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ARTICLE INFO ABSTRACT
MSC: This paper proposes a probabilistic approach to investigate the shape of landscapes of multi-
primary 37H10 dimensional potential functions. Under a suitable coupling scheme, two copies of the over-
secondary 60H10 damped Langevin dynamics associated with the potential function are coupled, and the coupling
60J22

times are collected. Assuming a set of intuitive yet technically challenging conditions on the
coupling scheme, it is shown that the tail distributions of the coupling times exhibit qualitatively
Keywofds" different dependencies on the noise magnitude for single-well versus multi-well potential
Pcten?al landscape functions. More specifically, for convex single-well potentials, the negative tail exponent of the
Coupling method . . e e . . .

. . coupling time distribution is uniformly bounded away from zero by the convexity parameter
Overdamped Langevin dynamics L . , . . .
Essential barrier height and is independent of the noise magnitude. In contrast, for multi-well potentials, the negative
Non-convexity tail exponent decreases exponentially as the noise vanishes, with the decay rate governed by the
essential barrier height, a quantity introduced in this paper to characterize the non-convex nature
of the potential function. Numerical investigations are conducted for a variety of examples,
including the Rosenbrock function, interacting particle systems, and loss functions arising in
artificial neural networks. These examples not only illustrate the theoretical results in various
contexts but also provide crucial numerical validation of the conjectured assumptions, which
are essential to the theoretical analysis yet lie beyond the reach of standard technical tools.

60J60

1. Introduction

The concept of potential functions is fundamental in both continuous and discrete time dynamics. In continuous-time dynamics, it
arises in both conservative systems (e.g., Hamiltonian dynamics) and dissipative systems (e.g., gradient flow and damped mechanical
systems). In discrete-time dynamics, it often corresponds to the objective function of an optimization algorithm or, more generally, to
a variational inequality. In all these contexts, characterizing the landscape of the potential function, particularly in high dimensions,
is often crucial. For example, understanding the existence, locations, and connections of local minima, saddle points, and global
minima of neural network training objectives is essential for comprehending both the training dynamics and the generalization
capabilities of machine learning models (e.g., [1-6]).
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This paper proposes a probabilistic approach to understanding how local minima are globally connected in a potential landscape.
Let U be a smooth function defined on a regular domain D C R¥(k > 1) with finitely many local minima x,, ..., x;. Generically,
denote by (¢'),», the negative gradient flow of U. Then each x; is a stable equilibrium of (¢'),, with the basins (of attraction) given
by

B,;={x€eD:¢'(x)>x;ast— o}

Call U a single-well potential if it has only one local minimum x; (i.e., L = 1) such that D = By, and call U a multi-well potential
if L >2and D= U, B; up to a Lebesgue null set. A multi-well potential is, in particular, called a double-well potential if L = 2.
Throughout the paper, the following is always assumed for U:

(U1) The potential function U € C3(D), where D is open, convex and connected, such that lim, _, ;5 U(x) = 0, and if D is unbounded,
it further holds that

xl_lng |VU| = o, Xl_lng |VU (x)| — 24U (x) = o,

where | - | denotes the Euclidean norm.

Remark. In the single-well setting, (U1) ensures the existence of a global strong solution of (2). In the multi-well setting, further
assumptions on the finiteness and non-degeneracy of the saddle points and local minima, as stated in (U2) or (U3)(iii), guarantee
this [7,8].

Our approach makes strong use of the coupling idea in probability. Given two stochastic processes X = {X,;t > 0},Y = {Y,;t > 0}
on R, a coupling of X and Y is a stochastic process {(X,,Y,);t > 0} on R?* satisfying the following:

(i) For any ¢ > 0, X, (resp. Y;) has the same law as X, (resp. J,);

(ii) If X; =Y, for certain s > 0, then X, =Y, for all r > 5. The coupling time 7, is defined to be the first meeting time between
X, and Y,, i.e.,

7, =inf{r>0: X, =Y,}. (1)

A coupling is said to be successful if 7. < co almost surely. Henceforth, a coupling is denoted by (X,,Y,) for simplicity and clarity.

Coupling is a classical tool for comparing two probability measures and, in the context of stochastic processes, provides a
probabilistic approach to investigate the distributional convergence of the process [9-13]. In this paper, the coupling method is
utilized to characterize the landscape of a potential function U. The two stochastic processes being coupled are the overdamped
Langevin dynamics, which satisfy the stochastic differential equation (SDE)

dZ, = -VU(Z,)dt +£dB,, ®)

where {B,;t > 0} is a k-dimensional Brownian motion and ¢ > 0 is the noise magnitude. Under effective coupling methods, the
coupling time distribution for Langevin dynamics usually exhibits exponential tails (e.g., [12,14]), indicating intuitive connections
with the characteristics of the potential function U.

We will focus on how the exponential tails of the coupling time distributions depend on the noise magnitude . The main message
is that, under a suitable coupling scheme, this dependence exhibits both quantitatively and qualitatively different behaviors between
potential functions with only a single well and those with multiple wells. More specifically, if denote r(¢) = —limsup,_, o, % log Pz, >
t], then for a single-well potential U, r(¢) is uniformly bounded away from zero, independent of ¢ (see Theorem 1.1); whereas for a
multi-well potential U, r(¢) decreases exponentially with respect to ¢, leading to the emergence of a quantity called essential barrier
height, which quantifies the level of non-convexity of the potential U in a certain sense (see Theorems 1.2 — 1.3).

Various coupling methods have been developed in different contexts since the pioneer work of Doeblin [15]. In this paper, for
the purpose of coupling efficiency, we use a mixture of two particular coupling methods: reflection coupling and maximal coupling
(see Section 2 for details on these two methods). Specifically, for a certain threshold distance d > 0, the coupling method between X,
and Y, is switched between the reflection and maximal coupling in such a way that (X,,Y,) evolves according to the reflection (resp.
maximal) coupling whenever |X, — Y;| > d (resp. | X, — Y;| < d) until a successful coupling is attained (i.e., X, =Y, for some r). This
coupling scheme is referred to as the reflection-maximal coupling. It was developed in [14] to compute the geometric convergence
rate of stochastic dynamics, and a similar scheme is utilized to compute the convergence rate for Markov processes [16].

How should the threshold d be chosen? We note that the maximal coupling is defined in the discrete-time setting, specifically
for the time-h sampled chain of the SDE. The choice of d should be chosen so that, if | X :—1 - Yn"_ I <d, then the distributions of the
time-h sampled chains X" and Y have sufficient overlap to ensure that the probability of successful coupling, P[X” = Y], is of
order O(1). Lemma 2.3 shows that by taking d = O(e\/ﬁ), both the coupling probability and the expected distance between X" and
Yn” can be controlled suitably. Hereafter, we refer to the scheme as the “h-reflection-maximal coupling” when emphasizing the time
step size h; otherwise, we simply refer to it as the reflection-maximal coupling, typically assuming a small 4 without specifying its
exact value.

Although the theoretical results established in this paper do not depend on the choice of discretization scheme, in numerical
simulations, the Euler-Maruyama scheme is adopted for all numerical examples. This is because its probability density function at
any given point can be explicitly computed, which is required for the implementation of the maximal coupling. With additional
effort to evaluate the relevant densities, the reflection-maximal coupling can also be adapted to other numerical schemes, such as
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the Milstein scheme. Since the primary goal of this paper is to demonstrate the effectiveness of the reflection-maximal coupling
method in characterizing the potential landscape, the Euler-Maruyama scheme is used throughout the numerical examples.

The first main result of this paper concerns the single-well potential. Let U be a single-well potential on a convex domain D.
The function U is said to be strongly convex (with constant m, > 0) if

(VU(x) = VU(y), x — y) > mylx — y|*>, Vx,y€ D, 3)

where (-, -) denotes the standard inner product in R¥. The supremum of all positive values of m, satisfying (3) is called the convexity
parameter of U. Henceforth, m, always denotes the convexity parameter.

Theorem 1.1. Let U be a single-well potential satisfying (U1) and strongly convex with constant my > 0. Given any 6 > 0, there exists
hy > 0 such that for any h € (0, hy), if (X,,Y,) is an h-reflection-maximal coupling of two solutions of (2) satisfying E[| X — Y,|] < oo, then
for any € > 0, it holds that

lim sup 1 logP[z, > t] < —mg + 6.

t—oo I

Remark. Theorem 1.1 provides only an upper bound for the coupling time in the single-well case, in contrast to the asymptotic
characterizations established for the multi-well case in Theorems 1.2 and 1.3 below. Deriving a lower bound would require
identifying a mechanism by which two coupled trajectories fail to meet within a sufficiently long time. In the absence of energy
barriers, as in the single-well case, such a mechanism is not straightforward. Even under the simplifying assumption that the potential
is quadratic, estimating the probability of near-coupling without success involves estimates on the first hitting times of the Ornstein—
Uhlenbeck process, for which explicit formulas are generally not available [17]. In practice, the exponential tail of the coupling time
distribution for the single-well case is expected to be governed by the smallest eigenvalue of the Hessian at the global minimum;
see Section 5.2.

When U has multiple wells, a crucial quantity is the least barrier height of any continuous path connecting two local minima of
U. More specifically, given two subsets A, B C D, the communication height between A and B is defined as
@(A,B) = inf sup;eo, U (9(1)), 4

¢$eC((0,1].D),
P(0)eA, $p(1)eB

where the infimum is taken over all continuous paths in D. It is straightforward to observe that @(A, B) = ®(B, A).
For a double-well potential U with two local minima x,, x,, define the essential barrier height as

Hy = min{®(x,, x,) — U(x)), ®(x;,%,) — U(xy)}, )

which represents the lower of the two barrier heights that must be crossed when transitioning from one local minimum to the other.
In the double-well setting, the potential function is assumed to satisfy the following generic conditions.

(U2) Let U : D — R be a double-well potential function satisfying (U1) with two local minima x, and x,. The following hold:
(i) The communication height between x, and x, is attained at a unique saddle point z*(x,, x,), i.e.,

U(z"(x1, x,)) = D(x1,x,);

(ii) U is non-degenerate (i.e., the Hessian of U has only non-zero eigenvalues) at the two local minima x;, x,, and at the saddle
point z*(xy, x5).

In the multi-well setting, in addition to assumptions on the potential function, several key properties of the coupling scheme are
also required; see (H1)-(H3) in Section 4. These property assumptions, while technical in form, are supported by intuitive reasoning
and are numerically validated in Section 5.

When multiple wells are present, the coupling process is assumed to be initially related to all basins, ensuring that all typical
scenarios are considered. More specifically, a probability measure ; on D x D is said to be fully supported (with respect to all local
minima) if for any 6 > 0,

H(Bs(x;)) X By(x;) >0, i,j=1,...,L,

where Bj(x) denotes the ball centered at x with radius 6. A coupling (X,Y) is said to be fully supported if its distribution is fully
supported. Analogously, a probability measure x on D is said to be fully supported if for any 5 > 0,

u(Bs(x;) >0, i=1,...,L.

A random variable X is said to be fully supported if its distribution is fully supported. Note that any probability measure equivalent
to the Lebesgue measure is fully supported.

Throughout this paper, the notation x < y (resp. x 2 y) indicates that x is bounded from above (resp. below) by a constant, which
is independent of 7 and ¢, multiplied by y. The notation x ~ y means that both x < y and y > x hold.
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Fig. 1. Example of 1D potential function, local minima, communication height, and essential barrier height H,. Four relative depths H, =
D(x1,x,)-U(x)), Hy, = D(x,,x,)—U(x,), Hy = ®(x3, {x;,x,})=U(x3), and H, = ®(x,, {x,, X,,x3})—U(x,) are demonstrated. Note that H, > H; > H,.
In this example H, = H, < H,.

Theorem 1.2. Let U be a double-well potential satisfying (U2), and (X,,Y,) be a coupling of two solutions of (2) such that (X,,Y,) is
fully supported. Then, if the coupling (X,,Y,) satisfies (H1)-(H2), for any ¢ > 0 sufficiently small, it holds that

lim sup % logP[z, > 1] = —C, e~ v /gz’
=00

where Hy; is defined in (5), and C, > 0 is a constant such that the limit lim,_,, C, exists and depends only on U.

In the general setting of multi-well potentials, in addition to the degeneracy of the critical points and the uniqueness of the
saddle, as specified in (U2), the potential function U is also assumed to exhibit distinct potential values and depths corresponding
to the different local minima.

(U3) Let U : D — R be a multi-well potential function satisfying (U1) with local minima x,, ..., x;. The following hold:

(i) U has different potential values at the different local minima. In particular, U admits a unique global minimum, denoted by
Xq3

(ii) The different basins of potential U admit different depths. More precisely, there exists some 6 > 0 such that the L local
minima of U can be labeled in such a way that

D(x;, Mi_)=U(x;)) < r?ir_){d)(xf, M\x,)=U(xp)} =6, i=1,...,L, 6)

where My = D¢, M; = {x,....x;},i=1,...,L;
(iii) Let M, be as in (ii). Then for each i € {1, ..., L}, the communication height between x; and M,_, is reached at the unique
saddle point z*(x;, M,_), i.e.,

Uz (x;, Mi_p) = D(x;, M)

Moreover, U is non-degenerate at all the local minima x,,...,x;, and at the associated saddle points z*(x;, M;_),1 <i < L.

Note that (U3)(iii) reduces to (U2) when L = 2. We refer to Fig. 1 for an example of the potential function U(x) in one dimension,
which illustrates the local minima, the communication heights, the essential barrier height, the relative depths @(x;, M;\x;) —U(x;),
and their relationships. It should be noted that the essential barrier height Hy, is not the highest communication height among the
local minima, as indicated by H;.

