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 B S T R A C T

e introduce a novel approach for decomposing and learning every scale of a given multiscale objective function in ℝ𝑑 , where 𝑑 ⩾ 1. This approach 
erages a recently demonstrated implicit bias of the optimization method of gradient descent [44], which enables the automatic generation of data 
at nearly follow Gibbs distribution with an effective potential at any desired scale. One application of this automated effective potential modeling 
to construct reduced-order models. For instance, a deterministic surrogate Hamiltonian model can be developed to substantially soften the stiffness 
at bottlenecks the simulation, while maintaining the accuracy of phase portraits at the scale of interest. Similarly, a stochastic surrogate model can 
 constructed at a desired scale, such that both its equilibrium and out-of-equilibrium behaviors (characterized by auto-correlation function and 
ean path) align with those of a damped mechanical system with the original multiscale function being its potential. The robustness and efficiency 
 our proposed approach in multi-dimensional scenarios have been demonstrated through a series of numerical experiments. A by-product of our 
velopment is a method for anisotropic noise estimation and calibration. More precisely, Langevin model of stochastic mechanical systems may 
t have isotropic noise in practice, and we provide a systematic algorithm to quantify its covariance matrix without directly measuring the noise. 
 this case, the system may not admit closed form expression of its invariant distribution either, but with this tool, we can design friction matrix 
propriately to calibrate the system so that its invariant distribution has a closed form expression of Gibbs.

 Introduction

Physical and data sciences encompass numerous problems that involve multiple spatial and temporal scales. For example, these 
oblems may involve the evolution of a meta-particle within a multiscale energy landscape.
Consequently, a desirable approach to address these challenges is to reduce the complexity of the model in order to improve 
terpretability, computational efficiency, and reliability. This can be achieved by quantifying the model’s features at different scales 
sed on practical interests and separating macroscopic scales from microscopic scales. For instance, it is always desirable to have 
surrogate model that captures only the macroscopic behaviors of the full, complex model. This paper proposes an automated and 
stematic method for decomposing and learning effective models at an arbitrary scale specified by the user, for a given multiscale 
jective or energy function in multiple dimensions.
Powerful methods for scale decomposition have been developed over several decades. Many of these approaches aim to decompose 
e scales of a time-series signal or eliminate high-frequency component and/or noise from the time-series [15,17–19,21,25,26,29,
,48,54,66,67]. These are in some sense data-based, model-free approaches and thus are different from ours in scope.
There is also a vast body of literature dedicated to addressing multiscale problems and obtaining effective solutions or surrogate 
stems at specific scales of interest. Several reviews and books on multiscale modeling and simulations cover this area extensively 
,11,28,61,73]. For example, by employing appropriate numerical homogenization and discretization techniques, it is possible to 
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rectly obtain effective approximations of solutions at a chosen scale, even without explicitly obtaining the effective systems that 
oduce these solutions. Various methods exist, including but not limited to the equation-free methods [41–43], the Heterogeneous 
ultiscale Methods [2,22,24,74], FLAVORs [69,70], multigrid methods [12,13,50], generalized finite element methods [7,9,27,35,
], multiscale Galerkin methods [16,23,34,36,72], operator-adapted wavelets [55,56], asymptotic-preserving methods [37,38], etc. 
eanwhile, modal decomposition techniques, such as the reduced basis methods with proper orthogonal decomposition [14,33,63]
d the dynamic-mode decomposition [47,64], provide effective scale decomposition of systems. These breakthroughs mainly focus 
 approximating the solution, as opposed to constructing approximations of the system that produces the solution, although we 
te there are also great work that construct effective surrogate models simultaneously with or after the solution approximation 
,23,33,34,47,63].
Instead of directly procuring effective solutions, numerous methods aiming at deriving surrogate models of multiscale problems 
ve also been proposed. Here, the surrogate/effective models mainly refer to surrogate differential equations which are simpler and 
sier to simulate/analyze. They can, for example, be attained through averaging/homogenization [2,5,10,11,20,45,52,57,61,65]. 
e estimation of effective models can also be achieved via spectral information of the underlying systems [3,4,40]; or through 
tering approaches and parameterized kernels [15,29,30,49,51,53,76], among others. Moreover, machine-learning approaches have 
come increasingly popular for constructing effective models from data. Inference learning can be conducted through statistical 
ols, such as maximum likelihood, methods of moments, and Bayesian inference [1,46,58], or through neural network and deep 
arning techniques [6,32,39,62,75].
However, many existing methods are based on analytical tools (e.g., asymptotic analysis such as averaging or homogenization) 

hich assume an explicit scale separation. Machine learning-based methods may be less constrained by scale separation, but they 
pically require a good amount of training data a priori, making it challenging to simultaneously and flexibly learn different scales 
 interest.
This work proposes a novel approach that complements the existing literature, by providing a method that can decompose and 

arn any scale of a given multiscale objective function, in multi-dimensional Euclidean spaces. Moreover, in cases where there is 
ly moderate or insignificant scale gaps, it can still construct some effective potential that leads to good approximations (see e.g., 
c. 4.3 for more precise statements).
The main idea of our method is leaned on an interesting fact that smaller scale components of a function can be traded for 
chasticity, if one introduces an artificial step of optimizing it using gradient descent, and the scale at which this trading starts 
n be controlled by the learning rate of gradient descent. This idea is inspired by a recent advance in machine learning, where 
e problem of whether/how local minima of the training objective function can be escaped is of vital importance. Kong and Tao 
4] demonstrated how gradient descent with large learning rate can quantitatively lead to such escapes, providing an alternative 
 the common escape mechanics based on noises from stochastic gradients. More precisely, the authors proved that when an 
jective function exhibits multiscale behaviors and is optimized by gradient descent with a large learning rate (a.k.a. time-step), 
e deterministic optimization dynamics acts like Langevin dynamics with potential that only describes the macroscopic part of the 
jective function, while its microscopic part effectively gets turned into noise via chaotic dynamics. As a result, gradient descent 
es not converge to a local minimizer of the objective, but instead to a statistical distribution characterized by the macroscopic 
mponent of the objective function.
Building upon this insight that a large time-step converts under-resolved scales into noise, we design a self-learning approach 

 learn components of a function at different scales. Firstly, we artificially introduce a damped deterministic mechanical system, 
ecifically noiseless Langevin dynamics, with the given function as its potential. Then, we choose an appropriate time step size, 
rresponding to the cutoff scale above which we’d like to approximate this function, and simulate the damped mechanical system 
ing this (large) step size. Next, we simulate the system numerically for a long time, and collect position-momentum values at 
fferent time points into a set. Points in this set will approximate a statistical distribution governed by a coarse-grained effective 
ergy function, which however may not be Gibbs distribution yet, due to the an-isotropicity of effective noise. We will thus provide 
way to estimate the covariance of the effective noise, which is nontrivial because we don’t have access to the effective noise as it 
only part of the underlying theory. Consequently, we will calibrate the damped mechanical system by choosing its friction matrix 
cording to the noise covariance, and simulate the system for a long time again. This time, the collected values will approximately 
llow Gibbs distribution. Finally, we fit from the data the corresponding potential, which will give the effective approximation of 
e given function above (including) the designated scale. The resulting function can subsequently be used to construct surrogate 
odels based on practical interests.

