
On the Reproducibility Challenges of Federated
Learning: Investigating the Gap between

Simulation, Emulation and Real-World Deployments
Cédric Prigent→, Kate Keahey†, Alexandru Costan→, Loı̈c Cudennec‡, Gabriel Antoniu→

→ University of Rennes, Inria, CNRS, IRISA - Rennes, France
† Argonne National Laboratory, Lemont, Illinois, USA

‡ DGA Maı̂trise de l’Information, Rennes, France
{cedric.prigent, alexandru.costan, gabriel.antoniu}@inria.fr
{keahey}@mcs.anl.gov, {loic.cudennec}@intradef.gouv.fr

Abstract—Federated Learning (FL) is an emerging paradigm
for decentralized training of Machine Learning models. It has
been the subject of a large corpus of research due to its innovative
approach to handling sensitive data. A common practice in the FL
literature is to run simulations on a single compute node to assess
the performance of FL algorithms. While simulation enables fast
prototyping and validation of algorithmic concepts, it may face
limitations in reproducing the real system’s performance in het-
erogeneous environments such as the Computing Continuum, and
particularly on resource-constrained Edge devices. Conversely,
emulation on distributed testbeds offers more effective means
to accurately reproduce the performance of real-world devices.
However, to the best of our knowledge, no prior research has
investigated the differences between simulation and emulation in
FL experiments. In this paper, we study the complementarity of
these approaches and discuss their respective challenges, as a first
step towards reproducibility of FL experiments. We illustrate our
study with a real-life application used as a baseline: an outdoor
air quality forecasting framework with real-world sensors. Our
results show that simulation can be used to accurately reproduce
model performance metrics, while emulation can effectively
reproduce the system performance of real-world experiments.
Finally, we present a set of lessons learned on the challenges of FL
reproducibility and the selection of experimental infrastructures
for FL experiments and applications.

Index Terms—Federated Learning, Reproducibility, Edge

I. INTRODUCTION

Federated Learning (FL) enables decentralized training of
Machine Learning (ML) models over distributed nodes without
sharing the training inputs of the federated peers [1]. This
allows the processing of sensitive data directly at the Edge
of the network, where the data is produced, in many domains
(e.g., healthcare [2], smartphone applications [3], [4]). Progres-
sively larger ML models used in FL achieve unprecedented
accuracy. To efficiently train such models, larger compute
infrastructures spanning the entire Edge-Cloud Continuum [5]
and involving increasing number of peers are used to acceler-
ate and enhance the FL process. Extensive research efforts
propose new algorithms and systems for improving model
convergence, clustering, aggregation, training efficiency, and
security of FL [6] on these infrastructures.

Reproducing the performance of such algorithms and sys-
tems is essential for modeling, optimisation and analysis,
since the training efficiency (in terms of both accuracy and
execution time) highly depends on the underlying FL infras-
tructure: (i) understanding the performance of an FL system
aids in optimization (e.g., reproducing the execution can
help identify bottlenecks and allow for comparisons between
different FL strategies); (ii) since implementing optimisation
strategies in current FL frameworks is often tedious, error-
prone, and resource-intensive, reproducing system and model
performance allows to build accurate performance models that
can reduce the effort and resources required for evaluation.

A common practice in the FL community has been to run
simulations on a single compute node to assess the perfor-
mance of FL algorithms [6]. The reasons why FL simulations
are prevalent are mainly due to the high cost of setting up
real FL systems. This cost arises from the complexity of
deployments, the need for reliable and secure configurations,
and hardware requirements. Although simulations enable fast
prototyping and validation of algorithmic concepts, they face
limitations for modeling and studying the system overhead at
a fine-grained level [6]. This is particularly true for heteroge-
neous and resource-constrained devices such as those at the
Edge of the continuum [7]. Surprisingly, there is significant
variability in model performance and accuracy across different
simulators, even when applied to the same topology [8].
Moreover, the usability and scalability of those strategies in
real-life deployments (typically involving hundreds of data
owners, dynamic network conditions, geographic distribution,
data and hardware heterogeneity) have yet to be assessed.

We identify two key issues that hinder the reproducibility
of FL experiments when moving applications from simulation
to production in a distributed FL deployment. The first issue
is resource heterogeneity across the Computing Contin-
uum. A major source of the discrepancy between simulation
and reality stems from the high variance and volatility of
the underlying infrastructure. In practice, FL involves hun-
dreds of heterogeneous embedded devices with non-IID (non-
independent and identically distributed) data. This makes the



simulated performance—such as convergence time, bandwidth
consumption, and model quality—less accurate compared to
real or emulated deployments. While, some previous works
have investigated the FL performance at Edge (e.g., on Rasp-
berry Pis) [9]–[12], they did not quantify nor identified the
hypothetical gap that could exist between simulation, emula-
tion and real-world deployments for reproducibility purposes.

The second issue is modeling and reproducing complex
FL runtime behaviors. At execution time, communication
(i.e., transfer of the model weights to the centralized server)
may overlap with computation (i.e., local training at the
clients) to hide other stages of the FL processing that may
compete for bandwidth resources (e.g., client clustering).
While these optimizations can enhance efficiency, they also
introduce additional overhead, which: 1) may reduce the
overall throughput of the FL model, and 2) is difficult to
accurately predict through simulation.

To address these issues, we propose to investigate the gap
between simulation, emulation and real-world deployments for
FL performance evaluation. We present a rigorous method-
ology to evaluate key FL metrics (i.e., model convergence,
training latency, system utilization) and identify how different
infrastructures can reproduce different experimental patterns
observed in a real-world experiment. We deploy a real-world
sensor network for air quality forecasting and follow our
methodology to compare the real-world training performance
against different experimental setups previously used in the
FL literature. We investigate the extent to which different plat-
forms can reproduce the results obtained using the real-world
deployment. Our contributions are summarized as follows:

1) We introduce a rigorous methodology to evaluate the
performance of FL applications and workflows on dif-
ferent experimental platforms.