Condition (U3) comes from a nice work on metastability [18,19], in which a sharp estimate of the first hitting time from a local
minimum to an appropriate set is rigorously proved. We will extensively apply this result to derive an estimate of the first hitting
time to the basin of the global minimum (see Lemma 2.6), naturally introducing the notion of essential barrier height defined in
(7) below. This ultimately yields the coupling time estimate for the multi-well case.

We now define the essential barrier height in the general context. Let U be a multi-well potential satisfying (U3), with x, denoting
the (unique) global minimum. The essential barrier height of U is defined as

Hy = 221222{‘15(":’»)‘1) - U(xp}- @

Note that when L =2, (7) reduces to (5), so the definitions of essential barrier height for double- and multi-well potentials coincide.

We note that the essential barrier height defined in (7) differs from the usual notion of barrier height in the literature. The latter is
a local characterization of the potential landscape by focusing only on the relevant barriers that must be crossed when transitioning
from one local minimum to another. In contrast, the essential barrier height considered in this paper is a global characterization, as
it captures the greatest height of the barriers that must be passed by any continuous path going towards the global minimum from
any of the local minima. An equivalent characterization of H;; will be given in Section 2.3.

Theorem 1.3. Let U be a multi-well potential satisfying (U3), and let (X,,Y,) be a coupling of two solutions of (2) such that (X,,Y,) is
fully supported. Then, if the coupling (X,,Y,) satisfies (H1)-(H3), for any ¢ > 0 sufficiently small, it holds that

lim sup % logP[z, > 1] ~ Cee_zHU/éz,
=00
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where Hy; is given in (7), and C, > 0 is a constant such that the limit lim,_,, C, exists and depends only on U.

The intuitive ideas underlying Theorems 1.2 and 1.3, which relate the coupling times to the essential barrier height Hy,, are as
follows. In the double-well case, the typical scenario is that both processes enter the basin associated with the global minimum and
be coupled within that basin, as they overcome a lower barrier when transitioning from the local minimum to the global one than
in the reverse direction. This intuition analogously extends to multi-well cases: when the two coupled processes start in different
basins, the minimal height of the barriers they must overcome to reach the same basin is always no greater than Hy,. Specifically,
it is no greater than the lower barrier when transitioning to the basin of the global minimum. Such height can be attained when
the initial basins of the two processes are sufficiently “distant” from each other (see Section 2.4).

The essential barrier height, in a certain sense, quantifies the “global non-convexity” of multi-well potentials, which is of crucial
importance in non-convex optimization problems arising in various fields. In Section 5, we propose a numerical algorithm to compute
the essential barrier height, based on the linear extrapolation of the exponential tails of coupling time distributions. The computed
values are validated for both a one-dimensional double-well potential and a multi-dimensional interacting particle system, with
numerical results shown to closely match the theoretical values. We further apply this algorithm to detect the loss landscapes of
artificial neural networks. In a two-layer neural network model, it is shown that the loss functions of large artificial neural networks
(over-parameterized) have lower essential barrier heights than that of small ones (under-parameterized). This is largely consistent
with observations in the machine learning community, suggesting a promising criterion for training artificial neural networks based
on the essential barrier height of the training loss function.

This paper is organized as follows. Section 2 presents basic facts and results that will be used in the subsequent sections, including
estimates for reflection and maximal couplings, first hitting times of Langevin dynamics under multi-well potentials, as well as
probability generating functions. Section 3 studies the case of the single-well potential and proves Theorem 1.1. Section 4 investigates
both double-well and multi-well potentials, and proves Theorems 1.2 and 1.3. Section 5 explores various examples of single- and
multi-well potentials, in which both the theoretical findings and the assumptions on the coupling scheme are numerically verified.

2. Preliminary
This section prepares key preliminary results that will be used in the rest of the paper.
2.1. Reflection coupling and single-well potential

Consider two stochastic processes X,Y satisfying the following stochastic differential equation
dZ,=g(Z,)dt +€dB, Z, €RF (8)

with initial conditions u and v respectively. Assume that g : R — R* is Lipschitz continuous and satisfies additional conditions,
ensuring the unique existence of non-explosive strong solutions of (8) from any initial condition.
A reflection coupling of X and Y is a stochastic process {(X,,Y,);t > 0} taking values in R? such that X, ~ y,Y, ~ v, and

dX, = g(X,)dt + £d B,
dY, =g(Y,)dt+€ePdB,, 0<t<rz7; Y, =X, t>1, ()]

where P, = I, — 2¢,e] is the orthogonal matrix in which ¢, = (X, - Y,)/|X, - Y;|, and z, is the coupling time defined in (1).

The reflection coupling, as its name suggests, is to make the noise terms in X, and Y; the mirror reflection of each other with
respect to the middle hyperplane between X, and Y, [9]. It is a particularly efficient coupling method in high-dimension, achieved
by only keeping the noise along the vertical direction (which is one-dimensional) of the hyperplane with noise in other directions
being canceled out.

The following proposition states that under the method of reflection coupling, the distributions of coupling time of the
overdamped Langevin dynamics along a strongly convex single-well potential have exponential tails, bounding away from zero
by the convexity parameter.

Proposition 2.1. Let U be a single-well potential satisfying (U1). Assume that U is strongly convex with constant my > 0. Then given
any to > 0, there exists ¢, > 0 such that, if (X,,Y,) is a reflection coupling of two solutions of (2) with initial conditions X, = x, Yy = ¥y,
for any € > 0, it holds that

Pz, > 1] < ¢q(Ixg — yol/2€)e™™", Vi > 1.

Proof. Denote R, = | X, — Y;|/2¢. It is not hard to see that {R,;t > 0} is a one-dimensional stochastic process satisfying
dR, = -R7'(VU(X)) - VU(Y,)), X, - Y,)dt +2edB,, 0< 1 <1, 10)

where {B,;t > 0} is a one-dimensional Brownian motion.
By the strong convexity of U, the drift term in (10) is upper bounded by —mgR,. Thus, for ¢ € [0, 7,), R, is always bounded by
the following one-dimensional Ornstein-Uhlenbeck process {.S,;7 > 0}

dS, =-myS,dt +dB,, Sy=|xy—yl/2e. 11
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Let 7, = inf{r > 0 : S, = 0}. It is now sufficient to estimate P[z, > ¢].
By Proposition 1 in [20] (see also [17]), the probability density function of 7, has an analytic expression as follows

S 3/2 my(t — S myS?
p(,)=_°< "”0 ) ex {u_ 029
sinh(7) 2 2

Vr

coth(mqr) } 12 0. 12)

Note that

So my \3/2 mo(t—Sg)
P < \/_2_7[<sinh(t)> w{ =

mot
} — COSOE 5 /(emot _ e—m07)3/2

where ¢, is a constant independent of 7, x,, y, and e. Thus, we have

) [~

Co|xo—)’0|/ eZm[)s

Plr, > 1] = ds < ds.
[70 21 /t p)ds < == o @1

Note that for any p € (0, 1),

205 — 1 > pe?™S, Vs > |In(1 — p)|/2my.

Thus, for any given ¢, > 0, by letting p € (0, 1) be such that p > 1 — e=>0'0 and suitably enlarging the constant c,, one obtains

colxo—yol [&  e2mos -
Plzy > 1] < ds < co|xg — 2e)e™! Vit >t,,
[z > 1] < e | @SS o(1xo — ol /2¢) =1y

where ¢ is independent of ¢, x(,y, and e. []
2.2. Maximal coupling and estimations
Let u, and u, be two probability distributions on R¥. Call (X,Y) a coupling of 4, and u, if X ~ u;,Y ~ p,. By the well-known
coupling inequality (see, for instance, Lemma 3.6 in [21]),
TV(uy, 1y) <2P[X # Y], (13)

where TV(uy, 4y) := 2sup,cpk |41 (A) — pp(A)| denotes the total variation distance between probability measures on R. A coupling
(X,Y) is said to be a maximal coupling if the equality in (13) is attained, i.e., the probability P[X = Y] is maximized.

A particular way to obtain maximal coupling is as follows: Denote the “minimum” distribution of x;, and u, by v(-) =
a~ " min{y,(-), uy(-)}, where « is the normalizer satisfying a« = P[X = Y]. With probability «, let X = Y ~ v, and with probability
(1 —a), let X and Y be independently sampled such that

X~(U=-a) 'y —av), Y~U=-a) "y —av). 14)

It is not hard to verify that P[X # Y1 = TV(u,, up)/2 (see [22], Theorem 1).

In the context of stochastic processes, the maximal coupling is defined in terms of conditional distributions of the associated
discrete-time chains. Let {(X :’Ynh); n > 0} be the time-h sampled chain of a coupling of two solutions of (8). Assume that at step
n—1, (X :_I,Yn"_ |) takes the value (x, y) € R¥ x R¥, Then (X}, Y}) is a maximal coupling at step n if

TV(uy, ny) = 2PIX) # Y IX) | =Y =) (15)
where u, and y, denote the probability distribution of X/ and ¥, conditioning on X = x and Y" =y, respectively.

In the proof of Theorem 1.1, a key step is to bound the expected distance between two coupled processes under the maximal
coupling. This estimate can be derived using the independent coupling, in which the two coupled random variables are independent.

Proposition 2.2. Let (X,Y) be a coupling of two random variables such that X ~ pu,,Y ~ p,. Assume that a :=P[X = Y] < 1. Then
2
Enaxl1X = Y] < =gl IX — Y]

where E,.,, and E; 4 denote expectations with respect to the maximal coupling and independent coupling, respectively.

Proof. By the construction of the maximal coupling, we have

e (1) —av)dx) (4p — av)(dy)

Bl X =Y?1 = (-
mal1X = YP1 = (1=0) [ 1s . =
1

1-«a

1
/ i VP uy(dx)py(dy) + T2 / L Y2 (av)(dx)(av)(dy)
R - R
where v = a~! min{y,, 4, }. Hence,

2 2
Eomaxl | X = Y] < E/R lx = ¥ [@x)pr(dy) = ——EingllX = YP1. O
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As shown in Proposition 2.2, in the context stochastic processes, obtaining an upper bound of E[|X" - Y""lz] requires that
a, :=P[X f = Yn”] remains uniformly bounded away from 1, independent of n. Although in practical simulations, it is rarely observed
that P[X" = Y] exceeds 0.8, a rigorous theoretical verification of this uniform bound remains challenging. To address this issue, we
introduce a modified construction of maximal coupling. For any given «, € (0, 1], define &, = min{«,,ay} where o, = P[X :’ = Ynh].
Let y;, and p,, denote the distributions of X" and Y, respectively, and define v, = a;! min{y; ,(-), #p,,(-)}. Then with probability
@,, let X" =Y" ~v,, and with probability (1 - &,), let X and ¥ be independently sampled according to

Xt @ —a) = ayv), Y~ -a) (g, - a,v,) (16)

such that X" # Y. This modification ensures P[X" = Y] = &, < a;, so the coupling probability is uniformly bounded by a;. Note
that (16) reduces to the standard maximal coupling (14) when «; > «,.

The modified construction of the maximal coupling in (16) is referred to as the a,-maximal coupling for «, € (0, 1]. Henceforth,
the term “maximal coupling” refers to the ¢j-maximal coupling with «, fixed at 0.8.

Under the reflection-maximal coupling scheme, a maximal coupling is implemented whenever triggered in the previous step.
More specifically, (X}, ") is a maximal coupling, if at the previous step n — 1, the distance between X" and Y" ~does not exceed
a threshold d. In the numerical implementation, the distance between X" and Y/ is evaluated at each step n to determine whether
maximal coupling should be triggered for the next step n + 1. If the condition is not met, reflection coupling is applied instead at
step n+ 1.

The triggering of maximal coupling is a crucial mechanism, especially in the numerical schemes, for ensuring a successful
coupling. It guarantees a positive success rate of coupling in the following step when the two processes are sufficiently close. In
the absence of maximal coupling, numerical errors may cause two processes to “miss” each other, even if they should theoretically
be coupled successfully. Moreover, maximal coupling exhibits robustness to small perturbations, making it a reliable method in
numerical simulations.

The following lemma shows that in the single-well setting, choosing the threshold d = (9(5\/2) ensures both an O(1) coupling
probability and a uniform bound on the expected one-step distance between the two processes. It provides crucial estimates for the
proof of Lemma 3.3 in Section 3.

Lemma 2.3. Let U be a single-well potential satisfying (U1) which is strongly convex, and let (X", Y") be a coupling of the time-h sampled
chains of two solutions of (2). Assume for n > 1, (X!, Y") is a maximal coupling conditional on X" | = xo, Y" =y, where xo,y, € R
satisfy |xq — yol < d = 26v/h. Then the following hold:

(i) There exists a constant y € (0, 1) such that for any n > 1 and h > 0,

PIIX, =Y, > 01X} | =x0.Y," | =yl <7.
(ii) For any n > 1 and any h > 0 sufficiently small,

E[X" - Y|X" | =x0.Y" | =yl < cieVh.

n—

where the constant ¢, > 0 is independent of h, e, and n.

Proof. (i) By definition, the one-step conditional probability
BLX, = YIX,L, = x0. Y, = ¥l a”n

is maximized under the standard maximal coupling (i.e., the 1-maximal coupling). In particular, for any alternative coupling method,
such as the reflection coupling, the probability in (17) is no greater than that achieved under the maximal coupling. Hence, it suffices
to establish that under the reflection coupling, with initial condition X, = x,,Y) = y, and |x) —y| < d = 2¢1/h, the probability
P[X,, = Y,] remains uniformly away from O for all sufficiently small 2 > 0.

