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 A B S T R A C T

This paper proposes a probabilistic approach to investigate the shape of landscapes of multi-
dimensional potential functions. Under a suitable coupling scheme, two copies of the over-
damped Langevin dynamics associated with the potential function are coupled, and the coupling 
times are collected. Assuming a set of intuitive yet technically challenging conditions on the 
coupling scheme, it is shown that the tail distributions of the coupling times exhibit qualitatively 
different dependencies on the noise magnitude for single-well versus multi-well potential 
functions. More specifically, for convex single-well potentials, the negative tail exponent of the 
coupling time distribution is uniformly bounded away from zero by the convexity parameter 
and is independent of the noise magnitude. In contrast, for multi-well potentials, the negative 
tail exponent decreases exponentially as the noise vanishes, with the decay rate governed by the
essential barrier height, a quantity introduced in this paper to characterize the non-convex nature 
of the potential function. Numerical investigations are conducted for a variety of examples, 
including the Rosenbrock function, interacting particle systems, and loss functions arising in 
artificial neural networks. These examples not only illustrate the theoretical results in various 
contexts but also provide crucial numerical validation of the conjectured assumptions, which 
are essential to the theoretical analysis yet lie beyond the reach of standard technical tools.

1. Introduction

The concept of potential functions is fundamental in both continuous and discrete time dynamics. In continuous-time dynamics, it 
arises in both conservative systems (e.g., Hamiltonian dynamics) and dissipative systems (e.g., gradient flow and damped mechanical 
systems). In discrete-time dynamics, it often corresponds to the objective function of an optimization algorithm or, more generally, to 
a variational inequality. In all these contexts, characterizing the landscape of the potential function, particularly in high dimensions, 
is often crucial. For example, understanding the existence, locations, and connections of local minima, saddle points, and global 
minima of neural network training objectives is essential for comprehending both the training dynamics and the generalization 
capabilities of machine learning models (e.g., [1–6]).
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This paper proposes a probabilistic approach to understanding how local minima are globally connected in a potential landscape. 
Let U be a smooth function defined on a regular domain D ⊆ Rk(k ≥ 1) with finitely many local minima x1,… , xL. Generically, 
denote by ('t)t≥0 the negative gradient flow of U . Then each xi is a stable equilibrium of ('t)t≥0 with the basins (of attraction) given 
by

Bi = {x ∈ D ∶ 't(x) → xi as t → ∞}.

Call U a single-well potential if it has only one local minimum x1 (i.e., L = 1) such that D = B1, and call U a multi-well potential 
if L ≥ 2 and D = ∪1≤i≤LBi up to a Lebesgue null set. A multi-well potential is, in particular, called a double-well potential if L = 2. 
Throughout the paper, the following is always assumed for U :
(U1) The potential function U ∈ C3(D), where D is open, convex and connected, such that limx→)D U (x) = ∞, and if D is unbounded, 
it further holds that

lim
x→)D

|∇U | = ∞, lim
x→)D

|∇U (x)| − 2�U (x) = ∞,

where | ⋅ | denotes the Euclidean norm.

Remark.  In the single-well setting, (U1) ensures the existence of a global strong solution of (2). In the multi-well setting, further 
assumptions on the finiteness and non-degeneracy of the saddle points and local minima, as stated in (U2) or (U3)(iii), guarantee 
this [7,8].

Our approach makes strong use of the coupling idea in probability. Given two stochastic processes X = {t; t ≥ 0}, Y = {t; t ≥ 0}

on Rk, a coupling of X and Y  is a stochastic process {(Xt, Yt); t ≥ 0} on R2k satisfying the following:
(i) For any t > 0, Xt (resp. Yt) has the same law as t (resp. t);
(ii) If Xs = Ys for certain s > 0, then Xt = Yt for all t ≥ s. The coupling time �c is defined to be the first meeting time between 

Xt and Yt, i.e., 
�c = inf{t ≥ 0 ∶ Xt = Yt}. (1)

A coupling is said to be successful if �c < ∞ almost surely. Henceforth, a coupling is denoted by (Xt, Yt) for simplicity and clarity.
Coupling is a classical tool for comparing two probability measures and, in the context of stochastic processes, provides a 

probabilistic approach to investigate the distributional convergence of the process [9–13]. In this paper, the coupling method is 
utilized to characterize the landscape of a potential function U . The two stochastic processes being coupled are the overdamped 
Langevin dynamics, which satisfy the stochastic differential equation (SDE) 

dZt = −∇U (Zt)dt + "dBt, (2)

where {Bt; t ≥ 0} is a k-dimensional Brownian motion and " > 0 is the noise magnitude. Under effective coupling methods, the 
coupling time distribution for Langevin dynamics usually exhibits exponential tails (e.g., [12,14]), indicating intuitive connections 
with the characteristics of the potential function U .

We will focus on how the exponential tails of the coupling time distributions depend on the noise magnitude ". The main message 
is that, under a suitable coupling scheme, this dependence exhibits both quantitatively and qualitatively different behaviors between 
potential functions with only a single well and those with multiple wells. More specifically, if denote r(") = − lim supt→∞

1

t
logP[�c >

t], then for a single-well potential U , r(") is uniformly bounded away from zero, independent of " (see Theorem  1.1); whereas for a 
multi-well potential U , r(") decreases exponentially with respect to ", leading to the emergence of a quantity called essential barrier 
height, which quantifies the level of non-convexity of the potential U in a certain sense (see Theorems  1.2 – 1.3).

Various coupling methods have been developed in different contexts since the pioneer work of Doeblin [15]. In this paper, for 
the purpose of coupling efficiency, we use a mixture of two particular coupling methods: reflection coupling and maximal coupling 
(see Section 2 for details on these two methods). Specifically, for a certain threshold distance d > 0, the coupling method between Xt

and Yt is switched between the reflection and maximal coupling in such a way that (Xt, Yt) evolves according to the reflection (resp.
maximal) coupling whenever |Xt − Yt| > d (resp. |Xt − Yt| ≤ d) until a successful coupling is attained (i.e., Xt = Yt for some t). This 
coupling scheme is referred to as the reflection-maximal coupling. It was developed in [14] to compute the geometric convergence 
rate of stochastic dynamics, and a similar scheme is utilized to compute the convergence rate for Markov processes [16].

How should the threshold d be chosen? We note that the maximal coupling is defined in the discrete-time setting, specifically 
for the time-ℎ sampled chain of the SDE. The choice of d should be chosen so that, if |Xℎ

n−1
− Y ℎ

n−1
| < d, then the distributions of the 

time-ℎ sampled chains Xℎ
n
 and Y ℎ

n
 have sufficient overlap to ensure that the probability of successful coupling, P[Xℎ

n
= Y ℎ

n
], is of 

order (1). Lemma  2.3 shows that by taking d = ("√ℎ), both the coupling probability and the expected distance between Xℎ
n
 and 

Y ℎ
n
 can be controlled suitably. Hereafter, we refer to the scheme as the ‘‘ℎ-reflection-maximal coupling’’ when emphasizing the time 

step size ℎ; otherwise, we simply refer to it as the reflection-maximal coupling, typically assuming a small ℎ without specifying its 
exact value.

Although the theoretical results established in this paper do not depend on the choice of discretization scheme, in numerical 
simulations, the Euler–Maruyama scheme is adopted for all numerical examples. This is because its probability density function at 
any given point can be explicitly computed, which is required for the implementation of the maximal coupling. With additional 
effort to evaluate the relevant densities, the reflection-maximal coupling can also be adapted to other numerical schemes, such as 
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the Milstein scheme. Since the primary goal of this paper is to demonstrate the effectiveness of the reflection-maximal coupling 
method in characterizing the potential landscape, the Euler–Maruyama scheme is used throughout the numerical examples.

The first main result of this paper concerns the single-well potential. Let U be a single-well potential on a convex domain D. 
The function U is said to be strongly convex (with constant m0 > 0) if 

⟨∇U (x) − ∇U (y), x − y⟩ ≥ m0|x − y|2, ∀x, y ∈ D, (3)

where ⟨⋅, ⋅⟩ denotes the standard inner product in Rk. The supremum of all positive values of m0 satisfying (3) is called the convexity 
parameter of U . Henceforth, m0 always denotes the convexity parameter.

Theorem 1.1.  Let U be a single-well potential satisfying (U1) and strongly convex with constant m0 > 0. Given any � > 0, there exists 
ℎ0 > 0 such that for any ℎ ∈ (0, ℎ0), if (Xt, Yt) is an ℎ-reflection-maximal coupling of two solutions of (2) satisfying E[|X0 − Y0|] < ∞, then 
for any " > 0, it holds that

lim sup
t→∞

1

t
logP[�c > t] ≤ −m0 + �.

Remark. Theorem  1.1 provides only an upper bound for the coupling time in the single-well case, in contrast to the asymptotic 
characterizations established for the multi-well case in Theorems  1.2 and 1.3 below. Deriving a lower bound would require 
identifying a mechanism by which two coupled trajectories fail to meet within a sufficiently long time. In the absence of energy 
barriers, as in the single-well case, such a mechanism is not straightforward. Even under the simplifying assumption that the potential 
is quadratic, estimating the probability of near-coupling without success involves estimates on the first hitting times of the Ornstein–
Uhlenbeck process, for which explicit formulas are generally not available [17]. In practice, the exponential tail of the coupling time 
distribution for the single-well case is expected to be governed by the smallest eigenvalue of the Hessian at the global minimum; 
see Section 5.2.

When U has multiple wells, a crucial quantity is the least barrier height of any continuous path connecting two local minima of 
U . More specifically, given two subsets A,B ⊆ D, the communication height between A and B is defined as 

�(A,B) = inf
�∈C([0,1],D),

�(0)∈A, �(1)∈B

supt∈[0,1]U (�(t)), (4)

where the infimum is taken over all continuous paths in D. It is straightforward to observe that �(A,B) = �(B,A).

For a double-well potential U with two local minima x1, x2, define the essential barrier height as 
HU = min

{
�(x1, x2) − U (x1), �(x1, x2) − U (x2)

}
, (5)

which represents the lower of the two barrier heights that must be crossed when transitioning from one local minimum to the other. 
In the double-well setting, the potential function is assumed to satisfy the following generic conditions.
(U2) Let U ∶ D → R be a double-well potential function satisfying (U1) with two local minima x1 and x2. The following hold:

(i) The communication height between x1 and x2 is attained at a unique saddle point z∗(x1, x2), i.e.,
U (z∗(x1, x2)) = �(x1, x2);

(ii) U is non-degenerate (i.e., the Hessian of U has only non-zero eigenvalues) at the two local minima x1, x2, and at the saddle 
point z∗(x1, x2).

In the multi-well setting, in addition to assumptions on the potential function, several key properties of the coupling scheme are 
also required; see (H1)–(H3) in Section 4. These property assumptions, while technical in form, are supported by intuitive reasoning 
and are numerically validated in Section 5.

When multiple wells are present, the coupling process is assumed to be initially related to all basins, ensuring that all typical 
scenarios are considered. More specifically, a probability measure � on D ×D is said to be fully supported (with respect to all local 
minima) if for any � > 0,

�(B�(xi) × B�(xj )) > 0, i, j = 1,… , L,

where B�(x) denotes the ball centered at x with radius �. A coupling (X, Y ) is said to be fully supported if its distribution is fully 
supported. Analogously, a probability measure � on D is said to be fully supported if for any � > 0,

�(B�(xi)) > 0, i = 1,… , L.

A random variable X is said to be fully supported if its distribution is fully supported. Note that any probability measure equivalent 
to the Lebesgue measure is fully supported.

Throughout this paper, the notation x ≲ y (resp. x ≳ y) indicates that x is bounded from above (resp. below) by a constant, which 
is independent of t and ", multiplied by y. The notation x ≃ y means that both x ≲ y and y ≳ x hold. 
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Fig. 1. Example of 1D potential function, local minima, communication height, and essential barrier height HU . Four relative depths H1 =

�(x1, x2)−U (x1), H2 = �(x2, x1)−U (x2), H3 = �(x3, {x1, x2})−U (x3), and H4 = �(x4, {x1, x2, x3})−U (x4) are demonstrated. Note that H2 > H3 > H4. 
In this example HU = H2 < H1.

Theorem 1.2.  Let U be a double-well potential satisfying (U2), and (Xt, Yt) be a coupling of two solutions of (2) such that (X0, Y0) is 
fully supported. Then, if the coupling (Xt, Yt) satisfies (H1)–(H2), for any " > 0 sufficiently small, it holds that

lim sup
t→∞

1

t
logP[�c > t] ≃ −C"e

−2HU ∕"2 ,

where HU  is defined in (5), and C" > 0 is a constant such that the limit lim"→0 C" exists and depends only on U .
In the general setting of multi-well potentials, in addition to the degeneracy of the critical points and the uniqueness of the 

saddle, as specified in (U2), the potential function U is also assumed to exhibit distinct potential values and depths corresponding 
to the different local minima.
(U3) Let U ∶ D → R be a multi-well potential function satisfying (U1) with local minima x1,… , xL. The following hold:

(i) U has different potential values at the different local minima. In particular, U admits a unique global minimum, denoted by 
x1;

(ii) The different basins of potential U admit different depths. More precisely, there exists some � > 0 such that the L local 
minima of U can be labeled in such a way that 

�(xi,i−1) − U (xi) ≤ min
l<i

{�(xl ,i∖xl) − U (xl)} − �, i = 1,… , L, (6)

where 0 = Dc , i = {x1,… , xi}, i = 1,… , L;

(iii) Let i be as in (ii). Then for each i ∈ {1,… , L}, the communication height between xi and i−1 is reached at the unique 
saddle point z∗(xi,i−1), i.e.,

U (z∗(xi,i−1)) = �(xi,i−1).

Moreover, U is non-degenerate at all the local minima x1,… , xL, and at the associated saddle points z∗(xi,i−1), 1 ≤ i ≤ L.
Note that (U3)(iii) reduces to (U2) when L = 2. We refer to Fig.  1 for an example of the potential function U (x) in one dimension, 

which illustrates the local minima, the communication heights, the essential barrier height, the relative depths �(xi,i∖xi)−U (xi), 
and their relationships. It should be noted that the essential barrier height HU  is not the highest communication height among the 
local minima, as indicated by H1.

Condition (U3) comes from a nice work on metastability [18,19], in which a sharp estimate of the first hitting time from a local 
minimum to an appropriate set is rigorously proved. We will extensively apply this result to derive an estimate of the first hitting 
time to the basin of the global minimum (see Lemma  2.6), naturally introducing the notion of essential barrier height defined in 
(7) below. This ultimately yields the coupling time estimate for the multi-well case.

We now define the essential barrier height in the general context. Let U be a multi-well potential satisfying (U3), with x1 denoting 
the (unique) global minimum. The essential barrier height of U is defined as 

HU = max
2≤i≤L

{
�(xi, x1) − U (xi)

}
. (7)

Note that when L = 2, (7) reduces to (5), so the definitions of essential barrier height for double- and multi-well potentials coincide.
We note that the essential barrier height defined in (7) differs from the usual notion of barrier height in the literature. The latter is 

a local characterization of the potential landscape by focusing only on the relevant barriers that must be crossed when transitioning 
from one local minimum to another. In contrast, the essential barrier height considered in this paper is a global characterization, as 
it captures the greatest height of the barriers that must be passed by any continuous path going towards the global minimum from 
any of the local minima. An equivalent characterization of HU  will be given in Section 2.3.

Theorem 1.3.  Let U be a multi-well potential satisfying (U3), and let (Xt, Yt) be a coupling of two solutions of (2) such that (X0, Y0) is 
fully supported. Then, if the coupling (Xt, Yt) satisfies (H1)–(H3), for any " > 0 sufficiently small, it holds that

lim sup
t→∞

1

t
logP[�c > t] ≃ C"e

−2HU ∕"2 ,
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where HU  is given in (7), and C" > 0 is a constant such that the limit lim"→0 C" exists and depends only on U .
The intuitive ideas underlying Theorems  1.2 and 1.3, which relate the coupling times to the essential barrier height HU , are as 

follows. In the double-well case, the typical scenario is that both processes enter the basin associated with the global minimum and 
be coupled within that basin, as they overcome a lower barrier when transitioning from the local minimum to the global one than 
in the reverse direction. This intuition analogously extends to multi-well cases: when the two coupled processes start in different 
basins, the minimal height of the barriers they must overcome to reach the same basin is always no greater than HU . Specifically, 
it is no greater than the lower barrier when transitioning to the basin of the global minimum. Such height can be attained when 
the initial basins of the two processes are sufficiently ‘‘distant’’ from each other (see Section 2.4).

