025, fine-
tuned models account for at least 3.2 PB of data, representing
99.22% of the total storage (3,243.17 TB out of 3,268.72 TB).
In terms of count, there are 447,457 fine-tuned models, com-
prising 99.64% of all models. Notably, this is a conservative
estimate, as some fine-tuned models lack proper metadata
(e.g., model cards) and thus cannot be reliably identified.

This trend suggests that optimizing the storage of fine-
tuned models is crucial to improving the overall efficiency of
model repositories.

’Defined as hidden, structural redundancy not directly removable via
exact deduplication.

Llama-3.1-8B-Instruct Hermes-3-Llama-3.1-8B Llama-3.1-OpenScholar-8B
>)107’ 107 107
3)
[=
[
g103 103 103
5
—
s

-0.011 O 0.011 -0.003 0 0.003 -0.026 O 0.026
AW AW AW
Mistral-7B-v0.3 Mistral-7B-Instruct-v0.3 Mistral-7B-v0.3-dpo-2k

7] 7] 7]
>’10 10 10
9)
[=
D
2103 103 103
[
—~
5

0 5 0 5 0 5
AW AW AW

Figure 3: Distribution of element-wise weight differences against
Llama-3.1-8B. Top row: Deltas for three models fine-tuned directly
from Llama-3.1-8B. Bottom row: Deltas for three models from the
Mistral-7B-v0.3 family.

3.4.2 Cross-model Parameter Difference

Since most fine-tuned LLMs share the same model structure
with base models [27, 89]—meaning each tensor shares the
same shape and position—a natural and direct approach is to
analyze the element-wise differences in their weights (model
parameters). To verify that such similarity is indeed prevalent,
we compute the value differences (delta Aw) at each parameter
position i as Aw; = w; — Ww;, where w; and W; represent the
i"" float value in the fine-tuned and base model, respectively.
Here, the index i corresponds to the position of each float in
the serialized model file, obtained by traversing all tensors
in their original storage order and flattening each tensor in
row-major layout. This delta is computed across all tensors to
capture fine-grained numerical changes between models.

We begin with the L1ama-3.1-8B [47] base model and se-
lect three of its fine-tuned variants. As shown in Figure 3 (top),
the delta values are small and centered around zero, with simi-
lar bell-shaped distributions across all variants. This indicates
that fine-tuned models in the same family introduce only minor
modifications to the base model’s weights.

To validate whether this property holds across model fam-
ilies, we repeat the same analysis using models from the
Mistral-7B-v0.3 [35] family. See Figure 3 (bottom). Al-
though the architectures are almost identical (except for the

Model Clustering w/ Bit Distance

® Llama-3.1-8B Family ° °

Mistral-7B-v0.3 Family ° °
® Meta-Llama-3-8B Family % ®
® Qwen2.5-7B Family -~ @ o %
® o e ..o pd
®
° o o %l
® Qwen2.5-7B @
* o GFlog® % °
YY) e % o °
o ®, 0% ©
] ® ® e ° ® (o)
e e
o)
© 0% %o oo ° 0e®)
Qo ® 0o [9) ®
o e o o‘. o e)
() s ® o P4
o aoados 2 e o © °
© Meta-Llama-3- sB o0 o) 0®
@)\ > o® %)
®, o, 73, o0 — - © Mistral-7Bv0.3,
(] @ [Llama-3. 1-8B o 9@ @
% %o’.'fw e L 2 0880000 ©
€% o ® V °® e ®
.0"0 ® . o %0 e ¢ © © o OO @ °©
0e® 27 o ee e °
g e @ [¢)
o %000 ® © e
))
Se ® ®

OO

o
Figure 4: Clustering of 311 LLMs by bit distance.

embedding and 1m_head layers), the resulting delta distribu-
tions are much wider and and asymmetric. The element-wise
differences are significantly larger, suggesting that models
from different origins have less similarity—even if their archi-
tecture matches. We tested many models and found consistent
results, which are omitted due to space limits.

Implications

Element-wise weight deltas can serve as a simple, efficient,
and robust tool for identifying model lineage and clustering
models by family. Fine-tuned variants derived from the
same base model consistently exhibit small and structured
deltas, making them well-suited for delta compression.

3.4.3 Cross-model Bit Distance and LLM Clustering

Building on the observed correlation between element-wise
deltas and model similarity, we propose a bitwise distance
metric that measures how many bits differ between two model
files. Given two models with the same architecture, we align
their floating-point weights in original order and compute the
bit distance as follows:

Bit Distance: D(w,W) Zﬂ-[wi,w;) (1)

Here, n is the total number of float values in the models. w;
and w; denote the ith float value from the model pair w and W,
respectively, both represented in raw binary format. H (w;, W;)
computes the number of differing bits (i.e., the Hamming
distance [28]) between the two binary representations. The
final bit distance measures the average number of differing
bits per float across the two models.

Using this metric, we compute pairwise distances across
311 models from four major LLM families: L1lama-3.1 [47],

Within-Family Different Bits Cross-Family Different Bits

0.151 Sign Bit
Exponent Bits 008’
BN Mantissa Bits
.g 0.10 0.06+
yu!
o
E 0.04
0.05
0.02
0.00- 0.00

1513119 7 5 3 1
Bit Position

1513119 7 5 3 1
Bit Position

Figure 5: Bitwise contribution breakdown for bit distance. Left:
Bit-level differences between a fine-tuned model and its base model
within the same LLM family. All models are of BF16. Right: Differ-
ences across models from different families. The Y-axis indicates
the fraction of total differing bits at each bit position, computed by
dividing the number of bitwise XOR results with a 1 at that position
by the total number of 1s across all 16 bits.

Llama-3 [27], Mistral [35], and Qwen2.5 [85]. We then
construct a similarity graph by connecting model pairs with
bit distance below a fixed threshold in Figure 4. We observe
clear clustering behavior: models within the same family tend
to form dense groups, while connections across families are
sparse. This supports our earlier hypothesis and findings—
models that share a pretrained origin exhibit high structural
redundancy, even at the bit level. In contrast, different pre-
trained base models or models fine-tuned from different bases
diverge significantly in their binary representation.

To better understand which bits contribute most to the ob-
served bit-level differences between models, we break down
the bit distance by position within the 16-bit BF16 format, as
shown in Figure 5. We observe that within the same family,
most differences are concentrated in the lower mantissa bits,
with the upper mantissa and exponent bits contributing far
less, and the sign bit almost never flipping. This indicates a
high degree of bit-level similarity, particularly in the high-
order bits, which provides a good compression opportunity.
In contrast, cross-family comparisons exhibit nearly uniform
bit differences across all bit positions, with the exception of a
few exponent bits (typically 1-2), which show slightly lower
divergence. It reflects their much lower alignment and com-
patibility for compression. These findings further support the
utility of LLM-family-aware compression techniques.

Implications

Bit-level similarity provides a powerful signal for organiz-
ing model repositories and guiding LLM storage optimiza-
tions. Models that are close in bit distance are more likely
to benefit from delta encoding [63, 78], XOR-based com-
pression [61], or structural reuse [37].

Beyond compression, the bit distance metric offers broader
implications for large-scale model hubs such as Hugging
Face, where accurate and automated identification of model
lineage is missing and remains a challenge. Current tools
often rely on manually curated metadata. In contrast, bit dis-

v

Table 2: FileDedup stats of Hugging Face model repositories.

Metric Value
Total files 5,688,779
Duplicate files 1,182,818
Total size 11.89 PB
Saved size 0.97 PB (8.2%)

Repos with files can be deduped 506,337 (33.2%)

tance enables content-based provenance analysis, opening
the door to a range of applications such as lineage track-
ing [57], duplicate detection [80], model clustering [3],
and even LLM testing and evaluation [90].

3.5 Storage Redundancy in LLMs

Data deduplication is a widely adopted technique in large-
scale storage systems to reduce storage costs by eliminating
redundant data [23,51, 60,68, 76]. The effectiveness of dedu-
plication depends heavily on the granularity at which it is ap-
plied. As mentioned in §2, file-level deduplication (FileDedup)
offers low overhead and high throughput, but achieves only
limited storage savings. In contrast, chunk-level deduplication
(ChunkDedup) analyzes data at a finer granularity, enabling
greater storage reduction at the cost of significantly higher
metadata storage.