Denote by m the convexity parameter of U. From the proof of Proposition 2.1, in the single-well case, the coupling time of the
reflection coupling is bounded by that of one-dimensional Ornstein-Uhlenbeck process {.S;} governed by (11), whose probability
density function p(r) is given by (12). Without loss of generality, assume m, = 1. Then for any sufficiently small > 0and 0 <t < h,

rSy 4l L 32
p(t)ZaoSoexp{E—T-e”_l}/(e—e )

\%

252 2 4
0 = _2\3/2
aOSOexp{—eﬂ_l }/(93 —e’3)
2
> aOSOe_Tn/ﬁ s
for some constant a; > 0 independent of ¢ and A. Integrating over [0, 2] yields

2
S(J 3

h h
PlX, =Y,] =/ p(t)dt > aOSO/ e 1t 2dt.
0 0

Applying the change of variable u = Sg / t and using the assumption S, = |x, — yol/2¢ < \/Z yields

o

1 o 1
PX,=Y,] > ao/ e "u"2du > ao/l e Mu"2du :=a; > 0. (18)

2
S2/h
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Now, (18) implies that under the 1-maximal coupling,
PIX! =YX | =x,Y" =yl >a, >0 19
Thus, for the ay-maximal coupling, by setting d, := min{a,ay} <1, (19) yields
PIX) =YX =x0, Y =yl 2 d >0,
and hence
PUX! - Y > 01X" | =x0.Y" =yl <1-a =7

In particular, y € (0, 1) is independent of # and n.
(ii) Let X, and Y, be solutions of (2) with the initial condition X, = x; and Y;, = y,. Under the independent coupling, where the
noise terms driving X, and Y, are independent, the following holds

Einall X5, = Y, 1%1 < 6€%h. (20)
To verify (20), apply Dynkin’s formula to obtain
h
Einal1X4 = Y31 = %o = 0| + Eing / (-2AVUX,) = VUV, X, - Y,) +2¢)ds,
0
which, together with the strong convexity of U in (3), leads to
Eing[1X, = Y4171 < Ixg = yol* + 2€2h.

Since |xy — yo| < 2e \/E, it follows that |x, — y0|2 < 4€2h, and thus (20) follows.
Now, consider E[| X" — Y| X :’_1 = Xg» Yn”_ | = Yol under the (ap-)maximal coupling. Applying Proposition 2.2 with « = a, together
with the bound in (20), it follows that

12,

2
E[1X) - Y| Eingll X, — Y, I?1 < e

1-a 1 —a

Xf—] = %o, Ynh—l =yl =
Applying Holder’s inequality, one obtains

X:_l =x0.Y" =yl < cle\/z

where ¢; > 0 is a constant independent of 4, n and . This completes the proof of (ii). [

E[|X" - Y]

In concluding this subsection, we remark that the maximal coupling, as employed for numerical efficiency, is formulated for
discrete-time processes. However, the theoretical results in this paper are presented in the continuous-time setting. To ensure
consistency between the discrete-time numerical scheme and its continuous-time theoretical counterpart, we assume that when
the maximal coupling is applied, the intermediate values of the processes between the discrete steps are disregarded. That is, only
the values at times ¢ = nh are relevant, and the behavior of the coupling process at times between the discrete steps has no influence
on the analysis.

2.3. An equivalent characterization of essential barrier height

Let U : D — R be a multi-well potential satisfying (U3). Throughout the paper, let the L local minima of U be labeled according
to (6), with x; being the unique global minimum.
The following proposition provides an equivalent characterization of the essential barrier height H;, defined in (7).
Proposition 2.4. Let U be a multi-well potential on D with L local minima x;,i =1, ..., L. Then
Hy = 2122{45(%%_1) -Ux)}, (21)
where M, is defined as in (6). In particular,

Hy = ®(xy,x1) — U(xy). (22)

Proof. Since x; € M,_; forall i € {2,..., L}, it follows that

Hy > ®(x;,x) — U(x;) = @(x; Mi_y) — U(x)), (23)
which yields

Hy > max {DCx; M;_) = U(x)}. 24

It remains to prove that the inequality in (24) is in fact an equality. Suppose, by contradiction, that the inequality is strict; that
is,

&(x;, M,_)) - U(x;) < Hy, Vie{2,..,L}. (25)



Y. Li et al. Stochastic Processes and their Applications 190 (2025) 104763

Under this assumption, we claim that for each i € {2, ..., L}, one has

D(x;,x1) —U(x;) < Hy, (26)
which further implies

Hy, = 2réliast{(lﬁ(x,-,xl) -U(x;))} < Hy,

yielding a contradiction.
Now, it only needs to prove (26). Fix iy € {2,..., L}. By (25), there exists x;, € M,—U_l such that
D(x; ) x;) — Ux) = @0, M ) —Ulx; ) < Hy. (27)

Since x; € M, _y, it follows that i; < i,. Moreover, the ordering in (6) yields

D(x;, My 1) = U(x;) < DCx;, My \x;) = Ux;)).

Using the fact that @(x; , M, _;) = @(x; ,x;,) and @(x; , M; \x;) < D(x;,, x; ), we obtain

D(x; . x;) = Ux) < D(x;,x) = U(x;).
Hence, U(x,-l) < U(x,-o).
If iy = 1, then (26) follows directly from (27). Otherwise, the same argument can be applied recursively: for i; € {2, ..., L}, there

exists i € M; _; such that D(x;,x;,) = Ulx;) < Hy, with i, < i; and U(x;,) < U(x;)). Continuing inductively, a finite sequence of

indices iy > i; > -+ > i} = 1, with finite k < L, is obtained such that
U(x,-k) < < U(x,-n), (28)
Hence,

@(xio, X)) — U(X,-O) < orgfl?k d)(x,'j 5 xi/+] )— U(xio)

< max {cb(x,-v,x,-_
0<j<k Jo

)= U(x;)} < Hy,
where the final inequality follows from (27) and (28). This obtains (26).
Since the local minima x; are labeled according to (6), identity (22) follows directly. [
Remark 2.5. In fact, x, is the unique local minimum such that (22) is satisfied. In other words,
O(x;,x)—U(x;) < Hy, Vi>2. (29)

To see this, suppose for the sake of contradiction that there exists i, > 2 such that (29) does not hold. Then it follows that
D(x;,,x) = Ulx;) = Hy, as it always holds that D(x;,,x) = Ulx;) < Hy. Since, by (6), D(x;,, M) —Ulx;) < Hy, there exists an
index 1 < i; < ij such that

D(x x;, —U(xi0)=t1)(x~ M,.O,l)—U(x,-O)<HU.

ig? ig?

This leads to a contradiction, as this argument can be applied repeatedly until eventually arriving at i, = 1 for some finite k.
2.4. Multi-well potential and first hitting time

Given a multi-well potential U : D — R satisfying (U3), let Z = {Z,;¢ > 0} be a solution of (2) and A C D be a subset. Denote
the first hitting time of Z, to A as

kz(A)=inf{t>0: Z € A}. (30)
It is well known, from large deviation theory, that the first hitting time from a local minimum x; to an appropriate subset is
asymptotically exponentially distributed, with the exponent determined by the associated (i.e., local) barrier heights [18,19,23,24].
The essential barrier height H;, plays a similar role in a global sense, characterizing the first hitting time to the basin of the global
minimum from any local minimum.
Lemma 2.6. Let Z = {Z,;t > 0} be a solution of (2) with initial condition Z, = z. Then for any t > 0 and any ¢ > 0 sufficiently small,
P.lkz(B) > 1] < A, exp{ ~Coe 210/t |, @31

where C, > 0 and A,, > 0 are constants such that the limit lim,_,, C, exists, and A, depends on both the initial value z and the noise
strength ¢, but is independent of 1. Moreover, if the initial condition Z,, is fully supported with distribution u, then

P.lkz(B) > 11~ A,, exp{—cfe‘wv/‘zt}, (32)

where constant A,,, > 0 depends on both u and e.
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The proof of Lemma 2.6 follows closely the approach in [18,19], relying on estimates for the eigenvalues and eigenfunctions of
the generator. As it is not directly relevant to the main focus of the paper, the proof is deferred to Appendix A.
Define

I={1<i<L:®(xx)=®(xx)} (33)
to be the set of indices corresponding to local minima whose communication height with x, equals that between x, and x,. Let

B, =B, (34

ieT
Clearly, B, C B, since 1 € I. As argued in Remark A.4, the conclusion in Lemma 2.6 remains valid if the set B, is replaced by the
larger set B, that is,

P.[kz(By) > 1]~ A,, exp{—Cge_ZHU/ézt}, (35)
for process Z with initial distribution u.
The following proposition establishes a property for indices not belonging to Z.

Proposition 2.7. Forany j € {1,...,L\I, @(x;,x;) = U(x;) > Hy.

Proof. By the definition of Z, it follows directly from (22) that
D(xy,x;)—U(xy) = Hy, Viel.

Thus, for j ¢ Z, it follows that either (i) @(x,,x;) — U(x,) < Hy, or (ii) @(x,,x;) — U(x,) > Hy.
First, consider case (i). We claim that

D(x;,x1) > D(x;,x)). (36)
Indeed, if (36) fails, then
D(xp,x1) < max{D(xy, x;), P(x;,x))} < D(xy,x)),
which implies
Hy = D(x5,x1) —U(x,) < ¢(x2,xj) —-U(x,) < Hy,
a contradiction. Thus, (36) holds. It then follows that
D(x1,x) = U(x)) € max{@(x;, x,), D(x;, %)} = U(x)) = D(xy, x;) — Ulx)).
Since @(x|,x,) — U(x;) > ®(x,,x,) — U(x,) = Hy, we conclude that
D(xy,x;) — U(xy) > Hy.
Next, consider case (ii). Assume that @(x,, x )= U(xp) > Hy. Suppose, by contradiction, that &(x;, x ) =U(xy) < Hy. Then

D(xy,x;) = U(xy) < max{@(xy,x),D(xy,x;)} = U(xy)
< max{@(x,, x;) = U(xp), @(xy, x;) = U(x))} < Hy,

contradicting the assumption that @(x,,x;) — U(x,) > Hy. Hence, ®(x,x;) = U(x;) > Hy. [
From the proof of Proposition 2.7, we see that i € T if and only if
D(x;,x)) < D(x;,x,) and D(x,,x;) —U(xy) < Hy. 37)

That is, among the local minima that can be reached from x, via a barrier not exceeding Hy;, the set T consists precisely of the indices
for which the corresponding minima are more accessible to the global minimum x, than to the local minimum x,. Accordingly, each
basin in the collection B, is referred to as a nearby basin (relative to x,), whereas B, is referred to as the distant basin.

2.5. An upper bound in the form of probability generating function
Given C, > 0, 4, > 1, and m € N, define
g(4; Cy, Ag,m) = A™ + C, i(z"“ - AMAy", A€R. (38)
It is not hard to see that g(4; Ci)_’;() m) < o0, VA € (1, 4g).
The right-hand side of (38) is motivated by the probability generating function. The following proposition states that if a random

variable T exhibits exponential decay, then E[A”] is bounded above by a certain function g.

10
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Proposition 2.8. Let T be a random variable taking positive real values. Assume that for some constant t, > 0,

P[T > t] < CyAr!, Vit (39)
Then for any A € (1, Ay), it holds that

E[AT] < g(4; Cy, A9, np) < 0
where ny = |ty] + 1. In particular, if t, € (0, 1), then

E[AT] < g(4; Cy, 49, 1) < 0.
Proof. Note that

o o
EAT1< Y APl < T <n+11< A+ ) (A" = 2)PIT > ],

n=0 n=1

where, for n, > 1, the right-hand side can be rewritten as

np—1 o
A+ DA = AMPIT > n]+ Y (A" = AMPIT > nl.
n=1 n=ng

By (39), for any n > ny, P[T > n] < COA(;". It then follows that

o
E[AT] < A%+ Cy Y, (A" = AMAg" = (4 Cy, g, ng) < 0. [

n=ng

Note that for m =1,
g(A;Cy, 29, 1) > 1, as A— L. (40)
0> 70

Given p > 1, 4, > 1, and C; > 0, define

ﬂ(p;CO’/IO)=min{1sﬂ*}’ (41)
where
~(Ao+p+Co=2+V(Ag+p+Cy—22+4(Cy— D4y — D(p—1) 0 41
= 1 2(Co— DA — 1) T (42)
= if Gy = 1.
Agtp—1

The following Proposition 2.9 provides a quantitative characterization of the approximation in (40).

Proposition 2.9. Given p > 1,45 > 1 and Cy > 0, let f = p(p; Cy, Ay) be as in (41). Then for any A € (1,1+ p(Ay— 1)), it holds that
8(4;Cys 49, 1) < p.

Proof. Write 1 =1+ B(4y — 1) with g € (0, 1), we have

g(4;Cy, 4p, 1) = A+ Cy(A—1) Z(A/AO)"

n=1

(1+ﬁ<ﬂo—1>>(1+colfﬁ)

To have g(4; Cy, 4y, 1) < p, it suffices
(Co—DUg— D2+ (g +Co+p—2B+1-p<0.

This specifies the definition of § in (41). Proposition 2.9 is proved. []
3. Single-well potential and proof of Theorem 1.1

Throughout this section, U is a strongly convex single-well potential satisfying (U1). Let (X,,Y;) denote an A-reflection-maximal
coupling of two solutions of (2). The threshold d = O(eﬁ), at which the coupling (X,,Y;) switches between the reflection and
maximal couplings, is set to 2¢ \/i_z

Define

r;ll) = inf{t >0:1X,-Y|e (0,25\/5]7 and for some s € (0,1), | X, —Y,| > 25\/2},

@)

with the convention that 7, b

h
attains the threshold d = 2e+/h from a distance greater than this value.

= oo if the set is empty. Note that 7, ’ is the infimum time at which the distance between X, and Y,

11
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Since it is possible for |X, — Y;| to never exceed the threshold d before a successful coupling occurs, in which case r;l” = oo,

define
T, = T;ll) AT

Note that 7, < o0 holds almost surely. It will be shown later that the coupling time z, is almost surely a finite iteration of z;,.
3.1. Estimation of z;,.