2) We design an experiment template for FL deployments,
illustrated by building and deploying air-quality station
prototypes to measure and forecast ambient air pollution
on the UChicago campus. Those stations are used to
train PM2.5 forecasting models at the Edge using FL.

3) We follow the proposed methodology to compare the
performance of simulation, emulation and our real-
world prototypes. We investigate how different hardware
resources can be used to reproduce the real-world exper-
iments by deploying FL on GRID’5000 (data centers)
and CHAMELEON’s CHI@Edge (raspberry pis) testbeds.

4) We discuss the lessons learned from our experiments
(e.g., which infrastructure can be used to validate which
experimental patterns), and emphasize key reproducibil-
ity aspects for FL experiments.

II. BACKGROUND AND MOTIVATION

A. Federated learning workflows

Federated Learning (FL) is usually deployed on large co-
horts of heterogeneous and unreliable systems. In FL, private
data remain local to the federated peers. Instead of running
the training in centralized data centers, the FL server samples

a subset of clients in federated rounds for local training of
the ML model. Sampled clients receive a copy of the model
and apply local training using their private data followed by
aggregation and model averaging by the server [1]. The FL
optimization goal is to minimize the global objective function:

F (w) =
N∑

i=0

Fi(w) (1)

where N is the total number of clients and Fi(w) is the local
objective function of client i,

Weight initialization and federated fine-tuning. Most
prior works have considered random weight initialization for
FL tasks [1], [13]. However, many FL applications could
benefit from proxy data available at the server for pre-training
purposes. The pre-trained model could then be further opti-
mized through federated fine-tuning in order to meet the global
optimization goal with better convergence [13].

B. Related works
Simulation/Emulation of FL systems Simulation has been

largely adopted in previous FL research works [1], [6], [14].
Existing tools mainly rely on optimizations to accelerate
computations and run large client cohorts on a single node
with minimal overhead [15]–[17]. Emulation can be used
to more realistically mimic different system behaviors by
deploying the FL clients on different physical or virtualised
nodes and applying network or computation limitation rules.
Some tools come with specific emulation support based on
real-world system traces of mobile devices (e.g., client speed
and availability) [16], [18], while others let the users apply
custom network emulation rules to the different nodes [19].

Performance evaluation of FL at the Edge. Some previous
works investigated the performance and overhead of FL on
Edge devices. [9], [10] measure training time, communication
overhead, power consumption and memory usage of FL on
Raspberry Pi (RPI) devices, highlighting: 1) the limitations
of such devices for training models exceeding several mil-
lions of parameters, and 2) the impact of communication
operations on their power consumption. The impact of a
cooling mechanism on RPI training performance is studied
in [12]. [11] investigated FL performance on a RPI testbed
when emulating a constrained 7.65MB/s network bandwidth
(representative of 4G/5G wireless communication) and showed
that communication time represented nearly half of the end-
to-end training time.

C. Challenges of reproducibility
We adopt the terminology proposed by ACM [20] i.e.,

an experiment is deemed reproducible, if a different team
using different experimental setup is able to reliably re-
peat the experiment and obtain the same measurement with
stated precision on multiple trials. In addition to the broader
challenges of scientific computing reproducibility, FL faces
specific challenges in terms of reproducibility:
(C1) Data accessibility. Experiments reproducibility is lim-

ited by the inability to retrieve training data, whereas



Fig. 1: Air quality station system architecture

statistical reproducibility can be limited by the lack of
public and statistically similar datasets [21].

(C2) Software randomness. Random client selection ap-
proaches and random model initializations are com-
monly used in FL. While fixing the random seed can
partially solve this problem, factors such as the order
in which the clients connect to the federation or their
volatility may affect the sampling approach in consecu-
tive runs.

(C3) System heterogeneity. FL clients are usually heteroge-
neous and resource-constrained. In practice, they may
also present very heterogeneous network access with
volatility. Reproducing FL training on different exper-
imental platforms might require system emulation and a
fine-grained capture of federated client system metrics.
In addition, the non-determinism in the hardware can
add to the intricacies of reproducing training of Deep
Learning models [22].

D. Problem statement
While FL has been the subject of numerous studies, it has

been evaluated mainly through simulation. Few works have
evaluated FL performance on Edge devices (e.g., Raspberry
Pis). However, these evaluations typically rely on benchmark-
ing datasets and do not include comparisons with simulation
or emulation approaches. In this work, we aim at answering
the following research questions:
(Q1) Can public datasets be used to reproduce FL results

obtained from private data? (addressing challenge C1)
(Q2) How simulation results can predict the behavior of

a real-world Federated Learning system? (addressing
challenges C2-C3)

(Q3) How realistically can different experimental approaches
model performance of Federated Learning at the Edge?
(addressing challenge C3)

III. CASE STUDY: OUTDOOR AIR QUALITY FORECASTING

Air pollution is one of the greatest environmental risks
for human health. According to the World Health Organi-
zation (WHO), in 2019, ambient air pollution was estimated
to be responsible for a yearly 4.2 million premature death
worldwide [23]. Fine particulate matter (PM) is one of the
most prominent sources of risks for human health, due to
their microscopic size. Some IoT sensor networks have been
deployed over urban areas to measure the concentration of
such pollutants and calculate air quality index [24], raising
public awareness on air quality problems.

In order to observe the behavior of real-world devices in
practice, we design our own air quality station prototypes and
deploy them across the UChicago campus. We describe the
complexity of this deployment in this section. We consider
the significant effort and resources required for this process as
representative of real-world FL deployments, highlighting the
need to explore alternatives such as simulation and emulation.

