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Abstract
Operational machine learning (ML) requires skills beyond model de-
velopment, including infrastructure provisioning, large-scale train-
ing across clusters, model deployment with consideration of op-
erational performance, monitoring, and automation - capabilities
grounded in high-performance computing and distributed systems.
This paper presents the design and infrastructure requirements of
a graduate-level course on ML Systems Engineering and Opera-
tions, aimed at equipping students with these skills. Using 186,692
total compute instance hours on the Chameleon Cloud testbed,
students built end-to-end ML pipelines incorporating distributed
training, reproducible experiment tracking, automated re-training
and re-deployment, and continuous monitoring. We analyze com-
pute usage across assignments, compare expected versus actual
resource consumption, and estimate that replicating the course
on commercial cloud platforms would cost approximately $250
per student (almost $50,000 for our course with enrollment of 191
students). All course materials are publicly available for reuse1.

CCS Concepts
• Social and professional topics → Computing education; •
Computing methodologies→Machine learning; • Networks
→ Cloud computing.
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1 Introduction
The rapid expansion of machine learning (ML) across industries
has created a growing demand for engineers who can support
ML-speci"c infrastructure and operations. Companies of all sizes -
startups, mid-sized "rms, and large enterprises - are hiring for roles
such as AI infrastructure engineer, MLOps engineer, and ML cluster
performance engineer. In parallel, academic research in machine
learning systems (MLSys) is expanding to address the full-stack
challenges introduced by modern ML development and deployment.
These challenges include designing software and hardware systems
that support the ML lifecycle, optimizing for constraints beyond
accuracy (e.g., cost, latency, privacy, interpretability), and building
infrastructure that enables scalable, reliable, and accessible ML ap-
plications and services [27]. Universities are beginning to address
this demand by introducing courses focused on MLSys, ML opera-
tions (MLOps), or software engineering for ML [15, 20, 21, 24, 33].
These courses extend the traditional ML curriculum by incorporat-
ing topics central to high performance computing and systems en-
gineering, and train students to reason about broader system-level
concerns, such as computational e#ciency, long-term maintainabil-
ity, and sustainability, in the context of ML applications.

Several early experience reports in the academic literature dis-
cuss courses on operational machine learning systems [15, 20, 21,
24, 33], highlighting pedagogical approaches, relevant tools, and
curricular structure. However, none provide a concrete, in-depth
treatment of the substantial infrastructure requirements of such
a course. This paper addresses that gap by focusing speci"cally
on the infrastructure demands of a graduate-level Machine Learn-
ing Systems Engineering and Operations course o!ered at NYU.
The goal of the course is to integrate core machine learning con-
cepts with systems topics such as distributed training, scheduling,
monitoring, and versioning, alongside fundamentals of cloud com-
puting, so that students will be capable of provisioning, deploying,
maintaining, and using the infrastructure and systems required for
operational ML. We provide a detailed analysis of infrastructure
usage in our 191-student course, including approximately 109,837
hours of compute instance time for guided lab assignments and
76,855 hours for open-ended project work. We estimate that run-
ning the course on a commercial cloud would have cost just under
$50,000. Finally, we make all materials available [11] to replicate our
course on the public Chameleon Cloud [17] research infrastructure.

1Course materials: https://!und.github.io/ml-sys-ops/
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By detailing the compute, network, and storage requirements to
teach these topics, this paper contributes to the broader objective
of preparing students in compute-intensive "elds like machine
learning and data science with practical, scalable computing skills
aligned with industry and research needs.

The rest of this paper is organized as follows. Section 2 provides
an overview of the course, including its intended audience, prereq-
uisites, and core learning objectives. Section 3 details the learning
activities in the course and their corresponding infrastructure re-
quirements. Section 4 describes Chameleon Cloud as the primary
platform for supporting course activities. Section 5 summarizes the
compute, storage, and network resources used by students at each
stage, along with estimated costs for running the course on com-
mercial cloud platforms. Finally, Section 6 suggests key takeaways
for instructors who are interested in o!ering a similar course.

2 Course Overview
Machine Learning Systems Engineering and Operations was o!ered
for the "rst time in Spring 2025 in the Department of Electrical
and Computer Engineering at NYU, with a "nal enrollment of 191
students. This section describes the course’s structure, goals, and
content, as well as the motivation behind its design.