In this subsection, estimates of 7, are provided under the two initial conditions | X, —Y,| > 2¢v/h and [Xo =Y < 2ev/h,
respectively.

If | Xy - Y| > 25\/2, then (X,,Y,) remains a reflection coupling until ¢ = r;”, when (X,,Y;) switches to the maximal coupling.
Proposition 2.1 immediately yields the following.

Lemma 3.1. Assume | X, —Yy|/2e =ry > \/h. Then T, = TZD holds P-a.s., and for any t, > 0, there exists a constant c, > 0 such that
Pz, > 1] < corge” ™", Vi > 1. 43)
In particular, by letting 0 < t, < 1 and applying Proposition 2.8, for any 4 € (1,e™),

E[A™] < g(4; ¢yrg, €™, 1). (44

Remark 3.2. The estimation in (43) is for the continuous-time process instead of its time-4 sampled chain, which the numerical
scheme truly approximates. Let 12 (resp. TI’:) be the first passage time of the coupling process (X;,Y,) (resp. its time-h sampled chain

(X", YM) to the set {(x,y) € RE xRF 1 |x —y| < 2¢ \/h}. 1t is obvious that ! > 79, and it is intuitive that their difference, which is

generally difficult to theoretically estimate, should approach to zero as i tends to zero, i.e.,
sh 0y
lim(ry —7) =0, P-as. (45)

Throughout this section, (45) is always assumed and will be numerically verified in Section 5 for the example of symmetric quadratic
potential functions. Therefore, the estimation (43) applies to the time-h sampled chain (X", Y") (with a possible slight enlargement
of ¢, if necessary) whenever # is sufficiently small.

The analysis becomes more intricate for the initial condition | X, — Y| < 2¢ v/h, as the coupling method between X, and Y, may
switch during the time interval (0, 7). Specifically, there exists n > 0 such that the coupling between the time-h sampled chains
X;, and Y;, remains a maximal coupling for 0 < i < n. At the step i = n, either X,, = Y,;,, indicating a successful coupling, or
[ X — Yol > 2¢+v/h. In the former case, 1, = 1.; in the latter, 7, = D and (X,.Y,) evolves under a reflection coupling until the

h

condition |X, - Y;| < 26v/h is satisfied again.

Lemma 3.3. Given any t, > 0, there exist hy > 0 and C, > 0 such that for all h € (0, hy), if | X, — Y| < 25\/2, then
Plz), > 1] < CoVhe ™', Vi >1,.

In particular, by choosing 0 < t, < 1 and applying Proposition 2.8, for any 4 € (1,e™) and h > 0 sufficiently small,

E[A™] < g(4: CyVh. e, 1) < co. 46)

Proof. Recall from the proof of Proposition 2.1 that the process R, = | X, — Y,|/2¢ is a one-dimensional stochastic process induced
by the coupling (X,,Y;). Let n = [t/h| € N. Based on the coupling behaviors between X, and Y, before the stopping time 7, one has

Plz), > t] < Plz), > nh]
n

PR, € (0, Vh,0<i<j—1]

j=1
. (]P’[th > VAR € O, VAT - PleVo0" > 1 = jhIR,;, > \/Z]>
+ PR, € (0, VA0 <i <nl,

where 6 is the usual shift operator.
For any i > 1, since (X,;,,Y;;,) is a maximal coupling whenever |X_;y, = Y;_j,| < 26/h, it follows from Lemma 2.3(i) that

P[Ry, > 0| R;_1y, € 0, V]| <7,

where y € (0, 1) is independent of i and h. Therefor, by the Markov property, for any 2 < j < n,
j-1
P[Ry, € 0.VA.0 <i < j—1] = [T B[R € 0. VA Ry_1y, € 0. VA < 77,
i=1

12
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and this also holds trivially for j = 1. Consequently,

n
Pl > 112 277 (PIRyy > VAIR G-y € OV Plegod” > 1= jhIRy, > Vi) +7". “7)
j=1
Now, for 1 < j < n, consider estimating
P[R;, > VhIR 1y € 0. V] - Plz,00/" > 1 = jh|R;, > V], (48)

which equals
/\[ P[z,00/" > 1t — jh|R;, = r|P[R;, = dr|R_yy, € 0, V] (49)
h

Fix ty € (0,1;). Then for any 1 < j < [%J, it holds that r — jh > 1. Since Ry = r > \/ﬁ, Lemma 3.1 and the Markov property
implies that

]P’[rhoejh >t—jh|R;, = r] =Plr, >t—-jh|Ry=r] < core_'"o(z_jh),
where ¢, > 0 is the constant given in Lemma 3.1. Therefore, for any such j,

(o)
(49) < cye™ot=iM /ﬁ FPIR;;, = dr|Ri;_yy, € (0, V]I

< cge™™ M B[R, R ;_py, € (O, VAIL.

Since R(;_y, < \/Z, and hence |X(;_y), — Y;_1)u| < 2¢ \/Z, Lemma 2.3 (ii) implies that for sufficiently small # > 0,

1
E[th|R(/71)n € (0, \/Z]] zlE[lxjh - th|)|X(,>1)h =Yl £ 26\@]

1
< icl \/Z

A

Thus,

t—t,
h

for some constant C, > 0 independent of 4, ¢, and j. Moreover,

(48) < Cyv/he™™ =M y1 < j<|—2], (50)

=1 . to
@) <1 |2 <jsly]=n (51)

Combining (47), (50), and (51), it follows that
152 R
Plz, > 1] < CoVh DI S G Y
= EEY
152

emoh _ y
< CyVh mol 4 52
< 0‘/—1_yemuhe — (52)

Let 0 < hy < |Iny|/m be sufficiently small so that for any & € (0, k),
-1y
yLTOJ < \/Ze_'"(”, vt > 1.
Since e /(1 — ye™™") — 1/(1 —y) as h — 0, by enlarging C, in (52) if necessary, it follows that

Plr, > 1] < CoVhe™', Vi>1,. [
Combining Lemmas 3.1 and 3.3, the following holds.

Lemma 3.4. Assume E[|X,, — Y,|] < 0. Then for any h € (0, h,) where hy > 0 is as in Lemma 3.3, for any A € (1,e™0), it holds that

E[4*] < o0.

Proof. Recall the one-dimensional stochastic process R, = | X, — Y;|/(2¢), t > 0. Let E,[-] denote the expectation with respect to the
initial condition R, = r. Then

NG ©
E[A™] = / E, [A"]u(dr) + / E,[A™]u(dr) (53)
0 Vh

where u denotes the distribution of R,.
By Lemma 3.3, for sufficiently small 4 > 0, the first term on the right-hand side of (53) satisfies

Vh Vh
/ E,[A™]u(dr) < / 804 CoVh, ™, DV hu(dr) < g(4;CyV/h,e™, 1)V/h. (54)
0 0

13
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By (44), the second term on the right-hand side of (53) is bounded as
E [A*]u(dr) < / g(4;¢or, €™, Du(dr)
/\/E Voo

= g(A¢ /\[ ru(dr),e™, 1) < g(4; ¢E[Ry], €™, 1). (55)
n
Combining (54) and (55), we have
E[A™] < g(4: CyVh,e™, 1)V + g(4; coE[Ry]. €™, 1).

Since E[R,] = E[| X, — Yy|1/2¢ < oo, the lemma is proved. []J
3.2. Iteration of t, and coupling times

The coupling time 7, is in fact a finite iteration of z;,. To see this, define

k=1
k= okl 4 r00% , k> 1

0 _
Th—O, 7, n

where 6 is the usual shift operator, and let
n=inf{k>1: X = thk}.

The following proposition immediately follows from the definition of z,.

Proposition 3.5. Given any h > 0 and k > 1. The following hold:
@ | X, =Yul|= 25\/2 or 0, where X « =Y« if and only if k > ;
h h h h
(i) If k > 1, then
]P)[|XT£ - thk| > 0|P7271] <y.
where y is as in Lemma 2.3.

By Proposition 3.5(i),

n

Te =Ty, P-a.s.

n

Hence, the estimation of 7, is reduced to the estimation of 7.

Theorem 3.6. Assume E[|X, — Y;|] < co. Then for any & > 0, there exists h, > 0 such that for any h € (0, hy) and any A € (1,e™70), it
holds that

E[A%] < oo.
Proof. The proof follows the approach of Lemma 2.9 in [25]. Note that

n el k
E[47] < ) B[], (56)
k=1
1

had k-1 v
= E[4"T,5 ] +,§5E[szk“ BLA" T ],

where the last equality follows from the fact that /1’:71 € F -1 and {n > k} € F s-1.
h h
We retain the notation R, = |X; — Y;|/2¢ for r > 0, and let E, denote the expectation with respect to the initial condition R = r.
By Proposition 3.5(1), R -1 = \/ﬁ for 2 < k < 5. By (46) and the strong Markov property,
h

1

k—
06'h .
E[4™ |7-’TZ_1] <E A< g CoVh,e™, 1) <00, Vk 21,
where C, > 0 is as in Lemma 3.3. Thus,
0
~1

E[47%] < E[A% 5] + g(k CoVh, e, 1) 3 Bl 4% 1. (57)

o1 k=2

Now, for k > 2, we estimate IE[H”ZkATZ 1]. Write I,5, = ]1,72,(_11[,¢1,‘7l >0- Then we have
h

k=2

B[l 4% | = E[ank—lﬂTﬁJE[HRTk71>0}‘ThOBTh If’fzfz]]
h

k=2
= IE[]Inzk—lf" IERT,(,2 [HR% >0/11"]]- (58)
h
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Note that for k = 2,

Er . [HR,h>0/V"] = ]ERO[HR,h>0/V"] <E[4™]. (59)
n
For k > 2, since R -2 = \/ﬁ, the strong Markov property implies that
h

B, [Tk, 504" S E il 50A7] (60)
By the Holder’s inequality, for any p € (0, 1),

E /allg,, >04™] < (E\/E[HRrh>0D]_p . (E\/;[ﬂh//’])l’
= @ ;R > OD'™7 - (B L1A/P))P.
Then it follows from Proposition 3.5 (ii) and (46) that

E jillk, »04™] < 7' g1/ CVh.e™, 1. (61)
Substituting (59)-(61) into (58), we obtain

B[l ., A% ]< E[A7], =2
n2k = yl—pg(,ll/p;co\/ﬁ,emml)ﬂ~E[H,72k_1/1’sz_2], k> 2.

By induction, for k > 2,
Elllsi % 1<y 0P/ v, emo, 12 B

Therefore, (57) yields
had k=2
EL < B (1+ 805 Ve, D) Y (7175175 GV e, 17) )
k=2

By Lemma 3.4, E[A"] < 0. Thus, to guarantee IE[ATZ] < o0, it suffices
prove CO\/Z, e, 1) < y~1-P/p (62)
By Proposition 2.9, (62) holds for any 4 > 1 satisfying A!/7 € (1,1 + p(e™ — 1)), where
p =min{1, p*},

and g* is given by (42) with Ay = e"0, p = y~(-P/_and C, replaced by C, NG
Note that g* — 1, and hence p — 1, as h — 0. Since p can be arbitrarily close to 1, by choosing 4 > 0 sufficiently small, it follows
that

E[47] < o, VA€ (I,e™),

where § > 0 is arbitrarily small. []

The proof of Theorem 1.1 is now straightforward.
Proof of Theorem 1.1. Note that for any 4 € (1, o) satisfying E[XTZ] < oo, we have
n

]P’[TZ > t] <E[A]A77, V> 0.

By Theorem 3.6, for any 4 € (1,¢™0~%) and any 6 > 0,
lim sup 1 log Pl > 1] < —mg + my6.

t»o0 I

Theorem 1.1 is proved by taking 6 as mys. [

4. Multi-well potentials and proof of Theorems 1.2 - 1.3

Throughout this section, let U be a multi-well potential, and let (X,,Y;) be a coupling of two solutions of (2). Sections 4.1-4.3
focus primarily on the double-well potential U, while the general case of more than two wells is discussed in Section 4.4.
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4.1. Key stopping times for double-well potential

Assume that U is a double-well potential satisfying (U2) with two basins B, and B,. Let
«» =inf{t >h:(X,.Y,) € B, xB, or B, sz}

denote the infimum time when X, and Y, lie in the same basin of U. Here, the subscript “c” emphasizes the role of the noise

magnitude ¢ in determining the stopping times in the multi-well setting. We note that rél) is finite P-almost surely.

Remark 4.1. When X, or Y, is initiated near a basin boundary, repeated boundary crossings within an infinitesimal time interval
may occur, making the analysis cumbersome. To circumvent these non-essential complications, " is defined after a small positive
time. Specifically, this positive time is chosen as the numerical step size 4 to ensure compatibility with the numerical simulations.
This convention is adopted for all stopping times defined in this section.

If initially, X, and Y, already belong to the same basin, then M = h with probability close to 1. Now, assume that X, and Y,

belong to different basins. Without loss of generality, let Y, € B,. Then we have
D = kx (B)) A ky(By),

where recall that xy(B;) (resp. ky(B,)) denotes the first hitting time of the process X, (resp. Y,) to the basin B, (resp. B,).
Throughout this section, let

A = exp{CEe"ZHU/Ez}, (63)

where, in the double-well case, H; is the essential barrier height defined in (5), and C, > 0 is any constant that is not uniquely
determined and satisfies lim,_,, C, > 0, with the limit depending only on U. By Lemma 2.6,

P[cD > 1] < Pl (B) > 11 S 47", ¥i>0. .

Before proceeding, recall from Section 2.4 that for the multi-well potential, an enlarged set B,, defined in (34), consists of
all nearby basins, in particular, including B;. By Proposition 2.7, for any local minimum x; with the corresponding basin B; not
contained in B;, one has

D(x1,x;) = U(x)) > D(xy,x,) —U(xy) = Hy, Viel. (65)

This suggests that a process starting from the global minimum x; must overcome a higher barrier to exit the enlarged set B; than
a process starting from x, has to overcome to enter it.