Hardware. To measure outdoor air quality and enable
in-situ data processing, we build our air-quality stations on
top of Raspberry Pi 4B (RPI) single-board computers. RPIs
come with general purpose I/O pins (GPIO) which can be
used to connect the devices to external sensors. We extend
our prototypes with two sensors connected through the I2C
interface. BME680 sensors measure relative humidity, baro-
metric pressure and ambient temperature, and PMSA003I
sensors measure PM1.0, PM2.5 and PM10.0 which correspond
to the concentration of particulate matter in the air. RPI
4B natively supports WiFi connectivity, allowing for greater
flexibility regarding deployment locations. This architecture
is simple and easily replicable. We conducted different tests
on a first prototype running docker containers to ensure that
the sensors worked as expected. After validation of the first
prototype, we prepared 7 additional prototypes (for a total of
8 stations). Each device runs balenaOS, a minimal OS for
running containers on embedded devices. We configure WiFi
and ssh access directly in the balenaOS configuration files.

Micro-services. We build our system following a micro-
services architecture, decoupling the different building blocks
of our application into isolated services. Micro-services are
bundled in docker images which contain source codes and
dependencies needed to run the application, facilitating their
deployment across various infrastructures. Docker containers
share a persistent volume for writing and reading data, en-
abling data transfer between services (i.e., raw and processed
data). Figure 1 gives a schematic view of our air quality station
system architecture. Our experimental workflow is divided into
4 main phases for which we define micro-services: (1) the air
quality monitoring service which collects raw air quality data
using the BME680 and PMSA003I sensors through the I2C
interface, (2) the data preprocessing service which reads raw
data from the shared volume and prepares the local dataset for
the FL client, (3) the FL client service which trains a PM2.5
forecasting model in collaboration with other devices, and (4)
the system monitoring service which measures local system
metrics in real-time (e.g., CPU usage, memory usage).

Deployment. We face several conflicting challenges for
deploying our devices: (1) the sensors require direct access to
outdoor air, (2) the prototypes need to be protected from out-
door weather, and (3) the prototypes require a powering solu-
tion. Keeping deployment cost low while addressing these con-
straints can be challenging. Although waterproof enclosures
and batteries address the problem of outdoor deployments,
this would also increase the total cost of our deployment (i.e.,
equipping each device with waterproof cases and batteries).
While relying on waterproof enclosures seems essential for
outdoor deployments, setting up powering solutions other than



Fig. 2: Prototypes deployment on the UChicago campus.

batteries could be tricky. We also do not know to what extent
different waterproofing solutions could affect the quality of our
air quality measurements. An alternative solution is to target
indoor deployment locations with direct access to outdoor
air. With the help of technical staffs, we identified 8 fresh
air intakes from the university buildings that could be used
to deploy our devices. These fresh air intakes came with
the benefit of having nearby access to powering solutions
and protecting the devices from outdoor weather. A public
WiFi available across the university campus provides easy
connectivity for each device. Another advantage of deploying
our prototypes in these fresh air intakes is that they are
protected from pilfering and vandalism. The on-campus device
deployment spanned over two days, with the mobilization of
technical staffs to access several authorization-only areas. For
each deployment, we verified the proper connection of devices
to the WiFi (available across the university campus) and to the
CHI@Edge [25] testbed (used to operate the devices). A map
of the deployed air quality station prototypes is presented in
Figure 2.

IV. METHODOLOGY AND EXPERIMENTAL PLAN

To answer our research questions, we deploy different
FL training tasks (i.e., different training settings and model
architectures) and measure the training performance of each
system using precise evaluation metrics addressing multiple
optimization goals (i.e., model performance, training round
latency, and system utilization).

A. Training task
Models. Our objective is to train forecasting models that use

time series data to predict ambient air quality (i.e., PM2.5) for
the next couple of hours. To study the impact of model com-
plexity on the reproducibility of training performance, we train
recurrent neural networks (RNNs) with different architectures.
Each RNN is composed of LSTM layers followed by a fully
connected output layer predicting PM2.5 concentrations for
the next 4 hours. We describe our models in Table I.

Federated fine-tuning. We study the impact of two weight
initialization approaches in FL: (1) random initialization (i.e.,
training the model from scratch) and (2) centralized pre-
training on public data (i.e., federated fine-tuning).

TABLE I: LSTM Models
Sequence

length
Input
size

LSTM
layers

Hidden
state size

Output
size

Number of
parameters

Size
(MB)

1 24 (6) 1 64 (4) 18.4K 0.08
2 24 (6) 2 64 (4) 51.7K 0.21
3 24 (6) 1 128 (4) 69.6K 0.28
4 24 (6) 2 128 (4) 201.7K 0.81
5 24 (6) 1 256 (4) 270.3K 1.09
6 24 (6) 2 256 (4) 796.7K 3.19

B. Evaluation metrics
To conduct our study, we evaluate the experimental results

along 3 performance axis: (1) model performance, (2) training
round latency, and (3) system utilization.

In terms of forecasting performance, we report the feder-
ated MSE loss, which corresponds to the average MSE loss
achieved by the model on the client local testsets. In addition,
to evaluate the performance gain provided by federated fine-
tuning, we report: (1) the loss improvement compared to FL
from scratch, and (2) the number of rounds to achieve different
target loss values.

In terms of training round latency, we report the average
client computation time per round and average client com-
munication time per round. We also present statistics about
the client working time variations observed during consecutive
training rounds (i.e., heterogeneity statistics between clients).

In terms of system utilization, we report CPU usage, CPU
temperature, memory usage and total network I/O observed
across the different platforms when running our application.

C. Hyperparameters and model pre-training
FL hyperparameters. We run each FL experiment for

100 training rounds using 3 clients and 1 server. We set the
client sampling rate to 1.0 (i.e., every client participate in
every round). When sampled, clients train the downloaded
model for 1 local epoch over their training samples. We
set a learning rate decay of 0.99 for training stability. For
reproducibility purposes, we fix the random seed for all
experiments. Finally, we conduct a hyperparameter search
through simulation to fix the local learning rate in the
range {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003}. We set
the learning rate to 1e→ 3 for training the model from scratch
and 3e→ 4 for federated fine-tuning of the model.

(Simulation/Emulation) Public dataset. In practice, FL
is deployed to train models on data that could not be re-
trieved in centralized storage due to privacy or communication
constraints. This hinders the ability to fully reproduce FL
experiments using experimental testbeds. For this reason, we
study how public data could be used to reproduce experiments
relying on private data. We rely on the PURPLEAIR [24] sensor
network API to download public air quality data from sensors
deployed across Chicago that should be conceptually similar
to the data collected at our real-world air-quality stations. We
purposely download one month of data for each sensor to
match the real-world dataset sizes and verify that the same
number of samples is used in every experiment.