Learning Objectives. By the end of the course, students should
understand the full lifecycle of machine learning systems and have
experience designing, building, and maintaining them. Speci"cally,
students should be able to:
• implement scalable training work$ows, including training very
large models, multi-GPU training, and cluster management,

• manage experiment tracking and versioning,
• deploy performant models, accounting for compute requirements
and latency alongside ML metrics such as accuracy,

• evaluate and monitor deployed systems, including both predic-
tion quality and compute resource usage,

• apply DevOps principles such as CI/CD, infrastructure as code,
and cloud-native computing, to ML systems, and

• reason about system reliability, maintainability, and risk.
Audience. Most participants were enrolled in the Master of Sci-

ence program in Electrical Engineering or Computer Engineering.
A small number came from other departments such as Computer
Science, Data Science, and Mathematical Sciences.

Relationship to other courses. The only formal prerequisite
for the course was Introduction to Machine Learning, in order to
make it broadly accessible. However, the course complements other
o!erings at NYU, including advanced ML courses such as Deep
Learning and Introduction to High Performance Machine Learning,
as well as systems-focused courses like Internet Architecture and
Protocols and Data Center and Cloud Computing. While prior or
concurrent enrollment in these courses is bene"cial, it is not re-
quired. This course o!ers students a big-picture perspective and
hands-on experience in integrating concepts across these areas
to build production-grade ML systems, without duplicating the
content of those other courses o!ered within the department.

Lectures. Students attended a weekly in-person lecture that
introduced each unit and provided context for the problems and
solutions in that week’s lab assignment. Some weeks also included
external readings, case studies, or video materials to supplement.

Lab Assignments. Each lecture was followed by a hands-on lab
assignment. Students were advised to allocate 4–5 hours per week
for this work. Detailed step-by-step instructions were provided
for each assignment. Labs were graded primarily for completion:
students submitted screenshots demonstrating that they had suc-
cessfully deployed the relevant systems following the instructions,
accounting for 60% of the "nal course grade.

Projects. The remaining 40% of the course grade was based on
"nal projects submitted at the end of the semester. Students worked
in groups of three or four to design and implement a medium- to
large-scale machine learning system. Projects were expected to
apply the techniques introduced throughout the course to address
practical challenges in ML systems engineering and operations.

Certain components of the project - such as the problem formula-
tion, value proposition, data selection, and system integration -were
shared responsibilities among all group members. Other aspects
were considered individually. Each student was expected to take
ownership of a speci"c subsystem, such as training, serving, moni-
toring, data pipeline development, or continuous integration and
deployment. The speci"c expectations for each role were aligned
with topics covered in the course, with requirements enumerated
and mapped to the corresponding instructional units.

Timeline.The course spanned 14weeks, withmost instructional
content delivered in the "rst 10, followed by project work.

Human support infrastructure. Eachweek included one o#ce
hour with the instructor and separate o#ce hours with two course
assistants. An online Q&A forum complemented these sessions,
with over 700 discussion threads and more than 3,000 unique posts
- questions, answers, and comments - by the end of the semester.

3 Content and Infrastructure Requirements
This section describes the core components of the course, organized
around weekly lectures and lab assignments and culminating in a
large-scale project. For each unit, we summarize the lecture topic,
describe the corresponding lab activity, and outline the compute,
network, and storage requirements necessary to support it. We also
report the expected duration of each lab assignment. These esti-
mates were derived by timing a course assistant as they completed
the assignment for the "rst time, then adding a ↑ 50% bu!er.

3.1 Unit 1: Introduction to ML Systems
Lecture Content. The "rst lecture distinguished between proto-
type ML models and production ML systems, emphasizing chal-
lenges related to scale, data quality, and business alignment. We
introduced the concept of technical debt in ML systems [32], and
the observation that common failure modes in large-scale ML in-
frastructure are often just the common failure modes of large-scale
distributed systems [25]. In contrast to introductory ML courses,
where the model is the central object of engineering, in operational
systems the central object is the ML pipeline, setting the foundation
for the system-level topics addressed throughout the semester.

LabActivity. The "rst lab focused on onboarding students to the
infrastructure used throughout, Chameleon Cloud [17]. Students
created accounts and completed a guided tutorial introducing them
to key features of the platform, including provisioning a virtual
machine (VM) instance and accessing it via SSH.
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Infrastructure Requirements. This lab requires a single mini-
mal VM instance, and an IP address for SSH access. The estimated
time required to complete the assignment was 1-2 hours.

