
Zeroth-Order Sampling Methods for

Non-Log-Concave Distributions: Alleviating

Metastability by Denoising Diffusion

Ye He
Georgia Institute of Technology

yhe367@gatech.edu

Kevin Rojas
Georgia Institute of Technology
kevin.rojas@gatech.edu

Molei Tao
Georgia Institute of Technology

mtao@gatech.edu

Abstract

This paper considers the problem of sampling from non-logconcave distribution,
based on queries of its unnormalized density. It first describes a framework,
Denoising Diffusion Monte Carlo (DDMC), based on the simulation of a denoising
diffusion process with its score function approximated by a generic Monte Carlo
estimator. DDMC is an oracle-based meta-algorithm, where its oracle is the
assumed access to samples that generate a Monte Carlo score estimator. Then we
provide an implementation of this oracle, based on rejection sampling, and this turns
DDMC into a true algorithm, termed Zeroth-Order Diffusion Monte Carlo (ZOD-
MC). We provide convergence analyses by first constructing a general framework,
i.e. a performance guarantee for DDMC, without assuming the target distribution
to be log-concave or satisfying any isoperimetric inequality. Then we prove that
ZOD-MC admits an inverse polynomial dependence on the desired sampling
accuracy, albeit still suffering from the curse of dimensionality. Consequently,
for low dimensional distributions, ZOD-MC is a very efficient sampler, with
performance exceeding latest samplers, including also-denoising-diffusion-based
RDMC and RSDMC. Last, we experimentally demonstrate the insensitivity of
ZOD-MC to increasingly higher barriers between modes or discontinuity in non-
convex potential.

1 Introduction

The problem of drawing samples from a distribution based on unnormalized density ∝ exp(−V)
(described by the potential V) is a fundamental statistical and algorithmic problem. This classical
problem nevertheless remains as a research frontier, providing pivotal tools to applications such as
decision making, statistical inference / estimation, uncertainty quantification, data assimilation, and
molecular dynamics. Worth mentioning is that machine learning could benefit vastly from progress
in sampling as well, not only because of its connection to inference, optimization and approximation,
but also through modern domains such as diffusion generative modeling & differential privacy.

Recent years have seen rapid developments of sampling algorithms with quantitative and non-
asymptotic theoretical guarantees. Many of the results are either based on discretizations of diffusion
processes [12, 13, 50, 16, 34, 33] or gradient flows [38, 10, 22]. In order to develop such guarantees,
it is necessary to make assumptions about the target distributions, for instance, that it satisfies an
isoperimetric property, where standard requirements are log-concavity or functional inequalities

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

[12, 56, 21, 8, 48]. However, there is empirical evidence that the corresponding algorithms struggle
to sample from targets that have high barriers between modes that create metastability. Overcoming
such issues is highly nontrivial and researchers have continued to develop new methods to tackle
these problems.

Diffusion models have lately shown remarkable ability in the generative modeling setting, with
applications including image, video, audio, and macromolecule generations. This created a wave
of theoretical work that showed the ability of diffusion models to sample from distributions under
minimal assumptions [14, 57, 5, 32, 29, 4, 11, 3]. However, these works all started with the assumption
that there is access to an approximation of the score function with some accuracy. This is a reasonable
assumption for the task of generative modeling when one spends enough efforts on the training of the
score, but the task of sampling is different. A natural question is: can we leverage the insensitivity of
diffusion models to multimodality to efficiently sample from unnormalized, non-log-concave density?
This would require approximating the score, which is then used as an inner loop inside an outer loop
that integrates reverse diffusion process to transport, e.g., Gaussian initial condition, to nearly the
target distribution.

The seminal works by [26, 27, 20] try to answer this question using Monte Carlo estimators of the
score function and to provide theoretical guarantees. We also mention earlier work by [53] which
learns parameterized scores and more work along the same line by [58, 44, 54, 55], whose theoretical
guarantees are less clear but are based other interesting ideas. [26] proposed Reverse Diffusion
Monte Carlo (RDMC), which estimates the score via LMC algorithm and relaxes the isoperimetric
assumptions in the analysis of traditional sampling algorithms. [20] proposed a similar method,
stochastic localization via iterative posterior sampling (SLIPS), which approximate the score via
Metropolis-adjusted Langevin algorithm (MALA). However, both methods rely on the usage of
a small time window where isoperimetric properties hold. This leaves the problem of finding a
good initialization for the diffusion process. To alleviate this issue, [27] developed an acceleration
of RDMC, the Recursive Score Diffusion-based Monte Carlo (RSDMC), which improves the non-
asymptotic complexity to be quasi-polynomial in both dimension and inverse accuracy and gets rid of
any isoperimetric assumption. Such work provides strong theoretical guarantees, however it requires
a lot of computational power to get a high accuracy sampler. Additionally, RDMC, SLIPS and
RSDMC are all based on first-order queries (i.e. gradients of V), which brings extra computational
and memory costs, in addition to requiring a continuous differentiable V . Motivated by these two
observations, we create a sampler that only makes use of zeroth-order queries without assuming any
isoperimetric conditions on the target distribution. Our contributions can be summarized as follows.

• We introduce an oracle-based meta-algorithm DDMC (Denoising Diffusion Monte Carlo)
and provide a non-asymptotic guarantee in KL-divergence in Theorem 1. Our result provides
theoretical insight on the choice of optimal step-size in DDMC as well as in denoising diffusion
models (Sec. 3.2).

• We develop a novel algorithm ZOD-MC (Zeroth Order Diffusion-Monte Carlo) that uses
zeroth-order queries and the global minimal value of the potential function to generate samples ap-
proximating the target distribution. In Corollary 3.1, we establish a zeroth-order query complexity
upper bound for general target distributions satisfying mild smoothness and moment conditions.
Our result is summarized and compared to other sampling algorithms in Table 5.

• The advantages of our algorithm are experimentally verified for non-log-concave target distribu-
tions. We demonstrate the insensitivity of our algorithm to various high barriers between modes,
and the ability of correctly account for discontinuities in the potential.

2 Preliminaries

2.1 Diffusion Model

Diffusion model generates samples that are similar to training data, by requiring the generated data to
follow the same latent distribution p as the training data. To do so, it considers a forward noising

1Assumption [A4] in [26] is a soft version of strongly log-concave outside a ball.
2This criterion measures the KL-divergence from the output distribution to a distribution that is closed to

the target distribution in Wasserstein-2 distance. This criterion is considered in analyzing denoising diffusion
models with step-size that accommodates the early stopping technique, see [4, 3]. This criterion does not apply
to RDMC/RSDMC since they don’t use early stopping and instead assume the target distribution to be smooth
and fully supported on R

d. See Sec.3.3 for more discussions.

2

Algorithms Queries Assumptions Criterion Oracle Complexity

LMC first-order LSI KL O(dε−1)

RDMC first order soft log-concave1 TV exp(O(log(d))Õ(ε−1))

RSDMC first-order None KL exp(O(log3(dε−1)))
Proximal Sampler zeroth-order log-concave KL O(dε−1)

ZOD-MC zeroth-order None KL +W2
2 exp(Õ(d)O(log(ε−1)))

Table 1: Comparison of ZOD-MC to LMC, RDMC, RSDMC and the Proximal Sampler: Summary
of isoperimetric assumptions and oracle complexities to generate a ε-accurate sample under different

criterion. Õ hides polylog(dε−1) factors. The zeroth-order oracle complexity of ZOD-MC is from
Corollary 3.1 for achieving both ε KL and ε W2 errors. These theoretical results suggest that in the
absense of isoperimetric assumptions, ZOD-MC excels in low-dimensions.

process that transforms a random variable into Gaussian noise. One most commonly used forward
process is (a time reparameterization of) the Ornstein-Uhlenbeck (OU) process, given by the SDE:

dXt = −Xtdt+
√
2dBt, X0 ∼ p, (1)

where {Bt}t≥0 is the standard Brownian motion in R
d. The OU process that solves (1) is in

distribution equivalent to a sum of two independent random vectors: Xt = e−tX0 +
√
1− e−2tZ

where (X0, Z) ∼ p⊗ γd and γd is the standard Gaussian distribution in R
d. Denote pt = Law(Xt)

for all t ≥ 0. If we consider a large, fixed terminal time T of (1), then pT is close to γd. Then,
the denoising or backwards diffusion process, {X̄t}0≤0≤T , can be constructed by reversing the OU

process from time T , meaning that Law(X̄t) := Law(XT−t) for all t ∈ [0, T]. By doing so we
obtain the denoising diffusion process which solves the following SDE:

dX̄t = (X̄t + 2∇ log pT−t(X̄t))dt+
√
2dB̄t, X̄0 ∼ pT , 0 ≤ t ≤ T, (2)

where {B̄t}0≤t≤T is a Brownian motion in R
d, independent of {Bt}0≤t≤T and ∇ ln pt is usually

referred as the score function for pt. Although the denoising process initializes at pT , we can’t
generate exact samples from pT . In practice, people consider the standard Gaussian initialization
γd due to the fact that pT is close to γd when T is large. The denosing process with the standard
Gaussian initialization is given by

dX̃t = (X̃t + 2∇ log pT−t(X̃t))dt+
√
2dB̄t, X̃0 ∼ γd, 0 ≤ t ≤ T. (3)

By simulating this denoising process (3), we can achieve the goal of generating new samples.
However, the denoising process (3) can’t be simulated directly due to the fact that the score function
is not explicitly known. A widely applied method to solve this issue is to learn the score function
through denoising score matching [51, 24, 52]. Given a learned score, denoted as s(t, x), one can
simulate the denoising diffusion process using discretizations like the Euler Maruyama or some
exponential integrator. From a theoretical perspective, assuming the learned score satisfies

Ex∼pt

[
∥s(t, x)−∇ ln pt(x)∥2

]
≤ ϵ2score, ∀ 0 ≤ t ≤ T, (4)

non-asymptotic convergence guarantees for diffusion models are obtained in [5, 3, 4, 11]. For
instance, in [3], polynomial iteration complexities were proved without assuming any isoperimetric
property of the data distribution and only assuming the data distribution has a finite second moment
and a score estimator satisfying (4) is available.

In this work, we consider instead the sampling setting, in which no existing samples from the target
distribution is available. Our sampling algorithm and theoretical analysis are motivated from the
denoising diffusion process given by (2) and its corresponding discretization through the exponential
integrator in Algorithm 1. In particular, we first introduce an oracle-based meta-algorithm, DDMC,
which integrates Algorithm 1 and Algorithm 2, where the exponential integrator scheme of (2) is
applied to generate samples and the score function is approximated by a Monte Carlo estimator
assuming independent samples from a conditional distribution are available.

2.2 Rejection Sampling and Restricted Gaussian Oracle

Rejection sampling is a popular Monte Carlo method for sampling a target distribution, p, based on
the zeroth-order queries of the potential V . It requires that we have access to the potential function

3

Algorithm 1: Denoising Diffusion Sampling via Exponential Integrator

Input :N ∈ Z+, 0 = t0 < · · · < tN = T − δ, score estimator {s(T − tk, ·)}N−1
k=0 .

Output :xN .
generate a sample x0 ∼ γd;
for k = 0, 1, · · · , N − 1 do

generate ξk ∼ γd such that ξk is independent to ξ0, · · · , ξk−1;

xk+1 ← etk+1−tkxk + 2(etk+1−tk − 1)s(T − tk, xk) +
√
e2(tk+1−tk) − 1ξk.

end

Vµ of some other distribution µ, such that µ is easy to sample from and exp(−V) ≤ exp(−Vµ)
globally. Such a distribution µ is typically called an envelope for the distribution p. With an envelope
ν, rejection sampling generates samples from p by running the following algorithm till acceptance:

1. Sample X ∼ µ,

2. Accept X with probability exp(−V (X) + Vµ(X)).

The rejection sampling is considered as a high-accuracy algorithm as it outputs a unbiased sample
from the target distribution. However, despite such a remarkable property, it has drawbacks. First, it
is a nontrivial task to find an envelope for a general target distribution. Second, rejection sampling
usually suffers from “curse of dimensionality”. Even for strongly logconcave target distributions, the
complexity of the rejection sampling increases exponentially fast with the dimension: in expectation

it requires κd/2 many rejections before one acceptance, where κ is the condition number for the
potential V , see [9].

The Restricted Gaussian Oracle (RGO), which was first introduced in [31], assumes that an accurate

sample from distribution π(·|y) ∝ exp
(
− V (·) − 1

2η ∥· − y∥2
)

can be generated for any y ∈ R
d,

η > 0 and any potential V . Implementing the RGO is challenging. It is usually done by rejection
sampling. However, most proposed methods [36, 18], are only suitable for small η.

Our proposed sampling algorithm, ZOD-MC applies the rejection sampling (Algorithm 3) to imple-
ment the RGO with a large value of η. Details on ZOD-MC are introduced in Section 3.1.