The essential barrier height, in a certain sense, quantifies the ‘‘global non-convexity’’ of multi-well potentials, which is of crucial 
importance in non-convex optimization problems arising in various fields. In Section 5, we propose a numerical algorithm to compute 
the essential barrier height, based on the linear extrapolation of the exponential tails of coupling time distributions. The computed 
values are validated for both a one-dimensional double-well potential and a multi-dimensional interacting particle system, with 
numerical results shown to closely match the theoretical values. We further apply this algorithm to detect the loss landscapes of 
artificial neural networks. In a two-layer neural network model, it is shown that the loss functions of large artificial neural networks 
(over-parameterized) have lower essential barrier heights than that of small ones (under-parameterized). This is largely consistent 
with observations in the machine learning community, suggesting a promising criterion for training artificial neural networks based 
on the essential barrier height of the training loss function.

This paper is organized as follows. Section 2 presents basic facts and results that will be used in the subsequent sections, including 
estimates for reflection and maximal couplings, first hitting times of Langevin dynamics under multi-well potentials, as well as 
probability generating functions. Section 3 studies the case of the single-well potential and proves Theorem  1.1. Section 4 investigates 
both double-well and multi-well potentials, and proves Theorems  1.2 and 1.3. Section 5 explores various examples of single- and 
multi-well potentials, in which both the theoretical findings and the assumptions on the coupling scheme are numerically verified.

2. Preliminary

This section prepares key preliminary results that will be used in the rest of the paper.

2.1. Reflection coupling and single-well potential

Consider two stochastic processes X, Y  satisfying the following stochastic differential equation 
dZt = g(Zt)dt + "dBt, Zt ∈ R

k (8)

with initial conditions � and � respectively. Assume that g ∶ Rk
→ Rk is Lipschitz continuous and satisfies additional conditions, 

ensuring the unique existence of non-explosive strong solutions of (8) from any initial condition.
A reflection coupling of X and Y  is a stochastic process {(Xt, Yt); t ≥ 0} taking values in R2k such that X0 ∼ �, Y0 ∼ �, and

dXt = g(Xt)dt + "dBt,

dYt = g(Yt)dt + "PtdBt, 0 < t < �c ; Yt = Xt, t ≥ �c , (9)

where Pt = Ik − 2ete
⊤
t
 is the orthogonal matrix in which et = (Xt − Yt)∕|Xt − Yt|, and �c is the coupling time defined in (1).

The reflection coupling, as its name suggests, is to make the noise terms in Xt and Yt the mirror reflection of each other with 
respect to the middle hyperplane between Xt and Yt [9]. It is a particularly efficient coupling method in high-dimension, achieved 
by only keeping the noise along the vertical direction (which is one-dimensional) of the hyperplane with noise in other directions 
being canceled out.

The following proposition states that under the method of reflection coupling, the distributions of coupling time of the 
overdamped Langevin dynamics along a strongly convex single-well potential have exponential tails, bounding away from zero 
by the convexity parameter. 

Proposition 2.1.  Let U be a single-well potential satisfying (U1). Assume that U is strongly convex with constant m0 > 0. Then given 
any t0 > 0, there exists c0 > 0 such that, if (Xt, Yt) is a reflection coupling of two solutions of (2) with initial conditions X0 = x0, Y0 = y0, 
for any " > 0, it holds that

P[�c > t] ≤ c0
(|x0 − y0|∕2"

)
e−m0t, ∀t ≥ t0.

Proof.  Denote Rt = |Xt − Yt|∕2". It is not hard to see that {Rt; t ≥ 0} is a one-dimensional stochastic process satisfying 
dRt = −R−1

t
⟨∇U (Xt) − ∇U (Yt), Xt − Yt⟩dt + 2"dB̄t, 0 ≤ t < �c , (10)

where {B̄t; t ≥ 0} is a one-dimensional Brownian motion.
By the strong convexity of U , the drift term in (10) is upper bounded by −m0Rt. Thus, for t ∈ [0, �c ), Rt is always bounded by 

the following one-dimensional Ornstein–Uhlenbeck process {St; t ≥ 0}

dSt = −m0Stdt + dB̄t, S0 = |x0 − y0|∕2". (11)
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Let �0 = inf{t ≥ 0 ∶ St = 0}. It is now sufficient to estimate P[�0 > t].
By Proposition 1 in [20] (see also [17]), the probability density function of �0 has an analytic expression as follows 

p(t) =
S0√
2�

( m0

sinh(t)

)3∕2

exp
{m0(t − S2

0
)

2
−

m0S
2
0

2
coth(m0t)

}
, t ≥ 0. (12)

Note that

p(t) ≤ S0√
2�

( m0

sinh(t)

)3∕2

exp
{m0(t − S2

0
)

2

}
= c0S0e

m0 t

2
/
(em0t − e−m0t)3∕2

where c0 is a constant independent of t, x0, y0 and ". Thus, we have

P[�0 ≥ t] = ∫
∞

t

p(s)ds ≤ c0|x0 − y0|
2" ∫

∞

t

e2m0s

(e2m0s − 1)3∕2
ds.

Note that for any p ∈ (0, 1),

e2m0s − 1 ≥ pe2m0s, ∀s ≥ | ln(1 − p)|∕2m0.

Thus, for any given t0 > 0, by letting p ∈ (0, 1) be such that p ≥ 1 − e−2m0t0  and suitably enlarging the constant c0, one obtains

P[�0 ≥ t] ≤ c0|x0 − y0|
2" ∫

∞

t

e2m0s

(e2m0s)3∕2
ds ≤ c0

(|x0 − y0|∕2"
)
e−m0t, ∀t ≥ t0,

where c0 is independent of t, x0, y0 and ". □

2.2. Maximal coupling and estimations

Let �1 and �2 be two probability distributions on Rk. Call (X, Y ) a coupling of �1 and �2 if X ∼ �1, Y ∼ �2. By the well-known 
coupling inequality (see, for instance, Lemma 3.6 in [21]), 

TV(�1, �2) ≤ 2P[X ≠ Y ], (13)

where TV(�1, �2) ∶= 2 supA⊆Rk |�1(A) − �2(A)| denotes the total variation distance between probability measures on Rk. A coupling 
(X, Y ) is said to be a maximal coupling if the equality in (13) is attained, i.e., the probability P[X = Y ] is maximized.

A particular way to obtain maximal coupling is as follows: Denote the ‘‘minimum’’ distribution of �1 and �2 by �(⋅) =

�−1 min{�1(⋅), �2(⋅)}, where � is the normalizer satisfying � = P[X = Y ]. With probability �, let X = Y ∼ �, and with probability 
(1 − �), let X and Y  be independently sampled such that 

X ∼ (1 − �)−1(�1 − ��), Y ∼ (1 − �)−1(�2 − ��). (14)

It is not hard to verify that P[X ≠ Y ] = TV(�1, �2)∕2 (see [22], Theorem 1).
In the context of stochastic processes, the maximal coupling is defined in terms of conditional distributions of the associated 

discrete-time chains. Let {(Xℎ
n
, Y ℎ

n
); n ≥ 0} be the time-ℎ sampled chain of a coupling of two solutions of (8). Assume that at step 

n − 1, (Xℎ
n−1

, Y ℎ
n−1

) takes the value (x, y) ∈ Rk × Rk, Then (Xℎ
n
, Y ℎ

n
) is a maximal coupling at step n if 

TV(�x, �y) = 2P[Xℎ
n
≠ Y ℎ

n
|Xℎ

n−1
= x, Y ℎ

n−1
= y]. (15)

where �x and �y denote the probability distribution of Xℎ
n
 and Y ℎ

n
 conditioning on Xℎ

n−1
= x and Y ℎ

n−1
= y, respectively.

In the proof of Theorem  1.1, a key step is to bound the expected distance between two coupled processes under the maximal 
coupling. This estimate can be derived using the independent coupling, in which the two coupled random variables are independent.

Proposition 2.2.  Let (X, Y ) be a coupling of two random variables such that X ∼ �1, Y ∼ �2. Assume that � ∶= P[X = Y ] < 1. Then

Emax[|X − Y |2] ≤ 2

1 − �
Eind[|X − Y |2]

where Emax and Eind denote expectations with respect to the maximal coupling and independent coupling, respectively.

Proof.  By the construction of the maximal coupling, we have

Emax[|X − Y |2] = (1 − �)∫
R2k

|x − y|2 (�1 − ��)(dx)

1 − �
⋅
(�2 − ��)(dy)

1 − �

≤ 1

1 − � ∫
R2k

|x − y|2�1(dx)�2(dy) + 1

1 − � ∫
R2k

|x − y|2(��)(dx)(��)(dy)

where � = �−1 min{�1, �2}. Hence,

Emax[|X − Y |2] ≤ 2

1 − � ∫
R2k

|x − y|2�1(dx)�2(dy) = 2

1 − �
Eind[|X − Y |2]. □
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As shown in Proposition  2.2, in the context stochastic processes, obtaining an upper bound of Emax[|Xℎ
n
− Y ℎ

n
|2] requires that 

�n ∶= P[Xℎ
n
= Y ℎ

n
] remains uniformly bounded away from 1, independent of n. Although in practical simulations, it is rarely observed 

that P[Xℎ
n
= Y ℎ

n
] exceeds 0.8, a rigorous theoretical verification of this uniform bound remains challenging. To address this issue, we 

introduce a modified construction of maximal coupling. For any given �0 ∈ (0, 1], define �̃n = min{�n, �0} where �n = P[Xℎ
n
= Y ℎ

n
]. 

Let �1,n and �2,n denote the distributions of Xℎ
n
 and Y ℎ

n
, respectively, and define �n = �−1

n
min{�1,n(⋅), �2,n(⋅)}. Then with probability 

�̃n, let Xℎ
n
= Y ℎ

n
∼ �n, and with probability (1 − �̃n), let Xℎ

n
 and Y ℎ

n
 be independently sampled according to 

Xℎ
n
∼ (1 − �̃n)

−1(�1,n − �̃n�n), Y ℎ
n
∼ (1 − �̃n)

−1(�2,n − �̃n�n) (16)

such that Xℎ
n
≠ Y ℎ

n
. This modification ensures P[Xℎ

n
= Y ℎ

n
] = �̃n ≤ �0, so the coupling probability is uniformly bounded by �0. Note 

that (16) reduces to the standard maximal coupling (14) when �0 ≥ �n.
The modified construction of the maximal coupling in (16) is referred to as the �0-maximal coupling for �0 ∈ (0, 1]. Henceforth, 

the term ‘‘maximal coupling’’ refers to the �0-maximal coupling with �0 fixed at 0.8.
Under the reflection-maximal coupling scheme, a maximal coupling is implemented whenever triggered in the previous step. 

More specifically, (Xℎ
n
, Y ℎ

n
) is a maximal coupling, if at the previous step n−1, the distance between Xℎ

n−1
 and Y ℎ

n−1
 does not exceed 

a threshold d. In the numerical implementation, the distance between Xℎ
n
 and Y ℎ

n
 is evaluated at each step n to determine whether 

maximal coupling should be triggered for the next step n + 1. If the condition is not met, reflection coupling is applied instead at 
step n + 1.

The triggering of maximal coupling is a crucial mechanism, especially in the numerical schemes, for ensuring a successful 
coupling. It guarantees a positive success rate of coupling in the following step when the two processes are sufficiently close. In 
the absence of maximal coupling, numerical errors may cause two processes to ‘‘miss’’ each other, even if they should theoretically 
be coupled successfully. Moreover, maximal coupling exhibits robustness to small perturbations, making it a reliable method in 
numerical simulations.

The following lemma shows that in the single-well setting, choosing the threshold d = ("√ℎ) ensures both an (1) coupling 
probability and a uniform bound on the expected one-step distance between the two processes. It provides crucial estimates for the 
proof of Lemma  3.3 in Section 3.

Lemma 2.3.  Let U be a single-well potential satisfying (U1) which is strongly convex, and let (Xℎ
n
, Y ℎ

n
) be a coupling of the time-ℎ sampled 

chains of two solutions of (2). Assume for n ≥ 1, (Xℎ
n
, Y ℎ

n
) is a maximal coupling conditional on Xℎ

n−1
= x0, Y

ℎ
n−1

= y0, where x0, y0 ∈ Rk

satisfy |x0 − y0| ≤ d = 2"
√
ℎ. Then the following hold:

(i) There exists a constant 
 ∈ (0, 1) such that for any n ≥ 1 and ℎ > 0,

P[|Xℎ
n
− Y ℎ

n
| > 0|Xℎ

n−1
= x0, Y

ℎ
n−1

= y0] ≤ 
.

(ii) For any n ≥ 1 and any ℎ > 0 sufficiently small,
E[|Xℎ

n
− Y ℎ

n
||||X

ℎ
n−1

= x0, Y
ℎ
n−1

= y0] ≤ c1"
√
ℎ.

where the constant c1 > 0 is independent of ℎ, ", and n.

Proof.  (i) By definition, the one-step conditional probability 
P[Xℎ

n
= Y ℎ

n
|Xℎ

n−1
= x0, Y

ℎ
n−1

= y0] (17)

is maximized under the standard maximal coupling (i.e., the 1-maximal coupling). In particular, for any alternative coupling method, 
such as the reflection coupling, the probability in (17) is no greater than that achieved under the maximal coupling. Hence, it suffices 
to establish that under the reflection coupling, with initial condition X0 = x0, Y0 = y0 and |x0 − y0| ≤ d = 2"

√
ℎ, the probability 

P[Xℎ = Yℎ] remains uniformly away from 0 for all sufficiently small ℎ > 0.
Denote by m0 the convexity parameter of U . From the proof of Proposition  2.1, in the single-well case, the coupling time of the 

reflection coupling is bounded by that of one-dimensional Ornstein–Uhlenbeck process {St} governed by (11), whose probability 
density function p(t) is given by (12). Without loss of generality, assume m0 = 1. Then for any sufficiently small ℎ > 0 and 0 < t < ℎ,

p(t) ≥ a0S0 exp
{
t

2
−

S2
0

2
⋅
e2t + 1

e2t − 1

}/(
et − e−t

)3∕2

≥ a0S0 exp
{
−

2S2
0

e2t − 1

}/(
e
2t
3 − e

−
4t
3
)3∕2

≥ a0S0e
−

S2
0
t

/
t
3
2 ,

for some constant a0 > 0 independent of t and ℎ. Integrating over [0, ℎ] yields

P[Xℎ = Yℎ] = ∫
ℎ

0

p(t)dt ≥ a0S0 ∫
ℎ

0

e
−

S2
0
t t

−
3
2 dt.

Applying the change of variable u = S2
0

/
t and using the assumption S0 = |x0 − y0|∕2" ≤ √

ℎ yields 

P[Xℎ = Yℎ] ≥ a0 ∫
∞

S2
0
∕ℎ

e−uu
−

1
2 du ≥ a0 ∫

∞

1

e−uu
−

1
2 du ∶= a1 > 0. (18)
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Now, (18) implies that under the 1-maximal coupling, 
P[Xℎ

n
= Y ℎ

n
|Xℎ

n−1
= x0, Y

ℎ
n−1

= y0] ≥ a1 > 0. (19)

Thus, for the �0-maximal coupling, by setting ã1 ∶= min{a1, �0} < 1, (19) yields
P[Xℎ

n
= Y ℎ

n
|Xℎ

n−1
= x0, Y

ℎ
n−1

= y0] ≥ ã1 > 0,

and hence
P[|Xℎ

n
− Y ℎ

n
| > 0|Xℎ

n−1
= x0, Y

ℎ
n−1

= y0] ≤ 1 − ã1 ∶= 
.