1. Problem setup and overview

Consider a function 𝑉 (𝒒), which could either be the objective function of an optimization problem, as often encountered in 
achine learning, or in a conservation law setup, the energy function used for various physical and chemical simulations. Due to 
e complex nature of these application problems, 𝑉 (𝒒) usually involves multiple scales. By decomposing these scales of 𝑉 (𝒒), we 
n create a hierarchy of problems that are usually simpler to simulate, analyze, and interpret. However, it often occurs in practice
at we are only given the expression of 𝑉 without knowing the details of an explicit decomposition. Mathematically, we can thus 
sume that 𝑉 (𝒒) ∶ℝ𝑑 →ℝ with 𝑑 ⩾ 1 implicitly admits a multi-scale decomposition

𝑉 (𝒒) = 𝑉 (𝒒) +
𝐾∑
𝑉 (𝒒), (1.1)
2

0
𝑗=1

𝑗, 𝜀𝑗
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. 1. The illustration of a one-dimensional potential function 𝑉 = 𝑉0(𝑞) + 𝑉1(𝑞) + 𝑉2(𝑞) with three scales: 𝑉0 = 𝑞2

2
∼ 𝑂(1), 𝑉1 = 0.1 × sin( 𝑞

0.1
) ∼ 𝑂(0.1) and 𝑉2 =

1 × sin( 𝑞

0.01
) ∼𝑂(0.01).

here 𝑉0(⋅) denotes the macroscopic component, and other meso- and micro-scale components {𝑉𝑗,𝜀𝑗 (⋅)}
𝐾
𝑗=1 satisfy 𝑉𝑗,𝜀𝑗 =𝑂(𝜀𝑗 ) with 

aling parameters 1 ≫𝜀1 ≫⋯ ≫𝜀𝐾 > 0. An illustration example of 𝑉 (𝑞) with three distinct scales is given in Fig. 1.
The main goals and contributions of this work are:

• Our aim is to learn each component of 𝑉 at different scales, specifically 𝑉0 and the series {𝑉𝑗,𝜀𝑗 }𝑗 . We make the assumption that 
we do not possess explicit access to each individual scale, meaning the values of 𝜀𝑗 ’ are unknown a priori, let alone any 𝑉𝑗,𝜀𝑗 .

• Once an effective potential function 𝑈𝑘(𝒒) that approximates 𝑉 up to scale 𝜀𝑘 is learnt (e.g., if 𝜀𝑘 ≫ 𝜀𝑘+1, then 𝑈𝑘 ∶= 𝑉0 +∑𝑘
𝑗=1 𝑉𝑗,𝜀𝑗 , but note 𝑉𝑗,𝜀𝑗 ’s are not a priori known), various surrogate models can be constructed, and two will be focused on. 

In a deterministic case, a surrogate model of Hamiltonian dynamics can produce approximate phase space dynamics with less 
stiffness and thus allowing much larger time steps for numerical integration. In a stochastic case, a surrogate model can nearly 
reproduce the equilibrium distribution, auto-correlation function, and mean path of data produced by kinetic Langevin dynamics 
using the original 𝑉 (𝒒) at the desired scale.

• In order to enable the above contributions, we have also developed an approach to estimate and calibrate kinetic Langevin 
systems under anisotropic stochastic forcings, which pose a challenge as the system’s invariant distribution no longer admits 
an analytical expression, unlike in the isotropic case where the invariant distribution is Gibbs. This is based on estimating the 
covariance of noise, however without directly measuring it. Instead, we use equilibrium properties only, and by intelligently 
adjusting the system’s mass matrix, a robust and accuracy estimation can be obtained. We can then adjust the system’s friction 
coefficient so that the invariant distribution is put back to the analytically available Gibbs.

e organization of this paper is as follows: In Section 2, we review the theoretical foundations of proposed approach. In Section 3, 
e present the algorithm and explore the analytical attributes of the proposed method. The 1D case is easier as noise will always 
 isotropic, and it is first discussed. Then we detail the workings of the algorithm in the multivariate scenario, after describing our 
ditional tool for kinetic Langevin estimation and calibration. Then, Section 4 delivers numerical simulations of various examples 
 both 1D and higher dimension. These results substantiate the robustness and efficiency of our proposed approach. Section 5
mmarizes this study and suggests possible future directions.

 Motivation and theoretical background

In this section, we will briefly review some theoretical results in [44] that motivate, and will be used by this work. We will also 
view some background knowledge about kinetic Langevin which will be used later.

1. Large step size effectively turns under-resolved scale into noise

formal version For quantitative understanding of deep learning, Kong and Tao [44] quantified how the optimization algorithm 
 gradient descent escapes local minimizers of a function. They considered the optimization of a multiscale objective function by 
adient descent with large learning rate, i.e. iterations given by

𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑓 (𝑥𝑘), (2.1)
3

here 𝑓 ∶ℝ𝑑 →ℝ was assumed to be admitting a macro-micro decomposition given by
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𝑓 (𝑥) ∶= 𝑓0(𝑥) + 𝑓1,𝜀(𝑥)

here 𝑓0 is the macroscopic, (1) component of the potential, and 𝑓1,𝜀(𝑥) = 𝜖𝑓1(𝑥∕𝜖) is the microscopic component as it squeezes 
 (1) function 𝑓1 in both the x and y directions. 𝜂 was referred to as the learning rate. Large learning rate is in the sense that 
1∕𝐿, where 𝐿 is the Lipschitz constant of ∇𝑓 , because classical analysis of gradient descent assumed 𝜂 < 1∕𝐿, in which case the 

rates provably converge to a (nearby) local minimizer of 𝑓 .
They showed that in this case, the iteration 𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑓0(𝑥𝑘) − 𝜂∇𝑓1(𝑥𝑘∕𝜖), where albeit being deterministic, exhibits 
haviors similar to those of a stochastic iteration

𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑓 (𝑥𝑘) − 𝜂𝜁𝑘, (2.2)

here 𝜁𝑘 ’s are random variables i.i.d. to 𝜁 which will be defined. The condition 𝜂 ≫ 1∕𝐿 actually leads to 𝜂 ≫ 𝜖, which means step 
e 𝜂 is too large to resolve the details of 𝑓1,𝜖 . As a consequence, the effective contribution from the microscopic, under-resolved 
adients ∇𝑓1(𝑥𝑘∕𝜖) over many iterations can be approximated by contributions from noise 𝜁𝑘. Therefore, gradient descent (2.1)
ith large learning rate 𝜂 is not a time discretization of gradient flow ODE

𝑥̇ = −∇𝑓 (𝑥) = −∇𝑓0(𝑥) − ∇𝑓1(𝑥∕𝜖)

t can be intuitively understood as a stepsize 𝜂 time discretization of SDE

𝑑𝑥 = −∇𝑓0(𝑥)𝑑𝑡+
√
𝜂Σ𝑑𝑊𝑡 (2.3)

r some constant covariance matrix Σ given by ΣΣ𝑇 = 𝔼[𝜁𝜁𝑇 ].

lected rigorous details They considered 𝜖 ≪ 1, 𝑓0, 𝑓1,𝜖 ∈ 2(ℝ𝑑 ) and microscopic potentials 𝑓1,𝜖 satisfying the following two con-
tions:

• (1) gradient condition: there exists a bounded and nonconstant random variable (r.v.) 𝜁 ∈ℝ𝑑 with 𝔼(𝜁) = 0, such that: ∀𝜖 > 0
and ∀𝑥 ∈ℝ𝑑 there exists a positive measured set Γ𝑥,𝜖 ⊂ 𝐵(𝑥, 𝛿(𝜖) with lim𝜖↓0 𝛿(𝜖) = 0, such that a uniformly distributed r.v. on 
Γ𝑥,𝜖 , denoted by 𝑢Γ𝑥,𝜖 , satisfies ∇𝑓1,𝜖(𝑥 + 𝑢Γ𝑥,𝜖 ) 

𝑤
←←←←←←←←→ −𝜁 as 𝜖→ 0, uniformly with respect to 𝑥.

• (1∕𝜖) Hessian condition: 𝜖∇2𝑓1,𝜖 is uniformly bounded as 𝜖 → 0. Also ∃𝑚 > 0, such that for any bounded and nonempty 
rectangle Γ ⊂ℝ𝑑 , the expectation 𝔼 

[
ln‖𝜖∇2𝑓1,𝜖(𝑢Γ)‖2]→𝑚 as 𝜖→ 0, where 𝑢Γ is a uniform r.v. on Γ.

hile these conditions are nontrivial, Kong and Tao noted that they include but are strictly weaker than periodicity (e.g., 𝑓1,𝜖(𝑥) =
in(𝑥∕𝜖), for which Σ = 1∕

√
2) or quasiperiodicity.

