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Abstract

Contagion effect refers to the causal effect of peer behavior on the outcome of an individual
in social networks. Contagion can be hard to estimate when it is confounded by latent homophily
because nodes in a homophilic network tend to have ties to peers with similar attributes and can
behave similarly without influencing one another. One way to account for latent homophily is by
considering proxies for the unobserved confounders. However, as we demonstrate in this paper,
existing proxy-based methods for contagion effect estimation have a very high variance when the
proxies are high-dimensional. To address this issue, we introduce a novel framework, Proximal
Embeddings (ProEmb), that integrates variational autoencoders with adversarial networks to create
low-dimensional representations of high-dimensional proxies and help with estimating contagion
effects. While VAEs have been used previously for representation learning in causal inference, a
novel aspect of our approach is the additional component of adversarial networks to balance the
representations of different treatment groups, which is essential in causal inference from observa-
tional data where these groups typically come from different distributions. We empirically show
that our method significantly increases the accuracy and reduces the variance of contagion effect
estimation in observational network data compared to state-of-the-art methods. We also demon-
strate its applicability to two real-world scenarios, estimating contagion on social media and in
adolescent smoking behavior.

Keywords: causal inference, contagion effect, proxy variable,peer effects, interference

1. Introduction

The goal of causal inference is to estimate the effect of an intervention on individuals’ outcomes.
Traditionally, causal inference has relied on the assumption of no interference, which states that any
individual’s response to treatment depends only on their own treatment and not on the treatment of
others. However, individuals can impact each other through their interactions. Contagion is a type
of interference that is defined as the influence of neighbors’ actions on the actions of an individual.
Contagion effect estimation plays a central role in understanding how social environments shape
personal actions, behavior, and attitudes (Bramoullé et al., 2009; Christakis and Fowler, 2007; Eck-
les et al., 2016). Some real-world applications of contagion effect estimation include studying the
spread of obesity (Christakis and Fowler, 2007; Krauth, 2005), smoking behavior (Christakis and
Fowler, 2008), and fake news (Torres et al., 2018).

Despite their importance, identification and estimation of contagion effects are challenging due
to latent homophily Manski (1993); Shalizi and Thomas (2011); VanderWeele and An (2013), the
tendency of ties to form between individuals with similar unobserved attributes. When contagion
effects are confounded with latent homophily, it is hard to tell if any changes in the individual’s
outcome are the result of neighbors’ influence or the similarity between the individual and neigh-
bors characteristics. For example, people with similar political affiliations would be more likely to
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interact on social media (e.g., Twitter) and they may express similar opinions (e.g., agree or disagree
with social distancing policies during a pandemic), not because one influences the other but because
they share similar political views in the first place.

To identify and estimate contagion effects in the presence of unobserved confounders, existing
approaches look for observed variables that can be considered as valid proxies of the unobserved
confounders (Miao et al., 2018; Tchetgen et al., 2020; Egami and Tchetgen Tchetgen, 2024). How-
ever, such approaches can perform poorly on real-world observational data, such as web and social
media, in which a high-dimensional covariate space is the norm. High-dimensional control proxies
(e.g., tweet words of a user) lead to a sparse vector of model parameters and higher asymptotic bias
and variance of the estimation (De Luna et al., 2011). Another source of variance is selection bias
(Guo et al., 2020; Shalit et al., 2017; Assaad et al., 2021). Selection bias occurs when there is a
mismatch in attribute distribution between the treatment and control groups in observational data.
For instance, a treatment group can comprise mostly individuals who prioritize their health and have
friends who follow social distancing guidelines, while the control group comprises of individuals
who do not prioritize their health and have friends who largely disregard social distancing measures.
A common method for dealing with selection bias in observational studies is matching, where a bal-
anced sample is created by identifying similar units from the opposite treatment group. However,
matching tends to encounter scalability issues when applied to high-dimensional data (Abadie and
Imbens, 2006; Assaad et al., 2021).

Key idea and highlights. To address high dimensionality and selection bias in real-world con-
tagion estimation settings, we introduce ProEmb, a framework for inferring contagion effects in
homophilic networks. ProEmb learns embeddings of high-dimensional proxies for unobserved con-
founders. ProEmb combines variational autoencoders (VAEs) and adversarial networks (Goodfel-
low et al., 2014; Mescheder et al., 2017) to map high-dimensional proxies to a probability distribu-
tion over the latent space with the goal of obtaining a balanced low-dimensional proxy representa-
tion. While the use of VAEs for causal effect estimation is not new (Grari et al., 2022; Kim et al.,
2021; Louizos et al., 2017), our framework has two novel components. The first one is in defin-
ing and developing the first solution to the problem of contagion estimation with high-dimensional
proxies, an important problem in real-world contagion estimation scenarios. The second one is the
novel enhancement of VAEs with adversarial networks, similar to matching (Stuart, 2010), which
play the important role of addressing the selection bias in treatment groups and is of independent
interest for causal effect estimation beyond contagion. In addition to being meaningful for causal
inference, this enhancement is crucial for the empirical performance of the estimator.

