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Abstract

Discrete diffusion models have emerged as a powerful generative modeling frame-1

work for discrete data with successful applications spanning from text generation2

to image synthesis. However, their deployment faces challenges due to the high3

dimensionality of the state space, necessitating the development of efficient in-4

ference algorithms. Current inference approaches mainly fall into two categories:5

exact simulation and approximate methods such as τ -leaping. While exact meth-6

ods suffer from unpredictable inference time and redundant function evaluations,7

τ -leaping is limited by its first-order accuracy. In this work, we advance the latter8

category by tailoring the first extension of high-order numerical inference schemes9

to discrete diffusion models, enabling larger step sizes while reducing error. We10

rigorously analyze the proposed schemes and establish the second-order accuracy11

of the θ-trapezoidal method in KL divergence. Empirical evaluations on GPT-212

level text and ImageNet-level image generation tasks demonstrate that our method13

achieves superior sample quality compared to existing approaches under equivalent14

computational constraints.15

1 Introduction16

Diffusion and flow-based models on discrete spaces [1–10] have emerged as a cornerstone of modern17

generative modeling for categorical data, offering unique advantages in domains where continuity18

assumptions fail. Unlike their continuous counterparts, discrete diffusion models inherently accom-19

modate data with discrete structures, e.g., language tokens, molecular sequences, tokenized images,20

and graphs, enabling principled generation and inference in combinatorially complex spaces. These21

models have exerted a large impact on numerous applications, from the design of molecules [11],22

proteins [12], and DNA sequences [13, 14] under biophysical constraints, to the generation of high-23

fidelity text [15] and images [16] via autoregressive or masked transitions, etc.. Beyond standalone24

tasks, discrete diffusion models also synergize with methodologies, ranging from tensor networks [17]25

to guidance mechanisms [18–20].26

Discrete diffusion models, despite their broad applicability, face a critical bottleneck: inference27

inefficiency. Current inference methods include: (1) exact simulation methods [21], which ensure28

unbiased sampling from the pre-trained model but suffer from unpredictable inference time and29

redundant score evaluations, resulting in poor scaling w.r.t. dimensionality; and (2) approximate30

methods such as τ -leaping [22], which offer simple and parallelizable implementation but, due to31

their first-order accuracy, requires small step sizes to control discretization error, forcing a stringent32

trade-off between speed and sample quality.33

To address these limitations in possibly computationally constrained environments, we develop34

high-order numerical schemes tailored for discrete diffusion model inference. Drawing inspirations35

from acceleration techniques developed for ordinary differential equations (ODEs) [23], stochastic36
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differential equations (SDEs) [24, 25], chemical reaction simulations [26], and most recently continu-37

ous diffusion [27–29], our work represents the first successful adaptation of high-order numerical38

schemes to the discrete diffusion domain. Through careful design, these high-order schemes provide39

unprecedented efficient and versatile solutions for discrete diffusion model inference.40

Our Contributions. The main contributions of this paper are summarized as follows:41

• We introduce the first high-order numerical solvers for discrete diffusion model inference, namely42

the θ-Runge-Kutta-2 (θ-RK-2) method and the θ-trapezoidal method;43

• We rigorously establish the theoretical properties of both methods, proving second-order con-44

vergence of the θ-trapezoidal method and conditional second-order convergence of the θ-RK-245

method;46

• We empirically validate our theoretical results and demonstrate the superior performance of the47

θ-trapezoidal method through comprehensive evaluations on large-scale text and image generation48

benchmarks.49

1.1 Related Works50

Here we briefly review related works and defer a more detailed discussion to App. A.51

Discrete Diffusion Models. Since their introduction, discrete diffusion models have undergone52

significant refinements, including the development of score-entropy loss [30] and flow-matching53

formulation [31, 32]. These models generally fall into two categories based on their noise distribution:54

uniform [30, 20] and masked (absorbing state) [33–35, 21], each offering unique advantages in55

modeling discrete distributions. Recent theoretical advances have emerged through studies [36–38].56

High-Order Scheme for Continuous Diffusion Models. The development of high-order numerical57

schemes for solving ODEs and SDEs represents decades of research, as comprehensively reviewed in58

[23, 39, 40]. These schemes have recently been adapted to accelerate continuous diffusion model59

inference, encompassing approaches such as the exponential integrators [41–43], Adams-Bashforth60

methods [29, 44, 45], Taylor methods [27, 46] and (stochastic) Runge-Kutta methods [47, 28, 48–51].61

High-Order Scheme for Chemical Reaction Systems. Regarding approximate methods for simu-62

lating compound Poisson processes and chemical reaction systems with state-dependent intensities,63

efforts have been made on the τ -leaping method [52], and its extensions [53, 54, 26, 55]. For a quick64

review of the problem setting and these methods, one may refer to [56, 57]. The adaption of these65

methods to discrete diffusion models presents unique challenges due to the presence of both time and66

state-inhomogeneous intensities in the underlying Poisson processes.67

2 Preliminaries68

In this subsection, we review several basic concepts and previous error analysis results of discrete69

diffusion models.70

2.1 Discrete Diffusion Models71

In discrete diffusion models, one considers a continuous-time Markov chain (CTMC) (xt)0≤t≤T on72

a finite space X as the forward process. We represent the distribution of xt by a vector pt ∈ ∆|X|,73

where ∆|X| denotes the probability simplex in R|X|. Given a target distribution p0, the CTMC satisfies74

the following equation:75

dpt

dt
= Qtpt, where Qt = (Qt(y, x))x,y∈X (2.1)

is the rate matrix at time t satisfying76

(i) Qt(x, x) = −
∑

y ̸=x

Qt(y, x), ∀x ∈ X; (ii) Qt(x, y) ≥ 0, ∀x ̸= y ∈ X.

Below, we will use the notation Q0
t = Qt − diagQt. It can be shown that the corresponding77

backward process is of the same form but with a different rate matrix [58]:78

d ⃗ps

ds
= Qs ⃗ps, where Qs(y, x) =

{
⃗ps(y)
⃗ps(x)

⃗Qs(x, y), ∀x ̸= y ∈ X,

−
∑

y′ ̸=xQs(y
′, x), ∀x = y ∈ X.

(2.2)
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is the rate matrix and ⃗∗s denotes ∗T−s. The rate matrix Qt is often chosen to possess certain sparse79

structures such that the forward process converges to a simple distribution that is easy to sample from.80

Popular choices include the uniform and absorbing state cases [30], where the forward process (2.1)81

converges to the uniform distribution on X and a Dirac distribution, respectively.82

Common training practice is to define the score function (or the score vector) as st(x) =83

(st(x, y))y∈X := pt

pt(x)
for any x ∈ X, t ∈ [0, T ] and estimate it by a neural network ŝ

ϕ
t (x),84

where the parameters ϕ are trained by minimizing the score entropy [30, 59] for some weights ψt ≥ 085

as:86

min
ϕ

∫ T

0

ψtExt∼pt

[ ∑

y ̸=xt

Qt(xt, y)
(
st(xt, y) log

st(xt,y)

ŝ
ϕ
t (xt,y)

− st(xt, y) + ŝϕt (xt, y)
)]

dt. (2.3)

Similar to the continuous case, the backward process is approximated by another CTMC dqs

ds = Q̂
ϕ

sqs,87

with q0 = p∞ and rate matrix Q̂
ϕ

s , where Q̂
ϕ

s (y, x) =
⃗ŝϕs (x, y)

⃗Qs(x, y) for any x ̸= y ∈ X. The88

inference is done by first sampling from p∞ and then evolving the CTMC accordingly. For simplicity,89

we drop the superscript ϕ hereafter.90

2.2 Stochastic Integral Formulation of Discrete Diffusion Models91

Discrete diffusion models can also be formulated as stochastic integrals, which is especially useful92

for their theoretical analysis [38]. In this section, we briefly recapitulate relevant results therein and93

refer to App. B for mathematical details. Below we work on the probability space (Ω,B,P) and94

denote the pairwise difference set of the state space X by D := {x− y : x ̸= y ∈ X}. In this work,95

we focus on the case where X = [S]d with d data dimensions and S sites along each dimension.96

We first introduce the Poisson random measure, a key concept in the formulation.97

Definition 2.1 (Informal Definition of Poisson Random Measure). The random measureN [λ](dt, dν)98

on R+ × D is called a Poisson random measure with evolving intensity λ w.r.t. a measure γ on99

D if, roughly speaking, the number of jumps of magnitude ν during the infinitesimal time interval100

(t, t+ dt] is Poisson distributed with mean λt(ν)γ(dν)dt.101

The forward process (2.1) can thus be represented by the following stochastic integral:102

xt = x0 +

∫ t

0

∫

D

νN [λ](ds, dν),

where the intensity λ is defined as λt(ν, ω) = Q0
t (xt−(ω) + ν, xt−(ω)) if xt−(ω) + ν ∈ X and 0103

otherwise. Here, the outcome ω ∈ Ω and xt− denotes the left limit of the càdlàg process xt at time104

t with x0− = x0. We will also omit the variable ω, should it be clear from context. The backward105

process in discrete diffusion models (2.2) can also be represented similarly as:106

ys = y0 +

∫ s

0

∫

D

νN [µ](ds, dν), (2.4)

where the intensity µ is defined as µs(ν, ω) = ⃗ss(ys− , ys− + ν) ⃗Q0
s(ys− , ys− + ν) if ys− + ν ∈ X107

and 0 otherwise. During inference, ŷs = ŷ0 +
∫ s

0

∫
D
νN [µ̂](ds, dν) is used instead of (2.4), where108

the estimated intensity µ̂ is defined by replacing the true score st with the neural network estimated109

score ŝt in µs(ν, ω). . In the following, we also denote the intensity µs(ν, ω) at time s by µs(ν, ys−)110

with slight abuse of terminology to emphasize its dependency on ω through ys−(ω).111

3 Numerical Schemes for Discrete Diffusion Model Inference112

Before introducing the proposed numerical schemes, we first review existing numerical schemes for113

discrete diffusion models, including exact simulation methods and the τ -leaping method, and discuss114

their merits and limitations.115

3.1 Exact Simulation Methods116

Unlike continuous diffusion models, where exact simulation is beyond reach, discrete diffusion117

models permit inference without discretization error. Notable examples of unbiased samplers include118
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uniformization [36] for the uniform state case and the First-Hitting Sampler (FHS) [21] for the119

absorbing state case. The main idea behind these methods is to first sample the next jump time and120

then the jump itself. Theoretical analysis [38] reveals that such schemes lack guarantees with finite121

computation budget, since the number of required jumps (and thus the inference time) follows a122

random distribution with expectation Ω(d). This computational restriction may be less favorable for123

high-dimensional applications, such as generative modeling of DNA or protein sequences.124

Furthermore, the absence of discretization error does not necessarily translate to superior sample125

quality, given the inherent estimation errors in neural network-based score functions. This limitation126

is further amplified by the highly skewed distribution of jumps, with a concentration occurring during127

the terminal phase of the backward process, when the neural network-based score function exhibits128

the highest estimation error. This phenomenon stems from the potential singularity of the target129

distribution p0, which induces singularities in the score function, making accurate neural network130

estimation particularly challenging during that phase (cf. Assump. 4.4 [38]).131

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

100
500

1000

2000

3000

Pe
rp

le
xi

ty

Perplexity
NFE intensity

10

30

50

100

NFE intensity

Figure 1: An illustrative application of the uniformization
algorithm to discrete diffusion models for text generation.
The x-axis denotes the time of the backward process, and
the y-axis denotes the frequency of jumps (NFE). Perplexity
convergence occurs before the NFE grows unbounded.

Fig. 1 illustrates an application of the132

uniformization algorithm to discrete133

diffusion inference for text generation,134

with detailed experimental parameters135

presented in Sec. 6.3 and App. D.3.136

As the process approaches the target137

distribution (t → T ), the number of138

jumps (in terms of the number of score139

function evaluations, NFE) grows un-140

bounded, while perplexity improve-141

ments become negligible. This skew-142

ness of computational effort results in143

redundant function evaluations. Al-144

though early stopping is commonly145

adopted at T−δ for some small δ ≪ 1146

to alleviate this inefficiency, this ap-147

proach introduces challenges in its selection, particularly under computational constraints or when148

efficiency-accuracy trade-offs are desired. Moreover, the variable jump schedules across batch149

samples complicate parallelization efforts in exact methods, highlighting the need for more adaptable150

and efficient algorithmic solutions.151

3.2 Approximate Method: τ -Leaping Method152

The τ -leaping method [52, 22] represents a widely adopted scheme that effectively addresses both153

dimensionality scaling and inference time control challenges. This Euler-type scheme approximates154

the backward process with time-dependent intensity µ̂t via the following updates:155

ŷt+∆ = ŷt +
∑

ν∈D

νP (µ̂t(ν)∆) , (3.1)

where ∆ denotes the time step and P(·) denotes a Poisson random variable. In general, one may156

design different discretization schemes for τ -leaping, and the summation in (3.1) is parallelizable,157

underscoring the method’s flexibility and efficiency. We refer to Alg. 3 and App. B.2 for a detailed158

description of the τ -leaping method for discrete diffusion model inference. Regarding convergence159

properties as the time discretization becomes increasingly refined, theoretical analyses by [22, 38]160

have established the error bounds of the τ -leaping method, the results of which are summarized in161

the following theorem. Further discussion can be found in App. B.2.162

Theorem 3.1 (Thm. 4.7 in [38]). Under a certain discretization scheme and technical assumptions,163

and given an ϵ-accurate score function, the following error bound holds:164

DKL(pδ∥q̂T−δ) ≲ exp(−T ) + ϵ+ κT, (3.2)

where δ ≪ 1 is the early stopping time, κ controls the step size, and T is the time horizon. The165

notation ≲ indicates the inequality holds up to a constant factor as κ→ 0.166

The error bound (3.2) decouples three error sources of the τ -leaping scheme: the truncation error167

O(e−T ), the score estimation error ϵ, and the discretization error O(κT ). Similar to the case for168
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the Euler method for ODEs and the Euler-Maruyama scheme for SDEs, the τ -leaping method is a169

first-order scheme in terms of the discretization error O(κT ).170

4 Algorithms: High-Order Inference Schemes171

A natural improvement of τ -leaping is to develop high-order schemes for discrete diffusion models. As172

a foundational example, consider the second-order Runge-Kutta (RK-2) method with two stages [23]173

for solving the ODE dxt = ft(xt)dt. This method represents one of the simplest high-order174

numerical schemes:175

x̂∗t+θ∆ = x̂t + ft(x̂t)θ∆, x̂t+∆ = x̂t +
[
(1− 1

2θ )ft(x̂t) +
1
2θft+θ∆(x̂

∗
t+θ∆)

]
∆. (4.1)

This scheme reduces to the exact midpoint method when θ = 1
2 and Heun’s method when θ = 1. The176

underlying intuition stems from the observation that for f ∈ C2(R),
[(
1− 1

2θ

)
f(0) + 1

2θf(θ∆)
]
∆177

offers a second-order approximation of
∫∆

0
f(x)dx in contrast to f(0)∆, which is only first-order.178

This approach has been successfully adapted for SDE simulation [24] and continuous diffusion model179

inference [48, 28, 29, 49, 51]. Notably, these methods enhance sample quality and computational180

efficiency without requiring additional model training, making the development of high-order schemes181

for discrete diffusion inference both theoretically appealing and practically viable.182

In this section, we propose two different high-order solvers for discrete diffusion model inference.183

We will primarily focus on two-stage algorithms aiming for second-order accuracy. Specifically,184

we will introduce the θ-RK-2 method and the θ-Trapezoidal method. Throughout this section, we185

assume a time discretization scheme (si)i∈[0:N ] with 0 = s0 < · · · < sN = T − δ, where δ is the186

early stopping time and use the shorthand notations ∗+ = max{0, ∗}. For any s ∈ (sn, sn+1] and187

n ∈ [0 : N − 1], we define ⌊s⌋ = sn, ρs = (1 − θ)sn + θsn+1, ∆n = sn+1 − sn, and θ-section188

points as ρn = (1− θ)sn + θsn+1. We choose γ(dν) to be the counting measure on D.189

4.1 θ-RK-2 Method190

We first present the θ-RK-2 method, which is simple in design and serves as a natural analog of191

the second-order RK method for ODEs (4.1) in terms of time and state-dependent Poisson random192

measures, as a warm-up for the θ-trapezoidal method. We note that similar methods have been193

proposed for simulating SDEs driven by Brownian motions or Poisson processes, such as the194

stochastic [24] and the Poisson [54] RK methods. A summary of this method is given in Alg. 1.195

Algorithm 1: θ-RK-2 Method

Input: ŷ0 ∼ q0, θ ∈ (0, 1], (sn, ρn)n∈[0:N−1], µ̂, µ̂∗.

