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Abstract—Cloud computing has become integral to modern
technology infrastructure, supporting a wide range of services
from e-commerce to AI applications. Chameleon is a large-scale,
configurable testbed designed to enable edge-to-cloud research
through full bare-metal provisioning, virtualization, and diverse
hardware resources, which is built on a leading open source cloud
platform OpenStack. However, monitoring Chameleon’s hetero-
geneous infrastructure is challenging, particularly across Open-
Stack services and hardware components. Traditional threshold-
based alerting methods struggle to keep up with the scale and
complexity of such environments. In this work, we present an
anomaly detection framework for OpenStack services in the
Chameleon Cloud. We curate and publish the first dataset
of resource usage metrics collected from OpenStack control
plane services. We evaluate four state-of-the-art unsupervised
multivariate time series models, namely TranAD, Prodigy, USAD,
and OmniAnomaly, on this dataset and share key insights from
deploying them. Our findings indicate that for our use case,
while all models achieve high F1 scores, training with three days
of healthy data effectively balances training cost and detection
accuracy.

Index Terms—Cloud, Anomaly Detection, Machine Learning.

I. INTRODUCTION

Cloud computing systems have become integral to modern
technology infrastructure, supporting countless applications
and services while driving significant business innovation and
growth. These systems power everything from online retail [1]
and ride-hailing services [2] to AI applications like Chat-
GPT [3]. Even brief outages can result in substantial losses for
users running applications in the cloud. For instance, a brief
outage of Amazon’s S3 service in March 2017 is estimated
to have cost $150 million to the S&P 500 companies [4].
Therefore, cloud system operators must continuously monitor
both hardware and software for any anomalies or errors to
ensure robust service delivery.

To enable research that enhances the reliability, efficiency,
and scalability of such cloud systems, general-purpose ex-
perimental platforms like Chameleon [5] play a vital role.
Chameleon is a configurable experimental environment for
large-scale edge-to-cloud research. It enables computer science
research through a deeply reconfigurable testbed that supports
projects in operating systems, virtualization, power manage-
ment, networking, and artificial intelligence. Chameleon offers
bare-metal provisioning, giving researchers full control over
the software stack, including root access and kernel customiza-
tion. A smaller portion of the testbed is virtualized using
Kernel-based Virtual Machine (KVM), supporting use cases
that benefit from finer-grained resource sharing.

Since its launch in 2015, Chameleon has supported over
10,660 users and 1269 research projects. It continues to
evolve with added hardware and capabilities, serving as a key
testbed for advancing cloud and systems research [6]–[11].
Chameleon infrastructure includes various hardware, including
nearly 15,000 cores and 5 petabytes of storage across affiliate
sites and two major sites, the University of Chicago and
the Texas Advanced Computing Center (TACC), connected
via a 100 Gbps network. Hardware diversity includes GPUs,
FPGAs, InfiniBand, reconfigurable switches, various storage
types, and non-x86 processors, such as ARMs.

Chameleon uses OpenStack [12], a leading open-source
cloud platform that continues to demonstrate its value through
widespread global adoption and rapid growth. According to
the 2022 User Survey [13], OpenStack now powers over 40
million compute cores across more than 300 public cloud
data centers. Its strong support for hybrid cloud deployments
and seamless Kubernetes integration (used by over 85% of
deployments) make it a foundation of modern infrastructure.
Backed by a vibrant community and a stable net promoter
score (NPS) of 41, OpenStack remains a scalable, production-
ready, and highly valuable open-source solution for cloud
computing. Chameleon itself has contributed to improve Open-
Stack’s Blazar project and made it an official top-level Open-
Stack component, further integrating research with mainstream
infrastructure development.

However, monitoring Chameleon is challenging due to the
heterogeneous nature of its components, each of which can fail
in distinct ways [14]. For instance, bare-metal servers may
signal hardware anomalies through their baseboard manage-
ment controllers, such as voltage fluctuations or unplugged
cables. OpenStack services may generate HTTP error codes
or log diagnostic messages, while nodes running Chameleon
services may encounter infrastructure-level issues like disk
partitions reaching capacity or resource overutilization [15]. To
address these challenges and develop a more comprehensive
understanding of system stability, the Chameleon operations
team relies on Prometheus’s [16] built-in query language and
custom database queries on log data to configure targeted
alerts. However, manually setting and managing alerts quickly
becomes challenging, as demonstrated by the outages docu-
mented on the Chameleon website [17], and is discussed in
greater detail by Keahey et al. [15].

