
Contents lists available at ScienceDirect

Advances inWater Resources

journal homepage: www.elsevier.com/locate/advwatres

Parallelization of particle-mass-transfer algorithms on shared-memory,
multi-core CPUs
David A. Benson a,∗, Ivan Pribec b, Nicholas B. Engdahl c, Stephen Pankavich d, Lucas Schauer d
a Hydrologic Science and Engineering, Colorado School of Mines, Golden, CO 80401, USA
b Leibniz Supercomputing Center, Boltzmannstraße 1, D-85748 Garching bei München, Germany
c Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, United States of America
d Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, 80401, USA

A R T I C L E I N F O

Keywords:
Particle methods
Mass-transfer
SPH
Parallelization

A B S T R A C T

Simulating the transfer of mass between particles is not straightforwardly parallelized because it involves the
calculation of the influence of many particles on each other. Engdahl et al. (2019) intuited that the number of
matrix operations used for mass transfer grows quadratically with the number of particles, so that dividing the
domain geometrically into sub-domains will give speed and memory advantages, even on a single processing
thread. Those authors also showed the speed scalability of several one-dimensional examples on multiple cores.
Here, we extend those results for more general cases, both in terms of spatial dimensions and algorithmic
implementation. We show that there is an optimal subdivision scheme for naive, full-matrix calculations on a
multi-processor, or multi-threading shared-memory machine. A similar sparse-matrix implementation that also
uses row-and-column-sum normalization often greatly reduces the memory requirements. We also introduce
a completely new mass transfer algorithm that uses a non-geometric domain decomposition and only matrix
row-sum normalization. This allows the mass-transfer ‘‘matrix’’ to be constructed and solved one row at a time
in parallel, so it is faster and vastly more memory efficient than previous methods, but requires more care for
suitable accuracy.

1. Introduction

Traditional (non-interacting) particle-tracking methods are often
used for advection-dominated groundwater systems because of their nu-
merical stability and because they simulate advection without incurring
spurious numerical diffusion that impacts dispersion, dilution, and mix-
ing (Labolle et al., 1996; Pérez-Illanes and Fernàndez-Garcia, 2024).
This is especially important when simulating chemically-reactive trans-
port because the typically nonlinear reactions are highly sensitive to
concentration fluctuations and/or errors (Tartakovsky et al., 2012;
Paster et al., 2014). In order to simulate chemical reactions, the par-
ticles must either exchange mass, or have their masses mapped to con-
centrations through spatial averaging (Tompson and Dougherty, 1992;
Benson and Bolster, 2016; Sole-Mari and Fernàndez-Garcia, 2018; Sole-
Mari et al., 2020; Perez et al., 2019a). The mass-transfer particle
tracking (MTPT) techniques move mass between all particles according
to their proximity, and any geochemical reactions may be completed
on the particles. The MTPT algorithm is uniquely useful for simulating
transport and chemical reaction because it does not necessarily solve
an upscaled, volume-averaged advection–dispersion-reaction equation.

∗ Corresponding author.
E-mail address: dbenson@mines.edu (D.A. Benson).

First, MTPT is able to realistically simulate mixing at a rate slower than

spreading because the two processes are simulated separately (Benson

et al., 2019). As a result, a single diffusion coefficient is not forced

to represent the two processes in one equation. Second, the MTPT

methods simulate a stochastically-perturbed equation and may faith-

fully preserve the sub-grid fluctuations of velocity, dispersion, and/or

chemical concentrations (Schmidt et al., 2017; Ding et al., 2017; Benson

et al., 2017, 2019; Sole-Mari et al., 2017; Sole-Mari and Fernàndez-

Garcia, 2018). In the case of highly nonlinear chemical reactions, these

perturbations may dominate the overall behavior of the systems.

The capability of MTPT to simulate systems undergoing chemical

reaction in a purely Lagrangian manner was unlocked by allowing each

particle to carry an unlimited number of chemical species (Bolster et al.,

2016; Benson and Bolster, 2016). The particles (which may be fluid

or solid, Schmidt et al. (2019, 2020)) undergo reactions occurring at

the particle level. This means that mass must move between numerical

particles in a physically realistic way. This mass-transfer may, there-

fore, be formulated as a true, local, mixing process (Benson et al., 2020;

Tran et al., 2021), which is straightforward to implement when a good

https://doi.org/10.1016/j.advwatres.2024.104818
Received 16 March 2024; Received in revised form 8 September 2024; Accepted 9 September 2024

Advances in Water Resources 193 (2024) 104818 

Available online 11 September 2024 
0309-1708/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://www.elsevier.com/locate/advwatres
https://www.elsevier.com/locate/advwatres
mailto:dbenson@mines.edu
https://doi.org/10.1016/j.advwatres.2024.104818


D.A. Benson et al.

approximation of the probability distribution (i.e., the Green’s function)
of local diffusion or transverse dispersion is known (Benson et al., 2019;
Perez et al., 2019b).

A physically-based model for the amount of mass transfer between
any two particles originally was given by the probability of particle ‘‘in-
teraction’’ based on their separation vector (Benson and Meerschaert,
2008). For example, a locally isotropic and Fickian diffusion process
dictates that the mass transfer between any two particles labeled i and
j is proportional to the density function of their co-location (Benson
and Meerschaert, 2008; Schmidt et al., 2018) and given by

pi,j =
1

(2�(Di +Dj )�t)
d∕2

exp

[
−|xi − xj |2
2(Di +Dj )�t

]
, (1)

where pi,j is the probability that the two particles will interact over
a time-step of length �t, Di and Dj are each particle’s local diffu-
sion coefficient, d is the number of dimensions, and xi and xj are
the particle position vectors (Benson and Meerschaert, 2008; Schmidt
et al., 2018). This is easily generalized when the local dispersion is
anisotropic and each D is a d × d matrix (Appendix). These probability
density values dictate the proportion of the mass of each species that
is transferred between particles or the amount that stays ‘‘at home’’
when i = j. We denote this specific approach as Mass-Transfer Particle-
Tracking or MTPT. Clearly the mass transfer decreases rapidly with
particle separation distance (which can be exploited algorithmically),
but theoretically, each particle can interact with all others, even if the
amounts are minuscule. This latter feature becomes a complication and
a bottleneck when compared to traditional PT methods, in which each
particle is completely independent of all others.

The trade-off for these new capabilities of MTPT is increased com-
putational complexity. A naive application of Eq. (1) among a total
of NP particles in a domain would build an NP × NP matrix of all
particle interaction probabilities (Appendix). For more than a few tens
of thousands of particles, the full interaction matrix approach would
exceed the memory capacity of most desktop computers. This approach
would also be inefficient because many of the particle interactions are
negligible due to large separation distances. As a result, the full-matrix
approach required improvement to make it computationally feasible.
One of the traditional ways of reducing the size of large matrices is
called domain decomposition, which can be visualized as a geometric
process in which the physical domain is subdivided into a set of adja-
cent tiles (Fig. 1). Computations can be performed on these subsets of
the domain, as long as potential interactions between adjacent tiles are
properly treated. These geometric-based decompositions include very
simple ‘‘checkerboard’’ tilings (Schauer et al., 2023) or more advanced
tree-based subdivisions, including quad-tree (2-d), oct-tree (3-d), and
kd-tree (Bentley, 1975; Kennel, 2004), wherein each tile is created
to possess approximately equal numbers of particles. In this paper
we also develop a novel non-geometric, or list-based, decomposition
that simplifies computations significantly. The common thread is that
any decomposition seeks to reduce the overall computational load and
has the added benefit that parallel processing threads may handle the
subdivisions simultaneously.

The foundations for parallelizing MTPT were explored by Engdahl
et al. (2019) who found that simply subdividing the spatial domain
resulted in a reduction of the total number of calculations, or floating-
point operations (flops) for a full-matrix formulation. Even when imple-
mented serially on a single-processor machine, the algorithm showed
remarkably linear speedup with the number of subdivisions. The basis
of the speedup derives from the fact that a forward full-matrix calcu-
lation requires a number of flops proportional to n2, where n is the
number of rows and/or columns. Using Eq. (1) on all NP particles
in a simulation requires roughly kN2

P
flops, where k is an arbitrary

constant related to the difficulty of certain operations (e.g., calculating
particle separations versus actual mass transfer). In a perfect world,
subdividing the particles into S roughly equally load-balanced sub-
domains means that each sub-domain requires k(NP ∕S)

2 flops for a

total of S × k(NP ∕S)
2 = kN2

P
∕S flops. However, the approach still

built a ‘‘full’’ interaction matrix for all particles within each subdomain,
leaving significant room for improvement.

Despite the notable speedup, the performance of the simple domain
decomposition algorithm can be rapidly outpaced by that of tree-based
search algorithms. These searches can efficiently find particles within
a defined radius, so that more distant particles can be ignored and
the matrices become much more sparse, which serves the dual purpose
of reducing the number of flops and significantly decreasing memory
requirements. Depending on the tree construction and data clustering,
each search among NP particles in a single tree may scale somewhere
between (lnNP ) and (N2

P
), with (NP ) being typical (Finkel and

Bentley, 1974). The gains afforded by search trees means domain
decomposition might not be necessary in many cases, but the key
advantage of the decomposition is that it allows the set of particles
to be distributed among a collection of processors when each has its
own memory (Schauer et al., 2023). However, the question of speedup
on a shared memory system is not as clear. For example, subdivid-
ing the domain reduces computations within each subdivision, but if
these computations are performed in parallel, the demands on shared
memory increase substantially. In short, performance and efficiency
under a shared memory architecture are under-explored facets of the
MTPT acceleration schemes, and the question becomes: How fast can
the MTPT methods be made without sacrificing accuracy?