Output: A sample ŷsN ∼ q̂
RK
tN

.

1 for n = 0 to N − 1 do
2 ŷ∗ρn

← ŷsn +
∑

ν∈D
νP (µ̂sn(ν)θ∆n);

3 ŷsn+1
← ŷsn +

∑
ν∈D

νP
(
1µ̂sn>0

[(
1− 1

2θ

)
µ̂sn + 1

2θ µ̂
∗
ρn

]
+
(ν)∆n

)
;

4 end

Intuitively, the θ-RK-2 method is196

a two-stage algorithm that:197

(i) Firstly, it runs τ -leaping with198

step size θ∆n, obtains an inter-199

mediate state ŷ∗ρn
at the θ-section200

point ρn, and evaluates the inten-201

sity µ̂∗
ρn

there;202

(ii) Then another step of τ -203

leaping for a full step ∆n is run204

using a weighted sum of the in-205

tensities at the current time point206

sn and the θ-section point ρn.207

We emphasize that our method is different from the midpoint method proposed in [52] for simulating208

chemical reactions, where the Poisson random variable in the first step is replaced by its expected209

magnitude. Such modification is in light of the lack of continuity and orderliness of the state space.210

4.2 θ-Trapezoidal Method211

As to be shown theoretically and empirically, the conceptually simple θ-RK-2 method may have212

limitations in terms of both accuracy and efficiency. To this end, we propose the following θ-213

trapezoidal method, which is developed based on existing methods proposed for simulating SDEs [25]214

and chemical reactions [26]. Below, we introduce two parameters that will be used extensively later:215

α1 = 1
2θ(1−θ) and α2 = (1−θ)2+θ2

2θ(1−θ) , with α1 − α2 = 1.
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Algorithm 2: θ-Trapezoidal Method

Input: ŷ0 ∼ q0, θ ∈ (0, 1], (sn, ρn)n∈[0:N−1], µ̂, µ̂
∗.

Output: A sample ŷsN ∼ q̂
trap
tN

.

1 for n = 0 to N − 1 do
2 ŷ∗ρn

← ŷsn +
∑

ν∈D
νP (µ̂sn(ν)θ∆n);

3 ŷsn+1
← ŷ∗ρn

+
∑

ν∈D
νP
((
α1µ̂

∗
ρn
− α2µ̂sn

)
+
(ν)(1− θ)∆n

)
;

4 end

The θ-trapezoidal method is sum-216

marized in Alg. 2. Intuitively,217

this method separates each inter-218

val (sn, sn+1] into two sub-intervals219

(sn, ρn] and (ρn, sn+1], on which sim-220

ulations are detached with different in-221

tensities designed in a balanced way.222

Compared to the θ-RK-2 method,223

the θ-trapezoidal method is also two-224

stage with an identical first step. The225

second step, however, differs in two226

major aspects:227

(1) The second step starts from the intermediate state ŷ∗ρn
instead of ŷsn and only runs for a fractional228

step (1− θ)∆n rather than a full step ∆n;229

(2) The weighted sum is comprised of an altered pair of coefficients (α1,−α2), performing an230

extrapolation instead of interpolation with coefficients (1− 1
2θ ,

1
2θ ) as in the θ-RK-2 method with231

θ ∈ [ 12 , 1]. This feature will be shown to render the algorithm unconditionally second-order.232

θ∆n (1− θ)∆nŷsn ŷ∗ρn
ŷsn+1

Inference Process

τ -Leapingµ̂sn

θ-RK-2(i) µ̂sn

(ii) (1− 1

2θ
)µ̂sn + 1

2θ
µ̂∗

ρn

θ-Trapezoidal(i) µ̂sn

(ii) α1µ̂
∗

ρn − α2µ̂sn

Figure 2: Comparison between τ -leaping method
and our proposed second-order schemes.

Following the common practice in the litera-233

ture [22], we reject updates with multiple jumps234

along one dimension in both algorithms, ensur-235

ing their well-posedness. A simple analysis236

shows that rejection only happens with prob-237

ability O(κ), and we refer to further details238

in Rmk. C.4. We refer to Props. C.2 and C.3 for239

the stochastic integral formulations of these two240

algorithms. We provide a visual comparison be-241

tween the θ-RK-2 method and the θ-trapezoidal242

method in Fig. 2.243

5 Theoretical Analysis244

In this section, we provide the theoretical results245

of the θ-trapezoidal and θ-RK-2 methods. The goal of this section is to show that under certain246

conditions, both methods are second-order accurate, improving from the first-order accuracy of the247

τ -leaping method (cf. Thm. 3.1). Our theoretical analysis also reveals that the θ-trapezoidal method248

is more robust to the choice of θ than θ-RK-2, to be confirmed by our empirical results in Sec. 6.249

5.1 Assumptions250

For simplicity, we impose a periodic boundary condition on the state space X = [S]d, i.e., embed the251

state space in the d-dimensional torus Td, to streamline the proofs (cf. Rmk. C.4).252

Assumption 5.1 (Convergence of Forward Process). The forward process converges to the stationary253

distribution exponentially fast, i.e., DKL(pT ∥p∞) ≲ exp(−T ).254

This assumption ensures rapid convergence of the forward process, controlling error when terminated255

at a sufficiently large time horizon T , and is automatically satisfied in the masked state case and the256

uniform state case, given sufficient connectivity of the graph (cf. [38]). The exponential rate aligns257

with continuous diffusion models (cf. [60]).258

Assumption 5.2 (Regularity of Intensity). For the true intensity µs(ν, ys−) and the estimated intensity259

µ̂s(ν, ys−), it holds almost everywhere w.r.t. µs(ν, ys−)γ(dν) ⃗ps−(dys−) that: (1) Both intensities260

belong to C2([0, T − δ]); (2) Both intensities are upper and lower bounded on [0, T − δ].261

This assumes two key requirements of the scores: (1) the forward process maintains sufficient262

smoothness, which is achievable through appropriate time reparametrization; and (2) if and only if a263

state y ∈ X is achievable by the forward process and ν is a permissible jump therefrom, then both its264

true and estimated intensity are bounded, corresponding to Assumps. 4.3(i), 4.4, and 4.5 [38].265
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Assumption 5.3 (Estimation Error). For all grid points and θ-section points, the estimation er-266

ror of the neural network-based score is small, i.e., for any s ∈ ∪n∈[0:N−1]{sn, ρn}, we have267

(1) E
[∫

D

(
µs(ν)

(
log µs(ν)

µ̂s(ν)
− 1
)
+ µ̂s(ν)

)
γ(dν)

]
≤ ϵI; (2) E

[∫
D
|µs(ν)− µ̂s(ν)| γ(dν)

]
≤ ϵII.268

This assumption quantifies the proximity of the estimated intensity µ̂ to the true intensity µ after269

sufficient training. Compared with [38], the additional L∞ part in (2) is required for technical reasons,270

which is similar to [61, 51]. In practice, such additional assumptions may be realized by adding extra271

penalty terms to the objective function during training.272

5.2 Convergence Guarantees273

The following theorem summarizes our theoretical guarantees for the θ-trapezoidal method:274

Theorem 5.4 (Second Order Convergence of θ-Trapezoidal Method). Suppose θ ∈ (0, 1] and275

α1µ̂
∗
ρs
− α2µ̂⌊s⌋ ≥ 0 for all s ∈ [0, T − δ], then the following error bound holds for Alg. 2276

under Assumps. 5.1 to 5.3:277

DKL(pδ∥q̂
trap
T−δ) ≲ exp(−T ) + (ϵI + ϵII)T + κ2T,

where δ is the early stopping time, κ = maxn∈[0:N−1] ∆n, i.e., the largest stepsize, and q̂trapT−δ is the278

distribution obtained by Alg. 1 as defined in Prop. C.2.279

The complete proof is presented in App. C.2. The outline is to first bound DKL(pδ∥q̂
trap
T−δ) by the280

KL divergence between the corresponding path measures, as established in Thm. C.5, and then281

decompose the integral in the log-likelihood and bound respectively, where the primary technique282

used is Dynkin’s formula (Thm. C.10). With a term-by-term comparison with Thm. 3.1, we observe283

a significant improvement in the discretization error term from O(κT ) to O(κ2T ). This confirms284

that the θ-trapezoidal method achieves second-order accuracy given a sufficient time horizon T and285

accurate score estimation, with empirical validation presented in Sec. 6.286

Theorem 5.5 (Conditional Second-Order Convergence of θ-RK-2 Method). Suppose θ ∈ (0, 12 ] and287

(1 − 1
2θ )µ̂⌊s⌋ +

1
2θ µ̂

∗
ρs
≥ 0 for all s ∈ [0, T − δ], then the following error bound holds for Alg. 1288

under Assumps. 5.1 to 5.3:289

DKL(pδ∥q̂
RK
T−δ) ≲ exp(−T ) + (ϵI + ϵII)T + κ2T,

where δ is the early stopping time, κ = maxn∈[0:N−1] ∆n, i.e., the largest stepsize, and q̂RK
T−δ is the290

distribution obtained by Alg. 2 as defined in Prop. C.3.291

The proof of the theorem above is provided in App. C.3. The restricted range of θ is caused by one292

specific error term (III.4) (C.9) that permits bounding with Jensen’s inequality only when θ ∈ (0, 12 ],293

similar to its counterpart (II.4) (C.11) in the θ-trapezoidal method. The limitation arises partially294

because the weighted sum with coefficients (1− 1
2θ ,

1
2θ ) becomes an extrapolation only if 1− 1

2θ < 0,295

a feature that naturally holds for all θ ∈ (0, 1] in the θ-trapezoidal method. These theoretical findings296

are consistent with the empirical observations in Fig. 6 of App. D.3, where the performance of θ-RK-2297

method clearly peaks when θ ∈ (0, 12 ].298

Remark 5.6 (Comparison between Trapezoidal and RK-2 Methods). Trapezoidal methods were299

originally proposed by [25] as a minimal second-order scheme in the weak sense for simulating300

SDEs. In simulating chemical reaction contexts, [26] claimed that trapezoidal methods also achieve301

second-order convergence for covariance error apart from the weak error, a property not shared302

by midpoint (RK-2) methods. Our empirical results partly reflect these findings, while we defer303

theoretical investigation of covariance error convergence in discrete diffusion models to future work.304

Remark 5.7 (Remark on the Positivity of Extrapolated Intensity). Due to the extrapolation nature,305

both our theorems require an additional assumption on the positivity of the extrapolated intensity,306

which is classically assumed in [25, 26], and the resolution of this issue is a long-standing open307

problem. The best result so far is Prop. 5 [26], claiming clamping the intensity above 0 only causes an308

error of order O(κp), for any large integer p. We empirically evaluate this assumption in Tab. 3 with309

the text generation task (Sec. 6.2) and find that positivity occurs for both methods with high probability310

over 95%, approaching 100% with increasing NFE. We refer to further discussion in Rmk. C.6.311
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6 Experiments312

Based on the theoretical analysis, we expect the θ-trapezoidal method to outperform the τ -leaping313

method and the θ-RK-2 method in terms of sample quality, given the same number of function314

evaluations. This section empirically validates the anticipated effectiveness of our proposed θ-315

trapezoidal method (Alg. 2) through comprehensive evaluations across text and image generation316

tasks. Our comparative analysis includes established discrete diffusion samplers as baselines, e.g.,317

the Euler method [33], τ -leaping [22], Tweedie τ -leaping [30], First-Hitting Sampler (FHS) [21],318

and Parallel Decoding [62]. We conduct evaluations on both uniform and masked discrete diffusion319

models, with detailed experimental protocols provided in App. D.320

6.1 15-State Toy Model321

16 32 64 128 256 512 1024
Number of Steps

10 4

10 3

10 2

10 1

D
KL

(p
0||
q T

) slope = -1.543
slope = -1.937

slope = -1.819
-RK-2
-Trapezoidal
-RK-2 Fitted
-Trapezoidal Fitted
-RK-2 Fitted (last 4 points)

Figure 3: Empirical KL divergence between the true
and generated distribution of the toy model vs. number
of steps. Data are fitted with linear regression with 95%
confidence interval by bootstrapping.

We first evaluate the performance of the322

θ-trapezoidal method using a 15-state toy323

model (d = 1, S = 15). The target distribu-324

tion is uniformly generated from ∆15, with325

rate matrix Q = 1
15E − I , where E is the326

all-one and I is the identity matrix. This327

setup provides analytically available score328

functions, allowing isolation and quantifi-329

cation of numerical errors introduced by330

inference algorithms. We apply both the331

θ-trapezoidal and the θ-RK-2 method to332

generate 106 samples and estimate the KL333

divergence between the true ground truth334

p0 and the generated distribution q̂T .335

For a fair comparison, we choose θ = 1
2336

for both methods, and the results are presented in Fig. 3. While both methods exhibit super-linear337

convergence as the total number of steps grows, the θ-trapezoidal method outperforms the θ-RK-2338

method in terms of both absolute value and convergence rate, while the θ-RK-2 method takes longer339

to enter the asymptotic regime. Moreover, the fitted line indicates that the θ-trapezoidal method340

approximately converges quadratically w.r.t. the step count, confirming our theories.341

6.2 Text Generation342

Table 1: Generative perplexity of texts generated
by different sampling algorithms. Lower values
are better, with the best in bold.

Method NFE = 128 NFE = 1024

FHS ≤ 122.732 ≤ 109.406
Euler ≤ 86.276 ≤ 44.686
Tweedie τ -leap. ≤ 85.738 ≤ 44.257
τ -leaping ≤ 52.366 ≤ 28.797
θ-trapezoidal ≤ 49.051 ≤ 27.553

For the text generation task, we employ the pre-343

trained score function from RADD [33] as our344

base model for benchmarking inference algo-345

rithms. RADD is a masked discrete diffusion346

model with GPT-2-level text generation capa-347

bilities [63] and is trained on the OpenWebText348

dataset [64] with d = 1024 and S = 50258.349

Our comparative analysis maintains consistent350

computational resources across methods, quan-351

tified through the number of score function eval-352

uations (NFE), and evaluates the sample quality353

produced by FHS, the Euler method, τ -leaping, Tweedie τ -leaping, and our proposed θ-trapezoidal354

method. We generate text sequences of 1024 tokens and measure their generative perplexity following355

the evaluation protocol established in [33].356

Tab. 1 presents the results for both low (128) and high (1024) NFE, with comprehensive results across357

additional NFE values in Tab. 2. The empirical results demonstrate that the θ-trapezoidal method358

consistently produces better samples under a fixed computation budget compared with existing359

popular inference algorithms. Notably, it outperforms Euler and Tweedie τ -leaping, two of the360

best-performing samplers adopted by RADD, by a large margin. It also consistently prevails over361

FHS, which performs exact simulation at high NFE (1024), supporting again our observations that362

being free of discretization error does not necessarily imply better sampling quality. These results363

validate the practical efficiency and accuracy of Alg. 2.364
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Figure 4: FID of images generated by different
sampling algorithms vs. number of function eval-
uations (NFE). Lower values are better.
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Figure 5: Sampling quality vs. θ ∈ (0, 1] in
θ-Trapezoid method. Upper: Image genera-
tion (FID). Lower: Text generation (perplexity).
Lower is better.