Model pre-training. We assume the existence of a publicly
available and limited dataset that could be used to pre-



Fig. 3: Experimental platforms

train our forecasting models. To study the impact of such
datasets on model convergence, we assume the availability
of previous sensor data from Sydney and collect them using
PURPLEAIR [24] API. We download one month of data coming
from a sensor located in Sydney and use them to pre-train our
forecasting models using centralized computing resources.

V. EXPERIMENTAL PLATFORMS

Our objective is to understand how different platforms
can be used to reproduce the performance of a real-world
deployment. In this section we present the different platforms
and settings considered in our study, which are selected based
on their previous adoption in the FL literature (Figure 3).

A. Real-world deployment

We use our real-world air quality station prototypes de-
scribed in section III to run the FL clients for our experiments.
The FL server is deployed on a compute node from the
CHAMELEON [26] testbed equipped with 2↑Intel(R) Xeon(R)
Gold 6240R CPU @ 2.40GHz, 192GB of memory and 10Gbps
ethernet link. We use these experiments as baseline and set
their performance metrics as the reproducibility objective for
the other platforms.

B. Distributed testbed emulation

Using emulation, each federated peer is isolated on a dif-
ferent node where network and compute limitation rules may
apply in order to replicate the real-world system performance.
Since our objective is to reproduce FL performance, we only
deploy 2 micro-services: (1) the FL client service (in order to
reproduce FL training), and (2) the system monitoring service
(for performance comparison purposes).

We consider two popular settings previously used for dis-
tributed emulations:

1) Data centers deployment. We use 4 nodes from
the GRID’5000 experimental testbed. Each node is
equipped with 2↑Intel Xeon E5-2630 CPU @ 2.40GHz
(8 cores), 128GB of memory and 10Gbps ethernet
link. We use one node to deploy the FL server and 3
nodes to deploy the FL clients. In addition, we use the
E2CLAB [19] deployment framework to configure the

different nodes. We fix the data rate between the FL
server and FL clients to 1Gbps.

2) Raspberry Pis deployment. We use the
CHAMELEON [26] experimental testbed to deploy our
experiments. We deploy the FL server on a compute
node equipped with 2↑Intel(R) Xeon(R) Gold 6240R
CPU @ 2.40GHz, 192GB of memory and 10GBps
ethernet link. FL clients are deployed on 3 Raspberry
Pi 4B devices from CHAMELEON’s CHI@Edge [25]
testbed. They share the same hardware as the real-world
prototypes (Quad core Cortex-A72@1.80GHz and 8GB
of memory).

C. Simulation

We consider a last experimental setting which consists in
simulation on a single compute node. This setting has been
largely adopted in previous works to evaluate performance of
FL systems [1], [6], [15], [16]. In this setting, the entire FL
system (i.e., clients and server) is deployed on a single node.
As with the emulation experiments, we only deploy the FL
client and system monitoring services. The difference with
emulation is that all federated peers, including the server, are
deployed and run concurrently on the same node.

We use the GRID’5000 [27] experimental testbed to simu-
late FL experiments. We use a single compute node equipped
with 2↑Intel Xeon E5-2630 CPU @ 2.40GHz (8 cores),
128GB of memory and 10Gbps ethernet link, and deploy the
entire FL system (i.e., server and clients) on it.

VI. RESULTS

Our application is bundled in docker images, the source
code and the experimental artifacts are publicly available [28]
to facilitate the deployment and reproducibility of experiments
across diverse infrastructures.

A. Model performance

In this section, we present the performance achieved by the
different LSTM models when using two weight initialization
approaches: random initialization and centralized pre-training.

Performance gain using centralized pre-training. We
present model convergence metrics achieved in each scenario
in Table II. We specifically focus on the results obtained in



TABLE II: Model convergence metrics (Reproducing experiments with public data)
Random initialization Model pre-training Loss improvement

Sim DC RPIs RW Sim DC RPIs RW Sim DC RPIs RW
Scenario Federated MSE Loss

1 2.60e-3 2.58e-3 2.63e-3 3.25e-3 2.50e-3 2.47e-3 2.52e-3 2.97e-3 -0.10e-3 -0.11e-3 -0.11e-3 -0.29e-3
2 2.75e-3 2.77e-3 2.68e-3 3.25e-3 2.35e-3 2.35e-3 2.28e-3 2.83e-3 -0.41e-3 -0.41e-3 -0.40e-3 -0.42e-3
3 2.53e-3 2.66e-3 2.56e-3 3.23e-3 2.32e-3 2.30e-3 2.32e-3 2.76e-3 -0.21e-3 -0.37e-3 -0.24e-3 -0.47e-3
4 2.46e-3 2.61e-3 2.60e-3 2.99e-3 2.31e-3 2.33e-3 2.37e-3 2.78e-3 -0.15e-3 -0.29e-3 -0.23e-3 -0.21e-3
5 2.36e-3 2.39e-3 2.44e-3 2.89e-3 2.40e-3 2.35e-3 2.40e-3 2.77e-3 +0.05e-3 -0.03e-3 -0.04e-3 -0.12e-3
6 2.43e-3 2.44e-3 2.30e-3 2.99e-3 2.41e-3 2.52e-3 2.42e-3 2.92e-3 -0.02e-3 +0.08e-3 +0.12e-3 -0.07e-3

Scenario Rounds to target loss
1 49 49 45 50 43 51 47 33 -6 2 2 -17
2 37 46 50 50 13 15 14 1 -24 -31 -36 -49
3 47 49 39 50 15 14 16 11 -32 -35 -23 -39
4 47 49 40 50 14 11 13 8 -33 -38 -27 -42
5 46 42 47 50 10 9 9 11 -36 -33 -38 -39
6 50 50 42 50 8 10 7 6 -42 -40 -35 -44