In this paper, we examine the effects of problem physics, user
decisions, and algorithm design on the efficiency of the MTPT method.
Here, we focus exclusively on shared-memory multi-core and multi-
threading CPUs because of the ease of implementation using OpenMP
directives. This allows us to concentrate on speed and memory require-
ments of the algorithms themselves. We investigate geometric domain
decomposition using the full-matrix scheme of Engdahl et al. (2019)
and a sparse-matrix version thereof. Even though it is known to be
a non-optimized scheme, the full matrix version provides a standard
benchmark against which several improvements may be judged. To this
end we also develop and test a non-geometric, list-based decomposition
that should allow for optimal parallelization.

Before embarking on the analyses, we emphasize that the term
‘‘core’’ refers to a separate processing unit on a multiprocessor chip.
Each core makes calculations independent of each other. Any core will
have some idle time when making calculations and moving data to
and from memory, so compilers may take advantage and run other
sets of instructions on a core during idle time in a process called
multi-threading. The term ‘‘thread’’ refers to a set of calculations per-
formed on a core, and (for example) the parallel compiler commands in
OpenMP allow two threads to be run simultaneously per core. A single
thread on a core runs at full speed, but a second thread, looking for idle
time, will run somewhat slower than the ‘‘first’’. Most users looking
for parallel performance will use all available threads when they get
a chance, so we will show performance for all thread numbers, up to
twice the number of physical cores, so scaling behaviors will change
when more threads are requested than physical cores. Our estimates of
speedup below are based on each core running at full speed.

2. Parallelization memory requirements and speed

Before exploring the various means of parallelization, it is instruc-
tive to examine the basic operation of the mass transfer algorithm. A
vector of the masses on all particles at any time t is advanced over some
finite timestep via a forward matrix multiplication P × m(t) = m(t + �t)

(see, e.g., Schmidt et al. (2018), Engdahl et al. (2019)). The matrix P

encodes the degree to which each particle pair will exchange mass,
based on their separation distance and direction. To conserve mass,
the matrix is doubly-stochastic, being square, symmetric, with all row-
and column-sums equal to unity (Appendix). Either during the creation
of the initial condition, or during disordered transport, the particle
masses in the vector m(t) may become irregularly positioned in the

Advances in Water Resources 193 (2024) 104818 

2 



D.A. Benson et al.

Fig. 1. Schematic of domain decomposition. Full domain shown here is [0, 10] × [0, 10]. Four geometric subdivisions are denoted by the dashed lines. Computations in the first
subdomain [0, 5] × [0, 5] involve particles highlighted in green, which includes so-called ‘‘ghost particles’’ located within a distance of ≈ 3

√
4D�t of the subdomain. For list-based

decomposition, only those particles within that radius of any particle (i.e., the red particle) must be considered.

domain. As a result, the matrix P in the operation of mass transfer
will be non-structured (Fig. 4). Furthermore, many of the entries in
P will be negligible in magnitude and may be omitted, as in Fig. 4,
leading to a sparse matrix. When the matrix is first constructed by
applying Eq. (1) for each particle pair i, j, it is symmetric, inasmuch
as the Gaussian probability density associated with any two particles is
the same, irrespective of the order. However, because of the particles’
discrete nature of approximating the continuous Gaussian, the rows
will not exactly sum to unity (as required for mass conservation — see
Appendix). One method (Herrera et al., 2009; Schmidt et al., 2018)
normalizes each value in the matrix by the average of its row-sum and
column-sum. For the red-highlighted entry in Fig. 4, this is represented
by the red highlighting of row 20 and column 71. Because of matrix
symmetry, the symmetric ‘‘partner’’ probability (the blue entry at the
end of the arrow) has a column-sum equal to the row-sum of the partner
and vice-versa (denoted by the blue row and column). Therefore,
normalization using an arithmetic average of the row- and column-
sums maintains matrix symmetry. However, because each value in a
row gets a unique renormalization factor, the row sums (hence column
sums) are not guaranteed to sum to unity. The renormalization can be
repeated (this is called the Sinkhorn–Knopp algortihm (Knight, 2008;
Young, 2024)) until a suitable closure is reached.

A new matrix normalization algorithm (Appendix), eliminates the
column sums by estimating the particle spacing a priori. Then the
row-sum alone is used to estimate probabilities and any discrepancy
between the row-sum from unity is adjusted at the main diagonal
term alone. This algorithm maintains whole matrix symmetry, and
also provides a new form of parallelism, because without the column-
sums, a single row may be created, and the mass transfer calculated,
independently of all others. The rows may be calculated in the order
they are listed in memory, on different cores or threads, without any
regard for the actual particles’ spatial locations. We call this algorithm

‘‘list-based decomposition’’, because any subset of rows corresponding
to a list of particles may be sent to a processor. This method relies on
normalization using the row-sums alone so that any row of the matrix
is independent of all others. Because this method is completely new,
we provide an analysis of the accuracy immediately.

2.1. List-based algorithm accuracy

When � = 1, the solution progresses via convolution of the probabil-
ity matrix with the current masses (Appendix). Therefore, the probabil-
ities in matrix P are discrete approximations of the Green’s function of
the local mixing — without loss of generality a Gaussian is used here.
In the new algorithm, the ‘‘peak’’ value is adjusted, based on the sum
(discrete integral) of the probability values in a row. Of course, for
multiple time steps, the continued convolution of this near-Gaussian
with itself will converge to a Gaussian, but for a smaller number of
timesteps, and a smaller number of particles, how error-prone is the
method?

First, we simulate two similar scenarios as for the speed tests that
follow: a 2-d domain 
 = [0, 10] × [0, 10], D = 10−3, total time = 100,
with �t = 10 and 1. A single particle at the center of the domain is
given a mass of 
∕NP , where NP is the total number of particles. A
range of particle numbers were used, giving a range of particle spacings
�x = (
∕NP )

1∕2. Here we use uniform, non-random spacing and no
random walks to isolate the performance of the algorithm in its pure
form. The performance is judged by the RMSE between particle masses
domain-wide and the analytical 2-d Gaussian Green’s function.

Clearly, as the number of particles is increased (and the inter-
particle spacing, �x is decreased), the discrete integral of the Gaussian
approaches unity and the adjustment at the center particle (i.e., Pi,i)
tends to zero. The transition from poor fits to essentially perfect fits

Advances in Water Resources 193 (2024) 104818 

3 



D.A. Benson et al.

Fig. 2. RMSE difference between simulations by new algorithm and Gaussian analytic solution, as a function of uniform, stationary particle spacing (i.e., number of particles NP ),
defined by (
∕NP )

1∕d . Two sets of simulations were run, with D = 10−3 and �t = 1 and 10 for total times of 100. All simulations are run in a 2-d domain of size [0, 10] × [0, 10].

occurs fairly rapidly, at around �x ≈
√
D�t (Fig. 2). For smaller

spacings, the error drops to the level of machine precision (∼ 10−16).

Constructing a discrete version of the Green’s function is best done
with regularly-spaced (and stationary) particles, as in the last exam-
ple. But when particles move due to differential advection and/or
random walks, the particle spacings, hence number of particles in
each matrix row, may change drastically. There is no explicit analytic
solution for this problem, so we compare the new algorithm to the
row- and column-normalized method that has been tested extensively
elsewhere (Sole-Mari et al., 2019a). We generated a divergence-free,
two-dimensional velocity field v(x) and placed 20,000 initially mass-
free particles randomly in a circle with radius = 10 surrounding a single
particle with mass representing a Dirac delta function (Fig. 3a). The
velocity field was generated using a finite-difference solution of the
equation ∇ ⋅ (K∇ℎ) = 0, with Dirichlet conditions for hydraulic head
ℎ = 1 and ℎ = 0 on the left and right and )ℎ∕)y = 0 on the top and
bottom boundaries (Fig. 3a), and a grid spacing of �x = �y = 1. The
underlying random correlated hydraulic conductivity (K) field is log-
Normal with an isotropic correlation length of ln(K) of 10 length units,
E(ln(K)) = 0 and �(ln(K)) = 0.5. Once ℎ was solved, the velocity is
given at each grid-cell interface by v(x) = K∇ℎ. Velocity vectors at
each particle were then calculated by linear interpolation of interface
velocities, preserving the divergence-free velocity (Labolle et al., 1996).
The number of particles was chosen so that the inter-particle spacing
�x = (�102∕20000)1∕2 = 0.125, giving each finite-difference cell on the
order of 64 particles for good resolution of the sub-grid velocity. The
same random seed was used for initial particle positions for both mass
transfer algorithms, so the particles would be advected to the same
positions at any time. We chose an isotropic mass-transfer dispersion
coefficient D = Dmol + �T |v|, with Dmol = 10−8, �T = 5 × 10−3, and the
mean velocity was on the order of 0.05.