6.3 Image Generation365

Our experiments on image generation utilize the pre-trained score function from MaskGIT [62, 65]366

as the base model, which can be converted into a masked discrete diffusion model by introducing a367

noise schedule (see App. D.3). MaskGIT employs a masked image transformer architecture trained368

on ImageNet [66] of 256× 256 resolution, where each image amounts to a sequence of 256 discrete369

image tokens following VQ-GAN tokenization [67] (d = 256, S = 1025). We evaluate the θ-370

trapezoidal method against FHS, the Euler method, τ -leaping, and parallel decoding under equivalent371

NFE budgets ranging from 4 to 64. Following the setting in [62], we generate 5× 104 images and372

compute their Fréchet Inception Distance (FID) against the ImageNet validation split.373

Fig. 4 reveals that θ-trapezoidal method (Alg. 2) consistently achieves lower (and thus better) FID374

values compared to both the Euler method and τ -leaping across all NFE values. While FHS and375

parallel decoding show advantages at extremely low NFE (≤ 8), their performance saturates with376

increased computational resources, making them less favorable compared to our rapidly converging377

method. Additional results, including generated image samples (Fig. 8), are detailed in App. D.378

Algorithm Hyperparameters. We evaluate the performance of the θ-trapezoidal method across379

various θ and NFE values for both text and image generation tasks. As illustrated in Fig. 5, we380

observe that the θ-trapezoidal method demonstrates robustness to θ, with a flat landscape near the381

optimal choice. Our empirical analysis suggests that θ ∈ [0.3, 0.5] consistently yields competitive382

performance across different tasks.383

7 Conclusion and Future Works384

In this work, we introduce the θ-RK-2 and θ-trapezoidal methods as pioneering high-order numerical385

schemes tailored for discrete diffusion model inference. Through rigorous analysis based on their386

stochastic integral formulations, we establish second-order convergence of the θ-trapezoidal method387

and that of the θ-RK-2 method under specified conditions. Our analysis indicates that the θ-trapezoidal388

method generally provides superior robustness and computational efficiency compared to the θ-RK-389

2 method. Our empirical evaluations, spanning both a 15-dimensional model with precise score390

functions and large-scale text and image generation tasks, validate our theoretical findings and391

demonstrate the superiority performance of our proposed θ-trapezoidal method over existing samplers392

in terms of sample quality under equivalent computational constraints. Additionally, we provide a393

comprehensive analysis of the method’s robustness by examining the optimal choice of the parameter394

θ in our schemes.395

Future research directions include comparative analysis of these schemes and development of more396

sophisticated numerical approaches for discrete diffusion model inference, potentially incorporating397

adaptive step sizes and parallel sampling methodologies. From the perspective of applications, these398

methods may also show promise for tasks in computational chemistry and biology, particularly in the399

design of molecules, proteins, and DNA sequences.400

9



References401

[1] Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using402

diffusion models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.403

[2] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.404

Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information405

Processing Systems, 34:17981–17993, 2021.406

[3] Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin,407

Pierre H Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Contin-408

uous diffusion for categorical data. arXiv preprint arXiv:2211.15089, 2022.409

[4] Griffin Floto, Thorsteinn Jonsson, Mihai Nica, Scott Sanner, and Eric Zhengyu Zhu. Diffusion410

on the probability simplex. arXiv preprint arXiv:2309.02530, 2023.411

[5] Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg,412

and Tim Salimans. Autoregressive diffusion models. In International Conference on Learning413

Representations, 2022. URL https://openreview.net/forum?id=Lm8T39vLDTE.414

[6] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax415

flows and multinomial diffusion: Learning categorical distributions. Advances in Neural416

Information Processing Systems, 34:12454–12465, 2021.417

[7] Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching:418

Generalized score matching for discrete data. Advances in Neural Information Processing419

Systems, 35:34532–34545, 2022.420

[8] Pierre H Richemond, Sander Dieleman, and Arnaud Doucet. Categorical sdes with simplex421

diffusion. arXiv preprint arXiv:2210.14784, 2022.422

[9] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-423

time discrete diffusion models. In The Eleventh International Conference on Learning Repre-424

sentations, 2023. URL https://openreview.net/forum?id=BYWWwSY2G5s.425

[10] Javier E Santos, Zachary R Fox, Nicholas Lubbers, and Yen Ting Lin. Blackout diffusion:426

generative diffusion models in discrete-state spaces. In International Conference on Machine427

Learning, pages 9034–9059. PMLR, 2023.428

[11] Thomas J Kerby and Kevin R Moon. Training-free guidance for discrete diffusion models for429

molecular generation. arXiv preprint arXiv:2409.07359, 2024.430

[12] Nathan C Frey, Daniel Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-431

Vanasse, Isidro Hotzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, et al. Protein432

discovery with discrete walk-jump sampling. arXiv preprint arXiv:2306.12360, 2023.433

[13] Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion434

score model for biological sequence generation. In International Conference on Machine435

Learning, pages 1276–1301. PMLR, 2023.436

[14] Wei Guo, Yuchen Zhu, Molei Tao, and Yongxin Chen. Plug-and-play controllable generation437

for discrete masked models. arXiv preprint arXiv:2410.02143, 2024.438

[15] Do Huu Dat, Do Duc Anh, Anh Tuan Luu, and Wray Buntine. Discrete diffusion language439

model for long text summarization. arXiv preprint arXiv:2407.10998, 2024.440

[16] Minghui Hu, Yujie Wang, Tat-Jen Cham, Jianfei Yang, and Ponnuthurai N Suganthan. Global441

context with discrete diffusion in vector quantised modelling for image generation. In Pro-442

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages443

11502–11511, 2022.444

[17] Luke Causer, Grant M Rotskoff, and Juan P Garrahan. Discrete generative diffusion mod-445

els without stochastic differential equations: a tensor network approach. arXiv preprint446

arXiv:2407.11133, 2024.447

10



[18] Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking448

guidance for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572,449

2024.450

[19] Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso451

Biancalani, Aviv Regev, Sergey Levine, and Masatoshi Uehara. Derivative-free guidance452

in continuous and discrete diffusion models with soft value-based decoding. arXiv preprint453

arXiv:2408.08252, 2024.454

[20] Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-455

torre, Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov.456

Simple guidance mechanisms for discrete diffusion models. arXiv preprint arXiv:2412.10193,457

2024.458

[21] Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang.459

Masked diffusion models are secretly time-agnostic masked models and exploit inaccurate460

categorical sampling. arXiv preprint arXiv:2409.02908, 2024.461

[22] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis,462

and Arnaud Doucet. A continuous time framework for discrete denoising models. Advances463

in Neural Information Processing Systems, 35:28266–28279, 2022.464

[23] John Charles Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta465

and general linear methods. Wiley-Interscience, 1987.466

[24] Kevin Burrage and Pamela Marion Burrage. High strong order explicit runge-kutta methods for467

stochastic ordinary differential equations. Applied Numerical Mathematics, 22(1-3):81–101,468

1996.469

[25] David F Anderson and Jonathan C Mattingly. A weak trapezoidal method for a class of470

stochastic differential equations. Communications in Mathematical Sciences, 9(1):301–318,471

2011.472

[26] Yucheng Hu, Tiejun Li, and Bin Min. A weak second order tau-leaping method for chemical473

kinetic systems. The Journal of chemical physics, 135(2), 2011.474

[27] Hideyuki Tachibana, Mocho Go, Muneyoshi Inahara, Yotaro Katayama, and Yotaro Watanabe.475

Quasi-taylor samplers for diffusion generative models based on ideal derivatives. arXiv476

preprint arXiv:2112.13339, 2021.477

[28] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A478

fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in479

Neural Information Processing Systems, 35:5775–5787, 2022.480

[29] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-481

solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint482

arXiv:2211.01095, 2022.483

[30] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the484

ratios of the data distribution. In Forty-first International Conference on Machine Learning,485

2024.486

[31] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Genera-487

tive flows on discrete state-spaces: Enabling multimodal flows with applications to protein488

co-design. arXiv preprint arXiv:2402.04997, 2024.489

[32] Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi490

Adi, and Yaron Lipman. Discrete flow matching. In The Thirty-eighth Annual Conference on491

Neural Information Processing Systems, 2024. URL https://openreview.net/forum?492

id=GTDKo3Sv9p.493

[33] Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan494

Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean495

data. arXiv preprint arXiv:2406.03736, 2024.496

11



[34] Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and497

generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.498

[35] Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin,499

Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked500

diffusion language models. arXiv preprint arXiv:2406.07524, 2024.501

[36] Hongrui Chen and Lexing Ying. Convergence analysis of discrete diffusion model: Exact502

implementation through uniformization. arXiv preprint arXiv:2402.08095, 2024.503

[37] Zikun Zhang, Zixiang Chen, and Quanquan Gu. Convergence of score-based discrete diffusion504

models: A discrete-time analysis. arXiv preprint arXiv:2410.02321, 2024.505

[38] Yinuo Ren, Haoxuan Chen, Grant M Rotskoff, and Lexing Ying. How discrete and continuous506

diffusion meet: Comprehensive analysis of discrete diffusion models via a stochastic integral507

framework. arXiv preprint arXiv:2410.03601, 2024.508

[39] Peter Eris Kloeden and Eckhard Platen. Numerical solution of stochastic differential equations.509

Stochastic Modelling and Applied Probability, Applications of Mathematics, Springer, 1992.510

[40] Peter Eris Kloeden, Eckhard Platen, and Henri Schurz. Numerical solution of SDE through511

computer experiments. Springer Science & Business Media, 2012.512

[41] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential513

integrator. In The Eleventh International Conference on Learning Representations, 2023. URL514

https://openreview.net/forum?id=Loek7hfb46P.515

[42] Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim: Generalized denoising diffusion516

implicit models. In The Eleventh International Conference on Learning Representations, 2023.517

URL https://openreview.net/forum?id=1hKE9qjvz-.518

[43] Martin Gonzalez, Nelson Fernandez Pinto, Thuy Tran, Hatem Hajri, Nader Masmoudi, et al.519

Seeds: Exponential sde solvers for fast high-quality sampling from diffusion models. Advances520

in Neural Information Processing Systems, 36, 2024.521

[44] Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and522

Zhi-Ming Ma. Sa-solver: Stochastic adams solver for fast sampling of diffusion models.523

Advances in Neural Information Processing Systems, 36, 2024.524

[45] Qinsheng Zhang, Jiaming Song, and Yongxin Chen. Improved order analysis and design of525

exponential integrator for diffusion models sampling. arXiv preprint arXiv:2308.02157, 2023.526

[46] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion527

solvers. Advances in Neural Information Processing Systems, 35:30150–30166, 2022.528

[47] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion529

models on manifolds. arXiv preprint arXiv:2202.09778, 2022.530

[48] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of531

diffusion-based generative models. Advances in Neural Information Processing Systems, 35:532

26565–26577, 2022.533

[49] Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode534

solver with empirical model statistics. Advances in Neural Information Processing Systems,535

36:55502–55542, 2023.536

[50] Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen. Accelerating537

convergence of score-based diffusion models, provably. arXiv preprint arXiv:2403.03852,538

2024.539

[51] Yuchen Wu, Yuxin Chen, and Yuting Wei. Stochastic Runge-Kutta methods: Provable540

acceleration of diffusion models. arXiv preprint arXiv:2410.04760, 2024.541

[52] Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting542

systems. The Journal of chemical physics, 115(4):1716–1733, 2001.543

12



[53] Yang Cao, Linda R Petzold, Muruhan Rathinam, and Daniel T Gillespie. The numerical544

stability of leaping methods for stochastic simulation of chemically reacting systems. The545

Journal of chemical physics, 121(24):12169–12178, 2004.546

[54] K Burrage and T Tian. Poisson runge-kutta methods for chemical reaction systems in advances547

in scientific computing and applications, 2004.548

[55] Yucheng Hu and Tiejun Li. Highly accurate tau-leaping methods with random corrections.549

The Journal of chemical physics, 130(12), 2009.550

[56] Desmond J Higham. Modeling and simulating chemical reactions. SIAM review, 50(2):551

347–368, 2008.552

[57] Weinan E, Tiejun Li, and Eric Vanden-Eijnden. Applied stochastic analysis, volume 199.553

American Mathematical Soc., 2021.554

[58] Frank P Kelly. Reversibility and stochastic networks. Cambridge University Press, 2011.555

[59] Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. From556

denoising diffusions to denoising markov models. Journal of the Royal Statistical Society557

Series B: Statistical Methodology, 86(2):286–301, 2024.558

[60] Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-559

linear convergence bounds for diffusion models via stochastic localization. In The Twelfth560

International Conference on Learning Representations, 2024. URL https://openreview.561

net/forum?id=r5njV3BsuD.562

[61] Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The563

probability flow ode is provably fast. Advances in Neural Information Processing Systems, 36,564

2024.565

[62] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked566

generative image transformer. In Proceedings of the IEEE/CVF Conference on Computer567

Vision and Pattern Recognition, pages 11315–11325, 2022.568

[63] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.569

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.570

[64] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.571

io/OpenWebTextCorpus, 2019.572

[65] Victor Besnier and Mickael Chen. A pytorch reproduction of masked generative image573

transformer. arXiv preprint arXiv:2310.14400, 2023.574

[66] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-575

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern576

recognition, pages 248–255. Ieee, 2009.577

[67] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution578

image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern579

recognition, pages 12873–12883, 2021.580

[68] Ilia Igashov, Arne Schneuing, Marwin Segler, Michael Bronstein, and Bruno Correia. Retro-581

bridge: Modeling retrosynthesis with markov bridges. arXiv preprint arXiv:2308.16212,582

2023.583

[69] Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training584

to gradient search in testing for combinatorial optimization. Advances in Neural Information585

Processing Systems, 36, 2024.586

[70] Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial587

optimization. Advances in Neural Information Processing Systems, 36:3706–3731, 2023.588

13



[71] Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Bac Nguyen, Stefano589

Ermon, and Yuki Mitsufuji. G2d2: Gradient-guided discrete diffusion for image inverse590

problem solving. arXiv preprint arXiv:2410.14710, 2024.591

[72] Wenda Chu, Yang Song, and Yisong Yue. Split gibbs discrete diffusion posterior sampling.592

arXiv preprint arXiv:2503.01161, 2025.593

[73] Cheuk Kit Lee, Paul Jeha, Jes Frellsen, Pietro Lio, Michael Samuel Albergo, and Francisco594

Vargas. Debiasing guidance for discrete diffusion with sequential monte carlo. arXiv preprint595

arXiv:2502.06079, 2025.596

[74] Peter Holderrieth, Michael S Albergo, and Tommi Jaakkola. Leaps: A discrete neural sampler597

via locally equivariant networks. arXiv preprint arXiv:2502.10843, 2025.598

[75] Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X Lu, Nicolo Fusi, Ava P Amini,599

and Kevin K Yang. Protein generation with evolutionary diffusion: sequence is all you need.600

BioRxiv, pages 2023–09, 2023.601

[76] Patrick Emami, Aidan Perreault, Jeffrey Law, David Biagioni, and Peter St John. Plug & play602

directed evolution of proteins with gradient-based discrete mcmc. Machine Learning: Science603

and Technology, 4(2):025014, 2023.604

[77] Dmitry Penzar, Daria Nogina, Elizaveta Noskova, Arsenii Zinkevich, Georgy Meshcheryakov,605

Andrey Lando, Abdul Muntakim Rafi, Carl De Boer, and Ivan V Kulakovskiy. Legnet: a606

best-in-class deep learning model for short dna regulatory regions. Bioinformatics, 39(8):607

btad457, 2023.608

[78] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E609

Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo610

design of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.611

[79] John J Yang, Jason Yim, Regina Barzilay, and Tommi Jaakkola. Fast non-autoregressive612

inverse folding with discrete diffusion. arXiv preprint arXiv:2312.02447, 2023.613

[80] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay,614

and Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. arXiv615

preprint arXiv:2402.05841, 2024.616

[81] Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yuguang Wang. Graph denoising diffusion617

for inverse protein folding. Advances in Neural Information Processing Systems, 36, 2024.618

[82] Yiheng Zhu, Jialu Wu, Qiuyi Li, Jiahuan Yan, Mingze Yin, Wei Wu, Mingyang Li, Jieping Ye,619

Zheng Wang, and Jian Wu. Bridge-if: Learning inverse protein folding with markov bridges.620

arXiv preprint arXiv:2411.02120, 2024.621

[83] Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirec-622

tional context with multinomial diffusion for autoregressive image synthesis. Advances in623

neural information processing systems, 34:3518–3532, 2021.624

[84] Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete625

predictor-corrector diffusion models for image synthesis. In The Eleventh International626

Conference on Learning Representations, 2022.627

[85] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and628

Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of629

the IEEE/CVF conference on Computer Vision and Pattern Recognition, pages 10696–10706,630

2022.631

[86] Ari Seff, Wenda Zhou, Farhan Damani, Abigail Doyle, and Ryan P Adams. Discrete object632

generation with reversible inductive construction. Advances in neural information processing633

systems, 32, 2019.634

[87] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.635

Permutation invariant graph generation via score-based generative modeling. In International636

Conference on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.637

14



[88] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.638

Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint639

arXiv:2001.09382, 2020.640

[89] Yiming Qin, Clement Vignac, and Pascal Frossard. Sparse training of discrete diffusion models641

for graph generation. arXiv preprint arXiv:2311.02142, 2023.642

[90] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-643

cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint644

arXiv:2209.14734, 2022.645

[91] Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Watten-646

hofer. Diffusion models for graphs benefit from discrete state spaces. arXiv preprint647

arXiv:2210.01549, 2022.648

[92] Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow649

matching for graph generation. arXiv preprint arXiv:2410.04263, 2024.650

[93] Jun Hyeong Kim, Seonghwan Kim, Seokhyun Moon, Hyeongwoo Kim, Jeheon Woo, and651

Woo Youn Kim. Discrete diffusion schrödinger bridge matching for graph transformation.652

arXiv preprint arXiv:2410.01500, 2024.653

[94] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Layoutdm:654

Discrete diffusion model for controllable layout generation. In Proceedings of the IEEE/CVF655

Conference on Computer Vision and Pattern Recognition, pages 10167–10176, 2023.656