3.2 Unit 2: Cloud Computing
Lecture Content. This lecture focused on the cloud infrastructure
that modern machine learning systems run on. It introduced key
building blocks of a cloud environment, including compute, net-
work, and storage services; shared services like authentication and
image management; and interfaces such as GUIs, CLIs, and SDKs.
Students learned how responsibility across the stack - hardware,
runtime, application logic - shifts between user and provider in
service models like IaaS, PaaS, and SaaS. The lecture concluded
with a discussion of virtualization and how tools like containers
and orchestration frameworks enable scalable service management.

Lab Activity. In this lab, students explored core elements of
cloud infrastructure using Chameleon, which is an OpenStack-
based research cloud. They "rst practiced using the OpenStack GUI
to provision VM instances, networks, ports, and $oating IPs. This
“ClickOps” experience motivated the next part, in which they used
the OpenStack CLI to perform the same tasks more e#ciently. With
compute infrastructure in place, students deployed a simple ML
application in a Docker container. Finally, they installed Kubernetes
using Kubespray and deployed their containerized application using
replicas, load balancing, and horizontal scaling.

This deployment introduced the premise that would run through-
out the course: students take on the role of ML engineers at a
"ctional startup, GourmetGram, developing a food-focused photo-
sharing platform. In this lab, they deploy a food classi"cation model
that assigns tags to photos uploaded to GourmetGram.

Infrastructure Requirements. This lab used three virtual ma-
chines, each with 2 vCPUs and 4 GB of RAM. Network require-
ments included a provider-con"gured external network and a user-
provisioned internal network for inter-VM communication. One
publicly routable IP address was provisioned to enable SSH ac-
cess into the cluster and test the user interface of the service. The
estimated time required for the assignment was 5 hours.

3.3 Unit 3: DevOps for ML Systems
Lecture Content. This lecture reviewed core DevOps principles,
including continuous integration and delivery (CI/CD), version
control, and infrastructure as code. The session also introduced
cloud-native computing as a convergence of DevOps and cloud
infrastructure. However, while DevOps provides robust tools for
managing code and infrastructure, it is less equipped to manage
two critical components of ML systems: models and data. This gap
motivates the need for MLOps, which extends DevOps principles to
the full ML lifecycle. We introduced a practical MLOps framework
and lifecycle, along with key organizational capabilities needed to
support ML system deployment at scale [30].

Lab Activity. Building on the previous lab, where students
deployed a basic ML service using manual steps, in this lab stu-
dents introduced automation and lifecycle management practices
in the GourmetGram context. To reduce manual overhead and im-
prove reproducibility, students used Infrastructure-as-Code (IaC)
and Con"guration-as-Code (CaC) tools - Terraform to provision

infrastructure and Ansible to install Kubernetes and supporting
tools. They then used Argo CD to declaratively manage the de-
ployment of GourmetGram’s platform components, and to deploy
GourmetGram’s staging, canary, and production services.

Then, students built a simpli"ed ML pipeline using Argo Work-
$ows, triggered manually with dummy steps to simulate the model
lifecycle, including model registration and promotion.

Infrastructure Requirements. This assignment has exactly
the same compute requirements as the previous one: students pro-
visioned three virtual machines, each with 2 vCPUs and 4 GB of
RAM, an internal network for inter-VM communication, and a pub-
licly routable IP address to enable SSH access into the cluster and
to test the user interface of the service. However, we note that
to achieve the learning objective, it was important that students
provision infrastructure using “standard” IaC tools - Terraform
in this case - so the infrastructure was required to support this.
The estimated hands-on time required to complete the assignment
was 5 hours, but students were advised to block out some time in
the middle while Kubernetes is installed (unattended), so from an
infrastructure perspective, the expected duration was 7-8 hours.

3.4 Unit 4: Model Training at Scale
Lecture Content. Given the importance of large language models
at the current time and the challenges associated with training them,
this lecture introduced practical strategies for training machine
learning models with billions of parameters, focusing on techniques
that enable models to scale beyond the memory limitations of a
single GPU (gradient accumulation, reduced and mixed-precision
arithmetic, and parameter-e#cient "ne-tuning methods such as
LoRA [14] and QLoRA [7]). The lecture also covered paradigms for
distributed training across GPUs: distributed data parallelism [22],
fully sharded data parallelism [37], and model parallelism. The
ring all-reduce communication pattern [26], which was "rst intro-
duced in an HPC context and then later applied to e#cient gradient
aggregation for distributed training [12], was covered in detail.