It is important to note that the optimal time steps for advection and
mass transfer are very different. From Fig. 2 we see that the algorithm
requires the condition �x = (V ∕Np)

1∕d <
√
D�t, or �t > (V ∕Np)

2∕d∕D.
Using the largest D in the field, this gave a value of �t > 35. On the
other hand, the particles were advected using simple forward Euler
methods and limited to traversing 1/2 of each underlying velocity grid
with block of size 1 on each side, giving �t < 5. As a result, during the

operator splitting, a number of advective steps were performed before
each mass transfer step.

The plume is split and strongly elongated in the mean travel di-
rection (Fig. 3a). The plume, shown in red, is also elongated and
slightly multi-modal (Fig. 3b). Even with very different normalization
algorithms, the two methods agree quite well, even at extremely low
concentrations (Fig. 3b,c).

2.2. Memory-usage comparison

It is clear that the row-sum normalization will be faster than the
row-and-column-sum normalization for the same problem, simply be-
cause the column-sum calculations are eliminated. Also, the calcula-
tions that determine which particles are in a geometric subdomain
are eliminated. But another major concern is the memory require-
ment. Referring to Fig. 1, we can estimate bounds on how much
more computer memory the domain decomposition with row- and
column-normalization will consume.

2.2.1. Full-matrix, domain decomposition
For a full-matrix computation, the number of particles within a

subdomain, plus the neighboring ‘‘ghost particles’’ that may influence
particles inside that subdomain (Fig. 1), define the number of rows
in one subdomain’s matrix (full or sparse) (Fig. 4). For a domain
with fairly uniform particle density and cubic subdivisions, the total
number of rows in a subdomain is somewhere between NP ∕S and
NP ∕S + (NP ∕S)(2 × d × 3

√
4D�t(
∕S)(d−1)∕d ), where NP is the total

number of particles in the entire domain and S is the number of (evenly
distributed) subdivisions (Schauer et al., 2023). The second term counts
ghost particles in all directions in d-dimensions. Subdomains along
the full domain edge have fewer ghost particles, and the distribution
of particles in the domain can also create irregularities, so this is an
approximate upper bound. If the number of ghosts is considered small
compared to the subdomain size, then a fair approximation for the num-
ber of rows is just NP ∕S, and if C cores are used simultaneously (each
given a separate subdomain so that C ≤ S), then the number of ma-
trix entries required for the parallel, full-matrix domain-decomposition
method (denoted MFM ), has a lower bound of

MFM > C

(
NP

S

)2

. (2)

Advances in Water Resources 193 (2024) 104818 

4 



D.A. Benson et al.

Fig. 3. (a) Plume of 20,000 particles initially placed surrounding a single particle (red) with mass at [x, y] = [20, 50] (b) Linear and (c) Semi-log plots of concentrations along the
line y = 50 from the row-normalized, list-based algorithm (circles) and the row-column-normalized (dots) algorithm.

2.2.2. Sparse-matrix, domain decomposition

A sparse matrix row stores only the entries for particles within the

region of influence (defined by the user), of the ith particle, as some

multiple of the local diffusion distance. This is the average particle

density times the volume of that region of influence NP



��(

√
36D�t)d .

The constant � is a function of the dimensionality of the system: � =

[2∕�, 1, 4∕3] for d = [1, 2, 3]. Therefore, a sparse matrix has on the order

of
N2

P

S

��(36D�t)d∕2 entries as a lower bound. Given a certain number of

Advances in Water Resources 193 (2024) 104818 

5 



D.A. Benson et al.

Fig. 4. Snapshot of non-zero entries in the mass-transfer matrix operation for a single timestep. For clarity, only the first 100 particles are shown out of a 10,000-particle simulation.

cores, C, on which to make the calculation in parallel, the total number
of entries held in memory in the separate P matrices is on the order of

MSM ≈ C
N2

P

S

��(36D�t)d∕2. (3)

The ratio of total full- to sparse-matrix entries for any given simulation
(MFM∕MSM ) is therefore on the order of


∕S

��(36D�t)d∕2
. The numerator

is the volume of real particles in a subdomain and the denominator is
a measure of the ghost particle volume. When the latter is as large as
the former, then the sparse matrices are full again, as every particle
in the subdomain has an influence on all others. In other words, the
sparse matrices only ‘‘help’’ when the user-controlled ratio 
∕S

��(36D�t)d∕2

is large.

2.2.3. List-based decomposition
Particle attributes are typically held in some sort of array, and as the

particles move around the domain under the influence of heterogeneous
velocity and random walks representing macrodispersion, there is no
guarantee that neighbors in the array are also neighbors in the spatial
domain. This leads to an unstructured matrix and the need to consider
all rows when employing previous row- and column-normalization. The
large matrices then necessitate the creation of geometric subdomains.
In the methods previously discussed, a normalization of the probability
values in a matrix row must also be transferred to all of the other rows
that represent nearby particles. In other words, a row i contains infor-
mation about nearby particles with values of j that may be anything
between 1 and NP . Any changes to these values (the Pi,js) must then
be reflected in each of the many j rows to maintain a symmetric P

(Appendix).
A possible solution to this bottleneck in performance is to modify

the previous algorithms so that only row or column normalization is
required. We propose a new list-based decomposition that adjusts only
the diagonal value in each row to ensure each row-sum is equal to unity
(Appendix). Doing so, all values of Pi,j remain unchanged for i ≠ j dur-
ing the renormalization process and symmetry is always maintained.
Any single row (any single particle’s new mass) may now be calculated
independently of all others, and the calculations can proceed down

the ‘‘list’’ of particles, irrespective of their spatial positions. Arbitrary
portions of the list can be sent to different processors in chunk sizes
that are best suited for the problem at hand and the computational
architecture. The caveat to this is that updated masses m(t + �t) must
be written to a temporary array until the list is completed, but this is
simply a vector of length NP for each compound, rather than a square
matrix.

In practice, the j particles surrounding particle i are generally never
exactly spaced �x away from each other because of random or non-
uniform particle motion. The non-uniform spacing gives a non-unit
total probability, and the difference is absorbed by the i particle. This
also means that widely spaced particles (i.e. fewer than average parti-
cles) will more likely integrate to less than unity, and the probability of
mass staying ‘‘home’’ at the i node is increased. Overall this reflects less
mixing when local particle densities are lower than average. This can be
the result of divergence-free fluid deformation (Engdahl et al., 2014),
which may increase or decrease mixing depending on the relationship
of concentration gradients to particle position changes.

In the list-based decomposition, a single particle (i.e. matrix row)
may be computed independently of all other rows. Each matrix row
has the number of entries in the surrounding volume already shown
to be NP



��(36D�t)d∕2. Using C cores simultaneous means a list-based

memory consumption (ML) of

ML ≈ C
NP



��(36D�t)d∕2. (4)

Therefore, the ratio of the sparse row-column normalization to the list-
based row-normalization (MSM∕ML) is simply NP ∕S. Under normal
conditions, the number of particles far outnumbers the number of
subdivisions — this ratio is typically in the hundreds to millions range.

To give an idea of the scaling, imagine a typical 2-d simulation
with 100,000 particles, D = 10−3, �t = 10, and S = 100 subdivisions
run on C = 10 cores. Then the three methods require storing, for the
MT matrices, > 107, 1.9 × 107, and 1.9 × 104 entries, respectively. In
this case, the full-matrix and the sparse-matrix methods are comparable
because the subdomains are small enough (relative to the ghost-particle
distance) that the sparse matrices are essentially full, and the list-based
algorithm requires 1000 times less memory.

Advances in Water Resources 193 (2024) 104818 

6 



D.A. Benson et al.

2.3. Computation time and parallel speedup

Intuitively, one would like to use as many threads as are within
reach for any given simulation. But this can be a problem with dimin-
ishing or even decreasing returns due to the physics of the problem
and/or the structure of the processors and memory. For the sake of
analysis, we will assume here that the problem domain 
 is relatively
uniformly filled with NP particles. We may define the domain as
rectilinear with volume 
x × 
y × 
z. For the geometric domain
decomposition, the domain is subdivided by integers Sx, Sy, Sz, so that
the total number of sub-domains is S = SxSySz. Also for simplicity
of overall analysis we assume that D is a constant. Here we are only
looking at performance as a function of domain partitioning, so a simple
‘‘checkerboard’’ decomposition is very close to optimally load-balanced.
The particle influence probability density Eq. (1) implies that particles
within about three standard deviations of a sub-domain should be
included as ghost particles (e.g., Fig. 1).

For each of the following examples that have accompanying sim-
ulations, Fortran codes were compiled with the GNU gfortran (gcc)
compiler version 13.1 using -O3 optimization and OpenMP directives.
The fortran codes may be found in the Github repository https://
github.com/dbenson5225/parallel_particle_mass_transfer. Unless other-
wise noted, the simulations use a 2-d domain of size [0, 10]×[0, 10], with
NP = 100, 000 particles, D = 10−3, �t = 10, and total time = 100.

2.3.1. Tree-based particle searches
One of the keys to either geometric or list-based decomposition

is using an efficient algorithm for nearest-neighbor searches, because
a naive brute-force search through NP particles requires (N2

P
) cal-

culations. Tree-based algorithms, including quad-tree, kd-tree, and
recursive-coordinate-bisection, subdivide the domain (in various ways)
into smaller and smaller chunks, keeping track of which chunks are
nearest to each other (Finkel and Bentley, 1974; Bentley, 1975; Berger
and Bokhari, 1987). When a request is made to find particles near
one another, the algorithm only needs to look at particles in nearby
chunks, eliminating extra calculations. In previous work (Paster et al.,
2014; Benson et al., 2017), we have used a publicly-available Fortran
code KDTREE2 (Kennel, 2004), but the code is not easily made safe
in a shared-memory parallel environment. Instead, we coded a For-
tran version of a Python quad-tree code (https://scipython.com/blog/
quadtrees-2-implementation-in-python/) and provide a brief analysis
of its performance here.

