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A B S T R A C T

Brownian Motion, with some persistence in the direction of motion, typically known as active Brownian
Motion, has been observed in many significant chemical and biological transport processes. Here, we present
a model of drifted Brownian Motion that considers a nonlinear stochastic drift with constant or fluctuating
diffusivity. The interplay between nonlinearity and structural heterogeneity of the environment can explain
three essential features of active transport. These features, which are commonly observed in experiments
and molecular dynamics simulations, include transient superdiffusion, ephemeral non-Gaussian displacement
distribution, and non-monotonic evolution of non-Gaussian parameter. Our results compare qualitatively well
with experiments of self-propelled particles in simple hydrogen peroxide solutions and molecular dynamics
simulations of self-propelled particles in more complex settings such as viscoelastic polymeric media.

1. Introduction

During the early 1900s, Brownian Motion (BM) was established
as a stochastic process with two fundamental properties [1–3]. First,
the position of the Brownian particle is characterized by a Gaussian
distribution, and second, the mean square displacement (MSD) in-
creases linearly with time. However, exceptions to these properties
were observed as early as 1926 when Richardson [4] reported that the
MSD of two tracer particles in a turbulent flow was proportional to
the third power of time (MSD ε 𝜔3). Such observations of anomalous
diffusion were reported frequently in subsequent years [5], leading
to the characterization of anomalous diffusion by the following MSD
relation

⌋𝜀2
𝜔 ⌈ ε 𝜔𝜗 (1)

where 𝜀𝜔 is the position of the particle from the initial condition and
⌋⋛⌈ represents the ensemble average. Here, 𝜗 is a non-negative exponent
that indicates subdiffusion for 𝜗 < 1, superdiffusion for 𝜗 > 1, and
Fickian diffusion for 𝜗 = 1.

Our work focuses exclusively on active motion, typically charac-
terized by 𝜗 ∱ 1 (see two excellent reviews [6,7]). Frequently, such
superdiffusion occurs only transiently between two Fickian regimes
at short and long time scales. Additionally, transient superdiffusion is
very often characterized by a non-Gaussian probability density function
(PDF) [8–14]. A commonly used metric to detect deviations from
Gaussian distributions is the non-Gaussian parameter (NGP), which is
directly related to the kurtosis of a PDF. In fact, NGP is simply one-third
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of the excess kurtosis. However, because most experimental studies
on anomalous diffusion utilize the NGP, we prefer to use it instead
of kurtosis for easy comparison. Here, the NGP is used to specifically
detect deviations from the Gaussian PDF of standard BM. In this con-
text, all BMs have an NGP of zero. Examples of negative non-monotonic
NGP have been observed in experiments involving self-propelled Janus
particles in hydrogen peroxide (H2O2) solutions [14]. However, when
the active particle is immersed in a more heterogeneous environment,
such as viscoelastic polymeric suspensions, the NGP can be either
purely positive or exhibit both positive and negative values, depending
on the environment’s heterogeneity [15]. Although not studied here, it
is worth mentioning that nonmonotonic NGP has also been observed in
systems exhibiting Fickian diffusion or transient subdiffusion (see, for
example, [16–18]).

Persistent random walk (PRW) [19] and continuous time random
walk (CTRW) [20] are two fundamental stochastic processes for mod-
eling superdiffusion. The motion in PRW is characterized by the bias
in a specific direction, whereas the particle dynamics in CTRW is
described by the distribution of their displacement steps and wait-
ing times [19,21–23]. Transient superdiffusion is possible when these
distributions follow a power law [24] or tempered power-law distri-
bution [25–27]. However, PRWs and CTRWs lack a straightforward
way to describe the non-monotonic NGP and to incorporate external
energy sources [27], two necessary components for active BM. A simple
model that accommodates external energy sources to study active BM
is the (fractional) Fokker–Planck equation [27,28], but an analyti-
cal solution of (fractional) Fokker–Planck equations is obtained only
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for a few special cases. From a microscopic perspective, generalized
Langevin equation [29,30] using tempered or non-tempered memory
kernels [31–35] scaled BM, [36,37], parabolic potential [38], non-
linear friction function [39], and fractional derivatives [40] are used
to model active BM. A basic generalized Langevin equation, popular
as the active Ornstein–Uhlenbeck (OU) process, is achieved by using a
colored Gaussian noise with exponentially decaying correlations [41].
Similarly, the addition of a potential leading to an extra acceleration
term corresponds to the model of active BM, where particles take
energy from the environment and store it in their internal energy
depots [42]. A modified Langevin equation with additional telegraphic
noise has been shown to produce transient superdiffusion [33].