In particular, 
 ∈ (0, 1) is independent of ℎ and n.
(ii) Let Xt and Yt be solutions of (2) with the initial condition X0 = x0 and Y0 = y0. Under the independent coupling, where the 

noise terms driving Xt and Yt are independent, the following holds 
Eind[|Xℎ − Yℎ|2] ≤ 6"2ℎ. (20)

To verify (20), apply Dynkin’s formula to obtain

Eind[|Xℎ − Yℎ|2] = |x0 − y0|2 + Eind

[
∫

ℎ

0

(
−2⟨∇U (Xs) − ∇U (Ys), Xs − Ys⟩ + 2"2

)
ds

]
,

which, together with the strong convexity of U in (3), leads to
Eind[|Xℎ − Yℎ|2] ≤ |x0 − y0|2 + 2"2ℎ.

Since |x0 − y0| ≤ 2"
√
ℎ, it follows that |x0 − y0|2 ≤ 4"2ℎ, and thus (20) follows.

Now, consider E[|Xℎ
n
− Y ℎ

n
||||Xℎ

n−1
= x0, Y

ℎ
n−1

= y0] under the (�0-)maximal coupling. Applying Proposition  2.2 with � = �0, together 
with the bound in (20), it follows that

E[|Xℎ
n
− Y ℎ

n
|2|||X

ℎ
n−1

= x0, Y
ℎ
n−1

= y0] ≤ 2

1 − �0
Eind[|Xℎ − Yℎ|2] ≤ 12

1 − �0
"2ℎ.

Applying Hölder’s inequality, one obtains
E[|Xℎ

n
− Y ℎ

n
||||X

ℎ
n−1

= x0, Y
ℎ
n−1

= y0] ≤ c1"
√
ℎ

where c1 > 0 is a constant independent of ℎ, n and ". This completes the proof of (ii). □

In concluding this subsection, we remark that the maximal coupling, as employed for numerical efficiency, is formulated for 
discrete-time processes. However, the theoretical results in this paper are presented in the continuous-time setting. To ensure 
consistency between the discrete-time numerical scheme and its continuous-time theoretical counterpart, we assume that when 
the maximal coupling is applied, the intermediate values of the processes between the discrete steps are disregarded. That is, only 
the values at times t = nℎ are relevant, and the behavior of the coupling process at times between the discrete steps has no influence 
on the analysis.

2.3. An equivalent characterization of essential barrier height

Let U ∶ D → R be a multi-well potential satisfying (U3). Throughout the paper, let the L local minima of U be labeled according 
to (6), with x1 being the unique global minimum.

The following proposition provides an equivalent characterization of the essential barrier height HU  defined in (7).

Proposition 2.4.  Let U be a multi-well potential on D with L local minima xi, i = 1,… , L. Then 
HU = max

2≤i≤L
{
�(xi,i−1) − U (xi)

}
, (21)

where i is defined as in (6). In particular, 
HU = �(x2, x1) − U (x2). (22)

Proof.  Since x1 ∈ i−1 for all i ∈ {2,… , L}, it follows that 
HU ≥ �(xi, x1) − U (xi) ≥ �(xi,i−1) − U (xi), (23)

which yields 
HU ≥ max

2≤i≤L
{
�(xi,i−1) − U (xi)

}
. (24)

It remains to prove that the inequality in (24) is in fact an equality. Suppose, by contradiction, that the inequality is strict; that 
is, 

�(xi,i−1) − U (xi) < HU , ∀i ∈ {2,… , L}. (25)

Stochastic Processes and their Applications 190 (2025) 104763 

8 



Y. Li et al.

Under this assumption, we claim that for each i ∈ {2,… , L}, one has 
�(xi, x1) − U (xi) < HU , (26)

which further implies
HU = max

2≤i≤L{�(xi, x1) − U (xi)} < HU ,

yielding a contradiction.
Now, it only needs to prove (26). Fix i0 ∈ {2,… , L}. By (25), there exists xi1 ∈ i0−1

 such that 

�(xi0 , xi1 ) − U (xi0 ) = �(xi0 ,i0−1
) − U (xi0 ) < HU . (27)

Since xi1 ∈ i0−1
, it follows that i1 < i0. Moreover, the ordering in (6) yields

�(xi0 ,i0−1
) − U (xi0 ) < �(xi1 ,i0

∖xi1 ) − U (xi1 ).

Using the fact that �(xi0 ,i0−1
) = �(xi0 , xi1 ) and �(xi1 ,i0

∖xi1 ) ≤ �(xi1 , xi0 ), we obtain
�(xi0 , xi1 ) − U (xi0 ) < �(xi1 , xi0 ) − U (xi1 ).

Hence, U (xi1 ) < U (xi0 ).
If i1 = 1, then (26) follows directly from (27). Otherwise, the same argument can be applied recursively: for i1 ∈ {2,… , L}, there 

exists i2 ∈ i1−1
 such that �(xi1 , xi2 ) − U (xi1 ) < HU , with i2 < i1 and U (xi2 ) < U (xi1 ). Continuing inductively, a finite sequence of 

indices i0 > i1 > ⋯ > ik = 1, with finite k ≤ L, is obtained such that 
U (xik ) < ⋯ < U (xi0 ). (28)

Hence,

�(xi0 , x1) − U (xi0 ) ≤ max
0≤j<k�(xij , xij+1 ) − U (xi0 )

≤ max
0≤j<k

{
�(xij , xij+1 ) − U (xij )

}
< HU ,

where the final inequality follows from (27) and (28). This obtains (26).
Since the local minima xi are labeled according to (6), identity (22) follows directly. □

Remark 2.5.  In fact, x2 is the unique local minimum such that (22) is satisfied. In other words, 
�(xi, x1) − U (xi) < HU , ∀i > 2. (29)

To see this, suppose for the sake of contradiction that there exists i0 > 2 such that (29) does not hold. Then it follows that 
�(xi0 , x1) −U (xi0 ) = HU , as it always holds that �(xi0 , x1) −U (xi0 ) ≤ HU . Since, by (6), �(xi0 ,i0−1

) −U (xi0 ) < HU , there exists an 
index 1 < i1 < i0 such that

�(xi0 , xi1 ) − U (xi0 ) = �(xi0 ,i0−1
) − U (xi0 ) < HU .

This leads to a contradiction, as this argument can be applied repeatedly until eventually arriving at ik = 1 for some finite k. 

2.4. Multi-well potential and first hitting time

Given a multi-well potential U ∶ D → R satisfying (U3), let Z = {Zt; t ≥ 0} be a solution of (2) and A ⊆ D be a subset. Denote 
the first hitting time of Zt to A as 

�Z (A) = inf{t > 0 ∶ Zt ∈ A}. (30)

It is well known, from large deviation theory, that the first hitting time from a local minimum xi to an appropriate subset is 
asymptotically exponentially distributed, with the exponent determined by the associated (i.e., local) barrier heights [18,19,23,24]. 
The essential barrier height HU  plays a similar role in a global sense, characterizing the first hitting time to the basin of the global 
minimum from any local minimum.

Lemma 2.6.  Let Z = {Zt; t ≥ 0} be a solution of (2) with initial condition Z0 = z. Then for any t > 0 and any " > 0 sufficiently small, 
Pz[�Z (B1) > t] ≤ Az," exp

{
−C"e

−2HU ∕"2 t

}
, (31)

where C" > 0 and Az," > 0 are constants such that the limit lim"→0 C" exists, and Az," depends on both the initial value z and the noise 
strength ", but is independent of t. Moreover, if the initial condition Z0 is fully supported with distribution �, then 

Pz[�Z (B1) > t] ≃ A�," exp
{
−C"e

−2HU ∕"2 t

}
, (32)

where constant A�," > 0 depends on both � and ".
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The proof of Lemma  2.6 follows closely the approach in [18,19], relying on estimates for the eigenvalues and eigenfunctions of 
the generator. As it is not directly relevant to the main focus of the paper, the proof is deferred to Appendix  A.

Define 
 =

{
1 ≤ i ≤ L ∶ �(x2, xi) = �(x2, x1)

}
(33)

to be the set of indices corresponding to local minima whose communication height with x2 equals that between x2 and x1. Let 
B1 =

⋃
i∈

Bi. (34)

Clearly, B1 ⊆ B1 since 1 ∈ . As argued in Remark  A.4, the conclusion in Lemma  2.6 remains valid if the set B1 is replaced by the 
larger set B1, that is, 

Pz[�Z (B1) > t] ≃ A�," exp
{
−C"e

−2HU ∕"2 t

}
, (35)

for process Z with initial distribution �.
The following proposition establishes a property for indices not belonging to . 

Proposition 2.7.  For any j ∈ {1,… , L}∖, �(x1, xj ) − U (x1) > HU .

Proof.  By the definition of , it follows directly from (22) that
�(x2, xi) − U (x2) = HU , ∀i ∈ .

Thus, for j ∉ , it follows that either (i) �(x2, xj ) − U (x2) < HU , or (ii) �(x2, xj ) − U (x2) > HU .
First, consider case (i). We claim that 

�(xj , x1) > �(xj , x2). (36)

Indeed, if (36) fails, then
�(x2, x1) ≤ max{�(x2, xj ), �(xj , x1)} ≤ �(x2, xj ),

which implies
HU = �(x2, x1) − U (x2) ≤ �(x2, xj ) − U (x2) < HU ,

a contradiction. Thus, (36) holds. It then follows that
�(x1, x2) − U (x1) ≤ max{�(x1, xj ), �(xj , x2)} − U (x1) = �(x1, xj ) − U (x1).

Since �(x1, x2) − U (x1) > �(x2, x1) − U (x2) = HU , we conclude that
�(x1, xj ) − U (x1) > HU .

Next, consider case (ii). Assume that �(x2, xj ) − U (x2) > HU . Suppose, by contradiction, that �(x1, xj ) − U (x1) ≤ HU . Then
�(x2, xj ) − U (x2) ≤ max{�(x2, x1), �(x1, xj )} − U (x2)

≤ max{�(x2, x1) − U (x2), �(x1, xj ) − U (x1)} ≤ HU ,

contradicting the assumption that �(x2, xj ) − U (x2) > HU . Hence, �(x1, xj ) − U (x1) > HU . □

From the proof of Proposition  2.7, we see that i ∈  if and only if 
�(xi, x1) < �(xi, x2) and �(x2, xi) − U (x2) ≤ HU . (37)

That is, among the local minima that can be reached from x2 via a barrier not exceeding HU , the set  consists precisely of the indices 
for which the corresponding minima are more accessible to the global minimum x1 than to the local minimum x2. Accordingly, each 
basin in the collection B1 is referred to as a nearby basin (relative to x1), whereas B2 is referred to as the distant basin.

2.5. An upper bound in the form of probability generating function

Given C0 > 0, �0 > 1, and m ∈ N, define 

g(�;C0, �0, m) = �m + C0

∞∑
n=m

(�n+1 − �n)�−n
0
, � ∈ R. (38)

It is not hard to see that g(�;C0, �0, m) < ∞, ∀� ∈ (1, �0).
The right-hand side of (38) is motivated by the probability generating function. The following proposition states that if a random 

variable T  exhibits exponential decay, then E[�T ] is bounded above by a certain function g.
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Proposition 2.8.  Let T  be a random variable taking positive real values. Assume that for some constant t0 > 0, 
P[T > t] ≤ C0�

−t
0
, ∀t ≥ t0. (39)

Then for any � ∈ (1, �0), it holds that
E[�T ] ≤ g(�;C0, �0, n0) < ∞

where n0 = ⌊t0⌋ + 1. In particular, if t0 ∈ (0, 1), then
E[�T ] ≤ g(�;C0, �0, 1) < ∞.

Proof.  Note that

E[�T ] ≤
∞∑
n=0

�n+1P[n < T ≤ n + 1] ≤ � +

∞∑
n=1

(�n+1 − �n)P[T > n],

where, for n0 > 1, the right-hand side can be rewritten as

� +

n0−1∑
n=1

(�n+1 − �n)P[T > n] +

∞∑
n=n0

(�n+1 − �n)P[T > n].

By (39), for any n ≥ n0, P[T > n] ≤ C0�
−n
0
. It then follows that

E[�T ] ≤ �n0 + C0

∞∑
n=n0

(�n+1 − �n)�−n
0

= g(�;C0, �0, n0) < ∞. □

Note that for m = 1, 
g(�;C0, �0, 1) → 1, as � → 1. (40)

Given � > 1, �0 > 1, and C0 > 0, define 
�(�;C0, �0) = min

{
1, �∗

}
, (41)

where 

�∗ =

⎧⎪⎨⎪⎩

−(�0 + � + C0 − 2) +
√
(�0 + � + C0 − 2)2 + 4(C0 − 1)(�0 − 1)(� − 1)

2(C0 − 1)(�0 − 1)
, if C0 ≠ 1,

� − 1

�0 + � − 1
, if C0 = 1.

(42)

The following Proposition  2.9 provides a quantitative characterization of the approximation in (40). 

Proposition 2.9.  Given � > 1, �0 > 1 and C0 > 0, let � = �(�;C0, �0) be as in (41). Then for any � ∈
(
1, 1 + �(�0 − 1)

)
, it holds that

g(�;C0, �0, 1) < �.

Proof.  Write � = 1 + �(�0 − 1) with � ∈ (0, 1), we have

g(�;C0, �0, 1) = � + C0(� − 1)

∞∑
n=1

(�∕�0)
n

= (1 + �(�0 − 1))
(
1 + C0

�

1 − �

)

To have g(�;C0, �0, 1) < �, it suffices
(C0 − 1)(�0 − 1)�2 + (�0 + C0 + � − 2)� + 1 − � < 0.

This specifies the definition of � in (41). Proposition  2.9 is proved. □

3. Single-well potential and proof of Theorem  1.1

Throughout this section, U is a strongly convex single-well potential satisfying (U1). Let (Xt, Yt) denote an ℎ-reflection-maximal 
coupling of two solutions of (2). The threshold d = ("√ℎ), at which the coupling (Xt, Yt) switches between the reflection and 
maximal couplings, is set to 2"

√
ℎ.

Define

�
(1)

ℎ
= inf

{
t ≥ 0 ∶ |Xt − Yt| ∈ (0, 2"

√
ℎ], and for some s ∈ (0, t), |Xs − Ys| > 2"

√
ℎ

}
,

with the convention that �(1)
ℎ

= ∞ if the set is empty. Note that �(1)
ℎ

 is the infimum time at which the distance between Xt and Yt
attains the threshold d = 2"

√
ℎ from a distance greater than this value.
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Since it is possible for |Xt − Yt| to never exceed the threshold d before a successful coupling occurs, in which case �(1)ℎ
= ∞, 

define

�ℎ = �
(1)

ℎ
∧ �c .

Note that �ℎ < ∞ holds almost surely. It will be shown later that the coupling time �c is almost surely a finite iteration of �ℎ.

3.1. Estimation of �ℎ.

In this subsection, estimates of �ℎ are provided under the two initial conditions |X0 − Y0| > 2"
√
ℎ and |X0 − Y0| ≤ 2"

√
ℎ, 

respectively.
If |X0 − Y0| > 2"

√
ℎ, then (Xt, Yt) remains a reflection coupling until t = �

(1)

ℎ
, when (Xt, Yt) switches to the maximal coupling. 

Proposition  2.1 immediately yields the following.