Sim (simulation), RPIs (Raspberry Pi testbed), DC (Data-centers testbed), RW (Real-world deployment)

TABLE III: Model convergence metrics (Reproducing experiments with private data)
Random initialization Model pre-training Loss improvement

Sim RW RSD Sim RW RSD Sim RW RSD
Scenario Federated MSE loss

1 3.26e-3 3.25e-3 0.1% 2.95e-3 2.97e-3 0.4% -0.31e-3 -0.29e-3 -4.9%
2 3.24e-3 3.25e-3 0.1% 2.79e-3 2.83e-3 1.4% -0.46e-3 -0.42e-3 -6.0%
3 3.13e-3 3.23e-3 2.2% 2.81e-3 2.76e-3 1.2% -0.32e-3 -0.47e-3 -26.4%
4 3.01e-3 2.99e-3 0.4% 2.78e-3 2.78e-3 0.0% -0.23e-3 -0.21e-3 -5.6%
5 2.89e-3 2.89e-3 0.1% 2.76e-3 2.77e-3 0.3% -0.13e-3 -0.12e-3 -3.1%
6 2.90e-3 2.99e-3 2.1% 2.95e-3 2.92e-3 0.7% +0.05e-3 -0.07e-3 NA

Rounds to target loss
1 48 50 2.9% 31 33 4.4% -17 -17 -0.0%
2 50 50 0.0% 1 1 0.0% -49 -49 -0.0%
3 45 50 7.4% 10 11 6.7% -35 -39 -7.6%
4 48 50 2.9% 8 8 0.0% -40 -42 -3.4%
5 50 50 0.0% 10 11 6.7% -40 -39 -1.8%
6 46 50 5.9% 6 6 0.0% -40 -44 -6.7%

Sim (simulation), RPIs (Raspberry Pi testbed), DC (Data-centers testbed), RW (Real-world deployment)

the real-world deployment. Overall, we observe a performance
gain in every scenario when using the centralized model pre-
training approach: model convergence is improved and the
final loss values are reduced (between →0.07 ↑ 10→3 and
→0.47↑10→3 loss improvement across scenarios). Model pre-
training coupled with federated fine-tuning can achieve high
model convergence speed by reducing the total number of
rounds needed to achieve a target loss by a range of [17, 49]
rounds, a significant speed-up resulting in substantial resource
savings for constrained Edge devices (the target loss is fixed
for each platform based on the performance of the random
initialization approach).

Reproducing experiments with public data. In practice,
data used during FL training is private, hindering their retrieval
for reproducibility purposes. Therefore, we investigate how
public data could replace private data to reproduce real-world
experiments. Simulation and emulation results when using
public data are presented in Table II. A first discrepancy
between the simulation/emulation and real-world deployment
is the gap between their achieved MSE loss. We notice a non-
negligible average loss difference of 0.56↑10→3 (correspond-
ing to 14% relative standard deviation) across scenarios. We
observe a second discrepancy regarding the number of training
rounds saved by using federated fine-tuning. While the real-
world and simulation/emulation experiments present similar
results in terms of convergence speed for scenarios 2 → 6,
experiments from the first scenario exhibit higher divergences.
The simulation/emulation present almost no benefit from using

federated fine-tuning whereas the real-world deployment saves
17 training rounds.

One possible reason for these performance variations is the
variability in statistical distributions between the private and
public datasets used for the real-world and simulation/emu-
lation experiments. The real-world (i.e., private) data might
be presenting more challenging tasks to forecast, specifically
in the testing set, in comparison to the public data, resulting
in higher testing loss. Despite discrepancies in the final loss
values, we observe similar outcomes regarding the improved
convergence speed of the model between the real-world and
simulated/emulated experiments.

Reproducing experiments with private data. Results of
simulation when reproducing the experiments using the real
(in practice, private) data are presented in Table III. We
present the relative standard deviation (i.e., RSD) measuring
the variation between the real-world and simulation results.
Regarding MSE loss achieved across scenarios, we observe
accurate reproducibility of experiments with very small RSDs
(i.e., 0.1% to 2.2%). However, we observe higher variations
in terms of loss improvement (e.g., up to →26.4%) which is
the consequence of small variations in the loss achieved by
the different weight initialization approaches. For instance, in
scenario 3, small variations in the final loss led to improved
performance with random initialization but decreased perfor-
mance with model pre-training compared to the real-world
setting. This resulted in reduced performance gains and higher
RSD. Regarding training efficiency (i.e., rounds to target loss),



(a) Average computation time per round

(b) Average communication time per round

Fig. 4: Client working time

we observe that simulation can accurately reproduce the real-
world experiments results.

Discussion: Reproducing FL model convergence

In this set of experiments we investigated the reproducibility
of model performance using public and private data. Un-
surprisingly, the use of real (i.e., private) data resulted in
accurate reproducibility of model convergence regardless of
the platform, showing only slight variations in the model
convergence results. However, in practice the reproducibil-
ity of FL experiments with private data is not feasible.
Therefore we also studied how public data could be used
for reproducibility. We showed that some divergences could
arise due to the client data distributions (e.g., resulting in
loss variations). Nevertheless, the same conclusions could
be drawn regarding the efficiency of federated fine-tuning
through its conceptual validation.

B. Training round latency
Client local training time. We present the average compu-

tation time of federated clients in Figure 4a. We observe that
Raspberry Pis from the experimental testbed achieve approxi-
mately the same computation time as the real-world prototypes
in every scenario. This is an expected result as RPIs from the
experimental testbed share the same hardware as the real-world
prototypes. In turn, the data centers simulation/emulation fail
to reproduce the client computation times. The simulation
takes as little as 11% → 22% of the time required by the
real-world devices to run the local FL computations. The
data centers emulated devices show even greater discrepancies,
requiring only 4% → 9% of the computation time needed
by the real-world devices. Note that while computation time

increases with model complexity across all platforms, the rates
of increase vary significantly. For instance, there is an 8.1↑
increase between the first and last scenarios for the real-world
devices, while the data center emulated devices show a 3.7↑
increase and the simulation exhibits a 3.9↑ increase.