In this work, we propose a simple model of drifted BM (dBM)
with stochastic drift to describe active transport in heterogeneous envi-
ronments. Although initially used to describe foraging dynamics [43],
this model has the potential to explain three key characteristics of
active BM. First, following [43–45], we demonstrate that the model
can describe transient superdiffusion. Specifically, the MSD profile is
Fickian at short times, superdiffusive at intermediate times, and returns
to Fickian at longer times. Second, we have conducted numerical
computations of the PDF and the NGP to demonstrate the non-Gaussian
characteristics of active BM. These signatures are closely associated
with experimental findings in active BM [8–14,46]. Third, the NGP
shows the desired non-monotone behavior. By considering stochastic
diffusivities that are commonly used to model heterogeneous envi-
ronments [47–49], we show that the NGP exhibits further nontrivial
behavior.

The paper is organized as follows. In Section 2, we present our
model and define the measurables of this study. Section 3 presents
the results of our simulation study and various properties of tran-
sient anomalous superdiffusion explained by the model. Specifically,
Section 3.1 presents the results with constant diffusivities, while Sec-
tion 3.2 uses the concept of fluctuating diffusivity. We end the paper
with a brief summary in Section 4.

2. Model and measurables

Consider a particle moving in a complex n-dimensional (nd) en-
vironment described by two independent white noises 𝜛𝛚(𝜚)

𝜔 =⌉
2𝜍𝜚𝜛𝛆

(𝜚)
𝜔 , where 𝜚 = 1, 2, 𝜍𝜚 are the corresponding diffusivities, and

𝛆(𝜚)
𝜔 denote n-dimensional independent Wiener processes. Here, we

assume that the position of a particle, 𝛝𝜔, under the influence of two
distinct sources of noise can be modeled by the following stochastic
differential equation,

𝜛𝛝𝜔 = 𝜑
𝛚(2)
𝜔 ϑ 𝛝𝜔

{𝛚(2)
𝜔 ϑ 𝛝𝜔{

𝜛𝜔 + 𝜛𝛚(1)
𝜔 (2)

where { ⋛ { is the Euclidian norm and 𝜑 is the drift velocity [43,44].
Qualitatively, this equation is easier to understand in 1d. In this case,
the equation of motion reduces to

𝜛𝛻𝜔 = 𝜑sgn(𝜕(2)
𝜔 ϑ𝛻𝜔)𝜛𝜔 + 𝜛𝜕(1)

𝜔 , (3)

where sgn(⋛) represents the standard sign function.
The first term in Eq. (3) describes the drift of the active particle. The

particle moves with constant velocity in a specific direction (ballistic
motion) until the difference 𝜕(2)

𝜔 ϑ 𝛻𝜔 changes sign. At that moment,
the particle starts moving in the opposite direction until the next sign
change. Let us call the distance between the two consecutive sign
changes ‘‘flight’’. Since the sign changes are random, the length of
these flights is also random. In the long term, the particle is trapped
around 𝜕(2)

𝜔 , and consequently, it exhibits behavior similar to 𝜕(2)
𝜔 . The

second term represents the random collisions of the active particle with
the surrounding molecules. In the absence of any drift (𝜑 = 0), the
second term simply describes the BM of the tracer. In the short term
(𝜔  0) and before the first sign change, 𝛻𝜔 ϖ ±𝜑𝜔 + 𝜕(1)

𝜔 . Computing

the ensemble average of (𝛻𝜔 ϑ 𝛻0)2 yields ℵℶ𝜍 ϖ 𝜑2𝜔2 + 2𝜍1𝜔. As the
quadratic term becomes negligible when 𝜔 approaches zero, ℵℶ𝜍 ϖ
2𝜍1𝜔. This suggests that in the short term, the tracer behaves as 𝜕

(1)
𝜔 .

In summary, the tracer behaves like 𝜕(1)
𝜔 in the short term, and in the

long term, it adapts to the motion of 𝜕(2)
𝜔 . Another interesting property

of Eq. (3) is that the difference ℷ𝜔 = 𝜕(1)
𝜔 ϑ 𝛻𝜔 is effectively described

by: 𝜛ℷ𝜔 = ϑ𝜑sgn(ℷ𝜔) + ℸ𝜛⊳𝜔, where ℸ =
⌉
2(𝜍1 +𝜍2). This is simply

the Langevin equation with dry friction equation first introduced by
de Gennes [50]. The analytical solution, which is detailed in [51],
possesses a Laplacian stationary distribution. These properties of the
1d model are qualitatively preserved in 2d and 3d. However, deriving
them analytically is more challenging [43].