3.5.1 File-level Deduplication

To understand the redundancy landscape in model reposito-
ries, we first analyze FileDedup across all hosted Hugging
Face models. FileDedup identifies redundancy by computing
cryptographic hashes of entire model files and eliminating
duplicates with matching fingerprints. As shown in Table 2,
out of 5.6 million model files, approximately 1.18 million
files are exact duplicates. FileDedup can eliminate these du-
plicates, reducing the total storage footprint by nearly 1 PB.
Notably, more than 500,000 repositories—roughly one-third
of all currently hosted—contain at least one redundant file,
often due to users re-uploading unmodified model artifacts.

3.5.2 Deduplication with Content-defined Chunking

While FileDedup captures exact matches, we observe sig-
nificant partial redundancy between model files that differ
slightly, such as checkpoints from the same training run or
fine-tuned variants. Deduplication at a finer granularity may
help. To this end, we inspect the content of redundant chunks
identified by ChunkDedup. We find that most deduplicated
chunks correspond to serialized tensor data—indicating that
the effectiveness of content-defined chunking (CDC) [56, 82]
is largely due to repeated tensors’ across related models,
rather than generic byte-level similarity. This observation re-
veals that although CDC can detect sub-file redundancy, the
underlying source of duplication is often a tensor.

3An LLM file may contain multiple layers, each with one or more tensors.

Implications

CDC is completely LLM-oblivious and operates directly
on raw byte streams. While widely used in industry, it suf-
fers from poor parallelizability and high metadata over-
head, limiting its practicality for large-scale model repos-
itories (see §5.3.1). By contrast, operating directly at the
tensor granularity—where structure is explicitly defined—
can achieve similar deduplication ratios but is naturally
more parallelizable.

4 Design

This section presents ZipLLM, an LLM-aware storage reduc-
tion pipeline designed to eliminate redundancy in LLM model
hubs efficiently. ZipLLM combines two complementary strate-
gies—data deduplication and lossless compression—in an
LLM-aware manner. These two techniques target different
forms of redundancy and operate on separate dimensions,
so they do not interfere with each other, but together max-
imize storage reduction. Unlike conventional CDC-based
approaches that operate on raw byte streams, ZipLLM per-
forms deduplication directly at the tensor level, leveraging
model structure explicitly exposed in LLM formats. This de-
sign not only improves efficiency and deduplication ratio but
also preserves the tensor structure required by downstream
LLM-aware compressors (e.g., BitX). Built on these principles,
ZipLLM eliminates exact redundancy through FileDedup and
tensor-level deduplication using TensorDedup, and reduces
approximate redundancy via BitX compression—all while pre-
serving losslessness. We begin by describing each component
of ZipLLM in detail and then explain how they work together
in the end-to-end data reduction pipeline.

4.1 Model-aware, Tensor-level Deduplication

Our earlier analysis from §3.5.2 reveals that most repeated
chunks correspond to serialized tensors, rather than arbitrary
byte patterns. This suggests that the underlying source of
duplication is structural in nature—driven by repeated tensors
across fine-tuned or checkpointed models. Instead of relying
on expensive compute to find duplicated chunks from long
byte streams, ZipLLM leverages model semantics and performs
deduplication directly at the tensor level.

Modern model formats (safetensors and GGUF) are nat-
urally aligned with TensorDedup; they both store model
weights in a structured format containing a header followed
by serialized tensors. The header contains metadata describ-
ing each tensor, including name, shape, data type, and byte
offset within the file. By parsing the header first, ZipLLM can
efficiently locate each tensor, enabling parallel processing.

While we describe deduplication as part of ZipLLM, it can
also be implemented as part of client applications, such as
Git LFS [25]. When integrated into the client, TensorDedup
avoids uploading redundant data to the storage server with-

Base Model Fine-tuned Model Sign + Mantissa

(:::J o

_ XOR results

FP, 1011110001111110 @ 1011110001111001 — 0 EOOOOOOOO: 0000111
t i
FP, 0011110001110011 @ 0011110001101110— 0 :00000000i 0011101
: : : S O A

: : : D = S
FP, 0011110000000100 @ 0011110000001010—=| 0 :OOOOOOOOi 0001110

oo

Generic lossless compression

Figure 6: The BitX compression workflow. The example uses BF16,
but BitX can support all floating-point types.

out excessive communication®. This can significantly reduce
model upload time and network transfer for users.

4.2 BitX Delta Compression

Our earlier analysis from §3.4 reveals a key structural property
of modern LLMs: fine-tuned models within the same LLM
family exhibit small, consistent differences from their base
models, both at the parameter value level (Figure 3) and at the
bit level (Figure 4). These differences are often localized and
sparse, forming a strong basis for compression. In particular,
element-wise deltas show that most parameters remain nearly
unchanged during fine-tuning, while the bit-level similarity
confirms that related models can be clustered based on shared
pretrained origin. Together, these insights motivate a com-
pression strategy that directly encodes the bitwise differences
between models. This is the foundation of our Bit-XOR (BitX)
approach, which exploits fine-grained redundancy for efficient
and lossless model storage reduction.

BitX Workflow. §3.4.3 shows that models in the same fam-
ily often exhibit significant bit-level similarity. ZipLLM in-
troduces a new compression algorithm, BitX, which exploits
this bit-level redundancy to reduce storage consumption. Fig-
ure 6 illustrates the BitX workflow. Given a base model and a
fine-tuned model that share the same architecture, BitX first
aligns all floating-point values in their original order. For each
corresponding pair of floats, BitX performs a bitwise XOR
operation. This generates a sequence of XOR results, where
many bits—especially in the sign, exponent, and high man-
tissa bits—are expected to be zero due to high redundancy.
The XOR results capture the fine-grained differences between
the models. Since most of the XOR bits are zero, the resulting
sequence is highly compressible. BitX then applies a generic
lossless compression algorithm, such as zstd [11], to further
reduce storage. This two-stage process efficiently eliminates
redundancy by directly encoding only the minimal changes
required to reconstruct the fine-tuned model from its base.
Why XOR? We choose XOR rather than numerical differ-
encing because it generates more zero bits at the binary level,
leading to higher compressibility. For two similar floating-
point numbers, numerical differencing often yields a new
value with different exponents and mantissas, making the out-

4ChunkDedup is typically performed on storage servers, requiring users
to upload full data, as it needs orders of magnitude more hash comparisons.

put denser and harder to compress. In contrast, XOR preserves
bit-level similarity in the exponent and mantissa, producing
sparse outputs that are far more amenable for compression.
By focusing on the bit-level delta between aligned floats,
BitX achieves much higher compression ratios (§5.2) for fine-
tuned models than traditional methods, without sacrificing
accuracy or requiring any changes to model architectures.

4.3 LLM Clustering Thresholding

One key feature of the BitX workflow is family-based compres-
sion, which relies on explicit and accurate family clustering.
Missing or inaccurate family information (e.g., pre-labeled
tags) can significantly degrade compressibility. To robustly
identify LLM models within the same family without pre-
labeled metadata, we utilize the proposed bit distance metric
(§3.4.3) to classify whether two models belong to the same
family (within-family) or not (cross-family). First, models
with different architectures or tensor shapes can be quickly
categorized as cross-family models. For models with the same
tensor shapes—which are much harder to distinguish—the
decision is made by comparing the pairwise bit distance to a
threshold: pairs with distances below the threshold are classi-
fied as within-family. In practice, the number of such compar-
isons can often be reduced to fewer than five, depending on
the number of relatively similar variants of base model (e.g.,
Llama-3,Llama-3.1, Llama-3.2). This section presents our
numerical method for determining the clustering threshold.