A quad-tree mesh is based on subdividing a rectangular domain with
successive identical quadrants (Finkel and Bentley, 1974). When the
number of particles in any quadrant exceeds some user-defined thresh-
old value, that quadrant is subsequently subdivided in equal quadrants.
This happens recursively until the final quadrants all have less than
the threshold ‘‘bucket’’ number of particles. A large bucket enables
faster tree generation because of fewer subdivisions. It is thought that a
large bucket also makes for slower searches — especially when looking
for a fixed number of nearest neighbors (a kNN search). However, we
require all particles within a certain radius, so it is unclear how big
the bucket size should be. To illustrate, a bucket size of four particles
was initially chosen (Fig. 5a). In keeping with simulations to come later
in this paper, the domain is set to [0, 10] × [0, 10] with total number
of particles ranging from 100,000 to 5,000,000. After the trees were
generated (typically taking less than a few seconds), a loop was set
up to vary a search radius from 0.25 to 5 (half the domain size. The
total search time versus the number of particles found shows a clear
scaling trend: the search times for a given radius are approximately
linear with the total number of particlesNP . However, for large particle
numbers there is an obvious performance degradation for the smaller
searches. This led us to increase the bucket size systematically over
a range of search radii for a single large NP = 5 × 106 (Fig. 5b). In
this case, a bucket size of approximately 500 (10−4 times the total
number of particles) minimizes the search times. We also compared

the performance of the (Kennel, 2004) KDTREE2 code (circles, Fig. 5b).
That kd-tree code is less susceptible to performance degradation due to
bucket size, and is also about 2 times faster than the quad-tree code
when both are optimized. As mentioned before, we choose the quad-
tree because of ease of parallelization. Interestingly, the kd-tree also
performs best with a bucket size of 500 with 5 × 106 total particles.

One might think that the creation of the tree is time-consuming
compared to the search for particles. However, the previous results
were for finding a number of particles near a single particle in the
center of the domain. In the MTPT case, each particle must find its
neighbors, which for the worst case is an Np × Np problem. Here
we gauge the relative time requirements for searching for nearest
neighbors for every particle in a square domain, and compare that to
the tree creation time. We choose two search radii to assess the effect
on search times and bucket sizes: r = 0.5 and r = 5 in a [0, 10] × [0, 10]

domain with either Np = 105 or 106 particles. Simulations were run
on a Macbook air with M2 chip and ample memory. For all values of
Np and r, a bucket size of approximately Np∕1000 performs best, and
searching most of the domain (i.e., r = 5) for all 106 particles is costly
in terms of CPU time (Fig. 6). Also, the time to create the trees is vastly
shorter than the searches themselves.

2.3.2. Geometric decomposition with full matrices
One advantage of using a full matrix (i.e., using Eq. (1) for all

particles in every subdomain) is the algorithmic simplicity. There is no
need to determine which subsets of particles should be included in the
MT matrix before making costly calculations such as distance and total
probability. For sub-domains away from the domain edges, the ghost-
particle zones will be on all sides of the sub-domain, so the number of
rows in the mass-transfer matrix calculation is NP

SxSySz
=

NP

S
. Each row

has a number of entries (counting ghost particles in both directions) on
the order of

N = NP

⎡
⎢⎢⎣
(
x∕Sx + 6

√
4D�t)(
y∕Sy + 6

√
4D�t)(
z∕Sz + 6

√
4D�t)


x
y
z

⎤
⎥⎥⎦
.

(5)

If the number of flops for a full matrix is proportional to the product
of rows and columns, then the flops for a sub-domain is

flopsS = k
N2

P

S


[
(
x∕Sx + 6

√
4D�t)(
y∕Sy + 6

√
4D�t)(
z∕Sz + 6

√
4D�t)

]
.

(6)

So as D�t → 0, the approximation used by Engdahl et al. (2019),
NS = NP ∕S, is valid and the total number of flops for the S sub-
domains is Sk(NP ∕S)

2 = kN2
P
∕S. In this case, the ratio of flops for

the subdivided domain to the undivided one is approximately 1∕S.
This naive calculation would encourage a user to use as many sub-
domains as possible, even with one processing thread, because the
total number of flops decreases with the number of sub-domains S.
Furthermore, another naive assumption, that each sub-domain could
be sent simultaneously to a different core (where there are a number
C of available processing cores), decreases the relative computation
time TR like TR = 1∕CS = 1∕C2. In a perfect world, the speedup by
parallelization of the mass transfer algorithm scales like C2 — dramat-
ically faster than the ‘‘optimal’’ linear speedup of most algorithms with
number of processors. However, one simple factor limits the speedup
of the algorithm. When the 12

√
D�t ghost-particle term becomes large

relative to the sub-domain size (as must happen when S gets very
large), the constant penalty in (6) becomes large.

It is worth examining Eq. (6) for some simple examples to see
overall behavior. First, let the domain be cubic with cubic sub-domains,
so 
x = 
y = 
z and Sx = Sy = Sz. Furthermore, assume that the
contribution of over-counted ghosts from the sub-domains on the edges
is reasonably small compared to the interior. Then in d-dimensions (and

Advances in Water Resources 193 (2024) 104818 

7 

https://github.com/dbenson5225/parallel_particle_mass_transfer
https://github.com/dbenson5225/parallel_particle_mass_transfer
https://github.com/dbenson5225/parallel_particle_mass_transfer
https://scipython.com/blog/quadtrees-2-implementation-in-python/
https://scipython.com/blog/quadtrees-2-implementation-in-python/
https://scipython.com/blog/quadtrees-2-implementation-in-python/


D.A. Benson et al.

Fig. 5. Top: Computation time for quad-tree searches of a range of radii with the tree bucket size set to four particles. Bottom: Total search times for the NP = 5 × 106 runs with
a range of bucket sizes. Plus signs (+) are for quad-tree; circles for kd-tree.

neglecting a few smaller terms), for each sub-domain the number of
entries in P is the square of the particle density times the volume of
the cube:

flopsS ≈ k

[
NP




(

x

Sx

+ 6
√
4D�t

)d
]2

= kN2
P

(
1

Sx

+
6
√
4D�t


x

)2d

. (7)

Now multiplying by the total number of subdomains S = Sd
x
, and

assuming that there is enough memory to store and calculate subdo-
mains on C cores simultaneously (with C ≤ S), we may calculate the
approximate amount of clock time spent in calculations relative to an

Advances in Water Resources 193 (2024) 104818 

8 



D.A. Benson et al.

Fig. 6. Total CPU times to search for neighbors within radius r of every one of Np particles (circles) and quad-tree creation (filled squares). Various bucket sizes are used, and a
bucket size approximately 10−3 ×Np gives the lowest search times.

undivided domain on a single core (kN2
P
) via

TR ≈

kN2
P
S

C

(
1

Sx
+

6
√
4D�t


x

)2d

kN2
P

(8)

=
1

C

[
1

S
1∕2
x

+
S
1∕2
x 6

√
4D�t


x

]2d

. (9)

This simplified equation shows several features that are common
to all geometric domain decomposition. First, for a small number of
subdomains, the first number of the brackets dominates, and substantial
speed gains are had with increasing subdivisions. At some point, how-
ever, the first term is smaller than the second and further subdivisions
only provide more speed when there are additional cores to reduce the
factor 1∕C in front of the brackets. Second, there is both a blessing and
a curse of dimensionality: while more dimensions require many, many
more particles for a given density, the leading term in the brackets S−d

x

means a much greater increase in speed when the domain is subdivided.
This is true even when computed in serial on one thread on one core,
i.e., when C = 1 (Fig. 7, top). The speedup is substantially amplified
if each sub-domain’s computation can be made simultaneously (with
no memory transfer cost); then C = Sd

x
and the theoretical relative

speedup is greater than linear when the first term in (8) dominates
(Fig. 7, bottom).

Note also that for this example shown in Fig. 1 (D = 10−3, 
x = 10,
�t = 10), in which the typical diffusion distance per time-step

√
2D�t

is about 1.4% (1/70th) of the domain length of 
x = 10, the optimal
total number of sub-domains for serial execution, using Eq. (8) and
C = 1, is about 8 in each dimension (i.e., 64 total in 2-d, 512 in 3-d).
Actual simulations in 1-, 2-, and 3-d (filled symbols in the top plot of
Fig. 7) show good agreement in 1-d, and fewer optimal subdivisions in
2- and 3-d. We conjecture that the main culprit for the mismatch is the
assumption that each subdivision resembles an interior region with no
edges: this assumption is worse as the domain surface area to volume
ratio increases with dimension. However, using the simple Eq. (8) will
get the user close enough that some minor experimentation will easily
find the optimal vale of Sx. On the other hand, if sub-domains can
be computed simultaneously, there is no absolute maximum number

of sub-domains indicated, and the theoretical speedups are substantial
in 3-d (Fig. 7 bottom). In 1-d, on the other hand, the speedup levels
off after a few tens of sub-domains, even for perfectly parallel compu-
tations. The reason for this difference is that the ratio of subdomain
volume to ghost-particle volume decreases much more rapidly in 1-
d as the domain is subdivided. For these full-matrix computations
in 2-d and 3-d, a fairly large number of subdomains is required for
the optimal conditions, which realistically can only be achieved on
distributed-memory, multi-processor machines, and then the transfer of
data becomes a major consideration on relative speedup (e.g., Schauer
et al., 2023).