The model is characterized by three parameters: the two diffusivities
(𝜍1 and 𝜍2) and the drift (𝜑). The surrounding fast molecules deter-
mine the value of the first diffusivity, 𝜍1, while the second diffusivity
is related to the inevitable directional change of the particle’s long
flights. This directional change, and as a consequence, 𝜍2, depends
on the strength of self-propulsion, the tracer’s size and geometry, the
mechanical properties of the environment, and tracer-environment in-
teraction [15]. The drift velocity (𝜑) determines the onset of transition
of the tracer from 𝜕(1)

𝜔 to 𝜕(2)
𝜔 . These three parameters can be considered

constant when active motion occurs in a simple environment, such
as hydrogen peroxide. In cases where the active particle is immersed
in environments exhibiting some dynamic or structural heterogeneity
(e.g., polymeric suspensions), one can assume that these parameters are
random variables or stochastic processes.

To model the effect of heterogeneous environments, this study as-
sumes that only 𝜍2 fluctuates in time. This process is called fluctuating
or diffusive diffusivity [47–49,52]. To create a non-Gaussian process
with non-monotone NGP, one needs to model the fluctuations of 𝜍2 as
a stochastic process with a stationary distribution. This process should
change slowly over time, compared to the observation time scale of
the particle’s diffusion. For simplicity, we will implement the original
fluctuating diffusivity approach that models 𝜍2(𝜔) as

𝜍2(𝜔) = ⌋𝜍2(𝜔)⌈⊲2𝜔 , (4)

where ⊲𝜔 is an OU process

𝜛⊲𝜔 = ϑ0⊲𝜔 + 1𝜛⊳𝜔. (5)

Here, 0 is the relaxation parameter, and 1 represents the white noise
variance of the standard OU process. The mean, variance, and auto-
correlation of ⊲𝜔 are ⌋⊲𝜔⌈ = 0,

}
2⊲2𝜔

⦃
= 12ϱ20 and ⌋⊲𝜔⊲𝜔ς ⌈ = (12ϱ20)

exp(ϑ0⦄𝜔 ϑ 𝜔ς⦄), respectively. Eq. (4) implies }
2⊲2𝜔

⦃
= 1. Under these

assumptions, the behavior of 𝜍2(𝜔) is controlled by the relaxation
parameter 0. In that case, the second BM that modulates the stochas-
tic drift of the active particle is given by 𝛚(2)

𝜔 = ∲ 𝜔
0
⌉
2𝜍2(3)𝜛𝛆

(2)
3 .

As demonstrated in [44] and discussed below, stochastic diffusivity
models can describe Fickian or transient anomalous diffusion with
non-Gaussian PDF.

It should be emphasized that the analytical solution of Eq. (2) is
not known yet and, therefore, will be solved numerically following the
approach detailed in [43].

In this work, we will examine three main properties of the system.
First, we compute the MSD of the tracer’s position from the initial
condition, i.e., ⌋𝛡2

𝜔 ⌈, where 𝛡𝜔 = 𝛝𝜔 ϑ 𝛝0. Second, we analyze the
PDF of 𝜀4,𝜔, 5 (𝜀4,𝜔), where 4 = 1, 2, or 3 indicates the three different
dimensions. The PDF is computed using the van Hove function [53].
Third, we demonstrate deviations from the Gaussian PDF of BM by
calculating the NGP 62(𝜔) = ⌋𝜀4

4,𝜔⌈ϱ(3⌋𝜀2
4,𝜔⌈2) ϑ 1. We reiterate that the

NGP is simply one-third of the excess kurtosis and is zero for a pure
BM. To simplify the discussion of our results, we characterize positive
NGP values as typically associated with PDFs having narrower peaks
and broader tails (leptokurtic), while negative NGP values with PDFs
that have flatter peaks and narrower tails (platykurtic). These PDF tails
can be either Gaussian or non-Gaussian. However, it is important to
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emphasize that we do not intend to generalize such characterization
of positive and negative NGP. We underline that kurtosis gives a more
elegant picture of a PDF than just its top flatness or tail heaviness [54].