Recent cloud-monitoring approaches employ machine-
learning models that learn normal system behavior and flag
deviations as anomalies [18]–[23]. For instance, Islam et al.



describes using a GRU-based autoencoder for anomaly detec-
tion in IBM cloud and shows that it can detect anomalies up
to 20 minutes earlier than their existing system [20]. However,
training effective models is a challenging task, as metric
distributions drift over time, necessitating frequent retraining.
Training on very large datasets is computationally expensive
and time-consuming, whereas training on small datasets risk
inadequate accuracy. There is a need for more research in this
area. Additionally, to the best of our knowledge, no publicly
available dataset currently captures resource-usage metrics for
OpenStack services. This gap makes it difficult to balance
training-dataset size, model accuracy, and training time.

We address this limitation by releasing a comprehensive
dataset of resource-usage metrics for every OpenStack service
running on the control-plane node, which hosts all manage-
ment and orchestration services of Chameleon Cloud at the
University of Chicago, together with an anomaly-detection
framework tailored to those services. In this paper, we present
our deployment of state-of-the-art unsupervised multivariate
time-series anomaly detection techniques, namely TranAD
[24], Prodigy [25], USAD [26], and OmniAnomaly [27], on
the Chameleon Cloud and discuss the key lessons learned from
this process.

Our contributions and highlights are as follows:
ω We present the development of an anomaly detection

framework for OpenStack services deployed on the
Chameleon Cloud, leveraging resource usage metrics.
Our approach is designed to be replicable across other
OpenStack-based clouds.

ω We publicly release the dataset1 used to train and test
above machine-learning models. To the best of our knowl-
edge, this is the first publicly available dataset comprising
resource usage metrics for OpenStack services, facili-
tating broader benchmarking and evaluation of anomaly
detection techniques in similar cloud platforms.

ω Lastly, we share some insights and observations from
building this system, which will help others in making
informed decisions when selecting models, their training
cost and deployment planning. Some of our notable
observations and findings include:
• A relatively short training data window (on the order of

a few days) can provide a pragmatic balance between
model training cost and prediction accuracy, reducing
compute overhead without sacrificing quality. We ob-
served almost comparable F1 scores with 3 and 30
days of our training data. For example for TranAD
we observed 0.978 vs 0.985 of weighted F1 score,
and 0.957 vs 0.970 macro F1 score for 3 and 30
day respectively, at 10% threshold, which can reduce
the training time by up to 8-9x (14 minutes vs. 125
minutes).

• Relying solely on low-level resource metrics is effec-
tive for surfacing hardware or network problems but
tends to miss application-layer faults—such as HTTP

1https://github.com/ai4cloudops/Chameleon-Cloud-Anomaly-Detection

500 errors, elevated request latency, or rate-limiting
responses, highlighting the importance of incorporating
higher-level signals for comprehensive anomaly detec-
tion.

• We rank OpenStack services based on their resource
usage we observed, which can support focused capacity
planning and performance tuning of OpenStack based
clouds.

The remainder of the paper is organized as follows. Section
II reviews the related literature. Section III describes the
observability infrastructure at Chameleon. Section IV details
the major challenges we faced while building this framework.
Section V discusses the proposed solution, our training and
inference pipelines. Section VI describes the experiments,
our evaluation methodology and results. Finally, Section VII
concludes the paper.

II. RELATED WORK

There is a significant amount of prior research on anomaly
detection in cloud computing environments, driven by the
increasing complexity, scale, and dynamic behavior of cloud
infrastructures. This includes the development of OpenStack-
native tools such as Rally [28] and Tempest [29], which
are used for load testing and integration testing, respectively.
Tools such as Ceilometer [30], Monasca [31], and Aodh [32]
were once integral components of OpenStack’s telemetry and
monitoring stack. However, their adoption has declined in
favor of Prometheus [16] and Alertmanager [33], especially
in deployments using Kolla-Ansible [34].

Early approaches to anomaly detection emphasized sta-
tistical analysis and resource monitoring. Huang et al. [35]
developed a relaxed linear programming variant (RLPSVDD)
to improve computational efficiency and reduce false alarms
when applied to time-series data from Yahoo’s cloud perfor-
mance logs. DriftInsight [36] advanced this paradigm by em-
ploying convergence-based state modeling and unsupervised
clustering to dynamically detect anomalies in highly dynamic
cloud environments. Wang et al. designed a self-adaptive
cloud monitoring system based on correlation analysis and
principal component analysis (PCA), which dynamically ad-
justs monitoring parameters based on estimated anomaly de-
grees to reduce overhead while maintaining accuracy [37].
While Roots [38] is a full-stack performance anomaly de-
tection system for PaaS environments that correlates multi-
layer performance data without requiring application-level
instrumentation. Sauvanaud et al. implement a supervised
learning-based anomaly detection system augmented with fault
injection, enabling real-time diagnosis of SLA violations and
service degradation [22]. Authors use Random Forests, Neural
Nets and k-Nearest Neighbours and Naive Bayes to evaluate
their system. PerfInsight introduces a robust clustering-based
method for detecting abnormal behaviors in large-scale cloud
systems using Mann-kendall test and DBSCAN for metric pro-
filing [21]. Works such as Toslali et al. aim to find anomalous
services and code by monitoring variance in response times in
distributed system traces [39].