In light of (65), in the multi-well setting, which in particular includes the double-well case, we assume the following (H1) for
the coupling scheme.

(H1) There exist constants &, > 0 and y, > 0 such that if the coupling (X, Y;) satisfies the initial condition X, € Bj (x2), Yy € Bs (x1),
then for any ¢ > 0 sufficiently small,

P[Y, € B, for all 5 € [0, t]‘KX(BI) >t 2y, V>0 (66)

The assumption (H1) states that when X, and Y, start from the bottom of the basins B, and B, respectively, the probability
that Y, remains in the enlarged set B, given that X, has not yet entered B,, is uniformly positive and independent of ¢ and 7. In
Section 5, (H1) is numerically verified. At present, although (H1), along with the forthcoming assumptions (H2)-(H3), cannot be
rigorously verified, Section 5.7 provides numerical evidence supporting their validity in an interacting particle system with multiple
local minima.

Remark 4.2. The assumption (H1) naturally arises in the context of reflection coupling. For simplicity, consider the one-dimensional
double-well potential. Let ¢(z),t € [0,T], be a C! function satisfying ¢(0) = 0, and let 5 > 0 be a small constant such that

(X, — Xo) — )] <5, Vie[0,T]

Then the Wiener process B associated with X, must stay in the neighborhood of () + /0’ VU (X, + ¢(s))ds. Due to the reflection,
the Brownian motion terms in X, and Y; are symmetric. Consequently, the corresponding Wiener process B, of ¥; must stay in the
small neighborhood of —¢(r) — /0’ VU (X, + @(s))ds, which has the same action functional as ¢(r) + /O’ VU(X, + @(s))ds. If X, exits
the shallower well B, at some T > 0, then with high probability, the final segment of X, remains in a small neighborhood of the
minimum energy path, denoted by ¢(¢) (see, for instance, Theorem 2.3 in Chapter 4 of [24]). This implies that the Brownian motion
term B stays in the neighborhood of

o) + / VU (¢(s))ds,
0

whose action functional equals 2(®(x,, x,) — U(x,)), which is strictly less than 2H,;. On the other hand, for Y, to exit B, from the
neighborhood of x;, its trajectory must have an action functional of at least 2 Hy;. Therefore, when X, exits from the shallower well,
it is highly likely that Y, remains in B;. Unfortunately, to the best of our knowledge, this argument is difficult to establish rigorously,
as the Freidlin-Wentzell large deviation theory applies only to a fixed time span [0, T'] as e — 0. However, the tail estimates required
in this paper necessitate estimates that hold for arbitrarily large 7.
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In the double-well setting, B, is simply B,. Hence, (66) is reduced to
Py (By) > tlx(By) > t] = yp. (67)
Under (H1), the reverse of (64) holds if X, € Bj (x;) and ¥, € By (x,):
Pz > 1] > Plex(B)) > t,ky(By) > 1]
= Plry(B,) > tlkx(B)) > 1] - Plkx(B,) > 1]
>y -Plex(B) >1] ~ i (68)

”

where the last “~” follows from Lemma 2.6, by choosing §, > 0 sufficiently small.

In contrast to rﬁl), define another stopping time
7@ = inf {t > h:(X,Y,) € B, x B, or B, x B, and for some s € (h,1),
(X,.Y,) € B, x B, or B, x B, }

and let 7¥ = oo if the set is empty. Note that 7 captures the infimum time when X,,Y, are separated (again) by different basins,

where “again” applies if X, and Y; already belong to different basins at the very beginning.
Let

T, = ng) AT,.

We note that 7, = 122) < 7, if X,,Y, are not coupled while staying in the same basin; otherwise, z, = 7, and 122) = o0. As will be seen
in Section 4.3, the coupling time z, is P-a.s. a finite iteration of ,.

4.2. Estimation of 7,

The following assumption (H2) is made in both double and multi-well settings, characterizing local coupling properties when X,
and Y, lie in the same basin.

(H2) Let (X,,Y,) be a coupling of two solutions of (2) such that (X, Yy) € [J,;<; B; X B;. The following hold:
(i) There exists y; € (0, 1) such that

IP’[X,E # Y,é] <71
(ii) For any € > 0 sufficiently small, there exists r,(¢) = O(-1/loge) > 0 such that
Ple, > 1] S e 0@ vr>0.

Assumption (H2)(i) asserts that when X, and Y, belong to the same basin, there is a positive probability of successful coupling.
Assumption (H2)(ii) states that as ¢ tends to zero, the exponential tail of 7, vanishes at the rate O(—1/log¢). This is expected, since
in the limiting case £ = 0, one process may be trapped at the saddle point on the boundary and cannot couple with the other one.
The rate O(—1/ log e can be derived by explicitly solving the linearized dynamics near the saddle point; see also [26,27] for rigorous
results on the passage time of a small-noise perturbation of a deterministic dynamical system through a hyperbolic equilibrium.

The following proposition provides sufficient conditions for (H2), which will be numerically verified in Section 5.

Proposition 4.3. Assume that for each i € {1, ..., L}, the following conditions hold:
(a) There exist constants T, = O(—loge), § > 0, and y, > 0 such that

P[(X,.Y;) € By x Bj.forall h <t < T, | (X, Yp) € B;x B > 7,

is uniform for dll (X,,Y,) € B; X B;, where B, = {x € B; | d(x,0B;) > 6} denotes the -interior of B;;
(b) There exists a strongly convex neighborhood B! of x; such that B! C B,.

Then Assumption (H2) holds.

For the proof of Proposition 4.3, refer to Appendix B.

Remark 4.4. Assumption (b) in Proposition 4.3 holds if U has non-vanishing second-order derivatives at the minimum x;.
Assumption (a) asserts that if the two processes start from the same basin, the probability that both strictly remain in that basin
for an extended period of time of order O(—loge) is positive. While this is intuitive, a rigorous proof is technically challenging
and beyond the scope of this paper. It would require specifying a normal form for —VU near the boundary and analyzing the exit
behavior from the separatrix of the reflection-coupled processes governed by (2). Therefore, we choose to verify this assumption
numerically.
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The analysis becomes more intricate when X, and Y, initially belong to different basins. The coupling process (X,,Y;) typically
evolves in two stages during (A, 7). In Stage 1, X, and Y, lie in different basins until one of them, either X, or ¥,, jumps out of its
initial basin and enters the other, making both of them stay in the same basin. Then Stage 2 begins, where X, and Y, are in the
same basin for a period of time, until they are either successfully coupled or fail to couple with one of them jumping out of the
basin again. Accordingly, write

1
T, =1,00% + Tgl), P- a.s. (69)

where rél) and 7, 0% correspond to the Stage 1 and Stage 2, respectively, and 6 denotes the usual shift operator.

We note that Stage 1 and Stage 2 exhibit different time scales: Stage 1 corresponds to a slow time scale, typically persisting over
an exponentially long period, with the tail exponent diminishing exponentially in terms of ¢; Stage 2 is associated with the fast time
scale, and as shown in (H2), the exponent of the tail distribution remains uniformly away from zero, independent of &.

Based on the above analysis, we obtain the following estimate of 7, when X, and Y, initially belong to different basins.

Lemma 4.5. Let (X,,Y,) be a coupling of two solutions of (2) such that (X,,Y,) € B; X B, or B, X B,. Assume (H2). Then there exists
C, > 0 such that for any t > 0 and any ¢ > 0 sufficiently small,

Plr, > 1] < CyA7".
Consequently, by Proposition 2.8, for any 4 € (1, 4,),

E[47] < g(4Cy, 4, 1) < 00, 70)
Proof. According to (69),

1
Plz, > 1] = / Pr) = s]P[r, > t|z) = s]dss
h

1
< / Plr) > 5 — §]P[r,00° > t — s]ds (71)
h
where 6 € (0, h) is sufficiently small. By (64), there exists a constant C, > 0 such that
Pz > 5 - 51 < A7,

, it follows from (H2)(ii) that there exists a constant C; > 0 such that

Moreover, since X,,Y; belong to the same basin at 7 = TS)

Plz,00° >t — 5] < C3e0EI=9),

Since 6 is arbitrarily small, it follows that
t
71) <¢ /1;'/ (Aee™0@) " as,
0

where C; > 0 is a constant independent of ¢ and ¢.
Note that A_e™"0® < [ for & > 0 sufficiently small. Thus, by enlarging C, if necessary,

(71) < ¢, A7
The lemma is proved. []
Combining (H2)(ii) and Lemma 4.5, we immediately obtain the following result.
Proposition 4.6. Let (X,,Y,) be a coupling of two solutions of (2) such that (X,,Y,) is fully supported. Assume (H2). Then for any £ > 0
sufficiently small and any 4 € (1, 4,),
E[4%] < .

4.3. Proof of Theorem 1.2

Let U be a double-well potential and (X,, Y;) be a coupling of two solutions of (2). In this section, the coupling (X,,Y,) is assumed
to satisfy (H1)-(H2). As in the proof of Theorem 1.1, a sequence of random times is defined inductively as

=0, =5 g r00% !, k> 1. 72)

where 6 is the usual shift operator. Note that by the definition of 7,, for each k > 1, either X « = Y, or X x and Y« belong to
different basins. Let

n=inflk>1: X =Yu). (73)
The following Proposition 4.7 and Theorem 4.8 are analogues of Proposition 3.5 and Theorem 3.6, respectively, in the double-well

setting.
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Proposition 4.7. For any ¢ > 0 sufficiently small, the following hold:
(i) X« =Y if and only if k > n;
(i) For any e > 0 sufficiently small, it holds that

IP’[XTé( # YT§|F'T£(,1] <7, Vk2>1,
where y; € (0,1) is as in (H2).
Note that Proposition 4.7(i) yields
. =1, P-as.

Proposition 4.7 (ii) directly follows from (H2)(i) by the strong Markov property.

Theorem 4.8. Let (X,,Y,) be a coupling of two solutions of (2) such that (X,,Y,) is fully supported. Assume (H2). Then for any £ > 0
sufficiently small and any A € (1, 4,), it holds that

E[A%] < oo.

Proof. The proof follows the same approach as that of Theorem 3.6. By replacing I , ) in the proof of Theorem 3.6 with [ x| .y, ),
g > e Te
we have

[se]
k
B < B (14 805 Cr e D X (1) P8 G7CrL i, 17) ),
k=0
where C; > 0 is the constant given in Lemma 4.5, y; is as in Proposition 4.7(ii), and p € (0,1) is an arbitrary number. Thus,
E[l’g ] < o holds if the inequality
gAP.Cy a1y <y TP 74)

is satisfied.
By Proposition 2.9, (74) holds for any A > 1 satisfying 1'/? € (1, 1 + f(A, — 1)), where g = min{1, #*} and p* is given by (42). Note
that

p* - ylf(lfp)/p— 1, ase—0.

Since yl_(]_" /P _ 1 > 0 and diverges to infinity as p — 0, one can choose p € (0, 1) such that vy (=P/P _ | 5 1. It then follows that

p* > 1, and hence g = 1, for any sufficiently small £ > 0. Hence, 4!/? can be arbitrarily close to 4,. By the definition of A, in (63),
it follows that

Inie~Ce2Hu/e O

Proof of Theorem 1.2. Note that for any 4 > 1 satisfying E[A%] < oo, it holds that
Pl<! > 1A' < E[A%].
It then follows from Proposition 4.7(i) and Theorem 4.8 that for any ¢ > 0 and ¢ > 0 sufficiently small,
Plz, > 1 547,
where 1 satisfies In 4 ~ C,e~2Hu/¢* | Hence,
liin sup % logP[r, >1] S —InA =~ —Cee’ZHU/fz. (75)
oo
For the reverse inequality, since (X, Y;) is fully supported, it follows that for any § > 0 sufficiently small,
Plz, > ] 2 P[z, > t,(Xo, Yo) € Bs(x,) X Bs(x,) or Bs(xy) X Bs(x))].
Note that when X|, and Y|, belong to different basins, it holds that 7, > Tél) . Thus, by (68)

Plz, > 1,(Xy, Yy) € Bs(x)) X Bs(x,) or Bj(x,) X Bs(x))]
> Plr) > 1,(X, Yy) € Bs(x;) X Bs(x) or Bs(x,) X Bs(x))] 2 477,

and hence
lim sup % logP[z, > 1] 2 —C, e 2Hy /e (76)
t—oo

Combining (75) and (76) completes the proof of Theorem 1.2. []
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4.4. Multi-well potential and proof of Theorem 1.3

In this section, we study the general case of multi-well potentials. Let U be a multi-well potential satisfying (U3), with L(L > 2)
local minima x,...,x; and the corresponding basins By, ..., B;. Let (X,,Y,) be a coupling of two solutions of (2).

Similar to the double-well case, several key stopping times need to be defined to estimate the coupling time. By a slight abuse
of notation, we continue to use z\" to denote the infimum time at which X, and Y, lie in the same basin, i.e.,

O = inf{t >h:(X,.Y,) €Upqcr B X Bi}.
Define

Tf) = inf {t >h:(X,Y)e U B; x B;,and for some s € (h,1),
1<i j<L,i#j
x.vpe |J B ><B,.},
1<i<L

and let rf) = oo if the set is empty. Note that TS) generalizes TEZ) to the case of multiple wells and coincides with 1§2) when L =2.

In the multi-well setting, a key stopping time of interest is when both X, and Y; lie in the vicinity of the (unique) global minimum
x;. Let &, denote the infimum time at which both X, and Y, lie in the basin B,. Recall, as defined in (30), that xx (B,) (resp. ky(B;))
denotes the infimum time at which X, (resp. Y,) enters B,. Then

& > max{xx(B,), ky(B)}. (77)

Note that X, and Y, may enter and exit the basin B; multiple times before ;. However, as long as ¢ is sufficiently small, the
typical scenario is that one of the two processes, say X,, first enters B, and “waits” for Y, to arrive. Although X, may leave B, before
Y, enters, it is highly probable that X, will stay in nearby basins and return to B, shortly after Y, enters.