Eqs. (2) and (3) have been studied in [43] in the context of animal
foraging. It was shown that (a) the model exhibits transient superdif-
fusion, (b) the time of the particle’s flights is distributed as an inverse
Gaussian, and (c) the relaxation of the drift autocorrelation function
is non-exponential. Here, we extend this study and demonstrate that
the model can capture the enhancement of diffusivity and the non-
monotonic behavior of the NGP often observed in active motion. Eq. (3)
with a linear drift was studied in [44,45] and showed that it also
exhibits transient anomalous diffusion. However, this nonlinearity is
essential because, as we will see below, it enables our model to capture
the negative NGP of self-propelled particles.

3. Transient superdiffusion with non-Gaussian characteristics

3.1. Constant diffusivities

Let us start our analysis by presenting the results for constant
𝜍2. This case can describe self-propelled particles in relatively simple
fluidic environments. As we will see below, our model agrees very
well with experimental and theoretical studies of Janus particle trans-
port in hydrogen peroxide solutions [14]. Fig. 1 presents an example
demonstrating our model’s main properties. The parameters used in this
example are 𝜍1 = 0.1 and 𝜑 = 1. The second diffusivity takes three
different values 𝜍2 = 𝜍1, 𝜍2 = 10𝜍1, and 𝜍2 = 100𝜍1.

The MSD profiles for the three different values of 𝜍2 are shown
in Fig. 1a. Note that the two vertical lines at 71 and 72 define three
regions that reveal two important characteristics of our model. First,
the MSD starts as diffusive with diffusivity 𝜍1 (region I) and entails
being also diffusive with diffusivity 𝜍2 ∱ 𝜍1 (region III). Thus, our
model can effectively capture the enhanced diffusivity of self-propelled
particles that is commonly observed in active BM. For example, when
Janus particles are immersed in a H2O2 solution, their diffusivity is
enhanced by increasing the concentration of H2O2 [14]. In our model,
this diffusion enhancement is regulated by 𝜍2. Second, the behavior of
the MSD in the second time region (II) is unavoidably superdiffusive
as long as 𝜍2 > 𝜍1 and is diffusive only if 𝜍2 = 𝜍1. Our model
thus describes the transient superdiffusion associated with diffusivity
enhancement. The exponent of superdiffusion 𝜗 is determined by the
difference 𝜍2 ϑ 𝜍1. Specifically, the exponent increases from 𝜗 = 1
to approximately 𝜗 = 2 with increasing 𝜍2 ϑ 𝜍1. Furthermore, the
parameter 𝜑 controls when the system enters the anomalous diffusion
regime (Section 2). A small 𝜑 delays the time the MSD starts to enter
the anomalous range, i.e., increases the value of 71 and 72 while a large
𝜑 decreases the value of 71 and 72 essentially pushing the system to
Section 3’s linear diffusive regime early. Also, 𝜑 = 0 reduces the system
to standard BM, 𝛚(1)

𝜔 . It has to be mentioned that if 𝜍2 < 𝜍1, the model
describes transient subdiffusion associated with trapping events due to
dynamic or structural heterogeneity [44].

Fig. 1b illustrates the NGP of the active particle for the three
different values of 𝜍2. Note that for 𝜍2 = 𝜍1 (green circles), 62 = 0,
which means that the process is pure BM. For 𝜍2 > 𝜍1, the NGP is
non-monotonic and takes only negative values. Specifically, the NGP is
zero for 𝜔 < 71, then it starts decreasing at time 71, reaches its minimum
point, and then gradually becomes zero again at a relatively larger
time. As 𝜍2 increases, the non-Gaussianity becomes more prominent.
Remarkably, this type of non-monotonic NGP has been observed, both
experimentally and theoretically, in active Janus particles with tran-
sient superdiffusive behavior [14]. It is emphasized that our model can
describe negative non-monotonic NGP due to the nonlinear nature of
the drift. Linear drifts, such as those presented in [44,45], result in
Gaussian processes.