3 Denoising Diffusion Monte Carlo Sampling

In this section, we first introduce DDMC and ZOD-MC in Section 3.1. Then we provide a convergence
guarantee for DDMC in Section 3.2. Last, in Section 3.3, we establish the zeroth-order query
complexity of ZOD-MC. Note DDMC is a meta-algorithm that still requires an implementation of its
oracle, and ZOD-MC is an actual algorithm that contains such an implementation. The theoretical
guarantee of ZOD-MC (Sec. 3.3), therefore, is based on the analysis framework of DDMC (Sec. 3.2).

3.1 Denoising Diffusion Monte Carlo and Zeroth-Order Diffusion Monte Carlo

Denoising Diffusion Monte Carlo (DDMC). Let’s start with a known but helpful lemma on score
representation, derivable from Tweedie’s formula [45].

Lemma 1. Let {Xt}t≥0 be the solution to the OU process (1) and pt = Law(Xt). Then for all
t > 0,

∇ ln pt(x) = Ex0∼p0|t(·|x)
[
e−tx0−x
1−e−2t

]
, (5)

where p0|t(·|x) ∝ exp
(
− V (·)− 1

2

∥·−etx∥2
e2t−1

)
is the distribution of X0 conditioned on {Xt = x}.

This lemma was for example applied in [26] to do sampling based on the denoising diffusion process
in (2). For the sake of completeness, we include its proof in Appendix C.5.

Due to (5), to approximate the score function∇ ln pt(x), it suffices to generate samples that approxi-
mate p0|t(·|x). [26, 27] proposed to use Langevin-based algorithms to sample from p0|t(·|x). The
first step of our work is to generalize this, with refined and more general theoretical analysis later

on, by considering an oracle algorithm, DDMC, which assumes independent samples {zt,i}n(t)i=1 that

4

Algorithm 2: Monte Carlo Score Estimation

Input :t ∈ (0, T], x ∈ R
d, n(t) ∈ Z+, δ(t) > 0.

Output :s(t, x).

Oracle : generate independent {zt,i}n(t)i=1 such that W2(Law(zt,i), p0|t(·|x)) ≤ δ(t).

s(t, x)← 1
n(t)

∑n(t)
i=1

x−e−tzt,i
1−e−2t .

approximate p0|t(·|x) are available. The Monte Carlo score estimator in Algorithm 2 is given by

s(t, x) =
1

n(t)

n(t)
∑

i=1

e−tzt,i − x

1− e−2t
, (6)

where n(t) is the number of samples and δ(t) is such that W2(Law(zt,i), p0|t(·|x)) ≤ δ(t) for all i.
In Section 3.2, we will discuss how the performance of sampling depends on n(t), δ(t).

Zeroth-Order Diffusion Monte Carlo (ZOD-MC). Noticing that in Lemma 1, the conditional
distribution has a structured potential function: a summation of the target potential and a quadratic
function. Therefore, implementing the oracle in DDMC is equivalent to implementing RGO with
y = etx and η = e2t − 1. Based on this, we propose ZOD-MC, a novel methodology based on
rejection sampling and DDMC. Rejection samplng (Algorithm 3) can generate i.i.d. Monte Carlo
samples required in Algorithm 2. Therefore, ZOD-MC, as a combination of rejection sampling and
DDMC, can efficiently sample from non-logconcave distributions. See Appendix B for more details.

Algorithm 3: Rejection Sampling: generating {zt,i}n(t)i=1 in Algorithm 2

Input : x ∈ R
d, zeroth-order queries of V .

Output :z.
while TRUE do

Generate (ξ, u) ∼ γd ⊗ U [0, 1];

z ← etx+
√
e2t − 1ξ;

return z if u ≤ exp(−V (z) + V ∗);
end

Remark 1. (Remark on the optimization step) In theory, we assume an oracle access to the minimum
value of V . However, in practice we use Newton’s method to find a local minimum. Throughout the
sampling process we update the local minimum as we explore the search space.

Remark 2. (Parallelization) Notice that Algorithm 3 can be run in parallel to generate all the n(t)
samples required to compute the score. Contrary to methods like LMC that have a sequential nature,
this allows our method to be more computationally efficient and reduce the running time. This is a
feature that RDMC or RSDMC doesn’t benefit as much from.

3.2 Convergence of DDMC

Our oracle-based meta-algorithm, DDMC, provides a framework for designing and analyzing sam-
pling algorithms that integrate the denoising diffusion model and the Monte Carlo score estimation.
In this section, we first present an error analysis to the Monte Carlo score estimation in Proposition
3.1, whose proof is in Appendix C.3. After that, we leverage our result in Proposition 3.1 and provide
a non-asymptotic convergence result for DDMC in Theorem 1, whose proof is in Appendix C.4.

Proposition 3.1. Let {Xt}t≥0 be the solution of the OU process (1) and pt = Law(Xt) for all t > 0.

If we define s(t, x) = 1
n(t)

∑n(t)
i=1

e−tzt,i−x
1−e−2t with {zt,i}n(t)i=1 being a sequence of independent random

vectors such that W2(Law(zt,1), p0|t(·|x)) ≤ δ(t) for all t > 0 and x ∈ R
d, then we have

E
[
∥∇ ln pt(Xt)− s(t,Xt)∥2

]
≤ e−2t

(1−e−2t)2 δ(t)
2 + 1

n(t)
e−2t

(1−e−2t)2Covp(x). (7)

Choice of δ(t) and n(t). The error bound in (7) helps choose the accuracy threshold δ(t) and the
number of samples n(t) to control the score estimation error over different time. In fact, when

5

t increases, it requires less samples and allows larger sample errors to get a good Monte Carlo
score estimator. If we assume Covp(x) = O(d) for simplicity, then when t is small, the factor

e−2t

(1−e−2t)2 = O(t−2) and the choice of δ(t) = O(tε) and n(t) = Ω(dt−2ε−2) will lead to the

L2-error of order O(ε2). When t is large, the factor e−2t

(1−e−2t)2 = O(e−2t) and it only requires

δ(t) = O(etε) and n(t) = Ω(de−2tε−2) to ensure the L2-error is of order O(ε2). In the latter case,
the δ(t) is of a larger order and n(t) is of a smaller order than the first case.

We now analyze the convergence of DDMC. Recall that Algorithm 1 is an exponential integrator
discretization scheme of (2) with the time schedule 0 = t0 < t1 < · · · < tN = T − δ for some δ > 0.

In each iteration, xk+1 = etk+1−tkxk +2(etk+1−tk − 1)s(T − tk, xk)+
√
e2(tk+1−tk) − 1ξk, where

ξk ∼ γd and s(T − tk, ·) is the Monte Carlo score estimator generated by Algorithm 2. The trajectory
of Algorithm 1 can be piece-wisely characterized by the following SDEs: for all t ∈ [tk, tk+1),

dX̃t = (X̃t + 2s(T − tk, X̃tk)dt+
√
2dB̃t, X̃0 ∼ γd, X̃tk = xk. (8)

Therefore, the convergence of DDMC is equivalent to the convergence of the process {X̃t}0≤t≤tN ,
which could be quantified under mild assumptions on the target distribution. Next, we present the
moment assumption on the target distribution and our non-asymptotic convergence theorem.

Assumption 3.1. The distribution p has a finite second moment: Ex∼p[∥x∥2] = m2
2 <∞.

Theorem 1. Assume that the target distribution satisfies Assumption 3.1. Let {Xt}t≥0 be the solution

of (1) with pt := Law(Xt) and {X̃t}t≥0 be the solution of (8) with qt := Law(X̃t). For any
δ ∈ (0, 1) and T > 1, let 0 = t0 < t1 < · · · < tN = T − δ be a time schedule such that
γk = Θ(γk−1) for all k = 0, 1, · · · , N − 1, where γk := tk+1 − tk. Then

KL(pδ|qtN) ≲ (d+m2
2)e

−2T

︸ ︷︷ ︸
I

+

N−1∑

k=0

γke
−2(T−tk)

(1−e−2(T−tk))2

(

δ(T − tk)
2 +

m2
2

n(T−tk)

)

︸ ︷︷ ︸
II

+
m

2
2e

−2T γ0

(1−e−2T)2
+

N−1∑

k=1

(d+m2
2)γkγ

2
k−1

(1−e−2(T−tk))(1−e−2(T−tk−1))2
+

N−1∑

k=0

dγ2
k

(1−e−2(T−tk))2

︸ ︷︷ ︸
III

, (9)

where δ(t), n(t) are parameters in Algorithm 2.

Remark 3. In Theorem 1, we characterize KL(pδ|qtN) instead of KL(p|qtN) due to the fact that
KL(p|qtN) is not well-defined when the target distribution p is not smooth w.r.t. the Lebesgue measure.
It turns out that pδ is an alternative distribution to look at because pδ is smooth for all δ > 0 and pδ
is close to p when δ is small (see Proposition C.1). This is a standard treatment, referred to as early
stopping, in the score-based generative modeling literature [e.g., 5, 3].

The terms I, II, III in (9) correspond to the three types of errors in Algorithm 1, the initialization
error, the score estimation error and the discretization error, respectively. Such a decomposition is
very common in analyses of diffusion models, see [5, 6, 3]. Since we consider the sampling setting,
the score estimation error is derived from the error analysis to the Monte Carlo score estimator, i.e.,
Proposition 3.1. A detailed discussion on these three types of errors is provided in Appendix C.4.

Compared to existing analyses on diffusion models, Theorem 1 extends result in [3] from exponential-
decay step-size to general choices of step-size, and recovers their sharp linear dimension dependence
in the discretization error, with minimal assumptions on the target distribution. By assuming two
consecutive step sizes are of the same order, we perform asymptotic estimation on the accumulated
discretization errors and obtain a bound that depends on the step-size. Such kind of result helps to
understand the optimal time schedule, as we will discuss soon.

Discussion on the choices of time schedule. Under different choices of step-size, the discretization
errors in the denoising diffusion model have the same linear dependence on d, but different dependence
on δ. The linear dimension dependence improves the results in [4], where O(d2) discretization error
bounds are proved for different choices of step-size. It is also a extension of the result in [3], where
O(d) discretization error is only proved for the exponential-decay step-size. In fact, Theorem 1
implies that the exponential-decay step-size induces an optimal discretization error up to some
constant in term of the inverse early-stopping time δ−1. Detailed discussions on different choices of
time schedules is provided in Appendix C.5.

6

3.3 Complexity of ZOD-MC

With the convergence result for DDMC in Theorem 1, we introduce the query complexity bound of
ZOD-MC. Our analysis assumes a relaxation of the commonly used gradient-Lipschitz condition
on the potential. The formal statement is presented in Corollary 3.1, whose proof is provided in
Appendix C.6.

Assumption 3.2. There exists a constant L > 0 such that for any x∗ ∈ argminy∈Rd V (y) and

x ∈ R
d, V satisfies V (x)− V (x∗) ≤ L

2 ∥x− x∗∥2.

Corollary 3.1. Under the assumptions in Theorem 1 and Assumption 3.2, if we set T = 1
2 ln(

d+m2
2

εKL
),

γk = κmin(1, T − tk), δ = min(
ε2W2

d ,
εW2

m2
), κ = Θ

(T+ln(δ−1)
N

)
, then to obtain an output (with

distribution qtN) in ZOD-MC such that W2(p, pδ) ≲ εW2
and KL(pδ, qtN) ≲ εKL, the zeroth-order

query complexity is of order

Õ
(
max

(d+m2
2

εKL
, d2

ε2KL

)
ε
−d−2

2
KL (d+m2

2)
d−2
2 L

d
2 d−1

)
max

0≤k≤N−1
exp

(
L ∥x∗∥2 + ∥xk∥2

)
, (10)

where the Õ hides polylog(
d+m2

2

εW2
) factors.

Remark 4. If we assume WLOG that the minimizer of the potential is at the origin, i.e., x∗ = 0, and

further make reasonable assumptions that m2
2, L and {∥xk∥2} are all of order O(d), where {xk} are

the iterates in Algorithm 1, then the query complexity of ZOD-MC is of order exp
(
Õ(d) log(ε−1

KL)
)
.

Even though this complexity bound has an exponential dimension dependence, it only depends
polynomially on the inverse accuracy. Since it applies to any target distribution satisfying Assumptions
3.1 and 3.2, this complexity bound suggests that with the same overall complexity, ZOD-MC can
generate samples more accurate than other algorithms in Table 5, for a large class of low-dimensional
non-logconcave target distributions.

Comparison to LMC, RDMC and RSDMC. When no isoperimetric condition is assumed, we
compare convergence for ZOD-MC to convergence for LMC, RDMC and RSDMC.