Following observations from previous works [19, 58], we
assume the parameter weights w ~ A((0,62) and their fine-
tuning deviations Aw ~ A((0,63) follow symmetric Gaussian
distributions centered at 0. Given definition (1), we define the
expected bit distance between the base weights w and the
fine-tuned weights W = w 4+ Aw as follows:

E[D(w, #)] = / / D(W, W+ 8) paw(8) pw(W) dSdw

where & denotes the perturbation added during fine-tuning,
i.e., Aw, and py (), paw(-) represent the probability density
functions of the base weights and their perturbations.
However, the bit distance function D(w, W) is not contin-
uous. Even small changes in floating-point value can cause
sudden bit flips in the bit representation when the Aw cross
the ULP (Unit in the Last Place) boundaries, i.e., the smallest
spacing between two adjacent representable numbers. For
example, changing a value from 1.000 to 1.001 may result in
5 flipped bits in its IEEE 754 representation, even though the
numerical change is very small. Because of this, it is challeng-
ing to compute the expectation using analytical methods. To
address this, we adopt a Monte Carlo approach [50] to esti-
mate the expected range of bit distance, by sampling from the
assumed distributions of the base weights and perturbations:

1 ¥ . . .
E[D(w,W)] = ¥ Z D(wh), wh) + 51
i=1

Non parameter__:_@_ > <> """ > g1 Bit Distance '"> Model |
> 00 |

files

FlleDedup TensorDedup

User- uploaded
LLMs

Metadata of
duplicate files

Metadata of
duplicate tensors

T PR En)

Unique tensors

‘ Parameter Data Flow
- - & Metadata/Dependency Flow

Compressed tensors

! Model Family Analysis
Metadata
BitX Compression

Figure 7: Overview of the ZipLLM storage reduction workflow.

where each w() ~ A((0,62) and 81 ~ N(0,0%). Here, N
denotes the number of Monte Carlo samples used to approxi-
mate the expectation. We set N = 100,000 to ensure a stable
estimation while keeping the computation efficient.

Empirically, for within-family fine-tuned models, we ob-
serve that the base model parameters have a standard deviation
in the range of 6,, € [0.015,0.05], and the fine-tuning devia-
tions lie within 6 € [0.00,0.02]. The resulting expected bit
distance values are consistently within the range of [3.5,6].

In contrast, cross-family model pairs show bit distance ex-
ceeding 6, due to larger weights differences across families
as shown in Figure 3. Notably, for closely related model it-
erations such as Llama-3 and Llama-3.1, the bit distance
remains below 6—around 4. Based on these findings, we set a
threshold of 4, which yields a classification accuracy of 93.5%
for predicting whether two models belong to the same family.
We present detailed sensitivity analysis in §A.1.

4.4 Putting It All Together: ZipLLM Design

Figure 7 illustrates the overall design of our LLM storage
reduction pipeline, ZipLLM, which is tailored to the unique
data characteristics of LLM storage.

In Step 0, ZipLLM deduplicates files by computing content
hashes and removing exact duplicates. In Step @), ZipLLM
extracts all tensors across repositories and hash them individ-
ually to identify repeated tensors. These unique tensors are
stored in a global tensor pool. ZipLLM also extracts metadata
such as model cards [33] from non-parameter files (Step @),
and uses them to group models into families (Step @). When
the model family metadata is missing or incomplete, ZipLLM
uses bit distance for similarity search (Step @) to identify
the closest base model (see §3.4.3). In Step @, ZipLLM per-
forms BitX compression, which consists of two sub-steps. In
Step @ XOR deltas are computed between fine-tuned ten-
sors and their corresponding base tensors, producing sparse
binary differences. In Step @, these XOR results are further
compressed using generic algorithms such as zstd, yielding
the final compact representation.

4.4.1 File-level Deduplication

ZipLLM first performs FileDedup on uploaded LLMs. This
deduplication mechanism is particularly effective for ex-
act reuse cases. For example, we observe that many users
upload copies of popular base models (e.g., Llama-2-7B,

Mistral-7B) without any modification. These files can be
deduplicated entirely without decoding or parsing their con-
tents. In addition, FileDedup is also used as a prefiltering step
for downstream compression. If a file is unique based on its
hash, ZipLLM proceeds with TensorDedup and subsequent
compression. If the file is a duplicate, it is simply linked to a
previously stored reference to avoid redundant storage.

4.4.2 Tensor-level Deduplication

While FileDedup is effective for detecting exact file reuse,
it cannot capture partial redundancy within or across files.
To address this, ZipLLM performs TensorDedup by directly
operating on tensors stored in model files. For each model file,
ZipLLM extracts all individual tensors and compute a hash
for each. These hashes are then used to identify duplicate
tensors across the entire corpus—within the same file, across
multiple files in an LLM repository, or even across different
repositories. All unique tensors are stored in a global tensor
pool storage to enable reuse and eliminate redundant storage.

TensorDedup eliminates the inefficiencies of chunk-based
deduplication, which suffers from high metadata overhead and
limited semantic awareness. Compared to layer-level dedupli-
cation (LayerDedup), which treats an entire layer as one unit,
TensorDedup offers finer granularity and better tolerance to
minor changes in individual layers. We compare these dedu-
plication methods later in §5.3.1 with detailed statistics in
Table 5.

4.4.3 Lossless Compression

After deduplication, ZipLLM performs LLM-family-aware
BitX compression across fine-tuned and base models.

Model Lineage Extraction. This step analyzes the configu-
ration and metadata files extracted from non-parameter files
(e.g., config. json, README.md) to identify lineage relation-
ships among models. We use a combination of regular ex-
pressions and an LLM-based parser to extract base model
information. Specifically, we parse architectures, tokenizers,
and family identifiers to group structurally similar models.
Bit Distance Matching. If the metadata is missing or
incomplete—for example, when the model card only specifies
a general base model category (e.g., L1ama) without naming
a specific base model—ZipLLM identifies (multiple) likely
base models using the structural information. ZipLLM then
computes pairwise bit distances between the fine-tuned model

and candidate base models with matching shape and data type
(§3.4.3). The model with the smallest bit distance is selected
as the inferred LLM family.

Compressing XOR-ed Tensors. Once a base model is cho-
sen, ZipLLM XORs aligned tensors from the fine-tuned and
base models. This produces a sparse binary delta, which is
lossless while highly compressible. The generated delta will
then be compressed by a general-purpose compressor. By
exploiting the approximate redundancy between base and
fine-tuned models within the same family, ZipLLM applies
generic compression methods (e.g., zstd) on the resulting
deltas, achieving significant storage reduction for vast fine-
tuned LLM corpora.

4.4.4 LLM Serving

To support efficient LLM loading and serving, ZipLLM stores
minimal metadata alongside compressed model files. For each
model, we record its associated base model, the hash of each
tensor, the byte offset of each tensor in the original file, and the
original safetensors metadata header. During compression,
ZipLLM additionally stores the base model’s tensor hashes
used for BitX. At decompression time, ZipLLM first locates
and decompresses each tensor. If a base tensor hash is present,
ZipLLM retrieves the corresponding base tensor and apply
XOR to reconstruct the original tensor. All tensors are then
reassembled with the metadata header and written in parallel
to produce a fully restored model file.

Fallback Strategy. ZipLLM is designed to be robust even
when reference base models are missing. On large model
hubs, it is common for multiple copies of the same base
model to exist; if one copy is unavailable, ZipLLM substi-
tutes an equivalent version. In the rare case where all original
base models are removed, ZipLLM selects the most similar
fine-tuned model (measured by bit distance) as a surrogate
base and computes an additional XOR mask to account for
differences. Applying this mask during decompression guar-
antees exact reconstruction of the target model. For additional
robustness, ZipLLM compares this surrogate-based approach
against standalone ZipNN compression and automatically
selects the option yielding the better compression ratio.

5 Evaluation
5.1 Experimental Setup

Dataset. Because of Table 3: Model statistics summary.

the scale of Hugging

Metric Value
Face (tens of PB LLMs Model count 3,048
stored), we randomly Total size 43.19 TB

sampled 3,048 open-
source LLM reposito-
ries from Hugging Face. Our dataset consumes 43.19 TB
in raw size (Table 3). These repositories span a diverse range
of model architectures, including 968 models derived from
Qwen2.5 [85], 151 from Qwen3 [84], 139 from Mistral [35],
114 from Llama-3 [45], 1,431 from Llama-3.1 [46], 47

Size after file dedup 41.80 TB

from Llama-3.2 [48], 135 from Gemma-2 [67], and 63 from

Gemma-3 [72].