Lab Activity. Students "ne-tuned a 13B LLM using PyTorch
Lightning, "rst on a single GPU to explore memory optimizations,
then across 4 GPUs using distributed training techniques.

Infrastructure Requirements. The “Single GPU” portion of
the lab required access to a GPUwith NVIDIA CUDA compute capa-
bility 8.0 or higher to support bfloat16 reduced precision training,
as well as substantial GPU memory (e.g., an A100 80GB GPU). The
“Multiple GPU” portion required access to a node with at least four
such GPUs. For both parts, students also provisioned a public IP
for SSH access and access to a Jupyter environment deployed on
the instance. Each section was designed to take approximately two
hours of hands-on time, including setup time.

3.5 Unit 5: Model Training Infrastructure
Lecture Content. This lecture continued the focus on model train-
ing, with an emphasis on infrastructure and platforms for training.
Using OPT-175B [36] and Alibaba [34] as case studies, we identi"ed
key requirements: the ability to store detailed records for every
run, monitor ML-speci"c metrics, track infrastructure-level metrics,
and swap hardware while jobs are running. We then introduced
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job scheduling and placement concepts from HPC, e.g., back"lling,
gang scheduling, and fair sharing, speci"cally for ML training jobs.

Lab Activity. Students deployed an MLFlow tracking server [6,
35], including all necessary services (backend store, artifact store,
UI) using Docker containers. They con"gured a training script to
log experiment metadata, system metrics, hyperparameters, ML
metrics, and models to MLFlow, and used its UI to identify train-
ing bottlenecks, compare experiment results, and inspect model
artifacts. Then, students deployed a Ray [23] training cluster. They
learned how to de"ne resource requirements for training jobs, mod-
ify a training script to integrate Ray Train for distributed execution
and fault tolerance, and use Ray Tune for hyperparameter search.

Infrastructure Requirements. The "rst part, on experiment
tracking, required a single GPU instance, with su#cient vCPU and
RAM to supply data to the training process. The second part, involv-
ing distributed training across a multi-GPU cluster, required two
GPUs. Students also provisioned a public IP for SSH access, access
to a Jupyter environment deployed on the instance, and access to
the MLFlow and Ray web-based UIs. Each part was estimated to
require approximately 3 hours of infrastructure time.

3.6 Unit 6: Model Serving
Lecture Content. This lecture introduced model serving, focusing
on tradeo!s between latency, throughput, cost, and accuracy in
both cloud and edge environments. Students examined model-level
optimizations (compact architectures, graph compilation, operator
fusion, quantization, pruning, distillation) and system-level strate-
gies (concurrent execution, dynamic batching) for inference.

LabActivity. Continuing the GourmetGram use case introduced
in earlier units, students were tasked with preparing multiple model
serving con"gurations that balance cost, latency, disk space and
throughput under tight performance budgets.

First, students applied model-level optimizations using ONNX
Runtime including graph optimizations, INT8 quantization, and
use of hardware-speci"c execution providers, on server-grade hard-
ware. Next, students benchmarked the models in a low-resource
environment typical of mobile/edge use cases. Finally, students
explored system-level optimizations using NVIDIA Triton Infer-
ence Server, including concurrency, dynamic batching, and scaling
across multiple GPUs or multiple model instances.

Infrastructure Requirements. For the three parts of the lab,
student required a 3-hour block on a GPU-enabled instance with
recent CUDA support (e.g., A100, A30); then a 2-hour session on a
low-resource edge device; and "nally, a 3-hour block on an instance
with 2 GPUs. For all parts, students also provisioned a public IP
for SSH access, access to a Jupyter environment deployed on the
instance, and access to the web-based UI for the service.

3.7 Unit 7: Monitoring and Evaluation
Lecture Content. This lecture focused on the evaluation and moni-
toring stages of theML system lifecycle, as discussed in [3]. Students
learned about di!erent o%ine evaluation modalities beyond gen-
eral ML metrics (e.g., loss, accuracy), including domain-speci"c
metrics (e.g., BLEU, ROUGE), operational metrics (e.g., inference
latency, throughput, retraining cost), evaluation across key pop-
ulation slices, assessments for fairness and bias, and behavioral

testing [28]. The lecture also covered online evaluation methods
such as shadow testing, canary deployments, and A/B testing, along
with the challenges of prediction monitoring in production - par-
ticularly the di#culty of detecting performance degradation due to
data drift when ground truth labels are not readily available.