They then considered the deterministic dynamical system induced by iteration map

𝜑 ∶ 𝑥↦ 𝑥− 𝜂∇𝑓 (𝑥) = 𝑥− 𝜂∇0𝑓 (𝑥) − 𝜂∇𝑓1,𝜖(𝑥), (2.4)

d proved the following results (selected):

. Fix 𝜂 and let 𝜖→ 0. If 𝜑 has a family of nondegenerate invariant distributions for {𝜖𝑖}∞𝑖=1 → 0 which converges in the weak sense, 
then the weak limit is an invariant distribution of 𝜑̂, where 𝜑̂ defines a stochastic map

𝜑̂ ∶ 𝑥↦ 𝑥− 𝜂∇𝑓0(𝑥) + 𝜂𝜁. (2.5)

. In a special case where the macroscopic potential 𝑓0 is strongly convex and 𝐿-smooth, there exists some constant 𝐶 > 0 inde-
pendent of 𝜖, such that the mapping 𝜑̂ has a unique invariant distribution for any fixed 𝜂 ⩽ 𝐶 and the iteration of 𝜑̂ converges 
exponentially fast to this distribution. Moreover, if the covariance matrix of 𝜁 is isotropic, i.e., 𝜎2I𝑑 , then the rescaled Gibbs 
distribution 1

𝑍
exp

(
−2𝑓0(𝑥)

𝜂𝜎2

)
d𝑥 is an 𝑂(𝜂2) approximation of that of 𝜑̂.

wever, it is worth noting that [44] only considered two scales in the objective function 𝑓 (𝑥), whereas this work heuristically 
tends the application to arbitrary 𝐾 scales. In addition, note 𝜁𝑘 in (2.2) is actually bounded, unlike ‘𝑑𝑊𝑡’ in (2.3), but (2.3) is 
ll a reasonable interpretation in a central limit theorem sense (see [44] for details). Additionally, the stochastic behavior of the 
terministic mapping with a large LR was only proved for gradient descent dynamics, and if one considers a damped deterministic 
echanical system instead, with ∇𝑓 being its forcing, and discretize its time using a stepsize that under-resolves part of 𝑓 , the 
antitative stochasticity of its dynamics was only a conjecture. While this work relies on this conjecture, our empirical results 
pear to be consistent with it, namely deterministic simulations of damped mechanical systems with large step size exhibit behaviors 
4

semblant to (stochastic) kinetic Langevin dynamics.
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2. Review of kinetic Langevin dynamics

Kinetic Langevin equation models how particles evolve subject to a combination of conservative forcing, damping, and thermal 
ise. Let (𝒒, 𝒑) denote the position and momentum of particles, and 𝑀 denote the corresponding mass matrix, then it gives the 
olution of (𝒒, 𝒑) by{

𝑑𝒒 =𝑀−1𝒑𝑑𝑡,

𝑑𝒑 = (−∇𝑉 (𝒒) − Γ𝑀−1𝒑)𝑑𝑡+Σ𝑑𝑾 𝑡,
(2.6)

here ∇𝑉 denotes the potential force, 𝑾 𝑡 denotes the standard multivariate Wiener process, 𝑀 is a positive definite mass matrix, 
is the friction coefficient matrix for the dissipative force, and Σ denotes the diffusion coefficient matrix for the thermal random 
rces.
It is known (e.g., [59]) that if the diffusion coefficient matrix Σ and the friction coefficient matrix Γ satisfy the following 
ctuation–dissipation relation

ΣΣ𝑇 = 2Γ, (2.7)

en the equilibrium distribution is a Gibbs distribution

𝑑𝜋(𝒒, 𝒑) = 1
𝑍

exp−(
(
𝑉 (𝒒) + 𝒑𝑇𝑀−1𝒑∕2)

)
𝑑𝒒𝑑𝒑. (2.8)

e most commonly discussed case is when the thermal noises are isotropic, that is ΣΣ𝑇 = 𝜎2I𝑑 for some scalar 𝜎. In this case, the 
uilibrium distribution is always Gibbs as long as Γ = 𝜎2

2 I𝑑 = 𝛾I𝑑 .
However, if the noises are anistropic, the invariant distribution of (2.6) still exists under mild conditions, but it may not admit an 
alytical expression.

 Main results

In this section, we propose a self-learning algorithm that automatically identifies macroscopic scales of a function 𝑉 (eq. (1.1)) 
 to a desired scale 𝜀. Here, 𝜀 corresponds to a cutoff level 𝑘 with 1 ⩽ 𝑘 ⩽ 𝐾 satisfying 𝜀𝑘 ≳ 𝜀 ≫ 𝜀𝑘+1, meaning we seek 𝑈𝑘 =

+
𝑘∑
𝑗=1

𝑉𝑗, 𝜀𝑗 . Of course, if the goal is to separate all the scales instead, we can just repeat this procedure for different 𝜀 values.

1. The proposed self-learning methodology for multi-dimensions

Our first step of identifying components of 𝑉 above scale 𝜀, solely based on 𝑉 ,1 is to extend the gradient descent iterations 
alyzed in [44] (see Sec. 2.1 for a quick summary) by including momentum.
More precisely, we consider a large step size simulation of the following damped mechanical system{

𝒒̇ =𝑀−1𝒑,

𝒑̇ = −∇𝑉 (𝒒) − Γ𝑀−1𝒑,
(3.1)

here the step size is chosen to be at the order of 𝜀, i.e. 𝛿 ∼ 𝜀, so that it underresolves undesired smaller scales. Here 𝑀 and Γ
e mass and friction coefficient matrices that we can choose, but 𝑉 (𝒒) is given and we have to use it in its entirety as its scale 
composition is not yet known (this actually poses a significant challenge in high dimension in general, which will be described 
d addressed in Sec. 3.2).
The choice of numerical integrator for (3.1) for the purpose of turning unresolved small scales effectively into ‘noise’ needs not 

 be unique, but here we simply apply a dissipative generalization of Störmer–Verlet, where friction is handled by an exponential 
tegrator. The evolution of discrete solution (𝒒𝑛, 𝒑𝑛) at time grid 𝑛 thus becomes

𝒒
𝑛+ 1

2
= 𝒒𝑛 +𝑀−1 𝛿

2
𝒑𝑛,

𝒑𝑛+1 = 𝑒−Γ𝑀
−1𝛿 𝒑𝑛 − 𝛿∇𝑉 (𝒒

𝑛+ 1
2
),

𝒒𝑛+1 = 𝒒
𝑛+ 1

2
+𝑀−1 𝛿

2
𝒑𝑛+1,

(3.2)

d with given initial condition (𝒒0, 𝒑0) from a suitable region. We conjecture that the gradient of under-resolved microscopic 
mponents of 𝑉 can effectively be approximated by noises as 𝜀𝑘+1 → 0, similar to Sec. 2.1. This conjecture means that invariant 
stribution of the deterministic dynamics can be approximated by that of the stochastic system
5

More precisely, only 1st-order oracle, no additional data or information.
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𝑑𝒒 =𝑀−1𝒑𝑑𝑡,

𝑑𝒑 = (−∇𝑈𝑘(𝒒) − Γ𝑀−1𝒑)𝑑𝑡+Σ𝑑𝑊𝑡,
(3.3)

ith the effective potential 𝑈𝑘 = 𝑉0 +
∑𝑘
𝑗=1 𝑉𝑗,𝜀𝑗 , Γ = 1

2ΣΣ
𝑇 , and the diffusion coefficient matrix given by

ΣΣ𝑇 ∶ = 𝛿𝔼

[
∇

(
𝐾∑

𝑗=𝑘+1
𝑉𝑗,𝜀𝑗 (𝒖)

)
⊗∇

(
𝐾∑

𝑗=𝑘+1
𝑉𝑗,𝜀𝑗 (𝒖)

)]
, (3.4)

here the expectation is with respect to an auxiliary random variable 𝒖 defined in the gradient conditions in Section 2, i.e. a uniformly 
stributed r.v. on any bounded rectangle in ℝ𝑑 with size independent of 𝜀𝑘+1, ⋯ , 𝜀𝐾 , i.e. (1). The sense of approximation is that 
e invariant distribution of (3.3) differs from that of (3.2) by at most (𝛿) (in weak* topology) as scale separation goes to infinity 
e. 𝛿∕𝜀𝑘+1 →∞).
In addition, if the system is mixing, (unfortunately, the precise necessary and sufficient condition for so is still a major open 
oblem, but it was conjectured to be the case for large learning rate gradient descent; see Section 2 for semi-quantitative discussions), 
en (3.2) will converge to its invariant/equilibrium distribution, denoted by 𝜋𝛿 . This in the sense that 1) an ensemble of trajectories 
ith random initial condition following any smooth density will converge to the invariant distribution as 𝑛 →∞, and 2) except for 
easure zero initial conditions, any single trajectory will have an ergodic limit with respect to the invariant distribution 𝜋𝛿 , meaning 
r any smooth test function 𝜙, we have

lim
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

𝜙(𝒒𝑛,𝒑𝑛) = 𝔼𝒒,𝒑∼𝜋𝛿𝜙(𝒒,𝒑).