[95] Junyi Zhang, Jiaqi Guo, Shizhao Sun, Jian-Guang Lou, and Dongmei Zhang. Layoutdiffusion:657

Improving graphic layout generation by discrete diffusion probabilistic models. In Proceedings658

of the IEEE/CVF International Conference on Computer Vision, pages 7226–7236, 2023.659

[96] Seunggeun Chi, Hyung-gun Chi, Hengbo Ma, Nakul Agarwal, Faizan Siddiqui, Karthik660

Ramani, and Kwonjoon Lee. M2d2m: Multi-motion generation from text with discrete661

diffusion models. arXiv preprint arXiv:2407.14502, 2024.662

[97] Yunhong Lou, Linchao Zhu, Yaxiong Wang, Xiaohan Wang, and Yi Yang. Diversemo-663

tion: Towards diverse human motion generation via discrete diffusion. arXiv preprint664

arXiv:2309.01372, 2023.665

[98] Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.666

Diffsound: Discrete diffusion model for text-to-sound generation. IEEE/ACM Transactions on667

Audio, Speech, and Language Processing, 31:1720–1733, 2023.668

[99] Sam Bond-Taylor, Peter Hessey, Hiroshi Sasaki, Toby P Breckon, and Chris G Willcocks.669

Unleashing transformers: Parallel token prediction with discrete absorbing diffusion for fast670

high-resolution image generation from vector-quantized codes. In European Conference on671

Computer Vision, pages 170–188. Springer, 2022.672

[100] Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector673

quantized diffusion models. arXiv preprint arXiv:2205.16007, 2022.674

[101] Ye Zhu, Yu Wu, Kyle Olszewski, Jian Ren, Sergey Tulyakov, and Yan Yan. Discrete contrastive675

diffusion for cross-modal music and image generation. arXiv preprint arXiv:2206.07771,676

2022.677

[102] Zhichao Wu, Qiulin Li, Sixing Liu, and Qun Yang. Dctts: Discrete diffusion model with678

contrastive learning for text-to-speech generation. In ICASSP 2024-2024 IEEE International679

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 11336–11340. IEEE,680

2024.681

[103] Jun Han, Zixiang Chen, Yongqian Li, Yiwen Kou, Eran Halperin, Robert E Tillman, and682

Quanquan Gu. Guided discrete diffusion for electronic health record generation. arXiv683

preprint arXiv:2404.12314, 2024.684

15



[104] Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec.685

Tabdiff: a multi-modal diffusion model for tabular data generation. arXiv preprint686

arXiv:2410.20626, 2024.687

[105] Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-688

bert: Improving generative masked language models with diffusion models. arXiv preprint689

arXiv:2211.15029, 2022.690

[106] Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord.691

Step-unrolled denoising autoencoders for text generation. arXiv preprint arXiv:2112.06749,692

2021.693

[107] Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian694

Guo, Nan Duan, Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text695

generation. Advances in Neural Information Processing Systems, 36:39957–39974, 2023.696

[108] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq-v2:697

Bridging discrete and continuous text spaces for accelerated seq2seq diffusion models. arXiv698

preprint arXiv:2310.05793, 2023.699

[109] Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion700

model for text generation. arXiv preprint arXiv:2302.05737, 2023.701

[110] Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion-nat: Self-prompting702

discrete diffusion for non-autoregressive text generation. arXiv preprint arXiv:2305.04044,703

2023.704

[111] Minkai Xu, Tomas Geffner, Karsten Kreis, Weili Nie, Yilun Xu, Jure Leskovec, Stefano Ermon,705

and Arash Vahdat. Energy-based diffusion language models for text generation. arXiv preprint706

arXiv:2410.21357, 2024.707

[112] Yinuo Ren, Grant M Rotskoff, and Lexing Ying. A unified approach to analysis and design of708

denoising markov models. arXiv preprint arXiv:2504.01938, 2025.709

[113] Yong-Hyun Park, Chieh-Hsin Lai, Satoshi Hayakawa, Yuhta Takida, and Yuki Mitsufuji.710

Jump your steps: Optimizing sampling schedule of discrete diffusion models. arXiv preprint711

arXiv:2410.07761, 2024.712

[114] Yixiu Zhao, Jiaxin Shi, Lester Mackey, and Scott Linderman. Informed correctors for discrete713

diffusion models. arXiv preprint arXiv:2407.21243, 2024.714

[115] Zixiang Chen, Huizhuo Yuan, Yongqian Li, Yiwen Kou, Junkai Zhang, and Quanquan Gu.715

Fast sampling via discrete non-markov diffusion models with predetermined transition time.716

In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.717

[116] Lingxiao Zhao, Xueying Ding, Lijun Yu, and Leman Akoglu. Improving and unifying718

discrete&continuous-time discrete denoising diffusion. arXiv preprint arXiv:2402.03701,719

2024.720

[117] Machel Reid, Vincent Josua Hellendoorn, and Graham Neubig. Diffuser: Diffusion via edit-721

based reconstruction. In The Eleventh International Conference on Learning Representations,722

2023.723

[118] Satoshi Hayakawa, Yuhta Takida, Masaaki Imaizumi, Hiromi Wakaki, and Yuki Mitsu-724

fuji. Distillation of discrete diffusion through dimensional correlations. arXiv preprint725

arXiv:2410.08709, 2024.726

[119] Ludwig Winkler, Lorenz Richter, and Manfred Opper. Bridging discrete and continuous state727

spaces: Exploring the ehrenfest process in time-continuous diffusion models. In Forty-first728

International Conference on Machine Learning, 2024. URL https://openreview.net/729

forum?id=8GYclcxQXB.730

[120] Harshit Varma, Dheeraj Nagaraj, and Karthikeyan Shanmugam. Glauber generative model:731

Discrete diffusion models via binary classification. arXiv preprint arXiv:2405.17035, 2024.732

16



[121] Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-733

Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided734

discrete diffusion. Advances in neural information processing systems, 36, 2024.735

[122] Severi Rissanen, Markus Heinonen, and Arno Solin. Improving discrete diffusion models via736

structured preferential generation. arXiv preprint arXiv:2405.17889, 2024.737

[123] Sulin Liu, Juno Nam, Andrew Campbell, Hannes Stärk, Yilun Xu, Tommi Jaakkola, and Rafael738

Gómez-Bombarelli. Think while you generate: Discrete diffusion with planned denoising.739

arXiv preprint arXiv:2410.06264, 2024.740

[124] Oscar Davis, Samuel Kessler, Mircea Petrache, Avishek Joey Bose, et al. Fisher flow matching741

for generative modeling over discrete data. arXiv preprint arXiv:2405.14664, 2024.742

[125] GN Mil’shtejn. Approximate integration of stochastic differential equations. Theory of743

Probability & Its Applications, 19(3):557–562, 1975.744

[126] Assyr Abdulle and Stephane Cirilli. S-rock: Chebyshev methods for stiff stochastic differential745

equations. SIAM Journal on Scientific Computing, 30(2):997–1014, 2008.746

[127] Evelyn Buckwar and Renate Winkler. Multistep methods for sdes and their application to747

problems with small noise. SIAM journal on numerical analysis, 44(2):779–803, 2006.748

[128] Denis Talay and Luciano Tubaro. Expansion of the global error for numerical schemes solving749

stochastic differential equations. Stochastic analysis and applications, 8(4):483–509, 1990.750

[129] Kevin Burrage and Pamela M Burrage. Order conditions of stochastic runge–kutta methods by751

b-series. SIAM Journal on Numerical Analysis, 38(5):1626–1646, 2000.752

[130] Kevin Burrage and Tianhai Tian. Predictor-corrector methods of runge–kutta type for stochastic753

differential equations. SIAM Journal on Numerical Analysis, 40(4):1516–1537, 2002.754

[131] Andreas Rössler. Runge-kutta methods for the numerical solution of stochastic differential755

equations. Shaker-Verlag, Aachen, 2003.756

[132] Andreas Rößler. Runge–kutta methods for the strong approximation of solutions of stochastic757

differential equations. SIAM Journal on Numerical Analysis, 48(3):922–952, 2010.758

[133] James M Foster, Goncalo Dos Reis, and Calum Strange. High order splitting methods for sdes759

satisfying a commutativity condition. SIAM Journal on Numerical Analysis, 62(1):500–532,760

2024.761

[134] Lei Li, Jianfeng Lu, Jonathan Mattingly, and Lihan Wang. Numerical methods for stochastic762

differential equations based on gaussian mixtures. Communications in Mathematical Sciences,763

19(6):1549–1577, 2021.764

[135] Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave sampling.765

Advances in Neural Information Processing Systems, 32, 2019.766

[136] Nima Anari, Sinho Chewi, and Thuy-Duong Vuong. Fast parallel sampling under isoperimetry.767

arXiv preprint arXiv:2401.09016, 2024.768

[137] Lu Yu and Arnak Dalalyana. Parallelized midpoint randomization for langevin monte carlo.769

arXiv preprint arXiv:2402.14434, 2024.770

[138] Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic gradient771

mcmc algorithms with high-order integrators. Advances in neural information processing772

systems, 28, 2015.773

[139] Alain Durmus, Umut Simsekli, Eric Moulines, Roland Badeau, and Gaël Richard. Stochastic774

gradient richardson-romberg markov chain monte carlo. Advances in neural information775

processing systems, 29, 2016.776

17



[140] Xuechen Li, Yi Wu, Lester Mackey, and Murat A Erdogdu. Stochastic runge-kutta accelerates777

langevin monte carlo and beyond. Advances in neural information processing systems, 32,778

2019.779

[141] Sotirios Sabanis and Ying Zhang. Higher order langevin monte carlo algorithm. Electron. J.780

Statist, 13(2):3805–3850, 2019.781

[142] Wenlong Mou, Yi-An Ma, Martin J Wainwright, Peter L Bartlett, and Michael I Jordan. High-782

order langevin diffusion yields an accelerated mcmc algorithm. Journal of Machine Learning783

Research, 22(42):1–41, 2021.784

[143] Pierre Monmarché. High-dimensional mcmc with a standard splitting scheme for the under-785

damped langevin diffusion. Electronic Journal of Statistics, 15(2):4117–4166, 2021.786

[144] James Foster, Terry Lyons, and Harald Oberhauser. The shifted ode method for underdamped787

langevin mcmc. arXiv preprint arXiv:2101.03446, 2021.788

[145] Kevin Burrage, PM Burrage, and Tianhai Tian. Numerical methods for strong solutions of789

stochastic differential equations: an overview. Proceedings of the Royal Society of London.790

Series A: Mathematical, Physical and Engineering Sciences, 460(2041):373–402, 2004.791

[146] Grigori N Milstein and Michael V Tretyakov. Stochastic numerics for mathematical physics,792

volume 39. Springer, 2004.793

[147] Alfred B Bortz, Malvin H Kalos, and Joel L Lebowitz. A new algorithm for monte carlo794

simulation of ising spin systems. Journal of Computational physics, 17(1):10–18, 1975.795

[148] Daniel T Gillespie. A general method for numerically simulating the stochastic time evolution796

of coupled chemical reactions. Journal of computational physics, 22(4):403–434, 1976.797

[149] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The journal of798

physical chemistry, 81(25):2340–2361, 1977.799

[150] Yang Cao, Dan Gillespie, and Linda Petzold. Multiscale stochastic simulation algorithm800

with stochastic partial equilibrium assumption for chemically reacting systems. Journal of801

Computational Physics, 206(2):395–411, 2005.802

[151] Yang Cao, Daniel T Gillespie, and Linda R Petzold. The slow-scale stochastic simulation803

algorithm. The Journal of chemical physics, 122(1), 2005.804

[152] Weinan E, Di Liu, Eric Vanden-Eijnden, et al. Nested stochastic simulation algorithm for805

chemical kinetic systems with disparate rates. The Journal of chemical physics, 123(19), 2005.806

[153] Weinan E, Di Liu, and Eric Vanden-Eijnden. Nested stochastic simulation algorithms for807

chemical kinetic systems with multiple time scales. Journal of computational physics, 221(1):808

158–180, 2007.809

[154] Michael A Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of chemical810

systems with many species and many channels. The journal of physical chemistry A, 104(9):811

1876–1889, 2000.812

[155] David F Anderson. A modified next reaction method for simulating chemical systems with813

time dependent propensities and delays. The Journal of chemical physics, 127(21), 2007.814

[156] Casper HL Beentjes and Ruth E Baker. Uniformization techniques for stochastic simulation of815

chemical reaction networks. The Journal of Chemical Physics, 150(15), 2019.816

[157] Muruhan Rathinam, Linda R Petzold, Yang Cao, and Daniel T Gillespie. Stiffness in stochastic817

chemically reacting systems: The implicit tau-leaping method. The Journal of Chemical818

Physics, 119(24):12784–12794, 2003.819

[158] Daniel T Gillespie and Linda R Petzold. Improved leap-size selection for accelerated stochastic820

simulation. The journal of chemical physics, 119(16):8229–8234, 2003.821

18



[159] Kevin Burrage, Tianhai Tian, and Pamela Burrage. A multi-scaled approach for simulating822

chemical reaction systems. Progress in biophysics and molecular biology, 85(2-3):217–234,823

2004.824

[160] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Avoiding negative populations in explicit825

poisson tau-leaping. The Journal of chemical physics, 123(5), 2005.826

[161] Anne Auger, Philippe Chatelain, and Petros Koumoutsakos. R-leaping: Accelerating the827

stochastic simulation algorithm by reaction leaps. The Journal of chemical physics, 125(8),828

2006.829

[162] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Adaptive explicit-implicit tau-leaping830

method with automatic tau selection. The Journal of chemical physics, 126(22), 2007.831

[163] Basil Bayati, Philippe Chatelain, and Petros Koumoutsakos. D-leaping: Accelerating stochastic832

simulation algorithms for reactions with delays. Journal of Computational Physics, 228(16):833

5908–5916, 2009.834

[164] Yang Cao and Linda Petzold. Slow-scale tau-leaping method. Computer methods in applied835

mechanics and engineering, 197(43-44):3472–3479, 2008.836

[165] Zhouyi Xu and Xiaodong Cai. Unbiased τ -leap methods for stochastic simulation of chemically837

reacting systems. The Journal of chemical physics, 128(15), 2008.838

[166] Mary Sehl, Alexander V Alekseyenko, and Kenneth L Lange. Accurate stochastic simulation839

via the step anticipation τ -leaping (sal) algorithm. Journal of Computational Biology, 16(9):840

1195–1208, 2009.841

[167] Krishna A Iyengar, Leonard A Harris, and Paulette Clancy. Accurate implementation of842

leaping in space: The spatial partitioned-leaping algorithm. The Journal of chemical physics,843

132(9), 2010.844

[168] David F Anderson and Desmond J Higham. Multilevel monte carlo for continuous time845

markov chains, with applications in biochemical kinetics. Multiscale Modeling & Simulation,846

10(1):146–179, 2012.847

[169] Alvaro Moraes, Raúl Tempone, and Pedro Vilanova. Hybrid chernoff tau-leap. Multiscale848

Modeling & Simulation, 12(2):581–615, 2014.849

[170] Jill Padgett and Silvana Ilie. An adaptive tau-leaping method for stochastic simulations of850

reaction-diffusion systems. AIP Advances, 6(3), 2016.851

[171] Jana Lipková, Georgios Arampatzis, Philippe Chatelain, Bjoern Menze, and Petros Koumout-852

sakos. S-leaping: an adaptive, accelerated stochastic simulation algorithm, bridging τ -leaping853

and r-leaping. Bulletin of mathematical biology, 81(8):3074–3096, 2019.854

[172] Muruhan Rathinam, Linda R Petzold, Yang Cao, and Daniel T Gillespie. Consistency and855

stability of tau-leaping schemes for chemical reaction systems. Multiscale Modeling &856

Simulation, 4(3):867–895, 2005.857

[173] Tiejun Li. Analysis of explicit tau-leaping schemes for simulating chemically reacting systems.858

Multiscale Modeling & Simulation, 6(2):417–436, 2007.859

[174] Yucheng Hu, Tiejun Li, and Bin Min. The weak convergence analysis of tau-leaping methods:860

revisited. Communications in Mathematical Sciences, 9(4):965–996, 2011.861

[175] David F Anderson, Desmond J Higham, and Yu Sun. Complexity of multilevel monte carlo862

tau-leaping. SIAM Journal on Numerical Analysis, 52(6):3106–3127, 2014.863

[176] Chuchu Chen and Di Liu. Error analysis for d-leaping scheme of chemical reaction system864

with delay. Multiscale Modeling & Simulation, 15(4):1797–1829, 2017.865

[177] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-866

supervised learning using nonequilibrium thermodynamics. In International Conference on867