Fig. 1. Observability data is collected to a central observability cluster.

More recent works like that of Islam et al. presents a
serverless GRU-based anomaly detection system for IBM
Cloud’s multi-dimensional telemetry [40]. The system reduces
false alerts, supports online training, and improves detection
accuracy by integrating DevOps feedback and automating real-
time model retraining, but the work lacks specific information
about the model and the metrics, which the authors published
in a later work as Islam et al. [41], and share a high-
dimensional anomaly detection dataset from the IBM Cloud’s
Console, comprising telemetry data from over 4.5 months.
CloudShield is a real-time anomaly and attack detection sys-
tem based on pretrained deep learning model, which identifies
anomalies by statistically comparing the distribution of the
unpredicted part denoted by Reconstruction Error Distribution
(RED) [23]. In contrast to prior work, this paper specifically
targets OpenStack, the leading open source cloud platform,
and explores the trade-offs between training data duration,
training cost, and anomaly detection accuracy. Furthermore,
we publicly release the labeled dataset used in our evaluation
to support reproducibility and future research.

III. OBSERVABILITY INFRASTRUCTURE AT CHAMELEON
CLOUD

Chameleon collects rich logs and metrics to support ro-
bust operations and enable efficient troubleshooting. Figure 1
illustrates the architecture of metrics and log flow within
the Chameleon Cloud infrastructure. All observability data is
centrally stored in a dedicated observability cluster hosted at
TACC. Node-level performance metrics are collected using
Prometheus, while container-level metrics are gathered via
cAdvisor [42] and scraped every 15 seconds, providing high-
resolution insight into resource usage such as CPU, memory,
disk, and network. Chameleon, however, does not collect
any resource usage metrics for hypervisors or compute hosts
used by tenants, as it cannot run an agent due to bare-
metal isolation. Additionally, Chameleon packages several
stock Prometheus exporters that are not yet available in
Kolla-Ansible [34] namely SNMP, IPMI, and Redfish. Also
their packaging of the OpenStack ironic exporter has been
merged upstream. Chameleon also generates several custom
metrics using Loki’s [43] recording rules, which can count
log lines matching certain labels. For instance, they gener-
ate node success rate, by comparing provisioning
success to provisioning started events, as stock

Prometheus scraping of Ironic node states does not have a
fine enough time resolution to capture all state transitions.
All performance metrics are stored in Grafana Mimir [44],
enabling scalable and long-term retention and querying.

Logs from all OpenStack services are sent to a standard
location and automatically ingested into Loki using Fluentd
[45]. Both logs and metrics can be queried manually through
the Grafana [46] interface. Chameleon Cloud operators employ
Grafana to set manual thresholds for key metrics such as disk
usage, and for error logs like a large number of failed provi-
sions that might indicate undetected faults, thereby supporting
system monitoring and ongoing maintenance.

Chameleon Cloud also runs Jenkins [47] tests to validate key
user workflows, such as node reservation, provisioning, public
IP assignment, SSH access, and metric reporting. These tests
run hourly or daily to detect system issues, uncover monitoring
gaps, and correlate errors with potential underlying causes.

IV. CHALLENGES IN DEVELOPING AN ANOMALY
DETECTION FRAMEWORK FOR CLOUD SYSTEMS

Building an anomaly detection system for OpenStack ser-
vices poses unique challenges because of the sheer volume,
high dimensionality, and heterogeneity of resource-usage met-
rics. Below are the main challenges we encountered:

A. Lack of Labeled Datasets
Chameleon Cloud operates an OpenStack deployment. Al-

though OpenStack is a widely adopted cloud platform, to the
best of our knowledge no public dataset offers labeled datasets
of resource usage metrics for its services. While usage patterns
vary across deployments, such datasets are essential for rigor-
ously evaluating competing anomaly detection methods

B. Model Selection
The second challenge involves identifying suitable anomaly-

detection models. Time-series techniques range from classical
statistical tests to sophisticated machine-learning architectures.
Choosing a technique that fits best to our data is critical for our
system. We describe in Section VI, how we evaluate various
models and choose the best performing one for our system.