Through empirical analysis, we demonstrate that state-of-the-art methods for inferring conta-
gion effects are prone to high bias and variance in high-dimensional scenarios, while our proposed
approach exhibits remarkable performance improvements.

2. Related Work

Here, we review prior studies that focus on causal inference in observational network data. Ogburn
and VanderWeele (2014) explore the role of structural causal models in causal effect estimation in
the presence of different types of interference. Shalizi and Thomas (2011) show that in networks
formed by latent homophily, contagion, and homophily can be confounded and the causal effect
is not always identifiable. Controlling for the cluster assignment of nodes helps with identifiablity
(Shalizi and McFowland III, 2016). A recent study deploys negative control outcome and exposure
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variables to estimate contagion effects in low-dimensional settings (Egami and Tchetgen Tchetgen,
2024). Our work builds upon this work and focuses on estimating contagion effects when the proxies
are high-dimensional.

Recently, a series of methods have been proposed to leverage representation learning to relax
the strong ignorability assumption in networked data. Guo et al. (2020) map the network structure
and observed node features to a latent representation space to capture the influence of hidden con-
founders. Veitch et al. (2019) estimate treatment effects using network embeddings by reducing
the causal estimation problem to a semi-supervised prediction of the treatments and outcomes and
using embedding models for the semi-supervised prediction. Cristali and Veitch (2021) use node
embeddings learned from the network structure for estimating contagion effects in a different set-
ting where covariates and the network structure are unobserved. However, these works either do not
consider interference (Guo et al., 2020; Veitch et al., 2019), or selection bias (Cristali and Veitch,
2021).

Methods to improve the distribution mismatch between treatment groups include combining
weighting with representation learning (Guo et al., 2020; Hassanpour and Greiner, 2019; Li and Fu,
2017), linear ridge regression with representation learning and a discriminator component (Jiang and
Sun, 2022). Our approach is distinct in that it balances the proxy representations generated by VAEs
with adversarial networks. Several studies have utilized VAEs to estimate proxies for confounding
variables in non-network data. Louizos et al. (2017) leverage VAE:s to infer latent variables proxies
that help with estimating individual treatment effects. Grari et al. (2022) integrate VAEs with an
adversarial training component aimed at acquiring a proxy for latent sensitive information, such as
gender. Their approach differs from our framework in the sense that adversarial training focuses on
guaranteeing the independence of the generated latent space from the unobserved sensitive variable.
In contrast, our approach utilizes the discriminator component of an adversarial network to achieve
a balance in the representation of treatment and control groups.

3. Problem Description

In this section, we introduce data and causal models, estimand, proxy variable types, and challenges
in estimating contagion effects in high-dimensional settings.

3.1. Data model

We assume a graph G = (V, E) that consists of a set of [V nodes and a set of edges E = {e;;},
where ¢;; denotes that there is an edge between node v; € V and node v; € V. Each node has
an observed n-dimensional vector of attributes, Z;, unobserved characteristics, U;, and outcomes
in two consecutive time steps, Y;;—1 € R, and Y;; € R. Let N; = {v;|v; € V & 3 ¢;; € E}
denote the set of neighbors of node v; and A; be the adjacency vector for node v; where A;; = 1 if
de;j. For each node, there exists a set of neighbors’ hidden characteristics U,, 4, a set of neighbors’
observed attributes Z,, 45, and two sets of neighbors’ outcomes Y45 ;1 and Y 45 ;.

3.2. Causal Model

Following Egami and Tchetgen Tchetgen (2024), we assume the causal graph depicted in Fig. 1,
where the connections (A;) are formed based on the similarity of the unobserved homophilic at-
tributes. Latent variables are represented by dashed circles. Treatment is the set of peer outcomes
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Figure 1: The causal model for the ego-network of ego v;: Z; and Z,, are proxies of the hidden
confounders. Dashed circles show unobserved homophilic attributes.

Y ,.g5,t—1 and the outcome is the ego’s outcome Y; ;. Here, an ego refers to a node v; whose conta-
gion effects we estimate, and a peer (or neighbor) refers to a node that influences the ego’s outcome.
The potential outcome of node v; under contagion effects is defined as the value that Y; ; would
take if peer outcomes Y 4,1 had been set to y. The factual outcome YlFt refers to the observed
outcome of an individual when Y ,,4,; 1 = y and the counterfactual outcome YZCtF shows the
unobserved response of an individual when Y,,g 11 # Y.