In the absence of the isoperimetric condition, [1] demonstrated that LMC is capable of producing
samples that are close to the target in FI assuming the target potential is smooth. However, FI is a
weaker divergence than KL divergence/ Wasserstein-2 distance. It has been observed that, in certain
instances, the KL divergence/Wasserstein-2 distance may still be significantly different from zero,
despite a minimal FI value. This observation implies that the convergence criteria based on FI may
not be as stringent as our result which is based on KL divergence/Wasserstein-2 distance. [26] proved
that RDMC produces samples that are ε-close to the target in KL divergence with high probability.
Assuming the potential is smooth and a tail-growth condition, the first order oracle complexity is
shown to be of order exp(ε−1 log d). [27] introduced RSDMC as an acceleration of RDMC. They
were able to show that if the potential is smooth, RSDMC produces a sample that is ε-close to the
target in KL divergence with high probability. The first order oracle complexity is shown to be of

order exp(log3(d/ε)). Compared to RDMC and RSDMC, our result on ZOD-MC doesn’t require
the potential to be smooth as our Assumption 3.2 is only a growth condition of the potential. This
indicates that our convergence result applies to targets with non-smooth, or even discontinuous
potentials. Our result in Corollary 3.1 shows the zeroth-order oracle complexity for ZOD-MC is
of order exp(d log(ε−1)), which achieves a better ε-dependence compared to RDMC and RSDMC,
at the price of a worse dimension dependence. This suggests that, for any low-dimensional target,
ZOD-MC produces a more accurate sample than RDMC/RSDMC when the overall oracle complexity
are the same. Last, zeroth-order queries cost less computationally than first-order queries in practice,
which also makes ZOD-MC a more suitable sampling algorithm when the gradients of the potential
are hard to compute.

4 Experiments

We will demonstrate ZOD-MC on three examples, namely Gaussian mixtures, Gaussian mixtures
plus discontinuities, and Müller-Brown which is a highly-nonlinear, nonconvex test problem popular
in computational chemistry and material sciences. Multiple Gaussian mixtures will be considered, for
showcasing the robustness of our method under worsening isoperimetric properties. The baselines
we consider include RDMC [26], RSDMC [27], SLIPS [20], the proximal sampler [37], annealed

7

importance sample [42], sequential Monte Carlo [15], a parallel tempering approach with MALA
proposals [30] and naive unadjusted Langevin Monte Carlo. All the experiments are conducted using
a NVIDIA GeForce RTX 4070 Laptop GPU with 8GB of VRAM and Pytorch.

4.1 Results for Gaussian Mixtures

Matched Oracle Complexity. We modify a 2D Gaussian mixture example frequently considered
in the literature to make it more challenging, by making its modes unbalanced with non-isotropic
variances, resulting in a highly asymmetrical, multi-modal problem. We include the full details of the
parameters in Appendix D. We fix the same oracle complexity (total number of 0th and 1st order V
queries) for different methods, and show the generated samples in Figure 2. Note matching oracle
complexity puts our method at a disadvantage, since other techniques require querying the gradient,
which results in more function evaluations. Despite this, we see in Figure 1a that our method achieves
both the lowest MMD and W2 using the least number of oracle complexity.

0 2000 4000 6000 8000 10000
Oracle Complexity

0

1

2

3

4

5

M
M

D

ZOD-MC
RDMC
RSDMC
slips
ais
smc
langevin
proximal
parallel

0 2000 4000 6000 8000 10000
Oracle Complexity

4

6

8

10

12

14

W
2

ZOD-MC
RDMC
RSDMC
slips
ais
smc
langevin
proximal
parallel

(a) Sampling accuracy against oracle complexity. For
anyfixed oracle complexity, ZOD-MC has the least
error both in MMD and W2. Note diffusion based
methods do not have an initialization. Thus curves
don’t start at the same y-value.

1 2 3 4 5 6 7
Dimension

0

100

200

300

400

500

600

700

800

E
rr
o
r
in

e
s
ti
m
a
ti
o
n
o
f
E
[f
(x
)]

ZOD-MC

RDMC

RSDMC

SLIPS

1 2 3 4 5 6 7
Dimension

0

5

10

15

20

25

W
2

ZOD-MC

RDMC

RSDMC

SLIPS

(b) Sampling accuracy against dimension We demon-
strate that other diffusion based methods scale poorly
with dimension. On the left we plot the error when
evaluating statistics of the generated samples and on
the right we analyze the W2 metric.

Figure 1: Accuracies of different methods for sampling Gaussian Mixture

Robustness Against Mode Separation. Now let’s further separate the modes in the mixture to
investigate the robustness of our method to increasing nonconvexity/metastability. More precisely,
we scale the means of each mode by a constant factor to have a mode located at (0, R); doing so
increases the barriers between the modes and exponentially worsens the isoperimetric properties of
the target distribution [49]. Figure 4a shows our method is the most insensitive to mode separation.
Being the only one that can successfully sample from all modes, as observed in Figure 3, ZOD-MC
suffers less from metastability. Note there is still some dependence on mode separation due to the xk

dependence in the complexity bound in Corollary 3.1.

Figure 2: Sampling from asymmetric, unbalanced Gaussian Mixture. All diffusion-based methods
(ZOD-MC, RDMC, RSDMC) use 2200 oracles per score evaluation. Langevin and the proximal sampler are
set to use the same total amount of oracles as diffusion based methods. While other methods suffer from
metastability, ZOD-MC correctly samples all modes.

Dimension Dependence Against Other Diffusion Based Methods. One drawback of our method,
is its bad dimension dependence when compared to diffusion based methods. For instance, RDMC

and RSDMC have a dependence of exp(O(log(d))Õ(ε−1)) and exp(O(log3(dε−1))) respectively,

in comparison to our exp(Õ(d)O((log(ε−1)))). Despite this theoretical disadvantage, we find
empirically that these methods don’t scale well with dimension either. To demonstrate this we sample
5 points on the positive quadrant and use them as means for a GMM. We then evaluate statistics on
the generated samples and W2 as a function of dimension. We observe in Figure 1b that under a fixed
number of function evaluations our method results in the lowest W2. More details are in Appendix D.
Discontinuous Potentials. The use of zeroth-order queries allows ZOD-MC to solve problems
that would be completely infeasible to first order methods. To demonstrate this, we modify the

8

Figure 3: Gaussian Mixture with further separated modes (R = 26). ZOD-MC can overcome strength-
ened metastability and sample from every mode, while other methods are stuck at the mode at the origin, where
every method is initialized.

potential in Figure 2. We consider V (x) + U(x) where U is a discontinuous function given by
U(x) = 8⌊∥x∥⌋1{5<∥x∥<11} This creates an annulus of much lower probability and a strong potential
barrier. In the original problem, the mode centered at the origin was chosen to have the smallest
weight (0.1), but adding this discontinuity significantly changes the problem. As observed in Figure
5, our method is still able to correctly sample from the target distribution, while other methods not
only continue to suffer from metastability but also fail to see the discontinuities. We quantitatively
evaluate the sampling accuracy by using rejection sampling (slow but unbiased) to obtain ground
truth samples, and then compute MMD and W2. See Appendix D.2 for details.

0 5 10 15 20 25
Radius

0

1

2

3

4

5

6

7

M
M

D

ZOD-MC
RDMC
RSDMC
Slips
Ais
Smc
Langevin
Proximal
Parallel

0 5 10 15 20 25
Radius

0

5

10

15

20

25

W
2

ZOD-MC
RDMC
RSDMC
Slips
Ais
Smc
Langevin
Proximal
Parallel

0 5 10 15 20 25
Radius

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

as
s o

n
Ce

nt
er

 M
od

e

ZOD-MC
RDMC
RSDMC
Slips
Ais
Smc
Langevin
Proximal
Parallel
True
Weight

(a) Sampling accuracy against how separated modes are. ZOD-MC is
the least sensitive to mode separation. The oracle complexity is fixed,
independent of how modes are separated.

0 1 2 3 4
Time

−1

0

1

2

3

4

5

6

7

E
p
t
[‖
s
(x
,
t)
−
∇

lo
g
p
(x
,
t)
‖
]

ZOD-MC

RDMC

RSDMC

SLIPS

(b) Average Score Error as a func-
tion of time. Shaded is the stan-
dard deviation of the errors.

Figure 4: Accuracies of generated samples against dimension and Score Error. On the right, the
result for SLIPS is not directly comparable as it has a different forward process.

Score Approximation of Diffusion Based Methods. One explanation of our method’s great success
in comparison with RDMC and RSDMC is the ability to approximate the score correctly. We select
an unbalanced assymetrical 5d GMM and evaluate the average L2 score error between methods.
On Figure 4b we show that the best approximations of the score are found by using ZODMC as an
estimator as opposed to other methods. Even as t increases and the approximation gets harder we are
able to retain accuracy and therefore generate high quality samples.

Figure 5: Generated samples for discontinuous Gaussian Mixture. Our method can recover the target
distribution even under the presence of discontinuities. The same oracle complexity is again used in each method,
3200 per score evaluation in diffusion-based approaches.

4.2 Results of Müller Brown Potential

The Müller Brown potential is a toy model for molecular dynamics. Its highly nonlinear potential
has 3 modes despite of being the sum of 4 exponentials. The original version has 2 of its modes
corresponding to negligible probabilities when compared to the 3rd, which is not good to visualization
and comparison across different methods. Thus we consider a balanced version [35] and further
translate and dilate x and y so that one of the modes is centered near the origin. The details of the
potential can be found in Appendix D.5. Our method is the only one that can correctly sample from
all 3 modes as observed in Figure 6 (note they are leveled).

9

Figure 6: Generated samples for the Müller Brown potential. We overlay the generated samples on top of
the level curves of V (x). All methods use 1100 oracles.

Acknowledgments and Disclosure of Funding

The authors are grateful for the partially support by NSF DMS-1847802, Cullen-Peck Scholarship,
and GT-Emory Humanity.AI Award. We thank the anonymous reviewers for their helpful comments.

10

References

[1] K. Balasubramanian, S. Chewi, M. A. Erdogdu, A. Salim, and S. Zhang. Towards a theory
of non-log-concave sampling: first-order stationarity guarantees for langevin monte carlo. In
Conference on Learning Theory, pages 2896–2923. PMLR, 2022.

[2] C. J. Bélisle, H. E. Romeijn, and R. L. Smith. Hit-and-run algorithms for generating multivariate
distributions. Mathematics of Operations Research, 18(2):255–266, 1993.

[3] J. Benton, V. De Bortoli, A. Doucet, and G. Deligiannidis. Linear convergence bounds for
diffusion models via stochastic localization. ICLR, 2024.

[4] H. Chen, H. Lee, and J. Lu. Improved analysis of score-based generative modeling: User-
friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pages 4735–4763. PMLR, 2023.

[5] S. Chen, S. Chewi, J. Li, Y. Li, A. Salim, and A. Zhang. Sampling is as easy as learning the
score: theory for diffusion models with minimal data assumptions. ICLR, 2022.

[6] Y. Chen, S. Chewi, A. Salim, and A. Wibisono. Improved analysis for a proximal algorithm for
sampling. In Conference on Learning Theory, pages 2984–3014. PMLR, 2022.

[7] Y. Chen and R. Eldan. Localization schemes: A framework for proving mixing bounds for
markov chains. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 110–122. IEEE, 2022.

[8] Y. Chen and K. Gatmiry. A simple proof of the mixing of metropolis-adjusted langevin algorithm
under smoothness and isoperimetry. arXiv preprint arXiv:2304.04095, 2023.

[9] S. Chewi. Log-concave sampling. 2023. Book draft available at https://chewisinho.
github.io/.

[10] S. Chewi, T. Le Gouic, C. Lu, T. Maunu, and P. Rigollet. Svgd as a kernelized wasserstein
gradient flow of the chi-squared divergence. Advances in Neural Information Processing
Systems, 33:2098–2109, 2020.

[11] G. Conforti, A. Durmus, and M. G. Silveri. Score diffusion models without early stopping:
finite fisher information is all you need. arXiv preprint arXiv:2308.12240, 2023.

[12] A. S. Dalalyan and A. Karagulyan. User-friendly guarantees for the langevin monte carlo with
inaccurate gradient. Stochastic Processes and their Applications, 129(12):5278–5311, 2019.

[13] A. S. Dalalyan and L. Riou-Durand. On sampling from a log-concave density using kinetic
langevin diffusions. Bernoulli, 26(3):1956–1988, 2020.

[14] V. De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
TMLR, 2022.

[15] P. Del Moral, A. Doucet, and A. Jasra. Sequential monte carlo samplers. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

[16] R. Dwivedi, Y. Chen, M. J. Wainwright, and B. Yu. Log-concave sampling: Metropolis-hastings
algorithms are fast. Journal of Machine Learning Research, 20(183):1–42, 2019.

[17] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for approximating
the volume of convex bodies. Journal of the ACM (JACM), 38(1):1–17, 1991.