C. Data Volume and Feature Representation
Most of the modern anomaly detection approaches infer

normal behavior from historical observations before evaluat-
ing new data. However, determining the appropriate training
horizon is non-trivial. Is one day of history sufficient, or is a
full month required? We investigate this question by training
and testing our models on windows of one, three, seven, and
thirty days, thereby quantifying the trade-off between training
data volume and detection accuracy.

V. PROPOSED SOLUTION

Recent approaches to anomaly detection in cloud systems
predominantly leverage machine learning [18]–[23], owing to
their capacity to ingest large-scale telemetry, learn complex
dependencies among metrics, and adapt to evolving workloads,
therefore, we adopt a machine learning based strategy. Figure 2



Fig. 2. Our model training and inference pipeline.

presents a high level overview of our system, which comprises
two main components: (1) the Training Pipeline and (2) the
Inference Pipeline. Each component supports model agnostic
processing of multivariate time series data for anomaly detec-
tion.

A. Models Evaluated

Our data consists of multivariate time series, and initially,
we did not have access to the labeled data necessary for using
supervised models. Together, these factors lead us to pursue
unsupervised multivariate time series anomaly detection tech-
niques. Most recent unsupervised studies typically incorporate
stochasticity and employ Variational Autoencoder (VAE) [48]
or Transformer [49] architectures.

VAE is a deep generative model that encodes high di-
mensional input x into a probabilistic latent representation
z. The encoder, or inference network qω(z|x), maps input
data to a latent distribution, typically modeled as a Gaussian
distribution, as shown below:

qω(z|x) = N (z;µω(x), diag(ε2
ω
(x)))

The decoder, or generative network pε(x|z), reconstructs the
input from samples drawn from this latent distribution. A
standard Gaussian prior is imposed over the latent variables:

p(z) = N (0, I)

The model is trained by maximizing the Evidence Lower
Bound (ELBO) on the marginal likelihood:

L(ϑ,ϖ;x) = Eqω(z|x)[log pε(x|z)]→KL(qω(z|x)↑p(z))

Here, the first term encourages accurate reconstruction of
the input, and the second term regularizes the latent distribu-
tion to be close to the prior. To enable backpropagation through
stochastic nodes, the reparameterization technique is used:

z = µω(x) + εω(x)↓ ϱ, ϱ ↔ N (0, I)

Transformer is a deep learning model architecture designed
for sequence-to-sequence tasks, based entirely on attention
mechanisms [49]. Unlike Recurrent Neural Networks, it pro-
cesses input sequences in parallel, making it highly efficient
and scalable.

The core component of the Transformer model is the self-
attention mechanism, which computes contextualized repre-
sentations by attending to all positions in the sequence. Given
an input sequence such as X = [x1, x2, . . . , xn], each token
is projected to a query (Q), key (K), and value (V ) matrix:

Q = XWQ, K = XWK , V = XWV

Self-attention computes attention weights using scaled dot-
product:

Attention(Q,K, V ) = softmax
(
QK→
↗
dk

)
V

To enhance representation learning, Transformers use multi-
head attention:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO

where each head is:

headi = Attention(QWQ

i
,KWK

i
, V WV

i
)

The Transformer encoder consists of layers of multi-head
self-attention and position-wise feedforward networks. Posi-
tional encodings are added to the input embeddings to preserve
the order of input:

PE(pos,2i) = sin
( pos

100002i/dmodel

)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)

Each encoder or decoder layer includes residual connections
and layer normalization to stabilize training.

We select some of the best-performing, open-source models
namely TranAD [24], USAD [26], OmniAnomaly [27], and



Prodigy [25] as our top candidates. These models have demon-
strated strong results on widely used benchmark datasets such
as SMD [27], which has similar time series data such as ours,
but it lacks the logical dimension of service.

All four methods are published recently in top-tier confer-
ences, are highly cited, and have been extensively replicated,
making them reliable, well-tested, and suitable for evaluation
in our setting. They also share a common underlying principle:
each model is trained to learn the distribution of normal system
behavior. During inference, the model attempts to reconstruct
the input data. If the reconstruction error or likelihood exceeds
a certain threshold, the data is classified as anomalous; other-
wise, it is considered healthy. These models are discussed in
detail below.

OmniAnomaly [27] combines a Variational Autoencoder
(VAE) with a Gated Recurrent Unit (GRU) [50] to capture both
temporal dependencies and the stochastic nature of time series
data. To enhance the flexibility of the posterior distributions,
OmniAnomaly employs Planar Normalizing Flows [51] to
transform simple Gaussian assumptions into complex non-
Gaussian forms. Temporal connections among latent variables
are modeled through a Linear Gaussian State Space Model
(SSM), allowing the latent space to reflect historical dynamics
more accurately.