Given a set of activated neighbors N; C N;, we define h : {Yngbyt,l}mi' — {0,1} as a
function which maps the neighbors’ outcomes at t-1 to a binary value. We consider an ego-network
connection model where multiple peers may exist (|N;| > 1). Dyads, i.e., pairs of two individuals,
are a special case of the ego-networks model where for every node v;, |IN;| = 1.

3.3. Contagion Effect Estimation

We define Individual Contagion Effects (ICE) as the difference between the outcome of node v;
under two different values for the neighbors’ activation (Y45 —1):

T, = Yi,t(h(Yngb,t—l) = 1) - }/i,t(h(Yngb,t—l) = 0) (1)

Our objective is to estimate ACE, which represents the average of ICE over all nodes. In
observational data, estimating ICE is challenging because we can never simultaneously observe the
factual and counterfactual outcomes of a unit.

A main assumption in causal inference from observational data is strong ignorability or no
unmeasured confounding. According to this condition, the potential outcomes of a node are inde-
pendent of its treatment assignment given its observed attributes (Rosenbaum and Rubin, 1983). In
the causal model represented in Fig. 1, strong ignorability holds if:

(Yvi,t(l)a }/'L,t(o)) AL Yngb,t—l | Zi, A;. )

However, conditioning on A; introduces a dependence association between unobserved variables
U; and U,, 4, where the unblocked backdoor path Y;; <— U; — A; < U,y — Y41 violates
the ignorability assumption (Y; ; U Y,,45+—1|A4, Z;) and makes the contagion effects unidentifiable
unless proxies are available. We are interested in measuring ACE in the presence of an unobserved
confounder, i.e., where the unobserved network confounder is the direct cause of the outcome of an
ego and its peers.
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3.4. Double Negative Control Proxies

One way to account for latent homophily is by considering proxies for unobserved confounders.
Proxies are measurable variables that are correlated with the unobserved variable; conditioning on
them enables the identification of the causal effect (Miao et al., 2018). Two groups of common
proxies that make the causal effect identifiable in settings with unobserved confounders are: 1)
Negative Control Exposure (NCE) is a variable that does not causally affect the outcome of interest,
and 2) Negative Control Outcome (NCO) is a variable that is not causally affected by the treatment
of interest. Egami and Tchetgen Tchetgen (2024) demonstrate that leveraging these two types of
negative control proxies can enable the identification of contagion effects in networked data with
unobserved confounders. In the causal model presented in Fig. 1, a variable Z; is considered as an
NCO because:

Zi i Yngb,t—l |Uza Ungba Aia (3)
and variable Z,, 4, is considered as an NCE because:
anb ui (}/i,ta Zi)|Yngb,t—17 Uia Ungba A’L (4)

Various estimators can be employed to infer the causal effect of interest using proxies. One
commonly used approach is the Two-stage Least Squares estimator (TSLS). TSLS consists of two
stages (Angrist and Imbens, 1995). First, a new variable is constructed using the instrumental
variables, serving as a proxy for the unobserved confounders. Then, the estimated values from the
first stage replace the unobserved confounders, and an Ordinary Least Squares (OLS) regression is
performed to estimate the causal effect. Egami and Tchetgen Tchetgen (2024) employ the TSLS
estimator to quantify contagion effects by leveraging the NCE and NCO proxies as:

Y;,t ~ Yngb,tfl + Zi‘zngb + Yngb,tfly (5)

where the coefficient of Y45 ¢—1 shows the estimated ACE.

3.5. Issues with high-dimensional proxies

In the presence of high-dimensional data, the number of model parameters p exceeds the number
of data samples n, a problem known as the “Large p Small n” issue in causal effect estimation
using regression models (Bernardo et al., 2003). Estimating contagion effects using control proxies
can be problematic when the NCO and NCE proxies are high-dimensional because the matrix of
model parameters becomes sparse and exhibits a low-rank structure (Deaner, 2021). Including
correlated variables in the estimation process increases the variance of the causal estimand (Abadie
and Imbens, 2006; De Luna et al., 2011), which adversely affects the performance of the estimator
(Chao and Swanson, 2005; Hansen et al., 2008). This issue becomes even more prominent in TSLS
estimation, where the computational burden increases with the number of instruments or predictors.
The goal of this paper is to solve the following problem:

Problem 1 (Contagion Effect Estimation with High-dimensional Proxies) Ler G = (V, E) be
a graph evolved by latent homophily with high-dimensional double negative control proxies, as-
sociated with nodes. Our goal is to find an estimate of the average contagion effect (ACE) 0 that
minimizes the expected error between 0 and the true value of ACE 6.