Lab Activity. This lab focused on evaluating and monitoring
ML systems across their lifecycle stages, organized in three parts.
For o%ine evaluation, students evaluated models using domain-
speci"c metrics and explainability tools for sanity checks, applied
template-based unit tests to ensure behavioral robustness, eval-
uated performance on key data slices and known failure modes,
and assembled a uni"ed test suite. In the online evaluation phase,
students implemented live monitoring of operational metrics (e.g.,
latency, throughput) and model-speci"c metrics (e.g., output dis-
tribution), along with drift detection. Finally, students explored
strategies for collecting supervision signals in production settings,
using both “real users” and dedicated human annotators.

Infrastructure Requirements. This lab required a single VM
instance with 2 vCPUs and 4 GB of RAM. Students provisioned the
instance with a public IP for access to SSH, a Jupyter environment
deployed on the instance, web-based UIs for the evaluation and
monitoring platforms, and the GourmetGram service. The total
expected duration was 6 hours.

3.8 Unit 8: Data Systems
Lecture Content. This lecture introduced the types of data storage
systems used inML pipelines: relational databases, data warehouses,
document and columnar databases, data lakes, and data lakehouses.
The lecture also covered ETL (extract, transform, load) pipelines for
batch data and the broker–producer–consumer model for streaming
data. Feature stores are introduced as infrastructure that uni"es
batch and streaming sources for use in ML training and inference.

Lab Activity. This lab introduced students to persistent storage
options for managing training data and system state across the ML
lifecycle. Students worked with two types of storage:
• Block Storage: Students provisioned a block storage volume, at-
tached it to a VM, formatted and mounted it, and used it to persist
service data across ephemeral compute environments.

• Object Storage: Students provisioned object storage to persist
large training datasets. They created object store buckets, loaded
data into them, and mounted the object store as a "lesystem on
compute instances, reducing setup overhead.
Infrastructure Requirements. This lab required a VM instance

with 4 vCPUs and 8 GB of RAM, a 2 GB block storage volume, and
approximately 1.2 GB of object storage. Students provisioned the
instance with a public IP for access to SSH. The estimated time
required to complete the assignment was 3 hours.

3.9 Unit 9: Safeguarding ML Systems
Lecture Content. This lecture introduced students to some of the
risks posed by ML systems, and strategies to safeguard against
them across design, implementation, and production stages. Stu-
dents examined categories of harm - including bias and fairness
issues, privacy violations, harmful content, and overreliance - and
discussed how these risks vary with the model type and use case.
The lecture introduced mitigation strategies such as red-teaming,
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"ltering, RLHF, onboarding practices, transparency measures, and
cognitive forcing functions, as well as their limitations.

Lab Activity. To accommodate project work, there was no lab.

3.10 Unit 10: Commercial Clouds
Lecture Content. The "nal lecture was a demo of the long-running
GourmetGram example, as it might be deployed on Google Cloud
Platform (GCP). The intent of this lesson was to show how to
transfer skills and ideas from the infrastructure and platforms used
in the course, to other contexts. It also included a demo of platform-
managed Kubernetes and serverless functions.

Lab Activity. Instructions to replicate the demo were made
available as an optional lab activity.

Infrastructure Requirements. The 2-hour demo included a
VM instance, a managed Kubernetes cluster, a serverless service,
a managed notebook environment with GPU acceleration, and
storage for data and artifacts (e.g. container images).

3.11 Project
The "nal project required students to design and implement a
medium-scale machine learning system that integrated techniques
from across the course. Projects were completed in groups of 3-4
students. Each group jointly de"ned the use case, dataset, target
variable, and overall system architecture. Individual members took
ownership of speci"c subsystems: model training (Units 4-5), model
serving and monitoring (Units 6-7), data storage and pipelines (Unit
8), and, for four-person groups, continuous integration and deploy-
ment (Unit 3). (In three-person groups, CI/CD responsibilities were
shared.) Infrastructure requirements varied according to the details
of the project, with some groups requiring extremely large-scale
data processing capabilities or extended time on multi-GPU nodes
for training, and others having less intensive requirements.