[18] J. Fan, B. Yuan, and Y. Chen. Improved dimension dependence of a proximal algorithm for
sampling. In The Thirty Sixth Annual Conference on Learning Theory, pages 1473–1521.
PMLR, 2023.

[19] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting langevin diffusions:
Gradient structure and ensemble kalman sampler. SIAM Journal on Applied Dynamical Systems,
19(1):412–441, 2020.

11

[20] L. Grenioux, M. Noble, M. Gabrié, and A. Oliviero Durmus. Stochastic localization via iterative
posterior sampling. In Proceedings of the 41st International Conference on Machine Learning,
volume 235, pages 16337–16376. PMLR, 21–27 Jul 2024.

[21] Y. He, K. Balasubramanian, and M. A. Erdogdu. On the ergodicity, bias and asymptotic nor-
mality of randomized midpoint sampling method. Advances in Neural Information Processing
Systems, 33:7366–7376, 2020.

[22] Y. He, K. Balasubramanian, B. K. Sriperumbudur, and J. Lu. Regularized stein variational
gradient flow. arXiv preprint arXiv:2211.07861, 2022.

[23] Y. He, T. Farghly, K. Balasubramanian, and M. A. Erdogdu. Mean-square analysis of discretized
itô diffusions for heavy-tailed sampling. Journal of Machine Learning Research, 25(43):1–44,
2024.

[24] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[25] D. Holzmüller and F. Bach. Convergence rates for non-log-concave sampling and log-partition
estimation. arXiv preprint arXiv:2303.03237, 2023.

[26] X. Huang, H. Dong, Y. Hao, Y. Ma, and T. Zhang. Reverse diffusion monte carlo. ICLR, 2024.

[27] X. Huang, D. Zou, H. Dong, Y. Ma, and T. Zhang. Faster sampling without isoperimetry via
diffusion-based monte carlo. COLT, 2024.

[28] M. A. Iglesias, K. J. Law, and A. M. Stuart. Ensemble kalman methods for inverse problems.
Inverse Problems, 29(4):045001, 2013.

[29] H. Lee, J. Lu, and Y. Tan. Convergence of score-based generative modeling for general data
distributions. In International Conference on Algorithmic Learning Theory, pages 946–985.
PMLR, 2023.

[30] H. Lee and Z. Shen. Improved bound for mixing time of parallel tempering. arXiv preprint
arXiv:2304.01303, 2023.

[31] Y. T. Lee, R. Shen, and K. Tian. Structured logconcave sampling with a restricted gaussian
oracle. In Conference on Learning Theory, pages 2993–3050. PMLR, 2021.

[32] G. Li, Y. Wei, Y. Chen, and Y. Chi. Towards faster non-asymptotic convergence for diffusion-
based generative models. ICLR, 2024.

[33] R. Li, M. Tao, S. S. Vempala, and A. Wibisono. The mirror Langevin algorithm converges with
vanishing bias. In International Conference on Algorithmic Learning Theory, pages 718–742.
PMLR, 2022.

[34] R. Li, H. Zha, and M. Tao. Sqrt(d) Dimension Dependence of Langevin Monte Carlo. In ICLR,
2021.

[35] X. H. Li and M. Tao. Automated construction of effective potential via algorithmic implicit
bias. arXiv preprint arXiv:2401.03511, 2024.

[36] J. Liang and Y. Chen. A proximal algorithm for sampling. arXiv preprint arXiv:2202.13975,
2022.

[37] J. Liang and Y. Chen. A proximal algorithm for sampling. arXiv preprint arXiv:2202.13975,
2022.

[38] Q. Liu. Stein variational gradient descent as gradient flow. Advances in neural information
processing systems, 30, 2017.

[39] L. Lovász and M. Simonovits. The mixing rate of markov chains, an isoperimetric inequality,
and computing the volume. In Proceedings [1990] 31st annual symposium on foundations of
computer science, pages 346–354. IEEE, 1990.

12

[40] L. Lovász and S. Vempala. Hit-and-run from a corner. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pages 310–314, 2004.

[41] K. L. Mengersen and R. L. Tweedie. Rates of convergence of the hastings and metropolis
algorithms. The annals of Statistics, 24(1):101–121, 1996.

[42] R. M. Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

[43] L. Pardo. Statistical inference based on divergence measures. CRC press, 2018.

[44] L. Richter, J. Berner, and G.-H. Liu. Improved sampling via learned diffusions. ICLR, 2024.

[45] H. E. Robbins. An empirical bayes approach to statistics. In Breakthroughs in Statistics:
Foundations and basic theory, pages 388–394. Springer, 1992.

[46] G. O. Roberts and R. L. Tweedie. Geometric convergence and central limit theorems for
multidimensional hastings and metropolis algorithms. Biometrika, 83(1):95–110, 1996.

[47] A. Roy, L. Shen, K. Balasubramanian, and S. Ghadimi. Stochastic zeroth-order discretizations
of langevin diffusions for bayesian inference. Bernoulli, 28(3):1810–1834, 2022.

[48] A. Salim, L. Sun, and P. Richtarik. A convergence theory for svgd in the population limit
under talagrand’s inequality t1. In International Conference on Machine Learning, pages
19139–19152. PMLR, 2022.

[49] A. Schlichting. Poincaré and log–sobolev inequalities for mixtures. Entropy, 21(1):89, 2019.

[50] R. Shen and Y. T. Lee. The randomized midpoint method for log-concave sampling. Advances
in Neural Information Processing Systems, 32, 2019.

[51] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. ICML, 2015.

[52] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021.

[53] F. Vargas, W. Grathwohl, and A. Doucet. Denoising diffusion samplers. arXiv preprint
arXiv:2302.13834, 2023.

[54] F. Vargas, A. Ovsianas, D. Fernandes, M. Girolami, N. D. Lawrence, and N. Nüsken. Bayesian
learning via neural schrödinger–föllmer flows. Statistics and Computing, 33(1):3, 2023.

[55] F. Vargas, S. Padhy, D. Blessing, and N. Nüsken. Transport meets variational inference:
Controlled monte carlo diffusions. In The Twelfth International Conference on Learning
Representations, 2024.

[56] S. Vempala and A. Wibisono. Rapid convergence of the unadjusted langevin algorithm:
Isoperimetry suffices. Advances in neural information processing systems, 32, 2019.

[57] K. Yingxi Yang and A. Wibisono. Convergence of the inexact langevin algorithm and score-
based generative models in kl divergence. arXiv e-prints, pages arXiv–2211, 2022.

[58] Q. Zhang and Y. Chen. Path integral sampler: a stochastic control approach for sampling. ICLR,
2022.

13

A Related Works on Zeroth-Order Sampling

The zeroth-order sampling algorithms have been widely studied in the past decades. There is a class of
zeroth-order sampling algorithms, including the Ensemble Kalman Inversion [28] and the Ensemble
Kalman Sampler [19], that are based on moving a set of easy-to-sample particle according to certain
dynamics. However, these methods require (noisy) observations from the target distribution rather
than queries of the potential function. Within the zeroth-order sampling algorithms using queries
of the potential function, one type of methods make use of the zeroth-order queries to approximate
the gradient and apply it to some first-order sampling algorithm [12, 47, 23]. Since it is based on the
first-order methods, the analysis of this type of algorithms assumes the target distribution satisfies
certain isoperimetric property in general. The other type of methods utilize the zeroth-order queries
directly without relating to the gradient. Such methods include the Rejection sampling algorithm, the
Metropolized Random Walk (MRW) [41, 46], Ball Walk [39, 17], Hit-and-Run algorithm [2, 40]. The
rejection sampling algorithm requires to finding an envelope function which is easy to sample from.
This could be difficult. MRW requires sufficient smooth and light tail of the target distribution to mix
fast. Ball walk and Hit-and-Run algorithms assume the target distribution is compactly supported.
In this paper, we develop a zeroth-order sampling algorithm based on the reverse OU process. Our
algorithm does not suffer from the difficulties in the rejection sampling and MRW, and our analysis
does not assume isoperimetric property and compact support of the target distribution.

[25] also studies the complexity of a zeroth-order sampling algorithm that combines an approximation
technique and rejection sampling. For target distributions that are m-differentiable with compact

support, [25][Theorem 12] implies a complexity of order Ωd(ε
−d/m) to reach an ε-accuracy in

KL-divergence, where the dimension dependence is implicit. Compare to our result in Corollary
3.1, both complexities are polynomial in ε and exponential in d. Our complexity is smaller for less
smooth targets (m < 2) while their complexity is smaller for smoother targets (m > 2). However,
result in [25] only applies to smooth targets (m > 0) with compact supports, while our Corollary 3.1
applies to more general target distributions which can be with full support with even discontinuous
potentials.

B More Details on ZOD-MC

In this section, we provide more details on how rejection sampling (Algorithm 3) in ZOD-MC
implements the oracle in DDMC, i.e., generating Monte Carlo samples required in Algorithm 2.
Construction of an envelope. If we have V ∗ as a minimum value of V , then by noting that:

−V (z)− 1
2

∥z−etx∥2
e2t−1 ≤ −V ∗ − 1

2

∥z−etx∥2
e2t−1 , ∀ z ∈ R

d.

We are able to construct an envelope for rejection sampling. In particular we propose a samples z
from N (· ; etx, e2t − 1) and accept proposal z with probability exp(−V (z) + V ∗).

Sampling from the target distribution. Algorithm 3, implements the oracle in Algorithm 2 with
δ(t) = 0. When n(t) increases, Algorithm 2 outputs unbiased Monte Carlo score estimators with
smaller variance, hence closer to the true score. We will quantify the convergence of DDMC next and
consequently demonstrate that ZOD-MC can sample general non-logconcave distributions.

C Proofs

C.1 Properties of the OU-Process

In this section, we introduce and prove some useful properties of the OU-process. Throughout this
section, we denote {Xt}t≥0 as the solution of (1) with pt := Law(Xt). For any s, t > 0, pt|s denotes
the conditional probability measure of Xt given the value of Xs.

Proposition C.1. (Decay along the OU-Process) Let {Xt}t≥0 be the solution of (1) with pt :=
Law(Xt). Assume that the initial distribution p satisfies Assumption 3.1. Then we have

W2(pt, p)
2 ≤ (1− e−t)2m2

2 + (1− e−2t)d, (11)

and KL(pt|γd) ≤ 1

2

e−4t

1− e−2t
d+

1

2
e−2tm2

2. (12)

14

Proof of Proposition C.1. The proof for (11) is based on the fact that the solution to (1) can be
represented by

Xt = e−tX0 +
√

1− e−2tZ, ∀ t ≥ 0. (13)

We have

W2(pt, p)
2 ≤ E

[
∥Xt −X0∥2

]
≤ E(X0,Z)∼p⊗γd

[
∥(e−t − 1)X0 +

√

1− e−2tZ∥2
]

= (1− e−t)2m2
2 + (1− e−2t)d.

Next, to prove (12), we have

KL(pt|γd) = KL(

∫

pt|0(·|y)p(dy)|γd(·)) ≤
∫

KL(pt|0(·|y)|γd)p(dy),

where the inequality follows from the convexity of KL divergence. According to (13), pt|0(·|y) is a

Gaussian measure with mean e−ty and covariance matrix (1− e−2t)Id. According to [43], we have

KL(pt|0(·|y)|γd) = KL(N (e−ty, (1− e−2t)Id)|N (0, Id))

=
1

2

(
− d ln(1− e−2t)− e−2td+ e−2t ∥y∥2

)
.

As a result, we get

KL(pt|γd) ≤ −d

2
ln(1− e−2t)− d

2
e−2t +

1

2
e−2t

∫

∥y∥2 p(dy) ≤ e−4t

2(1− e−2t)
d+

1

2
e−2tm2

2,

where the last inequality follows from the fact that ln(1 + x) ≤ x for all x > 0.

Proposition C.2. (Stochastic Dynamics along the OU-Process) Let {Xt}t≥0 be the solution
of (1). Define mt(Xt) := EX0∼p0|t(·|Xt)[X0] and Σt(Xt) := CovX0∼p0|t(·|Xt)(X0) =

EX0∼p0|t(·|Xt)[(X0 −mt(Xt))
⊗2]. Then we have for all t ≥ 0,

d

dt
E
[
Σt(Xt)

]
=

2e−2t

(1− e−2t)2
E
[
Σt(Xt)

2
]
.

The above proposition is known in stochastic localization literature [7] and diffusion model litera-
ture [3]. We present its proof for the sake of completeness.