247



FATEMI ZHELEVA

Embedding Learning

e

Low_dimensional
! i Counterfactual
. > Learning
Proxy Concatenation o
P\ Zy)

v
v

z 92| Z)
I ¥ Lrae i
e / _l L
—®\ Z
-
Zogs DY 01 2

' Representation Balancing
’

Yighi-i

Figure 2: [llustration of the ProEmb framework.
4. Proximal Embedding Framework for Contagion Effect Estimation

To address high dimensionality and selection bias in contagion effect estimation, we introduce the
Proximal Embeddings (ProEmb) framework with three main components, shown in Fig. 2. The
first component tackles issues of sparsity and high dimensionality by reducing dependent variables
to uncorrelated ones, thereby improving estimator optimality (Wang et al., 2014; De Luna et al.,
2011). A key technique for this is variational autoencoders (VAEs) (Kingma and Welling, 2014;
Rezende et al., 2014), which we carefully adapt to our problem. Embeddings generated by VAEs
can vary across different treatment groups and it can lead to confounding biases in estimating causal
effects. The second component of ProEmb integrates adversarial networks to update the representa-
tion generated by VAEs and improve the distribution shift between the representations of treatment
and control proxies. This updated representation is then passed on to the third component, which
consists of a counterfactual learning module that measures counterfactual outcomes. To the best of
our knowledge, ProEmb is the first method that integrates VAEs, adversarial networks, and meta-
learners to improve causal effect estimation more generally and, more specifically, contagion effect
estimation in networks with unobserved confounders. Next, we describe each component in detail.

4.1. Embedding learning

The goal of this component is to learn a low-dimensional representation of high-dimensional and
sparse proxies while preserving the parts of proxies that are predictive of the outcomes. We as-
sume that the experimenter has classified observed variables into NCO and NCE proxies based on
assumptions 3-4. We use VAEs to learn low-dimensional representations for each node’s proxies
because of their success in dimensionality reduction and ability to both capture the underlying struc-
ture of high-dimensional data and regularize the latent space, which helps to prevent overfitting and
improve generalization performance (Gregor et al., 2015; Jimenez Rezende et al., 2016).

In order to adapt VAEs to the problem of contagion estimation with high-dimensional proxies,
one has to be careful about 1) how to capture latent homophily, 2) how to sample diverse low-
dimensional representations from the representation space during training and inference, and 3)
how to reconstruct the original high-dimensional proxy vectors, in order to evaluate and improve
the performance of the model. ProEmb’s VAE addresses these considerations through three parts:

1. Probabilistic Encoder. This component transforms high-dimensional proxies into a distribu-
tion in the latent space to infer the unobserved confounders. Since Z; as an NCO and Z,,,
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as an NCE variable are proxies of the unobserved homophilic attributes, we expect to re-
cover latent features by applying a well-trained encoder model to the concatenation of these
proxies. Let Zi = {Zi1, s Zin, Zngb,15 -+, Zngbn } denote the concatenated vector of proxies
Z; = {2i1,..,zin} and Zygy = {Zngp,1; -, Zngb,n} With dimension n. We use the encoder
layer with L fully-connected layers to map proxies Z; to low-dimensional latent vector Z/;:

Z'i = g(W;..9(W1Zy)), (6)

where g indicates the activation function (e.g., Relu) and {W;},1 € {1,..., L} represents the
weight matrices of the fully connected layers of the encoder.

2. Sampler. The sampler plays a crucial role in generating latent vectors from the learned distri-
bution in the latent space. These vectors are randomly sampled from the distribution p( Z; ] ZZ),
utilizing the mean and log-variance values obtained from the encoder’s output. The latent
layer is represented by two sets of neurons: one representing the means of the latent space,
and one representing the log-variances, measured as:

p=W,Z + bt Ins*=WsZ. +b°, (7)

where b* and b? are bias vectors. A proxy representation is sampled from the latent space:

A~

Zi ~ p(Zi|Z;) = N (u, exp(in 62)). (8)

7. contains the low-dimensional representation of the proxies, later utilized by the counter-
factual learning module for estimating contagion effects.

3. Probabilistic Decoder. The decoder attempts to reconstruct the original proxy vector Z,; from
the proxy representation Z:. The decoder uses L fully-connected layers to map Z:t0 Zi, i.e.,

Z! = f(Wy...f(W1Z,)), 9)

where Z/ shows the reconstructed representation, f indicates the activation function, and
{W;},1 € 1,..., L denotes the weight matrix of the fully connected layers.

The loss function of VAEs consists of two main parts: 1) the reconstruction loss which measures
the dissimilarity between the original data and the data reconstructed by the VAEs, and 2) The
Kullback—Leibler (KL) dlvergence acting as a regularizer by quantlfymg disparities between the
inferred distribution p(Z|Z) and the desire prior distribution p(Z). More specifically:

Vi
Lyae = V2> Z |20 — 2% + KL(p(Zi|Z:) |p(Z:)) Y. (10)

4.2. Representation balancing

Since the embedding learning models are trained on the factual outcomes and used to predict the
counterfactual outcomes, minimizing the error in factual outcomes Yf; does not guarantee the si-
multaneous error reduction in counterfactual outcomes YCF . In this particular component, we
focus on enhancing proxy representation to achieve 51m11ar1ty between the induced distributions for
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treated and control nodes. Inspired by Jiang and Sun (2022), we employ the discriminator compo-
nent of Generative Adversarial Networks (Goodfellow et al., 2014) to address the imbalance proxy
representations generated by VAEs.