4 Chameleon Cloud
To support the infrastructure requirements of Units 1-9 and the
course projects, we used the Chameleon Cloud testbed [17]. This
section describe the capabilities of Chameleon in support of our
educational goals, in contrast to other platforms we considered.

Consideration of other platforms. Traditional HPC platforms
were not suitable, because the learning objectives of this course
emphasize full ML system design, including provisioning and man-
aging infrastructure and software systems from scratch. These goals
require full infrastructure control, which is not possible in the batch-
or notebook-based environments of a traditional HPC setting.

Commercial clouds o!er $exibility, access to large-scale com-
pute resources, and a wide range of managed services, but pose
challenges in a large-scale course setting due to cost and billing com-
plexity. Some require a credit card to be attached to every project, in
which case students risk charges if they unintentionally exceed the
education or free tier o!erings of the platform. Even when no credit
card is required and education credits are provided, students risk
exceeding the credit limit early in the course - potentially leaving
them unable to complete later assignments. These uncertainties
made commercial platforms less suitable for our instructional goals.

Other research testbeds (e.g., FABRIC [2], CloudLab [9]) provide
networking, storage, and compute capabilities (including GPU), and

allow students to work without the risk of incurring charges, but
they use a specialized interface for access, rather than one that
is compatible with mainstream “cloud” tools. Given the course’s
emphasis on infrastructure provisioning and management, we con-
sidered it a signi"cant advantage for students to use standard tools.

Capabilities of Chameleon Cloud. Chameleon is built on
the open-source OpenStack platform, which closely mirrors the
architecture and tooling of many commercial cloud providers. It
supports multiple methods for provisioning resources, including
the OpenStack command-line interface, a Python API, a browser-
based GUI (Horizon), and Terraform. This diversity of interfaces
allowed students to interact with the infrastructure using widely
adopted, industry-relevant tools.

Chameleon provides a rich set of compute, network, and storage
capabilities to support the hands-on ML systems and infrastructure
work we had envisioned. Students could launch on-demand VM
instances or reserve bare-metal GPU nodes for training workloads.
The platform supports public and private network con"guration,
block storage for persistent volumes, and object storage for large
datasets. Its capabilities are well-used and battle-tested in an edu-
cation setting, having been used to teach high performance com-
puting [8, 29, 31], cloud computing [4, 13], machine learning [5],
and autonomous driving [1, 10], in classroom settings as well as
less traditional education and training settings.

Some learning activities speci"cally require less-resourced de-
vices. Unique among the platforms we considered, Chameleon also
includes the CHI@Edge edge testbed [19], which o!ers access to
Raspberry Pi and NVIDIA Jetson devices and supports a “bring
your own device” (BYOD) model.

Logistics for classroom use. Chameleon Cloud is primarily
a research infrastructure, and our large-scale education use case
involved some additional logistical arrangements.

First, we requested a quota increase for the KVM@TACC site so
that our project could simultaneously use:
• Compute: 600 VM instances, 1200 cores, and 2.5 TB RAM
• Network: unlimited private networks and subnets, 200 routers,
300 $oating IPs, and 100 security groups

• Storage: 200 block storage volumes, 10 TB total block storage
For bare metal sites, the default quotas were su#cient.

We also made advance arrangements for access to scarce in-
demand GPU resources. Course sta! reserved [18] speci"c bare-
metal GPU instances for week-long blocks aligned with the course
schedule. At the start of each reservation, Chameleon sta! tem-
porarily restricted access to these resources to our project. Students
could then reserve short (2-hour or 3-hour) time slots on these GPU
instances without having to contend with other Chameleon users.

Finally, in preparation for our unit on deploying machine learn-
ing models on low-resource devices, we added 7 of our own Rasp-
berry Pi 5 deviceswithARMCortexA76 processor to the CHI@Edge
platform, enabling our students to use them via Chameleon.

Use of a commercial cloud. To practice using commercial
clouds, we distributed Google Cloud Platform education credits,
which allowed students to use GCP without having to associate
a credit card. Because this platform was only used for the last
assignment, and it was optional, we were not concerned about
students exceeding the usage permitted by the educational credit.
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(a) VM Instances (b) Bare Metal and Edge Instances
Figure 1: Comparison of expected vs. actual duration of infrastructure usage per student, per lab assignment. Fig. (a) shows labs
conducted on general-purpose VM instances, which do not require an advance reservation and are not terminated automatically;
(b) shows bare metal and edge environments, which require an advance reservation. Dashed lines indicate expected duration.