Client communication time. We present the average client
communication time in Figure 4b. Despite a noticeable com-
munication time increase in consecutive scenarios across all
platforms, the simulation/emulation experiments result in com-
munication times that differ by orders of magnitude compared
to the real-world deployment. On average, the simulation
achieves communication times that are two orders of mag-
nitude smaller than those of the real-world deployment (25↑
to 99↑ difference) while the emulation results in a one order
of magnitude decrease (4↑ to 13↑ difference).

Emulating resource constraints in data centers. We inves-
tigate how emulating resource constraints can help reproduce
real-world experiments in a data center setting. Based on
the results obtained in the previous experiments, we set a
network limitation between the FL server and the clients, with
a data rate of 12.5MB/s. In addition, in order to mimic the
computation capabilities of RPIs, we limit the CPU usage to
0.1 CPU core per client. We observe that by setting CPU
limitations, one can reach computation times that are closer to
the real-world computation times. However, while succeeding
in reproducing the real-world computation times for scenarios
1 → 4 (0.81↑ to 1.17↑ of the RPI computation times), the
limitation on computing resources becomes too restrictive for
the more complex models encountered in scenarios 5 and
6, leading to 1.57↑ and 1.77↑ longer computation times
compared to the RPI. Regarding communication times, the
data rate limits set for these experiments result in close



TABLE IV: Client working time variations across training rounds for the last evaluation scenario
Absolute working times (s) Standard deviation (s) Relative standard deviation

Platform min max mean min max mean min max mean
Simulation 0.4 1.8 0.9 0.1 0.8 0.3 5.4% 89.6% 29.6%

Data centers 0.5 1.4 0.9 0.0 0.7 0.2 2.4% 102.2% 21.3%
DC constrained 16.4 19.9 17.9 0.2 1.7 0.8 0.9% 9.3% 4.6%

RPI testbed 8.3 10.8 9.1 0.1 1.2 0.5 1.1% 12.5% 5.1%
RPI real-world 9.3 19.2 11.8 0.8 4.3 2.0 6.8% 30.6% 16.8%

Fig. 5: CPU usage

reproduction of communication times across all scenarios
(0.89↑ to 1.23↑ the RPI communication time).

Training time variance. We present statistics on the vari-
ations in client working time for the last training scenario in
Table IV. Overall, we observe high heterogeneity in the data
centers simulation/emulation (up to 102.2% RSD). However,
this only represents slight absolute variations (0.3s average
standard deviation) compared to the real-world devices, which
experience an average standard deviation of 2.0 seconds (the
highest absolute variations), and an average 16.8% RSD.
The constrained data centers and RPI testbed devices, which
present similar end-to-end training times to the real-world
devices, fail to reproduce the heterogeneity pattern, exhibiting
homogeneous end-to-end training times (4.6%→ 5.1% RSD).

Discussion: Reproducing FL training latency

In this set of experiments we observed that simulation/em-
ulation on data centers without proper configuration (i.e.,
setting computing resources and network limitations) cannot
reproduce the performance of the real-world prototypes. In
turn, RPI testbeds can be used to reproduce more faithfully
the local training times of FL clients. However, applying
additional networking rules is necessary to reproduce the
real-world communication performance. Finally, none of the
platforms reproduced the level of heterogeneity of the real-
world devices. Exploring more advanced emulation with
finer granularity would be required to match the real-world
device heterogeneity.

C. System utilization

Mean CPU usage. Figure 5 presents the average CPU
usage of the devices during FL training. Although similar CPU
usage was expected for the real-world devices and RPI testbed
devices, in practice we observe significant differences in their
utilization. The CPU usage of the real-world devices drops
as the model complexity increases, whereas the RPI testbed
devices see their CPU usage increase with model complexity.

Fig. 6: CPU temperature

This discrepancy is explained by the total communication
times observed in Figure 4b. The real-world devices exhibit
high communication times compared to the testbed devices,
which translates into higher communication to computation
ratio (and CPU usage). We observe a similar trend for the data
centers, with an average CPU usage decreasing with model
complexity (i.e., higher communication to computation ratio).

CPU temperature. Figure 6 presents the CPU temperature
of the different platforms during FL training. We observe high
variability across platforms in terms of CPU idle temperature.
The real-world prototypes present heterogeneous CPU tem-
perature in idle state (23↑C to 38↑C), whereas the testbed
devices present homogeneous but higher CPU temperature
(ranging from 49↑C to 52↑C for data centers and 46↑C to 47↑C
for RPIs). This can be explained by the different locations
where the devices are deployed. Regarding CPU temperature
during FL training, the real-world devices experience high
temperature increase (up to 35↑C), which differs from the
testbed devices presenting relatively stable temperatures, likely
due to the cooling solutions typically present in testbeds.

Memory usage. Figure 7 presents the memory usage of the
application when running on the different platforms. We report
the memory usage increase when switching from the devices
idle state to the FL training phase. Overall, the different
platforms reach similar memory usage across scenarios. Note
that, while the data centers emulation seems to present lower
memory usage variations across scenarios, this might be due to
our measurement procedure. At the device level, we monitored
relative memory usage and then converted it to absolute
memory usage, which may have caused some loss of precision.

Network I/O. We measure the total uploads and downloads
of the federated clients and present the results in Table V.
While network I/O increases across scenarios, we observe
no discrepancy between experimental platforms. Note that
client downloads are twice as high as uploads, as federated
evaluation only requires clients to download the model.