LetD : Z; — {0,1} denote the discriminator function, mapping the latent representation Z;
to h(Y,gp¢—1). We train the discriminator to maximize the probability of accurately predicting
h(Y pgb,t—1) from the latent representation by optimizing the discriminator loss function:

1

Lp=
V|

D (M(Yngi—1) log D(Zi) + (1 = h(Ygpi-1)) log(1 — D(Zy)).
=1

The latent representation Z; is adjusted to achieve a uniform distribution for (h(Ynghi—1)|Z:).
Given the binary nature of Y}, ¢, ; 1, this distribution implies p(h(Yngpt—1) = 11Z;) = p(A(Ypgpt—1) =
0|Z;) = 0.5. The regularization loss is defined as:

Lry= 1= (D(Z;) — 0.5)*. (11)

The regularization loss L, is then backpropagated to the encoding part of the VAEs, enabling
the update of the latent representation Z; such that the discriminator D cannot accurately predict
Yigb,t—1. This leads to a more balanced and unbiased latent representation for proxies.

4.3. Counterfactual learning

This component focuses on training models to infer the counterfactual outcomes from low-dimensional
embeddings of proxies Z; € R™. The factual outcomes are used to train the models. The objective
function of this component during training is to minimize the error of the inferred factual outcomes
defined as % > (f/zt - Yi7t)2 where YM indicates the predicted factual outcome by ProEmb. To
make this process more concrete, we demonstrate how our framework would use a common Het-
erogeneous Treatment Effect (HTE) estimation algorithm, the T-learner. However, our framework
could leverage other HTE estimation algorithms as well. T-learner meta-learning algorithm is an
example of such estimators and is used to measure Conditional Average Treatment Effect (CATE).
A meta-learner is a framework to estimate the Individual Treatment Effects (ITE) using any su-
pervised machine learning estimators known as base-learners (Kiinzel et al., 2019). In T-learner,
two base-learners are trained with treatment (1) and control nodes (i) to estimate the conditional
expectations of the outcomes given observed attributes (in our case Z). p; and p,. are employed
to predict the counterfactual outcomes of control and treatment nodes, respectively. The difference
between the predicted outcomes by treatment and control models shows ITE.

5. Experiments

We evaluate the performance of different methods for contagion effect estimation and demonstrate
the applicability of our approach for detecting contagion effects in two real-world datasets.

5.1. Semi-synthetic data generation

In this section, we describe the semi-synthetic datasets we generated for our experiments. It is im-
portant to note that the generation doesn’t consider embeddings and is therefore not biased towards
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an embedding-based solution. We utilize four real-world datasets: 1) Hateful Users, which is a
sample of 5,000 hateful and normal tweets (Ribeiro et al., 2018), 2) Stay-at-Home (SAH), which is
a sample of 30,000 tweets reflecting users’ attitudes toward stay-at-home orders during the COVID-
19 pandemic (Fatemi et al., 2022), 3) BlogCatalog, which is a sample of 5,196 bloggers from an
online blog community, and 4) Flickr which is a sample of 7,575 users who share photos on Flickr
social media platform (Guo et al., 2020).

In the first two datasets, each tweet exhibits a unique distribution over several topics, reflecting
the hidden semantic structure of the tweet. We consider the topic distribution of each tweet as
the unobserved confounder U;. To extract the topic distribution of each tweet, we employ Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) and measure the coherence score to determine the
optimal number of topics. We obtain 20 topics for SAH and 50 topics for the Hateful Users dataset.
For the BlogCatalog and Flickr datasets, we follow Guo et al. (2020) and learn 50 topics.

Ego-Network model. Since our causal model relies on the assumption that ties form between
nodes by latent homophily, we generate the connections synthetically. We consider data for both
ego-networks and dyads. In our network model, we assume that activated neighbors may activate
an inactive ego with probability of 0.3. In the dyadic model, each node in the graph is connected to
only one other node. More details are provided in Appendix.

Counterfactual model. We generate the outcome of each node in two consecutive time steps.
Y +—1is generated as:

Yit—1 = Ui + ¢, (12)

where € ~ N(0,,1), and «, is the vector of unobserved confounder coefficients with the size of
U;. We generate the factual and counterfactual outcomes as:

Y = BuUi + ByYip—1 + Th(Ynghi—1) + ¢, (13)

VG = 8,U 4 ByYiue1 +7(1 — h(Yngsi—1)) + €, (14)

where (3, is the unobserved confounder coefficient vector. In our experiments, we utilize both the
max() and sigmoid(mean()) functions for h().