Proof of Proposition C.2. For any T > 0, from (13), we have the conditional distribution

p0|t(dx|Xt) ∝ exp
(
− 1

2

∥Xt − e−tx∥2
1− e−2t

)
p(dx),

where {Xt}0≤t≤T is the solution of (1). Noticing that the solution of (2), {X̄t}0≤t≤T is the reverse

process of {Xt}0≤t≤T and it satisfies X̄t = XT−t in distribution for all t ∈ [0, T]. Therefore, it
suffices to study

q0|t(dx|X̄t) := Z−1 exp
(
− 1

2

∥X̄t − e−(T−t)x∥2
1− e−2(T−t)

)
p(dx)

= Z−1
t exp

(
− 1

2

e−2(T−t)

1− e−2(T−t)
∥x∥2 + e−(T−t)

1− e−2(T−t)
⟨x, X̄t⟩

)
p(dx)

:= Z−1
t exp(ht(x))p(dx), (14)

where the normalization constant Zt =
∫

Rd exp(ht(x))p(dx). We have q0|t(dx|X̄t) =
p0|T−t(dx|XT−t) in distribution for all t ∈ [0, T] and

m̄t(X̄t) := EX0∼q0|t(·|X̄t)[X0] = EX0∼p0|T−t(·|XT−t)[X0] = mT−t(XT−t), (15)

Σ̄t(X̄t) := CovX0∼q0|t(·|X̄t)(X0) = CovX0∼p0|T−t(·|XT−t)(X0) = ΣT−t(XT−t). (16)

where the above two identities hold in distribution. For simplicity, we denote σt =
√
1− e−2t. Then

ht(x) = − 1
2 (σ

−2
T−t−1)∥x∥2+σ−1

T−t

√

σ−2
T−t − 1⟨x, X̄t⟩ is a stochastic process linearly depending on

15

{X̄t}t≥0. The conditional measure {q0|t(x|X̄t)}t≥0 is a measure-valued stochastic process, whose
dynamics can be studied by applying Itô’s formula. First we have

dht(x) = σ−3
T−tσ̇T−t ∥x∥2 dt+ (σ−2

T−t − 1)−
1
2

(
− 2σ−4

T−tσ̇T−t + σ−2
T−tσ̇T−t

)
⟨x, X̄t⟩dt

+ σ−1
T−t(σ

−2
T−t − 1)

1
2 ⟨x, dX̄t⟩, (17)

d[h(x), h(x)]t = σ−2
T−t(σ

−2
T−t − 1) ∥x∥2 d[X̄, X̄]t, (18)

Since {X̄t}0≤t≤T solves (2), according to Lemma 1, it satisfies that

dX̄t =
(
X̄t + 2Ex∼p0|T−t(·|X̄t)

[e−(T−t)x− X̄t

1− e−2(T−t)

])
dt+

√
2dB̄t

=
(
− σ−2

T−t(2− σ−2
T−t)X̄t + 2(1− σ2

T−t)
1
2 m̄t(X̄t)

)
dt+

√
2dB̄t. (19)

Based on (17), (18) and (19), we have

dZt =

∫

Rd

exp
(
ht(x)

)(
dht(x) +

1

2
d[h(x), h(x)]t

)
p(dx)

=
(
σ−3
T−tσ̇T−t + σ−2

T−t(σ
−2
T−t − 1)

)
Eq0|t(·|X̄t)

[
∥x∥2

]
Ztdt

+ (σ−2
T−t − 1)−

1
2

(
− 2σ−4

T−tσ̇T−t + σ−2
T−tσ̇T−t

)
⟨m̄t(X̄t), X̄t⟩Ztdt

+ σ−1
T−t(σ

−2
T−t − 1)

1
2 ⟨m̄t(X̄t), dX̄t⟩Zt,

and d lnZt = Z−1
t dZt −

1

2
Z−2
t d[Z,Z]t

=
(
σ−3
T−tσ̇T−t + σ−2

T−t(σ
−2
T−t − 1)

)
Eq0|t(·|X̄t)

[
∥x∥2

]
dt

+ (σ−2
T−t − 1)−

1
2

(
− 2σ−4

T−tσ̇T−t + σ−2
T−tσ̇T−t

)
⟨m̄t(X̄t), X̄t⟩dt

+ σ−1
T−t(σ

−2
T−t − 1)

1
2 ⟨m̄t(X̄t), dX̄t⟩

+ σ−2
T−t(σ

−2
T−t − 1)

∥
∥m̄t(X̄t)

∥
∥
2
dt. (20)

If we define Rt(X̄t) =
q0|t(dx|X̄t)

p(dx) = Z−1
t exp(ht(x)), then apply Itô’s formula again and we have

dRt(X̄t) = d exp
(
lnRt(X̄t)

)

= Rt(X̄t)d
(
lnRt(X̄t)

)
+

1

2
Rt(X̄t)d

[
lnRt(X̄t), lnRt(X̄t)

]

= Rt(X̄t)dht(x)−Rt(X̄t)d lnZt +
1

2
Rt(X̄t)d

[
ht(x)− lnZt, ht(x)− lnZt

]
. (21)

Now combine the results in (17), (18), (20) and (21), we can derive the differential equation of
m̄t(X̄t):

dm̄t(X̄t) = d

∫

Rd

xRt(X̄t)p(dx)

=

∫

Rd

x
(
dht(x)− d lnZt +

1

2
d
[
ht(x)− lnZt, ht(x)− lnZt

])
q0|t(dx|X̄t)

= σ−3
T−tσ̇T−tEq0|t(·|X̄t)

[
∥x∥2 x

]
dt

+ (σ−2
T−t − 1)−

1
2

(
− 2σ−4

T−tσ̇T−t + σ−2
T−tσ̇T−t

)
Eq0|t(·|X̄t)

[
x⊗2

]
X̄tdt

+ σ−1
T−t(σ

−2
T−t − 1)

1
2Eq0|t(·|X̄t)

[
x⊗2dX̄t

]

− σ−3
T−tσ̇T−tEq0|t(·|X̄t)

[
∥x∥2

]
m̄t(X̄t)dt

− (σ−2
T−t − 1)−

1
2

(
− 2σ−4

T−tσ̇T−t + σ−2
T−tσ̇T−t

)
m̄t(X̄t)

⊗2X̄tdt

− σ−1
T−t(σ

−2
T−t − 1)

1
2 m̄t(X̄t)

⊗2dX̄t

− σ−2
T−t(σ

−2
T−t − 1)

∥
∥m̄t(X̄t)

∥
∥
2
m̄t(X̄t)dt

+ σ−2
T−t(σ

−2
T−t − 1)Eq0|t(·|X̄t)

[
∥x− m̄t(X̄t)∥2x

]
dt. (22)

16

Utilize (19) and the definition of σt, all terms with factor dt in the above equation cancel and (22)
can be simplified as

dm̄t(X̄t) =

√
2e−(T−t)

1− e−2(T−t)
Eq0|t(·|X̄t)

[
x⊗ (x− m̄t(X̄t))dBt

]

=

√
2e−(T−t)

1− e−2(T−t)
Σ̄t(X̄t)dB̄t. (23)

Last, we derive the differential equation that EXt∼pt

[
Σt(Xt)

]
satisfies. Let f(t) := EXt∼pt

[
Σt(Xt)

]

and g(t) := EXt∼pt

[
Σt(Xt)

2
]

be two deterministic functions on [0, T]. According to (16) and (23),
we have

d

dt
f(T − t) =

d

dt
EXT−t∼pT−t

[ΣT−t(XT−t)]

=
d

dt
EX̄t∼pT−t

[
Σ̄t(X̄t)

]

=
d

dt
EX̄t∼pT−t

[
Eq0|t(·|X̄t)[x

⊗2]− m̄t(X̄t)
⊗2

]

=
d

dt
Ex∼p[x

⊗2]− d

dt
EXt∼pt

[
m̄t(X̄t)

⊗2
]

= − 2e−2(T−t)

(1− e−2(T−t))2
EX̄t∼pT−t

[
Σ̄t(X̄t)

2
]

= − 2e−2(T−t)

(1− e−2(T−t))2
g(T − t).

where the last inequality follows from the Itô isometry. Proposition C.2 is then proved by reverse the
time in f and g.

C.2 Proofs of Section 3.1

Proof of Lemma 1. Based on (13), we have pt = (e−t)#p ∗ (
√
1− e−2t)#γd where (e−t)#p is

the pushforward measure of p via map x ∈ R
d 7→ e−tx and (

√
1− e−2t)#γd is the pushforward

measure of γd via map x ∈ R
d 7→

√
1− e−2tx ∈ R

d. The pushforward measures (e−t)#p and

(
√
1− e−2t)#γd can be written as

(e−t)#p(dx) = etdp(etdx) and

(
√

1− e−2t)#γd(dx) =
(
2π(1− e−2t)

)− d
2 exp

(
− ∥x∥2

2(1− e−2t)

)
dx,

respectively. Therefore the score function∇ ln pt(x) can be written as

∇ ln pt(x) = pt(x)
−1etd

(
2π(1− e−2t)

)− d
2∇x

∫

exp
(
− ∥x− z∥2

2(1− e−2t)

)
p(etdz)

= pt(x)
−1

(
2π(1− e−2t)

)− d
2∇x

∫

exp
(
− ∥x− e−tz∥2

2(1− e−2t)

)
p(dz)

=

∫
x− e−tz

1− e−2t

pt|0(x|z)p(dz)
pt(x)

=

∫
x− e−tz

1− e−2t
p0|t(dz|x),

where the last step follows from the Bayesian rule and

p0|t(·|x) ∝ pt|0(x|·)p(·) ∝ exp
(
− V (·)− 1

2

∥x− e−t·∥2
1− e−2t

)
.

17

C.3 Proofs of Section 3.2

Proof of Proposition 3.1. With the score estimator given in Algorithm 2, we have

E
[
∥∇ ln pt(Xt)− s(t,Xt)∥

2]

= Ex∼pt

[
∥∇ ln pt(x)−

1

n(t)

n(t)
∑

i=1

e−tzt,i − x

1− e−2t
∥2
]

= Ex∼pt

[
∥∇ ln pt(x)−

1

n(t)

n(t)
∑

i=1

e−txt,i − x

1− e−2t
+

1

n(t)

n(t)
∑

i=1

xt,i − zt,i
1− e−2t

∥2
]
,

where {xt,i}
n(t)
i=1 is a sequence of i.i.d. samples following p0|t(·|x) that are chosen such that

E[∥xt,i − zt,i∥
2 |x] = W2(p0|t(·|x),Law(zt,i)) for all t > 0 and i = 1, 2, · · · , n(t). Based on Lemma

1, {
e−txt,i−x

1−e−2t }
n(t)
i=1 is a sequence of unbiased i.i.d. Monte Carlo estimator of ∇ ln pt(x) for all t > 0 and

x ∈ R
d. Therefore, we get

E
[
∥∇ ln pt(Xt)− s(t,Xt)∥

2]

= Ex∼pt

[
∥∇ ln pt(x)−

1

n(t)

n(t)
∑

i=1

e−txt,i − x

1− e−2t
+∥2

]
+ E

[
∥

1

n(t)

n(t)
∑

i=1

xt,i − zt,i
1− e−2t

∥2
]

=
1

n(t)2

n(t)
∑

i=1

Ex∼pt

[
∥
e−txt,i − x

1− e−2t
− Ext,i∼p0|t(·|x)

[
e−txt,i − x

1− e−2t
]∥2]

]

︸ ︷︷ ︸
N1

+
e−2t

(1− e−2t)2
1

n(t)2

n(t)
∑

i,j=1

E
[
⟨xt,i − zt,i, xt,j − zt,j⟩

]

︸ ︷︷ ︸
N2

.

The first term in the above equation, N1, is related to the covariance of p0|t(·|Xt), which is studied in Proposition
C.2. We have

N1 =
e−2t

(1− e−2t)2
1

n(t)2

n(t)
∑

i=1

Ex∼pt

[
trace

(
Covxt,i∼p0|t(·|x)

(xt,i)
)]

=
e−2t

(1− e−2t)2
1

n(t)
Ex∼pt

[
trace

(
Σt(x)

)]

≤
e−2t

(1− e−2t)2
1

n(t)
Ex∼γd

[
trace

(
Σ∞(x)

)]

=
e−2t

(1− e−2t)2
1

n(t)
Covp(x),

where the inequality follows from Proposition C.2 indicating that t 7→ Ex∼pt

[
trace

(
Σt(x)

)]
is a increasing

function.

The second term N2 characterize the bias from the Monte Carlo samples and the bias can be measured by the
Wasserstein-2 distance:

N2 ≤
e−2t

(1− e−2t)2
1

n(t)2

n(t)
∑

i,j=1

E
[
∥xt,i − zt,i∥

2]
1
2E

[
∥xt,j − zt,j∥

2]
1
2

=
e−2t

(1− e−2t)2
1

n(t)2

n(t)
∑

i,j=1

Ex∼pt [W2(Law(zt,i), p0|t(·|x))]Ex∼pt [W2(Law(zt,j), p0|t(·|x))]

≤
e−2t

(1− e−2t)2
δ(t)2.