TABLE V: Total network I/O
Downloads (MB) Uploads (MB)

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6
Data centers 16 44 59 170 228 668 8 22 30 86 116 340
RPI testbed 16 46 60 172 230 676 9 24 31 88 119 348

DC constrained 16 45 60 171 229 673 8 22 30 86 116 340
Real-world 16 45 60 172 231 678 8 23 30 87 116 341

Fig. 7: Memory usage

Discussion: Reproducing FL system utilization

In this set of experiments, we showed that memory us-
age and total network I/O could be accurately reproduced
across emulated platforms (data centers and RPIs). The
CPU usage presented more variability. The data centers
which over allocated CPU resources presented very low
CPU utilization. In turn, the RPI testbed devices presented
high CPU utilization, close to the real-world devices for
the lighter models. However, with larger models requiring
more bandwidth for communication, we observed a reduced
CPU usage for real-world devices as communication time
increased. Applying additional network constraints on the
RPI testbed devices could help reproduce more accurately
the CPU usage. Finally, the analysis of CPU temperature
revealed discrepancies between the real-world and testbed
devices. The testbed devices, which are generally supported
by cooling systems, present stable temperature. While this
ensures proper operation, it may not reflect the real state of
devices deployed in the wild. Consequently, estimating the
risk of system malfunction due to temperature increases in
a testbed environment may not be straightforward.

VII. LESSONS LEARNED FROM OUR EXPERIMENTS

A. Which infrastructure can be used to validate which exper-
imental aspects?

Model performance. We observed that regardless of the
infrastructure, the model convergence could be fairly repro-
duced in the presence of the private client data. When it is
impossible to reuse the private data, public data could still be
used to partially reproduce the behavior of the application.

Training latency. Simulation can be used to model an
application’s behavior; however, without additional hardware
emulation, it can not accurately reproduce the training latency
of Edge devices. Conversely, testbed devices with specific
hardware (i.e., RPI) or using hardware emulation can ac-
curately reproduce the computation time of the real-world
devices. Using additional network emulation can help in
reproducing the client communication time.

System utilization. Simulation does not provide an ac-
curate mapping of different parts of a compute node’s total
system utilization to the various running processes (i.e., the
FL clients), limiting the reproducibility of system metrics. In
turn, emulation using distributed infrastructures enables the
monitoring of system metrics at the client level by isolating
federated peers on different computing nodes. While some
metrics can be easily reproduced (e.g., memory usage), over-
allocation of computing resources can limit the reproducibility
of others (e.g., CPU utilization). Therefore, for a fine-grained
study of system metrics, deployments on specialized hardware
are advised.

We summarize our findings in Table VI.

B. Relevant FL performance metrics for testbed environments

Based on our findings, we propose a set of relevant FL
performance metrics to use on experimental testbeds that could
reliably translate to Edge devices.

Same hardware. Using the same hardware in a testbed
environment allows for fair comparison of system metrics (i.e.,
computation time, CPU utilization, memory usage). In this
context, computation time and power consumption metrics can
be directly studied to predict the performance of the real-
world device. In addition, network emulation can be used
in testbed environments, enabling the analysis of communi-
cation time in constrained settings. Some interesting metrics
for FL performance in this context include the computation
time relative to accuracy/loss and the communication time
relative to accuracy/loss. Additionally, computation time and
communication time per round can provide useful insights into
the application overhead.

Different hardware. Reproducing system metrics across
different hardware can be challenging. Therefore, we recom-
mend using metrics that are independent of the hardware.
Instead of relying on absolute computation time to assess
algorithm overhead, using the number of training rounds can
provide a reliable performance indicator that is independent
of the experimental platform. In this context, some useful
performance metrics include rounds to accuracy/loss, total
network I/O and network I/O per round.

C. On the challenges of real-world deployments

Deployments of devices in real-world require to address
diverse (possibly conflicting) challenges: protection against
outdoor weather and pilfering, access to powering solution,
network connectivity, getting deployment authorizations. We
addressed the above-mentioned challenges by deploying our
devices into fresh air handlers (a setup easily reproducible
across university campuses). We also designed our prototypes



TABLE VI: Experimental patterns reproducibility
Platform Model convergence Computation time Network I/O time CPU usage CPU temperature Memory usage Total network I/O
Simulation ✁ ✂ ✂ ✂ ✂ ✂ ✂
Data centers ✁ (partially) (network emulation) ✂ ✂ ✁ ✁
Raspberry Pis ✁ ✁ (network emulation) ✁ ✂ ✁ ✁
Real-world ✁ ✁ ✁ ✁ ✁ ✁ ✁

with a simple architecture (using popular hardware solutions),
which makes our deployment easily reproducible.

During their deployment periods (i.e., when collecting
air quality measurements), we encountered several network
connection problems with 5 of our prototypes. The re-
deployment of such devices requires finding new locations that
fulfill the different constraints. It may also be dependent on
technical staff that have special authorizations to access the
deployment locations. As a consequence, we were not able to
re-deploy the different devices over the duration of our study.
We have been limited to study the 3 remaining (functioning)
devices.

Despite the limited scale of our experiments, we highlighted
some notable differences between testbed and real-world ex-
periments: (1) some metrics are dependent on the device
deployment location (e.g., CPU temperature), (2) despite an
access to a public wifi, the prototypes could experience high
heterogeneity (including volatility with network connection
problems), (3) emulation can help understand the performance
of Edge devices but may have limitations in modeling device
failures, such as those caused by overheating or network
volatility.

VIII. CONCLUSION

This paper contributes to the field of FL by making a
first step towards understanding the quality trade-offs between
simulation and emulation of FL deployments. We argue this
is a foundational element for addressing the challenges posed
by practical reproducibility for FL enabled scientific explo-
ration. Extensive experiments with an air-quality forecasting
FL system on the GRID’5000 and CHAMELEON testbeds
underscore the strengths and limitations of both approaches
for the reproducibility of real-world FL experiments. As a
notable result, the cost of real deployments (understood as
device placements) plays a crucial role, depending on the
research goals. When that cost is still too high one should
continue to evaluate using simulation, which provides good
results for reproducing model based performance metrics (e.g.,
convergence, accuracy). Conversely, emulation on real testbeds
allows more accurate reproducibility of system related metrics
(e.g., execution time, CPU and memory usage).