is means, given data {𝒒𝑛, 𝒑𝑛} generated from 𝑉 via (3.2), the empirical distribution of {𝒒𝑛, 𝒑𝑛}𝑛=1,⋯,𝑁 converges to 𝜋𝛿 , which is 
 (𝛿) approximation of 𝜋, whose density is 𝑍−1 exp(−𝑈𝑘(𝒒) − 𝒑𝑇𝑀−1𝒑∕2) for (3.3).
Therefore, for a given Γ, Step Two of our approach is to run the deterministic system (3.2) for sufficiently long on time interval 
, 𝑇 ] until (𝒒𝑛, 𝒑𝑛) reach their statistical equilibrium, which can be tested from the normality test [71] of the distribution of {𝒑𝑛}. 
te our introduction of momentum is rather important, despite the fact that the whole dynamics is just artificially introduced, 
cause the convergence of 𝒑 to simple Gaussian enables accurate detection of near convergence.
This Step Two generates a training data set solely out of 𝑉 , which will be used later for the learning of an effective macroscopic 
nction, hence the name ‘self-learning’.

mark 3.1. Due to the addition of momentum considered in this work, we could not establish conditions like those in [44] on 
e gradient and Hessian and prove convergence to near Gibbs under these conditions, because such a proof seems to require a 
mpletely different machinery. Even if we could replace the bounded, correlated, and anisotropic microscopic gradients in our 
namics (3.1) and (3.2) by unbounded, uncorrelated, and isotropic white noise process, which would turn the dynamics into kinetic 
ngevin, the convergence remains more challenging to prove compared to the overdamped Langevin. Meanwhile, our results seem 
ry robust in all sorts of numerical experiments in Section 4.

mark 3.2. Although in principle it is very flexible to choose the initial condition (𝒒0, 𝒑0) because of the stochasticity induced 
 microsuitable large step size, it becomes subtle in practice as good initial conditions can greatly improve the exploration of the 
namics and speed-up the convergence of the algorithm. We will provide more details for specific examples in Section 4.

mark 3.3. In Step Two, the normality test is suggested on the distribution of {𝒑𝑛} to check if the system reach its statistical 
uilibrium. However, it is only a necessary condition but not always sufficient. This test is more trustworthy when the temperature 
rameter 1∕(𝛽) is comparable to or greater than the energy barriers of the objective function 𝑉 (𝒒). For systems with higher energy 
rriers, global exploration is usually lost. Lowering 𝛽 too much introduces statistical noise that overwhelms the information about 
𝑘}. Otherwise, the simulation may lead to the system relaxing into one metastable state (with 𝒑 following a normal distribution), 
t 𝒒 never explores other metastable states. Therefore, we only consider the objective function 𝑉0 with energy barriers of order 
(1).

mark 3.4. We explain the strategy here when the energy barriers of 𝑉0 are of 𝑂(1) and the scale separation among {𝜀𝑗}𝐾𝑗=1 exists 
ith range of scales knowing, but the value of each 𝜀𝑗 keeps unknown.
The idea is to firstly use an isotropic friction matrix Γ = 𝛾𝐼 and run the damped mechanical system (3.2) using 𝛿 from an array of 
e-stepping sizes, which are arranged in a decreasing order and are compatible with the range of scales of 𝑉 (𝒒). For each selected 

 we simulate long enough until numerically reach the equilibrium distribution of 𝜋𝛿(𝒒, 𝒑). If the distribution of 𝒑 becomes a general 
ulti-dimensional normal distribution via a normality test, then it suggests we find a scale 𝜀𝑘 which is proportional to 𝛿. Otherwise, 
the distribution of 𝒑 is far away from a normal distribution, then this suggests the system is still under mixed scales and we will 
rther decease 𝛿 and regenerate data. After we find the proper 𝛿 at a targeting scale, we next tune the friction matrix Γ to achieve 
e Gibbs distribution (3.6).
The successful results of a benchmark test with unknown scales can be found in Fig. 7. Also, notice that the simulations on 
6

fferent 𝛿 are parallelizable, so the total efficiency of distinguish scales will be ensured.



X.H

3.

th
so
ap
of

th

in
th
Bo

On

al
va
th
in

In

In
fo

M

di
(o

th

St

m

w
Σ
is 
‘so

M

Th

m

wh

Pr

sh
Journal of Computational Physics 514 (2024) 113206. Li and M. Tao

2. Microscopic covariance estimation and the creation of fluctuation-dissipation balance

Recall that the friction coefficient Γ is a parameter we can choose, while Σ is something we cannot control because it characters 
e effective noise that originates from the microscopic gradient. If we can align Γ with Σ so that they commute, or more precisely 
 that ΣΣ𝑇 = 2Γ∕𝛽 for some constant scalar 𝛽 (known as the inverse temperature), then the data collected in the above Step 2 will 
proximately follow a density ∝ exp

(
−𝛽

(
𝑈𝑘(𝒒) + 𝒑𝑇𝑀−1𝒑∕2

))
, which means we can recover 𝑈𝑘 via regression of the 𝒒 marginal 

 the data.
However, we do not know Σ a priori because we only have 𝑉 , but not the microscopic potential 𝑈𝑘, upon which Σ is based. This 
us poses a challenge.
When 𝑉 is one-dimensional, this challenge is relatively easy to solve, as aligning Γ with Σ is not an issue and we just need the 
verse temperature, which can be estimated from 𝐩’s variance. When 𝑉 is a multi-dimensional function in general, choosing Γ so 
at the system admits Gibbs as its invariant distribution is rather nontrivial, but we will provide a rigorous and systematic method. 
th cases are now detailed:

e-dimensional strategy When 𝑑 = 1, the friction matrix Γ becomes just a scalar 𝛾 . Hence, the equilibrium distribution of (𝑞, 𝑝) is 
ways a Gibbs distribution. Consequently, 𝑀 and 𝛾 can be selected easily in (3.1). Throughout the paper, we select the following 
lues for the 1D simulation 0 < 𝛾 ⩽ 0.5 and𝑀 = 1. Once the numerical solution {(𝑞𝑛, 𝑝𝑛)}𝑛 is nearly in the statistical equilibrium, 
e distribution of 𝑝𝑛 will be close to a Gaussian distribution. Following [60], we estimate the equivalent thermal noise effect 𝛽
duced by the gradient of micro-scale components

𝛽 = 1
𝗏𝖺𝗋(𝑝)

. (3.5)

 1D, 𝜋𝛿(𝑞, 𝑝) is approximated by

𝜋𝛿(𝑞, 𝑝) ∼ exp
(
−𝛽

(
𝑈𝑘(𝑞) +

𝑝2

2
))

𝑑𝑞 𝑑𝑝. (3.6)

 1D simulation with suitable value of 𝛾 , we can get 𝛽 in the range around 𝛽 ∈ (0.2, 1.25), which will lead to better learning results 
r 𝑈𝑘.

ulti-dimensional strategy As mentioned above, due to the anisotropy of microscopic scales in 𝑉 (𝒒) the dimension 𝑑 ⩾ 2, invariant 
stribution of kinetic Langevin (3.3) in general may not be interpretable. Therefore, we construct a special case by estimating Σ
riginated from the microscopic scales (3.4)) and choose Γ = 1

2ΣΣ
𝑇 to ensure the fluctuation-dissipation relation (2.7). In this case, 

e temperature is always 𝛽 = 1. We explain the details by a two-stage scheme.

age 1 and 2: apply various 𝑀 to estimate ΣΣ𝑇 The key idea of our innovation is to exploit the effects of different choices of mass 
atrix 𝑀 in the following stochastic Langevin dynamics:{

𝑑𝒒 =𝑀−1𝒑𝑑𝑡,

𝑑𝒑 =
(
−𝛾𝑀−1𝒑−∇𝑉 (𝒒)

)
𝑑𝑡+Σ𝑑𝑾 𝑡,

(3.7)

here 0 < 𝛾 is some scalar friction constant. Note ∇𝑉 𝑑𝑡 +Σ𝑑𝑾 𝑡 come together from the under-resolved small scales, and thus again 
cannot be chosen or determined a priori. The positive-definite mass matrix 𝑀 however can be arbitrarily chosen, because (3.7)
just some auxiliary dynamics designed for obtaining an algorithm. We will design 𝑀 values so that Σ can be estimated from 
lutions’ of (3.7), which are actually collected as the deterministic iterations with step size 𝛿