(4) follows from the estimation on N1 and N2.

C.4 Proof of Theorem 1

In this section, we introduce the proof of our main convergence results, Theorem 1. Recall that in the
convergence result in Theorem 1, three types of errors appear in the upper bound: the initialization

18

error, the discretization error and the score estimation error. Our proof compares the trajectory of

{X̃t}0≤t≤T that solves (8) and the trajectory of {X̄t}0≤t≤T that solves (2). We denote the path

measures of {X̄t}0≤t≤T and {X̃t}0≤t≤T by P pT , and Qγd

, respectively. Next, we introduce a high
level idea on how the three types of errors are handled .

1. Initialization error: the initialization error comes from the comparison between

{X̃t}0≤t≤T and {X̃pT

t }0≤t≤T . To characterize this error, we introduce the intermediate

process {X̃pT

t }0≤t≤T

dX̃pT

t = (X̃pT

t + 2s(T − tk, X̃
pT

tk
)dt+

√
2dB̃t, X̃0 ∼ pT , t ∈ [tk, tk+1), (24)

in (24) and denote the path measure of {X̃pT

t }0≤t≤T by QpT . Both processes are driven
by the estimated scores and only the initial conditions are different. We factor out the
initialization error from KL(pδ|qtN) by the following argument:

KL(pδ|qtN) = KL(pδ|qT−δ)

≤
∫

ln
dP pT

dQγd
dP pT =

∫

ln
(dP pT

dQpT

dQpT

dQγd

)
dP pT

= KL(P pT |QpT) +

∫

ln
dQpT

dQγd
dP pT

= KL(P pT |QpT) + KL(pT |γd),

where the inequality follows from the data processing inequality and the last identity follows

from the fact that dQpT

dQγd =
dQ

pT
0

dQγd

0

= dpT

dγd , which is true because the processes {X̃t}0≤t≤T

and {X̃pT

t }0≤t≤T have the same transition kernel function. KL(pT |γd) is the initialization
error and it is bounded based on (12) in Proposition C.1.

2. Discretization error: the dicretization error arises from the evaluations of the scores at
the discrete times. We factor out the discretization error from the KL(P pT |QpT) via the
Girsanov’s Theorem.

KL(P pT |QpT) ≤
N−1∑

k=0

∫ tk+1

tk

EPpT

[∥
∥∇ ln pT−t(X̄t)− s(T − tk, X̄tk)

∥
∥
2]

dt

≲

N−1∑

k=0

∫ tk+1

tk

EPpT

[∥
∥∇ ln pT−t(X̄t)−∇ ln pT−tk(X̄tk)

∥
∥
2]

dt

︸ ︷︷ ︸

discretization error

+

N−1∑

k=0

γkEPpT

[∥
∥∇ ln pT−tk(X̄tk)− s(T − tk, X̄tk)

∥
∥
2]

︸ ︷︷ ︸

score estimation error

We bound the discretization error term in the above equation by checking the dynamical
properties of the process {∇ ln pt(X̄t)}0≤t≤T . Similar approach was used in the analysis
of denoising diffusion models, see [3]. For the sake of completeness, we include the proof
in Appendix C.7.

3. Score estimation error: as discussed in the discretization error, the score estimation error
is the accumulation of the L2-error between the true score and score estimator at the time
schedules {T − tk}N−1

k=0 . In the analysis of denoising diffusion models, [5, 4, 3], it is usually

assumed that such a L2 score error is small. In this paper, we consider to do sampling via
the Reverse OU-process and score estimation. One of our main contribution is that we prove
the L2 score error can be guaranteed small for the class of Monte Carlo score estimators
given in Algorithm 2. The L2 score error upper bound is stated in Proposition 3.1.

19

Proof of Theorem 1. First we can decompose KL(pδ|qtN) into summation of the three types of error.

KL(pδ|qtN) = KL(pδ|qT−δ)

≤
∫

ln
dP pT

dQγd
dP pT =

∫

ln
(dP pT

dQpT

dQpT

dQγd

)
dP pT

= KL(P pT |QpT) +

∫

ln
dQpT

dQγd
dP pT

= KL(P pT |QpT) + KL(pT |γd)

≤ KL(pT |γd) +

N−1∑

k=0

∫ tk+1

tk

EPpT

[∥
∥∇ ln pT−t(X̄t)− s(T − tk, X̄tk)

∥
∥
2]

dt

≲ KL(pT |γd)

︸ ︷︷ ︸

initialization error

+

N−1∑

k=0

∫ tk+1

tk

EPpT

[∥
∥∇ ln pT−t(X̄t)−∇ ln pT−tk(X̄tk)

∥
∥
2]

dt

︸ ︷︷ ︸

discretization error

+

N−1∑

k=0

γkEPpT

[∥
∥∇ ln pT−tk(X̄tk)− s(T − tk, X̄tk)

∥
∥
2]

︸ ︷︷ ︸

score estimation error

,

where the first inequality follows from the data processing inequality. The second inequality follows
from Girsanov’s theorem and [6, Section 3.1]. According to Proposition C.1 and the assumption that
T > 1, the initialization error satisfies

KL(pT |γd) ≤ 1

2

e−4T

1− e−2T
d+

1

2
e−2Tm2

2 ≲ (d+m2
2)e

−2T . (25)

According to Lemma 2, the discretization error satisfies

N−1∑

k=0

∫ tk+1

tk

EPpT

[∥
∥∇ ln pT−t(X̄t)−∇ ln pT−tk (X̄tk)

∥
∥2]

dt

≲ d

N∑

k=0

γ2
k

(1− e−2(T−tk))2

+
N∑

k=0

e−2(T−tk)γk
(1− e−2(T−tk))2

(

E
[
trace

(
ΣT−tk (XT−tk)

)]
− E

[
trace

(
ΣT−tk+1(XT−tk+1)

)]
)

. (26)

Reordering the summation in the second term and we have

N∑

k=0

e−2(T−tk)γk
(1− e−2(T−tk))2

(

E
[
trace

(
ΣT−tk (XT−tk)

)]
− E

[
trace

(
ΣT−tk+1(XT−tk+1)

)]
)

≤

N−1∑

k=1

(
e−2(T−tk)γk

(1− e−2(T−tk))2
−

e−2(T−tk−1)γk−1

(1− e−2(T−tk−1))2

)

E
[
trace

(
ΣT−tk (XT−tk)

)]

+
e−2T γ0

(1− e−2T)2
E
[
trace

(
ΣT (XT)

)]

≲

N−1∑

k=1

γkγ
2
k−1

(1− e−2(T−tk))2(1− e−2(T−tk−1))2
E
[
trace

(
ΣT−tk (XT−tk)

)]

+
e−2T γ0

(1− e−2T)2
E
[
trace

(
ΣT (XT)

)]
. (27)

Recall that Σt(Xt) = Cov(X0|Xt) for all 0 ≤ t ≤ T . We have

E
[
trace

(
Σt(Xt)

)]
= E

[
Cov(X0|Xt)

]
≤ E

[
∥X0∥

2] ≤ m
2
2, (28)

and E
[
trace

(
Σt(Xt)

)]
= E

[
Cov(X0|Xt)

]
= E

[
Cov(X0 − etXt|Xt)

]

≤ E
[
E
[∥
∥X0 − etXt

∥
∥
2
|Xt

]]

= (e2t − 1)d. (29)

20

where the last identity follows from (13). (29) and (28) implies that E
[
trace

(
Σt(Xt)

)]
≲ (1− e−2t)(d+m2

2)
for all 0 ≤ t ≤ T . Therefore, from (26) and (27), the overall discretization error can be bounded as

N−1∑

k=0

∫ tk+1

tk

EPpT

[∥
∥∇ ln pT−t(X̄t)−∇ ln pT−tk (X̄tk)

∥
∥2]

dt

≲

N−1∑

k=0

dγ2
k

(1− e−2(T−tk))2
+

N−1∑

k=1

(d+m2
2)γkγ

2
k−1

(1− e−2(T−tk))(1− e−2(T−tk−1))2
+

m2
2e

−2T γ0
(1− e−2T)2

. (30)

Last, according to Proposition 3.1, the score estimation error satisfies

N−1∑

k=0

γkEPpT

[∥
∥∇ ln pT−tk (X̄tk)− s(T − tk, X̄tk)

∥
∥2]

≤

N−1∑

k=0

γke
−2(T−tk)

(1− e−2(T−tk))2

(

δ(T − tk)
2 +

m2
2

n(T − tk)

)

, (31)

and (9) follows from (25), (30) and (31).

C.5 Discussion on the Step-size

In this section, we first state error bounds of DDMC under different choices of step-size. Then we
provide the detailed calculations. Last we compare our results in Theorem 1 to existing results on
convergence of denoising diffusion models.

In the following discussion, we assume δ(T − tk)
2 ≤ dγke

2(T−tk) and n(T − tk) ≥ γ−1
k e−2(T−tk)

for all k = 0, 1, · · · , N − 1, so that the score estimation error is dominated by the discretization error.
For different choices of step-size, we discuss the parameter dependence of the error bound in (9)
under the assumptions on δ(t) and n(t).

1. constant step-size: the constant step-size is widely considered in sampling algorithms and
denoising diffusion generative models. It requires γk = γ for all 0 ≤ k ≤ N − 1. Then

KL(pδ|qtN) ≲ (d+m2
2)e

−2T +
(d+m2

2)T
2

N2 (T + δ−2) + dT
N (T + δ−1).

2. linear step-size: the linear step-size is considered by [6] as an interpretation of the uniform
discretization of a diffusion model with non-constant diffusion coefficient [52]. It requires

tk = T − (δ + (N − k)γ)2 with γ =
√
T−δ
N for all 0 ≤ k ≤ N − 1. Then

KL(pδ|qtN) ≲ (d+m2
2)e

−2T +
(d+m2

2)T
N2 (T 2 + δ−1) + dT

1
2

N (T
3
2 + δ−

1
2).

3. exponential-decay step-size: the exponential-decay step-size is considered to be optimal in
SGMs [6, 3]. It requires γk = κmin(1, T − tk) for some κ ∈ (0, 1). Then

KL(pδ|qtN) ≲ (d+m2
2)e

−2T +
(d+m2

2)
N2

(
T + ln(1δ)

)3
+ d

N

(
T + ln(1δ)

)2
.

The purple terms are denoting the discretization errors. For all of the above choices of step-size,
the error bounds have the same linear dimension dependence and different dependence on the
early stopping parameter δ. Next, we provide a detailed calculation of these error bounds and a
derivation of optimal δ-dependence.

1. constant step-size: when γk = γ for all k = 0, 1, · · · , N − 1, we have T − tk = δ + (N − k)γ
and

γk
1− e−2(T−tk)

=







Θ(γ), if T − tk > 1,

Θ(
γ

T − tk
), if T − tk < 1.

21

Therefore

N−1∑

k=1

(d+m2
2)γkγ

2
k−1

(1− e−2(T−tk))(1− e−2(T−tk−1))2
+

N−1∑

k=0

dγ2
k

(1− e−2(T−tk))2

= Θ

(
∑

1<T−tk<T

(d+m2
2)γ

3 + dγ2 +
∑

δ<T−tk<1

(d+m2
2)γ

3

(T − tk)(T − t2k−1)
+

dγ2

(T − tk)2

)

= Θ

(
(d+m2

2)T
3

N2
+

dT 2

N
+ (d+m2

2)γ
2

∫ 1

δ

t−3dt+ dγ

∫ 1

δ

t−2dt

)

= Θ

(
(d+m2

2)T
3

N2
+

dT 2

N
+

(d+m2
2)T

2

N2δ2
+

dT

Nδ

)

.

2. linear step-size: when T − tk = (δ+ (N − k)γ)2 with γ =
√
T−δ
N , we have γk = (2δ+ (2N −

2k − 1)γ)γ = Θ(
√
T − tkγ) and

γk
1− e−2(T−tk)

=







Θ(γ
√

T − tk), if T − tk > 1,

Θ(
γ√

T − tk
), if T − tk < 1.

Therefore

N−1∑

k=1

(d+m2
2)γkγ

2
k−1

(1− e−2(T−tk))(1− e−2(T−tk−1))2
+

N−1∑

k=0

dγ2
k

(1− e−2(T−tk))2

= Θ

(
∑

1<T−tk<T

(d+m2
2)γ

3
√

T − tk(T − tk−1) + dγ2(T − tk−1)

)

+Θ

(
∑

δ<T−tk<1

(d+m2
2)γ

3

√
T − tk(T − tk−1)

+
dγ2

T − tk

)

= Θ

(

γ2(d+m2
2)

∫ T

1

tdt+ γd

∫ T

1

t
1
2 dt+ γ2(d+m2

2)

∫ 1

δ

t−2dt+ γd

∫ 1

δ

t−
3
2 dt

)

= Θ

(
(d+m2

2)T
3

N2
+

dT 2

N
+

(d+m2
2)T

N2δ
+

dT
1
2

Nδ
1
2

)

.