5.2. Experimental setup

We consider two types of attributes Z;. We use bag-of-words (BoW) to represent documents as
vectors (vector size of 4,939 for SAH, 13,146 for Hateful Users, 8,189 for BlogCatalg, and 12,047
for Flickr). To understand whether there is value in VAE or using embedding representation is
sufficient, we also experiment with simple embeddings derived from BoW for the datasets for which
original text is available, BlogCatalog and Flickr. We consider GloVe-200d model (Pennington
et al., 2014) and Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,
2019). We further fine-tune the BERT model for 1, 000 steps to obtain new embeddings specific to
each dataset (BERT-ft model).

To understand the value of ProEmb using different base-learners, we employ three types of
base-learners for the T-Learner estimator: 1) ProEmb with Linear Regression (PE-LR), 2) ProEmb
with Gradient Boosted Trees (PE-GB), and 3) ProEmb with Multi-layer Perceptrons (PE-NN). We
set the embedding dimension of the VAEs as the dimension of the unobserved confounder variable
(20 in SAH and 50 in the Hateful Users, BlogCatalog, and Flickr datasets). The hyperparameter
tuning is described in the Appendix.
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Table 1: RMSE of ACE using BoW feature representation in networked datasets. Numbers follow-
ing & indicate the standard deviation of the estimates.

h=max () h=mean ()
Dataset TSLS CEVAE NetD T-GB PE-GB TSLS CEVAE NetD T-GB PE-GB
SAH 2754+ 1.35|227+0.09 | 0.87+0.7 | 0.61 £0.13 | 04+0.1 |542+3.6|242+0.09 | 0.85+0.45 | 0.65+0.21 | 0.47+ 0.24

Hateful Users | 3.28 £1.96 | 2.6+0.08 | 0.88+0.16 | 0.58+0.07 | 0.41+0.08 | 46428 | 2.51+0.06 | 0.66+0.16 | 0.624+0.11 | 0.47 &= 0.15
BlogCatalog | 207 109 | 1.83+0.12 | 0.384+0.13 | 0.27+0.06 | 0.09+0.03 | 6204481 | 3.41+0.25 | 023 +0.12 | 0.1940.09 | 0.11+0.06
Flickr 128 + 105 | 2.12£0.13 | 0.46+0.27 | 0.35+0.11 | 0.12+£0.04 | 160+£120 | 2.76+0.18 | 0.364+0.21 | 0.28+0.12 | 0.13 & 0.07

To report the estimation error of different models, we measure the Root Mean Squared Error
(RMSE) of contagion effects over 10 runs. We consider the BoW or word embedding vector of
each user’s tweet as an NCO proxy and the BoW or word embedding vector of the peer’s tweet
as an NCE proxy of the hidden topic distributions. ~ Following Egami and Tchetgen Tchetgen
(2024), we set B, = 0.2 in Eq. 13 and Eq.14. In addition, we vary the strength of unobserved
confounding coefficient vector 3, with two different distributions 3, ~ N(5,2) and 3, ~ N (0, 3)
and oy, ~ N (0, 1).

Baselines: We compare the performance of ProEmb variants against four different baselines.
TSLS is the only existing and state-of-the-art method that makes contagion effects identifiable
in network data with unobserved confounders using negative control proxies (Egami and Tchet-
gen Tchetgen, 2024). Causal Effect Variational Autoencoder (CEVAE) is a VAEs-based model for
inferring ITE with unobserved confounders (Louizos et al., 2017). Although this model is primarily
intended for non-network datasets, we adapt it to network data by concatenating available proxies
for the unobserved confounders (Z; and Z,,4;) as the noisy proxy vector for each node. Network
Deconfounder (NetD) exploits Graph Convolutional Networks (GCNs) to learn representations of
hidden confounders by mapping features and network structure into a shared representation space
(Guo et al., 2020). We also consider only a T-Learner with Linear Regression (7-LR), Gradient
Boosted Tree (7-GB), and MLP (T-NN) as the base-learners.