Anomaly detection is performed based on the reconstruction
probability of each input, and lower probabilities indicate
higher chances of being anomalous. OmniAnomaly also in-
troduces using the Peaks-Over-Threshold (POT) method from
Extreme Value Theory for Threshold selection. Furthermore,
OmniAnomaly supports interpretable anomaly detection by
ranking individual dimensions of the input based on their
reconstruction probabilities.

USAD [26] combines the architectural stability of Au-
toencoders with adversarial training dynamics inspired by
Generative Adversarial Networks (GANs), USAD consists of
a shared encoder and two decoders forming two autoencoders.
The model is trained in two phases. In the first phase, both
autoencoders learn to reconstruct normal time series windows.
In the second phase, adversarial training is introduced where
one autoencoder attempts to reconstruct original inputs, while
the second attempts to distinguish whether its input came
directly from the original data or from the first autoencoder.
This design amplifies reconstruction errors in the presence of
anomalies, making them easier to detect.

TranAD [24] consists of a Transformer encoder-decoder
architecture used in two sequential passes. The first pass
reconstructs the input time window, while the second uses the
output of the first as input to produce a refined reconstruction.
Adversarial training is incorporated via a critic network that
helps the generator learn more discriminative reconstructions,
enhancing the sensitivity to subtle anomalies. During training,
TranAD uses a reconstruction loss and an adversarial loss to
optimize the model. At inference time, it computes anomaly
scores based on the difference between the input and its recon-
structions from both passes. A higher discrepancy indicates a
higher probability of anomaly.

Prodigy [25] is also an unsupervised anomaly detection
framework designed for practical deployment in production
High Performance Computing (HPC) systems. Prodigy aims to
detect performance anomalies at the compute node level using
multivariate telemetry time series data. It focuses on iden-
tifying anomalies that degrade performance without causing
system failures—scenarios that are often subtle and difficult
to detect.

During training, Prodigy assumes access to only healthy-
labeled samples, which is a reasonable assumption for produc-
tion systems where anomalies are infrequent. It uses statistical
feature extraction (via TSFRESH [52]) and Chi-square feature
selection [53] to derive the most informative features. These
features are then used to train a VAE that learns the normal
behavior of compute nodes. Anomalies are detected at infer-
ence time by comparing reconstruction error to a statistically
determined threshold (e.g., 99th percentile of training errors).
Prodigy also integrates counterfactual explainability through
the CoMTE [54] method, which identifies the minimal set of
metric changes required to reclassify an anomalous sample
as healthy. This aids in root cause analysis and increases
interpretability for HPC administrators.

B. Dataset Creation

To evaluate our system, we create a labeled dataset by col-
lecting details of outages from the Chameleon Cloud outages
page [17]. We write a script to parse the outage name, start
and end times, and the reason for each outage.

Next, we query and process the relevant metric data, as de-
scribed in the next section of Training Pipeline (Section V-C).
We collect data for 14 outages affecting Chameleon site at the
University of Chicago listed in Table II.

For each outage, we gather resource usage metric recorded
during the outage, along with one month of same data preced-
ing the outage start date. The data is organized into folders by
outage, with each folder containing CSV files, one per service,
combining all metrics indexed by timestamps. These files
differ in number of columns, columns representing individual
metric, and ranged anywhere from 30 to 3200 columns, with
most files having around 43,200 (60x24x30) rows.

To label anomalous services, we first evaluate all services
across all outages. We then manually verify and label based
on whether the services flagged as anomalous exhibited metric
patterns that deviated from normal behavior observed over the
30-day baseline period.

C. Training Pipeline

The management node in the Chameleon Cloud is re-
sponsible for running all OpenStack services required for
managing and operating the site. Each service operates
within its own container, and their performance metrics are
stored in Grafana Mimir. These metrics are queried using
Grafana’s query language via the Grafana interface. We main-
tain a dictionary that maps each metric to its correspond-
ing query. For example: container fs writes bytes total:



rate(container fs writes bytes total{
hostname=‘mgmt01.uc.chameleoncloud.org’}[5m])

This query filters the metric for a specific hostname and
computes the per-second average rate of increase over a 5-
minute window, which is appropriate for counter-type metrics.
The time range for these queries can be adjusted as needed,
allowing us to fetch metrics across all containers in a single
query.

We develop Python scripts to parse and organize the re-
trieved data by device and service. For instance, the parsed
results of the above metric are saved in a file named con-
tainer fs writes bytes total.csv, a snippet of which is shown
in Table I.

# device service name Timestamp Value
1 /dev/dm-0 nova serialproxy 2024-04-16 14:30:00 0

TABLE I
SAMPLE METRIC ROW IN FILE container fs writes bytes total.csv

After collecting all the cAdvisor metrics, we aggregate them
on a per-service basis. The outage dataset we share consists
of these final, service-wise combined metrics for each of the
outages listed in Table II. The dataset contains the CSV for
the outage and 30 days of data before the outage. We have
manually analyzed each outage and marked the individual
services as anomalous or healthy.