The following (H3) assumes that &, is no greater than xx(B;) (or xy(B;)) up to an infinitesimal of the same order as xx(B;) (or
Ky (By)).

(H3) Let (X,,Y,) be a coupling of two solutions of (2) such that (Xy,Yy) € U;<; j<;.;2; B X B;. Then for any & > 0 sufficiently small,

lim sup % log P[(&; — max{xx(B)).ky(BD}) > 1] S e 2Hu /e (78)
=00

We note that in contrast to (H2), which provides a local characterization of the coupling properties between X, and Y,, (H3)
imposes a global condition on the coupling between X, and Y, as both processes evolve across the entire potential landscape. In
Section 5.4, (H3) is numerically verified for the reflection-maximal coupling scheme.

Remark 4.9. A rigorous justification of (H3) is highly challenging, as it requires estimating the simultaneous hitting time, i.e., &,
of the coupled process (X,,Y;). Although there are some results on the simultaneous hitting time of independent processes [11], to
the best of knowledge of the authors, no such result exists for two reflection-coupled stochastic differential equations.

For the multi-well case with L > 2, (H1)-(H3) are assumed. As in the double-well case, the quantity 4, is defined as
A = exp(C,e /ey,

where H;; now represents the essential barrier height in the general form (7), applicable to multi-well potentials. Still, C, > 0 is
any constant, not uniquely determined, such that lim,_,, C, exists and depends only on U.
Under assumption (H3) and the initial condition (X, Yy) € U, <12, Bi X B;, Lemma 2.6 implies

Plg > 115 A7,
which, since 7tV < ¢, further yields
Pz > 157" (79
Still, similar to the double-well case, we denote
T, = ‘rf) AT,.

The estimation of z, follows the same reasoning as in the double-well case: If X, and Y, initially belong to the same basin, the result
directly follows from (H2)(ii). If X, and Y; initially belong to different basins, the coupling process (X,,Y;) is typically decomposed
into two stages over the time interval (h, z,). In Stage 1, X, and Y, remain in different basins until 7D, at which time they are in the
same basin. Stage 2 then follows, during which X, and Y, are either successfully coupled within the same basin or remain uncoupled
before being separated again by different basins. Hence, similar to (69) for the double-well case, it holds for the multi-well case as
well that

o
T, =1,00% + rél), P- a.s.

where " and 7, are defined in the setting of multi-well potential.
The following is the “multi-well version” of Lemma 4.5 for the general case of L > 2.
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Lemma 4.10. Let (X,.Y,) be a coupling of two solutions of (2) such that (X,,Y,) € Ulsi,st,i#—j B; X B;. Assume (H2)-(H3). Then for
any t >0,

Plz, > 1] S 47"
Proof. The proof follows similarly to that of Lemma 4.5. As in (71), for any 6 € (0, h),

Plr, > 1] < /h t]P’[ril) > 5 — 8]P[r,060° > 1 — slds. (80)
Applying (79) and (H2)(ii) yields

Pz > 5 - 515 27679, Plr,00° >t —s] S e 09,

Since 6 can be arbitrarily small, substituting into (80) yields
t
Plz, > 1 S A" / (Age™0@) " ds
0

Thus, for any ¢ > 0 sufficiently small such that A_e™"0® < 1, and therefore the integral remains bounded, we obtain
Plr, >S4 O
The proof of Theorem 1.3 is analogous to that of Theorem 1.2.
Proof of Theorem 1.3. Analogous to Proposition 4.6 in the double-well case, a combination of assumption (H2)(ii) and Lemma
4.10 yields the following result for the multi-well case: for any € > 0 sufficiently small and any 4 € (1, 4,),
E[A%] < oo.

As demonstrated in both the single and double-well cases, the coupling time 7, can be written as a finite iteration of z,, specifically
7, = 7/, where 7 is defined in (73). In analogy with the double-well case in Theorem 4.8, it then follows that for & > 0 sufficiently
small and any 4 € (1, 4,),

E[A%] < co,
which implies the exponential tail estimate
Plz, > 1] S A"

To establish the corresponding lower bound, the assumption that the initial distribution of (X, Y;) is fully supported is employed.
Consider the case where X, is initialized in the distant basin B,, and Y, starts in the basin B, associated with the global minimum.
Under the assumption (H1), the event that Y, does not exit the region B, prior to the entrance of X, occurs with positive probability,
uniformly in both ¢ and r. Hence,

Plz, > 1] > P[Y, € B, for all 5 € [0, I]‘KX(BI) > 1] - Plcy (By) > 1]

\%

Yo - Plex(By) > 1] ~ A" (81)

where the last approximation follows from (35), the strengthened version of Lemma 2.6. This completes the proof of Theorem
1.3. O

5. Numerical examples

This section presents numerical examples to verify the theoretical results and the assumptions (H1)—(H3) concerning the coupling
scheme introduced in the preceding sections. An algorithm is first proposed in Section 5.1 to obtain accurate numerical estimates
of the exponential tails of the coupling times. For further details on the coupling algorithm, the reader is referred to [14].

5.1. An algorithm for exponential tail estimation

Let 7, denote the coupling time. While the rigorous results only establish bounds on the limit superior of % log P[z, > 1], numerical

simulations consistently indicate convergence of %log P[r, > 1] as ¢t increases. Therefore, the numerical investigation focuses on
computing the exponential decay rate of P[z, > ¢] with respect to 7, that is,

r(e) = —tl_iglo ; logP[z, > 1],

where ¢ denotes the noise magnitude in (2). Since only a finite number of coupling events can be sampled, an efficient algorithm is
required both to provide statistical evidence for the existence of the exponential tail and to estimate its decay rate with reasonable
accuracy.

21



Y. Li et al. Stochastic Processes and their Applications 190 (2025) 104763

The main challenge is that P[z, > ¢] typically does not exhibit exponential decay until ¢ is sufficiently large. It is therefore
necessary to identify a suitable threshold ¢* such that the tail 1;, ,,(z. — ¢*) approximately follows an exponential distribution,
while keeping r* as small as possible to ensure that enough samples with z, > r* are available. However, most exponentiality tests
that have been attempted yield a threshold ¢* that is too small, resulting in the failure of the log-linear plot of the tail to stabilize
into a linear trend. This is likely due to the sensitivity of the plots to small deviations in tail behavior.

The goal of our algorithm is to determine a suitable ¢* such that the log-linear plot of P[r, > ] is approximately linear for all
t > t*. That is, the confidence interval of the estimated values of P[z, > 7] should contain a straight line on the logarithmic scale for
all # > r*. The algorithm proceeds as follows. First, select a sequence of times ¢, 1, ...,1y, Where t, is typically set as the maximum
of the sampled coupling times. Let M denote the total sample size, and for each i, let n; be the number of samples satisfying z, > t,.
The Agresti-Coull method [28] provides a confidence interval for each i of the form

(57,51 = — z\/%(l — 5B, +Z\/%(1 — Bl

where M = M +2%, p, = (n; + é)/ M, and z = @~'(1-a/2) is the a-quantile of the standard normal distribution. In practice, z = 1.96
and a = 0.05 are commonly used.

Given any N, € {1, ..., N}, a weighted linear regression can be performed to fit the points (¢;,log j;) for i = Ny, ..., N, where each
point (¢;,log p;) is assigned a weight of n;/ M. If the regression yields a linear function of the form y = ar + b, then N,, is considered
acceptable if it satisfies

{Ng<i<N}:at;+b¢&I[p,p]| <a(N - Ny+1), (82)

ensuring the residuals 1, ., NO)(TE — ty,) are statistically consistent with an exponential tail beginning at ¢y, . For each candidate
Ny, this procedure evaluates whether the tail distribution of z, beyond ¢y, is approximately exponential. The final choice of N,
is the smallest index that satisfies the condition (82), which can be efficiently found via binary search over {1,..., N} in O(log N)
iterations. The threshold r* is then defined by 7y, and the exponential decay rate is given by the slope a of the corresponding
weighted regression line.

5.2. Quadratic potential function

The first example considers the quadratic potential function. The primary objective is to numerically verify the theoretical result
stated in Theorem 1.1. This example will be revisited in Section 5.7 to examine the consistency of the first passage times between
the continuous-time process and its time-4 sampled chain as the step size 4 tends to zero, in accordance with the approximation
(45) discussed in Remark 3.2.

Consider the quadratic potential function

U(x) = %xTAx, x € Rk,

where A is a k X k Lehmer matrix whose entries are given by A;; = min(i, j)/ max(i, j). The matrix A is symmetric and positive
definite [29]. The associated SDE is

dZ, = —AZ,dt + edW, , (83)

where W, is a k-dimensional Wiener process, and £ > 0 denotes the noise magnitude.

In the numerical simulations, the time step size 4 is fixed at 0.001, unless stated otherwise. Fig. 2 displays the probability
distribution of the coupling time z,. The four panels show P[z, > ] versus ¢ on a log-linear scale for Lehmer matrices of size 2 x 2,
4 x 4, 6 x 6, and 8 x 8, respectively. For each case, the noise magnitude ¢ is set to 0.02, 0.1, 0.5, and 1.5. The slopes and linear
fitting in the log-linear plots are determined using the algorithm described in Section 5.1. The smallest eigenvalue of A is indicated
in the subtitle of each subplot in Fig. 2.

In all four cases, although the probability distribution of z, varies significantly with the noise magnitude, the slopes of the
exponential tails remain unchanged. Moreover, the smallest eigenvalue of A, which can be computed explicitly, closely approximates
the slope of the corresponding exponential tail, with an error of at most 0.01. This observation is consistent with Theorem 1.1, which
asserts that the slope of the exponential tail is determined by the convexity of the potential function and is independent of the noise
magnitude.

5.3. 1D double-well potential

This subsection considers an asymmetric one-dimensional double-well potential given by
U(x) = x*—2x*+02x, xeR.

The potential U has two local minima located at x = 0.9740 and x = —1.0241. The barrier height that a trajectory must overcome
to transition from the left well to the right is approximately 1.2074, while the reverse transition requires overcoming a barrier of
approximately 0.8076; see the bottom left panel of Fig. 3.
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Fig. 2. Log-linear plots of P[z, > 1] versus ¢ and their exponential tails. The four panels correspond to Lehmer matrices of sizes 2,4, 6, and 8. The
smallest eigenvalue of each matrix is indicated in the title of the corresponding subplot.

The purpose of this example is to numerically verify the theoretical result of Theorem 1.2, which asserts that the exponential
tail of the coupling time distribution is determined by the lower of the two barrier heights. The time step size and coupling method
are the same as those used in the previous examples. The noise magnitudes ¢ are chosen as 0.32,0.36,0.4,0.45,0.5,0.6, and 0.7. For
each value of ¢, the exponential tail r(¢) is estimated using the weighted linear regression algorithm described in Section 5.1. The
corresponding results are shown in top panels of Fig. 3. It is observed that the exponential decay rate r(¢) varies significantly with
respect to e.

In the bottom right panel of Fig. 3, the quantity y(¢) := —e”logr(e) is plotted against £2, revealing an approximately linear
relationship. A linear extrapolation of y(¢) as € — 0 yields the limiting value y(0) = 1.617, which closely agrees with the theoretical
value y(0) = 2H; = 1.615, where H; denotes the lower barrier height of the potential. This confirms the validity of Theorem 1.2 in
the asymmetric double-well setting.

5.4. Interacting particle system in the double-well potential

This subsection considers a variation of the double-well potential introduced in the previous subsection. Let
V(x)=x*-2x+02x, x€R,

denote the double-well potential. Consider three particles moving along V under overdamped Langevin dynamics, with additional
pairwise interactions. The total energy potential is given by

3
Ulxpxp,x3) = X V) +0 Y (g =xp)h
i=1 i,j=12,3,i#j
where ¢ > 0 is the interaction strength.

The function U has two trivial local minima at x; = x, = x; = 0.9740 and x; = x, = x3 = —1.0241, corresponding to all three
particles occupying the same basin of V. For sufficiently small ¢ > 0, U also admits six additional local minima, corresponding to
configurations in which the particles are distributed across different basins; see the top panel of Fig. 4 for a sample trajectory.

Two extreme regimes of interactions are notable. When ¢ = 0, i.e., when there are no interactions among the three particles,
the particles move independently, resulting in a barrier height of the energy landscape identical to that of V. When ¢ — oo, the
interaction is strong enough so that the three particles must move together as a single unit, making the barrier height of the energy
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Fig. 3. Top: Coupling time distributions for different noise magnitudes. Bottom left: Asymmetric double-well potential. Bottom right: Linear
extrapolation of the essential barrier height.

potential U three times that of V. For any fixed ¢ > 0, the essential barrier height H;, lies between the barrier heights of the two
extreme cases, i.e., 0.8076 < Hy < 3 x 0.8076 = 2.4228, with Hy; increasing as o increases.

The estimate Hy;, and the distribution of the coupling time 7z, is computed for various values of €. For ¢ = 0.05, values of ¢ are
chosen as 0.4, 0.41, 0.42, 0.43, 0.45, 0.47, 0.5, 0.55, 0.6, 0.7; for 6 = 0.1, values of ¢ are 0.41, 0.42, 0.43, 0.44, 0.45, 0.47, 0.5, 0.55,0.6, 0.7.
The decay rate r(¢) of the exponential tails is estimated in both cases using linear weighted regression. The relationship between
r(¢) and e exhibits a similar trend to that observed for the double-well potential in the previous subsection. A linear extrapolation
of y(e) := —&%log r(¢) provides an estimate of the essential barrier height. As shown in the middle right panel of Fig. 4, the linear
extrapolation yields y(0) = 1.7374 for ¢ = 0.05 and y(0) = 1.9598 for ¢ = 0.1, both of which are expected to be approximately twice
the barrier height 2H;, which will be computed using the String method below. As expected, the barrier height increases with the
interaction strength among the three particles.