3. exponential-decay step-size: when γk = κmin(1, T − tk) with κ = T+ln(1/δ)
N , we have

γk
1− e−2(T−tk)

=

{
Θ(κ), if T − tk > 1,

Θ(κ), if T − tk < 1.

Therefore
N−1∑

k=1

(d+m2
2)γkγ

2
k−1

(1− e−2(T−tk))(1− e−2(T−tk−1))2
+

N−1∑

k=0

dγ2
k

(1− e−2(T−tk))2

= Θ

(
∑

1<T−tk<T

(d+m2
2)κ

3 + dκ2 +
∑

δ<T−tk<1

(d+m2
2)κ

2γk(T − tk)
−1 + dκγk(T − tk)

−1

)

= Θ

(

(d+m2
2)κ

3N + dκ2N + κ2(d+m2
2)

∫ 1

δ

t−1dt+ κd

∫ 1

δ

t−1dt

)

= Θ

(
(d+m2

2)(T + ln(1/δ))3

N2
+

d(T + ln(1/δ))2

N

)

.

4. Optimality of the exponential step-size: assuming that γk = Θ(γk−1) for all k = 0, 1, · · · , N − 1, the
exponential step-size actually provides the optimal order estimation for the error terms. Noticing that the
error terms all depend on the quantity

γk

1−e−2(T−tk) which is of order

γk
1− e−2(T−tk)

=







Θ(γk), if T − tk > 1,

Θ(
γk

T − tk
), if T − tk < 1.

22

Therefore

N−1∑

k=1

(d+m2
2)γkγ

2
k−1

(1− e−2(T−tk))(1− e−2(T−tk−1))2
+

N−1∑

k=0

dγ2
k

(1− e−2(T−tk))2

= Θ

(
∑

1<T−tk<T

(d+m2
2)γ

3
k + dγ2

k +
∑

δ<T−tk<1

(d+m2
2)γ

3
k

(T − tk)3
+

dγ2
k

(T − tk)2

)

Noticing that x 7→ x2 and x 7→ x3 are both convex functions on the domain x ∈ (0,∞). Since
∑

1<T−tk<T γk = T − 1 is fixed, according to Jensen’s inequality,
∑

1<T−tk<T γ2
k and

∑

1<T−tk<T γ3
k

reach their minimum when γk are constant-valued for all k such that T − tk > 1. Similarly, let

βk = ln
(

T−tk
T−tk+1

)
∈ (0,∞). Then

γk

T−tk
= 1 − e−βk and

∑

δ<T−tk<1 βk = ln(1/δ) is fixed. Since

x 7→ (1 − e−x)2 and x 7→ (1 − e−x)3 are both convex functions on the domain x ∈ (0,∞), according

the Jensen’s inequality,
∑

δ<T−tk<1

γ2
k

(T−tk)
2 and

∑

δ<T−tk<1

γ3
k

(T−tk)
3 reach their minimum when βk are

constant-valued for all k such that T − tk < 1.

Comparison to convergence results in denoising diffusion models. (9) in Theorem 1 bounds the
error of DDMC by I, II, III, which reflect the initialization error, the discretization error and the score
estimation error, respectively. Assuming the score estimation error is small, (9) reduces to the same
type of results that study the error bound for the denoising diffusion models (Algorithm 1). In [5],
the discretization error is proved to be of order O(d) assuming the score function is smooth along
the trajectory and a constant step-size. In [4], they get rid of the trajectory smoothness assumption
and prove a O(d2) discretization error bound with early-stopping. In [3], the discretization error
bound is improved to O(d) with early-stopping and exponential-decay step-size, and without the
trajectory smoothness assumption. Compared to these works, our result in Theorem 1 also implies a
O(d) discretization error without the trajectory smoothness assumption and it applies to any choice
of step-size with early stopping, as we discussed above. As shown in [3], the O(d) is the optimal
for the discretization error. Therefore, our results indicates that with early-stopping, the denoising
diffusion model achieves the optimal linear dimension dependent error bound.

C.6 Proofs of Section 3.3

To prove the query complexity of ZOD-MC, we first look at query complexity of Algorithm 3.

Query complexity of Algorithm 3. The query complexity of Algorithm 3 is essentially the number of
proposals we need so that n(t) of them can be accepted. Intuitively, to get one sample accepted, the
number of proposals we need is geometrically distributed with certain acceptance probability [9]. We
state this formally in the following proposition, for which it suffices to assume a relaxation of the
commonly used gradient-Lipschitz condition on the potential.

Proposition C.3. Under Assumption 3.2, the expected number of proposals for obtaining n(t) many
exact samples from p0|t(·|x) defined in Lemma 1 via Algorithm 3, is

N(t) = n(t)

(
(
L(e2t − 1) + 1

) d
2 exp

(1

2
∥Lx∗−etx∥2
L(e2t−1)+1

)
)

.

Remark 5. Our complexity bound in Proposition C.3 exponentially depends on the dimension. This
is due the curse of dimensionality phenomenon in the rejection sampling: the acceptance rate and
algorithm efficiency decreases significantly when the dimension increases.

Proof of Proposition C.3. For each t ∈ [0, T], the expected number of iterations in the rejection
sampling to get one accepted sample is

M(t) =

(∫

Rd

e−V (z)+V (x∗)N
(
z; etx, (e2t − 1)Id

)
dz

)−1

≤
(∫

Rd

exp
(
− L

2
∥z − x∗∥2

)
N
(
z; etx, (e2t − 1)Id

)
dz

)−1

=
(
L(e2t − 1) + 1

) d
2 exp

(1

2

∥Lx∗ − etx∥2
L(e2t − 1) + 1

)
.

To get n(t) many samples, the expected number of iterations we need is N(t) = n(t)M(t).

23

Query complexity of ZOD-MC. The query complexity of ZOD-MC, denoted as Ñ , is essentially

the sum of query complexities in Proposition C.3 over the discretized time points, i.e. Ñ =
∑N−1

k=0 N(T − tk).

Proof of Corollary 3.1. First, for δ = Θ
(
min(

ε2W2

d ,
εW2

m2
)
)
, it follows from Proposition C.1 that

W2(p, pδ) ≤ εW2
.

Next, under the exponential-decay step size, according to Theorem 1, if we set n(T − tk) =
γ−1
k e−2(T−tk), then

KL(pδ|qtN) ≲ (d+m2
2)e

−2T +
(d+m2

2)
N2

(
T + ln(1δ)

)3
+ d

N

(
T + ln(1δ)

)2
.

By choosing T = 1
2 ln(

d+m2
2

εKL
), N = Θ

(
max(

(d+m2
2)

1
2 (T+ln(δ−1))

3
2

ε
1
2
KL

, d(T+ln(δ−1))2

εKL
)
)

and κ =

Θ
(T+ln(δ−1)

N

)
, we have KL(pδ|qtN) ≲ εKL. Last, it follows from Proposition C.3 that

Ñ ≤
N−1∑

k=0

γ−1
k e−2(T−tk)

(
(
L(e2(T−tk) − 1) + 1

) d
2 exp

(1

2
∥Lx∗−eT−tkxk∥2
L(e2(T−tk)−1)+1

)
)

.

By plugging in δ, T, tk and N , (10) is proved.

C.7 Side Lemmas

Lemma 2. Let {X̄t}0≤t≤T be the solution to (2). Then for any 0 ≤ k ≤ N − 1, we have
∫ tk+1

tk

E
[∥
∥∇ ln pT−t(X̄t)−∇ ln pT−tk (X̄tk)

∥
∥2]

dt

≲
dγ2

k

(1− e−2(T−tk))2
+

e−2(T−tk)γk
(1− e−2(T−tk))2

(

E
[
trace

(
ΣT−tk (XT−tk)

)]
− E

[
trace

(
ΣT−tk+1(XT−tk+1)

)]
)

,

where {Σt(Xt)}0≤t≤T is defined in Proposition C.2.

Proof of Lemma 2. For fixed s, consider the process {∇ ln pT−t(X̄t)}0≤t≤T , denoted as {Lt}0≤t≤T ,

and a function Es,t := E[∥Lt − Ls∥2]. It is shown by Itô’s formula in [3, Lemma 3] that

dLt = −Ltdt+
√
2∇2 ln qT−t(X̄t)dB̄t, (32)

and as a result, (32) implies that

dEs,t = −2Es,tdt− 2E
[
⟨Lt − Ls, Ls⟩

]
dt+ 2E

[∥
∥∇2 ln pT−t(X̄t)

∥
∥
2

F

]
dt, (33)

Apply (32) and Itô’s formula again, we have

dE
[
⟨Lt, Ls⟩

]
= −E

[
⟨Lt, Ls⟩

]
dt =⇒ E

[
⟨Lt, Ls⟩

]
= e−(t−s)

E
[
∥Ls∥2

]
.

Therefore (33) can be rewritten as

d

dt
Es,t = −2Es,t + 2(1− e−(t−s))E

[
∥Ls∥2

]
+ 2E

[∥
∥∇2 ln pT−t(X̄t)

∥
∥
2

F

]
. (34)

Let {Xt}0≤t≤T be the solution of (1). Since X̄t = XT−t in distribution for all t ∈ [0, T], E
[
∥Ls∥2

]

and E
[∥
∥∇2 ln pT−t(X̄t)

∥
∥
2

F

]
can both be represented by the covariance matrix defined in Proposition

C.2. It is proved in [3, Lemma 6] that

E
[
∥Ls∥2

]
= E

[∥
∥∇ ln pT−s(X̄s)

∥
∥
2]

=
d

1− e−2(T−s)
− e−2(T−s)

(1− e−2(T−s))2
E
[
trace

(
ΣT−s(XT−s)

)]
(35)

24

and

E
[∥
∥∇2 ln pT−t(X̄t)

∥
∥
2

F

]
=

d

(1− e−2(T−t))2
− e−2(T−t)

2(1− e−2(T−t))2
d

dt

(

E
[
trace

(
ΣT−t(XT−t)

)]
)

− 2e−2(T−t)

(1− e−2(T−t))3
E
[
trace

(
ΣT−t(XT−t)

)]
. (36)

Now we choose s = tk in (34) and integrate from tk to t. According to (35) and (36), we have

1

2
e2tEtk,tk+1 = d

∫ t

tk

e2u − eu+tk

1− e−2(T−tk)
+

e2u

(1− e−2(T−u))2
du

−
e−2(T−tk)

(1− e−2(T−tk))2
E
[
trace

(
ΣT−tk (XT−tk)

)]
∫ t

tk

e2u − eu+tkdu

−

∫ t

tk

e−2(T−u)+2u

2(1− e−2(T−u))2
dE

[
trace

(
ΣT−u(XT−u)

)]

− 2

∫ t

tk

e−2(T−u)+2u

(1− e−2(T−u))3
E
[
trace

(
ΣT−u(XT−u)

)]
du

=
d

2

(
e2t + e2tk − 2etk+t

1− e−2(T−tk)
+

e2t − e2tk

(1− e−2(T−tk))(1− e−2(T−t))

)

−
e−2(T−tk)

(1− e−2(T−tk))2
E
[
trace

(
ΣT−tk (XT−tk)

)](
e2t + e2tk − 2etk+t

)
,

+
e−2(T−tk)+2tk

(1− e−2(T−tk))2
E
[
trace

(
ΣT−tk (XT−tk)

)]
−

e−2(T−t)+2t

(1− e−2(T−t))2
E
[
trace

(
ΣT−t(XT−t)

)]

−

∫ t

tk

e−2(T−u)+2u

(1− e−2(T−u))2
E
[
trace

(
ΣT−u(XT−u)

)]
du,

where the last identity follows from integration by parts. According to Proposition C.2, t 7→
E
[
trace

(
ΣT−t(XT−t)

)]
is positive and decreasing. Therefore, we have for all t ∈ [tk, tk+1],

Etk,t ≤ d

(
1 + e−2(t−tk) − 2e−(t−tk)

1− e−2(T−tk)
+

1− e−2(t−tk)

(1− e−2(T−tk))(1− e−2(T−t))

)

+ 2
e−2(T−tk)

(1− e−2(T−tk))2
(
2e−(t−tk) − 1

)
E
[
trace

(
ΣT−tk (XT−tk)

)]

−

(
2e−2(T−t)

(1− e−2(T−t))2
+ 2

∫ t

tk

e−2(T−tk)−2(t−u)

(1− e−2(T−tk))2
du

)

E
[
trace

(
ΣT−t(XT−t)

)]
.