Finally, we train a separate machine learning model for
each of the 65 services running in individual containers on the
management node. For instance, to train a USAD model for
the blazar manager service, we first import its corresponding
CSV file as a DataFrame. We then remove any columns
where over 99% of the values are zeros, which almost always
leaves us with fewer than 60 columns. After that, we scale all
remaining features using a MinMaxScaler [55]. The model is
then trained, and we save the following artifacts: the trained
model, the scaler, the 90th and 99th percentile thresholds
for the mean reconstruction error during training, and the
names of the metrics used during training. These are later
used during inference. We train each model according to
its specific architecture and input requirements. For example,
TranAD processes the 2D time-series data by converting it into
overlapping sliding windows with a fixed window size of 10. It
applies replication padding for early indices and preserves the
2D structure, resulting in a tensor of shape [num_windows,
window_size, num_features], which enables contex-
tual input for anomaly detection.

In contrast, USAD requires a flattened 1D representation of
each window, removing explicit temporal structure. We use a
window size of 5 for this model, which they used for the SMD
dataset. For Prodigy and OmniAnomaly, we train the models
directly on raw time-series datapoints using the original feature
vectors, simply removing the timestamp column without any
windowing.

D. Inference Pipeline
During the inference process, the procedures for data collec-

tion and processing remain consistent. The only difference is

that we adjust the query’s time range to match the specific
period we want to analyze. Once we obtain the test data
in CSV format, we retrieve the stored artifacts, such as the
trained model, scaler, and thresholds. We then load the test
data and ask the model to reconstruct the input data. Any
input window or data point (depending on the model) with
a mean reconstruction error exceeding the 99th percentile is
classified as anomalous; otherwise, it is considered healthy.

For our evaluation on Chameleon outages, the test data
corresponds to the entire duration of the outage. In the case
of online deployment, inference can be performed every hour.
We run inference separately for each service and classify all
the windows or data points as either healthy or anomalous.
We then set a threshold on the percentage of test data that
was marked as anomalous, to classify a service as anomalous,
which is discussed in more detail in Section VI.

VI. EXPERIMENTS AND RESULTS

The primary goal of our experiments is to evaluate the
models on the outage dataset and determine which one trains
the fastest, detects the most anomalies and minimizes alert
fatigue for the operations team.

Fig. 4. Comparison of total training times for different models (65 models)
with different number of days of healthy training data. TranAD trains almost
4.5x faster than OmniAnomaly.

We begin our experiments by evaluating the training times
of each model using varying durations of healthy data: 1 day,
3 days, 7 days, and 30 days immediately preceding the outage
for all 65 OpenStack services running on the control plane
node. As shown in Figure 4, TranAD consistently exhibits
the fastest training times. This efficiency, attributed to its
transformer-based architecture, makes it a compelling choice
for scenarios in which rapid model retraining is essential.
In contrast, OmniAnomaly shows the longest training time,
taking nearly ten hours to train 65 models on one month of
data. We also note that the TranAD models trained on 30 days
and 3 days of data take about 125 minutes and 14 minutes,
respectively.

We then compare the storage footprint of the trained models.
On average, TranAD models are approximately 10 times larger
than the other methods, whereas Prodigy yields the smallest
model sizes of around 150Kb.



Outage Date Explanation
Chincar Maintenance Jan 26–29, 2024 The outage affected Chameleon deployment at NCAR, but not at UC. We

marked this test dataset as normal.
Chameleon Portal, Chi-Edge, and
JupyterHub

Jan 30–31, 2024 Caused by datacenter power maintenance. It affected the managed VM
service, Chameleon portal, edge, and JupyterHub services. Chameleon at
UC was unaffected.

CHI@UC Site Maintenance Feb 06–08, 2024 Recabling and replacement of failing network hardware. All services were
affected. All services in the dataset are marked as anomalous.

Partial Authentication Outage Mar 06–07, 2024 Some users could not authenticate to CHI@UC, TACC, and Edge. Using
a different browser resolved the issue. Dataset marked as normal.

CHI@UC Network Uplink Mainte-
nance

Mar 11–12, 2024 Horizon dashboard and uplink traffic to UC were affected. Horizon and
Neutron L3 agent are labeled anomalous.

KVM@TACC System
Maintenance

Mar 27, 2024 Outage affected KVM at TACC. Chameleon at UC is marked as normal.