To validate the essential barrier height inferred from the coupling approach, the String method (see, e.g., [30]) is employed
to compute the heights of various barriers between the local minima (0.9740,0.9740,0.9740) and (—1.0241,—1.0241,—1.0241) in the
energy landscape. As shown in Fig. 5, the essential barriers, defined as the highest barrier that a trajectory must overcome to enter
the basin of the global minimum, correspond to the leftmost barrier in the lower left panels of Fig. 5: (A) for ¢ = 0.01 and (B) for
o = 0.1, respectively.

In this example, since the three particles are indistinguishable, the energy potential exhibits significant symmetry: the eight local
minima can be classified into two types, each consisting of four specific cases. These cases correspond to configurations where (i)
all three particles reside in the same basin (global or local), or (ii) two of the three particles lie in one basin (global or local), while
the remaining particle resides in the other basin. Fig. 5 shows that the minimal energy path (MEP) connecting the two minima
(0.9740,0.9740,0.9740) and (—1.0241,—1.0241, —1.0241) passes through all four cases. Thus, the essential barrier height H; can be
attained along such an MEP although, in principle, it should be determined by taking the supremum over all paths connecting any
local minima to the global minima. In Fig. 5, the computed values are Hy;, = 0.8961 for ¢ = 0.05 and Hy; = 0.9916 for ¢ = 0.1, which
correspond to the theoretical values y(0) = 1.7922 for ¢ = 0.05 and y(0) = 1.9832 for ¢ = 0.1, respectively.

The result from the String method is further validated using the equivalent characterization (21) by numerically computing all
27 critical points of U, including all the minima and saddle points. The essential barrier heights obtained through this approach are
Hy; = 0.8962 for ¢ = 0.05 and Hy; = 0.9916 for ¢ = 0.1, which are nearly identical to those computed using the String method. As
shown in Fig. 4, both values also closely match y(0)/2, the estimate obtained via linear extrapolation from the exponential tails of
coupling times.
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Fig. 4. Top: Sample trajectory of a three-particle interacting system in a double-well potential. Middle: Coupling time distributions and
¥(e) = —€?log r(e) versus €2 for ¢ = 0.1. Bottom: Coupling time distributions and y(e) = —¢2 log r(¢) versus &> for ¢ = 0.05. Theoretical values of
(0) in the middle-right and bottom-right panels are obtained from the minimum energy path.

5.5. Rosenbrock function

This example examines the well-known non-convex landscape of the Rosenbrock function in both two- and four-dimensional
cases. For N € N, the Rosenbrock function is defined as

N-1
Ry(x)= Y [b(xiy; —xD? +(a=x)"l, x€RY,

i=1
where a and b are constants. In this study, the parameters are chosen as a = 1 and b = 20. For N = 2, the function R, admits a unique
minimum at (1, 1), while for N = 4, it possesses a global minimum at (1, 1,1, 1) and a local minimum at (-1, 1, 1, 1). Fig. 6 illustrates
the function landscape: the top-left panel displays log R,(x), and the bottom-left panel shows a slice of log Ry(x) at x3 = x4 = 1. A
logarithmic scale is used to better visualize the detailed structure near each minimum. In the vicinity of each minimum, the function
exhibits a valley-like shape, remaining convex only within a very small neighborhood. The landscape of R, cannot be fully captured
by a single heat map slice; however, it is straightforward to verify that the convex region of R, is relatively small.

The noise magnitude is set as ¢ = 0.001, 0.01, 0.1, 1.0, 1.5, and 2.0 for R,, and as € = 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, and 1.0
for R,. The corresponding coupling time distributions are shown in the two right panels of Fig. 6. It can be observed that for both
cases, when the noise is sufficiently small, the tails of the coupling time distributions appear parallel in the log-linear plot. This
behavior arises because the coupling time is primarily determined by the local convexity near the global minimum, in agreement
with the result of Theorem 1.1. However, as the noise increases, trajectories are more likely to explore the entire valley rather than
remaining confined to the neighborhood of the global minimum. Consequently, the coupling time distributions are altered.

Another interesting phenomenon is that for the potential function R,, the coupling time distribution does not exhibit an
exponentially small tail with respect to the noise magnitude, even when & = 0.001. This contrasts with the theoretical results for
the double-well potential. Moreover, even when one of the coupled processes is initialized at the local minimum (-1,1,1, 1), the
tail of the coupling time distribution remains largely unchanged, as shown in the plot labeled “e = 0.001 fixed”. This phenomenon
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Fig. 5. Minimum Energy Path (MEP) computed using the String method [30] at high numerical resolution. The MEP represents the most likely
transition path between two metastable states in the zero-temperature limit of overdamped Langevin dynamics. It is known (e.g., [31]) to reveal
barrier heights and descent depths along the transition path, which are labeled by dU values in the bottom-left panel. The top panel visualizes
the MEP in three-dimensional space (x|, x,,x3), where the legend lists the values of the potential U at each local minimum. The bottom-right
panel displays the integrand of the Freidlin-Wentzell action functional as a function of the arc-length parameterization of the path, serving as a
sanity check to verify the correctness of the computed MEP.

occurs because the basin of the local minimum is shallow and separated by a low barrier, which can be easily crossed by a trajectory
allowing it to quickly reach the valley of the global minimum.
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Fig. 6. Top left: Landscape of R,. Top right: Coupling time distribution for R, under different noise magnitudes. Bottom left: Landscape of R,.
Bottom right: Coupling time distribution for R, under different noise magnitudes.

5.6. Loss functions of artificial neural networks

This subsection investigates the performance of the coupling method in a high-dimensional setting. Specifically, the training
process of an artificial neural network (ANN) with two hidden layers is considered, where the first and second layers contain N,
and N, neurons, respectively. Let ReLU(z) = max{z, 0} denote the rectified linear unit activation function. The ANN considered here
is defined by the following structure

h, = ReLUW;x +b,) (84)
h, = ReLU(W,h, +b,) (85)
y=Wsh, + b5, (86)

where x € R? is the input and y € R is the output. The vectors b, € RV1,b, € R™ and b; € R denote the bias terms. The weight
matrices W, W,, and W; have dimensions N; X 2, N, X N, and 1 x N,, respectively. Let 6 denote the collection of all trainable
parameters, including the entries of W}, W,, W3,b,,b,, and b;. The total number of parameters is given by

dim @ = (N; N, + 3N, + 2N, + 1).

For notational convenience, the ANN defined by (84)-(86) is denoted by y = NN(6, x).
The objective of the training process is to approximate the quadratic function y = |x|> using the ANN. Given a training set
{X[,.... X515, Y ), the loss function is defined by

M
LO)= - 2, (3 -Nnee. %)’

where the training set size is fixed at M = 100. The input points x, ..., X, are uniformly sampled from [-1,1]?, and the
corresponding target values are given by y, = |x;|>. The first column of Fig. 8 illustrates the distribution of the collocation points
and the target function y = |x|%. The goal is to analyze the structure of the loss function L(6).

The coupling method is applied to three ANNs with different hidden layer sizes: N, = 4, N, = 3 (referred to as the “small ANN"),
N, = N, =10 (the “medium ANN”), and N, = N, = 20 (the “large ANN”). In this example, the small ANN is under-parameterized,
while the large ANN is over-parameterized. It is often believed that over-parameterization tends to reduce barrier heights in the
loss landscape of ANNs (see, e.g., [32-38]). However, rigorous justification remains elusive due to the complex structure of high-
dimensional loss functions. The coupling-based approach proposed here may offer a viable tool in this regard by computing the
essential barrier height of such loss functions.
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Fig. 7. Coupling time distributions and linear extrapolation of y(¢) = —e? log r(e) versus €. Left: small ANN; middle: medium ANN; right: large
ANN.

Fig. 7 presents the coupling time distributions for the three neural networks under ten different noise magnitudes. For visual
clarity, only five noise levels are shown. As in previous examples, the slopes are estimated via weighted linear regression. The six
smallest values of €2 are used for the linear extrapolation of y(¢) := —&2log r(¢) versus €2, as displayed in the lower panels. It is
observed that the large ANN exhibits a lower essential barrier height. More precisely, no significant barrier is detected within the
region explored by the coupling method. This observation is consistent with the findings in [38], which adopts a different approach
based on computing the MEPs between the local minima of the loss surface. Although it is theoretically possible that a high-barrier
local minimum exists in a remote region not reached by the coupling trajectories, such cases have not been reported to the best of
our knowledge. Moreover, practical ANN training is typically regularized, which prevents |6| from becoming excessively large.

The small ANN in this example is under-parameterized, as it contains only 31 parameters to be learned, whereas the training set
comprises 100 samples. As illustrated in Fig. 7, the loss function of the small ANN exhibits a much larger essential barrier height
compared to both the medium and large ANNs. Regarding the training performance, when initialized randomly, the small ANN may
converge to a “bad” local minimum that fails to accurately approximate the target function (see the middle panels of Fig. 8). In
contrast, for all tested initial conditions, both the medium and large ANNs consistently converge to a “good” local minimum of the
training loss function, yielding satisfactory approximations of the target function (see the right panels of Fig. 8). This finding aligns
with existing studies on the loss landscapes of ANNs [1,39,40].

5.7. Numerical verification of assumptions

In this subsection, assumptions (H1)-(H3) proposed in Section 4 are numerically verified. In addition, the consistency between
the first passage times of the continuous-time process and its discrete-time counterpart is examined, as discussed in Remark 3.2.

5.7.1. Numerical verification of Remark 3.2 .
We first numerically verify the consistency of the first passage times defined in Remark 3.2 as two reflection-coupled trajectories
approach each other. Specifically, we examine the assumption (45)

C 0 hy

ilg% |z, — 7,1 =0, P-as.
where 12 =inf, o{|X, - Y| = 2\/Z} denotes the continuous-time first passage time, and r,'l‘ = h-inf,o{|X,, =Yl = 2\/Z} is its
discrete-time counterpart based on a time-4 sampled chain.

This verification can be conducted using an extrapolation argument. Let 2, = h/n for some integer n, and define the first passage
time of the time-h,; sampled chain by

By . _
Tl = Ay inf (X, = Y | = 2v/h}.
By the strong approximation property of the Euler-Maruyama scheme for SDEs,

. h
lim 7' = 7?

, [P-a.s.,
=0 h
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Fig. 8. Left column: Training set and target function. Middle column: y = NN(0, x) for 0 at the “bad” and “good” local minima of the small
neural network. Right column: y = NN(6, x) for the medium and large neural networks.

so it suffices to compare T and Th , with the latter serving as an approximation of 12 for the same trajectory.

We apply the extrapolatlon method to both the quadratic potential function in Section 5.2 and the interacting particle system
in Section 5.4. In the quadratic potential case, the initial values of X, and Y, are set to (0.5,0.7) and (—0.5, —0.6), respectively. For
the interacting particle system, X, and Y, are initialized at (1,1,1) and (-1, -1, -1), respectively, indicating that they belong to the
basins of different local minima.

In the top-left and bottom-left panels of Fig. 9, the quantity (T;f - ‘L'ZI) is plotted against \/h_l for five different values of A. In
both examples, this difference exhibits approximately linear behavior as \/h_l — 0. An extrapolation at #; = 0 provides an estimate
of (z} — 70). The top-right and bottom-right panels of Fig. 9 display (' — z7) versus v/h for h = 0.0002,0.0005,0.001,0.005, and 0.01,
respectively. The results show that this error decreases as 2 — 0, and a linear fit suggests that (r,’: —12) is approximately proportional

h, consistent with the findings of [41,42]. Although the error in estimating z, is larger for the interacting particle system due
to the presence of multiple local minima, the numerical results still exhibit the expected convergence behavior as 7 — 0.

In the following subsections, the interacting particle system described in Section 5.4 is used to numerically verify assumptions

(H1)-(H3). The coupling strength is set to ¢ = 0.05.

5.7.2. Numerical verification of (Hl)

Let X, =(1,1,1) and Y, = (-1, -1, —1), ensuring that the trajectory Y, is initiated near the global minimum. Based on the barrier
heights illustrated in Fig. 5 and the definitions of Z, the set B, is identified as the complement of the basin containing (1,1, 1). The
simulation is performed under four different noise magnitudes: ¢ = 0.6,0.65,0.7, and 0.75. At each step of the Euler-Maruyama
scheme,it is numerically checked whether X, and Y, lie in B,. The criterion for determining whether a point x = (x;, x,, x3) belongs
to B, is as follows: for each i = 1,2, 3, if either x; > 0.11, or 0 < x; < 0.11 while —0U /ox; > 0, then x ¢ B,. This condition is sufficient
for all samples in our numerical simulation.

Remarkably, across tens of millions of samples, Y, was never observed to exit B, before X, entered it. A similar phenomenon
is observed in the one-dimensional double-well potential, where Y, remains in B, until X, enters. This can be explained by noting
that reflection-coupled Brownian motions have the same action functionals. When X, exits the basin B, and enters B, the action
functional of the associated driving Brownian motion of X, is highly likely to be close to H,. Consequently, the action functional
corresponding to the Brownian motion term in Y, is unlikely to be sufficiently large to drive Y, out of B,. Therefore, assumption
(H1) is numerically verified with the even stronger conclusion that

P[Y, € B, forall s € [0,:]‘@(31) >~ 1.