𝒒
𝑛+ 1

2
= 𝒒𝑛 +𝑀−1 𝛿

2
𝒑𝑛,

𝒑𝑛+1 = 𝑒−𝛾𝑀
−1𝛿 𝒑𝑛 − 𝛿∇𝑉 (𝒒

𝑛+ 1
2
),

𝒒𝑛+1 = 𝒒
𝑛+ 1

2
+𝑀−1 𝛿

2
𝒑𝑛+1.

eanwhile, the relation between ΣΣ𝑇 and the solutions is established in the following proposition.

eorem 3.1. Consider a stochastic Langevin dynamics (3.7) with a positive scalar friction constant 𝛾 and a constant diffusion coefficient 
atrix Σ, then Σ satisfies

𝖳𝗋
(
(ΣΣ𝑇 )𝑀−1) = 𝛾𝔼 [

𝒑𝑇𝑀−2𝒑
]
, (3.8)

ere the expectation is taken with respect to the invariant distribution of (𝒒, 𝒑).

oof. We recall the definition of Hamiltonian 𝐻(𝒒, 𝒑) = 1
2𝒑

𝑇𝑀−1𝒑+ 𝑉 (𝒒) and evaluate it along the solutions of (3.7). Itô formula 
7

ows that the Hamiltonian satisfies the following SDE
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𝑑𝐻 = (𝑀−1𝒑)𝑇
[
−𝛾𝑀−1𝒑−∇𝑉 (𝑞)

]
𝑑𝑡+∇𝑉 (𝑞)𝑇𝑀−1𝒑𝑑𝑡+ 𝖳𝗋

(
(ΣΣ𝑇 )𝑀−1)𝑑𝑡+ (

𝑀−1𝒑
)𝑇 √2Σ𝑑𝑾 𝑡

= − 𝛾𝒑𝑇𝑀−2𝒑𝑑𝑡+ 𝖳𝗋
(
(ΣΣ𝑇 )𝑀−1)𝑑𝑡+√

2𝒑𝑇𝑀−1Σ𝑑𝑾 𝑡.

tegrating it from time 0 to 𝑡, we get

𝐻(𝑡) =𝐻(0) +

𝑡

∫
0

−𝛾𝒑𝑇 (𝜏)𝑀−2𝒑(𝜏)𝑑𝜏 +

𝑡

∫
0

𝖳𝗋
(
(ΣΣ𝑇 )𝑀−1)𝑑𝜏 +√

2

𝑡

∫
0

𝒑𝑇 (𝜏)𝑀−1Σ𝑑𝑾 𝜏 .

e take expectation of 𝐻 with respect to the invariant distribution and notice that the last Itô integral term is a martingale, so

𝔼(𝐻(𝑡)) =∶𝐸(𝑡) =𝐸(0) +

𝑡

∫
0

−𝛾𝔼
[
𝒑𝑇 (𝜏)𝑀−2𝒑(𝜏)

]
𝑑𝜏 +

𝑡

∫
0

𝖳𝗋
(
(ΣΣ𝑇 )𝑀−1)𝑑𝜏.

nce we get the differential equation of 𝔼(𝐻(𝑡)), which is

𝐸̇(𝑡) = − 𝛾𝔼
[
𝒑𝑇 (𝑡)𝑀−2𝒑(𝑡)

]
+ 𝖳𝗋

(
(ΣΣ𝑇 )𝑀−1) .

hen the system reaches its statistical equilibrium, we have 𝐸̇(𝑡) = 0, so

0 = 𝐸̇(𝑡) = − 𝛾𝔼
[
𝒑𝑇 (𝑡)𝑀−2𝒑(𝑡)

]
+ 𝖳𝗋

(
(ΣΣ𝑇 )𝑀−1) .

nsequently, we can set up a relation between 𝑀 and Σ at the statistical equilibrium of system, that is

𝖳𝗋
(
(ΣΣ𝑇 )𝑀−1) = 𝛾𝔼 [

𝒑𝑇𝑀−2𝒑
]
,

hich proved the proposition. □

In order to estimate 𝑍 ∶=
(
ΣΣ𝑇

)
=
(
𝑧𝑖𝑗

)
𝑑×𝑑 , we then can design the entries of inverse of mass matrix 𝐴 ∶=𝑀−1 =

(
𝑎𝑖𝑗

)
accord-

gly and apply the following steps:

• Step 1: choose a set of 𝑑 different diagonal matrices 𝐴(𝑘) = 𝖽𝗂𝖺𝗀(𝑎(𝑘)
𝑖𝑖
) and run the Langevin dynamics (3.7) to reach its statistical 

equilibrium. Thus, we get a system of 𝑑 linear equations to solve all diagonal entries 𝑧𝑖𝑖:

𝑑∑
𝑖=1

𝑎
(𝑘)
𝑖𝑖
𝑧𝑖𝑖 = 𝛾𝔼

[
𝒑(𝑘)

𝑇
𝑀−2𝒑(𝑘)

]
, 𝑘 = 1,… , 𝑑.

• Step 2: fix a pair of off-diagonal entries with 𝓁 ≠ 𝑟, set this pair 𝑎𝑟𝓁 = 𝑎𝓁𝑟 = 1∕2, set all diagonal entries 𝑎𝑖𝑖 = 1, and set the rest 
of off-diagonal entries 𝑎𝑖𝑗 = 0, then run the Langevin dynamics (3.7) until reaching the equilibrium. We thus have(

𝑧𝓁𝑟 +
𝑑∑
𝑖=1

𝑧𝑖𝑖

)
= 𝛾𝔼

[
𝒑𝑇𝑀−2𝒑

]
,

which can solve 𝑧𝓁𝑟. Hence, after repeating this procedure for 
𝑑(𝑑−1)

2 times, we can get all values of the off-diagonal entries of 
𝑍 = (ΣΣ𝑇 ).

mbining step 1 with step 2, overall we need to solve 𝑑(𝑑+1)2 linear systems. However, each one of them is independent of the others 
hich means all the simulations can be run in parallel.

mark 3.5. To demonstrate the scheme in details, we consider a two-dimensional case 𝑑 = 2.

age 1: apply various 𝑀 . In step 1, we choose the two inverse of mass matrices to be

𝐴(1) =𝑀−1,(1) =
(
1 0
0 2

)
and 𝐴(2) =𝑀−1,(2) =

(
2 0
0 1

)
.

 step 2, we choose the inverse of mass matrices to be

𝐴(3) =𝑀−1,(3) =
(

1 1∕2
1∕2 1

)
.

age 2: estimate Γ. Once we get the estimation of Σ from stage 1, we set the mass matrix to be 𝑀 = 𝕀𝑑 and set the friction coefficient 
atrix Γ to be
8

2Γ = ΣΣ𝑇 =𝑍.
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put: Target function 𝑉 (𝒒), a step size 𝛿 ∼𝑂(𝜀𝑘).
utput: Effective function 𝑈𝑘(𝒒) ∼𝑂(𝜀𝑘) and effective covariance matrix ΣΣ𝑇 from unresolved scales.
: Stage 1 and 2 : estimate ΣΣ𝑇 and Γ:
Set Γ = 𝛾𝐼 with 0 < 𝛾 ⩽ 0.1, fix the step size 𝛿, run (3.2) with 𝑉 (𝒒) for a total of 𝑑(𝑑+1)

2
independent trajectories using different mass matrices. Solve entries of 

ΣΣ𝑇 via (3.8). Set Γ = ΣΣ𝑇 ∕2.
: Estimate 𝜋𝛿(𝒒) and 𝑈𝑘(𝒒):
Set 𝑀 = 𝐼 , fix the step size 𝛿, run (3.2) with 𝑉 (𝒒) for one trajectory. Estimate the empirical distribution 𝜋𝛿(𝒒) from the data {𝒒𝑛}. Learn 𝑈𝑘(𝒒) via (3.6).

Algorithm 1. Learn effective function 𝑉 =𝑈𝑘 +(𝜀𝑘).