Table 1: Usage and estimated cost overall (and per student) by lab assignment and Chameleon node type or VM !avor.

Assignment Instance Type Instance Hours Floating IP Hours AWS Cost GCP Cost

1. Hello, Chameleon m1.small 2,620 2,620 $40 ($0.21) $57 ($0.3)
2. Cloud Computing m1.medium (x3) 52,332 17,444 $2,264 ($12) $5,347 ($28)
3. MLOps m1.medium (x3) 32,344 10,781 $1,399 ($7.3) $3,305 ($17)
4. Train at Scale (Multi GPU) gpu_a100_pcie 167 167 $2,993 ($16) $2,456 ($13)

gpu_v100 210 210 $3,764 ($20) $3,088 ($16)
4. Train at Scale (One GPU) compute_gigaio 218 218 $722 ($3.8) $1,106 ($5.8)
5. Training in a Cluster (Multi GPU) compute_liqid_2 330 330 $1,524 ($8) $662 ($3.5)

gpu_mi100 1,002 1,002 $4,627 ($24) $2,009 ($11)
5. Experiment Tracking (One GPU) compute_gigaio 28 28 $41 ($0.21) $32 ($0.17)

compute_liqid 130 130 $190 ($0.99) $150 ($0.78)
6. Model Serving Optimizations compute_gigaio 215 215 $191 ($1) $154 ($0.81)

compute_liqid 460 460 $410 ($2.1) $329 ($1.7)
6. Serving from the Edge raspberrypi5 492 492 NA NA
6. System Serving Optimizations gpu_p100 707 707 $3,582 ($19) $1,417 ($7.4)
7. Monitoring and Evaluation m1.medium 9,889 9,889 $461 ($2.4) $381 ($2)
8. Persistent Data m1.large 8,693 8,693 $1,490 ($7.8) $626 ($3.3)

Total 109,837 53,387 $23,698 ($124) $21,119 ($111)

5 Infrastructure usage and cost
During the course, we monitored the actual usage at VM and bare
metal sites, and the Chameleon team provided reservation data
from bare metal and edge sites. Using the course timeline and the
naming conventions speci"ed in the lab instructions, we were able
to associate most individual compute instances with speci"c lab
assignments, and therefore gain insight into student’s usage of the
platform. (The data in this section is based on actual usage of VM
and bare metal instances, and reserved usage of edge instances.)

Actual usage per assignment. Fig. 1 shows the actual dura-
tion of infrastructure usage for each lab assignment detailed in
Section 3, normalized by the number of students in the course. For
bare metal and edge instances, which require an advance reserva-
tion and which automatically terminate the instance at the end of
the reservation, the actual usage closely tracks expected usage. In
the case of Unit 4 and Unit 5, students could optionally complete
the single-GPU part on the same instance used for the multi-GPU
part, thereby saving on instance creation time; this explains their
higher-than-expected usage for multi-GPU instances along with
lower-than-expected usage for single-GPU instances.

VM instances, however, often persisted beyond expected dura-
tions - sometimes intentionally (to avoid repeating lengthy setup),
other times due to neglect. This raises a potential concern if a
similar course was conducted in a commercial cloud environment,
where non-terminated instances could lead to unexpectedly high
costs. (Since the initial o!ering of this course, Chameleon has intro-
duced advance reservation for VM instances as well, with automatic
termination at the end of the reservation.)

Overall, the portion of the course with hands-on lab assignments
used a total of 109,837 hours of compute instance time. Table 1
further enumerates the usage per assignment.

Estimated cost of lab assignments on commercial clouds.
To quantify the infrastructure cost of this course, we translated the
resources consumed on the Chameleon testbed into their equivalent
costs on commercial cloud platforms, speci"cally Amazon Web
Services (AWS) and Google Cloud Platform (GCP). For this analysis,
an “equivalent” resource was de"ned as the most cost-e!ective
cloud instance that met the speci"c needs of each assignment.