2.3.3. Geometric decomposition with sparse matrices
In addition to saving memory relative to the full matrices, the

sparse matrices also reduce the number of calculations and therefore
speed up overall simulations. A question remains regarding the relative
speedup. The number of entries in the mass-transfer matrix for a single
subdomain is the number of rows NP ∕(SxSySz) = NP ∕S, multiplied by

the number of entries for each row NP



��(D�t)d∕2. The number of flops

in a subdomain is therefore

flopsS ≈ k
N2

P

S


[
��(36D�t)d∕2

]
. (10)

To estimate the parallel computation time, we merely multiply by the
number of subdomains S and divide by the number of cores C, with
the constraint that C ≤ S. Then the computation time follows

T ≈ k
N2

P

C


[
��(36D�t)d∕2

]
. (11)

The term in the brackets may be considered a constant, so that the
relative computation time for the entire domain among C cores is
independent of S and scales like

TR =
T (C = 1)

T (C)
=

1

C
. (12)

Importantly, this estimate of speed suggests that there is little to no
penalty for using more subdivisions. Previously, the total memory
requirement was found to be proportional to N2

P
∕S ((3)), so that even

simulations with a large number of particles should be able to run if S
is made large enough.

Advances in Water Resources 193 (2024) 104818 

9 



D.A. Benson et al.

Fig. 7. Theoretical full-matrix speedups: top) Approximate speedup on one core, relative to an undivided domain, versus total number of subdomains S for 1-, 2- and 3-d systems
with size 
x = 10, D = 10−3, and �t = 10. Also plotted (solid circles) are speeds from a series of 2-d simulations with the same parameters and using NP = 10,000 particles.
bottom) Log–log plot of approximate relative speedup for the same system assuming a separate processing core for each sub-domain.

We verified this somewhat counter-intuitive result — that the over-
all speed is independent of S, by specifying one thread and varying
Sx = 1, 2,… , 10, i.e., S varies from 1 to 100 in a square domain

 = [0, 10] × [0, 10], with D = 10−3, �t = 10, over 10 timesteps
using NP = 100, 000 particles. The clock times actually increase,
although not drastically, as S increases (Fig. 8a). This slowdown can
be attributed to moving each subdomain’s data in and out of the CPU’s

cache memory. More subdomains mean more duplicate ghost particle
information being swapped in and out.

We then picked the simulation with S = 16 to verify that speedup
is fairly linear with the number of computational threads (Eq. (12)) by
varying the thread numbers from one to eight while holding all else
constant (Fig. 8b). The simulations were run on a MacBook Air with
an M2 processor containing 4 performance and 4 efficiency cores. The

Advances in Water Resources 193 (2024) 104818 

10 



D.A. Benson et al.

Fig. 8. (a) Sparse-matrix, row-and-column normalization algorithm clock times versus total number of subdomains in 2-d. (b) Clock times versus threads for a fixed 16-subdomain
sparse-matrix simulation (blue diamonds) and for a list-based decomposition (black circles). Dashed lines signify speedup that is linear with number of threads. All simulations run
on Mac M2 processor with 4 performance and 4 efficiency cores.

speedup relative to using a single core TR(C = 1)∕TR(C) is close to the
theoretical linear model up to 4 threads, with a dropoff in speed from
5 to 8.

2.3.4. List-based (non-geometric) decomposition
The number of rows in the matrix to be computed remains NP ,

and the number of entries in each row is the particle density times

the volume of the d-dimensional sphere around a typical point, NP



��

(36D�t)d∕2, so the total flops is

flops ≈ k
N2

P




[
��(36D�t)d∕2

]
. (13)

with the caveat that the computation constant k will be smaller be-
cause, all things equal, the list-based method only calculates the

Advances in Water Resources 193 (2024) 104818 

11 



D.A. Benson et al.

row-normalization. For C cores in parallel, the computation time
follows

T ≈ k
N2

P

C


[
��(36D�t)d∕2

]
. (14)

which is identical to the time for sparse matrices Eq. (11) except for
the smaller value of k. This also shows that the algorithm should have
linear speedup with the number of cores using Eq. (12).

We ran the new, list-based method for identical simulations, first
using the same parameters as the previous simulations for the matrix-
based solutions, namely a domain 
 = [0, 10]×[0, 10], D = 10−3, �t = 10,
and NP = 100,000 particles that are uniformly randomly distributed in
space. The simulations were parallelized using OpenMP on the loop that
traversed the i index of the matrix shown in Fig. 4. Special care must
be taken to make sure that overly large arrays are not packed into the
CPU cache, so the value of mi(t+�t) was passed to/from subroutines as
a private scalar, not as a member of a larger public array (e.g., Chabbi
et al., 2018).

Scaling appears reasonably linear with the number of threads up to
the 4 performance cores on a MacBook Air (Fig. 8b). These simulations
verify that scaling of the sparse-matrix and list-based methods are
similar, with the list-based algorithm performing about 2× faster across
all parallelization levels.

The total times of less than 10 s may mean that a significant amount
of work was just overhead like input/output, so we re-ran the simula-
tions using 500,000 particles (5 times the original simulations) on five
different machines: (1) a two-Xeon, 20-core (40-thread) Ubuntu desk-
top; (2) a single Xeon, 18-core (36-thread) Mac-Pro running MacOS;
(3) an 8-core (16-thread) Xeon iMac running MacOS, (4) a Macbook
Air with M2 processor with 4 performance and 4 efficiency cores, and
(5) a MacStudio with an M2 Ultra chipset of 16 performance and 8
efficiency cores.

The expected linear speedup is seen across a range of different
processors, up to the number of cores available (Fig. 9a). As expected,
when running multiple threads (up to a maximum of two) per core, the
speedup drops somewhat. Furthermore, the newer M2 chips contain
performance and efficiency cores (denoted by (performance + effi-
ciency) in the figure legends), and the linear speedup only applies to the
number of performance cores. Adding more cores or multiple threads
per core does not slow down a simulation (as it might with distributed
work that must synchronize), but speedup is less than linear with the
number of threads. In terms of raw speed, the Macbook Air with the
M2 chip executed the serial runs fastest, but was eventually overtaken
when the number of performance cores (four) was surpassed (Fig. 9b).

3. Conclusions

Extending the mass-transfer particle-tracking technique to 2-d and
3-d is not a trivial matter when the computational details are con-
sidered. More dimensions require many more particles to resolve the
concentration field and this can easily overwhelm a typical machine’s
RAM without efficient computational schemes. The literature revealed
that the extent of these burdens was, at best, qualitatively understood,
so we investigated various numerical techniques here in a more quanti-
tative manner. The main driver of speed and memory use is the number
of entries in a mass-transfer matrix P, and reducing this will lead to
increased speed. Previous methods (Engdahl et al., 2019) used full
matrices to track all particle interactions, so we began with those and
expanded our consideration to sparse arrays, despite the naive nature of
using full versions of sparse matrices in terms of memory requirements.
Both methods conserve mass by normalizing array elements using an
average of row- and column-sums, but differ only in the number of
elements stored and used. We also developed and tested a novel list-
based decomposition that only uses the row-sum normalization. The
full matrices require on the order of 
∕S

��(36D�t)d∕2
times more memory

than sparse matrices, which require another NP

S
times more memory

than the list-based decomposition. Each of these factors are user-
controlled by specifying the number of particles and subdivisions, but
for most problems the memory savings for the list-based method will
be orders-of-magnitude.

For practical reasons, we only checked the parallel speedup of
the sparse-matrix, row-and-column normalization scheme and the list-
based (row-only normalization) decomposition scheme. Both showed
linear speedup with increased numbers of (performance) cores, with a
drop-off of speedup when either threads were run on slower cores or
when multiple threads were run on some cores. Overall, given the same
number of single threads per core, the new list-based decomposition
runs about 2× faster than the geometric, sparse-matrix decomposition.
The latter of these also showed speed degradation as the number of
spatial subdomains is increased, which was required on the Macbook
Air because of memory constraints when moving from 100,000 to
500,000 particles in 16 Gb of RAM.

We further performed a limited investigation of the accuracy of
the list-based decomposition and showed that evenly-spaced, stationary
particles yield machine-precision levels of accuracy when the constraint
on inter-particle spacing �x <

√
D�t is maintained. As such, the

assessment of the proposed algorithm is that it is faster, consumes
far less memory, and is just as accurate as the other schemes. Within
a deforming plume in a spatially heterogeneous velocity field, the
newer algorithm gave very similar results to prior methods that have
been extensively benchmarked. However, a more detailed error analysis
could be performed using highly heterogeneous variable-velocity fields,
to assess whether the new algorithm is similarly robust when local
particle spacings may change drastically over time.

CRediT authorship contribution statement

David A. Benson: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis,
Data curation, Conceptualization. Ivan Pribec: Software, Methodol-
ogy. Nicholas B. Engdahl: Writing – original draft, Methodology,
Conceptualization. Stephen Pankavich: Funding acquisition, Formal
analysis. Lucas Schauer: Writing – review & editing, Software.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: David Benson reports financial support was provided by
National Science Foundation. Stephen Pankavich reports financial
support was provided by National Science Foundation. If there are
other authors they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Link to all data provided in manuscript.