3. Estimate the effective potential

We apply the Verlet scheme (3.2) to the damped mechanical system (3.1) (not kinetic Langevin), with appropriate Γ, for suffi-
ently long, and record the trajectory as {𝒒𝑛, 𝒑𝑛}, i.e. our data. We propose to learn the effective potential 𝑈𝑘 from the invariant 
stribution (3.6), which is

log
(
𝜋𝛿(𝒒)

)
= −log𝑍 + 𝛽𝑈𝑘(𝒒), (3.9)

here 𝜋𝛿(𝒒) is the marginal of invariant distribution, approximated empirically by {𝒒𝑛}. For 1D case, 𝛽 = 1
𝗏𝖺𝗋(𝑝) , while for multi-

mensional case 𝛽 = 1 as Γ is set to satisfy Γ = 1
2ΣΣ

𝑇 .
Learning 𝑈𝑘(𝒒) from data via (3.9) is a function approximation / interpolation problem. There are of course many ways to 
terpolate the data, but since function approximation is not the main point of this paper, we will just pick one approach. Specifically, 
e choose a set of suitable basis functions, for instance the piecewise spline basis, {𝜑𝑖(𝒒)}𝑚𝑖 to approximate 𝑈𝑘(𝒒) by

𝑈𝑘(𝒒) ≈
𝑚∑
𝑖=1

𝑎𝑖𝜑𝑖(𝒒),

here we can solve a regression problem to learn the coefficients {𝑎𝑖}𝑚𝑖=1.

mark 3.6. To apply the method to high-dimensional scenarios, there are at least two aspects that should be considered. One is to 
timate a probability distribution from data, and the other is the computational cost of covariance matrix estimation. The dimension 
pendence for covariance matrix estimation should be polynomial, and this part is thus not a curse of dimensionality because it 
not an exponential dependence. The density estimation, on the other hand, is an important, well-known statistical problem. 
hether there is a curse of dimensionality will depend on the distribution and the estimation method. We feel these questions, albeit 
portant, are beyond the scope of this work, and in this paper we just use some naive method (polynomial fitting), which does face 
curse of dimensionality.

4. Summary of the algorithm

See Algorithm 1.

 Surrogate models and numerical experiments

We now numerically test the efficacy of our approach in two senses. One is about the accuracy of the learned effective function 
(𝒒). The other is about the approximation abilities of derived surrogate models; i.e., if the learned 𝑈𝑘 replaces the full 𝑉 when 
ed in a dynamical setup, how would the resulting dynamics differ. For this latter point, we will illustrate two dynamical setups, 
e being Hamiltonian dynamics and the other being kinetic Langevin, in both cases 𝑉 or 𝑈𝑘 will be the potential. The versions with 
are the surrogate models, whose benefits are that they can be simulated using larger setups, easier to analyze, and sometimes 

ore intuitive to interpret as well.
More precisely, the surrogate models are given by

Hamiltonian:

{
𝒒̇ =𝑀−1𝒑,

𝒑̇ = −∇𝑈𝑘(𝒒),
(4.1)

d

Kinetic Langevin:

{
𝒒̇ =𝑀−1𝒑,

𝒑̇ = −∇𝑈𝑘(𝒒) − Γ𝑀−1𝒑+
√
2Γ𝑑𝑾 𝑡.

(4.2)

r the comparison of the deterministic Hamiltonian system, we will mainly focus on the comparison of the phase portraits (𝒒, 𝒑)
nerated by 𝑉 (𝒒) and 𝑈𝑘(𝒒). For the case of kinetic Langevin, we will compare the equilibrium distribution, mean path (ensemble 
erage of trajectories) and normalized auto-correlation functions (Normalized ACF) of 𝒒. Note that this is not a tautology, as we will 
9

t only inspect the equilibrium aspect of the surrogate model, which should match that of the full model as long as the proposed 
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ding of small-scale for effective noise is correct, but we will also investigate out-of-equilibrium dynamical aspects by comparing 
e mean trajectories and normalized ACF.
(Empirical) mean trajectory is defined as

𝒒̄(𝑡𝑛) =
1
𝑀

𝑀∑
𝓁=1

𝒒(𝓁)(𝑡𝑛), (4.3)

r which we evolve 𝑀 independent trajectories from i.i.d. random initial condition, and 𝒒(𝓁)(𝑡𝑛) denotes the 𝓁-th one of them. We 
so define the normalized ACF as

Normalized ACF(𝜏) = 1
C̃ov(𝒒)

(
𝔼̃[𝒒 𝒒⋅+𝜏 ] − 𝔼̃[𝒒] 𝔼̃[𝒒⋅+𝜏 ]

)
, (4.4)

here C̃ov(𝒒) denotes the covariance of 𝒒 across time as well as the ensembles; and 𝔼̃ denotes the time average with respect to the 
sembles. Here, 𝔼̃[𝒒] approximates 𝔼̂[𝒒], which in the continuous case is defined as

𝔼̂[𝒒] ∶= lim
𝑇→∞

1
𝑀

𝑀∑
𝓁=1

⎛⎜⎜⎝ 1𝑇
𝑇

∫
0

𝒒
(𝓁)
𝑡 𝑑𝑡

⎞⎟⎟⎠ and 𝔼̂[𝒒⋅+𝜏 ] ∶= lim
𝑇→∞

1
𝑀

𝑀∑
𝓁=1

⎛⎜⎜⎝ 1𝑇
𝑇

∫
0

𝒒
(𝓁)
𝑡+𝜏 𝑑𝑡

⎞⎟⎟⎠ .
 the discrete case, an empirical approximation for uniform time-stepping size is defined as

𝔼̃[𝒒] ∶= 1
𝑀

𝑀∑
𝓁=1

1
𝑁

𝑁∑
𝑛=1

𝒒
(𝓁)
𝑡𝑛

and 𝔼̃[𝒒⋅+𝜏 ] ∶=
1
𝑀

𝑀∑
𝓁=1

1
𝑁

𝑁∑
𝑛=1

𝒒
(𝓁)
𝑡𝑛+𝑛𝜏

,

ith 𝑛𝜏 being fixed and satisfying 𝜏 = 𝛿𝑛𝜏 .
Based on the definition of 𝐸, both 𝔼̃[𝒒 𝒒⋅+𝜏 ] and C̃ov are also computed via the empirical approximation across time and ensem-
es:

𝔼̃[𝒒 𝒒⋅+𝜏 ] ∶=
1
𝑀

𝑀∑
𝓁=1

1
𝑁

𝑁∑
𝑛=1

𝒒
(𝓁)
𝑡𝑛

𝒒
(𝓁)
𝑡𝑛+𝑛𝜏

, and C̃ov(𝒒) ∶= 𝔼̃
[(

𝒒 − 𝔼̃[𝒒]
)(

𝒒 − 𝔼̃[𝒒]
)]
.

 the following examples, we will consider two cases: 1) values of {𝜀𝑘} are explicitly known, and 2) values of {𝜀𝑘} are not explicitly 
own.

1. Parameters for numerical tests

Here, we list some numerical parameters which are commonly used in the following numerical tests. For most 1D examples, we 
 the total number of time steps to be 𝑁𝑡 = 5 × 109 and we set the scalar friction constant to be 𝛾 = 0.1. For 2D examples, we fix 
e total number of time steps to be 𝑁𝑡 = 2 × 107, and use the Algorithm 1 to match the friction matrix and diffusion coefficient 
cording to (2.7). In all examples of both dimensions, the time step size 𝛿 will be chosen according to the scale of interest 𝜀𝑘. When 
nsidering the effectiveness of surrogate Hamiltonian (4.1), we only generate one trajectory to compare the results of phase portrait. 
 the other hand, when comparing the Langevin system (4.2), we will use standard normal distributed initial conditions for (𝒒, 𝒑)

 generate 𝑀 = 4000 independent trajectories on time interval [0, 𝑇 ].