We exclude LoRA-only repositories from our evaluation.
The reason is twofold: (i) LoRA adapters are highly hetero-
geneous in structure, making them difficult to find a base;
and (ii) their sizes are negligible compared to corresponding
base models, typically around 1%. Therefore, after sampling
model repositories, we filtered out those that only contain
LoRA adapters, leaving us with 3,048 full fine-tuned model
repositories. For PEFT-style models, ZipLLM by default ap-
plies ZipNN to compress the adapters.

Baselines. We compare ZipLLM with both real-world produc-

tion systems and recent state-of-the-art algorithms:

* FileDedup and ChunkDedup (FastCDC) are used by Hug-
ging Face [80]. Because model information is lost during
ChunkDedup, Hugging Face does not use compression in
conjunction with the deduplication.

e ZipNN is the state-of-the-art model compressor that groups
float numbers’ different components for compression [30].
Because it does not consider deduplication, we added FileD-
edup to ZipNN for a fair comparison.

* Compress-then-FastCDC is a baseline we design to study
the effect of execution order. In this setting, we first ap-
ply a compression algorithm (e.g., zstd) and then perform
ChunkDedup (FastCDC). This allows us to evaluate how the
ordering between compression and deduplication impacts
the overall reduction efficiency.

Note that we did not compare with FM-Delta [58] and
ELF [70], because FM-Delta does not support BF16, which is
the most popular data type for LLMs, and ELF is lossy.

At the component level, we compare deduplication across
different granularities (FileDedup, LayerDedup, ChunkDedup,
and TensorDedup), as well as zstd compression algorithm.
Implementation. We implemented ZipLLM entirely in Rust.
In total, our implementation comprises over 6,000 lines of
code. For ZipNN and FastCDC, we use the open-source repos
from the authors.

Metrics. We evaluate system efficacy using multiple metrics.

* Data reduction ratio calculates the data size reduced by
deduplication and/or compression over the original data
size. A higher reduction ratio is better.

* Throughput measures the speed of deduplication, com-
pression, and decompression of different systems.

* Scalability measures how the storage system scales with
the number of models. It primarily concerns deduplication,
which requires a huge volume of metadata for serving (de-
compression). Deduplication storage systems are known
to suffer from high I/O latency due to excessive metadata
overhead [12, 60, 68]. Therefore, we use metadata size as a
proxy for scalability.

Setup. We conduct our experiments on an Amazon EC2

c6a.48xlarge instance, equipped with a 96-core AMD

EPYC 7R13 processor and 384 GB of DRAM. All models

and associated data are stored on an EBS SSD volume.

TensorDedup = = BitX+CDC
9 FileDedup — - zstd+CDC
'(-aew 0.8 HF (FastCDC) ZipNN+CDC
a4 ZipNN ZipLLM
.g 0.6 54.1%
B o4 e s T T T/ T
Fcé:o 4 33.4%
~ T T — - —— - — . — — - 81%
g0 ol
502 L—— 14.8%
fa) /v"\——\/\ 8.3%
0.0
0 500 1000 1500 2000 2500 3000 3500
Number of models (sorted by creation time)
Figure 8: Data reduction ratio vs. model count.
10 gemma-2-9b-it Mistral-7B-Instruct-v0.3 Qwen2.5-7B

et

w
1
N

| il

0 50 100 0 20 0 500 1000

o
=)

Data Reduction Ratio
[
(=}

Llama-3.1-8B Meta-Llama-3-8B Qwen3-8B
0.5 1 1
0.0 T T T T T T
1000 0 50 100 0 100
Model Count Model Count Model Count

Figure 9: Data reduction ratio (DRR) distributions of six represen-
tative base models after applying BitX compression. For each base,
all derived fine-tuned models are sorted by DRR in ascending order.

5.2 End-to-end Comparison
5.2.1 Data Reduction Ratio

To evaluate the overall effectiveness of ZipLLM, we run the
full deduplication and compression pipeline through the en-
tire dataset of 3,048 LLMs. To simulate the real-world sce-
nario where users continuously upload models to a model
hub like Hugging Face, we incrementally increase the num-
ber of LLMs and record the corresponding data reduction
ratio. Figure 8 shows how different data reduction methods
perform as the model storage scales. An ideal data reduc-
tion method would improve the ratio of redundant data with
more uploaded models, leading to higher storage savings. The
data reduction ratio curve reveals how quickly each method
reaches its peak effectiveness and highlights the scalability
and long-term benefit of ZipLLM, which continues to improve
and converges later than all baselines.

Figure 8 shows that FileDedup achieves limited data reduc-
tion, eventually reducing total storage by 3.2% on the entire
dataset. Upon closer examination of the redundant files, we
find that most of them happen because the same models are
stored multiple times by different users. Reducing deduplica-
tion granularity often improves the deduplication ratio, as it
exposes fine-grained redundancy within files. ChunkDedup
provides up to 4.6x (since % ~ 4.6) higher data reduc-
tion ratio compared to FileDedup. However, as we show next
in §5.2.2, ChunkDedup incurs a significant computational
and storage overhead, making it difficult to scale. ZipNN, a
state-of-the-art model-aware compression algorithm, reduces
model storage by 33%, much lower than ZipLLM.

Table 4: Data ingestion and retrieval throughput with 192 threads.

Method Ingestion (MB/s) Retrieval (MB/s)
HF (FastCDC) 2,560 9,573
ZipNN 1,424 9,663
ZipLLM 5,893 7,872

The synergy between model-aware deduplication and com-
pression allows ZipLLM to further boost the data reduction
ratio to 54.1%. This is because ZipLLM exploits LLM family
information and delta-compresses fine-tuned models. ZipLLM
uses dedup-then-compress, which outperforms compress-then-
dedup. As shown, BitX+FastCDC, ZipNN+FastCDC, and
zstd+FastCDC (compress-then-dedup) reach 48.5%, 42.6%,
and 28.1%, respectively, confirming that compressing first
hides redundancy and reduces deduplication effectiveness.
Per Family Compression Breakdown. To better understand
how compression effectiveness varies across different model
families, we break down the result and present the data reduc-
tion ratio distributions of six representative LLM families in
Figure 9. We find that ZipLLM achieves large benefits for most
families (e.g., Gemma and Llama-3.1), with median reduc-
tion above 0.4-0.7. In contrast, for the Qwen series, the results
are more diverse: Qwen includes multiple base variants (e.g.,
math [64], coder [65], and VL [66]), and user-provided model
cards are often incomplete. These factors make grouping less
precise, leading to a DRR close to zstd-level compression.
In the future, we plan to improve our grouping algorithm to
better handle such heterogeneous families.

5.2.2 Throughput Performance

Data Ingestion Throughput. When the model storage system
receives a model upload request, it must perform deduplica-
tion and compression before writing the data to the storage.
Although the processing can be asynchronous, the data inges-
tion speed reflects the computational cost required to store
models efficiently. FileDedup is the most performant solution
due to its simplicity. As a result, its throughput is bottlenecked
by the I/O bandwidth. HF (FastCDC) achieves 2,560 MB/s
(Table 4), which is much slower. Moreover, CDC requires
sequential boundary detection using a rolling hash, further
limiting its scalability. ZipNN, on the other hand, is the slow-
est among the three, reaching only 1,424 MB/s (Table 4).
Because TensorDedup only requires calculating a hash for
each tensor, it can scale linearly with the number of tensors.
ZipLLM’s data ingestion throughput only depends on BitX
compression. We find that it can achieve a compression speed
of over 5,893 MB/s.
Data Retrieval Throughput. While computation during data
ingestion is performed only once, the computational cost dur-
ing model downloading—including decompression—must be
incurred at each model serving. Since retrieving deduplicated
data incurs almost no overhead, we primarily focus on de-
compression. As a common baseline for decompression, the
state-of-the-art generic lossless compressor zstd achieves a

Table 5: Deduplication statistics. TensorDedup strikes a balance between data reduction ratio and overheads. The projected HF metadata size is
based on 17 PB of models hosted by Hugging Face in 2024 [79], while the estimated metadata size is based on the sampled 3,048 LLMs.

s . Avg Size Max Size Reduction Throughput Estimated Projected HF
Deduplication Level Unique Hashes (MB) (MB) Ratio (MB/s) Metadata (MB) Metadata (GB)
ChunkDedup (FastCDC) 520,551,953 0.087 0.25 14.8% 2560 31,772 12,505
TensorDedup (ours) 923,384 44.9 2,000 8.3% 39,690 56 22.1
LayerDedup 96,643 433.2 4,096 5.4% 38,990 5.9 2.4
FileDedup 12,465 3,824 15,316 3.2% 27,099 0.76 0.30

single-threaded decompression throughput of 1050 MB/s on
our testbed, since its decoding process cannot be parallelized.
In contrast, both FastCDC and ZipNN achieve over 9 GB/s
(9,573 MB/s and 9,663 MB/s, respectively), while ZipLLM
achieves 7,872 MB/s (Table 4). These rates are well above typ-
ical disk or network bandwidth, indicating that decompression
is not the bottleneck during model retrieval.