Machine Learning, pages 2256–2265. PMLR, 2015.868

19



[178] Linfeng Zhang, Weinan E, and Lei Wang. Monge-ampère flow for generative modeling. arXiv869

preprint arXiv:1809.10188, 2018.870

[179] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data871

distribution. Advances in neural information processing systems, 32, 2019.872

[180] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances873

in neural information processing systems, 33:6840–6851, 2020.874

[181] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and875

Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv876

preprint arXiv:2011.13456, 2020.877

[182] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training878

of score-based diffusion models. Advances in neural information processing systems, 34:879

1415–1428, 2021.880

[183] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow881

matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.882

[184] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate883

and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.884

[185] Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic885

interpolants. arXiv preprint arXiv:2209.15571, 2022.886

[186] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A887

unifying framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.888

[187] Haoxuan Chen, Yinuo Ren, Lexing Ying, and Grant M Rotskoff. Accelerating diffusion889

models with parallel sampling: Inference at sub-linear time complexity. arXiv preprint890

arXiv:2405.15986, 2024.891

[188] Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion892

models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision893

and Pattern Recognition, pages 7777–7786, 2024.894

[189] Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola.895

Restart sampling for improving generative processes. Advances in Neural Information Pro-896

cessing Systems, 36:76806–76838, 2023.897

[190] Hanzhong Guo, Cheng Lu, Fan Bao, Tianyu Pang, Shuicheng Yan, Chao Du, and Chongxuan898

Li. Gaussian mixture solvers for diffusion models. Advances in Neural Information Processing899

Systems, 36, 2024.900

[191] Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. arXiv901

preprint arXiv:2403.06807, 2024.902

[192] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv903

preprint arXiv:2303.01469, 2023.904

[193] Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv905

preprint arXiv:2310.14189, 2023.906

[194] Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency907

models. arXiv preprint arXiv:2410.11081, 2024.908

[195] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for909

improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.910

[196] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan911

Ho, and Tim Salimans. On distillation of guided diffusion models. In Proceedings of the912

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14297–14306,913

2023.914

20



[197] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.915

arXiv preprint arXiv:2202.00512, 2022.916

[198] Vinh Tong, Trung-Dung Hoang, Anji Liu, Guy Van den Broeck, and Mathias Niepert. Learning917

to discretize denoising diffusion odes. arXiv preprint arXiv:2405.15506, 2024.918

[199] Eric Frankel, Sitan Chen, Jerry Li, Pang Wei Koh, Lillian J Ratliff, and Sewoong Oh. S4s:919

Solving for a diffusion model solver. arXiv preprint arXiv:2502.17423, 2025.920

[200] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with921

critically-damped langevin diffusion. arXiv preprint arXiv:2112.07068, 2021.922

[201] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar.923

Fast sampling of diffusion models via operator learning. In International Conference on924

Machine Learning, pages 42390–42402. PMLR, 2023.925

[202] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models926

for free. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern927

Recognition, pages 15762–15772, 2024.928

[203] Valentin De Bortoli, Alexandre Galashov, Arthur Gretton, and Arnaud Doucet. Accelerated929

diffusion models via speculative sampling. arXiv preprint arXiv:2501.05370, 2025.930

[204] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.931

Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,932

2021.933

[205] Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-934

corrector framework for fast sampling of diffusion models. Advances in Neural Information935

Processing Systems, 36, 2024.936

[206] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling937

of diffusion models. Advances in Neural Information Processing Systems, 36, 2024.938

[207] Hyungjin Chung, Jeongsol Kim, Sehui Kim, and Jong Chul Ye. Parallel diffusion models of939

operator and image for blind inverse problems. In Proceedings of the IEEE/CVF Conference940

on Computer Vision and Pattern Recognition, pages 6059–6069, 2023.941

[208] Zhiwei Tang, Jiasheng Tang, Hao Luo, Fan Wang, and Tsung-Hui Chang. Accelerating parallel942

sampling of diffusion models. In Forty-first International Conference on Machine Learning,943

2024.944

[209] Jiezhang Cao, Yue Shi, Kai Zhang, Yulun Zhang, Radu Timofte, and Luc Van Gool. Deep945

equilibrium diffusion restoration with parallel sampling. In Proceedings of the IEEE/CVF946

Conference on Computer Vision and Pattern Recognition, pages 2824–2834, 2024.947

[210] Nikil Roashan Selvam, Amil Merchant, and Stefano Ermon. Self-refining diffusion samplers:948

Enabling parallelization via parareal iterations. arXiv preprint arXiv:2412.08292, 2024.949

[211] Saravanan Kandasamy and Dheeraj Nagaraj. The poisson midpoint method for langevin dynam-950

ics: Provably efficient discretization for diffusion models. arXiv preprint arXiv:2405.17068,951

2024.952

[212] Shivam Gupta, Linda Cai, and Sitan Chen. Faster diffusion-based sampling with randomized953

midpoints: Sequential and parallel. arXiv preprint arXiv:2406.00924, 2024.954

[213] Philip Protter. Point process differentials with evolving intensities. In Nonlinear stochastic955

problems, pages 467–472. Springer, 1983.956

[214] Bernt Øksendal and Agnes Sulem. Applied Stochastic Control of Jump Diffusions. Springer,957

2019.958

21



A Further Discussion on Related Works959

In this section, we provide a more detailed literature review of both continuous and discrete diffusion960

models, as well as several studies on the numerical methods for SDEs and chemical reaction systems,961

which are highly related to our work.962

Discrete Diffusion Models: Methodology, Theory, and Applications. Discrete diffusion and963

flow-based models [1–4, 6–10, 22] have recently been proposed as generalizations of continuous964

diffusion models to model discrete distributions.965

Such models have been widely used in various areas of science and engineering, including but966

not limited to modeling retrosynthesis [68], combinatorial optimization [69, 70], solving inverse967

problems [71, 72] and sampling high-dimensional discrete distributions [73, 74], designing molecules,968

proteins, and DNA sequences [75, 13, 76, 12, 77–79, 31, 80, 11, 81, 82], image synthesis [83–85],969

text summarization [15], as well as the generation of graph [86–93], layout [94, 95], motion [96, 97],970

sound [22, 98], image [16, 99–101], speech [102], electronic health record [103], tabular data [104]971

and text [105–110, 34, 35, 111, 14]. Inspired by the huge success achieved by discrete diffusion972

models in practice, researchers have also conducted some studies on the theoretical properties of973

these models, such as [36–38, 112].974

An extensive amount of work has also explored the possibility of making discrete diffusion mod-975

els more effective from many aspects, such as optimizing the sampling schedule [113], adding976

correctors [114], developing fast samplers [115], designing correctors based on information learnt977

by the model [114], simplifying the loss function for training [116], adding editing-based refine-978

ments [117], synergizing these models with other techniques and methodologies like distillation [118],979

Ehrenfest processes [119], Glauber dynamics [120], tensor networks [17], enhanced guidance mecha-980

nisms [121, 18–20], structured preferential generation [122], the plan-and-denoise framework [123]981

and alternative metrics, e.g., the Fisher information metric [124]. However, to the best of our knowl-982

edge, existing work on accelerating the inference of discrete diffusion models is relatively sparse983

compared to the ones we listed above, which makes it a direction worth exploring and serves as one984

of the main motivations behind this work.985

Numerical Methods for SDEs and Chemical Reaction Systems. Below, we review advanced986

numerical methods proposed for simulating SDEs and chemical reaction systems, which are the main987

techniques adopted in our work. For the simulation of SDEs driven by Brownian motions, many stud-988

ies have been performed to design more accurate numerical schemes, which have been widely applied989

to tackle problems in computational physics, optimization, and Monte Carlo sampling. Examples990

of such work include the Milstein method [125], explicit methods [126], multistep methods [127],991

extrapolation-type methods [128, 25], stochastic Runge Kutta methods [24, 129–132], splitting meth-992

ods [133], methods based on gaussian mixtures [134], randomized midpoint method [135], parallel993

sampling methods [136, 137] as well as high-order methods for stochastic gradient Markov Chain994

Monte Carlo [138, 139], underdamped and overdamped Langevin Monte Carlo [140–144]. For a995

more comprehensive list of related numerical methods, one may refer to [39, 145, 146, 40, 57].996

Regarding the simulation of chemical reaction systems, numerical methods can be categorized into997

two classes. The first class consists of exact simulation methods, which are similar to the Kinetic998

Monte Carlo (KMC) method [147] developed for simulating spin dynamics and crystal growth999

in condensed matter physics. Examples of such methods include the Gillespie algorithm (or the1000

Stochastic Simulation Algorithm, a.k.a. SSA) [148, 149] and its variants for multiscale modeling [150–1001

153], the next reaction method and its variants [154, 155], uniformization-based methods [156], etc.1002

The second class of methods are approximate simulation methods, including but not limited to1003

the τ -leaping method [52] and its variants [157, 158, 53, 54, 159–165, 55, 166, 167, 26, 168–171].1004

For a subset of the methods listed above, numerical analysis has also been performed in many1005

works [172–176] to justify their validity.1006

Continuous Diffusion Models: Methodology, Theory, and Acceleration. Continuous diffusion1007

and probability flow-based models [177–186] have also been the most popular methods in generative1008

modeling, with a wide range of applications in science and engineering. For a list of related work1009

on the theoretical studies and applications of these models, one may refer to the literature review1010
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conducted in [187, 38]. Here we will only review studies on accelerating the inference of continuous1011

diffusion models, which motivates our work.1012

An incomplete list of accelerating methods includes approximate mean direction solver [188], restart1013

sampling [189], gaussian mixture solvers [190], self-consistency [191–194], knowledge distilla-1014

tion [195–199], combination with underdamped Langevin dynamics [200], operator learning [201]1015

and more recently ideas from accelerating large language models (LLMs) like caching [202] and spec-1016

ulative decoding [203]. Among all the proposed accelerating methods, one major class of methods1017

are developed based on techniques from numerical analysis like adaptive step sizes [204], exponential1018

integrators [41–43], predictor-corrector solver [205], Adams-Bashforth methods [29, 44, 45], Taylor1019

methods [27, 46], Picard iteration and parallel sampling [206–210, 187], (stochastic) Runge-Kutta1020

methods [47, 28, 48–51] and randomized midpoint method [211, 212]. In contrast, there have been1021

fewer studies on the acceleration of discrete diffusion models via techniques from numerical analysis,1022

which inspires the study undertaken in this paper.1023

B Mathematical Background1024

In this section, we provide the mathematical background for the stochastic integral formulation of1025

discrete diffusion models, the error analysis of the τ -leaping method, and useful lemmas for the1026

theoretical analysis of high-order schemes for discrete diffusion models.1027

B.1 Stochastic Integral Formulation of Discrete Diffusion Models1028

Throughout this section, we will assume that (Ω,F ,P) is a probability space, X is a finite-state space,1029

and denote the pairwise difference set of the state space by D := {x − y : x ̸= y ∈ X}. We also1030

assume that the pairwise difference set X is equipped with a metric ∥ · ∥, a finite measure γ, and a1031

σ-algebra B.1032

As a warm-up, we introduce the definition of the Poisson random measure for a time-homogeneous1033

counting process.1034

Definition B.1 (Poisson Random Measure [38, Definition A.1]). The random measure N(dt, dν)1035

on R+ × D is called a Poisson random measure w.r.t. measure γ if it is a random counting measure1036

satisfying the following properties:1037

(i) For any B ∈ B and 0 ≤ s < t,

N((s, t]×B) ∼ P (γ(B)(t− s)) ;

(ii) For any t ≥ 0 and pairwise disjoint sets {Bi}i∈[n] ⊂ B,

{Nt(Bi) := N((0, t]×Bi)}i∈[n]

are independent stochastic processes.1038

Then we define the Poisson random measure with evolving intensities. The term “evolving” refers to1039

that the intensity is both time and state-dependent.1040

Definition B.2 (Poisson Random Measure with Evolving Intensity [38, Definition A.3]). Suppose1041

λt(y) is a non-negative predictable process on R+ × D × Ω satisfying that for any 0 ≤ T < T ,1042 ∫ T

0
λt(ν)dt <∞, a.s..1043

The random measure N [λ](dt, dν) on R+ × D is called a Poisson random measure with evolving1044

intensity λt(ν) w.r.t. measure γ if it is a random counting measure satisfying the following properties:1045

(i) For any B ∈ B and 0 ≤ s < t,

N [λ]((s, t]×B) ∼ P

(∫ t

s

∫

B

λτ (ν)γ(dν)dτ

)
;

(ii) For any t ≥ 0 and pairwise disjoint sets {Bi}i∈[n] ⊂ B,

{Nt[λ](Bi) := N [λ]((0, t]×Bi)}i∈[n]

are independent stochastic processes.1046
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Remark B.3 (Construction of Poisson Random Measure with Evolving Intensity). As discussed1047

in Thm. A.4 in [38] and originally proposed by [213], the Poisson random measure with evolving1048

intensity can be constructed in the following way.1049

One first augments the (X,B, ν) measure space to a product space (D × R,B × B(R), γ × m),1050

where m is the Lebesgue measure on R, and B(R) is the Borel σ-algebra on R. The Poisson random1051

measure with evolving intensity λt(ν) can be defined in the augmented measure space as1052

N [λ]((s, t]×B) :=

∫ t

s

∫

B

∫

R

10≤ξ≤λτ (ν)N(dτ, dν, dξ), (B.1)

where N(dτ, dν, dξ) is the Poisson random measure on R+ × D× R w.r.t. measure ν(dy)dξ.1053

The following theorem provides the change of measure theorem for Poisson random measure with1054

evolving intensity, which is crucial for the theoretical analysis of numerical schemes for discrete1055

diffusion models.1056

Theorem B.4 (Change of Measure for Poisson Random Measure with Evolving Density [38,1057

Thm. 3.3]). Let N [λ](dt, dν) be a Poisson random measure with evolving intensity λt(ν), and1058

ht(ν) a positive predictable process on R+ ×D×Ω. Suppose the following exponential process is a1059

local Ft-martingale:1060

Zt[h] := exp

(∫ t

0

∫

D

log ht(ν)N [λ](dt× dν)−

∫ t

0

∫

D

(ht(ν)− 1)λt(ν)γ(dν)

)
, (B.2)

and Q is another probability measure on (Ω,F) such that Q≪ P with Radon-Nikodym derivative1061

dQ/dP|Ft
= Zt[h].1062

Then the Poisson random measure N [λ](dt, dν) under the measure Q is a Poisson random measure1063

with evolving intensity λt(ν)ht(ν).1064

B.2 Error Analysis of τ -leaping1065

The τ -leaping method was originally proposed by [52] and adopted for the inference of discrete1066

diffusion models by [22]. A summary of the algorithm is given in Alg. 3. In this subsection, we1067

provide a sketch for the error analysis of the τ -leaping method when applied to discrete diffusion1068

models, which will be compared with that of high-order schemes later on.1069

Algorithm 3: τ -Leaping Method for Discrete Diffusion Model Inference

Input: ŷ0 ∼ q0, θ ∈ [0, 1], time discretization (sn, ρn)n∈[0:N−1], µ̂, µ̂∗ as defined in Prop. C.2.

Output: A sample ŷsN ∼ q̂
RK
tN

.