ACKNOWLEDGMENT

This work was funded by the ENGAGE Inria-DFKI project.
This work was also (partially) supported by a French govern-
ment grant managed by the Agence Nationale de la Recherche
under the France 2030 program, reference ”ANR-23-PECL-
0007” (PEPR CLOUD - STEEL project). Experiments pre-
sented in this paper were carried out using the Chameleon

Cloud, CHI@Edge and Grid’5000 testbeds, in the framework
of a collaboration within the JLESC internat,ional lab.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Fed-
erated learning of deep networks using model averaging,” CoRR, vol.
abs/1602.05629, 2016.

[2] D. C. Nguyen, Q.-V. Pham, P. N. Pathirana et al., “Federated learning
for smart healthcare: A survey,” ACM Comput. Surv., vol. 55, no. 3, Feb.
2022.

[3] A. Hard, C. M. Kiddon, D. Ramage et al., “Federated learning for mobile
keyboard prediction,” 2018.

[4] D. Guliani, F. Beaufays, and G. Motta, “Training speech recognition
models with federated learning: A quality/cost framework,” in ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2021, pp. 3080–3084.

[5] D. Rosendo, A. Costan, P. Valduriez, and G. Antoniu, “Distributed
intelligence on the edge-to-cloud continuum: A systematic literature
review,” J. Parallel Distrib. Comput., vol. 166, p. 71–94, Aug. 2022.

[6] C. Prigent, A. Costan, G. Antoniu, and L. Cudennec, “Enabling federated
learning across the computing continuum: Systems, challenges and
future directions,” Future Generation Computer Systems, vol. 160, pp.
767–783, 2024.

[7] S. Svorobej, P. Takako Endo, M. Bendechache et al., “Simulating fog
and edge computing scenarios: An overview and research challenges,”
Future Internet, vol. 11, no. 3, 2019.

[8] I. M. Elshair, T. J. S. Khanzada, M. F. Shahid, and S. Siddiqui,
“Evaluating federated learning simulators: A comparative analysis of
horizontal and vertical approaches,” Sensors, vol. 24, no. 16, 2024.

[9] S. Sebbio, G. Morabito, A. Catalfamo et al., “Federated learning on
raspberry pi 4: A comprehensive power consumption analysis,” in
Proceedings of the IEEE/ACM 16th International Conference on Utility
and Cloud Computing, ser. UCC ’23, 2024.

[10] Y. Gao, M. Kim, S. Abuadbba et al., “End-to-end evaluation of federated
learning and split learning for internet of things,” in 2020 International
Symposium on Reliable Distributed Systems (SRDS), 2020, pp. 91–100.

[11] T. Zhang, C. He, T. Ma et al., “Federated learning for internet of things,”
in Proceedings of the 19th ACM Conference on Embedded Networked
Sensor Systems, ser. SenSys ’21, 2021, p. 413–419.

[12] L. Ridolfi, D. Naseh, S. S. Shinde, and D. Tarchi, “Implementation and
evaluation of a federated learning framework on raspberry pi platforms
for iot 6g applications,” Future Internet, vol. 15, no. 11, 2023.

[13] J. Nguyen, J. Wang, K. Malik et al., “Where to begin? on the impact
of pre-training and initialization in federated learning,” in ICLR, 2023.

[14] M. Tahir and M. I. Ali, “On the performance of federated learning
algorithms for iot,” IoT, vol. 3, no. 2, pp. 273–284, 2022.

[15] D. J. Beutel, T. Topal, A. Mathur et al., “Flower: A friendly federated
learning research framework,” arXiv preprint arXiv:2007.14390, 2020.

[16] F. Lai, Y. Dai, S. S. Singapuram et al., “FedScale: Benchmarking model
and system performance of federated learning at scale,” in International
Conference on Machine Learning (ICML), 2022.

[17] J. H. Ro, A. T. Suresh, and K. Wu, “FedJAX: Federated learning
simulation with JAX,” arXiv preprint arXiv:2108.02117, 2021.

[18] A. M. Abdelmoniem, C.-Y. Ho, P. Papageorgiou, and M. Canini, “A
comprehensive empirical study of heterogeneity in federated learning,”
IEEE Internet of Things Journal, vol. 10, no. 16, 2023.

[19] D. Rosendo, P. Silva, M. Simonin et al., “E2clab: Exploring the
computing continuum through repeatable, replicable and reproducible
edge-to-cloud experiments,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER), 2020, pp. 176–186.

[20] N. Ferro and D. Kelly, “Sigir initiative to implement acm artifact review
and badging,” SIGIR Forum, vol. 52, no. 1, p. 4–10, Aug. 2018.

[21] M. B. A. McDermott, S. Wang, N. Marinsek et al., “Reproducibility
in machine learning for health research: Still a ways to go,” Sci Transl
Med, vol. 13, no. 586, Mar. 2021.



[22] B. Chen, M. Wen, Y. Shi et al., “Towards training reproducible deep
learning models,” in Proceedings of the 44th International Conference
on Software Engineering, ser. ICSE ’22, 2022.

[23] “Ambiant (outdoor) air pollution,” https://www.who.int/news-room/fact-
sheets/detail/ambient-(outdoor)-air-quality-and-health, accessed: 2024-
12-10.

[24] “Real-time air quality monitoring by purpleair,”
https://www2.purpleair.com/, accessed: 2024-11-27.

[25] K. Keahey, J. Anderson, M. Sherman et al., “ Chameleon@Edge
Community Workshop Report,” University of Chicago, Tech. Rep., 12
2021.

[26] K. Keahey, J. Anderson, Z. Zhen et al., “Lessons learned from the
chameleon testbed,” in 2020 USENIX Annual Technical Conference
(USENIX ATC 20), Jul. 2020, pp. 219–233.

[27] F. Cappello, E. Caron, M. Dayde et al., “Grid’5000: a large scale and
highly reconfigurable grid experimental testbed,” in The 6th IEEE/ACM
International Workshop on Grid Computing, 2005., 2005, pp. 8 pp.–.

[28] C. Prigent, “FL Simulation Performance Evaluation,”
https://github.com/cedricprigent/fl-simulation-performance-evaluation.