Acknowledgments

Funding was provided by the U.S. National Science Foundation un-
der awardsCBET-2129531, EAR-2049687, EAR-2049688,
DMS-1911145, and DMS-2107938. Fortran and Matlab codes used to
produce all results may be found in the Github repository https://
github.com/dbenson5225/parallel_particle_mass_transfer.

Appendix

Following (Benson and Meerschaert, 2008; Benson and Bolster,
2016; Schmidt et al., 2018; Sole-Mari et al., 2019b), the physically-

Advances in Water Resources 193 (2024) 104818 

12 

https://github.com/dbenson5225/parallel_particle_mass_transfer
https://github.com/dbenson5225/parallel_particle_mass_transfer
https://github.com/dbenson5225/parallel_particle_mass_transfer


D.A. Benson et al.

Fig. 9. (a) Parallel scaling of the list-based method on five different machines. (b) Wall-clock speeds for the same runs as in (a). All simulations use 500,000 particles over 10
timesteps. The abrupt changes in slope generally represent exceeding the performance cores on M-series processors, or when the number of threads exceeded the number of cores
on Intel architectures.

based probability density function of mass transfer between particles i
and j for locally Fickian dispersion in d-dimensions is the convolution
of the location densities of the two particles. This represents the PDF
of the particles’ co-location:

pi,j =
1

(4��t)d∕2det(Di + Dj )
1∕2

exp
[
−

1

4�t
(xi − xj )

T (Di + Dj )
−1(xi − xj )

]
,

(15)

where det() is the determinant, and D−1
i
is the inverse of the dispersion

matrix Di. To simplify notation and without loss of generality we will
consider isotropic and constant-magnitude mixing dispersion so that

Di = DI. Then, Eq. (15) reduces to

pi,j =
1

(8�D�t)d∕2
exp

[
−

1

8D�t
(|xi − xj |)2

]
. (16)

A key to using this PDF is that the total probability of particle co-
location dictates the mass transfer, so that the matrix describing mass
transfer has elements that approximate

Pi,j ≈ �xpi,j =
�x

(8�D�t)d∕2
exp

[
−

1

8D�t
(|xi − xj |)2

]
, (17)

where �x is a particle support volume designed so that the
d-dimensional sum of Eq. (17) for any i over the index j is unity, i.e.,

Advances in Water Resources 193 (2024) 104818 

13 



D.A. Benson et al.

the values of P represent probabilities. In the original formulation (Ben-
son and Bolster, 2016) for a finite number of particles, the mass transfer
for the ith particle can be written to first order as

mi(t + �t) = mi(t) +

N∑
j=1

1

2
Pi,j (mj (t) −mi(t)). (18)

However, because Eq. (16) is a density function, Sole-Mari et al.
(2019b) recognized that Eq. (18) has the form of smoothed-particle-
hydrodynamics, and the PDF can be generalized to have a variable
bandwidth dictated by parameter �, yielding

pi,j =
1

(4��−1D�t)d∕2
exp

[
−

1

4�−1D�t
(|xi − xj |)2

]
, (19)

with a corresponding mass transfer equation of

mi(t + �t) = mi(t) +

N∑
j=1

�Pi,j (mj (t) −mi(t)), (20)

where the original MT algorithm (Benson and Bolster, 2016) uses � =

1∕2. Sole-Mari et al. (2019b) found that a value of � = 1 demonstrates
greater accuracy for fixed particle positions. Later in this appendix we
show why this is the case. First, though, we consider two important
aspects of constructing the probability (MT weighting) matrix P: (i)
mass conservation and (ii) the normalization for a total probability of
unity in Eq. (17).

For expression (20) to conserve mass, it is necessary that Pi,j is a
symmetric matrix, i.e. Pi,j = Pj,i. To show this, denote the total mass
at time t ≥ 0 by

(t) =

N∑
i=1

mi(t). (21)

We wish to impose the condition

(t) = (0) (22)

for all t ≥ 0. Summing Eq. (20) over all particles i = 1,… , N gives

(t + �t) = (t) + �

N∑
i,j=1

Pi,j

(
mj (t) −mi(t)

)
. (23)

Hence, the property of mass conservation between consecutive time
steps is equivalent to the condition

N∑
i,j=1

Pi,j

(
mj (t) −mi(t)

)
= 0 (24)

or

N∑
i,j=1

(
Pi,jmj (t) − Pi,jmi(t)

)
= 0. (25)

By re-indexing the second sum and switching j and i, this can be
rewritten as

N∑
i,j=1

(
Pi,j − Pj,i

)
mj (t) = 0. (26)

This condition is satisfied by having each Pi,j = Pj,i, i.e. if P = PT .
A second constraint on the P matrix can be visualized by imposing

a Dirac-delta function initial condition. In this case, the vector m(t = 0)

contains only one non-zero value in the ith entry. Assume this value
is unity. When this is operated on by the matrix P (see Fig. 4), then
the masses in the vector m(�t) is the sum of the probabilities in the
column j = i. These probabilities must sum to unity to conserve mass.
Because the delta function could be placed in any row, then every
column must sum to unity. And because the matrix is symmetric, that
means both row- and column-sums must equal unity. Schmidt et al.
(2017) and Schauer et al. (2023) construct P from p by computing the
average of the row sums and column sums of p and normalizing every

value by these averages, i.e.,

PRC =
p

1

2
(
∑N

i=1
pi,j +

∑N

j=1
pi,j )

, (27)

where the subscript RC denotes Row-Column-sum normalization. This
operation maintains the symmetry of P because, for any entry pi,j , its
row-sum is equal to the column-sum for entry pj,i (see Fig. 4). This has
the added desirable effect of eliminating an estimation of the particle
support volume at different locations in the domain: that calculation is
included in the normalization. However, because each value in a row is
normalized by a different value (i.e., each entry has a different column
and therefore different column-sum), this form of normalization does
not guarantee that any row-sum is equal to unity. Therefore, either
(1) the process is repeated until closure is reached (this is called the
Sinkhorn–Knopp algorithm (Knight, 2008; Young, 2024)) or (2) a final
adjustment takes any deviations of the row-sums from unity and adds
them to the main diagonal (Schmidt et al., 2018).

A new and novel approach to satisfy the requirements on P (sym-
metric with row and column sums equal to unity) is to use the average
particle spacing for �x, then calculate the row-sums and take any
deviations from unity and add them to the main diagonal term:

P = �xp − diag

(
N∑
j=1

�xpi,j

)
. (28)

This method only requires a calculation of the row-sum, so that all
values in a row may be calculated independently of all others, and
the forward matrix mass-transfer calculation is also performed without
regard for other rows. This method leads to the list-based decomposi-
tion, because any groups of rows may be sent to any processor, without
having to take into account the spatial proximity of the particles
corresponding to the rows.

A closer look at Eq. (20) gives some insight into the accuracy given
by different choices of the bandwidth parameter �. Recall that the
variable bandwidth probability density p in Eq. (19) is used to construct
P. With this, the mass-transfer algorithm (Eq. (20)) can be expressed as

mi(t + �t) = (1 − �)mi(t) + �

N∑
j=1

Pi,jmj (t), (29)

i.e., the updated mass is a weighted average of the previous time-step’s
mass and the convolution of the diffusion Green’s function for 1∕� time-
steps (see Eq. (19)). For example, the choice of � = 1∕2 is an equal
weighing of the prior mass and the Green’s function for the future time
2�t (see Eq. (19)). If the mass at every point changed linearly over time,
then any choice of � between zero and one would suffice. But masses
do not change linearly in time, and clearly as � → 1, the formulas
converge to the ‘‘correct’’ answer: that the progress of the diffusion-
type equation is a convolution of the current condition with the Green’s
function discretized over a single time-step. See Sole-Mari et al. (2019b)
for a numerical demonstration. With the realization that � = 1 is the
most accurate algorithm, Eq. (29) is a simple convolution for � = 1,
namely

m(t + �t) = Pm(t), (30)

where m is a vector of particle masses, and P is the matrix of transfer
probabilities representing the Green’s function of local mixing. This is
the form of the MT algorithm we use in the text.

References

Benson, D.A., Aquino, T., Bolster, D., Engdahl, N., Henri, C.V., Fernàndez-Garcia, D.,
2017. A comparison of Eulerian and Lagrangian transport and non-linear reaction
algorithms. Adv. Water Resour. 99, 15–37. http://dx.doi.org/10.1016/j.advwatres.
2016.11.003.

Benson, D.A., Bolster, D., 2016. Arbitrarily complex chemical reactions on par-
ticles. Water Resour. Res. 52 (11), 9190–9200. http://dx.doi.org/10.1002/
2016WR019368.

Advances in Water Resources 193 (2024) 104818 

14 

http://dx.doi.org/10.1016/j.advwatres.2016.11.003
http://dx.doi.org/10.1016/j.advwatres.2016.11.003
http://dx.doi.org/10.1016/j.advwatres.2016.11.003
http://dx.doi.org/10.1002/2016WR019368
http://dx.doi.org/10.1002/2016WR019368
http://dx.doi.org/10.1002/2016WR019368


D.A. Benson et al.