2. One-dimensional examples with values of scales known

. Test 1: quadratic potential. We first consider a simple three-scale function, given by a quadratic (1) component modulated 
by two smaller periodic scales

𝑉 (𝑞) = 𝑞2

2
+ 𝜀1 sin(𝑞∕𝜀1) + 𝜀2 sin(𝑞∕𝜀2) with (𝜀1, 𝜀2) = (0.05, 0.001). (4.5)

We run the scheme (3.2) with various time step sizes 𝛿 and plot the learnt functions in Fig. 2. Notice that for 𝛿 = 0.5, the learned 
potential greatly resembles 𝑈0 =

𝑞2

2 , and for 𝛿 = 0.065, the learned potential greatly resembles 𝑈1 =
𝑞2

2 +0.05 sin(𝑞∕0.05). Clearly, 
numerical step size as 𝛿 acts as a scaling filter to select the resolution of observed data.
Based on learnt 𝑈0, we run the surrogate Hamiltonian (4.1) and the surrogate Langevin system (4.2) using 𝑈0(𝑞) with 𝛿 = 0.1, 
and compare the simulations results using 𝑉 (𝑞) with ℎ = 5𝑒 − 4 for the Hamiltonian and Langevin dynamics, respectively. As 
mentioned above, we compare the phase portrait for the Hamiltonian system, the equilibrium distribution, mean trajectory (4.3)
and normalized ACF (4.4). The results are summarized in Fig. 3. For this quadratic example, we see that the surrogate models 
using 𝑈0(𝑘) work well regarding capturing both statistics.

. Test 2: double-well potential. We next consider a three-scale function with its macroscopic component being a non-convex 
double-well function, instead of the previously considered convex quadratic function, and assume that we know the two small 
10

scales explicitly
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. 2. The plots of learnt functions from simulated data with various time step sizes 𝛿 and the reference function 𝑈𝑘(𝑞). The exact function of full scales is 
𝑞) = 𝑞2

2
+ 𝜀1 sin(𝑞∕𝜀1) + 𝜀2 sin(𝑞∕𝜀2). Parameters are (𝜀1, 𝜀2) = (0.05, 0.001). (For interpretation of the colors in the figure(s), the reader is referred to the web 

rsion of this article.)

. 3. Fig (a): Comparison on the surrogate Hamiltonian (4.1) via 𝑈0(𝑞) with 𝛿 = 0.1 and via 𝑉 (𝑞) with ℎ = 5𝑒 −4. Fig (b)-(d): Comparison on the surrogate Langevin 
2) via 𝑈0(𝑞) with 𝛿 = 0.1 and via 𝑉 (𝑞) with ℎ = 5𝑒 −4. 𝑉 (𝑞) = 𝑞2

2
+𝜀1 sin(𝑞∕𝜀1) +𝜀2 sin(𝑞∕𝜀2). Parameters are (𝜀1, 𝜀2) = (0.05, 0.001) and 𝑇 = 50, initial distributions 

 (𝑞, 𝑝) ∼ (−2, 1).

𝑉 (𝑞) = (𝑞 − 1)2 (𝑞 + 1)2∕4 + 𝜀1 sin(𝑞∕𝜀1) + 𝜀2 sin(𝑞∕𝜀2) with (𝜀1, 𝜀2) = (0.025,0.001). (4.6)

Similar to the quadratic example, we learnt 𝑈𝑘(𝑞) at each scale by choosing different time-stepping size 𝛿. The results of learnt 
𝑈𝑘 with respect to various step sizes are plotted in Fig. 4. We do capture scales of 𝜀0 and 𝜀1 by employing suitable 𝛿 for (3.2).
We next compare the performances of surrogate models via 𝑈0 verse 𝑉 (𝑞) for both Hamiltonian and Langevin. The results are 
summarized in Fig. 5. We still observe very good match from the plots.

3. 1D example with lots of scales but no clear separation between adjacent scales

Practical problems are oftentimes multiscale but without a sharp scale separation (two famous examples are fluid and molecular 
namics). Typically there is a wide range of scales, where adjacent two scales are not well separated but the largest and smallest 
11

ale are very well separated. To consider a simplified version where the focus is just to decompose a multiscale function, we 
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. 4. The plots of learnt functions from simulated data with various time step sizes 𝛿 and the reference function 𝑈𝑘(𝑞). The exact function of full scales is 
𝑞) = (𝑞2−1)2

4
+ 𝜀1 sin(𝑞∕𝜀1) + 𝜀2 sin(𝑞∕𝜀2). Parameters are (𝜀1, 𝜀2) = (0.025, 0.001).

. 5. Fig (a): Comparison on the surrogate Hamiltonian (4.1) via 𝑈0(𝑞) with 𝛿 = 0.1 and via 𝑉 (𝑞) with ℎ = 5𝑒 −4. Fig (b)-(d): Comparison on the surrogate Langevin 
2) via 𝑈0(𝑞) with 𝛿 = 0.1 and via 𝑉 (𝑞) with ℎ = 5𝑒 −4. 𝑉 (𝑞) = (𝑞2 − 1)2∕4 + 𝜀1 sin(𝑞∕𝜀1) + 𝜀2 sin(𝑞∕𝜀2) with (𝜀1 , 𝜀2) = (0.025, 0.001). 𝑇 = 50, initial distributions for 
 (−2, 1) and 𝑝 ∼ (0, 1).

vestigate again problem (1.1), however with 1 ≳ 𝜀1 ≳⋯ ≳ 𝜀𝐾 and 1 ≫𝜀𝐾 . Suppose 𝛿 is chosen at scale 𝑘, i.e. 𝛿 ≈ 𝜀𝑘, the effective 
nction should not be exactly 𝑉0(𝑞) +

∑𝑘
𝑗=1 𝑉𝑗,𝜀𝑗 , but with some additional correction as percolated from nearby smaller scales 𝜀𝑘+1 , 

c. However, there is no clear or unique theoretical justification on how this correction works. We would like to inspect what our 
proach would produce in this case, and how the corresponding surrogate model approximates the original full model.
For this purpose, we consider a toy test problem

(𝑞 − 𝜋∕2)2 𝑁∑ cos(𝑖2 × 𝑞)
12

𝑉 (𝑞) =
4

+
𝑖=1 𝑖2

. (4.7)
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Fig. 6. Zoomed-in plot of 𝑉 (𝑞) = (𝑞−𝜋∕2)2

4
+
∑𝑁

𝑖=1
cos(𝑖2 𝑞)
𝑖2

with different values of 𝑁 .

Fig. 7. Learning potentials 𝑈𝑘(𝑞) at different scales. The exact potential is 𝑉 (𝑞) ∶= (𝑞−𝜋∕2)2

4
+
∑20
𝑖=1 cos(𝑖

2 × 𝑞)∕𝑖2 .

demonstration of the exact potential at different scales can be found in Fig. 6. Notice that different 𝑖’s (besides the 1st term) only 
minally correspond to different scales. While adjacent scales are close to each other, when 𝑁 is large, 𝑉 (⋅) clearly exhibits a wide 
nge of well separated scales. In addition, one cannot directly read off {𝜀𝑘} and 𝑈𝑘(𝑞) from the expression of 𝑉 (𝑞), because different 
 can contribute to the same scale (and other scales too) due to a lack of clear scale separation. Instead, it is reasonable to postulate 
e existence of some hidden functions that represent different scales.
To learn the mesocale {𝑈𝑘(𝑞)} at various scales, we fix 𝛾 = 0.5, mass 𝑀 = 1 and choose the total number of time steps to be 

𝑡 = 5 × 109. We find several scales of potential functions via tuning the step sizes 𝛿. The results are present in Fig. 7. We note from 
ulation that there is a macroscopic scale 𝜀0 around 𝜀0 ∼ 𝛿 = 0.65 as the learnt function is close to the referenced 𝑁 = 0. The 
o following scales corresponding to 𝑁 = 1 and 𝑁 = 2 are around 𝜀1 ∼ 𝛿 = 0.2601 and 𝜀2 ∼ 𝛿 = 0.1309. The numerical separation 
tween 𝜀1 and 𝜀2 is not as clear as those at 𝜀0 (i.e., 𝑁 = 0). In fact, 𝜀1 and 𝜀2 are just weakly separated due to the narrow value 
p in 𝑉 (𝑞) between 𝑁 = 1 and 𝑁 = 2. Moreover, as demonstrated in Fig. 8, the accuracy of surrogate Hamiltonian and Langevin 
odels constructed by our learning algorithm is better than those constructed by a simple truncation of objective function due to the 
ixed scales among the truncation.