5.3 Breakdown Analysis

In this section, we break down ZipLLM into deduplication and
compression for detailed benefit analysis.

5.3.1 Deduplication

To compare different deduplication strategies, we evaluate
four methods—FileDedup, LayerDedup, TensorDedup, and
ChunkDedup (FastCDC)—on our 3,048-model dataset. We
have discussed FileDedup in the previous section, so we focus
on the others in this section.

ChunkDedup. As shown in Table 5, ChunkDedup achieves
the highest data reduction ratio, removing up to 14.8% of
total data across all models. However, ChunkDedup is rel-
atively slow and produces a huge amount of metadata. For
example, 520,551,953 unique chunks were produced in our
3,048-model dataset. This results in a vast corpus of metadata
to be cached in memory for fast access. Hugging Face stores
over 17 PB of models in 2024 [79]. Assuming each chunk
requires 64 bytes of metadata [12]°, ChunkDedup requires
over 12.5 TB of storage to just store the metadata. If they were
stored in memory with c6a.48xlarge EC2 VMs (384 GB of
DRAM) it would require at least 33 VMs. Production systems
often replicate metadata for high availability, which would
further increase the resource usage. For the same reason, IBM
reports that chunk-level deduplication is impossible to deploy
at scale [59]. Worse, large metadata overhead is known to
degrade system performance [12, 60, 68].

Another key limitation of CDC-based ChunkDedup is its
selection of chunk size. To balance between the deduplication
ratio and overheads, CDC typically uses large chunk sizes
(e.g., 64 KB in Hugging Face [81]). However, model tensors
typically range from a few KB to hundreds of MB, meaning
that a single tensor often spans multiple chunks, and chunk
boundaries may not align with tensor boundaries. This mis-
alignment not only causes boundary-shifting but also compli-

SThis is a reasonable assumption, as metadata typically includes chunk
hashes, locations, permissions, reference counts, and timestamps.

cates the use of downstream model-structure-dependent com-
pressors, which would require extra mechanisms and overhead
to recover alignment. In contrast, knowing the data consists of
LLMs, we leverage the structural information, such as tensors,
to perform more effective, structure-aligned TensorDedup.

TensorDedup. Because tensors are 100-1000x larger than
chunks, TensorDedup produces only 923K unique hashes
across the same dataset—a three-order-of-magnitude reduc-
tion compared to ChunkDedup (Table 5). Meanwhile, it
achieves a data reduction ratio of 8.3%. This leads to a dra-
matically smaller metadata index size—approximately 22.1
GB for all the models stored in Hugging Face. TensorDedup
enables more scalable deduplication in terms of memory foot-
print and system manageability. By leveraging explicit tensor
boundaries in formats like safetensors, it eliminates the
need for rolling hash computations and boundary detection.
Moreover, TensorDedup is highly parallelizable as each ten-
sor can be processed independently. As a result, TensorDedup
achieves 15x higher throughput compared to ChunkDedup.

LayerDedup. Besides TensorDedup, model-awareness also
enables another level of deduplication—LayerDedup. An
LLM typically consists of multiple layers, each of which
has multiple tensors. LayerDedup performs deduplication at a
higher level with coarser granularity, allowing it to generate
even fewer entries with less metadata. However, only 5.4%
of the data can be reduced using LayerDedup.

To validate our results, we conduct a direct comparison with
the CDC results reported by the Hugging Face Xet team [80]
on a public repository [8] used in the blog [80]. In Hugging
Face production, the 191 GB model was reduced to 97 GB
using CDC. Our FastCDC baseline and TensorDedup both
report 93 GB after deduplication. First, this confirms that Ten-
sorDedup achieves a comparable data reduction ratio. Second,
the production ChunkDedup result is slightly higher than our
experimental results, which we conjecture is due to the pro-
duction system using a larger chunk size to reduce overhead.

Visual Comparison. We randomly select a model and apply
different deduplication methods. As shown in Figure 10, CDC
(ChunkDedup) and TensorDedup produce very similar results.
The only major difference appears in the embedding tensor.
This is likely due to vocabulary expansion in fine-tuned mod-
els. Although the embedding dimension may change, most
of the vocabulary stays the same. Due to its finer granular-
ity, CDC can still match portions of the embedding bytes. In

Unique

—— Duplicate

Tensor Dedup (ours)

Las‘ler Dedup

0 5000 10000 15000 20000 25000 30000
Bin Index

Figure 10: Visualization of deduplication results under three dedupli-
cation levels on a randomly selected LLM repository. Blue indicates
duplicate content, while gray indicates unique data.

S1.0
=}

&
% 0.8]

2

© 0.6
g | ¢
§0.4' {,,M - 2L

q -—
£02| ——
a |

0.0 zstd ZipNN BitX

Figure 11: Distribution of data reduction ratio using different com-
pression methods. Each violin plot illustrates the density and spread
of data reduction ratios per method, overlaid with a box plot that
marks the interquartile range and median.

contrast, TensorDedup treats each tensor as a whole—any
small change makes the entire tensor non-deduplicable. For
the same reason, LayerDedup misses most redundancy be-
cause a single modified tensor breaks the whole layer. Even
so, TensorDedup covers nearly all remaining redundancy in
the model. It performs as well as CDC, but with significantly
less metadata and higher throughput.

5.3.2 Lossless Compression

Figure 11 shows the data reduction distribution across all
3,048 models using three lossless compression methods: BitX
(ours), ZipNN, and zstd. Compared to model-oblivious zstd,
model-aware compression algorithms, such as ZipNN and
BitX, achieve significantly higher data reduction ratios. Be-
tween ZipNN and BitX, we observe that BitX achieves the best
overall data reduction ratio, with many model sizes being re-
duced by over 50%. The main advantage of BitX over ZipNN
is the XOR-based delta compression, which is more effective
at compressing models from the same LLM family.

BitX is both more effective and more performant. Because
ZipNN groups the sign, exponent, and mantissa from all
floating-point numbers in the model for Huffman encoding, it
cannot be effectively parallelized, leading to a lower compres-
sion throughput as shown in Table 4. Because BitX operates at
the tensor level, each tensor can be processed independently
and in parallel, significantly improving compression through-
put and achieving over 4 x the throughput of ZipNN.

These results demonstrate that BitX is both effective and
practical for large-scale model storage, achieving significantly
better compression while preserving losslessness and model
fidelity. As previously shown in Table 4, BitX also achieves
the highest compression throughput, making it well-suited for
online model storage reduction at scale.

6 Discussion

Encouraging Standardized Tensor Naming and Order-
ing. While safetensors provides a safe and efficient format
for model serialization, its specification allows flexibility in
tensor naming and does not require preserving the original
serialization order. In practice, many models use custom nam-
ing conventions or reorder tensors alphabetically by name,
which can complicate BitX matching that relies on consistent
tensor alignment. We advocate adopting more standardized
practices—such as unified naming schemes and optionally
recording tensor serialization order—would make it easier to
identify corresponding tensor pairs, thereby improving com-
pression effectiveness in systems like ZipLLM.

Online Quantization and Model Storage Co-design. We
observe that many LLM repositories include multiple GGUF
files that differ only by quantization method. These variants
are often derived from the same base model. This redundancy
could be avoided by storing only the base model and the
quantization configuration. The backend can then perform
online quantization to generate the desired quantized variant
on demand, trading additional computation for greater storage
savings. We believe these findings open new research avenues
in storage-efficient model quantization and encourage fur-
ther exploration of new ML system design principles that
co-designs quantization techniques with storage backends.
This approach is not only storage-efficient but also offers
flexibility for future quantization schemes without requiring
re-uploads of the same base model.