Benson, D.A., Meerschaert, M.M., 2008. Simulation of chemical reaction via parti-
cle tracking: Diffusion-limited versus thermodynamic rate-limited regimes. Water
Resour. Res. 44, W12201. http://dx.doi.org/10.1029/2008WR007111.

Benson, D.A., Pankavich, S., Bolster, D., 2019. On the separate treatment of mixing
and spreading by the reactive-particle-tracking algorithm: An example of accurate
upscaling of reactive poiseuille flow. Adv. Water Resour. 123, 40–53. http://
dx.doi.org/10.1016/j.advwatres.2018.11.001, URL: http://www.sciencedirect.com/
science/article/pii/S0309170818304354.

Benson, D.A., Pankavich, S., Schmidt, M.J., Sole-Mari, G., 2020. Entropy: (1) the former
trouble with particle-tracking simulation, and (2) a measure of computational
information penalty. Adv. Water Resour. 137, 103509. http://dx.doi.org/10.1016/
j.advwatres.2020.103509, URL: https://www.sciencedirect.com/science/article/pii/
S0309170819303458.

Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching.
Commun. ACM 18, 509–517.

Berger, M.J., Bokhari, S.H., 1987. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Trans. Comput. C-36 (5), 570–580.

Bolster, D., Paster, A., Benson, D.A., 2016. A particle number conserving Lagrangian
method for mixing-driven reactive transport. Water Resour. Res. 52 (2), 1518–1527.
http://dx.doi.org/10.1002/2015WR018310.

Chabbi, M., Wen, S., Liu, X., 2018. Featherlight on-the-fly false-sharing detection. In:
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. PPoPP ’18, Association for Computing Machinery, New York,
NY, USA, pp. 152–167. http://dx.doi.org/10.1145/3178487.3178499.

Ding, D., Benson, D.A., Fernández-Garcia, D., Henri, C.V., Hyndman, D.W., Phaniku-
mar, M.S., Bolster, D., 2017. Elimination of the reaction rate ‘‘scale effect’’:
Application of the Lagrangian reactive particle-tracking method to simulate mixing-
limited, field-scale biodegradation at the schoolcraft (MI, USA) site. Water Resour.
Res. http://dx.doi.org/10.1002/2017WR021103.

Engdahl, N.B., Benson, D.A., Bolster, D., 2014. Predicting the enhancement of mixing-
driven reactions in nonuniform flows using measures of flow topology. Phys.
Rev. E 90, 051001. http://dx.doi.org/10.1103/PhysRevE.90.051001, URL: http:
//link.aps.org/doi/10.1103/PhysRevE.90.051001.

Engdahl, N.B., Schmidt, M.J., Benson, D.A., 2019. Accelerating and parallelizing
Lagrangian simulations of mixing-limited reactive transport. Water Resour. Res. 55
(4), 3556–3566. http://dx.doi.org/10.1029/2018WR024361, URL: https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024361.

Finkel, R.A., Bentley, J.L., 1974. Quad trees a data structure for retrieval on composite
keys. Acta Inform. 4 (1), 1–9. http://dx.doi.org/10.1007/BF00288933.

Herrera, P.A., Massabó, M., Beckie, R.D., 2009. A meshless method to simulate
solute transport in heterogeneous porous media. Adv. Water Resour. 32 (3),
413–429. http://dx.doi.org/10.1016/j.advwatres.2008.12.005, URL: http://www.
sciencedirect.com/science/article/pii/S0309170808002273.

Kennel, M.B., 2004. KDTREE 2: Fortran 95 and C++ software to efficiently search
for near neighbors in a multi-dimensional Euclidean space. arXiv Physics, URL:
https://arxiv.org/abs/physics/0408067v2.

Knight, P.A., 2008. The Sinkhorn–Knopp algorithm: Convergence and applica-
tions. SIAM J. Matrix Anal. Appl. 30 (1), 261–275. http://dx.doi.org/10.1137/
060659624.

Labolle, E.M., Fogg, G.E., Tompson, A.F.B., 1996. Random-walk simulation of
transport in heterogeneous porous media: Local mass-conservation problem and
implementation methods. Water Resour. Res. 32 (3), 583–593.

Paster, A., Bolster, D., Benson, D.A., 2014. Connecting the dots: Semi-analytical
and random walk numerical solutions of the diffusion–reaction equation with
stochastic initial conditions. J. Comput. Phys. 263, 91–112. http://dx.doi.org/10.
1016/j.jcp.2014.01.020, URL: http://www.sciencedirect.com/science/article/pii/
S0021999114000473.

Perez, L.J., Hidalgo, J.J., Dentz, M., 2019a. Reactive random walk particle tracking
and its equivalence with the advection-diffusion-reaction equation. Water Resour.
Res. 55 (1), 847–855. http://dx.doi.org/10.1029/2018WR023560, arXiv:https://
agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR023560, URL: https://
agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023560.

Perez, L.J., Hidalgo, J.J., Dentz, M., 2019b. Upscaling of mixing-limited bimolecular
chemical reactions in poiseuille flow. Water Resour. Res. 55 (1), 249–269. http:
//dx.doi.org/10.1029/2018WR022730, URL: https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1029/2018WR022730.

Pérez-Illanes, R., Fernàndez-Garcia, D., 2024. MODPATH-RW: A random walk particle
tracking code for solute transport in heterogeneous aquifers. Groundwater 62 (4),
617–634. http://dx.doi.org/10.1111/gwat.13390, arXiv:https://ngwa.onlinelibrary.
wiley.com/doi/pdf/10.1111/gwat.13390, URL: https://ngwa.onlinelibrary.wiley.
com/doi/abs/10.1111/gwat.13390.

Schauer, L., Schmidt, M.J., Engdahl, N.B., Pankavich, S.D., Benson, D.A., Bolster, D.,
2023. Parallelized domain decomposition for multi-dimensional Lagrangian random
walk mass-transfer particle tracking schemes. Geosci. Model Dev. 16 (3), 833–
849. http://dx.doi.org/10.5194/gmd-16-833-2023, URL: https://gmd.copernicus.
org/articles/16/833/2023/.

Schmidt, M.J., Pankavich, S., Benson, D.A., 2017. A kernel-based Lagrangian method
for imperfectly-mixed chemical reactions. J. Comput. Phys. 336, 288–307. http:
//dx.doi.org/10.1016/j.jcp.2017.02.012.

Schmidt, M.J., Pankavich, S.D., Benson, D.A., 2018. On the accuracy of simulat-
ing mixing by random-walk particle-based mass-transfer algorithms. Adv. Water
Resour. http://dx.doi.org/10.1016/j.advwatres.2018.05.003, URL: https://www.
sciencedirect.com/science/article/pii/S0309170818301830.

Schmidt, M.J., Pankavich, S.D., Navarre-Sitchler, A., Benson, D.A., 2019. A Lagrangian
method for reactive transport with solid/aqueous chemical phase interaction. J.
Comput. Phys. X 2, http://dx.doi.org/10.1016/j.jcpx.2019.100021, URL: https://
www.sciencedirect.com/science/article/pii/S259005521930037X.

Schmidt, M.J., Pankavich, S.D., Navarre-Sitchler, A., Engdahl, N.B., Bolster, D., Ben-
son, D.A., 2020. Reactive particle-tracking solutions to a benchmark problem
on heavy metal cycling in lake sediments. J. Contam. Hydrol. 234, http://
dx.doi.org/10.1016/j.jconhyd.2020.103642, URL: https://www.sciencedirect.com/
science/article/pii/S0169772219304279?via%3Dihub.

Sole-Mari, G., Fernàndez-Garcia, D., 2018. Lagrangian modeling of reactive transport
in heterogeneous porous media with an automatic locally adaptive particle sup-
port volume. Water Resour. Res. 54 (10), 8309–8331. http://dx.doi.org/10.1029/
2018WR023033, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/
2018WR023033, URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2018WR023033.

Sole-Mari, G., Fernández-Garcia, D., Rodríguez-Escales, P., Sanchez-Vila, X., 2017. A
KDE-based random walk method for modeling reactive transport with complex
kinetics in porous media. Water Resour. Res. 53 (11), 9019–9039. http://dx.doi.
org/10.1002/2017WR021064, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/
pdf/10.1002/2017WR021064, URL: https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1002/2017WR021064.

Sole-Mari, G., Fernàndez-Garcia, D., Sanchez-Vila, X., Bolster, D., 2020. Lagrangian
modeling of mixing-limited reactive transport in porous media: Multirate inter-
action by exchange with the mean. Water Resour. Res. 56 (8), http://dx.doi.
org/10.1029/2019WR026993, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/
pdf/10.1029/2019WR026993, URL: https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1029/2019WR026993, e2019WR026993 10.1029/2019WR026993.

Sole-Mari, G., Schmidt, M.J., Pankavich, S.D., Benson, D.A., 2019a. Numerical
equivalence between SPH and probabilistic mass transfer methods for La-
grangian simulation of dispersion. Adv. Water Resour. 126, 108–115. http://
dx.doi.org/10.1016/j.advwatres.2019.02.009, URL: http://www.sciencedirect.com/
science/article/pii/S0309170818310820.

Sole-Mari, G., Schmidt, M.J., Pankavich, S.D., Benson, D.A., 2019b. Numerical
equivalence between SPH and probabilistic mass transfer methods for La-
grangian simulation of dispersion. Adv. Water Resour. 126, 108–115. http://
dx.doi.org/10.1016/j.advwatres.2019.02.009, URL: http://www.sciencedirect.com/
science/article/pii/S0309170818310820.