Lemma 3.1.  Assume |X0 − Y0|∕2" = r0 >
√
ℎ. Then �ℎ = �

(1)

ℎ
 holds P-a.s., and for any t0 > 0, there exists a constant c0 > 0 such that 

P[�ℎ > t] ≤ c0r0e
−m0t, ∀t ≥ t0. (43)

In particular, by letting 0 < t0 < 1 and applying Proposition  2.8, for any � ∈ (1, em0 ), 
E[��ℎ ] ≤ g(�; c0r0, e

m0 , 1). (44)

Remark 3.2.  The estimation in (43) is for the continuous-time process instead of its time-ℎ sampled chain, which the numerical 
scheme truly approximates. Let �0

ℎ
 (resp. �ℎ

ℎ
) be the first passage time of the coupling process (Xt, Yt) (resp. its time-ℎ sampled chain 

(Xℎ
n
, Y ℎ

n
)) to the set {(x, y) ∈ Rk × Rk ∶ |x − y| ≤ 2"

√
ℎ}. It is obvious that �ℎ

ℎ
≥ �0

ℎ
, and it is intuitive that their difference, which is 

generally difficult to theoretically estimate, should approach to zero as ℎ tends to zero, i.e., 
lim
ℎ→0

(�ℎ
ℎ
− �0

ℎ
) = 0, P-a.s. (45)

Throughout this section, (45) is always assumed and will be numerically verified in Section 5 for the example of symmetric quadratic 
potential functions. Therefore, the estimation (43) applies to the time-ℎ sampled chain (Xℎ

n
, Y ℎ

n
) (with a possible slight enlargement 

of c0 if necessary) whenever ℎ is sufficiently small. 
The analysis becomes more intricate for the initial condition |X0 − Y0| ≤ 2"

√
ℎ, as the coupling method between Xt and Yt may 

switch during the time interval (0, �ℎ). Specifically, there exists n > 0 such that the coupling between the time-ℎ sampled chains 
Xiℎ and Yiℎ remains a maximal coupling for 0 ≤ i < n. At the step i = n, either Xnℎ = Ynℎ, indicating a successful coupling, or 
|Xnℎ − Ynℎ| > 2"

√
ℎ. In the former case, �ℎ = �c ; in the latter, �ℎ = �

(1)

ℎ
, and (Xt, Yt) evolves under a reflection coupling until the 

condition |Xt − Yt| ≤ 2"
√
ℎ is satisfied again.

Lemma 3.3.  Given any t1 > 0, there exist ℎ0 > 0 and C0 > 0 such that for all ℎ ∈ (0, ℎ0), if |X0 − Y0| ≤ 2"
√
ℎ, then

P[�ℎ > t] ≤ C0

√
ℎe−m0t, ∀t ≥ t1.

In particular, by choosing 0 < t1 < 1 and applying Proposition  2.8, for any � ∈ (1, em0 ) and ℎ > 0 sufficiently small, 
E[��ℎ ] ≤ g(�;C0

√
ℎ, em0 , 1) < ∞. (46)

Proof.  Recall from the proof of Proposition  2.1 that the process Rt = |Xt − Yt|∕2" is a one-dimensional stochastic process induced 
by the coupling (Xt, Yt). Let n = ⌊t∕ℎ⌋ ∈ N. Based on the coupling behaviors between Xt and Yt before the stopping time �ℎ, one has

P[�ℎ > t] ≤ P[�ℎ > nℎ]

=

n∑
j=1

P[Riℎ ∈ (0,
√
ℎ], 0 ≤ i ≤ j − 1]

⋅

(
P[Rjℎ >

√
ℎ|R(j−1)ℎ ∈ (0,

√
ℎ]] ⋅ P[�

(1)

ℎ
◦�jℎ > t − jℎ|Rjℎ >

√
ℎ]
)

+ P[Riℎ ∈ (0,
√
ℎ], 0 ≤ i ≤ n],

where � is the usual shift operator.
For any i ≥ 1, since (Xiℎ, Yiℎ) is a maximal coupling whenever |X(i−1)ℎ − Y(i−1)ℎ| ≤ 2"

√
ℎ, it follows from Lemma  2.3(i) that

P
[
Riℎ > 0|R(i−1)ℎ ∈ (0,

√
ℎ]
] ≤ 
,

where 
 ∈ (0, 1) is independent of i and ℎ. Therefor, by the Markov property, for any 2 ≤ j ≤ n,

P
[
Riℎ ∈ (0,

√
ℎ], 0 ≤ i ≤ j − 1

]
=

j−1∏
i=1

P
[
Riℎ ∈ (0,

√
ℎ]|R(i−1)ℎ ∈ (0,

√
ℎ]
] ≤ 
j−1,
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and this also holds trivially for j = 1. Consequently, 

P[�ℎ > t] ≤
n∑

j=1


j−1
(
P[Rjℎ >

√
ℎ|R(j−1)ℎ ∈ (0,

√
ℎ]] ⋅ P[�ℎ◦�

jℎ > t − jℎ|Rjℎ >
√
ℎ]
)
+ 
n. (47)

Now, for 1 ≤ j ≤ n, consider estimating 
P[Rjℎ >

√
ℎ|R(j−1)ℎ ∈ (0,

√
ℎ]] ⋅ P[�ℎ◦�

jℎ > t − jℎ|Rjℎ >
√
ℎ], (48)

which equals 

∫
∞

√
ℎ

P
[
�ℎ◦�

jℎ > t − jℎ|Rjℎ = r
]
P
[
Rjℎ = dr|R(j−1)ℎ ∈ (0,

√
ℎ]
]
. (49)

Fix t0 ∈ (0, t1). Then for any 1 ≤ j ≤ ⌊ t−t0
ℎ

⌋, it holds that t − jℎ ≥ t0. Since R0 = r >
√
ℎ, Lemma  3.1 and the Markov property 

implies that
P
[
�ℎ◦�

jℎ > t − jℎ|Rjℎ = r
]
= P[�ℎ > t − jℎ|R0 = r] ≤ c0re

−m0(t−jℎ),

where c0 > 0 is the constant given in Lemma  3.1. Therefore, for any such j,

(49) ≤ c0e
−m0(t−jℎ) ∫

∞

√
ℎ

rP[Rjℎ = dr|R(j−1)ℎ ∈ (0,
√
ℎ]]

≤ c0e
−m0(t−jℎ) ⋅ E[Rjℎ|R(j−1)ℎ ∈ (0,

√
ℎ]].

Since R(j−1)ℎ ≤ √
ℎ, and hence |X(j−1)ℎ − Y(j−1)ℎ| ≤ 2"

√
ℎ, Lemma  2.3 (ii) implies that for sufficiently small ℎ > 0,

E
[
Rjℎ

|||R(j−1)ℎ ∈ (0,
√
ℎ]
]
=

1

2"
E
[|Xjℎ − Yjℎ|||||X(j−1)ℎ − Y(j−1)ℎ| ≤ 2"

√
ℎ
]

≤ 1

2
c1

√
ℎ.

Thus, 

(48) ≤ C0

√
ℎe−m0(t−jℎ), ∀1 ≤ j ≤ ⌊ t − t0

ℎ
⌋, (50)

for some constant C0 > 0 independent of ℎ, ", and j. Moreover, 

(48) ≤ 1, ⌊ t − t0

ℎ
⌋ < j ≤ ⌊ t

ℎ
⌋ ∶= n. (51)

Combining (47), (50), and (51), it follows that

P[�ℎ > t] ≤ C0

√
ℎ

⌊ t−t0
ℎ

⌋∑
j=1


j−1e−m0(t−jℎ) +

n∑
j=⌊ t−t0

ℎ
⌋

j

≤ C0

√
ℎ

em0ℎ

1 − 
em0ℎ
e−m0t +



⌊ t−t0

ℎ
⌋

1 − 

(52)

Let 0 < ℎ0 ≤ | ln 
|∕m0 be sufficiently small so that for any ℎ ∈ (0, ℎ0),



⌊ t−t0

ℎ
⌋ ≤ √

ℎe−m0t, ∀t ≥ t1.

Since em0ℎ∕(1 − 
em0ℎ) → 1∕(1 − 
) as ℎ → 0, by enlarging C0 in (52) if necessary, it follows that
P[�ℎ > t] ≤ C0

√
ℎe−m0t, ∀t ≥ t1. □

Combining Lemmas  3.1 and 3.3, the following holds. 

Lemma 3.4.  Assume E[|X0 − Y0|] < ∞. Then for any ℎ ∈ (0, ℎ0) where ℎ0 > 0 is as in Lemma  3.3, for any � ∈ (1, em0 ), it holds that
E[��ℎ ] < ∞.

Proof.  Recall the one-dimensional stochastic process Rt = |Xt − Yt|∕(2"), t ≥ 0. Let Er[⋅] denote the expectation with respect to the 
initial condition R0 = r. Then 

E[��ℎ ] = ∫
√
ℎ

0

Er[�
�ℎ ]�(dr) + ∫

∞

√
ℎ

Er[�
�ℎ ]�(dr) (53)

where � denotes the distribution of R0.
By Lemma  3.3, for sufficiently small ℎ > 0, the first term on the right-hand side of (53) satisfies 

∫
√
ℎ

0

Er[�
�ℎ ]�(dr) ≤ ∫

√
ℎ

0

g(�;C0

√
ℎ, em0 , 1)

√
ℎ�(dr) ≤ g(�;C0

√
ℎ, em0 , 1)

√
ℎ. (54)
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By (44), the second term on the right-hand side of (53) is bounded as

∫
∞

√
ℎ

Er[�
�ℎ ]�(dr) ≤ ∫

∞

√
ℎ

g(�; c0r, e
m0 , 1)�(dr)

= g(�; c0 ∫
∞

√
ℎ

r�(dr), em0 , 1) ≤ g(�; c0E[R0], e
m0 , 1). (55)

Combining (54) and (55), we have
E[��ℎ ] ≤ g(�;C0

√
ℎ, em0 , 1)

√
ℎ + g(�; c0E[R0], e

m0 , 1).

Since E[R0] = E[|X0 − Y0|]∕2" < ∞, the lemma is proved. □

3.2. Iteration of �ℎ and coupling times

The coupling time �c is in fact a finite iteration of �ℎ. To see this, define
�0
ℎ
= 0, �k

ℎ
= �k−1

ℎ
+ �ℎ◦�

�k−1
ℎ , k ≥ 1

where � is the usual shift operator, and let
� = inf

{
k ≥ 1 ∶ X

�k
ℎ
= Y

�k
ℎ

}
.

The following proposition immediately follows from the definition of �ℎ. 

Proposition 3.5.  Given any ℎ > 0 and k ≥ 1. The following hold:
(i) |X

�k
ℎ
− Y

�k
ℎ
| = 2"

√
ℎ or 0, where X

�k
ℎ
= Y

�k
ℎ
 if and only if k ≥ �;

(ii) If k > 1, then
P[|X

�k
ℎ
− Y

�k
ℎ
| > 0|

�k−1
ℎ

] < 
.

where 
 is as in Lemma  2.3.
By Proposition  3.5(i),

�c = �
�

ℎ
, P-a.s.

Hence, the estimation of �c is reduced to the estimation of ��ℎ. 

Theorem 3.6.  Assume E[|X0 − Y0|] < ∞. Then for any � > 0, there exists ℎ0 > 0 such that for any ℎ ∈ (0, ℎ0) and any � ∈ (1, em0−�), it 
holds that

E[��
�

ℎ ] < ∞.

Proof.  The proof follows the approach of Lemma 2.9 in [25]. Note that

E[��
�

ℎ ] ≤
∞∑
k=1

E[��
k
ℎ I�≥k] (56)

= E
[
��ℎ I�≥1

]
+

∞∑
k=2

E
[
I�≥k��

k−1
ℎ E[��ℎ◦�

�k−1
ℎ |

�k−1
ℎ

]
]
,

where the last equality follows from the fact that ��k−1ℎ ∈ 
�k−1
ℎ

 and {� ≥ k} ∈ 
�k−1
ℎ

.

We retain the notation Rt = |Xt − Yt|∕2" for t ≥ 0, and let Er denote the expectation with respect to the initial condition R0 = r. 
By Proposition  3.5(i), R

�k−1
ℎ

=
√
ℎ for 2 ≤ k ≤ �. By (46) and the strong Markov property,

E
[
��ℎ◦�

�k−1
ℎ |

�k−1
ℎ

] ≤ E√
ℎ
[��ℎ ] ≤ g(�;C0

√
ℎ, em0 , 1) < ∞, ∀k ≥ 1,

where C0 > 0 is as in Lemma  3.3. Thus, 

E[��
�

ℎ ] ≤ E[��ℎ I�≥1] + g(�;C0

√
ℎ, em0 , 1)

∞∑
k=2

E[I�≥k��
k−1
ℎ ]. (57)

Now, for k ≥ 2, we estimate E[I�≥k��
k−1
ℎ ]. Write I�≥k = I�≥k−1IR

�k−1
ℎ

>0. Then we have

E
[
I�≥k��

k−1
ℎ

]
= E

[
I�≥k−1��

k−2
ℎ E

[
IR

�k−1
ℎ

>0�
�ℎ◦�

�k−2
ℎ |

�k−2
ℎ

]]

= E
[
I�≥k−1��

k−2
ℎ ER

�k−2
ℎ

[IR�ℎ
>0�

�ℎ ]
]
. (58)
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Note that for k = 2, 

ER
�k−2
ℎ

[IR�ℎ
>0�

�ℎ ] = ER0
[IR�ℎ

>0�
�ℎ ] ≤ E[��ℎ ]. (59)

For k > 2, since R
�k−2
ℎ

=
√
ℎ, the strong Markov property implies that 

ER
�k−2
ℎ

[IR�ℎ
>0�

�ℎ ] ≤ E√
ℎ
[IR�ℎ

>0�
�ℎ ] (60)

By the Hölder’s inequality, for any p ∈ (0, 1),

E√
ℎ
[IR�ℎ

>0�
�ℎ ] ≤ (E√

ℎ
[IR�ℎ

>0])
1−p ⋅ (E√

ℎ
[��ℎ∕p])p

= (P√
ℎ
[R�ℎ

> 0])1−p ⋅ (E√
ℎ
[��ℎ∕p])p.

Then it follows from Proposition  3.5 (ii) and (46) that 

E√
ℎ
[IR�ℎ

>0�
�ℎ ] ≤ 
1−pg(�1∕p;C0

√
ℎ, em0 , 1)p. (61)

Substituting (59)–(61) into (58), we obtain

E[I�≥k��
k−1
ℎ ] ≤

{
E[��ℎ ], k = 2


1−pg(�1∕p;C0

√
ℎ, em0 , 1)p ⋅ E[I�≥k−1��

k−2
ℎ ], k > 2.

By induction, for k ≥ 2,

E[I�≥k��
k−1
ℎ ] ≤ 
 (1−p)(k−2)g(�1∕p;C0

√
ℎ, em0 , 1)p(k−2) ⋅ E[��ℎ ]

Therefore, (57) yields

E[��
�

ℎ ] ≤ E[��ℎ ]
(
1 + g(�;C0

√
ℎ, em0 , 1)

∞∑
k=2

(

1−pg(�1∕p;C0

√
ℎ, em0 , 1)p

)k−2)

By Lemma  3.4, E[��ℎ ] < ∞. Thus, to guarantee E[���ℎ ] < ∞, it suffices 

g(�1∕p;C0

√
ℎ, em0 , 1) < 
−(1−p)∕p (62)

By Proposition  2.9, (62) holds for any � > 1 satisfying �1∕p ∈ (
1, 1 + �(em0 − 1)

)
, where

� = min{1, �∗},

and �∗ is given by (42) with �0 = em0 , � = 
−(1−p)∕p, and C0 replaced by C0

√
ℎ.

Note that �∗ → 1, and hence � → 1, as ℎ → 0. Since p can be arbitrarily close to 1, by choosing ℎ > 0 sufficiently small, it follows 
that

E[��
�

ℎ ] < ∞, ∀� ∈ (1, em0−�),

where � > 0 is arbitrarily small. □

The proof of Theorem  1.1 is now straightforward.

Proof of Theorem  1.1.  Note that for any � ∈ (1,∞) satisfying E[���ℎ ] < ∞, we have

P[�
�

ℎ
> t] ≤ E[��

�

ℎ ]�−t, ∀t > 0.

By Theorem  3.6, for any � ∈ (1, em0−�) and any � > 0,

lim sup
t→∞

1

t
logP[�

�

ℎ
> t] ≤ −m0 + m0�.