Planned Help Desk Outage Apr 29, 2024 Ticketing system was affected. Chameleon at UC is marked as normal.
CHI-Edge Outage May 16–17, 2024 Chameleon at Edge experienced issues. Chameleon at UC is marked as

normal.
TACC Certificate Expiry May 21, 2024 Automation failure in replacing certificates at TACC. CHI@UC is marked

as normal.
CHI@UC Uplink Networking May 29, 2024 Networking issue blocked access to Horizon dashboard and authentication

server. Blazar Manager, Fluentd, and Neutron L3 agent are labeled
anomalous.

CHI@UC OpenStack Upgrade Jul 22–23, 2024 Version upgrade caused metrics to shift significantly. All services are
marked as anomalous.

Smoke Test – Bare Metal Reserve
Failed (No IPs)

Jan 22, 2025 Smoke test failed due to lack of public IPs. No major metric changes. No
services labeled anomalous.

Smoke Test – Object Upload Failed Feb 08, 2025 Smoke test failed to upload to object store. No significant metric change.
No services labeled anomalous.

Smoke Test – Node Reserve Failed Feb 19, 2025 Smoke test failed in reserving a node. No significant metric change. No
services labeled anomalous.

TABLE II
SUMMARY OF OUTAGES AND THEIR IMPACT ON CHAMELEON SERVICES

Fig. 3. Percentage of data in the outage marked as anomalous by different models. TranAD and Prodigy predict that almost 100% of Blazar manager data
is anomalous, hence a 75% or 90% threshold would predict them as anomalous.

We next assess the models to determine which one outper-
forms the others in terms of overall performance in terms of
the F1 scores. Figure 5 and Figure 6 present the weighted

and macro F1 scores, respectively, for each model. Each line
represents a different model trained using a specific duration
of healthy data preceding the outage event. For instance,



Fig. 5. Comparison of Weighted F1 scores for various models against different
thresholds for marking a service anomalous. TranAD (3 days) provides almost
the same F1 score as TranAD (30 days) using less training time.

OmniAnomaly (30 days) indicates that the OmniAnomaly
model was trained using 30 days of healthy data preceding
the outage. Similarly, USAD (7 days) refers to training the
USAD model on 7 days of pre-outage healthy data. Each
model is then used to generate the predictions for batches or
data points based on its training configuration. We aggregate
these predictions to compute the percentage of outage-period
data identified as anomalous. For example, Figure 3 illustrates
the proportion of data flagged as anomalous by each model for
various services during the chiuc-uplink-networking outage.

For practical implementation of the model predictions, we
define a threshold that represents the minimum percentage of
data points that must be classified as anomalous for a service
to be labeled as anomalous. For example, if a service has
1,000 data points during an outage and 800 of them exhibit
reconstruction errors exceeding the 99th percentile threshold,
then those 800 are classified as anomalous, resulting in an
anomaly percentage of 80% for that service. This threshold
serves as a tunable parameter, allowing us to adjust the model’s
sensitivity to anomalies.

We then compare the final binary classification whether
a service is predicted as anomalous or healthy against our
manually labeled outage dataset to compute the F1 scores.

Fig. 6. Comparison of Macro F1 scores for various models against different
thresholds for marking a service anomalous. TranAD (3 days) is highlighted
in black.

Fig. 8. Comparison of precision for different models against different
thresholds. We observe a high precision in general for all models.

Fig. 7. Comparison of inference times for different models. Prodigy and
TranAD are 6–7! faster.

We observe in Figure 5 and Figure 6 that TranAD (1,
3, and 30 days), all OmniAnomaly models, USAD (1 and
7 days), and Prodigy (7 days) achieve comparable weighted
and macro F1 scores, ranging from 0.966 macro F1 for
OmniAnomaly (3 day) to 0.957 and 0.970 for TranAD (3
and 30 days), respectively, at the 10% threshold. They
also continue to show comparable F1 scores across differ-
ent thresholds. On closer inspection, some models, such as
TranAD (3 days), show a slight increase in F1 score as the
threshold rises to 75%. For example, the macro F1 scores
for TranAD 3 days at 10, 25, 50, 75, and 90% thresholds are
0.957, 0.957, 0.955, 0.963, and 0.958, respectively. Beyond
this point, the macro F1 score drops sharply to 0.46 at the 99%
threshold. Consequently, training time becomes the defining
criterion for deployment. We further observe that the TranAD
model trained on 3 days of data achieves the best tradeoff
between high F1 scores and training time.

During our experiments, we also measure the mean infer-
ence times for these models. Figure 7 shows that TranAD and
Prodigy are approximately 6-7↘ faster than OmniAnomaly
and USAD. This measurement does not include the time
required to prepare the test data (e.g., creating a 3D tensor
for TranAD or collapsing 2D data into a single 1D array for
USAD).