As mentioned in the introduction, negative values of 62 correspond
to platykurtic distributions. A convenient way to display deviations

Fig. 1. Transient superdiffusive and non-Gaussian dynamics. In all subfigures, 𝜍1 = 0.1
and 𝜑 = 1. Panel (a) presents the MSD for 𝜍2 = 𝜍1 (green circles), 𝜍2 = 10𝜍1
(blue squares), and 𝜍2 = 100𝜍1 (red triangles). In (a), dashed black lines represent
the indicated linear MSD profiles, and the two vertical lines highlight the times 71
and 72 that separate the profile in the regions I (diffusion), II (superdiffusive), and
III (diffusion). The superdiffusion regime is characterized by 𝜗 ϖ 1.75, 1.5, and 1 for
𝜍2 = 100𝜍1, 10𝜍1, and 𝜍1, respectively. Panel (b) shows the corresponding NGP for
the same three parameter sets as in panel (a). Panel (c) illustrates the PDF of the tracer
for 𝜍2 = 10𝜍1 at times 𝜔 = 0.01 and 𝜔 = 4.273 and 𝜔 = 107.85. The black dashed line
corresponds to the standard normal. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

from a Gaussian PDF is by comparing the PDFs of the tracer at different

times after rescaling 8 = 𝜀4,𝜔ϱ
⟨⟩

𝜀2
4,𝜔

⟪
[55]. To ensure that the

normalization condition is satisfied, we rescale the PDF as 9(⦄8⦄, 𝜔) =

5 (⦄𝜀4,𝜔⦄, 𝜔)
⟨⟩

𝜀2
4,𝜔

⟪
. In a zero mean case like ours, all Gaussian dis-

tributions collapse to the standard normal .(⦄8⦄) =
⌉
2ϱ, exp(ϑ82ϱ2).

Deviations from the standard normal are easier detected by plotting
ϑ
⌉
ϑ ln(9(⦄8⦄, 𝜔)) versus ⦄8⦄. In this representation, the tails of normal

distributions are linear. Fig. 1c depicts the rescaled PDF of the tracer’s
position for 𝜍2 = 10𝜍1 at three different times: 𝜔 = 0.01, 4.273,
and 107.85, which belong to the three different diffusive regimes (see
Fig. 1a), respectively. All three distributions are compared directly with
the standard normal represented by the black dashed curve. It is clear
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that the rescaled PDF matches the standard normal for short and long-
term regimes, 𝜔 = 0.01 and 𝜔 = 107.85, respectively. These two Gaussian
distributions reside in the Fickian regions I and III of the MSD presented
in Fig. 1a. In practice, the tracer behaves like 𝛚(1)

𝜔 for short times
and adapts to the dynamics of 𝛚(2)

𝜔 at long times. In the intermediate
time, 𝜔 = 4.273, the distribution deviates from the standard Gaussian
distribution as it is more flattened at the top and more compact at the
tails (platykurtic). This flattened distribution results from the tracer’s
ballistic motion as it approaches 𝛚(2)

𝜔 .
Overall, the results presented in this section agree qualitatively with

the experiment of self-propelled Janus particles reported in [14].

3.2. Fluctuating diffusivities

Next, we will discuss the case of fluctuating diffusivities. This exten-
sion of our model is quite promising for active motion in environments
that exhibit structural heterogeneity, such as biological soft matter or
suspensions of polymeric chains. Such environments create trapping
events that could lead to leptokurtic PDFs. Modeling this type of
structural heterogeneity with OU-type stochastic diffusivity results in
a positive NGP accompanied by leptokurtic PDFs [44,47–49,52]. It is
expected that the interplay between entrapment (leptokurtic PDF) and
active motion (platykurtic PDF) will ultimately shape the PDF of the
tracer. As we will see below, by tuning the relaxation parameter (0) of
the OU process, we were able to qualitatively reproduce molecular dy-
namics (MD) simulation results of self-propelled particles in polymeric
media [15].

Here, we kept the values of 𝜍1 and 𝜑 the same as in the previous
section. The average value of the second diffusivity was set to ⌋𝜍2(𝜔)⌈ =
10𝜍1. We studied two cases of fluctuating diffusivity, one for 0 = 0.2
and another for 0 = 0.02. Figs. 2a and 2b display the MSD and NGP,
respectively, for the two values of lambda. For comparison purposes,
we also include the case of constant 𝜍2 = 10𝜍1 (see blue squares
in Figs. 1a and 1b). As shown in Fig. 2a, the MSD of the tracer
is not significantly affected by fluctuating diffusivity. It appears that
the exponent 𝜗 is slightly decreased when compared to the constant
diffusivity case. However, the impact of fluctuating diffusivity on the
NGP is rather drastic. For the higher value of 0 = 0.2, the NGP exhibits a
peculiar behavior. Initially, it takes negative values, and after a certain
time (𝜔 ϖ 10), it becomes positive. Interestingly, decreasing to 0 = 0.02
eliminates negative values, resulting in a solely positive NGP.