Cost Savings and Practical Impact. To understand real-
world benefits, we estimate the storage cost reduction achiev-
able by our approach. According to Hugging Face’s public
statistics, the total model storage footprint reached around
17 PB in 2024 [80]. If ZipLLM achieves a 50% reduction,
this would save approximately 8.5 PB of capacity. Assuming
standard Amazon S3 pricing [7], this translates to an annual
cost saving of more than $2.2M.

7 Conclusion

This paper presents ZipLLM, a model storage reduction
pipeline that unifies tensor-level deduplication and a new
lossless delta compression called BitX to address the growing
scale of LLM storage. Our large-scale study reveals key redun-
dancies in LLM repositories and motivates design principles
that synergize model storage deduplication with compres-
sion. ZipLLM achieves significantly higher storage savings
and throughput compared to state-of-the-art approaches, with-
out sacrificing losslessness.

Acknowledgment

We thank our shepherd, Dushyanth Narayanan, and the anony-
mous reviewers for their valuable feedback and comments,
which improved the paper. We thank Ajit Banerjee, Di Xiao,
and Yucheng Low from the Xet team of Hugging Face for in-
sightful discussions and feedback on this work. This research
was supported in part by NSF grants CNS-2322860, OAC-
2411009, and OAC-2403313. We also acknowledge support
from NSF CloudBank for providing AWS credits, and thank
Adobe for their generous research gift.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

HDF Software Documentation. https://support.
hdfgroup.org/documentation/index.html.

IEEE 754-2019: IEEE Standard for Floating-Point Arith-
metic. https://standards.ieee.org/ieee/754/
6210/.

Model Family Tree. https://huggingface.co/
posts/mlabonne/611875460328127.

Building and operating a pretty big storage system called
S3. https://www.allthingsdistributed.com/
2023/07/building-and-operating-a-pretty-
big-storage-system.html, 2023.

Jyrki Alakuijala, Andrea Farruggia, Paolo Ferragina,
Evgenii Kliuchnikov, Robert Obryk, Zoltan Szabadka,
and Lode Vandevenne. Brotli: A general-purpose data
compressor. ACM Transactions on Information Systems,
2019.

Amazon Web Services. Amazon s3: A simple storage
service. https://aws.amazon.com/s3/, 2006.

AWS. Amazon S3 Pricing. https://aws.amazon.

com/s3/pricing/, 2025.

bartowski. gemma-2-9b-it-gguf. https:
//huggingface.co/bartowski/gemma—-2-9b-
it-GGUF, 2024.

Davis Blalock, Samuel Madden, and John Guttag.
Sprintz: Time series compression for the internet of
things. Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies, 2(3):1-23,
2018.

Martin Burtscher and Paruj Ratanaworabhan. High
throughput compression of double-precision floating-
point data. In 2007 Data Compression Conference
(DCC’07), pages 293-302. IEEE, 2007.

Yann Collet and Murray Kucherawy. Zstandard com-
pression and the application/zstd media type. Technical
report, 2018.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

Biplob Debnath, Sudipta Sengupta, and Jin Li.
{ChunkStash}: Speeding up inline storage deduplica-
tion using flash memory. In 2010 USENIX Annual
Technical Conference (USENIX ATC 10), 2010.

Dell Technologies. Understanding data domain
compression. https://www.dell.com/support/
kbdoc/en-us/000003886/86266-understanding-
datadomain-compression, 2023.

Dell Technologies. Powerprotect dd backup
appliances. https://www.dell.com/en-
us/dt/data-protection/powerprotect-backup-
dd-appliances/powerprotect-dd-backup-
appliances.htm, 2024.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazar-
ian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Alis-
tarh. Spqr: A sparse-quantized representation for
near-lossless 1lm weight compression. arXiv preprint
arXiv:2306.03078, 2023.

Peter Deutsch. Deflate compressed data format specifi-
cation version 1.3. Technical report, 1996.

Sheng Di and Franck Cappello. Fast error-bounded lossy
hpc data compression with sz. In 2016 ieee international
parallel and distributed processing symposium (ipdps),
pages 730-739. IEEE, 2016.

James Diffenderfer, Alyson L Fox, Jeffrey A Hittinger,
Geoffrey Sanders, and Peter G Lindstrom. Error anal-
ysis of zfp compression for floating-point data. SIAM
Journal on Scientific Computing, 41(3):A1867-A1898,
2019.

Peijie Dong, Lujun Li, Yuedong Zhong, Dayou Du,
Ruibo Fan, Yuhan Chen, Zhenheng Tang, Qiang Wang,
Wei Xue, Yike Guo, and Xiaowen Chu. Stbllm: Break-
ing the 1-bit barrier with structured binary llms. https:
//arxiv.org/abs/2408.01803, 2024.

Jarek Duda. Asymmetric numeral systems: entropy
coding combining speed of huffman coding with com-
pression rate of arithmetic coding. arXiv preprint
arXiv:1311.2540, 2013.

Hugging Face. Hugging face. https://huggingface.
co/, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint
arXiv:2210.17323,2022.

Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Wen Xia, Yucheng Zhang, and Yujuan Tan. Design

https://support.hdfgroup.org/documentation/index.html
https://support.hdfgroup.org/documentation/index.html
https://standards.ieee.org/ieee/754/6210/
https://standards.ieee.org/ieee/754/6210/
https://huggingface.co/posts/mlabonne/611875460328127
https://huggingface.co/posts/mlabonne/611875460328127
https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html
https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html
https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://huggingface.co/bartowski/gemma-2-9b-it-GGUF
https://huggingface.co/bartowski/gemma-2-9b-it-GGUF
https://huggingface.co/bartowski/gemma-2-9b-it-GGUF
https://www.dell.com/support/kbdoc/en-us/000003886/86266-understanding-datadomain-compression
https://www.dell.com/support/kbdoc/en-us/000003886/86266-understanding-datadomain-compression
https://www.dell.com/support/kbdoc/en-us/000003886/86266-understanding-datadomain-compression
https://www.dell.com/en-us/dt/data-protection/powerprotect-backup-dd-appliances/powerprotect-dd-backup-appliances.htm
https://www.dell.com/en-us/dt/data-protection/powerprotect-backup-dd-appliances/powerprotect-dd-backup-appliances.htm
https://www.dell.com/en-us/dt/data-protection/powerprotect-backup-dd-appliances/powerprotect-dd-backup-appliances.htm
https://www.dell.com/en-us/dt/data-protection/powerprotect-backup-dd-appliances/powerprotect-dd-backup-appliances.htm
https://arxiv.org/abs/2408.01803
https://arxiv.org/abs/2408.01803
https://huggingface.co/
https://huggingface.co/

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

tradeoffs for data deduplication performance in backup
workloads. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies, FAST’ 15, page
331-344, USA, 2015. USENIX Association.

ggml-org. Gguf: Ggml universal file format specifica-
tion. https://github.com/ggml-org/ggml/blob/
master/docs/gguf.md, 2024.

GitHub. Git large file storage (Ifs). https://github.
com/git-1fs/git-1fs, 2024.

Google. TensorFlow Hub: A Library for Reusable Ma-
chine Learning Modules. https://www.tensorflow.
org/hub, 2018.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, and Ahmad Al-
Dahle et al. The llama 3 herd of models. https:
//arxiv.org/abs/2407.21783, 2024.

R. W. Hamming. Error detecting and error correcting
codes. The Bell System Technical Journal, 29(2):147—
160, 1950.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. Parameter-efficient fine-tuning for large
models: A comprehensive survey. https://arxiv.
org/abs/2403.14608, 2024.

Moshik Hershcovitch, Andrew Wood, Leshem Choshen,
Guy Girmonsky, Roy Leibovitz, [lias Ennmouri, Michal
Malka, Peter Chin, Swaminathan Sundararaman, and
Danny Harnik. Zipnn: Lossless compression for ai mod-
els. arXiv preprint arXiv:2411.05239, 2024.

Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey
Yekhanin. Erasure coding in windows azure storage. In
2012 USENIX Annual Technical Conference (USENIX
ATC 12), pages 15-26, 2012.

David A Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098-1101, 1952.

Hugging Face. Model cards - hugging face doc-
umentation. https://huggingface.co/docs/hub/
en/model-cards, 2024.

Hugging Face. Safetensors documentation. https:
//huggingface.co/docs/safetensors/en/index,
2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,

(36]

[37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b. https://arxiv.org/
abs/2310.06825, 2023.

Maximilian Kuschewski, David Sauerwein, Adnan Al-
homssi, and Viktor Leis. Btrblocks: Efficient columnar
compression for data lakes. Proceedings of the ACM on
Management of Data, 1(2):1-26, 2023.

Panagiotis Liakos, Katia Papakonstantinopoulou, and
Yannis Kotidis. Chimp: efficient lossless floating point
compression for time series databases. Proceedings of
the VLDB Endowment, 15(11):3058-3070, 2022.

Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and
Franck Cappello. An efficient transformation scheme
for lossy data compression with point-wise relative er-
ror bound. In 2018 IEEE International Conference on
Cluster Computing (CLUSTER), pages 179-189. IEEE,
2018.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu
Dang, Chuang Gan, and Song Han. Awq: Activation-
aware weight quantization for on-device 1lm compres-
sion and acceleration. Proceedings of Machine Learning
and Systems, 6:87-100, 2024.

Peter Lindstrom. Fixed-rate compressed floating-point
arrays. IEEE transactions on visualization and com-
puter graphics, 20(12):2674-2683, 2014.

Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J
Elmore. Decomposed bounded floats for fast compres-
sion and queries. Proceedings of the VLDB Endowment,
14(11):2586-2598, 2021.

James Liu, Guangxuan Xiao, Kai Li, Jason D Lee, Song
Han, Tri Dao, and Tianle Cai. Bitdelta: Your fine-tune
may only be worth one bit. Advances in Neural Infor-
mation Processing Systems, 37:13579—-13600, 2024.

Josh MacDonald. File system support for delta com-
pression. PhD thesis, Masters thesis. Department of
Electrical Engineering and Computer Science ..., 2000.

Detlev Marpe, Heiko Schwarz, and Thomas Wiegand.
Context-based adaptive binary arithmetic coding in the
h. 264/avc video compression standard. IEEE Trans-

actions on circuits and systems for video technology,
13(7):620-636, 2003.

Meta Al. Introducing llama 3.1: Our most capable
models to date. https://ai.meta.com/blog/meta-
llama-3-1/,2024.

https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
https://github.com/git-lfs/git-lfs
https://github.com/git-lfs/git-lfs
https://www.tensorflow.org/hub
https://www.tensorflow.org/hub
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://huggingface.co/docs/hub/en/model-cards
https://huggingface.co/docs/hub/en/model-cards
https://huggingface.co/docs/safetensors/en/index
https://huggingface.co/docs/safetensors/en/index
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Meta Al Introducing meta llama 3: The most capable
openly available llm to date. https://ai.meta.com/
blog/meta-1lama-3/, 2024.

Meta Al Llama 3.1 8b. https://huggingface.co/
meta-llama/Llama-3.1-8B, 2024.

Meta Al Llama 3.2: Revolutionizing edge
ai and vision with open, customizable models.
https://ai.meta.com/blog/llama-3-2-connect-
2024-vision-edge-mobile-devices/, 2024.

Meta AL The Ilama 4 herd: The begin-
ning of a new era of natively multimodal ai in-
novation. https://ai.meta.com/blog/llama-4-
multimodal-intelligence/, 2025.

Nicholas Metropolis and Stanislaw Ulam. The monte
carlo method. Journal of the American statistical asso-
ciation, 44(247):335-341, 1949.

Dutch T. Meyer and William J. Bolosky. A study of prac-
tical deduplication. In Proceedings of the 9th USENIX
Conference on File and Stroage Technologies, FAST 11,
page 1, USA, 2011. USENIX Association.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Amatriain,
and Jianfeng Gao. Large language models: A survey.
https://arxiv.org/abs/2402.06196, 2025.

Athicha Muthitacharoen, Benjie Chen, and David
Mazieres. A low-bandwidth network file system. In
Proceedings of the eighteenth ACM symposium on Op-
erating systems principles, pages 174—187, 2001.

NetApp. Netapp ontap 9 storage efficiency guide. Tech-
nical Report TR-3966, NetApp, 2020.

NetApp. Ontap data management software. https:
//www.netapp.com/data-management /ontap-
data-management-software/, 2024.

Fan Ni and Song Jiang. Rapidcdc: Leveraging duplicate
locality to accelerate chunking in cdc-based deduplica-
tion systems. In Proceedings of the ACM symposium on
cloud computing, pages 220-232, 2019.

Ivica Nikolic, Teodora Baluta, and Prateek Saxena.
Model provenance testing for large language models.
https://arxiv.org/abs/2502.00706, 2025.

Wanyi Ning, Jingyu Wang, Qi Qi, Mengde Zhu, Haifeng
Sun, Daixuan Cheng, Jianxin Liao, and Ce Zhang. Fm-
delta: Lossless compression for storing massive fine-
tuned foundation models. Advances in Neural Informa-
tion Processing Systems, 37:66796—66825, 2024.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Myoungwon Oh, Sungmin Lee, Samuel Just, Young Jin
Yu, Duck-Ho Bae, Sage Weil, Sangyeun Cho, and
Heon Y. Yeom. TiDedup: A new distributed dedupli-
cation architecture for ceph. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pages 117—
131, Boston, MA, July 2023. USENIX Association.

Yanqi Pan, Wen Xia, Erci Xu, Hao Huang, Xiangyu Zou,
and Shiyi Li. Don’t maintain twice, it’s alright: Merged
metadata management in deduplication file system with
GogetaFS. In 23rd USENIX Conference on File and
Storage Technologies (FAST 25), pages 479-495, Santa
Clara, CA, February 2025. USENIX Association.

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul
Cavallaro, Qi Huang, Justin Meza, and Kaushik Veer-
araghavan. Gorilla: A fast, scalable, in-memory time
series database. Proceedings of the VLDB Endowment,
8(12):1816-1827, 2015.

William B. Pennebaker, Joan L. Mitchell, Glen G Lang-
don, and Ronald B Arps. An overview of the basic prin-
ciples of the g-coder adaptive binary arithmetic coder.
IBM Journal of research and development, 32(6):717—
726, 1988.

Colin Percival. bsdiff - binary diff/patch utility. https:
//www.daemonology.net/bsdiff/, 2003.

Qwen. Introducing Qwen2-Math. https://qwenlm.
github.io/blog/gwen2-math/, 2024.

Qwen. Qwen2.5-Coder: Code More,
Learn More! https://qwen.ai/blog?id=
d9c66f64e7a2e156790c7991df3c803a7c3f96cds
from=research.research-1list, 2024.

Qwen. Qwen2.5 VL! Qwen2.5 VL!
Qwen2.5 VL! https://qwen.ai/blog?id=
cbe7415d9%a9%e89%adc18c59d9%e466e5alad5908f46
from=research.research-1list, 2025.

Morgane Riviere et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Kiran Srinivasan, Tim Bisson, Garth Goodson, and
Kaladhar Voruganti. idedup: latency-aware, inline data
deduplication for primary storage. In Proceedings of
the 10th USENIX Conference on File and Storage Tech-
nologies, FAST 12, page 24, USA, 2012. USENIX As-
sociation.

Michal Stabno and Robert Wrembel. Rlh: Bitmap com-
pression technique based on run-length and huffman
encoding. In Proceedings of the ACM tenth interna-
tional workshop on Data warehousing and OLAP, pages
41-48, 2007.