Theorem  1.1 is proved by taking � as m0�. □

4. Multi-well potentials and proof of Theorems  1.2 – 1.3

Throughout this section, let U be a multi-well potential, and let (Xt, Yt) be a coupling of two solutions of (2). Sections 4.1–4.3 
focus primarily on the double-well potential U , while the general case of more than two wells is discussed in Section 4.4.
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4.1. Key stopping times for double-well potential

Assume that U is a double-well potential satisfying (U2) with two basins B1 and B2. Let
�(1)
"

= inf
{
t > ℎ ∶ (Xt, Yt) ∈ B1 × B1 or B2 × B2

}

denote the infimum time when Xt and Yt lie in the same basin of U . Here, the subscript ‘‘"’’ emphasizes the role of the noise 
magnitude " in determining the stopping times in the multi-well setting. We note that �(1)"  is finite P-almost surely.

Remark 4.1.  When Xt or Yt is initiated near a basin boundary, repeated boundary crossings within an infinitesimal time interval 
may occur, making the analysis cumbersome. To circumvent these non-essential complications, �(1)"  is defined after a small positive 
time. Specifically, this positive time is chosen as the numerical step size ℎ to ensure compatibility with the numerical simulations. 
This convention is adopted for all stopping times defined in this section. 

If initially, Xt and Yt already belong to the same basin, then �(1)" = ℎ with probability close to 1. Now, assume that X0 and Y0
belong to different basins. Without loss of generality, let Y0 ∈ B1. Then we have

�(1)
"

= �X (B1) ∧ �Y (B2),

where recall that �X (B1) (resp. �Y (B2)) denotes the first hitting time of the process Xt (resp. Yt) to the basin B1 (resp. B2).
Throughout this section, let 

�" = exp
{
C"e

−2HU ∕"2
}
, (63)

where, in the double-well case, HU  is the essential barrier height defined in (5), and C" > 0 is any constant that is not uniquely 
determined and satisfies lim"→0 C" > 0, with the limit depending only on U . By Lemma  2.6, 

P[�(1)
"

> t] ≤ P[�X (B1) > t] ≲ �−t
"
, ∀t > 0. (64)

Before proceeding, recall from Section 2.4 that for the multi-well potential, an enlarged set B1, defined in (34), consists of 
all nearby basins, in particular, including B1. By Proposition  2.7, for any local minimum xj with the corresponding basin Bj not 
contained in B1, one has 

�(x1, xj ) − U (x1) > �(x2, xi) − U (x2) = HU , ∀i ∈ . (65)

This suggests that a process starting from the global minimum x1 must overcome a higher barrier to exit the enlarged set B1 than 
a process starting from x2 has to overcome to enter it.

In light of (65), in the multi-well setting, which in particular includes the double-well case, we assume the following (H1) for 
the coupling scheme.
(H1) There exist constants �0 > 0 and 
0 > 0 such that if the coupling (Xt, Yt) satisfies the initial condition X0 ∈ B�0

(x2), Y0 ∈ B�0
(x1), 

then for any " > 0 sufficiently small, 
P
[
Ys ∈ B1 for all s ∈ [0, t]

|||�X (B1) > t
] ≥ 
0, ∀t > 0. (66)

The assumption (H1) states that when Xt and Yt start from the bottom of the basins B2 and B1, respectively, the probability 
that Yt remains in the enlarged set B1, given that Xt has not yet entered B1, is uniformly positive and independent of " and t. In 
Section 5, (H1) is numerically verified. At present, although (H1), along with the forthcoming assumptions (H2)–(H3), cannot be 
rigorously verified, Section 5.7 provides numerical evidence supporting their validity in an interacting particle system with multiple 
local minima.

Remark 4.2.  The assumption (H1) naturally arises in the context of reflection coupling. For simplicity, consider the one-dimensional 
double-well potential. Let '(t), t ∈ [0, T ], be a C1 function satisfying '(0) = 0, and let � > 0 be a small constant such that

|(Xt −X0) − '(t)| < �, ∀t ∈ [0, T ].

Then the Wiener process Bx
t
 associated with Xt must stay in the neighborhood of '(t) + ∫ t

0
∇U (X0 + '(s))ds. Due to the reflection, 

the Brownian motion terms in Xt and Yt are symmetric. Consequently, the corresponding Wiener process By

t
 of Yt must stay in the 

small neighborhood of −'(t) − ∫ t

0
∇U (X0 + '(s))ds, which has the same action functional as '(t) + ∫ t

0
∇U (X0 + '(s))ds. If Xt exits 

the shallower well B2 at some T > 0, then with high probability, the final segment of Xt remains in a small neighborhood of the 
minimum energy path, denoted by �(t) (see, for instance, Theorem 2.3 in Chapter 4 of [24]). This implies that the Brownian motion 
term Bx

t
 stays in the neighborhood of

�(t) + ∫
t

0

∇U (�(s))ds,

whose action functional equals 2(�(x1, x2) − U (x2)), which is strictly less than 2HU . On the other hand, for Yt to exit B1 from the 
neighborhood of x1, its trajectory must have an action functional of at least 2HU . Therefore, when Xt exits from the shallower well, 
it is highly likely that Yt remains in B1. Unfortunately, to the best of our knowledge, this argument is difficult to establish rigorously, 
as the Freidlin–Wentzell large deviation theory applies only to a fixed time span [0, T ] as " → 0. However, the tail estimates required 
in this paper necessitate estimates that hold for arbitrarily large t. 
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In the double-well setting, B1 is simply B1. Hence, (66) is reduced to 
P[�Y (B2) > t|�X (B1) > t] ≥ 
0. (67)

Under (H1), the reverse of (64) holds if X0 ∈ B�0
(x1) and Y0 ∈ B�0

(x2):

P[�(1)
"

> t] ≥ P[�X (B1) > t, �Y (B2) > t]

= P[�Y (B2) > t|�X (B1) > t] ⋅ P[�X (B1) > t]

≥ 
0 ⋅ P[�X (B1) > t] ≃ �−t
"

(68)

where the last ‘‘≃’’ follows from Lemma  2.6, by choosing �0 > 0 sufficiently small.
In contrast to �(1)" , define another stopping time

�(2)
"

= inf
{
t > ℎ ∶ (Xt, Yt) ∈ B1 × B2 or B2 × B1, and for some s ∈ (ℎ, t),

(Xs, Ys) ∈ B1 × B1 or B2 × B2

}
,

and let �(2)" = ∞ if the set is empty. Note that �(2)"  captures the infimum time when Xt, Yt are separated (again) by different basins, 
where ‘‘again’’ applies if Xt and Yt already belong to different basins at the very beginning.

Let

�" = �(2)
"

∧ �c .

We note that �" = �
(2)
" < �c if Xt, Yt are not coupled while staying in the same basin; otherwise, �" = �c and �(2)" = ∞. As will be seen 

in Section 4.3, the coupling time �c is P-a.s. a finite iteration of �".

4.2. Estimation of �"

The following assumption (H2) is made in both double and multi-well settings, characterizing local coupling properties when Xt

and Yt lie in the same basin.
(H2) Let (Xt, Yt) be a coupling of two solutions of (2) such that (X0, Y0) ∈

⋃
1≤i≤L Bi × Bi. The following hold:

(i) There exists 
1 ∈ (0, 1) such that
P[X�"

≠ Y�"
] < 
1;

(ii) For any " > 0 sufficiently small, there exists r0(") = (−1∕ log ") > 0 such that
P[�" > t] ≲ e−r0(")t, ∀t > 0.

Assumption (H2)(i) asserts that when Xt and Yt belong to the same basin, there is a positive probability of successful coupling. 
Assumption (H2)(ii) states that as " tends to zero, the exponential tail of �" vanishes at the rate (−1∕ log "). This is expected, since 
in the limiting case " = 0, one process may be trapped at the saddle point on the boundary and cannot couple with the other one. 
The rate (−1∕ log " can be derived by explicitly solving the linearized dynamics near the saddle point; see also [26,27] for rigorous 
results on the passage time of a small-noise perturbation of a deterministic dynamical system through a hyperbolic equilibrium.

The following proposition provides sufficient conditions for (H2), which will be numerically verified in Section 5.

Proposition 4.3.  Assume that for each i ∈ {1,… , L}, the following conditions hold:
(a) There exist constants T0 = (− log "), � > 0, and 
0 > 0 such that

P[(Xt, Yt) ∈ Bi
�
× Bi

�
, for all ℎ ≤ t ≤ T0 ∣ (X0, Y0) ∈ Bi × Bi] ≥ 
0

is uniform for all (X0, Y0) ∈ Bi × Bi, where Bi
�
= {x ∈ Bi ∣ d(x, )Bi) > �} denotes the �-interior of Bi;

(b) There exists a strongly convex neighborhood Bi
c
 of xi such that Bi

c
⊆ Bi.

Then Assumption (H2) holds.

For the proof of Proposition  4.3, refer to Appendix  B.

Remark 4.4.  Assumption (b) in Proposition  4.3 holds if U has non-vanishing second-order derivatives at the minimum xi. 
Assumption (a) asserts that if the two processes start from the same basin, the probability that both strictly remain in that basin 
for an extended period of time of order (− log ") is positive. While this is intuitive, a rigorous proof is technically challenging 
and beyond the scope of this paper. It would require specifying a normal form for −∇U near the boundary and analyzing the exit 
behavior from the separatrix of the reflection-coupled processes governed by (2). Therefore, we choose to verify this assumption 
numerically. 
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The analysis becomes more intricate when Xt and Yt initially belong to different basins. The coupling process (Xt, Yt) typically 
evolves in two stages during (ℎ, �"). In Stage 1, Xt and Yt lie in different basins until one of them, either Xt or Yt, jumps out of its 
initial basin and enters the other, making both of them stay in the same basin. Then Stage 2 begins, where Xt and Yt are in the 
same basin for a period of time, until they are either successfully coupled or fail to couple with one of them jumping out of the 
basin again. Accordingly, write 

�" = �"◦�
�
(1)
" + �(1)

"
, P- a.s. (69)

where �(1)"  and �"◦��
(1)
"  correspond to the Stage 1 and Stage 2, respectively, and � denotes the usual shift operator.

We note that Stage 1 and Stage 2 exhibit different time scales: Stage 1 corresponds to a slow time scale, typically persisting over 
an exponentially long period, with the tail exponent diminishing exponentially in terms of "; Stage 2 is associated with the fast time 
scale, and as shown in (H2), the exponent of the tail distribution remains uniformly away from zero, independent of ".

Based on the above analysis, we obtain the following estimate of �" when Xt and Yt initially belong to different basins.

Lemma 4.5.  Let (Xt, Yt) be a coupling of two solutions of (2) such that (X0, Y0) ∈ B1 × B2 or B2 × B1. Assume (H2). Then there exists 
C1 > 0 such that for any t > 0 and any " > 0 sufficiently small,

P[�" > t] ≤ C1�
−t
"
.

Consequently, by Proposition  2.8, for any � ∈ (1, �"), 
E[��" ] ≤ g(�;C1, �", 1) < ∞. (70)

Proof.  According to (69),

P[�" > t] = ∫
t

ℎ

P[�(1)
"

= s]P[�" > t|�(1)
"

= s]ds

≤ ∫
t

ℎ

P[�(1)
"

> s − �]P[�"◦�
s > t − s]ds (71)

where � ∈ (0, ℎ) is sufficiently small. By (64), there exists a constant C2 > 0 such that
P[�(1)

"
> s − �] ≤ C2�

−(s−�)
"

.

Moreover, since Xt, Yt belong to the same basin at t = �
(1)
" , it follows from (H2)(ii) that there exists a constant C3 > 0 such that

P[�"◦�
s > t − s] ≤ C3e

−r0(")(t−s).

Since � is arbitrarily small, it follows that

(71) ≤ C1�
−t
" ∫

t

0

(
�"e

−r0(")
)t−s

ds,

where C1 > 0 is a constant independent of t and ".
Note that �"e−r0(") < 1 for " > 0 sufficiently small. Thus, by enlarging C1 if necessary,

(71) ≤ C1�
−t
"
.

The lemma is proved. □

Combining (H2)(ii) and Lemma  4.5, we immediately obtain the following result.

Proposition 4.6.  Let (Xt, Yt) be a coupling of two solutions of (2) such that (X0, Y0) is fully supported. Assume (H2). Then for any " > 0

sufficiently small and any � ∈ (1, �"),

E[��" ] < ∞.

4.3. Proof of Theorem  1.2

Let U be a double-well potential and (Xt, Yt) be a coupling of two solutions of (2). In this section, the coupling (Xt, Yt) is assumed 
to satisfy (H1)–(H2). As in the proof of Theorem  1.1, a sequence of random times is defined inductively as 

�0
"
= 0, �k

"
= �k−1

"
+ �"◦�

�k−1" , k ≥ 1. (72)

where � is the usual shift operator. Note that by the definition of �", for each k ≥ 1, either X
�k"

= Y
�k"
, or X

�k"
 and Y

�k"
 belong to 

different basins. Let 
� = inf{k ≥ 1 ∶ X

�k"
= Y

�k"
}. (73)

The following Proposition  4.7 and Theorem  4.8 are analogues of Proposition  3.5 and Theorem  3.6, respectively, in the double-well 
setting. 
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Proposition 4.7.  For any " > 0 sufficiently small, the following hold:
(i) X

�k"
= Y

�k"
 if and only if k ≥ �;

(ii) For any " > 0 sufficiently small, it holds that
P[X

�k"
≠ Y

�k"
|

�k−1"
] < 
1, ∀k ≥ 1,

where 
1 ∈ (0, 1) is as in (H2).

Note that Proposition  4.7(i) yields
�c = ��

"
, P-a.s.

Proposition  4.7 (ii) directly follows from (H2)(i) by the strong Markov property.

Theorem 4.8.  Let (Xt, Yt) be a coupling of two solutions of (2) such that (X0, Y0) is fully supported. Assume (H2). Then for any " > 0

sufficiently small and any � ∈ (1, �"), it holds that
E[��

�
" ] < ∞.

Proof.  The proof follows the same approach as that of Theorem  3.6. By replacing I{R
�k" >0

} in the proof of Theorem  3.6 with I{X
�k"

≠Y
�k"

}, 
we have

E[��
�
" ] ≤ E[��" ]

(
1 + g(�;C1, �", 1)

∞∑
k=0

(


1−p

1
g(�1∕p;C1, �", 1)

p
)k)

,

where C1 > 0 is the constant given in Lemma  4.5, 
1 is as in Proposition  4.7(ii), and p ∈ (0, 1) is an arbitrary number. Thus, 
E[��

�
" ] < ∞ holds if the inequality 

g(�1∕p;C1, �", 1) < 

−(1−p)∕p

1
(74)

is satisfied.
By Proposition  2.9, (74) holds for any � > 1 satisfying �1∕p ∈ (1, 1+ �(�" −1)), where � = min{1, �∗} and �∗ is given by (42). Note 

that

�∗ → 

−(1−p)∕p

1
− 1, as " → 0.

Since 
−(1−p)∕p
1

− 1 > 0 and diverges to infinity as p → 0, one can choose p ∈ (0, 1) such that 
−(1−p)∕p
1

− 1 > 1. It then follows that 
�∗ > 1, and hence � = 1, for any sufficiently small " > 0. Hence, �1∕p can be arbitrarily close to �". By the definition of �" in (63), 
it follows that

ln � ≃ C"e
−2HU ∕"2 . □

Proof of Theorem  1.2.  Note that for any � > 1 satisfying E[���" ] < ∞, it holds that
P[��

"
> t]�t ≤ E[��

�
" ].

It then follows from Proposition  4.7(i) and Theorem  4.8 that for any t > 0 and " > 0 sufficiently small,
P[�c > t] ≲ �−t,

where � satisfies ln � ≃ C"e
−2HU ∕"2 . Hence, 

lim sup
t→∞

1

t
logP[�c > t] ≲ − ln � ≃ −C"e

−2HU ∕"2 . (75)

For the reverse inequality, since (X0, Y0) is fully supported, it follows that for any � > 0 sufficiently small,
P[�c > t] ≥ P[�c > t, (X0, Y0) ∈ B�(x1) × B�(x2) or B�(x2) × B�(x1)].