5.7.3. Numerical verification of (H2)

Let B, denote the basin of attraction containing (1, 1, 1). According to Proposition 4.3 and Remark 4.4, it suffices to verify
condition (a) therein. Specifically, this involves numerically estimating the probability that a trajectory enters the interior of B,.
The approximate boundary of B, is depicted in the left panel of Fig. 10. It suffices to consider initial points from the boundary, as
the probability is expected to be higher when starting from the interior.
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Fig. 9. Left: (¢} —1:‘) vs. y/h, for five different values of h. Top left: Quadratic potential function. Bottom left: Interacting particle system. Right:
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() — 7)) vs. \/Z with a linear fit. Top right: Quadratic potential function. Bottom right: Interacting particle system.

Three initial values of X|, are selected from a corner, an edge, and a face of dB,, respectively, as marked in red in Fig. 10 (Left).
The initial value of Y} is fixed at (1, 1, 1). For each case, the probability that the coupled process (X,,Y,) remains in the §-interior of
B, X B, (with 6 = 0.01) throughout the time interval [A,T,] is computed, where 4 = 0.05, T, = —loge, and ¢ varies from 0.001 to
0.01. As shown in Fig. 10, this probability remains uniformly bounded from below as ¢ — 0. This numerically confirms condition
(a) of Proposition 4.3, thereby verifying assumption (H2).

5.7.4. Numerical verification of (H3)

Assumption (H3) is numerically verified by computing the overshoot time. The criterion for determining whether a trajectory
enters the basin B, is the same as that used in Section 5.7.2. The noise magnitudes are set to 0.5,0.55, and 0.6. For each value of ¢,
the probability distribution of the overshoot time, given by & — max{ky, cy}, is estimated using 1 x 107 samples.

As illustrated in Fig. 11, the tail distribution of ¢, —max{ky, xy } exhibits a two-phase behavior. The second phase corresponds to
the scenario where one of the trajectories, X, or Y;, makes an excursion to other basins after entering B, and subsequently returns,
while the other trajectory remains within B;. Due to the low probability of such an event, a large number of samples are required
to capture the exponential tail. In Fig. 11, the distributions of the overshoot time and coupling time are compared. In the log-linear
plot, the slope of the overshoot time decreases rapidly as the noise magnitude decreases, yet it remains steeper than that of the
coupling time. As the theoretical result indicates that the tail of the coupling time distribution is close to the essential barrier height
Hy, this numerical observation thereby verifies assumption (H3).

6. Conclusion and further discussions

This paper investigates the relationship between the geometry of a multi-dimensional potential landscape and the distributions
of coupling time for the overdamped Langevin system associated with the potential. This study is motivated by the fact that
the exponential tail of the coupling time distribution provides a lower bound for the spectral gap of the Fokker-Planck operator
governing the Langevin dynamics. It has long been believed that certain geometric properties of a region can be inferred from the
spectrum of an associated differential operator, as famously illustrated by Kac’s question [43], “Can one hear the shape of a drum?”
In a similar spirit, this work takes a preliminary step toward understanding the structure of a potential landscape by establishing
connections between its geometry and the statistical properties of coupling times.
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Fig. 11. Comparison of probability distributions of the overshoot time & —max{ky,cy} and the coupling time. The left, middle, and right panels
correspond to € = 0.6,0.55, and 0.5 respectively. The asymptotic slope of the overshoot time distribution in the log-linear plot is denoted by r.

It is shown that, in the limit of vanishing noise, the exponential tails of the coupling time distributions exhibit qualitatively
distinct behaviors in the single-well potential and multi-well settings. Specifically, for a strongly convex single-well potential, the
rate of exponential tail is uniformly bounded below by a constant that depends on the convexity of the potential. In contrast, for
a multi-well potential, the rate of the exponential tail decays exponentially as the noise strength tends to zero. These results are
supported by both theoretical analysis and numerical verification.

The coupling scheme used in this paper combines reflection coupling and maximal coupling to improve efficiency. It is observed
that the upper bound on the tail distribution obtained through this scheme is close to optimal, in the sense that it nearly achieves
equality in the coupling inequality. To estimate the exponential decay rate of the tail in the small noise regime, a linear extrapolation
is employed. This decay rate is governed by the essential barrier height, a concept introduced in this paper to capture the global
structural features of the potential landscape. In particular, the essential barrier height is applied to analyze the loss landscape of
artificial neural networks, and the corresponding numerical observations are consistent with findings from related studies employing
alternative methodologies.

Although this work focuses on the distribution of coupling times, further information about the potential landscape is expected
to be extracted from the coupling-based analyses. For instance, the distribution of coupling locations may provide additional
insights into the geometry of the underlying landscape. Furthermore, the present study only concerns the tail of the coupling
time distribution, which is associated with the principal eigenvalue of the Fokker—Planck operator. An investigation of conditional
coupling times - specifically, those conditioned on avoiding coupling in the deepest well — could reveal spectral information
associated with non-principal eigenvalues, which correspond to the lower energy barriers. These extensions represent promising
directions for future research.
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Appendix A. Proof of Lemma 2.6

To establish the exponential tail, more refined estimates of the eigenvalues of the Dirichlet operator are required. Specifically,
let £¢ denote the infinitesimal generator of the process defined in (2), and let D c R* be an open set with a regular boundary oD.
Based on potential theory, [18,19] provide sharp estimates for the low-lying eigenvalues and the corresponding eigenfunctions of
the Dirichlet problem

L5 —ju=0, in D (87)
u=0, in D¢
The following Proposition A.1 summarizes the sharp bounds of the principal eigenvalues, as established in Proposition 3.2 of [19]

and Theorem 3.1 of [18]. The corresponding bound on the principal eigenfunction is stated in Proposition A.2, which follows from
Proposition 3.3 in [19].

Proposition A.1 (Sharp Bound on Eigenvalues [18,19]). Assume that D C R? is open and let U : D — R be a potential function satisfying
(U3). Suppose that D contains L > 1 local minima of U, and that there exists a unique minimum x € D such that

U(z*(x, D) = U(x) = 1maxL{U(z*(x,-, D)) -U(x))}.

<i<

Let B = B, denote a neighborhood of x, and denote the first entrance time of X, into any subset A C R by 7,. Then there exist constants
a>0, C < oo, and § > 0, independent of €, such that the principal eigenvalue 4, <0 of L) satisfies
capg(D° capg(D° 5
L2)(1 —Ce)(1 - ™) < 4] < Lz)(l +CeN(1+e77),
g, pell? g pell?

where hp pe(z) :=P,[rp < 7pc], the norm || - ||, is taken with respect to the invariant probability measure z* of (2), and capacity
Sy Qe 1AE)]
2T \ldex(V2U(z))]

for z* = z*(B, D°). Here, A](z*) denotes the negative eigenvalue of the Hessian of U at z*.

capg(D) =e (1 + O(e| In€gl))

Proposition A.2 (Sharp Bounds on Eigenfunctions [18,19]). Under the assumptions of Proposition A.1, let ¢, be the eigenfunction of L3
corresponding to A;, normalized such that inf, ;5 ¢; = 1. Then

hp.pe(2) < 1(2) < hg pe(2)(1+ Ce)(1 + ™/,
These estimates on the principal eigenvalue and eigenfunction yield the exponential tail for the first hitting time in Lemma 2.6.

Proof of Lemma 2.6. The argument is a modification of Theorem 1.4 from [19]. Assume z ¢ B, since the bound is trivial otherwise.
Set D = B} and B = B,. Then

Sy Qe 4@
27 \/ldet(V2U (z9))]

capg(D) =e (1+ O(e|Inel),

where z* = z*(x|, x,).
Note that for sufficiently small € > 0, if 4p pc(z) ~ 1 for z € B;, then it follows that &(x;, x,) < @(x;, x;). This, in turn, implies
U(x;) > U(x,); otherwise, we would have

D(xy,x1) = U(xy) < D(x;,x1) = U(x;),
which contradicts (29). In particular, hg pc(z) ~ 1 for z € B,. Therefore, integrating against z¢, it follows that

2
hp pell? = e 22/,

32



Y. Li et al. Stochastic Processes and their Applications 190 (2025) 104763

Noting that H;; = U(z*) — U(x,), it follows from Proposition A.1 that
[A] = e 2Hu/ (1 4 O(e®))(1 + O(e™/<")).

Now observe that
P,[ky(B) > 1] = (e"Z 13;’) (2),

so that
P,lxz(B)) > 1] < A, e

for some constant A, depending on z and &.
For the lower bound, note that £¢) is self-adjoint in the weighted space Lig, and thus its eigenfunctions form an orthogonal
basis. It follows that

Polkz(B) > 11 = (015 ) ()2 Byl el - 1" - 6,2,

where 7¢ denotes the normalized restriction of z* to D. By Proposition A.2,
$1(2) = hp pe(2)(1 + O(e)).

Thus, for z € B, one has hp p(z) ~ 1, and hence
P,lxz(B) > 1] 2 EgeldLpe] - e -, ().

Since u is fully supported, the term E,(¢)) ~E, (hp pe) >0, yielding the desired lower bound. []

Remark A.3. The leading-order term of A, is proportional to ¢,(z). Furthermore, if z lies in the interior of B,, then P [rp >
T (x,] = 1. Consequently, the leading-order term of A;, can be bounded by a constant that is independent of both £ and z.
Any dependence on ¢ and z arises exclusively through the coefficients associated with higher-order eigenfunctions in the spectral
decomposition of the semigroup. On the time scale x;(B;) = O(e*!v/ 52), these higher-order terms are of order O(e=%/ 62), making
the prefactors A, and A, effectively independent of e.

Remark A.4. The result in Lemma 2.6 still holds if B, is replaced by B,, as defined in (34). This follows from (37), which ensures
that, when D = B, the deepest local minimum remains to be x, and the height of the saddle z*(B, D) remains to be U(z*(x;, x,)).
Hence, the proof of Lemma 2.6 continues to hold.

Appendix B. Proof of Proposition 4.3

We first establish that the event in which X, and Y, remain within the same basin and couple within a finite time interval of
order O(—loge) occurs with a strictly positive probability. This directly implies (H2)(i).

By assumption (a), for any initial value (X, Y,) € B; x B;, the pair (Xy,, Yy,) belongs to the é-interior Bé X st with probability
7o- Since B, is the basin of attraction of x;, denote by x, the deterministic gradient flow x, = —VU(x,). Then there exists a constant
T, = O(1) such that for any x, € st, the deterministic trajectory satisfies x;, € Bi, , C B., where BL , is an open subset in the interior
of B..

By the standard small random perturbation argument (see, for instance, Chapter 4, Lemma 2.1 of [24]), for any ¢ > 0 sufficiently
small and any finite time interval, both processes X, and Y, remain close to the deterministic trajectory x, with high probability,
say at least 0.9. Thus, combining this with assumption (a), define the event

E, = {(X,,Y,) € B,x B, for all 1 € [h, Ty + T}), and (X7,7,. Yy,47,) € B | X Bl }
Then
PLE, | (Xy.Y,) € B, X B,] > 0.9

Let U be a strongly convex potential satisfying (U1) such that U = U on B!. Denote by (X,,Y,) the coupled process associated
with U. Then (X,,Y,) coincides with (X,,¥,) as long as (X,,Y,) remains in B! x B!. By Theorem 1.1, for any y, € (0,1), there exists
T, = O(1) such that

P[X, and ¥, couple before T, | (X, ¥y) € B, | x B! 1> 1.

Moreover, since (X,,Y;) remains in Bil X Bil when € = 0, the small random perturbation argument yields that for any ¢ > 0
sufficiently small and any y; € (0, 1), there holds

PI(X,.Y;) € Bl x B, for all t < T, | (X, ¥) € B, | X B! |12 7.
Choose y, and y; such that y, +y; > 1, and define the events

E, :={X, and ¥, couple before T}, E, :={(X,.¥;) € B. x B! forall t <T)}.
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Then
PLE, N E, | (X, Yy) € B, x B, |1 > PIE; | (X, Y)) € B, | X B |]
+PLE, | (X, Yp) € B, | x B, |]1-1
>y +r3—1>0.
Since (X,,Y,) coincides with (X,,Y,) on E; n E,, it follows that
PIX7y 7,41 = Yrye1,4¢ for some 1 € [0, T3] | (X 47y, Vi) € By X Bl 127, +73—1>0.

Combining all estimates above, there exists a constant T := T, + T} + T, = O(—log¢) such that

P[(X,,Y,) € B;x B; for all t € (h,T], and X, =Y, for some r € (h,T] | (Xy,Yy) € B; X B;]
> PLE) | (Xo,Y,) € B; X Bil - PIX7, 7, 4 = Yg, 1,4 for some 1 € [0, T3] | (X747, Yr41,) € Bl X B

[

> 09y +73—1) ==y >0. (88)

This completes the verification of (H2)(i), where y; = 1 —y,.

To prove (H2)(ii), observe that 7, denotes the first time at which either X, and Y; couple or one of them exits the basin B;.
Hence, prior to time z,, the processes X, and Y, remain in the same basin and have not yet coupled. Consequently, for any t > T,
it follows that

li/T)
Plz, > 1| (Xo,Yp) € B x B < [ Plz,00" ™" > T | (X(,_1y7, Yiuoryr) € B; X Byl

n=1

Recalling that T = O(—log ¢) and applying (88), one obtains
Pz, 00" T > T | (X p—1yr> Y-1y1) € B/ xB]1<y,

uniformly for all (X(,_;)r, Y,_1yr) € B, x B,. Therefore, for any ¢ > T,
Plz, >t | (X,.Yy) € B;x B;] < }’IWTJ < el

where ry(e) = O(T™') = O(—1/ loge).
For t € [0,T7, since P[z, > 1 | (X,,Y,) € B; X B;] < 1, there exists a constant C;, = O(1) independent of ¢ and ¢ such that

Plz, > 1| (Xo,Yy) € B; X B;] < Coe ™0,
Thus, for all ¢ > 0,
Plz, > 1| (X, Yy) € B; X B;] S e”"0@)",

Finally, since the number of basins is finite, (H2)(ii) follows by applying this estimate over all L basins.
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