5.3. Results
5.3.1. COMPARISON TO ALL BASELINES

In Table 1, we provide a comparison of the best of our three method variants, PE-GB, with all
baseline models (TSLS, CEVAE, NetD, and T-GB), assessing their performance in estimating ACE
using BoW features as proxy variables across all datasets. We employ both the max() and mean()
activation functions in the ego-networks model. The results show that in all datasets TSLS consis-
tently achieves significantly higher error and variance compared to the other models, especially our
proposed method PE-GB. This was one of the most surprising results in our study since TSLS is a
well-established estimation method in causal inference. It’s worth noting that CEVAE, a method
that utilizes VAEs for causal effect inference in non-network data, demonstrates worse performance
when contrasted with our approach, PE-GB. This observation highlights the significance of the
counterfactual model the discriminator component of our model. As represented in Fig. 5 in the
Appendix, we obtain consistent results with datasets on dyads. We also perform an ablation study
to assess the impact of integrating VAEs and a discriminator module, confirming that PE-GB out-
performs all other models. Further details are provided in the Appendix.
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Figure 3: RMSE of ACE employing the max() activation function in networked datasets.
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Figure 4: RMSE of ACE in ProEmb with varying embedding vector dimensions and 3,, ~ N (0, 3)
employing max() activation function. The x-axis represents different types of base-learners used in
the ProEmb framework.

5.3.2. SENSITIVITY TO WORD EMBEDDING METHODS

In this experiment, we evaluate the performance of baseline methods using embedding representa-
tions instead of BoW and with different unobserved confounding coefficients. As depicted in Fig. 3,
our observations consistently align with those obtained using the BoW method in the ego-network
model. TSLS exhibits the highest levels of bias and variance while NetD outperforms both TSLS
and CAVAE, it doesn’t quite reach the level of effectiveness demonstrated by our proposed method,
PE-GB. With dyadic data, we observe consistent results.

5.3.3. SENSITIVITY TO THE DIMENSION OF THE EMBEDDING

To investigate the impact of the embedding vector dimension on the estimation error of ProEmb
variants, we train the ProEmb models with BoW features and different numbers of VAE embedding
dimensions from 20 to 4000. As the number of dimensions increases (Fig. 4), the estimation error
also increases for all ProEmb variants, with PE-GB achieving the lowest error among all ProEmb
variants. The results are consistent across different datasets, with network and dyads ego-network,
and when utilizing mean() activation functions.

5.3.4. REAL-WORLD DEMONSTRATION

One of the main challenges in social studies is measuring the strength of peer effects in different
domains. As a demonstration of the applicability of our approach to detecting contagion effects in
real-world scenarios, we analyze two datasets: 1) French Election, and 2) Peer Smoking. French
Election is a Twitter dataset about the 2017 French presidential election (Burghardt et al., 2023).
This dataset comprises of 5.3M tweets related to the election, encompassing attitudes, concerns,
and emotions expressed in each tweet. Our objective is to measure the extent to which a friend’s
tweet with a specific emotion or attitude influences a user’s decision to post a tweet with the same
emotion or attitude. Details on filtering the dataset are in the Appendix.

Since a user may have multiple retweets, we consider the average of each user’s tweets’ Bag
of Words (BoW) representation, which has a vector size of 7,573, as the NCO proxy. Additionally,
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we calculate the average of each user’s retweet embeddings and use them as the NCE proxy. We
employ the BoW representation because our approach yields the lowest estimation error when it is
utilized. We use the mean() activation function in this experiment. We report the estimation of the
contagion effect using PE-GB because it achieves the best performance in almost all datasets.

We report on four different outcomes: 1) vote against which represents the author’s attitude
toward voting against a candidate, 2) anger emotion, 3) love emotion, and 4) religious concern:

* Friends’ tweets about voting against a candidate have a small negative effect, meaning that
they are less likely to tweet about it themselves (0prp_gp = —0.013, P-value=0.001).

* Our method does not reveal a significant contagion effect between users regarding concerns
related to religion (9pE aB = —0.002, P-value = 0) or love emotion (9pE aB = 0.007,
P-value=0.019).

* The anger emotions expressed by peers in their tweets have a small negative impact on the
emotional tone of users who retweet those posts, leading to a tendency for opposite emotions
to be reflected in their retweets (Opp_ap = —0.016, P-value=0).

The Peer Smoking dataset comprises 1,263 9th and 10th graders from 16 high schools in the
Chicago area, observed across three distinct waves (Mermelstein et al., 2009). Our primary objective
with this dataset is to assess the influence of peer smoking behaviors during Wave I on an individ-
ual’s smoking habits during Wave II. We filter the dataset for youth who do not smoke cigarettes
in Wave 1. We investigate two scenarios: 1) To what extent does an individual’s boyfriend or girl-
friend’s smoking behavior affect their own smoking habits? 2) How does the smoking behavior of
the group of friends an individual hang out with influence their own smoking habits? We examine
both cigarette and marijuana smoking habits as outcomes. To prepare the dataset for analysis, we
transform categorical demographic features using one-hot encoding. Our findings include:

* The cigarette smoking habits of boyfriends or girlfriends have a positive effect on the indi-
vidual’s cigarette smoking behavior (0pr_gp = 0.112, P-value= 0.0005).

* The cigarette smoking habits of the individual’s circle of close friends, have a lower but also
positive effect on the cigarette behavior of the individual (0pr_gp = 0.061, P-value=0.0001).