Note that when X0 and Y0 belong to different basins, it holds that �c ≥ �
(1)
" . Thus, by (68)

P[�c > t, (X0, Y0) ∈ B�(x1) × B�(x2) or B�(x2) × B�(x1)]

≥ P[�(1)
"

> t, (X0, Y0) ∈ B�(x1) × B�(x2) or B�(x2) × B�(x1)] ≳ �−t
"
,

and hence 
lim sup
t→∞

1

t
logP[�c > t] ≳ −C"e

−2HU ∕"2 . (76)

Combining (75) and (76) completes the proof of Theorem  1.2. □
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4.4. Multi-well potential and proof of Theorem  1.3

In this section, we study the general case of multi-well potentials. Let U be a multi-well potential satisfying (U3), with L(L > 2)

local minima x1,… , xL and the corresponding basins B1,… , BL. Let (Xt, Yt) be a coupling of two solutions of (2).
Similar to the double-well case, several key stopping times need to be defined to estimate the coupling time. By a slight abuse 

of notation, we continue to use �(1)"  to denote the infimum time at which Xt and Yt lie in the same basin, i.e.,
�(1)
"

= inf
{
t > ℎ ∶ (Xt, Yt) ∈ ∪1≤i≤LBi × Bi

}
.

Define

�(3)
"

= inf
{
t > ℎ ∶ (Xt, Yt) ∈

⋃
1≤i,j≤L,i≠j

Bi × Bj , and for some s ∈ (ℎ, t),

(Xs, Ys) ∈
⋃

1≤i≤L
Bi × Bi

}
,

and let �(3)" = ∞ if the set is empty. Note that �(3)"  generalizes �(2)"  to the case of multiple wells and coincides with �(2)"  when L = 2.
In the multi-well setting, a key stopping time of interest is when both Xt and Yt lie in the vicinity of the (unique) global minimum 

x1. Let �1 denote the infimum time at which both Xt and Yt lie in the basin B1. Recall, as defined in (30), that �X (B1) (resp. �Y (B1)) 
denotes the infimum time at which Xt (resp. Yt) enters B1. Then 

�1 ≥ max
{
�X (B1), �Y (B1)

}
. (77)

Note that Xt and Yt may enter and exit the basin B1 multiple times before �1. However, as long as " is sufficiently small, the 
typical scenario is that one of the two processes, say Xt, first enters B1 and ‘‘waits’’ for Yt to arrive. Although Xt may leave B1 before 
Yt enters, it is highly probable that Xt will stay in nearby basins and return to B1 shortly after Yt enters.

The following (H3) assumes that �1 is no greater than �X (B1) (or �Y (B1)) up to an infinitesimal of the same order as �X (B1) (or 
�Y (B1)).

(H3) Let (Xt, Yt) be a coupling of two solutions of (2) such that (X0, Y0) ∈
⋃

1≤i,j≤L,i≠j Bi × Bj . Then for any " > 0 sufficiently small, 

lim sup
t→∞

1

t
logP

[(
�1 − max

{
�X (B1), �Y (B1)

})
> t

]
≲ e−2HU ∕"2 . (78)

We note that in contrast to (H2), which provides a local characterization of the coupling properties between Xt and Yt, (H3) 
imposes a global condition on the coupling between Xt and Yt as both processes evolve across the entire potential landscape. In 
Section 5.4, (H3) is numerically verified for the reflection-maximal coupling scheme.

Remark 4.9.  A rigorous justification of (H3) is highly challenging, as it requires estimating the simultaneous hitting time, i.e., �1, 
of the coupled process (Xt, Yt). Although there are some results on the simultaneous hitting time of independent processes [11], to 
the best of knowledge of the authors, no such result exists for two reflection-coupled stochastic differential equations. 

For the multi-well case with L > 2, (H1)–(H3) are assumed. As in the double-well case, the quantity �" is defined as
�" = exp{C"e

−2HU ∕"2},

where HU  now represents the essential barrier height in the general form (7), applicable to multi-well potentials. Still, C" > 0 is 
any constant, not uniquely determined, such that lim"→0 C" exists and depends only on U .

Under assumption (H3) and the initial condition (X0, Y0) ∈
⋃

1≤i,j≤L,i≠j Bi × Bj , Lemma  2.6 implies
P[�1 > t] ≲ �−t

"
,

which, since �(1)" ≤ �1, further yields 
P[�(1)

"
> t] ≲ �−t

"
. (79)

Still, similar to the double-well case, we denote
�" = �(3)

"
∧ �c .

The estimation of �" follows the same reasoning as in the double-well case: If Xt and Yt initially belong to the same basin, the result 
directly follows from (H2)(ii). If Xt and Yt initially belong to different basins, the coupling process (Xt, Yt) is typically decomposed 
into two stages over the time interval (ℎ, �"). In Stage 1, Xt and Yt remain in different basins until �(1)" , at which time they are in the 
same basin. Stage 2 then follows, during which Xt and Yt are either successfully coupled within the same basin or remain uncoupled 
before being separated again by different basins. Hence, similar to (69) for the double-well case, it holds for the multi-well case as 
well that

�" = �"◦�
�
(1)
" + �(1)

"
, P- a.s.

where �(1)"  and �" are defined in the setting of multi-well potential.
The following is the ‘‘multi-well version’’ of Lemma  4.5 for the general case of L ≥ 2.
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Lemma 4.10.  Let (Xt, Yt) be a coupling of two solutions of (2) such that (X0, Y0) ∈
⋃

1≤i,j≤L,i≠j Bi × Bj . Assume (H2)–(H3). Then for 
any t > 0,

P[�" > t] ≲ �−t
"
.

Proof.  The proof follows similarly to that of Lemma  4.5. As in (71), for any � ∈ (0, ℎ), 

P[�" > t] ≤ ∫
t

ℎ

P[�(1)
"

> s − �]P[�"◦�
s > t − s]ds. (80)

Applying (79) and (H2)(ii) yields
P[�(1)

"
> s − �] ≲ �−(s−�)

"
, P[�"◦�

s > t − s] ≲ e−r0(")(t−s).

Since � can be arbitrarily small, substituting into (80) yields

P[�" > t] ≲ �−t
" ∫

t

0

(
�"e

−r0(")
)t−s

ds

Thus, for any " > 0 sufficiently small such that �"e−r0(") < 1, and therefore the integral remains bounded, we obtain
P[�" > t] ≲ �−t

"
. □

The proof of Theorem  1.3 is analogous to that of Theorem  1.2.

Proof of Theorem  1.3.  Analogous to Proposition  4.6 in the double-well case, a combination of assumption (H2)(ii) and Lemma 
4.10 yields the following result for the multi-well case: for any " > 0 sufficiently small and any � ∈ (1, �"),

E[��" ] < ∞.

As demonstrated in both the single and double-well cases, the coupling time �c can be written as a finite iteration of �", specifically 
�c = �

�
" , where � is defined in (73). In analogy with the double-well case in Theorem  4.8, it then follows that for " > 0 sufficiently 

small and any � ∈ (1, �"),

E[��
�
" ] < ∞,

which implies the exponential tail estimate
P[�c > t] ≲ �−t

"
.

To establish the corresponding lower bound, the assumption that the initial distribution of (X0, Y0) is fully supported is employed. 
Consider the case where Xt is initialized in the distant basin B2, and Yt starts in the basin B1 associated with the global minimum. 
Under the assumption (H1), the event that Yt does not exit the region B1 prior to the entrance of Xt occurs with positive probability, 
uniformly in both " and t. Hence,

P[�c > t] ≥ P
[
Ys ∈ B1 for all s ∈ [0, t]

|||�X (B1) > t
]
⋅ P[�X (B1) > t]

≥ 
0 ⋅ P[�X (B1) > t] ≃ �−t
"

(81)

where the last approximation follows from (35), the strengthened version of Lemma  2.6. This completes the proof of Theorem 
1.3. □

5. Numerical examples

This section presents numerical examples to verify the theoretical results and the assumptions (H1)–(H3) concerning the coupling 
scheme introduced in the preceding sections. An algorithm is first proposed in Section 5.1 to obtain accurate numerical estimates 
of the exponential tails of the coupling times. For further details on the coupling algorithm, the reader is referred to [14].

5.1. An algorithm for exponential tail estimation

Let �c denote the coupling time. While the rigorous results only establish bounds on the limit superior of 1t logP[�c > t], numerical 
simulations consistently indicate convergence of 1

t
logP[�c > t] as t increases. Therefore, the numerical investigation focuses on 

computing the exponential decay rate of P[�c > t] with respect to t, that is,

r(") = − lim
t→∞

1

t
logP[�c > t] ,

where " denotes the noise magnitude in (2). Since only a finite number of coupling events can be sampled, an efficient algorithm is 
required both to provide statistical evidence for the existence of the exponential tail and to estimate its decay rate with reasonable 
accuracy.
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The main challenge is that P[�c > t] typically does not exhibit exponential decay until t is sufficiently large. It is therefore 
necessary to identify a suitable threshold t∗ such that the tail 1{�c>t∗}(�c − t∗) approximately follows an exponential distribution, 
while keeping t∗ as small as possible to ensure that enough samples with �c > t∗ are available. However, most exponentiality tests 
that have been attempted yield a threshold t∗ that is too small, resulting in the failure of the log-linear plot of the tail to stabilize 
into a linear trend. This is likely due to the sensitivity of the plots to small deviations in tail behavior.

The goal of our algorithm is to determine a suitable t∗ such that the log-linear plot of P[�c > t] is approximately linear for all 
t > t∗. That is, the confidence interval of the estimated values of P[�c > t] should contain a straight line on the logarithmic scale for 
all t > t∗. The algorithm proceeds as follows. First, select a sequence of times t0, t1,… , tN , where tN  is typically set as the maximum 
of the sampled coupling times. Let M denote the total sample size, and for each i, let ni be the number of samples satisfying �c > ti. 
The Agresti–Coull method [28] provides a confidence interval for each i of the form

[p̃−
i
, p̃+

i
] ∶= [p̃i − z

√
p̃i

M̃
(1 − p̃i) , p̃i + z

√
p̃i

M̃
(1 − p̃i)] ,

where M̃ = M +z2, p̃i = (ni +
z2

2
)∕M̃ , and z = �−1(1−�∕2) is the �-quantile of the standard normal distribution. In practice, z = 1.96

and � = 0.05 are commonly used.
Given any N0 ∈ {1,… , N}, a weighted linear regression can be performed to fit the points (ti, log p̃i) for i = N0,… , N , where each 

point (ti, log p̃i) is assigned a weight of ni∕M . If the regression yields a linear function of the form y = at + b, then N0 is considered 
acceptable if it satisfies 

|||{N0 ≤ i ≤ N} ∶ ati + b ∉ [p̃−
i
, p̃+

i
]
||| < �(N −N0 + 1), (82)

ensuring the residuals 1{�c>tN0
}(�c − tN0

) are statistically consistent with an exponential tail beginning at tN0
. For each candidate 

N0, this procedure evaluates whether the tail distribution of �c beyond tN0
 is approximately exponential. The final choice of N0

is the smallest index that satisfies the condition (82), which can be efficiently found via binary search over {1,… , N} in (logN)

iterations. The threshold t∗ is then defined by tN0
, and the exponential decay rate is given by the slope a of the corresponding 

weighted regression line.

5.2. Quadratic potential function

The first example considers the quadratic potential function. The primary objective is to numerically verify the theoretical result 
stated in Theorem  1.1. This example will be revisited in Section 5.7 to examine the consistency of the first passage times between 
the continuous-time process and its time-ℎ sampled chain as the step size ℎ tends to zero, in accordance with the approximation 
(45) discussed in Remark  3.2.

Consider the quadratic potential function

U (x) =
1

2
xTAx, x ∈ R

k,

where A is a k × k Lehmer matrix whose entries are given by Aij = min(i, j)∕max(i, j). The matrix A is symmetric and positive 
definite [29]. The associated SDE is 

dZt = −AZtdt + "dWt , (83)

where Wt is a k-dimensional Wiener process, and " > 0 denotes the noise magnitude.
In the numerical simulations, the time step size ℎ is fixed at 0.001, unless stated otherwise. Fig.  2 displays the probability 

distribution of the coupling time �c . The four panels show P[�c > t] versus t on a log-linear scale for Lehmer matrices of size 2 × 2, 
4 × 4, 6 × 6, and 8 × 8, respectively. For each case, the noise magnitude " is set to 0.02, 0.1, 0.5, and 1.5. The slopes and linear 
fitting in the log-linear plots are determined using the algorithm described in Section 5.1. The smallest eigenvalue of A is indicated 
in the subtitle of each subplot in Fig.  2.

In all four cases, although the probability distribution of �c varies significantly with the noise magnitude, the slopes of the 
exponential tails remain unchanged. Moreover, the smallest eigenvalue of A, which can be computed explicitly, closely approximates 
the slope of the corresponding exponential tail, with an error of at most 0.01. This observation is consistent with Theorem  1.1, which 
asserts that the slope of the exponential tail is determined by the convexity of the potential function and is independent of the noise 
magnitude.

5.3. 1D double-well potential

This subsection considers an asymmetric one-dimensional double-well potential given by
U (x) = x4 − 2x2 + 0.2x, x ∈ R.

The potential U has two local minima located at x = 0.9740 and x = −1.0241. The barrier height that a trajectory must overcome 
to transition from the left well to the right is approximately 1.2074, while the reverse transition requires overcoming a barrier of 
approximately 0.8076; see the bottom left panel of Fig.  3.
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Fig. 2. Log-linear plots of P[�c > t] versus t and their exponential tails. The four panels correspond to Lehmer matrices of sizes 2, 4, 6, and 8. The 
smallest eigenvalue of each matrix is indicated in the title of the corresponding subplot.

The purpose of this example is to numerically verify the theoretical result of Theorem  1.2, which asserts that the exponential 
tail of the coupling time distribution is determined by the lower of the two barrier heights. The time step size and coupling method 
are the same as those used in the previous examples. The noise magnitudes " are chosen as 0.32, 0.36, 0.4, 0.45, 0.5, 0.6, and 0.7. For 
each value of ", the exponential tail r(") is estimated using the weighted linear regression algorithm described in Section 5.1. The 
corresponding results are shown in top panels of Fig.  3. It is observed that the exponential decay rate r(") varies significantly with 
respect to ".

In the bottom right panel of Fig.  3, the quantity y(") ∶= −"2 log r(") is plotted against "2, revealing an approximately linear 
relationship. A linear extrapolation of y(") as " → 0 yields the limiting value y(0) = 1.617, which closely agrees with the theoretical 
value y(0) = 2HU = 1.615, where HU  denotes the lower barrier height of the potential. This confirms the validity of Theorem  1.2 in 
the asymmetric double-well setting.

5.4. Interacting particle system in the double-well potential

This subsection considers a variation of the double-well potential introduced in the previous subsection. Let
V (x) = x4 − 2x2 + 0.2x, x ∈ R,

denote the double-well potential. Consider three particles moving along V  under overdamped Langevin dynamics, with additional 
pairwise interactions. The total energy potential is given by

U (x1, x2, x3) =

3∑
i=1

V (xi) + �
∑

i,j=1,2,3, i≠j
(xi − xj )

2,

where � > 0 is the interaction strength.
The function U has two trivial local minima at x1 = x2 = x3 = 0.9740 and x1 = x2 = x3 = −1.0241, corresponding to all three 

particles occupying the same basin of V . For sufficiently small � > 0, U also admits six additional local minima, corresponding to 
configurations in which the particles are distributed across different basins; see the top panel of Fig.  4 for a sample trajectory.

Two extreme regimes of interactions are notable. When � = 0, i.e., when there are no interactions among the three particles, 
the particles move independently, resulting in a barrier height of the energy landscape identical to that of V . When � → ∞, the 
interaction is strong enough so that the three particles must move together as a single unit, making the barrier height of the energy 
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Fig. 3. Top: Coupling time distributions for different noise magnitudes. Bottom left: Asymmetric double-well potential. Bottom right: Linear 
extrapolation of the essential barrier height.

potential U three times that of V . For any fixed � > 0, the essential barrier height HU  lies between the barrier heights of the two 
extreme cases, i.e., 0.8076 ≤ HU ≤ 3 × 0.8076 = 2.4228, with HU  increasing as � increases.