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://arxiv.org/abs/2402.06196
https://www.netapp.com/data-management/ontap-data-management-software/
https://www.netapp.com/data-management/ontap-data-management-software/
https://www.netapp.com/data-management/ontap-data-management-software/
https://arxiv.org/abs/2502.00706
https://www.daemonology.net/bsdiff/
https://www.daemonology.net/bsdiff/
https://qwenlm.github.io/blog/qwen2-math/
https://qwenlm.github.io/blog/qwen2-math/
https://qwen.ai/blog?id=d9c66f64e7a2e156790c7991df3c803a7c3f96cd&from=research.research-list
https://qwen.ai/blog?id=d9c66f64e7a2e156790c7991df3c803a7c3f96cd&from=research.research-list
https://qwen.ai/blog?id=d9c66f64e7a2e156790c7991df3c803a7c3f96cd&from=research.research-list
https://qwen.ai/blog?id=c5e7415d9a9e89adc18c59d9e466e5a1a459b8f4&from=research.research-list
https://qwen.ai/blog?id=c5e7415d9a9e89adc18c59d9e466e5a1a459b8f4&from=research.research-list
https://qwen.ai/blog?id=c5e7415d9a9e89adc18c59d9e466e5a1a459b8f4&from=research.research-list

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Zhaoyuan Su, Ammar Ahmed, Zirui Wang, Ali Anwar,
and Yue Cheng. Everything you always wanted to
know about storage compressibility of pre-trained ml
models but were afraid to ask. Proc. VLDB Endow.,
17(8):2036-2049, April 2024.

Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cap-
pello. Significantly improving lossy compression for
scientific data sets based on multidimensional prediction
and error-controlled quantization. In 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), pages 1129-1139. IEEE, 2017.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane Riv-
iere, et al. Gemma 3 technical report. arXiv preprint
arXiv:2503.19786, 2025.

Andrew Tridgell et al. Efficient algorithms for sorting
and synchronization. 1999.

Jeffrey Scott Vitter. Design and analysis of dynamic
huffman codes. Journal of the ACM (JACM), 34(4):825—
845, 1987.

Deepak Vohra. Practical hadoop ecosystem. Chapter in
Apache Parquet, 177:178, 2016.

Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shi-
lane, Stephen Smaldone, Mark Chamness, and Windsor
Hsu. Characteristics of backup workloads in produc-
tion systems. In Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies, FAST 12,
page 4, USA, 2012. USENIX Association.

Welch. A technique for high-performance data compres-
sion. Computer, 17(6):8-19, 1984.

Wikipedia contributors. Vcdiff — wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/
VCDIFF, 2024.

Xet Team. Git LFS Usage across the Hub.
https://huggingface.co/spaces/xet-team/1fs—
analysis, 2024.

XetHub. From Files to Chunks: Improving HF Storage
Efficiency. https://xethub.com/blog/from-
files-to-chunks-improving-hf-storage-
efficiency, 2024.

XetHub. From chunks to blocks: Accelerating uploads
and downloads on the hub. https://huggingface.
co/blog/from-chunks-to-blocks, 2025.

Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng,
Yu Hua, Yuchong Hu, Qing Liu, and Yucheng Zhang.

[83]

[84]

[85]

[86]

[87]

(88]

[89]

[90]

[91]

{FastCDC}: A fast and efficient {Content-Defined}
chunking approach for data deduplication. In 2016
USENIX Annual Technical Conference (USENIX ATC
16), pages 101-114, 2016.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. Smoothquant: Accu-
rate and efficient post-training quantization for large
language models. In International Conference on Ma-
chine Learning, pages 38087-38099. PMLR, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chen-
gen Huang, Chenxu Lv, et al. Qwen3 technical report.
arXiv preprint arXiv:2505.09388, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, et al. Qwen2. 5 technical report.
arXiv preprint arXiv:2412.15115, 2024.

Xiaozhe Yao, Qinghao Hu, and Ana Klimovic. Deltazip:
Efficient serving of multiple full-model-tuned llms. In
Proceedings of the Twentieth European Conference on
Computer Systems, pages 110-127, 2025.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. Zeroquant:
Efficient and affordable post-training quantization for
large-scale transformers. Advances in Neural Informa-
tion Processing Systems, 35:27168-27183, 2022.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. Q8bert: Quantized 8bit bert. In 2019 Fifth
Workshop on Energy Efficient Machine Learning and
Cognitive Computing-NeurlPS Edition (EMC2-NIPS),
pages 36-39. IEEE, 2019.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqgiang Ma.
Llamafactory: Unified efficient fine-tuning of 100+ lan-
guage models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), Bangkok, Thailand,
2024. Association for Computational Linguistics.

Sally Zhu, Ahmed Ahmed, Rohith Kuditipudi, and Percy
Liang. Independence tests for language models. https:
//arxiv.org/abs/2502.12292, 2025.

Jacob Ziv and Abraham Lempel. A universal algorithm
for sequential data compression. IEEE Transactions on
information theory, 23(3):337-343, 1977.

https://en.wikipedia.org/wiki/VCDIFF
https://en.wikipedia.org/wiki/VCDIFF
https://huggingface.co/spaces/xet-team/lfs-analysis
https://huggingface.co/spaces/xet-team/lfs-analysis
https://xethub.com/blog/from-files-to-chunks-improving-hf-storage-efficiency
https://xethub.com/blog/from-files-to-chunks-improving-hf-storage-efficiency
https://xethub.com/blog/from-files-to-chunks-improving-hf-storage-efficiency
https://huggingface.co/blog/from-chunks-to-blocks
https://huggingface.co/blog/from-chunks-to-blocks
https://arxiv.org/abs/2502.12292
https://arxiv.org/abs/2502.12292

le—2

x Near Cross-Family

1.51 o Within-Family 5=
w
+
1.0 43
33
0.5 =
W

2

0.01 0.02

Ow

Figure 12: Expected bit distance heatmap.

1.00+
0.75-
o .
o
A 0.501 —— Accuracy
— Precision
0.251 —— Recall
- F1 Score

0 2 4 6 8
Threshold

Figure 13: Impact of selected threshold on various metrics.
A Appendix
A.1 Sensitivity of Clustering Threshold

As discussed in §3.4.3, we use a clustering threshold on the
bit distance to determine whether a model pair belongs to the
same family.

To select a robust and interpretable threshold, we refer to
the empirical parameter distribution of popular model fam-
ilies (e.g., Llama-3.1, Mistral, Qwen2.5, etc.), where the
standard deviations of base weights and fine-tuning deltas
typically fall within G,, € [0.01,0.05] and 64 € [0.00,0.02]
(see Figure 12). In this heatmap, darker colors indicate higher
expected bit distance values. Under this distribution, the ex-
pected bit distance lies within [1.5,6] based on Monte Carlo
sampling. In contrast, cross-family pairs typically exceed 6
due to larger weight deltas, as shown in Figure 3.

A notable exception is model pairs that are closely related
but cross-family (e.g., Llama-3 vs. Llama-3.1), which show
a lower-than-expected bit distance around 4 (red dot in Fig-
ure 12). This near-cross-family case reveals a potential risk:
although a higher threshold (e.g., 6) would be suggested based
on the general distribution, it could lead to false negatives by

misclassifying closely related but cross-family models. To
address this, we narrow the threshold down to 4, which ef-
fectively mitigates such risks. As shown in Figure 13, the
threshold of 4 achieves a high accuracy of 93.5%, while
maintaining a good balance across precision (by avoiding
misclassifying cross-family models as within-family), recall
(since thresholds below 4 would miss many true within-family
pairs), and thus results in a strong F1 score.

	Introduction
	Background and Related Work
	Traditional Storage Reduction
	Model-aware Storage Reduction

	Characterizing Hugging Face Model Storage
	Model Storage Explosion
	Model Storage Format
	Data Type Distribution
	LLM Families
	Base and Fine-tuned LLMs
	Cross-model Parameter Difference
	Cross-model Bit Distance and LLM Clustering

	Storage Redundancy in LLMs
	File-level Deduplication
	Deduplication with Content-defined Chunking

	Design
	Model-aware, Tensor-level Deduplication
	BitX Delta Compression
	LLM Clustering Thresholding
	Putting It All Together: ZipLLM Design
	File-level Deduplication
	Tensor-level Deduplication
	Lossless Compression
	LLM Serving

	Evaluation
	Experimental Setup
	End-to-end Comparison
	Data Reduction Ratio
	Throughput Performance

	Breakdown Analysis
	Deduplication
	Lossless Compression

	Discussion
	Conclusion
	Appendix
	Sensitivity of Clustering Threshold