1 for n = 0 to N − 1 do

2 ŷsn+1
← ŷsn +

∑

ν∈D

νP (µ̂sn(ν)∆n);

3 end

Proof of Thm. 3.1. As we are considering the case where X = [S]d, i.e. the state space is a d-1070

dimensional grid with S states along each dimension, we have log |X| = d logS. Then we consider a1071

simple time-homogeneous transition matrix Qt ≡ Q that allows jumps between neighboring states1072

with equal probability. Specifically, we have1073

Q(y, x) =

{
1, ∥x− y∥1 = 1,

−2d, x = y,

which can be verified to satisfy Assumption 4.3(i) in [38] with C = 1 and D = D = 2d. Assump-1074

tion 4.3(ii) is also satisfied, as shown in Example B.10 of [38].1075

Then we may apply Thm. 4.7 in [38] by using the required time discretization scheme according to1076

the properties of the target distribution and plugging in the corresponding values of C,D,D. The1077

result follows by scaling the transition matrix Q by 1
d

, equivalent to scaling the time by d.1078
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C Proofs1079

In this section, we provide the missing proofs in the main text. We will first provide the proofs of1080

the stochastic integral formulations of high-order schemes for discrete diffusion models in App. C.1.1081

Then we will provide the proofs of the main results for the θ-trapezoidal method in App. C.2 and the1082

θ-RK-2 method in App. C.3. We remark that the proof for the θ-trapezoidal method requires more1083

techniques and is more involved, to which the proof for the θ-RK-2 method is analogous. In App. C.4,1084

we provide the detailed lemmas and computations omitted in the proofs of Thm. 5.4 and Thm. 5.5.1085

C.1 Stochastic Integral Formulations of High-Order Schemes1086

In order to rigorously analyze the θ-RK-2 method, we need the following definition:1087

Definition C.1 (Intermediate Process). We define the intermediate process ŷ∗s piecewisely on1088

(sn, sn+1] as follows:1089

ŷ∗s = ŷsn +

∫ s

sn

∫

D

νN [µ̂sn ] (ds, dν), (C.1)

where the intensity µ̂sn is given by µ̂sn(ν, ŷsn) =
⃗ŝsn(ŷsn , ŷsn + ν) ⃗Q0

sn
(ŷsn , ŷsn + ν), i.e., ŷ∗s is the1090

process obtained by performing τ -leaping from time sn to s with intensity µ̂.1091

The following proposition provides the stochastic integral formulation of this method.1092

Proposition C.2 (Stochastic Integral Formulation of θ-RK-2 Method). The θ-RK-2 method (Alg. 1)1093

is equivalent to solving the following stochastic integral:1094

ŷRK
s = ŷRK

0 +

∫ s

0

∫

D

νN
[
µ̂RK

]
(ds, dν), (C.2)

in which the intensity µ̂RK is defined as a weighted sum1095

µ̂RK
s (ν) = (1− 1

2θ )µ̂⌊s⌋(ν, ŷ
RK
⌊s⌋ ) +

1
2θ µ̂

∗
ρs
(ν, ŷ∗ρs

), (C.3)

and the intermediate intensity µ̂∗ is defined piecewisely as1096

µ̂∗
s(ν, ŷ

∗
s ) =

⃗ŝs(ŷ
∗
s , ŷ

∗
s + ν) ⃗Q0

s(ŷ
∗
s , ŷ

∗
s + ν), (C.4)

with the intermediate process ŷ∗s defined in (C.1) for the corresponding interval. We will call ŷRK
s the1097

interpolating process of the θ-RK-2 method and denote the distribution of ŷRK
s by q̂RK

s .1098

The following proposition establishes the stochastic integral formulation of the θ-trapezoidal method,1099

whose proof can be found in App. C.1.1100

Proposition C.3 (Stochastic Integral Formulation of θ-Trapezoidal Method). The θ-trapezoidal1101

method (Alg. 2) is equivalent to solving the following stochastic integral:1102

ŷtraps = ŷtrap0 +

∫ s

0

∫

D

N [µ̂trap](ds, dν) (C.5)

where the intensity µ̂trap is defined piecewisely as1103

µ̂trap
s (ν) = 1s<ρs

µ̂⌊s⌋(ν, ŷ
trap
⌊s⌋ ) + 1s≥ρs

(
α1µ̂

∗
ρs
(ν, ŷ∗ρs

)− α2µ̂⌊s⌋(ν, ŷ
trap
⌊s⌋ )

)
+
. (C.6)

Above, 1(·) denotes the indicator function and the intermediate process ŷ∗s is defined in (C.1) for the1104

corresponding interval. We will call the process ŷtraps the interpolating process of the θ-trapezoidal1105

method and denote the distribution of ŷtraps by q̂traps .1106

Proof of Prop. C.2 and Prop. C.3. Without loss of generality, we give the proof on the interval1107

(sn, sn+1] for n ∈ [0 : N − 1], and the generalization to the whole interval [0, T ] is straightforward.1108

Notice that once we condition on the filtration Fsn and construct the intermediate process ŷ∗s as1109

specified in (C.1) along the interval (sn, sn+1], the intermediate intensity µ̂∗ and the piecewise1110

intensity µ̂⌊s⌋ do not evolve with time s or the interpolating processes ŷRK
s (or ŷtraps , respectively)1111
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since it only depends on the state, the intensity at the beginning of the interval sn and other randomness1112

that is independent of the interpolating process.1113

Therefore, the stochastic integral on this interval can be rewritten as for the θ-RK-2 scheme that1114

ŷRK
sn+1

= ŷRK
sn

+

∫ sn+1

sn

∫

D

νN [µ̂trap](ds, dν)

= ŷRK
sn

+

∫

D

νN [µ̂RK]((sn, sn+1], dν)

= ŷRK
sn

+

∫

D

νP(µ̂RK
sn

(ν)(sn+1 − sn))γ(dν),

and for the θ-Trapezoidal scheme that1115

ŷtrapsn+1
= ŷtrapsn

+

∫ sn+1

sn

∫

D

νN [µ̂trap](ds, dν)

= ŷtrapsn
+

∫

D

νN [µ̂trap]((sn, sn+1], dν)

= ŷtrapsn
+

∫

D

νP(µ̂trap
sn

(ν)(sn+1 − sn))γ(dν),

and the statement follows by taking γ(dν) as the counting measure.1116

Remark C.4 (Remark on Rejection Sampling and Periodicity Assumption). The rejection sampling1117

procedure in both algorithms (Algs. 1 and 2) guarantees well-posedness in the rare scenarios where1118

a large drawn value of Poisson random variables or multiple simultaneous jumps in one coordinate1119

would result in an update out of the state space X = [S]d. To enforce this, we simply allow at most1120

one jump per update across the summation, for example, in the update1121

ŷ∗ρn
← ŷsn +

∑

ν∈D

νP (µ̂sn(ν)θ∆n) ,

as the standard practice in the literature [22, 38]. The indicator function 1µ̂sn>0 in Alg. 1 is also1122

used to ensure that only valid jumps from the current state ŷsn are considered, while in Alg. 2, this1123

is implicitly guaranteed by taking the positive part of α1µ̂
∗
ρn
− α2µ̂sn , which implies the positivity1124

of α1µ̂
∗
ρn

and thus the validity of the jumps ŷ∗ρn
. We point out that the single-jump rule is only1125

a convenient sufficient condition, one should notice that this condition is not necessary for the1126

well-posedness of our algorithms, since our setting of the state space X carries both orderliness1127

and algebraic structure, and thus one could in principle admit multiple simultaneous jumps without1128

ambiguity.1129

Over the full inference process, the total probability of rejection is at most O(κ). Below, we give a1130

brief justification and we refer to Proposition A.14 in [38] for a complete proof of this claim. During1131

the update aforementioned, the probability of at least two jumps occurring is bounded by1132

P

(
∑

ν∈D

P (µ̂sn(ν)θ∆n) > 1

)
= 1− P

(
P

(
∑

ν∈D

µ̂sn(ν)θ∆n

)
≤ 1

)

=1− exp

(
−
∑

ν∈D

µ̂sn(ν)θ∆n

)(
1 +

∑

ν∈D

µ̂sn(ν)θ∆n

)

≲

(
∑

ν∈D

µ̂sn(ν)θ∆n

)2

≲ ∆2
n.

Summing O(∆2
n) over N steps gives

∑N−1
n=0 ∆2

n ≲ κT , and an identical argument applies to the1133

second update in each iteration. Hence, the overall rejection rate is at most O(κ).1134

When we impose periodic boundary conditions, X = [S]d is equipped with a convenient algebraic1135

structure: addition and scalar multiplication are globally well-defined. In that case, Algs. 1 and 21136

match exactly the stochastic integral formulations in Props. C.2 and C.3. This alignment removes1137

the need for per-step rejection, streamlines the application of the change-of-measure argument, and1138

greatly simplifies the convergence proofs of Thms. 5.4 and 5.5. Even without periodicity, those1139

theorems hold with probability at least 1−O(κ), as shown above.1140
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C.2 Convergence Analysis of the θ-Trapezoidal Method1141

Theorem C.5. Let ⃗p0:T−δ and q̂trap0:T−δ be the path measures of the backward process with the1142

stochastic integral formulation (2.4) and the interpolating process (C.5) of the θ-trapezoidal method1143

(Alg. 2), then it holds that1144

DKL( ⃗pT−δ∥q̂
trap
T−δ) ≤ DKL( ⃗p0:T−δ∥q̂

trap
0:T−δ)

≤DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫

D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

]
,

(C.7)

where the intensity µ̂trap is defined in (C.5), and the expectation is taken w.r.t. both paths generated1145

by the backward process (2.4) and the randomness of the Poisson random measure used in the first1146

step of each iteration of the algorithm, i.e., the construction of the intermediate process (C.1), which1147

is assumed to be independent of that of the backward process.1148

Proof. First, we will handle the randomness introduced by the Poisson random measure in the first1149

step of each iteration of the θ-trapezoidal method. For the ease of presentation, we encode the1150

aforementioned randomness as a random variable ζ and suppose it is still supported on the probability1151

space (Ω,F ,P) while being independent of the backward process. Then for each realization of ζ,1152

the intermediate process ŷ∗s is constructed as in (C.1) and the corresponding intensity µ̂∗
s is defined1153

in (C.4).1154

Given the stochastic integral formulation of the backward process (2.4) and the interpolating process1155

of the θ-trapezoidal method (C.5), we have by Thm. B.4 that this particular realization of the path1156

measure q̂trap0:T−δ can be obtained by changing the path measure ⃗p0:T−δ with the Radon-Nikodym1157

derivative1158

Zt

[
µ̂trap

µ

]
= exp

(
−

∫ t

0

∫

D

log
µs(ν)

µ̂trap
s (ν)

N [µ](ds, dν) +

∫ t

0

∫

D

(
µs(ν)− µ̂

trap
s (ν)

)
γ(dν)ds

)
,

i.e.,1159

DKL( ⃗p0:T−δ∥q̂
trap
0:T−δ|ζ) = E

[
logZ−1

T−δ

[
µ̂trap

µ

]]

=E

[∫ T−δ

0

∫

D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

]
.

Then it is easy to see by the data processing inequality and the chain rule of KL divergence that1160

DKL( ⃗pT−δ∥q̂
trap
T−δ) ≤ DKL( ⃗p0:T−δ∥q̂

trap
0:T−δ) ≤ E

[
DKL( ⃗pT−δ∥q̂

trap
T−δ|ζ)

]

=DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫

D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

]
,

and the proof is complete.1161

In the following, we will provide the outline of the proof of Thm. 5.4, where we leave the proof of1162

several lemmas and detailed calculations to App. C.4 for the clarity of presentation.1163

Proof of Thm. 5.4. Throughout this proof, including the subsequent lemmas and propositions that1164

will be detailed in App. C.4, we will assume that (ys)s∈[0,T ] is a process generated by the path1165

measure ⃗p0:T of the backward process with the stochastic integral formulation (2.4) and set it as the1166

underlying paths of the expectation in (C.7) as required by Thm. C.5. Especially, ys ∼ ⃗ps holds for1167

any s ∈ [0, T ]. For simplicity, we will assume that the process ys is left-continuous at each grid point1168

si for i ∈ [0 : N ], which happens with probability one.1169

We first consider the interval (sn, sn+1] for n ∈ [0 : N − 1], and thus we have ⌊s⌋ = sn and ρs = ρn.1170

Within this interval, we will denote its intermediate process as appeared in (C.1) as y∗s , and the1171

corresponding intermediate intensity as appeared in (C.4) as µ̂∗
s . In the following discussion, we will1172

assume implicitly that the processes are conditioned on the filtration Fsn .1173
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By the definition of the intensity µ̂trap(ν) as specified in (C.6)1174

µ̂trap
s = 1s<ρs

µ̂⌊s⌋ + 1s≥ρs

(
α1µ̂

∗
ρs
− α2µ̂⌊s⌋

)
+
,

we can rewrite the corresponding part of the integral in (C.7) as1175

∫ sn+1

sn

∫

D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

=

(∫ ρn

sn

+

∫ sn+1

ρn

)∫

D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

=

∫ ρn

sn

∫

D

(
µs(ν) log

µs(ν)

µ̂sn(ν)
− µs(ν) + µ̂sn(ν)

)
γ(dν)ds

︸ ︷︷ ︸
(I)

+

∫ sn+1

ρn

∫

D

(
µs(ν) log

µs(ν)

α1µ̂∗
ρn
(ν)− α2µ̂sn(ν)

− µs(ν) + α1µ̂
∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

︸ ︷︷ ︸
(II)

,

where the assumption that α1µ̂
∗
ρs
− α2µ̂⌊s⌋ ≥ 0 for all s ∈ [0, T − δ] is applied here for the second1176

term (II) above.1177

Decomposition of the Integral. Next, we decompose the integral (I) and (II) into several terms,1178

the magnitudes of which or combinations of which are to be bounded.1179

(i) The first term is decomposed as1180

(I) = (I.1) + (I.2) + (I.3) + (I.4),

where each term is defined as1181

(I.1) =

∫ ρn

sn

∫

D

(
µsn(ν) log

µsn(ν)

µ̂sn(ν)
− µsn(ν) + µ̂sn(ν)

)
γ(dν)ds,

(I.2) =

∫ ρn

sn

∫

D

(µs(ν) logµs(ν)− µs(ν)− µsn(ν) logµsn(ν) + µsn(ν)) γ(dν)ds,

(I.3) =

∫ ρn

sn

∫

D

(µs(ν)− µsn(ν))
(
log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
− log µ̂sn(ν)

)
γ(dν)ds,

(I.4) =

∫ ρn

sn

∫

D

µsn(ν) log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

−

∫ ρn

sn

∫

D

µs(ν) log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds.

(ii) The second term is decomposed as1182

(II) = (II.1) + (II.2) + (II.3) + (II.4) + (II.5) + (II.6),

where each term is defined as1183

(II.1) = α1

∫ sn+1

ρn

∫

D

(
µρn

(ν) log
µρn

(ν)

µ̂ρn
(ν)
− µρn

(ν) + µ̂ρn
(ν)

)
γ(dν)ds

− α2

∫ sn+1

ρn

∫

D

(
µsn(ν) log

µsn(ν)

µ̂sn(ν)
− µsn(ν) + µ̂sn(ν)

)
γ(dν)ds,

(II.2) =

∫ sn+1

ρn

∫

D

(µs(ν) logµs(ν)− µs(ν)) γ(dν)ds

−

∫ sn+1

ρn

∫

D

(
α1(µρn

(ν) logµρn
(ν)− µρn

(ν))− α2(µsn(ν) logµsn(ν)− µsn(ν))
)
γ(dν)ds,
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(II.3) =

∫ sn+1

ρn

∫

D

α1

(
µ̂∗
ρn
(ν)− µ̂ρn

(ν)
)
γ(dν)ds,

(II.4) =

∫ sn+1

ρn

∫

D

(α1µρn
(ν) log µ̂ρn

(ν)− α2µsn(ν) log µ̂sn(ν)) γ(dν)ds

−

∫ sn+1

ρn

∫

D

(α1µρn
(ν)− α2µsn(ν)) log (α1µ̂ρn

(ν)− α2µ̂sn(ν)) γ(dν)ds,

(II.5) =

∫ sn+1

ρn

∫

D

(α1µρn
(ν)− α2µsn(ν)) log (α1µ̂ρn

(ν)− α2µ̂sn(ν)) γ(dν)ds

−

∫ sn+1

ρn

∫

D

(α1µρn
(ν)− α2µsn(ν)) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds,

(II.6) =

∫ sn+1

ρn

∫

D

(α1µρn
(ν)− α2µsn(ν)) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

−

∫ sn+1

ρn

∫

D

µs(ν) log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds.

Bounding the Error Terms. Then we briefly summarize the intuitions and related techniques1184

used in the bounds of the terms above, and the detailed calculations and proofs of the lemmas and1185

propositions are deferred to App. C.4.1186

(i) Error due to estimation error associated with the intensity: The terms (I.1) and (II.1) are1187

bounded by the assumption on the estimation error of the intensity µ̂s (Assump. 5.3), as1188

E [(I.1) + (II.1)] ≤ θ∆nϵI + α1(1− θ)∆nϵI = θ∆nϵI +
1
2θ∆nϵI ≲ ∆nϵI,

for any θ ∈ (0, 1].1189

The term (II.4) is bounded by Prop. C.9, as1190

E [(II.4)] ≲ ∆nϵII,

where Jensen’s inequality is applied here based on the convexity of the loss.1191

(ii) Error related to the smoothness of intensity: By Cor. C.13, the terms (I.2) and (II.2) are1192

bounded by1193

E [(I.2) + (II.2)] ≤ ∆3
n.

By Cor. C.14, the terms (I.4) and (II.6) are bounded by1194

E [(I.4) + (II.6)] ≤ ∆3
n.

Intuitively, the bounds on these terms closely relate to the properties of the jump process and1195

quantify the smoothness assumption on the intensity µs (Assump. 5.2), especially when the1196

intensity does not vary significantly within the interval (sn, sn+1]. The main technique used1197

for bounding these terms is Dynkin’s Formula (Thm. C.10). The third-order accuracy here1198

directly follows from the intuition provided in Sec. 4 based on numerical quadrature.1199

(iii) Error involving the intermediate process: The terms (II.3) and (II.5) are bounded by Prop. C.181200

and Cor. C.19 respectively as follows1201

E [(II.3)] ≲ ∆3
n +∆2

nϵII, and E [(II.5)] ≲ ∆3
n +∆2

nϵII,

The term (I.3) is bounded by Prop. C.20 as below1202

E [(I.3)] ≲ ∆3
n.