The estimate HU , and the distribution of the coupling time �c is computed for various values of ". For � = 0.05, values of " are 
chosen as 0.4, 0.41, 0.42, 0.43, 0.45, 0.47, 0.5, 0.55, 0.6, 0.7; for � = 0.1, values of " are 0.41, 0.42, 0.43, 0.44, 0.45, 0.47, 0.5, 0.55,0.6, 0.7. 
The decay rate r(") of the exponential tails is estimated in both cases using linear weighted regression. The relationship between 
r(") and " exhibits a similar trend to that observed for the double-well potential in the previous subsection. A linear extrapolation 
of y(") ∶= −"2 log r(") provides an estimate of the essential barrier height. As shown in the middle right panel of Fig.  4, the linear 
extrapolation yields y(0) = 1.7374 for � = 0.05 and y(0) = 1.9598 for � = 0.1, both of which are expected to be approximately twice 
the barrier height 2HU , which will be computed using the String method below. As expected, the barrier height increases with the 
interaction strength among the three particles.

To validate the essential barrier height inferred from the coupling approach, the String method (see, e.g., [30]) is employed 
to compute the heights of various barriers between the local minima (0.9740, 0.9740, 0.9740) and (−1.0241,−1.0241,−1.0241) in the 
energy landscape. As shown in Fig.  5, the essential barriers, defined as the highest barrier that a trajectory must overcome to enter 
the basin of the global minimum, correspond to the leftmost barrier in the lower left panels of Fig.  5: (A) for � = 0.01 and (B) for 
� = 0.1, respectively.

In this example, since the three particles are indistinguishable, the energy potential exhibits significant symmetry: the eight local 
minima can be classified into two types, each consisting of four specific cases. These cases correspond to configurations where (i) 
all three particles reside in the same basin (global or local), or (ii) two of the three particles lie in one basin (global or local), while 
the remaining particle resides in the other basin. Fig.  5 shows that the minimal energy path (MEP) connecting the two minima 
(0.9740, 0.9740, 0.9740) and (−1.0241,−1.0241,−1.0241) passes through all four cases. Thus, the essential barrier height HU  can be 
attained along such an MEP although, in principle, it should be determined by taking the supremum over all paths connecting any 
local minima to the global minima. In Fig.  5, the computed values are HU = 0.8961 for � = 0.05 and HU = 0.9916 for � = 0.1, which 
correspond to the theoretical values y(0) = 1.7922 for � = 0.05 and y(0) = 1.9832 for � = 0.1, respectively.

The result from the String method is further validated using the equivalent characterization (21) by numerically computing all 
27 critical points of U , including all the minima and saddle points. The essential barrier heights obtained through this approach are 
HU = 0.8962 for � = 0.05 and HU = 0.9916 for � = 0.1, which are nearly identical to those computed using the String method. As 
shown in Fig.  4, both values also closely match y(0)∕2, the estimate obtained via linear extrapolation from the exponential tails of 
coupling times.
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Fig. 4. Top: Sample trajectory of a three-particle interacting system in a double-well potential. Middle: Coupling time distributions and 
y(") = −"2 log r(") versus "2 for � = 0.1. Bottom: Coupling time distributions and y(") = −"2 log r(") versus "2 for � = 0.05. Theoretical values of 
y(0) in the middle-right and bottom-right panels are obtained from the minimum energy path.

5.5. Rosenbrock function

This example examines the well-known non-convex landscape of the Rosenbrock function in both two- and four-dimensional 
cases. For N ∈ N+, the Rosenbrock function is defined as

RN (x) =

N−1∑
i=1

[b(xi+1 − x2
i
)2 + (a − xi)

2], x ∈ R
N ,

where a and b are constants. In this study, the parameters are chosen as a = 1 and b = 20. For N = 2, the function RN  admits a unique 
minimum at (1, 1), while for N = 4, it possesses a global minimum at (1, 1, 1, 1) and a local minimum at (−1, 1, 1, 1). Fig.  6 illustrates 
the function landscape: the top-left panel displays logR2(x), and the bottom-left panel shows a slice of logR4(x) at x3 = x4 = 1. A 
logarithmic scale is used to better visualize the detailed structure near each minimum. In the vicinity of each minimum, the function 
exhibits a valley-like shape, remaining convex only within a very small neighborhood. The landscape of R4 cannot be fully captured 
by a single heat map slice; however, it is straightforward to verify that the convex region of R4 is relatively small.

The noise magnitude is set as " = 0.001, 0.01, 0.1, 1.0, 1.5, and 2.0 for R2, and as " = 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, and 1.0 
for R4. The corresponding coupling time distributions are shown in the two right panels of Fig.  6. It can be observed that for both 
cases, when the noise is sufficiently small, the tails of the coupling time distributions appear parallel in the log-linear plot. This 
behavior arises because the coupling time is primarily determined by the local convexity near the global minimum, in agreement 
with the result of Theorem  1.1. However, as the noise increases, trajectories are more likely to explore the entire valley rather than 
remaining confined to the neighborhood of the global minimum. Consequently, the coupling time distributions are altered.

Another interesting phenomenon is that for the potential function R4, the coupling time distribution does not exhibit an 
exponentially small tail with respect to the noise magnitude, even when " = 0.001. This contrasts with the theoretical results for 
the double-well potential. Moreover, even when one of the coupled processes is initialized at the local minimum (−1, 1, 1, 1), the 
tail of the coupling time distribution remains largely unchanged, as shown in the plot labeled ‘‘" = 0.001 fixed’’. This phenomenon 
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Fig. 5. Minimum Energy Path (MEP) computed using the String method [30] at high numerical resolution. The MEP represents the most likely 
transition path between two metastable states in the zero-temperature limit of overdamped Langevin dynamics. It is known (e.g., [31]) to reveal 
barrier heights and descent depths along the transition path, which are labeled by dU values in the bottom-left panel. The top panel visualizes 
the MEP in three-dimensional space (x1, x2, x3), where the legend lists the values of the potential U at each local minimum. The bottom-right 
panel displays the integrand of the Freidlin–Wentzell action functional as a function of the arc-length parameterization of the path, serving as a 
sanity check to verify the correctness of the computed MEP.

occurs because the basin of the local minimum is shallow and separated by a low barrier, which can be easily crossed by a trajectory 
allowing it to quickly reach the valley of the global minimum.
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Fig. 6. Top left: Landscape of R2. Top right: Coupling time distribution for R2 under different noise magnitudes. Bottom left: Landscape of R4. 
Bottom right: Coupling time distribution for R4 under different noise magnitudes.

5.6. Loss functions of artificial neural networks

This subsection investigates the performance of the coupling method in a high-dimensional setting. Specifically, the training 
process of an artificial neural network (ANN) with two hidden layers is considered, where the first and second layers contain N1

and N2 neurons, respectively. Let ReLU(z) = max{z, 0} denote the rectified linear unit activation function. The ANN considered here 
is defined by the following structure

h1 = ReLU(W1x + b1) (84)

h2 = ReLU(W2h1 + b2) (85)

y = W3h2 + b3 , (86)

where x ∈ R2 is the input and y ∈ R is the output. The vectors b1 ∈ RN1 ,b2 ∈ RN2  and b3 ∈ R denote the bias terms. The weight 
matrices W1, W2, and W3 have dimensions N1 × 2, N2 × N1, and 1 × N2, respectively. Let � denote the collection of all trainable 
parameters, including the entries of W1,W2,W3,b1,b2, and b3. The total number of parameters is given by

dim� = (N1N2 + 3N1 + 2N2 + 1).

For notational convenience, the ANN defined by (84)–(86) is denoted by y = NN(�,x).
The objective of the training process is to approximate the quadratic function y = |x|2 using the ANN. Given a training set 

{x1,… ,xM ; y1,… , yM}, the loss function is defined by

L(�) =
1

M

M∑
i=1

(
yi − NN(�,xi)

)2
,

where the training set size is fixed at M = 100. The input points x1,… ,x100 are uniformly sampled from [−1 , 1]2, and the 
corresponding target values are given by yi = |xi|2. The first column of Fig.  8 illustrates the distribution of the collocation points 
and the target function y = |x|2. The goal is to analyze the structure of the loss function L(�).

The coupling method is applied to three ANNs with different hidden layer sizes: N1 = 4, N2 = 3 (referred to as the ‘‘small ANN’’), 
N1 = N2 = 10 (the ‘‘medium ANN’’), and N1 = N2 = 20 (the ‘‘large ANN’’). In this example, the small ANN is under-parameterized, 
while the large ANN is over-parameterized. It is often believed that over-parameterization tends to reduce barrier heights in the 
loss landscape of ANNs (see, e.g., [32–38]). However, rigorous justification remains elusive due to the complex structure of high-
dimensional loss functions. The coupling-based approach proposed here may offer a viable tool in this regard by computing the 
essential barrier height of such loss functions.
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Fig. 7. Coupling time distributions and linear extrapolation of y(") = −"2 log r(") versus "2. Left: small ANN; middle: medium ANN; right: large 
ANN.

Fig.  7 presents the coupling time distributions for the three neural networks under ten different noise magnitudes. For visual 
clarity, only five noise levels are shown. As in previous examples, the slopes are estimated via weighted linear regression. The six 
smallest values of "2 are used for the linear extrapolation of y(") ∶= −"2 log r(") versus "2, as displayed in the lower panels. It is 
observed that the large ANN exhibits a lower essential barrier height. More precisely, no significant barrier is detected within the 
region explored by the coupling method. This observation is consistent with the findings in [38], which adopts a different approach 
based on computing the MEPs between the local minima of the loss surface. Although it is theoretically possible that a high-barrier 
local minimum exists in a remote region not reached by the coupling trajectories, such cases have not been reported to the best of 
our knowledge. Moreover, practical ANN training is typically regularized, which prevents |�| from becoming excessively large.

The small ANN in this example is under-parameterized, as it contains only 31 parameters to be learned, whereas the training set 
comprises 100 samples. As illustrated in Fig.  7, the loss function of the small ANN exhibits a much larger essential barrier height 
compared to both the medium and large ANNs. Regarding the training performance, when initialized randomly, the small ANN may 
converge to a ‘‘bad’’ local minimum that fails to accurately approximate the target function (see the middle panels of Fig.  8). In 
contrast, for all tested initial conditions, both the medium and large ANNs consistently converge to a ‘‘good’’ local minimum of the 
training loss function, yielding satisfactory approximations of the target function (see the right panels of Fig.  8). This finding aligns 
with existing studies on the loss landscapes of ANNs [1,39,40].

5.7. Numerical verification of assumptions

In this subsection, assumptions (H1)–(H3) proposed in Section 4 are numerically verified. In addition, the consistency between 
the first passage times of the continuous-time process and its discrete-time counterpart is examined, as discussed in Remark  3.2.

5.7.1. Numerical verification of Remark  3.2 .
We first numerically verify the consistency of the first passage times defined in Remark  3.2 as two reflection-coupled trajectories 

approach each other. Specifically, we examine the assumption (45)
lim
ℎ→0

|�0
ℎ
− �ℎ

ℎ
| = 0, P-a.s.

where �0
ℎ
= inf t>0{|Xt − Yt| = 2

√
ℎ} denotes the continuous-time first passage time, and �ℎ

ℎ
= ℎ ⋅ infn>0{|Xnℎ − Ynℎ| = 2

√
ℎ} is its 

discrete-time counterpart based on a time-ℎ sampled chain.
This verification can be conducted using an extrapolation argument. Let ℎ1 = ℎ∕n for some integer n, and define the first passage 

time of the time-ℎ1 sampled chain by
�
ℎ1
ℎ

= ℎ1 ⋅ inf
n>0

{|Xnℎ1
− Ynℎ1

| = 2
√
ℎ}.

By the strong approximation property of the Euler–Maruyama scheme for SDEs,
lim
ℎ1→0

�
ℎ1
ℎ

= �0
ℎ
, P-a.s.,
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Fig. 8. Left column: Training set and target function. Middle column: y = NN(�,x) for � at the ‘‘bad’’ and ‘‘good’’ local minima of the small 
neural network. Right column: y = NN(�,x) for the medium and large neural networks.

so it suffices to compare �ℎ
ℎ
 and �ℎ1

ℎ
, with the latter serving as an approximation of �0

ℎ
 for the same trajectory.

We apply the extrapolation method to both the quadratic potential function in Section 5.2 and the interacting particle system 
in Section 5.4. In the quadratic potential case, the initial values of Xt and Yt are set to (0.5, 0.7) and (−0.5,−0.6), respectively. For 
the interacting particle system, Xt and Yt are initialized at (1, 1, 1) and (−1,−1,−1), respectively, indicating that they belong to the 
basins of different local minima.

In the top-left and bottom-left panels of Fig.  9, the quantity (�ℎ
ℎ
− �

ℎ1
ℎ
) is plotted against √ℎ1 for five different values of ℎ. In 

both examples, this difference exhibits approximately linear behavior as √ℎ1 → 0. An extrapolation at ℎ1 = 0 provides an estimate 
of (�ℎ

ℎ
− �0

ℎ
). The top-right and bottom-right panels of Fig.  9 display (�ℎ

ℎ
− �0

ℎ
) versus 

√
ℎ for ℎ = 0.0002, 0.0005, 0.001, 0.005, and 0.01, 

respectively. The results show that this error decreases as ℎ → 0, and a linear fit suggests that (�ℎ
ℎ
−�0

ℎ
) is approximately proportional 

to 
√
ℎ, consistent with the findings of [41,42]. Although the error in estimating �ℎ is larger for the interacting particle system due 

to the presence of multiple local minima, the numerical results still exhibit the expected convergence behavior as ℎ → 0.
In the following subsections, the interacting particle system described in Section 5.4 is used to numerically verify assumptions 

(H1)–(H3). The coupling strength is set to � = 0.05.

5.7.2. Numerical verification of (H1)
Let X0 = (1, 1, 1) and Y0 = (−1,−1,−1), ensuring that the trajectory Yt is initiated near the global minimum. Based on the barrier 

heights illustrated in Fig.  5 and the definitions of , the set B1 is identified as the complement of the basin containing (1, 1, 1). The 
simulation is performed under four different noise magnitudes: " = 0.6, 0.65, 0.7, and 0.75. At each step of the Euler–Maruyama 
scheme,it is numerically checked whether Xt and Yt lie in B1. The criterion for determining whether a point x = (x1, x2, x3) belongs 
to B1 is as follows: for each i = 1, 2, 3, if either xi > 0.11, or 0 ≤ xi < 0.11 while −)U∕)xi > 0, then x ∉ B1. This condition is sufficient 
for all samples in our numerical simulation.

Remarkably, across tens of millions of samples, Yt was never observed to exit B1 before Xt entered it. A similar phenomenon 
is observed in the one-dimensional double-well potential, where Yt remains in B1 until Xt enters. This can be explained by noting 
that reflection-coupled Brownian motions have the same action functionals. When Xt exits the basin B2 and enters B1, the action 
functional of the associated driving Brownian motion of Xt is highly likely to be close to HU . Consequently, the action functional 
corresponding to the Brownian motion term in Yt is unlikely to be sufficiently large to drive Yt out of B1. Therefore, assumption 
(H1) is numerically verified with the even stronger conclusion that

P
[
Ys ∈ B1 for all s ∈ [0, t]

|||�X (B1) > t
]
≈ 1.

5.7.3. Numerical verification of (H2)
Let B2 denote the basin of attraction containing (1, 1, 1). According to Proposition  4.3 and Remark  4.4, it suffices to verify 

condition (a) therein. Specifically, this involves numerically estimating the probability that a trajectory enters the interior of B2. 
The approximate boundary of B2 is depicted in the left panel of Fig.  10. It suffices to consider initial points from the boundary, as 
the probability is expected to be higher when starting from the interior.
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Fig. 9. Left: (�ℎ
ℎ
−�

ℎ1

ℎ
) vs. √ℎ1 for five different values of ℎ. Top left: Quadratic potential function. Bottom left: Interacting particle system. Right: 

(�ℎ
ℎ
− �0

ℎ
) vs. √ℎ with a linear fit. Top right: Quadratic potential function. Bottom right: Interacting particle system.