4. 2D quadratic function with anisotropic small scale

We now consider multi-dimensional examples. Throughout these examples, we will assume zero knowledge about how 𝑉 decom-
ses in scales even though we wrote down its expression analytically.
The first one is a two-dimensional quadratic potential, 𝒒 = (𝑥, 𝑦) with one known anisotropic small scale

𝑉 (𝑥, 𝑦) = 𝑉0 + 𝑉1

= 1
4
(2𝑥+ 𝑦− 1)2 + (𝑥− 𝑦− 1)2 + 𝜀

(
sin(𝑥∕𝜀) + sin ((𝑥+ 𝑦)∕𝜀)

)
, 𝜀 = 10−5.

(4.8)

e apply the two-stage Algorithm 1 with 𝛿 = 0.01 and 𝑁𝑡 = 2 × 107 to learn the macroscopic potential 𝑈0 = 𝑉0(𝑥, 𝑦). During stage 
 the scalar friction 𝛾 is chosen to be 𝛾 = 0.15. During stage 2, we estimate the variance of small scale contributions and set Γ
cordingly. We then compare the learning function from using 𝛾𝐼 only with that from the two-stage algorithm. The results are 
mmarized in Fig. 9. We emphasize the mismatch of green trajectory data is generated without normalizing the variance of small 
13

ale, whereas the data from two-stage simulation can capture the macroscopic 𝑈0 very well.
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. 8. Fig (a): Comparison on the surrogate Hamiltonian (4.1) via 𝑈0(𝑞) with 𝛿 = 0.1309 and via 𝑉 (𝑞) with ℎ = 1𝑒 − 3. Fig (b)-(d): Comparison on the surrogate 
ngevin (4.2) via 𝑈0(𝑞) with 𝛿 = 0.1309 and via 𝑉 (𝑞) (4.7) for 𝑁 = 20 as well as the truncated version 𝑁 = 2 with ℎ = 1𝑒 − 3. The initial distributions for 
 (−1∕2, 1∕2) + 0.38 and 𝑝 ∼ (−1∕2, 1∕2) with  presenting uniform distribution.

. 9. Learning results of macroscopic 𝑈0 . The exact potential is given in (4.8) and the step size is 𝛿 = 0.01. Left: the green data represents trajectory generated via 
 scalar friction 𝛾𝐼 with 𝛾 = 0.15 only; and the red data represents trajectory generated via the two-stage Algorithm 1. Right: zoomed-in view of the two-stage 
rning potential results.

5. 2D Müller-Brown potential with one known anisotropic small scale

Müller-Brown potential is a common toy model used in molecular dynamics research, due to its high nonlinearity and the existence 
 multiple minima. We now consider the macrosopic potential to be a modification of Müller-Brown potential, and the microscopic 
ale to be some anisotropic toy function. More precisely, consider

𝑉 (𝑥, 𝑦) = 𝑉0(𝑥, 𝑦) + 𝑉1(𝑥, 𝑦),

𝑉0(𝑥, 𝑦) = 0.1 ×
(
𝑉𝑞(𝑥, 𝑦) + 𝑉𝑚(𝑥, 𝑦)

)
,( ( ) ( )) −5

(4.9)
14

𝑉1(𝑥, 𝑦) = 𝜀 sin 𝑥∕𝜀 + sin (−𝑥+ 𝑦)∕𝜀 , 𝜀 = 10 ,
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. 10. Learning results of macroscopic 𝑈0 at three wells. The exact potential is given in (4.9) and the simulation step size is 𝛿 = 0.05163. The three wells of 
(𝑥, 𝑦) = 𝑉0 are learnt simultaneously.

here 𝑉𝑞(𝑥, 𝑦) is a simple quadratic potential 𝑉𝑞(𝑥, 𝑦) = 35.0136(𝑥 − 𝑥∗𝑐 )
2 + 59.8399(𝑦 − 𝑦∗𝑐 )

2, and 𝑉𝑚(𝑥, 𝑦) denotes the Müller-Brown 
tential

𝑉𝑚(𝑥, 𝑦) = − 200exp
(
− (𝑥− 1)2 − 10𝑦2

)
− 100exp

(
− 𝑥2 − 10(𝑦− 0.5)2

)
− 170exp

(
− 6.5(𝑥+ 0.5)2 + 11(𝑥+ 0.5)(𝑦− 1.5) − 6.5(𝑦− 1.5)2

)
+ 15exp

(
0.7(𝑥+ 1)2 + 0.6(𝑥+ 1)(𝑦− 1) + 0.7(𝑦− 1)2

)
.

re, (𝑥∗𝑐 , 𝑦
∗
𝑐 ) denotes the center of the middle well of 𝑉𝑚 . Notice that 𝑉𝑞(𝑥, 𝑦) is introduced so that the depths of all three wells of 

e modified Müller-Brown (MB) function are better leveled to each order. This is because, the original Müller-Brown without modi-
ation has three local minima with very different function values, and therefore at the thermal equilibrium (i.e. Gibbs distribution) 
me potential well is exponentially less likely visited than the others, which both reduces the learning accuracy of the corresponding 
ode and makes visualization difficult.
We apply the two-stage Algorithm with 𝛿 = 0.05163 and 𝑁𝑡 = 1 × 108 to learn the macroscopic scale 𝑈0 = 𝑉0(𝑥, 𝑦). In the stage 1, 
e scalar friction 𝛾 is chosen to be 𝛾 = 0.014. The results are summarized in Fig. 10. Note that we can learn all three energy wells at 
e same time with the existence of anisotropic small scale components.

 Conclusion, discussion, and future possibilities

In this study, we introduced a novel algorithm for decomposing and learning every scale of a given multiscale objective function in 
ulti-dimensions. Our method leverages the controllable algorithmic implicit bias inherent in the stochasticity of large learning rate 
adient descent, thus facilitating the automatic generation of distinct data sets across varying scales. Upon successfully decomposing 
e multiscale objective function, many applications can be enabled. As a demonstration, we constructed a surrogate model aligned 
ith the equilibrium distribution and dynamic mean path and auto-correlation of data produced by the original objective function 
 the scale of interest.
Additionally, we devised a two-stage algorithm to segregate variables of interest within an anisotropic stochastic forcing environ-
ent. By adjusting the system’s mass tensor, we estimated the covariance of the stochastic forcing, and an appropriate friction matrix 
uld be chosen to bring the equilibrium distribution back towards a Gibbs distribution, which possesses an analytical expression.
Meanwhile, the proposed strategy has certain limitations. The first limitation is the statistical accuracy due to finite samples. 
tailed choices for the function fitting also matter; for example, the effective potential can only be resolved to the scale dictated 
 the bin width, and which (parameterized) model to use for the regression makes a difference. Although these are all generic and 
ndard problems, we would still like to point them out, because a consequence is, the current implementation requires a large 
ount of (self-generated) data.
The second limitation is that the performance of the proposed method depends on various hyperparameters. For instance, to 

arn the objective function 𝑈𝑘 at scale 𝜀𝑘, the step size (learning rate) 𝛿 needs to be around 𝜀𝑘. When the scale separation is large, 
., 𝜀𝑘 ≫ 𝜀𝑘+1, the choice of 𝛿 is relatively flexible as demonstrated in examples of Subsection 4.2, 4.4 and 4.5. When the scale 
paration is narrow, the tuning of 𝛿 becomes more subtle as demonstrated in Subsection 4.3 and Fig. 7. The data size also needs 
 be sufficiently large to reduce statistical errors from simulation and estimation. The artificial mass tensor 𝑀 needs to be chosen 
 balance the numerical stability and the efficiency of sampling. The empirically tuned 𝑀 , as suggested in Remark 3.5, appears to 
ork well in our experiments.
Moreover, the selection of hyperparameters and the global learning performance of the proposed method depend on the energy 
rriers of the macroscopic objective function. When there are no energy barriers or the energy barriers are of order 𝑂(1) in 𝑉0, 
15

e typically select a mass tensor 𝑀 with entries 𝑀𝑖𝑗 ∈ [1∕2, 1], set 𝛽 = 1, and choose a suitable step size 𝛿 to achieve good global 
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arning results for a wide range of initial conditions (𝒒0, 𝒑0). However, when the energy barriers are large, it may be nontrivial to 
d hyperparameter values and a simulation step size 𝛿 for effectively learning the objective function globally.
Possible future directions include 1) to explore more statistical tools to have better estimation of 𝜋𝛿 and more robust regression 

 𝑈𝑘(𝒒), and 2) to derive a priori error estimate of learning 𝑈𝑘 in terms of various problem and hyper parameters settings.
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