This striking shift in the behavior of the NGP can be explained by
the tracer’s PDF profiles. To better understand the analysis below, we
need to recall that for constant 𝜍2, the NGP is negative (blue squares
in Fig. 2b) for times 𝜔1 < 𝜔 < 𝜔2, where 𝜔1 = 0.05 and 𝜔2 = 107.945. The
maximum negative value of the NGP is at time 𝜔m = 4.273. In Fig. 2c,
we display the PDF of the tracer for 0 = 0.2 at 𝜔1, 𝜔m, and 𝜔2. At 𝜔1,
the NGP is zero, resulting in normal PDF (green circles in Fig. 2c). As
time progresses to 𝜔m, active motion dominates entrapment, leading to
an overall negative NGP with a platykurtic PDF (see blue squares in
Fig. 2c). Over time, the entrapment effect gradually increases, and for
𝜔 > 10, the NGP becomes positive giving the tracer a leptokurtic PDF.
This is clearly seen in Fig. 2c (red triangles), where we plot the PDF
at time 𝜔2. Fig. 2d shows the tracer’s PDFs for 0 = 0.02 at the times
𝜔1, 𝜔m, and 𝜔2. For the same reasons as in Fig. 2c, the PDF at time 𝜔1
is normal, and the PDF at time 𝜔2 is leptokurtic. Although the NGP for
0 = 0.02 is positive at 𝜔m (see magenta triangles in Fig. 2b), the PDF is
not purely leptokurtic. It does have a leptokurtic structure up to 8 ϖ 3,
after which the tails become slightly narrower compared to a normal
distribution. This narrowing, however, is not significant enough to give
a negative overall value to the NGP. This PDF is an interesting example
of a distribution with positive NGP (or excess kurtosis) that has a tail
narrower than the normal distribution.

This type of nontrivial NGP behavior has been reported in MD
simulations of self-propelled particles in polymeric suspensions [15].
By adjusting the parameters of the model, the authors of [15] were able

Fig. 2. The effect of stochastic diffusivity. In all subfigures, 𝜑 = 1, 𝜍1 = 0.1, and
⌋𝜍2(𝜔)⌈ = 10𝜍1. Panel (a) and (b) show the MSD and the NGP, respectively, for
0 = 0.2 (black circles) and 0 = 0.02 (magenta triangles). For comparison reasons,
the corresponding results from Figs. 1a and 1b for constant 𝜍2 = 10𝜍1 are also
presented (blue squares). Panels (c) and (d) show the tracer’s PDF for 0 = 0.2 and
0 = 0.02, respectively, at three different times, 𝜔1 = 0.05, 𝜔< = 4.273, and 𝜔2 = 107.945, in
comparison with the standard normal (red line). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

to effectively change the environment’s heterogeneity. It was observed
that when the particle had high polymer-tracer interaction and low self-
propulsion force, the impact of the environment increased, resulting in
a positive non-monotonic NGP, similar to the magenta triangles shown
in Fig. 2b. On the other hand, when the particle had low interaction and
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high propulsion force, it was able to navigate through the polymeric
suspension more easily, effectively reducing the heterogeneity of the
environment. In such cases, the NGP was negative non-monotonic,
as represented by the blue squares in Fig. 2b. Intermediate values of
propulsion force showed a non-monotonic behavior with both negative
and positive values, as indicated by the black circles in Fig. 2b. These
results are directly comparable to our predictions. In our model, the
heterogeneity of the environment increases with decreasing the relax-
ation parameter 0. In practice, this adjustment reduces the response
rate of the stochastic diffusivity.

4. Conclusions

This study presented a simple dBM equation with nonlinear stochas-
tic drift to describe the dynamics of self-propelled particles. To account
for structural heterogeneity in the fluidic environment, we used the
concept of stochastic diffusivities. Numerical simulations showed that
the interplay between non-linearity and heterogeneity can explain three
important properties of active transport: transient superdiffusion and
non-Gaussian PDF with non-monotonic NGP. Our model can describe
both negative and positive NGP and their combinations. These re-
sults agree well with experiments of self-propelled Janus particles in
relatively simple hydrogen peroxide solution [14], as well as with
simulations of self-propelled particles in more complex settings such
as polymeric melts [15]. Additionally, the striking similarity between
our results and the dynamics of actively driven polymers [56] suggests
that our model could be applied to polymer sorting in active fluids.
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