Additionally, Figure 8 presents the precision achieved by
all models across their respective training data durations. We
observe a high precision overall, which is preferable because
greater precision reduces false alerts. Figure 9 illustrates recall.
Recall steadily declines as the decision threshold increases and
falls to nearly zero at a 99% threshold, demonstrating that
setting the threshold too high causes the system to overlook



TABLE III
TOP-10 SERVICES FOR EACH RESOURCE METRIC (AVERAGE VALUES OVER ONE MONTH).

Rank Memory (MB) Network (MB/s) Disk I/O (MB/s) CPU Usage
Service Avg Service Avg Service Avg Service Avg

1 ironic conductor 47186.26 manila share 101.34 mariabackup 12.06 rabbitmq 0.758
2 ironic ipxe 9115.98 manila nfs ganesha 101.34 ironic conductor 0.64 neutron server 0.527
3 elasticsearch 7448.36 glance api 84.16 ironic ipxe 0.17 mariadb 0.394
4 mariadb 7137.44 prometheus elasticsearch exporter 83.46 cron 0.15 mariabackup 0.357
5 horizon 3005.16 memcached 83.46 mariadb 0.06 nova api 0.266
6 glance api 2370.28 keystone ssh 83.46 prometheus server 0.01 nova compute ironic 0.170
7 nova api 2105.93 doni api 83.44 neutron dhcp agent 0.00 ironic api 0.135
8 memcached 1887.35 ironic dnsmasq 83.44 etcd 0.00 keystone 0.129
9 keystone 1831.33 ironic neutron agent 83.44 horizon 0.00 placement api 0.101

10 neutron server 1625.48 prometheus ipmi exporter 83.44 elasticsearch 0.00 neutron dhcp agent 0.089

Fig. 9. Comparison of recall for different models across varying thresholds.
We observe a sharp drop in recall when the threshold exceeds 90%.

most anomalies.

Fig. 10. Comparison of loss of accuracy for different models with different
durations of healthy training data against their respective 30 day baseline.

Lastly, Figure 10 presents the average normalized accuracy
loss across all outages for each model trained on varying
durations of healthy data, compared against its own 30-day
training baseline. We calculate accuracy as the difference in the
percentage of data marked as anomalous by the model, relative
to its 30-day baseline. This difference is then normalized and
aggregated across all outages.

We also observe that application-level outages, like failures
to reserve a node when no free IP addresses are available,
surfaced by Tempest tests (smoke tests), do not cause any
change in resource usage metrics and are therefore missed by
our anomaly detection method.

We would also like to report the observation that using
distant data, such as one month of data from six months ago,

to train our model results in highly inaccurate outcomes, often
marking all services as anomalous due to data drift.

In the end, using one month of data (Feb 2024), we compute
the average CPU, memory, disk I/O, and network utilization for
every service, we use the following metrics and methodology
to compute these averages:

• CPU usage — We take the five-minute rate of
container_cpu_usage_seconds_total and
compute its mean to rank the services.

• Memory usage — We use the mean value of
container_memory_working_set_bytes.

• Disk I/O — For each service we collect
reads_bytes_total and writes_bytes_total
for every device at five-minute rate, then sum the mean
rate of each device to obtain the overall disk-I/O usage.

• Network usage — Analogous to disk I/O:
we gather transmit_bytes_total and
receive_bytes_total for all network interfaces at
five-minute rate and sum the mean rate of each interface
to compute the service’s network usage.

Our evaluation reveals some informative findings. For in-
stance, ironic_conductor consumes roughly five times
as much memory as ironic_ipxe, which itself averages
about 9GB. manila_share and manila_nfs_ganesha
generate 20% more network traffic than the other services,
while mariabackup exhibits significantly higher disk ac-
tivity. Finally, rabbitmq and neutron_server consume
considerably more CPU than the remaining services, offering
actionable insights for capacity planning and performance
tuning of OpenStack deployments. Table III lists the ten
services with the highest average usage for each resource type.

VII. CONCLUSION

In this work, we presented a practical anomaly detection
framework tailored for OpenStack services running on the
Chameleon testbed. We publish the first publicly available
dataset of OpenStack service metrics, enabling further research
in cloud infrastructure monitoring and anomaly detection. Our
experiments highlight several key findings. We demonstrate
that using just a few days of healthy data for training pro-
vides an effective balance between training efficiency and
detection accuracy. Additionally, we categorize OpenStack



services based on their observed resource usage patterns (CPU,
memory, disk, and network), helping inform service-specific
deployment and planning. We believe these insights, along
with our shared dataset and implementation experiences, can
help guide future efforts in building robust and efficient
monitoring systems for complex cloud environments.
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