The cost model is built on several key assumptions. All prices
are derived from the on-demand, per-hour rates listed in the o#cial
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Figure 2: Distribution of estimated cost per student to execute
lab assignments on commercial clouds.

public pricing calculators for AWS and GCP as of July 2025 for a sin-
gle region (us-central1 for GCP and us-east-1 for AWS). These
"gures likely represent a conservative estimate, as short-duration
usage can sometimes incur higher e!ective hourly rates. Further-
more, while students used bare metal nodes on Chameleon for some
coursework, the course assignments do not strictly require them.
Our analysis therefore assumes standard virtualized instances, as
the performance monitoring exercises in the curriculum are not
sensitive enough to be signi"cantly impacted by potential “noisy
neighbors.” Finally, the total cost also includes charges for network-
ing services ($oating IPs). (For lab assignments, we do not include
storage costs, which are negligible; these will be signi"cant for
project work, however.) It is also worth noting that commercial
cloud pricing is volatile. Providers frequently adjust prices based on
hardware availability, regional demand, and broader market forces.
This analysis is a snapshot based on July 2025 pricing.

As illustrated in Table 1, the average cost per student for the
guided lab assignments is $124 on AWS, or $111 on GCP. (The “Serv-
ing from the Edge” experiment is excluded from this calculation,
since no commercial clouds o!er Raspberry Pi devices.)

However, this average cost hides a “long tail” of students whose
usage would be much more costly, with the “most expensive” stu-
dent’s usage for lab assignments estimated at $665 on AWS, or
$590 on GCP. Compared to the “expected” cost for lab assignments
based on the durations listed in Section 3 ($79.80 on AWS, $58.85
on GCP), 75% of students would have exceeded this cost on AWS,
and 73% would have exceeded this cost on GCP. The distribution
of estimated cost per student is illustrated in Fig. 2.

Actual usage and estimated cost for open-ended projects.
The rest of the infrastructure usage we logged is attributed to stu-
dent projects. Over the course of approximately one and a half
months of project development, students used:
• 70,259 hours of VM instance time without GPU acceleration,
• 5,446 hours of compute time on instances with GPUs,
• 975 hours of compute time on bare metal instances without a
GPU, most often for large-scale data processing pipelines,

• 175 hours on low-resource edge devices,
• 9 TB of block storage volumes,
• and 1,541 GB of object storage.
Fig. 3 further breaks down this usage by instance type, for the 70,259
hours of VM instances and 5,446 hours of GPU instances.

The cost estimate for this usage is less precise, since each project
has its own requirements and so we cannot exactly identify lowest-
equivalent-cost commercial cloud instances. Based on conservative
assumptions, we estimate a cost of $25,889 on AWS (approximately

Figure 3: Hours of project usage by instance type for non-
GPU and GPU instances.

$136 per student) and a similar cost of $26,218 (approximately $137
per student) on GCP for these open-ended projects.

6 Takeaways
Our key takeaways from this experience are as follows:

Teaching operational ML involves very di"erent infras-
tructure capabilities than teaching ML. Traditional ML educa-
tion focuses on one-o!model development - training and evaluating
a single model on static data - which aligns well with environments
like Jupyter notebooks or batch-processing systems on traditional
HPC platforms. In an operationalized system, however, models must
be continuously retrained and redeployed in response to data drift,
quality degradation, or new business requirements. Teaching this
work$ow requires exposing students to: provisioning infrastruc-
ture, automating pipelines, managing data systems, deploying and
monitoring services, and implementing feedback loops. These capa-
bilities demand full infrastructure control across compute, network,
and storage layers, which notebook-based or batch-only environ-
ments are not designed to support.

Teaching operational ML is expensive (on commercial in-
frastructure!). The hands-on nature of operational ML course-
work demands substantial compute resources, especially for GPU-
accelerated training, multi-node clusters, and long-running exper-
iments. On commercial platforms, a single instance left running
unintentionally can accumulate substantial charges, and our usage
strongly suggests a high likelihood of this occurring in an envi-
ronment where instances are not terminated automatically. The
estimated cost per student to run our course on a commercial cloud
is in the $250 range (including lab assignments and open-ended
project work), but there is a long tail of high-usage students with
substantially higher costs, that makes commercial clouds risky and
potentially cost-prohibitive for an education setting.

Course materials for operational ML on public research
infrastructure can be replicated, reused, and adapted. Finally,
we note that by designing lab assignments around open-source
tools, and using public research testbeds like Chameleon Cloud,
we created materials that are easily reused. All of the lab materi-
als developed for this course are available under an open-source
license [11], and can be executed directly from the Chameleon
Trovi [16] artifact sharing platform.
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