Three initial values of X0 are selected from a corner, an edge, and a face of )B2, respectively, as marked in red in Fig.  10 (Left). 
The initial value of Y0 is fixed at (1, 1, 1). For each case, the probability that the coupled process (Xt, Yt) remains in the �-interior of 
B2 × B2 (with � = 0.01) throughout the time interval [ℎ, T0] is computed, where ℎ = 0.05, T0 = − log ", and " varies from 0.001 to 
0.01. As shown in Fig.  10, this probability remains uniformly bounded from below as " → 0. This numerically confirms condition 
(a) of Proposition  4.3, thereby verifying assumption (H2).

5.7.4. Numerical verification of (H3)
Assumption (H3) is numerically verified by computing the overshoot time. The criterion for determining whether a trajectory 

enters the basin B1 is the same as that used in Section 5.7.2. The noise magnitudes are set to 0.5, 0.55, and 0.6. For each value of ", 
the probability distribution of the overshoot time, given by �1 − max{�X , �Y }, is estimated using 1 × 107 samples.

As illustrated in Fig.  11, the tail distribution of �1−max{�X , �Y } exhibits a two-phase behavior. The second phase corresponds to 
the scenario where one of the trajectories, Xt or Yt, makes an excursion to other basins after entering B1 and subsequently returns, 
while the other trajectory remains within B1. Due to the low probability of such an event, a large number of samples are required 
to capture the exponential tail. In Fig.  11, the distributions of the overshoot time and coupling time are compared. In the log-linear 
plot, the slope of the overshoot time decreases rapidly as the noise magnitude decreases, yet it remains steeper than that of the 
coupling time. As the theoretical result indicates that the tail of the coupling time distribution is close to the essential barrier height 
HU , this numerical observation thereby verifies assumption (H3).

6. Conclusion and further discussions

This paper investigates the relationship between the geometry of a multi-dimensional potential landscape and the distributions 
of coupling time for the overdamped Langevin system associated with the potential. This study is motivated by the fact that 
the exponential tail of the coupling time distribution provides a lower bound for the spectral gap of the Fokker–Planck operator 
governing the Langevin dynamics. It has long been believed that certain geometric properties of a region can be inferred from the 
spectrum of an associated differential operator, as famously illustrated by Kac’s question [43], ‘‘Can one hear the shape of a drum?’’ 
In a similar spirit, this work takes a preliminary step toward understanding the structure of a potential landscape by establishing 
connections between its geometry and the statistical properties of coupling times.

Stochastic Processes and their Applications 190 (2025) 104763 

30 



Y. Li et al.

Fig. 10. Left: Approximate boundary of B1, with three initial values of X0 marked in red. Right: Probability that (Xt, Yt) remains in the �-interior 
of B1 over the time interval [ℎ, T0] = [0.05,− log "].

Fig. 11. Comparison of probability distributions of the overshoot time �1−max{�
X
, �

Y
} and the coupling time. The left, middle, and right panels 

correspond to " = 0.6, 0.55, and 0.5 respectively. The asymptotic slope of the overshoot time distribution in the log-linear plot is denoted by r̄.

It is shown that, in the limit of vanishing noise, the exponential tails of the coupling time distributions exhibit qualitatively
distinct behaviors in the single-well potential and multi-well settings. Specifically, for a strongly convex single-well potential, the 
rate of exponential tail is uniformly bounded below by a constant that depends on the convexity of the potential. In contrast, for 
a multi-well potential, the rate of the exponential tail decays exponentially as the noise strength tends to zero. These results are 
supported by both theoretical analysis and numerical verification.

The coupling scheme used in this paper combines reflection coupling and maximal coupling to improve efficiency. It is observed 
that the upper bound on the tail distribution obtained through this scheme is close to optimal, in the sense that it nearly achieves 
equality in the coupling inequality. To estimate the exponential decay rate of the tail in the small noise regime, a linear extrapolation 
is employed. This decay rate is governed by the essential barrier height, a concept introduced in this paper to capture the global 
structural features of the potential landscape. In particular, the essential barrier height is applied to analyze the loss landscape of 
artificial neural networks, and the corresponding numerical observations are consistent with findings from related studies employing 
alternative methodologies.

Although this work focuses on the distribution of coupling times, further information about the potential landscape is expected 
to be extracted from the coupling-based analyses. For instance, the distribution of coupling locations may provide additional 
insights into the geometry of the underlying landscape. Furthermore, the present study only concerns the tail of the coupling 
time distribution, which is associated with the principal eigenvalue of the Fokker–Planck operator. An investigation of conditional 
coupling times – specifically, those conditioned on avoiding coupling in the deepest well – could reveal spectral information 
associated with non-principal eigenvalues, which correspond to the lower energy barriers. These extensions represent promising 
directions for future research.
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Appendix A. Proof of Lemma  2.6

To establish the exponential tail, more refined estimates of the eigenvalues of the Dirichlet operator are required. Specifically, 
let "

D
 denote the infinitesimal generator of the process defined in (2), and let D ⊂ Rk be an open set with a regular boundary )D. 

Based on potential theory, [18,19] provide sharp estimates for the low-lying eigenvalues and the corresponding eigenfunctions of 
the Dirichlet problem

"
D
u − �u = 0,  in D (87)

u = 0, in Dc

The following Proposition  A.1 summarizes the sharp bounds of the principal eigenvalues, as established in Proposition 3.2 of [19] 
and Theorem 3.1 of [18]. The corresponding bound on the principal eigenfunction is stated in Proposition  A.2, which follows from 
Proposition 3.3 in [19]. 

Proposition A.1 (Sharp Bound on Eigenvalues [18,19]).  Assume that D ⊆ Rd is open and let U ∶ D → R be a potential function satisfying 
(U3). Suppose that D contains L ≥ 1 local minima of U , and that there exists a unique minimum x ∈ D such that

U (z∗(x,Dc )) − U (x) = max
1≤i≤L{U (z∗(xi, D

c )) − U (xi)}.

Let B ≡ Bx denote a neighborhood of x, and denote the first entrance time of Xt into any subset A ⊆ Rd by �A. Then there exist constants 
� > 0, C < ∞, and � > 0, independent of ", such that the principal eigenvalue �1 < 0 of "

D
 satisfies

capB(D
c )

‖ℎB,Dc‖2
2

(1 − C"�)(1 − e−�∕"
2
) ≤ |�1| ≤ capB(D

c )

‖ℎB,Dc‖2
2

(1 + C"�)(1 + e−�∕"
2
) ,

where ℎB,Dc (z) ∶= Pz[�B < �Dc ], the norm ‖ ⋅ ‖2 is taken with respect to the invariant probability measure �" of (2), and capacity

capB(D
c ) = e−2U (z∗)∕"2 (2�")

d

2�

|�∗
1
(z∗)|

√|det(∇2U (z∗))|
(1 + O("| ln "|))

for z∗ = z∗(B,Dc ). Here, �∗
1
(z∗) denotes the negative eigenvalue of the Hessian of U at z∗.

Proposition A.2 (Sharp Bounds on Eigenfunctions [18,19]).  Under the assumptions of Proposition  A.1, let �1 be the eigenfunction of "
D

corresponding to �1, normalized such that infx∈)B �1 = 1. Then
ℎB,Dc (z) ≤ �1(z) ≤ ℎB,Dc (z)(1 + C"�)(1 + e−�∕"

2
).

These estimates on the principal eigenvalue and eigenfunction yield the exponential tail for the first hitting time in Lemma  2.6.

Proof of Lemma  2.6.  The argument is a modification of Theorem 1.4 from [19]. Assume z ∉ B1, since the bound is trivial otherwise. 
Set D = Bc

1
 and B = B2. Then

capB(D
c ) = e−2U (z∗)∕"2 (2�")

d

2�

|�∗
1
(z∗)|

√| det(∇2U (z∗))|
(1 + O("| ln "|)),

where z∗ = z∗(x1, x2).
Note that for sufficiently small " > 0, if ℎB,Dc (z) ≃ 1 for z ∈ Bi, then it follows that �(xi, x2) < �(xi, x1). This, in turn, implies 

U (xi) > U (x2); otherwise, we would have
�(x2, x1) − U (x2) < �(xi, x1) − U (xi),

which contradicts (29). In particular, ℎB,Dc (z) ≃ 1 for z ∈ B2. Therefore, integrating against �", it follows that
‖ℎB,Dc‖22 ≃ e−2U (x2)∕"

2
.
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Noting that HU = U (z∗) − U (x2), it follows from Proposition  A.1 that
|�1| = e−2HU ∕"2 (1 + O("�))(1 + O(e−�∕"

2
)).

Now observe that
Pz[�Z (B1) > t] =

(
e
t"

D1Bc
1

)
(z),

so that
Pz[�Z (B1) > t] ≤ Az,"e

−�1t

for some constant Az," depending on z and ".
For the lower bound, note that "

D
 is self-adjoint in the weighted space L2

�"
, and thus its eigenfunctions form an orthogonal 

basis. It follows that
Pz[�Z (B1) > t] =

(
e
t"

D1Bc
1

)
(z) ≥ E�̂" [�11Bc

1
] ⋅ e−�1t ⋅ �1(z),

where �̂" denotes the normalized restriction of �" to D. By Proposition  A.2,
�1(z) ≃ ℎB,Dc (z)(1 + O("�)).

Thus, for z ∈ B, one has ℎB,Dc (z) ≃ 1, and hence
P�[�Z (B1) > t] ≥ E�̂" [�11Bc

1
] ⋅ e−�1t ⋅ E�(�1).

Since � is fully supported, the term E�(�1) ≃ E�(ℎB,Dc ) > 0, yielding the desired lower bound. □

Remark A.3.  The leading-order term of Az," is proportional to �1(z). Furthermore, if z lies in the interior of B2, then Pz[�B1
>

�B"(x2)
] ≃ 1. Consequently, the leading-order term of Az," can be bounded by a constant that is independent of both " and z. 

Any dependence on " and z arises exclusively through the coefficients associated with higher-order eigenfunctions in the spectral 
decomposition of the semigroup. On the time scale �Z (B1) = O(e2HU ∕"2 ), these higher-order terms are of order O(e−�∕"

2
), making 

the prefactors Az," and A�," effectively independent of ". 

Remark A.4.  The result in Lemma  2.6 still holds if B1 is replaced by B1, as defined in (34). This follows from (37), which ensures 
that, when D = B

c
1
, the deepest local minimum remains to be x2 and the height of the saddle z∗(B,Dc ) remains to be U (z∗(x1, x2)). 

Hence, the proof of Lemma  2.6 continues to hold.

Appendix B. Proof of Proposition  4.3

We first establish that the event in which Xt and Yt remain within the same basin and couple within a finite time interval of 
order (− log �) occurs with a strictly positive probability. This directly implies (H2)(i).

By assumption (a), for any initial value (X0, Y0) ∈ Bi × Bi, the pair (XT0
, YT0

) belongs to the �-interior Bi
�
× Bi

�
 with probability 


0. Since Bi is the basin of attraction of xi, denote by xt the deterministic gradient flow ẋt = −∇U (xt). Then there exists a constant 
T1 = (1) such that for any x0 ∈ Bi

�
, the deterministic trajectory satisfies xT1 ∈ Bi

c,1
⊂ Bi

c
, where Bi

c,1
 is an open subset in the interior 

of Bi
c
.

By the standard small random perturbation argument (see, for instance, Chapter 4, Lemma 2.1 of [24]), for any " > 0 sufficiently 
small and any finite time interval, both processes Xt and Yt remain close to the deterministic trajectory xt with high probability, 
say at least 0.9. Thus, combining this with assumption (a), define the event

E0 ∶=
{
(Xt, Yt) ∈ Bi × Bi for all t ∈ [ℎ, T0 + T1),  and (XT0+T1

, YT0+T1
) ∈ Bi

c,1
× Bi

c,1

}
.

Then

P[E0 ∣ (X0, Y0) ∈ Bi × Bi] ≥ 0.9
0.

Let Ũ be a strongly convex potential satisfying (U1) such that U = Ũ on Bi
c
. Denote by (X̃t, Ỹt) the coupled process associated 

with Ũ . Then (Xt, Yt) coincides with (X̃t, Ỹt) as long as (X̃t, Ỹt) remains in Bi
c
× Bi

c
. By Theorem  1.1, for any 
2 ∈ (0, 1), there exists 

T2 = (1) such that
P[X̃t and Ỹt couple before T2 ∣ (X̃0, Ỹ0) ∈ Bi

c,1
× Bi

c,1
] ≥ 
2.

Moreover, since (X̃t, Ỹt) remains in Bi
c,1

× Bi
c,1

 when " = 0, the small random perturbation argument yields that for any " > 0

sufficiently small and any 
3 ∈ (0, 1), there holds
P[(X̃t, Ỹt) ∈ Bi

c
× Bi

c
 for all t ≤ T2 ∣ (X̃0, Ỹ0) ∈ Bi

c,1
× Bi

c,1
] ≥ 
3.

Choose 
2 and 
3 such that 
2 + 
3 > 1, and define the events
E1 ∶= {X̃t and Ỹt couple before T2}, E2 ∶= {(X̃t, Ỹt) ∈ Bi

c
× Bi

c
 for all t ≤ T2}.
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Then

P[E1 ∩ E2 ∣ (X̃0, Ỹ0) ∈ Bi
c,1

× Bi
c,1
] ≥ P[E1 ∣ (X̃0, Ỹ0) ∈ Bi

c,1
× Bi

c,1
]

+ P[E2 ∣ (X̃0, Ỹ0) ∈ Bi
c,1

× Bi
c,1
] − 1

≥ 
2 + 
3 − 1 > 0.

Since (Xt, Yt) coincides with (X̃t, Ỹt) on E1 ∩ E2, it follows that
P[XT0+T1+t

= YT0+T1+t
 for some t ∈ [0, T2] ∣ (XT0+T1

, YT0+T1
) ∈ Bi

c,1
× Bi

c,1
] ≥ 
2 + 
3 − 1 > 0.

Combining all estimates above, there exists a constant T ∶= T0 + T1 + T2 = (− log ") such that
P[(Xt, Yt) ∈ Bi × Bi for all t ∈ (ℎ, T ], and Xt = Yt for some t ∈ (ℎ, T ] ∣ (X0, Y0) ∈ Bi × Bi]

≥ P[E0 ∣ (X0, Y0) ∈ Bi × Bi] ⋅ P[XT0+T1+t
= YT0+T1+t

 for some t ∈ [0, T2] ∣ (XT0+T1
, YT0+T1

) ∈ Bi
c,1

× Bi
c,1
]

≥ 0.9
0(
2 + 
3 − 1) ∶= 
 > 0. (88)

This completes the verification of (H2)(i), where 
1 = 1 − 
0.
To prove (H2)(ii), observe that �" denotes the first time at which either Xt and Yt couple or one of them exits the basin Bi. 

Hence, prior to time �", the processes Xt and Yt remain in the same basin and have not yet coupled. Consequently, for any t ≥ T , 
it follows that

P[�" > t ∣ (X0, Y0) ∈ Bi × Bi] ≤
⌊t∕T ⌋∏
n=1

P[�"◦�
(n−1)T > T ∣ (X(n−1)T , Y(n−1)T ) ∈ Bi × Bi].

Recalling that T = (− log ") and applying (88), one obtains
P[�"◦�

(n−1)T > T ∣ (X(n−1)T , Y(n−1)T ) ∈ Bi × Bi] ≤ 
1,

uniformly for all (X(n−1)T , Y(n−1)T ) ∈ Bi × Bi. Therefore, for any t > T ,

P[�" > t ∣ (X0, Y0) ∈ Bi × Bi] ≤ 

⌊t∕T ⌋
1

≤ e−r0(")t,

where r0(") = (T −1) = (−1∕ log ").
For t ∈ [0, T ], since P[�" > t ∣ (X0, Y0) ∈ Bi × Bi] ≤ 1, there exists a constant C0 = (1) independent of t and " such that

P[�" > t ∣ (X0, Y0) ∈ Bi × Bi] ≤ C0e
−r0(")t.

Thus, for all t > 0,

P[�" > t ∣ (X0, Y0) ∈ Bi × Bi] ≲ e−r0(")t.

Finally, since the number of basins is finite, (H2)(ii) follows by applying this estimate over all L basins.
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