Integrate again from t = tk to t = tk+1, we get
∫ tk+1

tk

Etk,tdt

≤
dγ3

k

1− e−2(T−tk)
+

2dγ2
k

(1− e−2(T−tk))2
+

2e−2(T−tk)

(1− e−2(T−tk))2
(
2− 2e−γk − γk

)
E
[
trace

(
ΣT−tk (XT−tk)

)]

−
e−2(T−tk)

(1− e−2(T−tk))2
(
3γk +

1

2
e−γk −

1

2

)
E
[
trace

(
ΣT−tk+1(XT−tk+1)

)]

≤
3dγ2

k

(1− e−2(T−tk))2
+

2e−2(T−tk)γk
(1− e−2(T−tk))2

(
E
[
trace

(
ΣT−tk (XT−tk)

)]
− E

[
trace

(
ΣT−tk+1(XT−tk+1)

)])
.

25

0 2000 4000 6000 8000 10000
Gradient Complexity

10 1

100

101

102

Ti
m

e
(s

)

ZOD-MC
RDMC
RSDMC
slips
ais
smc
langevin
proximal
parallel

Figure 7: Wall clock of different methods as a function of oracle complexity for the 2D GMM in the
main paper

D More Experiments

D.1 Samples from 2D GMM at different Oracle Complexities

We sample from a Gaussian Mixture model with 4 modes, the following summarizes the parameters
of the GMM.

Weights, w : [0.1 0.2 0.3 0.4] ,

Means, µk :

[
0
0

]

,

[
0
11

]

,

[
9
9

]

,

[
11
0

]

,

Covariances, Σk :

[
1 0.5
0.5 1

]

,

[
0.3 −0.2
−0.2 0.3

]

,

[
1 0.3
0.3 1

]

,

[
1.2 −1
−1 1.2

]

.

We display the generated samples at different oracle complexities in Figures 8, 9, 10. Notice that
the mode located at the origin holds less weight, and as the oracle complexity increases our method
becomes better at sampling from other modes, as opposed to the corresponding baselines.

We detail the hyperparameters in Table 2 and the wall clock time of different methods in Figure 15.

Method T N δ Step Size N-MCMC Num Steps N-Chains

ZOD-MC 2 25 5e-3 - K - -

RDMC 2 25 5e-2 0.01 1000 K/1000 -

RSDMC 2 25 5e-2 0.01 K1/4 K1/4 -

SLIPS 1 25 6.62e-3 Adaptive 1000 K/1000 -

AIS - - - Adaptive - M 512
SMC - - - Adaptive - M 512
Langevin - - - 0.01 - M -

Proximal - - - 1/5 - M -

Parallel - - - 0.01 - M 512
Table 2: Hyperparameters for Various Methods for the 2D GMM experiment. K means the current
oracle complexity and M refers to a matched oracle complexity. For RSDMC we used 2 recursions
per score evaluation.

26

(a) Generated samples at 200 oracle complexity per score evaluation

(b) Generated samples at 1200 oracle complexity per score evaluation

(c) Generated samples at 2200 oracle complexity per score evaluation

Figure 8: Generated Samples for GMM at different oracle complexity

(a) Generated samples at 3200 oracle complexity per score evaluation

(b) Generated samples at 4200 oracle complexity per score evaluation

(c) Generated samples at 5200 oracle complexity per score evaluation

(d) Generated samples at 6200 oracle complexity per score evaluation

Figure 9: Generated Samples for GMM at different oracle complexity

27

(a) Generated samples at 7200 oracle complexity per score evaluation

(b) Generated samples at 8200 oracle complexity per score evaluation

(c) Generated samples at 9200 oracle complexity per score evaluation

Figure 10: Generated Samples for GMM at different oracle complexity

28

D.2 Samples from Discontinuous 2D GMM at different Oracle Complexities

We display the generated samples at different oracle complexities in Figures 11 ,12, 13. At the end
we show the W2 and MMD for this example in Figure 14.

We detail the hyperparameters in Table 3 .

Method T N δ Step Size N-MCMC Num Steps N-Chains

ZOD-MC 2 25 5e-3 - K - -

RDMC 2 25 5e-2 0.01 1000 K/1000 -

RSDMC 2 25 5e-2 0.01 K1/4 K1/4 -

SLIPS 1 25 6.62e-3 Adaptive 1000 K/1000 -

AIS - - - Adaptive - M 512
SMC - - - Adaptive - M 512
Langevin - - - 0.01 - M -

Proximal - - - 1/5 - M -

Parallel - - - 0.01 - M 512
Table 3: Hyperparameters for Various Methods for the 2D Discontinuous GMM experiment. K
means the current oracle complexity and M refers to a matched oracle complexity. For RSDMC we
used 2 recursions per score evaluation.

(a) Generated samples at 200 oracle complexity per score evaluation

(b) Generated samples at 1200 oracle complexity per score evaluation

(c) Generated samples at 2200 oracle complexity per score evaluation

Figure 11: Generated Samples for discontinuous GMM at different oracle complexity

29

(a) Generated samples at 3200 oracle complexity per score evaluation

(b) Generated samples at 4200 oracle complexity per score evaluation

(c) Generated samples at 5200 oracle complexity per score evaluation

(d) Generated samples at 6200 oracle complexity per score evaluation

Figure 12: Generated Samples for discontinuous GMM at different oracle complexity

(a) Generated samples at 7200 oracle complexity per score evaluation

(b) Generated samples at 8200 oracle complexity per score evaluation

(c) Generated samples at 9200 oracle complexity per score evaluation

Figure 13: Generated Samples for discontinuous GMM at different oracle complexity

30

0 2000 4000 6000 8000 10000
Oracle Complexity

1

2

3

4

5

6

M
M

D

ZOD-MC
RDMC
RSDMC
slips
ais
smc
langevin
proximal
parallel

0 2000 4000 6000 8000 10000
Oracle Complexity

6

8

10

12

14

W
2

ZOD-MC
RDMC
RSDMC
slips
ais
smc
langevin
proximal
parallel

Figure 14: W2 and MMD at different oracle complexities for discontinuous potential

0 2000 4000 6000 8000 10000
Gradient Complexity

10 1

100

101

102

Ti
m

e
(s

)

ZOD-MC
RDMC
RSDMC
slips
ais
smc
langevin
proximal
parallel

Figure 15: Wall clock of different methods as a function of oracle complexity

D.3 Samples from different radius

We display the generated samples at different radius in Figures 16, 18 and the hyperparameters in
Table 4.

Method T N δ Step Size N-MCMC Num Steps N-Chains

ZOD-MC 10 50 5e-3 - K - -

RDMC 2 50 5e-2 0.01 1000 K/1000 -

RSDMC 2 50 5e-2 0.01 K1/4 K1/4 -

SLIPS 1 50 6.62e-3 Adaptive 1000 K/1000 -

AIS - - - Adaptive - M 512
SMC - - - Adaptive - M 512
Langevin - - - 0.01 - M -

Proximal - - - 1/40 - M -

Parallel - - - 0.01 - M 512
Table 4: Hyperparameters for Various Methods for the 2D GMM experiment. K means the current
oracle complexity and M refers to a matched oracle complexity.

31

(a) Generated samples at R = 1

(b) Generated samples at R = 6

Figure 16: Generated samples at different radius

(a) Generated samples at R = 11

(b) Generated samples at R = 16

(c) Generated samples at R = 21

Figure 17: Generated samples at different radius

(a) Generated samples at R = 26

Figure 18: Generated samples at different radius

D.4 Higher Dimensional Examples

Score Error Approximation Details. We use the following 5d Gaussian mixture to measure the
error of the score approximation:

Coefficients, w : [0.25 0.5 0.25] ,

Means, µk :








−4
−4
−3
−4
−4







,








4
3
4
2
4







,








−4
−2
−4
4
−1







,

Variances, Σk :








3 2 0 0 0
2 3 0 0 0
0 0 4 2 0
0 0 2 4 0
0 0 0 0 1







,








9 0 7 0 0
0 1 0 0.4 0
7 0 9 0 0
0 0.4 0 1 0
0 0 0 0 1







,








1 0.4 0 0 0
0.4 1 0 0 0
0 0 4 3 0
0 0 3 4 0
0 0 0 0 1







.

32

Randomized Gaussian Mixtures To generate the results in Figure 1b we proceed as follows. For a
given dimension we take:

µ =
z

∥z∥ · 12

Where z ∼ U [0, 1]d, additionally we sample σ2 ∼ U [.3, 1.3]. We then consider the Gaussian target
N (µ, σ2I). We repeat this 5 times and create a Gaussian mixture with equally weighted modes. We
plot the the 2d marginals of the target distribution as long as the generated samples.

D.5 Muller Brown Potential Details

The potential is given by V (x, y) = β · (Vm(x, y) + Vq(x, y))

Vm(x, y) = −170 exp
(
− 6.5(x+ 0.5)2 + 11(x+ 0.5)(y − 1.5)− 6.5(y − 1.5)2

)

− 100 exp
(
− x2 − 10(y − 0.5)2

)
+ 15 exp

(
0.7(x+ 1)2 + 0.6(x+ 1)(y − 1) + 0.7(y − 1)2

)

− 200 exp
(
− (x− 1)2 − 10y2),

where Vm corresponds to the original Müller Brown and Vq(x, y) = 35.0136(x−x∗
c)

2+59.8399(y−
y∗c)

2, with (x∗
c , y

∗
c) is approximately the minimizer at the center of the middle potential well, and Vq

is a correction introduced so that the depths of all three wells are.

D.6 Score error at t = T

One natural concern is that the sampling problem at t = T could be nearly as hard as sampling from
the target distribution. Therefore, only a small number of samples could be accepted and the score
error would be high. We display the score error at t = T to show that this is not necessarily the case.

0 20000 40000 60000 80000
Oracle Complexity

−1

0

1

2

3

4

E
p
t
[‖
s
(x
,
t)
−
∇

lo
g
p
(x
,
t)
‖
]

ZOD-MC

RDMC

RSDMC

SLIPS

(a) Score error at t = T = 4. for different diffusion
samplers, we used t ≈ 1 for SLIPS. Results are for
the 2d GMM in the main paper

0 20000 40000 60000 80000
Oracle Complexity

−1

0

1

2

3

4

E
p
t
[‖
s
(x
,
t)
−
∇

lo
g
p
(x
,
t)
‖
]

ZOD-MC

RDMC

RSDMC

SLIPS

(b) Score error at t = T = 4. for different diffusion
samplers, we used t ≈ 1 for SLIPS. Results are for
the 5d GMM in the main paper

Figure 19: Score error at t = T for different target distributions

D.7 Further details on number of accepted samples

We present the number of accepted samples from our rejection sampler as a function of time.
Specifically we consider 1000 trajectories of the diffusion and for every intermediate step we sample
10K samples. We present the number of accepted samples in Table 5.

t0 5.00 4.28 3.56 2.84 2.13 1.41 0.69 0.30 0.13 0.01

GMM 1.58 1.39 3.70 14.03 48.27 129.05 308.23 786.74 1299.30 2251.65
Mueller 1.01 1.20 2.62 9.79 37.25 145.42 447.96 945.72 1598.99 3129.97

Table 5: Comparison of GMM and Mueller values across different t values

33

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1, Table 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 3.3, Remark 5 and the discussion after

34

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Main results: Proposition 3.1, Theorem 1, Corollary 3.1. Proofs are included
in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code is provided with instructions to run it. Scripts are provided so that a one
line script can reproduce all the plots found in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

35

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided with instructions to run it. Scripts are provided so that a one
line script can reproduce all the plots found in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

36

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the target distributions are well described, furthermore every hyperpa-
rameter can be easily checked in the configuration files or the corresponding script for each
experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Figure 4b we present the standard deviation of the errors in the score
approximation. In other experiments we didn’t find it insightful to add these statistics.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we give this information at the beginning of section 4

Guidelines:

• The answer NA means that the paper does not include experiments.

37

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper studies the fundamental theory of sampling, with no specified
applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

38

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We didn’t use any dataset or asset from another party during these experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

39

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40

	Introduction
	Preliminaries
	Diffusion Model
	Rejection Sampling and Restricted Gaussian Oracle

	Denoising Diffusion Monte Carlo Sampling
	Denoising Diffusion Monte Carlo and Zeroth-Order Diffusion Monte Carlo
	Convergence of DDMC
	Complexity of ZOD-MC

	Experiments
	Results for Gaussian Mixtures
	Results of Müller Brown Potential

	Related Works on Zeroth-Order Sampling
	More Details on ZOD-MC
	Proofs
	Properties of the OU-Process
	Proofs of Section 3.1
	Proofs of Section 3.2
	Proof of Theorem 1
	Discussion on the Step-size
	Proofs of Section 3.3
	Side Lemmas

	More Experiments
	Samples from 2D GMM at different Oracle Complexities
	Samples from Discontinuous 2D GMM at different Oracle Complexities
	Samples from different radius
	Higher Dimensional Examples
	Muller Brown Potential Details
	Score error at t = T
	Further details on number of accepted samples