6. Conclusion

In this paper, we introduce the Proximal Embeddings (ProEmb) framework for increasing the accu-
racy of contagion effect estimation in network data affected by latent homophily and selection bias.
Our framework comprises three key components: 1) embedding learning, which utilizes variational
autoencoders to map high-dimensional proxies to low-dimensional representations and capture la-
tent homophily, 2) representation balancing, which leverages adversarial networks to address the
representation mismatch between treatment groups’ proxy representations, and 3) counterfactual
learning, which employs meta-learners to estimate counterfactual outcomes. Our results demon-
strate the compelling performance of the ProEmb framework compared to the baselines in reducing
the contagion effect estimation error. A potential future direction is developing a framework to
measure multi-hop contagion effects in networks with latent confounders.
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7. Appendix
7.1. Experiments
7.1.1. SEMI-SYNTHETIC DATA GENERATION

The advantage of considering both dyadic and network data is that it allows us to examine scenarios
where a node is influenced by either a single activated neighbor or multiple activated neighbors. By
considering dyadic data, we can focus on the interactions between pairs of nodes and gain insights
into how one node’s activation affects its immediate neighbor. This analysis provides valuable
information about the dynamics at the micro-level. On the other hand, analyzing network data
allows us to capture the broader influence of multiple activated neighbors on a node. The probability
of an edge forming between node v; and v; is determined by the cosine similarity of their latent
attribute vectors U; and U;. This means that individuals with similar latent attributes are more
likely to be connected. In the network model, we aim to generate networks growing based on latent
homophily and preferential attachment. We start with my = 3 fully connected seed nodes. At each
time step, a new node v; connects to m = 3 existing nodes, selected randomly with a probability
proportional to the node’s degree k; (Piva et al., 2021):

COS(UZ', Uj)]{i
>, cos(Ui, Uy )k,

W(ki”l)j) = (15)

where cos(U;, Uj) is used as the module of the similarity between node v; and v;.

7.2. Experimental setup

To train the VAEs, discriminators, and MLP models, we conduct a hyperparameter search for the
learning rate and the number of epochs. The learning rate is searched within the set {0.1,0.01,0.001, 0.0001},
while the number of epochs is searched within {10, 30,50, 70, 100}. The best results are achieved
with a learning rate of 0.001 and 50 epochs for both models. For the VAEs, we search the number of
hidden units of the hidden layers in {100, 200, 300} and the number of encoder and decoder layers
in 1,2, 3,4. We select a network with 100 hidden nodes, a 3-layer encoder, and a 3-layer decoder
with a ReLU activation function. In the discriminator component, after hyperparameter search, we
determine that four hidden layers, with linear activation functions, produce the best performance.
The output layer utilizes a Sigmoid function. Regarding the MLP, we search for the number of
hidden units and the number of fully connected layers. Ultimately, we train an MLP model with
two fully connected layers, each containing 125 hidden units.
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Figure 5: Comparison of RMSE of ACE using various baseline methods in dyadic data. Error bars
represent the standard deviation of the estimated effects.
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Figure 6: RMSE of ACE in SAH (left) and Hateful Users dataset (right) in ablation study, consid-
ering network data and utilizing the max() activation function, with 3, ~ N (0, 3).
7.3. Results

7.3.1. SENSITIVITY TO WORD EMBEDDING METHODS

We also evaluate the performance of various methods used to estimate peer contagion effects in the
SAH and Hateful Users datasets, based on dyad data and observe that the findings align consistently
with the results from the network data (Fig. 5).

7.3.2. ABLATION STUDY

In this experiment, we systematically modify components of the ProEmb framework to investigate
their individual importance. In Fig. 6, we denote S-GB as the S-Learner estimator, where one GB
classifier is trained using both treatment and control nodes (unlike T-learner which has two classi-
fiers). PE-S-GB represents ProEmb with both the S-Learner and GB for the counterfactual model.
For VAE-GB, we utilize a variational autoencoder to reduce the dimensionality of the proxies, fol-
lowed by a T-Learner with GB for the counterfactual model. In contrast, VAE-S-GB employs an
S-Learner for the counterfactual model. Our results highlight the importance of integrating VAEs
and a discriminator module to mitigate representation mismatches between treatment and control
nodes, thereby enhancing estimation accuracy. Our findings demonstrate that T-Learner outper-
forms the S-Learner as a meta-learner, and PE-GB exhibits superior performance compared to all
models.

7.3.3. REAL-WORLD DEMONSTRATION

We begin by filtering this dataset to include only tweets and retweets that were posted before the
second election date (May 2023), resulting in 4.2M tweets. Then, we construct the retweet network
containing 3.1M connections. Following this, we filter the dataset for tweets from users who tweeted
at least one tweet after retweeting a tweet. This process yields a total of 13k users with 190k tweets.
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