The three terms above all involve the intermediate process y∗s and the corresponding intermedi-1203

ate density µ̂∗
s .1204
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In conclusion, by summing up all these terms, we have1205

∫ sn+1

sn

∫

D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

≲∆n(ϵI + ϵII) + ∆3
n +∆2

nϵII ≲ ∆n(ϵI + ϵII) + ∆3
n.

Therefore, the overall error is bounded by first applying Thm. C.5 and then the upper bound derived1206

above to each interval (sn, sn+1], which yields1207

DKL( ⃗pT−δ∥q̂
trap
T−δ)

≤DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫

D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

]

≲DKL( ⃗p0∥q̂0) +
N−1∑

n=0

(
∆n(ϵI + ϵII) + ∆3

n

)

≲ exp(−T ) + T (ϵI + ϵII) + κ2T,

as desired.1208

Remark C.6 (Discussion on the Positivity Assumption). In the following, we will take the positivity
assumption in Thm. 5.4 as an example, and the case of the θ-RK-2 method is similar. In the statement
of Thm. 5.4, we have assumed that

α1µ̂
∗
ρs
(ν)− α2µ̂⌊s⌋(ν) ≥ 0

in (C.6) for all s ∈ [0, T −δ], which allows us to replace
(
α1µ̂

∗
ρs
(ν)− α2µ̂⌊s⌋(ν)

)
+

by the difference1209

itself. [25] showed that this approximation is at most of O(∆3
n) within the corresponding interval,1210

and [26] further proved that for any order p ≥ 1, there exists a sufficiently small step size ∆ such1211

that this approximation is at least p-th order, i.e., of order O(∆p) for that step.1212

We give a brief justification of this assumption here. We consider the expectation of the difference1213

itself, which is given by1214

E
[
α1µ̂

∗
ρs
(ν)− α2µ̂⌊s⌋(ν)

]
= E

[
µ̂⌊s⌋(ν) + α1

(
µ̂∗
ρs
(ν)− µ̂ρs

(ν)
)
+ α1

(
µ̂ρs

(ν)− µ̂⌊s⌋(ν)
)]

≳1− α1(κϵII + κ) = 1−O(κ),

where we used E
[
|µ̂∗

ρs
(ν)− µ̂ρs

(ν)|
]

≲ κϵII, as established in Eq. (C.17) and1215

E
[
|µ̂ρs

(ν)− µ̂⌊s⌋(ν)|
]
≲ κ, as shown in Eq. (C.18). Therefore, as long as the step sizes ∆n1216

are sufficiently small, the positivity assumption is valid in the sense that the expectation of the1217

difference is at least 1−O(κ).1218

C.3 Convergence Analysis of the θ-RK-2 Method1219

Here we may again apply the data processing inequality and the chain rule of KL divergence to upper1220

bound the error associated with the θ-RK-2 method. A statement of the upper bound is provided1221

in Thm. C.7 below, whose proof is omitted here since it is similar to that of Thm. C.5 above.1222

Theorem C.7. Let ⃗p0:T−δ and q̂RK
0:T−δ be the path measures of the backward process with the1223

stochastic integral formulation (2.4) and the interpolating process (C.2) of the θ-RK-2 method (1224

Alg. 1), then it holds that1225

DKL( ⃗pT−δ∥q̂
RK
T−δ) ≤ DKL( ⃗p0:T−δ∥q̂

RK
0:T−δ)

≤DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫

D

(
µs(ν) log

µs(ν)

µ̂RK
s (ν)

− µs(ν) + µ̂RK
s (ν)

)
γ(dν)ds

]
,

(C.8)

where the intensity µ̂RK is defined in (C.2), and the expectation is taken w.r.t. both paths generated1226

by the backward process (2.4) and the randomness of the Poisson random measure used in the first1227

step of each iteration of the algorithm, i.e., the construction of the intermediate process (C.1), which1228

is assumed to be independent of that of the backward process.1229
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Following the same flow as in the proof of Thm. 5.4, we will first provide an outline of the proof1230

of Thm. 5.5, and defer the proof of several key lemmas and detailed calculations to App. C.4 for the1231

clarity of presentation. We will also comment on the differences that may lead to the less desirable1232

numerical properties of the θ-RK-2 method.1233

Proof of Thm. 5.5. In the following proof sketch, we will be using the same notation as in the proof1234

of Thm. 5.4, and we will assume that the process ys is left-continuous at each grid point si for1235

i ∈ [0 : N ]. We also start by taking a closer look at the integral within each interval (sn, sn+1] for1236

n ∈ [0 : N−1], and denote the intermediate process as appeared in (C.1) as y∗s and the corresponding1237

intermediate intensity as appeared in (C.4) as µ̂∗
s .1238

As defined in (C.3), the intensity µ̂RK(ν) is given by1239

µ̂RK
s (ν) =

(
1− 1

2θ

)
µ̂⌊s⌋(ν) +

1
2θ µ̂

∗
ρs
(ν),

which helps us rewrite the corresponding part of the integral in (C.8) as1240

∫ sn+1

sn

∫

D

(
µs(ν) log

µs(ν)

µ̂RK
s (ν)

− µs(ν) + µ̂RK
s (ν)

)
γ(dν)ds

=

∫ sn+1

sn

∫

D(
µs(ν) log

µs(ν)

(1− 1
2θ )µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)
− µs(ν) +

(
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)

)
γ(dν)ds

︸ ︷︷ ︸
(III)

.

Above we again use the positivity assumption that (1 − 1
2θ )µ̂⌊s⌋ +

1
2θ µ̂

∗
ρs
≥ 0 for the term (III)1241

above, just as what we have done in the proof and discussion of Thm. 5.4 above.1242

Decomposition of the Integral. Then we perform a similar decomposition of the integral as in the1243

proof of Thm. 5.4 as follows:1244

(III) = (III.1) + (III.2) + (III.3) + (III.4) + (III.5) + (III.6),

where each term is defined as1245

(III.1) =
(
1− 1

2θ

) ∫ sn+1

sn

∫

D

(
µsn(ν) log

(
µsn(ν)

µ̂sn(ν)

)
− µsn(ν) + µ̂sn(ν)

)
γ(dν)ds

+ 1
2θ

∫ sn+1

sn

∫

D

(
µρn

(ν) log

(
µρn

(ν)

µ̂ρn
(ν)

)
− µρn

(ν) + µ̂ρn
(ν)

)
γ(dν)ds,

(III.2) =

∫ sn+1

sn

∫

D

(µs(ν) logµs(ν)− µs(ν)) γ(dν)ds

−

∫ sn+1

sn

∫

D

((
1− 1

2θ

)
(µsn(ν) logµsn(ν)− µsn) +

1
2θ (µρn

(ν) logµρn
(ν)− µρn

(ν))
)
γ(dν)ds,

(III.3) =

∫ sn+1

sn

∫

D

1
2θ

(
µ̂∗
ρn
(ν)− µ̂ρn

(ν)
)
γ(dν)ds,

(III.4) =

∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µsn(ν) log µ̂sn(ν) +

1
2θµρn

(ν) log µ̂ρn
(ν)
)
γ(dν)ds

−

∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µsn(ν) +

1
2θµρn

(ν)
)
log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂ρn

(ν)
)
γ(dν)ds,

(III.5) =

∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µsn(ν) +

1
2θµρn

(ν)
)
log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂ρn

(ν)
)
γ(dν)ds

−

∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µsn(ν) +

1
2θµρn

(ν)
)
log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)
)
γ(dν)ds,

(III.6) =

∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µsn(ν) +

1
2θµρn

(ν)
)
log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)
)
γ(dν)ds
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−

∫ sn+1

sn

∫

D

µs(ν) log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)
)
γ(dν)ds.

Bounding the Error Terms. Then we briefly summarize the intuitions and related techniques used1246

in the bound of the terms above,. Detailed calculations and proofs of the lemmas and propositions1247

used here are deferred to App. C.4.1248

(i) Error due to the intensity estimation: The terms in (III.1) are bounded by the assumption on1249

the estimation error of the intensity µ̂s (Assump. 5.3) as follows1250

E [(III.1)] ≤
(
1− 1

2θ

)
∆nϵI +

1
2θ∆nϵI = ∆nϵI,

for any θ ∈ (0, 1].1251

(ii) Error related to the smoothness of intensity: By Cor. C.16 and Cor. C.17, the terms (III.2) and1252

(III.6) are bounded by1253

E [(III.2)] ≤ ∆3
n, and E [(III.6)] ≤ ∆3

n,

respectively.1254

(iii) Error involving the intermediate process: The term (III.3) and (III.5) are bounded in almost1255

the same way as that of Prop. C.18 and Cor. C.19. By simply altering the integral upper limits,1256

we obtain that1257

E [(III.3)] ≲ ∆3
n +∆2

nϵII, E [(III.5)] ≲ ∆3
n +∆2

nϵII.

The only term that cannot be directly bounded based on results in App. C.4 is (III.4), which is given1258

by1259

E [(III.4)] = E

[ ∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µsn(ν) log µ̂sn(ν) +

1
2θµρn

(ν) log µ̂ρn
(ν)
)
γ(dν)ds

−

∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µsn(ν) +

1
2θµρn

(ν)
)
log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂ρn

(ν)
)
γ(dν)ds

]

(C.9)
Recall that in the proof of its counterpart (Prop. C.9), we utilized the convexity of the loss function and1260

the extrapolation nature of the second step in the θ-trapezoidal method (C.6) to bound the error term.1261

However, the same technique cannot be directly applied to the θ-RK-2 method for any θ ∈ [0, 1], as1262

the intensity µ̂RK
s is an interpolation of the intensity µ̂s when θ ∈ ( 12 , 1]. Therefore, below we will1263

first focus on the case when θ ∈ (0, 12 ].1264

To be specific, by the assumption on the estimation error (Assump. 5.3), we can reduce (C.9) to1265

E

[ ∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µ̂sn(ν) log µ̂sn(ν) +

1
2θµρn

(ν) log µ̂ρn
(ν)
)

−

∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂ρn

(ν)
)
log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂ρn

(ν)
)
γ(dν)ds

]
,

(C.10)
which can then be upper bounded based on Jensen’s inequality and the convexity of the loss function1266

for θ ∈ (0, 12 ].1267

Summing up the bounds of the terms above, we have1268

∫ sn+1

sn

∫

D

(
µs(ν) log

µs(ν)

µ̂RK
s (ν)

− µs(ν) + µ̂RK
s (ν)

)
γ(dν)ds

≲∆n(ϵI + ϵII) + ∆3
n +∆2

nϵII ≲ ∆n(ϵI + ϵII) + ∆3
n,
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Consequentially, the overall error of the θ-RK-2 method is bounded by1269

DKL( ⃗pT−δ∥q̂
RK
T−δ)

≤ DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫

D

(
µs(ν) log

µs(ν)

µ̂RK
s (ν)

− µs(ν) + µ̂RK
s (ν)

)
γ(dν)ds

]

≲ DKL( ⃗p0∥q̂0) +

N−1∑

n=0

(
∆n(ϵI + ϵII) + ∆3

n

)

≲ exp(−T ) + T (ϵI + ϵII) + κ2T,

which suggests that the θ-RK-2 is also of second order when θ ∈ (0, 12 ]. For the other case when1270

θ ∈ ( 12 , 1], we will provide a brief discussion in the remark below.1271

Remark C.8 (Discussions on the case when θ ∈ ( 12 , 1]). For θ ∈ ( 12 , 1], the term (C.10) is positive1272

and thus not necessarily bounded. One may wonder if, despite being positive, this term is still of1273

at least second order. However, the answer seems negative. By applying the Dynkin’s formula1274

(Thm. C.10 and Cor. C.11) to µs log µ̂s in the term (III.4), we have that the first integral in (C.9) can1275

be expanded as follows1276

E

[∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µsn(ν) log µ̂sn(ν) +

1
2θµρn

(ν) log µ̂ρn
(ν)
)
γ(dν)ds

]

= 1
2θ

∫ sn+1

sn

∫

D

(µsn(ν) log µ̂sn(ν) + θ∆nL (µsn(ν) log µ̂sn(ν))) γ(dν)ds

+
(
1− 1

2θ

) ∫ sn+1

sn

∫

D

µsn(ν) log µ̂sn(ν)γ(dν)ds+O(∆
2
n)

=∆n

∫

D

µsn(ν) log µ̂sn(ν)γ(dν) +
1

2
∆2

n

∫

D

L (µsn(ν) log µ̂sn(ν)) γ(dν) +O(∆
3
n).

Similarly, applying Dynkin’s formula to the following function1277

Gs(ν, ys−) =
(

1
2θµs(ν, ys−) +

(
1− 1

2θ

)
µsn(ν, ys−)

)
log
(

1
2θ µ̂s(ν, ys−) +

(
1− 1

2θ

)
µ̂sn(ν, ys−)

)
,

with G0(ν, ysn) = µsn(ν, ysn) log µ̂sn(ν, ysn) allows us to expand the second integral in (C.9) as1278

below1279

E

[∫ sn+1

sn

∫

D

(
1
2θµρn

(ν) +
(
1− 1

2θ

)
µsn(ν)

)
log
(

1
2θ µ̂ρn

(ν) +
(
1− 1

2θ

)
µ̂sn(ν)

)
γ(dν)ds

]

=∆n

∫

D

Gsn(ysn)γ(dν) + θ∆2
n

∫

D

LGsn(ysn)γ(dν) +O(∆
3
n),
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where1280

LGsn(ν, ysn)

= 1
2θ∂sµsn(ν, ysn) log µ̂sn(ν, ysn) +

1
2θµsn(ν, ysn)

1
2θ

∂sµ̂sn(ν, ysn)

µ̂sn(ν, ysn)

+ 1
2θ

∫

D

µsn(ν, ysn + ν′) log
(

1
2θ µ̂s(ν, ysn + ν′) +

(
1− 1

2θ

)
µ̂sn(ν, ysn + ν′)

)
γ(dν′)

− 1
2θ

∫

D

µsn(ν, ysn) log µ̂sn(ν, ysn)γ(dν
′)

+
(
1− 1

2θ

)
µsn(ν, ysn)

1
2θ

∂sµ̂sn(ν, ysn)

µ̂sn(ν, ysn)

+
(
1− 1

2θ

) ∫

D

µsn(ν, ysn + ν′) log
(

1
2θ µ̂s(ν, ysn + ν′) +

(
1− 1

2θ

)
µ̂sn(ν, ysn + ν′)

)
γ(dν′)

−
(
1− 1

2θ

) ∫

D

µsn(ν, ysn) log µ̂sn(ν, ysn)γ(dν
′)

= 1
2θ∂sµsn(ν, ysn) log µ̂sn(ν, ysn) +

1
2θµsn(ν, ysn)

∂sµ̂sn(ν, ysn)

µ̂sn(ν, ysn)

+ 1
2θ

∫

D

µsn(ν, ysn + ν′) log µ̂s(ν, ysn + ν′)γ(dν′)

+
(
1− 1

2θ

) ∫

D

µsn(ν, ysn + ν′) log µ̂s(ν, ysn + ν′)γ(dν′)

− 1
2θ

∫

D

µsn(ν, ysn) log µ̂sn(ν, ysn)γ(dν
′)−

(
1− 1

2θ

) ∫

D

µsn(ν, ysn) log µ̂sn(ν, ysn)γ(dν
′).

This further implies that1281

θLGsn(ysn) =
1

2
L (µsn(ν) log µ̂sn(ν))

+ 1
2θ

∫

D

(µsn(ν, ysn + ν′) log µ̂s(ν, ysn + ν′)− µsn(ν, ysn) log µ̂sn(ν, ysn)) γ(dν
′).

Comparing the first and second order terms in the two expansions of the two integrals in (C.9) above1282

then implies that the term (III.4) is of at most second order.1283

C.4 Lemmas and Propositions1284

In this section, we provide the detailed proofs of the lemmas and propositions omitted in the proof1285

of Thm. 5.4 and Thm. 5.5.1286

Error due to the Intensity Estimation. Apart from the terms (I.1) and (II.1) in the proof1287

of Thm. 5.4 and the term (III.1) in the proof of Thm. 5.5, we also need to bound the error terms1288

(II.4) in terms of the intensity estimation error, which is given by the following proposition. Notably,1289

the following bound also utilizes the convexity of the loss function and the extrapolation nature of the1290

second step in the θ-trapezoidal method (C.6).1291

Proposition C.9. For the interval (sn, sn+1] for n ∈ [0 : N − 1], we have the following error bound:1292

E [(II.4)] =E

[ ∫ sn+1

ρn

∫

D

(α1µρn
(ν) log µ̂ρn

(ν)− α2µsn(ν) log µ̂sn(ν)) γ(dν)ds

−

∫ sn+1

ρn

∫

D

(α1µρn
(ν)− α2µsn(ν)) log (α1µ̂ρn

(ν)− α2µ̂sn(ν)) γ(dν)ds

]

≲∆nϵII.