Tartakovsky, A.M., de Anna, P., Le Borgne, T., Balter, A., Bolster, D., 2012. Effect
of spatial concentration fluctuations on non-linear reactions in diffusion-reaction
systems. Water Resour. Res. 48, W02526.

Tompson, A., Dougherty, D., 1992. Particle-grid methods for eacting flows in
porous-media with application to Fisher equation. Appl. Math. Model. 16 (7),
374–383.

Tran, N.T., Benson, D.A., Schmidt, M.J., Pankavich, S.D., 2021. A computational
information criterion for particle-tracking with sparse or noisy data. Adv. Water
Resour. 151, http://dx.doi.org/10.1016/j.advwatres.2021.103893, URL: https://
www.sciencedirect.com/science/article/pii/S0309170821000488.

Young, D., 2024. Sinkhorn-Knopp Algorithm for Matrix Normalisation. (https:
//www.mathworks.com/matlabcentral/fileexchange/52930-sinkhorn-knopp-
algorithm-for-matrix-normalisation). Retrieved August 12, 2024, MATLAB Central
File Exchange.

Advances in Water Resources 193 (2024) 104818 

15 

http://dx.doi.org/10.1029/2008WR007111
http://dx.doi.org/10.1016/j.advwatres.2018.11.001
http://dx.doi.org/10.1016/j.advwatres.2018.11.001
http://dx.doi.org/10.1016/j.advwatres.2018.11.001
http://www.sciencedirect.com/science/article/pii/S0309170818304354
http://www.sciencedirect.com/science/article/pii/S0309170818304354
http://www.sciencedirect.com/science/article/pii/S0309170818304354
http://dx.doi.org/10.1016/j.advwatres.2020.103509
http://dx.doi.org/10.1016/j.advwatres.2020.103509
http://dx.doi.org/10.1016/j.advwatres.2020.103509
https://www.sciencedirect.com/science/article/pii/S0309170819303458
https://www.sciencedirect.com/science/article/pii/S0309170819303458
https://www.sciencedirect.com/science/article/pii/S0309170819303458
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb6
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb6
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb6
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb7
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb7
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb7
http://dx.doi.org/10.1002/2015WR018310
http://dx.doi.org/10.1145/3178487.3178499
http://dx.doi.org/10.1002/2017WR021103
http://dx.doi.org/10.1103/PhysRevE.90.051001
http://link.aps.org/doi/10.1103/PhysRevE.90.051001
http://link.aps.org/doi/10.1103/PhysRevE.90.051001
http://link.aps.org/doi/10.1103/PhysRevE.90.051001
http://dx.doi.org/10.1029/2018WR024361
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024361
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024361
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024361
http://dx.doi.org/10.1007/BF00288933
http://dx.doi.org/10.1016/j.advwatres.2008.12.005
http://www.sciencedirect.com/science/article/pii/S0309170808002273
http://www.sciencedirect.com/science/article/pii/S0309170808002273
http://www.sciencedirect.com/science/article/pii/S0309170808002273
https://arxiv.org/abs/physics/0408067v2
http://dx.doi.org/10.1137/060659624
http://dx.doi.org/10.1137/060659624
http://dx.doi.org/10.1137/060659624
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb17
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb17
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb17
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb17
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb17
http://dx.doi.org/10.1016/j.jcp.2014.01.020
http://dx.doi.org/10.1016/j.jcp.2014.01.020
http://dx.doi.org/10.1016/j.jcp.2014.01.020
http://www.sciencedirect.com/science/article/pii/S0021999114000473
http://www.sciencedirect.com/science/article/pii/S0021999114000473
http://www.sciencedirect.com/science/article/pii/S0021999114000473
http://dx.doi.org/10.1029/2018WR023560
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR023560
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR023560
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR023560
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023560
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023560
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023560
http://dx.doi.org/10.1029/2018WR022730
http://dx.doi.org/10.1029/2018WR022730
http://dx.doi.org/10.1029/2018WR022730
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022730
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022730
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022730
http://dx.doi.org/10.1111/gwat.13390
http://arxiv.org/abs/https://ngwa.onlinelibrary.wiley.com/doi/pdf/10.1111/gwat.13390
http://arxiv.org/abs/https://ngwa.onlinelibrary.wiley.com/doi/pdf/10.1111/gwat.13390
http://arxiv.org/abs/https://ngwa.onlinelibrary.wiley.com/doi/pdf/10.1111/gwat.13390
https://ngwa.onlinelibrary.wiley.com/doi/abs/10.1111/gwat.13390
https://ngwa.onlinelibrary.wiley.com/doi/abs/10.1111/gwat.13390
https://ngwa.onlinelibrary.wiley.com/doi/abs/10.1111/gwat.13390
http://dx.doi.org/10.5194/gmd-16-833-2023
https://gmd.copernicus.org/articles/16/833/2023/
https://gmd.copernicus.org/articles/16/833/2023/
https://gmd.copernicus.org/articles/16/833/2023/
http://dx.doi.org/10.1016/j.jcp.2017.02.012
http://dx.doi.org/10.1016/j.jcp.2017.02.012
http://dx.doi.org/10.1016/j.jcp.2017.02.012
http://dx.doi.org/10.1016/j.advwatres.2018.05.003
https://www.sciencedirect.com/science/article/pii/S0309170818301830
https://www.sciencedirect.com/science/article/pii/S0309170818301830
https://www.sciencedirect.com/science/article/pii/S0309170818301830
http://dx.doi.org/10.1016/j.jcpx.2019.100021
https://www.sciencedirect.com/science/article/pii/S259005521930037X
https://www.sciencedirect.com/science/article/pii/S259005521930037X
https://www.sciencedirect.com/science/article/pii/S259005521930037X
http://dx.doi.org/10.1016/j.jconhyd.2020.103642
http://dx.doi.org/10.1016/j.jconhyd.2020.103642
http://dx.doi.org/10.1016/j.jconhyd.2020.103642
https://www.sciencedirect.com/science/article/pii/S0169772219304279?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169772219304279?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169772219304279?via%3Dihub
http://dx.doi.org/10.1029/2018WR023033
http://dx.doi.org/10.1029/2018WR023033
http://dx.doi.org/10.1029/2018WR023033
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR023033
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR023033
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR023033
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023033
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023033
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023033
http://dx.doi.org/10.1002/2017WR021064
http://dx.doi.org/10.1002/2017WR021064
http://dx.doi.org/10.1002/2017WR021064
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR021064
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR021064
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR021064
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR021064
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR021064
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR021064
http://dx.doi.org/10.1029/2019WR026993
http://dx.doi.org/10.1029/2019WR026993
http://dx.doi.org/10.1029/2019WR026993
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019WR026993
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019WR026993
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019WR026993
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026993
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026993
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026993
http://dx.doi.org/10.1016/j.advwatres.2019.02.009
http://dx.doi.org/10.1016/j.advwatres.2019.02.009
http://dx.doi.org/10.1016/j.advwatres.2019.02.009
http://www.sciencedirect.com/science/article/pii/S0309170818310820
http://www.sciencedirect.com/science/article/pii/S0309170818310820
http://www.sciencedirect.com/science/article/pii/S0309170818310820
http://dx.doi.org/10.1016/j.advwatres.2019.02.009
http://dx.doi.org/10.1016/j.advwatres.2019.02.009
http://dx.doi.org/10.1016/j.advwatres.2019.02.009
http://www.sciencedirect.com/science/article/pii/S0309170818310820
http://www.sciencedirect.com/science/article/pii/S0309170818310820
http://www.sciencedirect.com/science/article/pii/S0309170818310820
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb32
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb32
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb32
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb32
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb32
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb33
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb33
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb33
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb33
http://refhub.elsevier.com/S0309-1708(24)00205-7/sb33
http://dx.doi.org/10.1016/j.advwatres.2021.103893
https://www.sciencedirect.com/science/article/pii/S0309170821000488
https://www.sciencedirect.com/science/article/pii/S0309170821000488
https://www.sciencedirect.com/science/article/pii/S0309170821000488
https://www.mathworks.com/matlabcentral/fileexchange/52930-sinkhorn-knopp-algorithm-for-matrix-normalisation
https://www.mathworks.com/matlabcentral/fileexchange/52930-sinkhorn-knopp-algorithm-for-matrix-normalisation
https://www.mathworks.com/matlabcentral/fileexchange/52930-sinkhorn-knopp-algorithm-for-matrix-normalisation
https://www.mathworks.com/matlabcentral/fileexchange/52930-sinkhorn-knopp-algorithm-for-matrix-normalisation
https://www.mathworks.com/matlabcentral/fileexchange/52930-sinkhorn-knopp-algorithm-for-matrix-normalisation

	Parallelization of particle-mass-transfer algorithms on shared-memory, multi-core CPUs
	Introduction
	Parallelization Memory Requirements and Speed
	List-Based Algorithm Accuracy 
	Memory-Usage Comparison
	Full-Matrix, Domain Decomposition
	Sparse-Matrix, Domain Decomposition
	List-Based Decomposition

	Computation Time and Parallel Speedup
	Tree-Based Particle Searches
	Geometric Decomposition with Full Matrices
	Geometric Decomposition with Sparse Matrices
	List-Based (Non-geometric) Decomposition


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	References