(C.11)

1293
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Proof. We first define and bound three error terms (II.4.1), (II.4.2), and (II.4.3) with score estima-1294

tion error (Assump. 5.3) as follows:1295

E [|(II.4.1)|] =E

[∣∣∣∣
∫ sn+1

ρn

∫

D

α1 (µρn
(ν) log µ̂ρn

(ν)− µ̂ρn
(ν) log µ̂ρn

(ν)) γ(dν)ds

∣∣∣∣
]

≤α1E

[∫ sn+1

ρn

∫

D

|µρn
(ν)− µ̂ρn

(ν)| |log µ̂ρn
(ν)| γ(dν)ds

]

≲E

[∫ sn+1

ρn

∫

D

|µρn
(ν)− µ̂ρn

(ν)| γ(dν)ds

]
≲ ∆nϵII,

Similarly, we also have1296

E [|(II.4.2)|] = E

[∣∣∣∣
∫ sn+1

ρn

∫

D

α2 (µsn(ν) log µ̂sn(ν)− µ̂sn(ν) log µ̂sn(ν)) γ(dν)ds

∣∣∣∣
]
≲ ∆nϵII,

and1297

E [|(II.4.3)|] =E

[∣∣∣∣
∫ sn+1

ρn

∫

D

(α1µρn
(ν)− α2µsn(ν)) log (α1µ̂ρn

(ν)− α2µ̂sn(ν)) γ(dν)ds

−

∫ sn+1

ρn

∫

D

(α1µ̂ρn
(ν)− α2µ̂sn(ν)) log (α1µ̂ρn

(ν)− α2µ̂sn(ν)) γ(dν)ds

∣∣∣∣
]

≲∆nϵII.

The remaining term (II.4.4) = (II.4)− (II.4.1)− (II.4.2)− (II.4.3) is then given by1298

(II.4.4) =

∫ sn+1

ρn

∫

D

(α1µ̂ρn
(ν) log µ̂ρn

(ν)− α2µ̂sn(ν) log µ̂sn(ν)) γ(dν)ds

−

∫ sn+1

ρn

∫

D

(α1µ̂ρn
(ν)− α2µ̂sn(ν)) log (α1µ̂ρn

(ν)− α2µ̂sn(ν)) γ(dν)ds ≤ 0,

where the last inequality follows from Jensen’s inequality, i.e.,1299

α1x log x− α2y log y ≤ (α1x− α2y) log(α1x− α2y),

for α1, α2 ≥ 0 and α1 − α2 = 1. Therefore, by summing up the terms above, we have1300

E [(II.4)] ≤ E [(II.4.1) + (II.4.2) + (II.4.3) + (II.4.4)] ≲ ∆nϵII,

and the proof is complete.1301

Error Related to the Smoothness of Intensity. Below we first present the Dynkin’s formula,1302

which is the most essential tool for the proof of the error related to the smoothness of the intensity.1303

Theorem C.10 (Dynkin’s Formula). Let (yt)t∈[0,τ ] be the following process:1304

yt = y0 +

∫ t

0

∫

D

νN [µ](ds, dν),

where N [µ](ds, dν) is a Poisson random measure with intensity µ of the form µs(ν, ys−). For any1305

f ∈ C1([0, τ ]× X), we define the generator of the process (yt)t∈[0,τ ] as below1306

Lft(y) = lim
τ→0+

[
ft+τ (yt+τ )− ft(yt)

τ

∣∣∣∣yt = y

]
= ∂tft(y)+

∫

D

(ft(y + ν)− ft(y))µt(ν, y)γ(dν).

(C.12)
Then we have that1307

E [ft(yt)] = f0(y0) + E

[∫ t

0

Lfs(ys)ds

]
.

1308
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Proof. The definition and the form of the generator L, as well as the Dynkin’s formula are all1309

well-known in the literature of jump processes. We refer readers to detailed discussions on these1310

topics in [214].1311

Here we take X(t) = (t, yt), z = (ν, ξ), α(t,X(t)) = 0, σ(t,X(t)) = 0, γ(t,X(t−), z) =1312

ν10≤ξ≤µt(ν,yt−
) in the statement of Thm. 1.19 in [214] and replace the compensated Poisson random1313

measure Ñ(dt, dz) with the Poisson random measure N(ds, dν, dξ) defined as Rmk. B.3. Then we1314

are allowed to use the ordinary Poisson random measure instead of the compensated one since we are1315

working with a finite measure γ(dν).1316

From Thm. 1.22 in [214], we have that1317

Lft(y) = ∂tft(y) +

∫

D

∫

R

(
ft(y + ν10≤ξ≤µt(ν,y))− ft(y)

)
γ(dν)dξ

= ∂tft(y) +

∫

D

(ft(y + ν)− ft(y))µt(ν, y)γ(dν),

and the proof is complete.1318

In many cases below, we will need the following first-order expansion of the expectation of the1319

function ft(yt) by assuming the second-order smoothness of the function f .1320

Corollary C.11. Suppose that the process (yt)t∈[0,τ ] and the generator L are defined as in Thm. C.10.1321

If we further assume that f ∈ C2([0, τ ]× X), then it holds that1322

E [ft(yt)] = f0(y0) + tLf0(y0) +O(t
2).

1323

Proof. We expand the function fs(ys) from t = 0 as follows1324

E [ft(yt)] =f0(y0) + E

[∫ t

0

Lfs(ys)ds

]

=f0(y0) + E

[∫ t

0

L

(
f0(y0) +

∫ s

0

Lfσ(yσ)dσ

)
ds

]

=f0(y0) + Lf0(y0)t+ E

[∫ t

0

∫ s

0

L2fσ(yσ)dσds

]
,

where L2 is the second-order generator of the process (yt)t∈[0,τ ] defined as follows1325

L2fσ(y) = L

(
∂σfσ(y) +

∫

D

(fσ(y + ν)− fσ(y))µσ(ν)γ(dν)

)

= ∂2σfσ(y) + 2

∫

D

(∂σfσ(y + ν)− ∂σfσ(y))µσ(ν)γ(dν)

+

∫

D

(fσ(y + ν)− fσ(y)) ∂σµσ(ν)γ(dν)

+

∫

D

∫

D

(
fσ(y + ν + ν′)− fσ(y + ν′)− fσ(y + ν) + fσ(y)

)
µσ(ν)µσ(ν

′)γ(dν)γ(dν′),

which is bounded uniformly by a constant based on the assumption on the smoothness of the function1326

f up to the second order and the boundedness of the measure γ(dν). Therefore, the second-order1327

term above is of magnitude O(t2), and the proof is complete.1328

The following lemma provides a general recipe for bounding a combination of errors, which resembles1329

standard analysis performed for numerical quadratures. In fact, the following lemma can be easily1330

proved by Taylor expansion when the process (yt)t∈[0,τ ] is constant, i.e., yt ≡ y. Cor. C.11 offers an1331

analogous approach to perform the expansion when the process (yt)t∈[0,τ ] is not constant.1332
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Lemma C.12. For any function f ∈ C2([0, τ ]×X) and the true backward process (yt)t∈[0,τ ] defined1333

in (2.4), it holds that1334 ∣∣∣∣∣E
[∫ θτ

0

f0(y0)ds+

∫ τ

θτ

(α1fθτ (yθτ )− α2f0(y0)) ds−

∫ τ

0

fs(ys)ds

]∣∣∣∣∣ ≲ τ3.

1335

Proof. Let L be the generator defined in Thm. C.10. By applying the Dynkin’s formula (Thm. C.101336

and Cor. C.11) to the function ft(yt) and plugging in the expression of the generator L, we have that1337

E

[∫ θτ

0

f0(y0)ds− α2

∫ τ

θτ

f0(y0)ds+ α1

∫ τ

θτ

fθτ (yθτ )ds−

∫ τ

0

fs(ys)ds

]

=θτf0(y0)− α2(1− θ)τf0(y0) + α1(1− θ)τ (f0(y0) + θτLf0(y0))

−

∫ τ

0

(f0(y0) + sLf0(y0)) ds+O(τ
3)

= (θ − α2(1− θ) + α1(1− θ)− 1) τf0(y0) + α1(1− θ)θτ
2Lf0(y0)−

τ2

2
Lf0(y0) +O(τ

3),

which is of the order O(τ3) by noticing that1338

θ − α2(1− θ) + α1(1− θ)− 1 =
(

1
2θ(1−θ) −

θ2+(1−θ)2

2θ(1−θ)

)
(1− θ)− (1− θ) = 0

α1(1− θ)θ −
1
2 = 1

2θ(1−θ) (1− θ)θ −
1
2 = 0,

and the proof is complete.1339

We remark that in Thm. C.10, Cor. C.11, and Lem. C.12, the smoothness of the function f implies1340

that its derivatives up to the relevant order are bounded by constants independent of the time step τ .1341

This condition is verified in the subsequent proofs.1342

Then we are ready to bound some of the error terms in the proof of Thm. 5.4 with Lem. C.12.1343

Corollary C.13. For the interval (sn, sn+1] for n ∈ [0 : N − 1], we have the following error bound:1344

|E [(I.2) + (II.2)]|

=

∣∣∣∣E
[ ∫ sn+1

sn

∫

D

(µs(ν) logµs(ν)− µs(ν)) γ(dν)ds

−

∫ ρn

sn

∫

D

(µsn(ν) logµsn(ν) + µsn(ν)) γ(dν)ds

−

∫ sn+1

ρn

∫

D

(
α1(µρn

(ν) logµρn
(ν)− µρn

(ν))− α2(µsn(ν) logµsn(ν)− µsn(ν))
)
γ(dν)ds

]∣∣∣∣

≲∆3
n.

1345

Proof. The bound is obtained by applying Lem. C.12 with f being the function

fs(ys) =

∫

D

µs(ν) logµs(ν)γ(dν),

Strictly speaking, fs(ys) is actually in the form of fs(ys−), but the argument can be easily extended1346

to this case by assuming time continuity of the function f .1347

Corollary C.14. For the interval (sn, sn+1] for n ∈ [0 : N − 1], we have the following error bound:1348

|E [(I.4) + (II.6)]|

=

∣∣∣∣E
[ ∫ ρn

sn

∫

D

µsn(ν) log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

+

∫ sn+1

ρn

∫

D

(α1µρn
(ν)− α2µsn(ν)) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

−

∫ sn+1

sn

∫

D

µs(ν) log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

]∣∣∣∣ ≲ ∆3
n.

1349
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Proof. Note that the intermediate process y∗s defined in (C.1) is driven by a Poisson random mea-1350

sure that is independent of the Poisson random measure driving the process ys within the interval1351

(sn, sn+1]. Therefore, the error bound is obtained by1352

(1) Taking the expectation w.r.t. the intermediate process y∗s and thus the intermediate intensity1353

µ̂∗
s , and1354

(2) Then applying Lem. C.12 with f being the following function

fs(ys) =

∫

D

µs(ν)E
[
log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)]
γ(dν).

The result follows directly.1355

Now we turn to the error term (III.6) in Thm. 5.5, for which we need the following variant1356

of Lem. C.12.1357

Lemma C.15. For any function f ∈ C2([0, τ ]×X) and the true backward process (yt)t∈[0,τ ] defined1358

in (2.4), it holds that1359 ∣∣∣∣E
[∫ τ

0

((
1− 1

2θ

)
f0(y0) +

1
2θfθτ (yθτ )

)
ds−

∫ τ

0

fs(ys)ds

]∣∣∣∣ ≲ τ3.

1360

Proof. The proof is similar to that of Lem. C.12. Specifically, we let L be the generator defined1361

in Thm. C.10, apply the Dynkin’s formula (Thm. C.10 and Cor. C.11) to the function ft(yt) and plug1362

in the expression of the generator L, which yields1363

E

[∫ τ

0

((
1− 1

2θ

)
f0(y0) +

1
2θfθτ (yθτ )

)
ds−

∫ τ

0

fs(ys)ds

]

=
(
1− 1

2θ

)
τf0(y0) +

1
2θ

∫ τ

0

(f0(y0) + θτLf0(y0)) ds−

∫ τ

0

(f0(y0) + sLf0(y0)) ds+O(τ
3)

=O(τ3),

as desired.1364

Corollary C.16. For the interval (sn, sn+1] for n ∈ [0 : N − 1], we have the following error bound:1365

|E [(III.2)]|

=

∣∣∣∣E
[ ∫ sn+1

sn

∫

D

(µs(ν) logµs(ν)− µs(ν)) γ(dν)ds

−

∫ sn+1

sn

∫

D

((
1− 1

2θ

)
(µsn(ν) logµsn(ν)− µsn) +

1
2θ (µρn

(ν) logµρn
(ν)− µρn

(ν))
)
γ(dν)ds

]∣∣∣∣

≲ ∆3
n.

1366

Proof. By applying Lem. C.15 with f being the function1367

fs(ys) =

∫

D

µs(ν) logµs(ν)γ(dν),

we have that the result follows directly.1368

Corollary C.17. For any n ∈ [0 : N − 1] and the corresponding interval (sn, sn+1], we have the1369

following error bound:1370

|E [(III.6)]|

=

∣∣∣∣E
[ ∫ sn+1

sn

∫

D

((
1− 1

2θ

)
µsn(ν) +

1
2θµρn

(ν)
)
log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)
)
γ(dν)ds

−

∫ sn+1

sn

∫

D

µs(ν) log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)
)
γ(dν)ds

]∣∣∣∣ ≲ ∆3
n.

1371
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Proof. Following the arguments in the proof of Cor. C.14, the error bound is obtained by first taking1372

the expectation w.r.t. the intermediate process y∗s and thus the intermediate intensity µ̂∗
s , and then1373

applying Lem. C.15 with f being the function1374

fs(ys) =

∫

D

µs(ν)E
[
log
((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)
)]
γ(dν),

as desired.1375

Error involving the Intermediate Process.1376

Proposition C.18. For the interval (sn, sn+1] with n ∈ [0 : N − 1], we have the following error1377

bound:1378

E [(II.3)] = E

[∫ sn+1

ρn

∫

D

(
µ̂∗
ρn
(ν)− µ̂ρn

(ν)
)
γ(dν)ds

]
≲ ∆3

n +∆2
nϵII.

1379

Proof. First, we rewrite the error term (II.3) as1380

E [(II.3)] = E

[∫ sn+1

ρn

∫

D

(
µ̂∗
ρn
(ν)− µ̂ρn

(ν)
)
γ(dν)ds

]

≲

∫ sn+1

ρn

∫

D

(
E
[
µ̂∗
ρn
(ν)
]
− E [µ̂ρn

(ν)]
)
γ(dν)ds.

(C.13)

Then we expand the integrand by applying the Dynkin’s formula (Thm. C.10 and Cor. C.11) to the1381

function µ̂s(ν) w.r.t. the intermediate process (y∗s )s∈[sn,ρn] and the process (ys)s∈[sn,ρn] respectively1382

as follows1383

E
[
µ̂∗
ρn
(ν)
]
− E [µ̂ρn

(ν)]

=E
[
µ̂sn(ν) + L

∗µ̂sn(ν)∆n +O(∆2
n)
]
− E

[
µ̂sn(ν) + Lµ̂sn(ν)∆n +O(∆2

n)
]

=E [(L∗ − L)µ̂sn(ν)∆n] +O(∆
2
n),

where the generators L∗ and L are defined as in (C.12) w.r.t. the processes (y∗s )s∈[sn,ρn] and1384

(ys)s∈[sn,ρn], respectively, i.e., for any function f ∈ C1([sn, ρn]× X), we have1385

L∗fs(y) = ∂sfs(y) +

∫

D

(fs(y + ν)− fs(y)) µ̂sn(ν)γ(dν),

Lfs(y) = ∂sfs(y) +

∫

D

(fs(y + ν)− fs(y))µs(ν)γ(dν).

(C.14)

Therefore, for the term E [|(L∗ − L)µ̂sn(ν)|] evaluated at s = sn, we have1386

E [|(L∗ − L)µ̂sn(ν)|] = E

[∣∣∣∣
∫

D

(µ̂sn(y + ν)− µ̂sn(y)) (µ̂sn(ν)− µsn(ν)) γ(dν)

∣∣∣∣
]

≲ E

[∫

D

|µ̂sn(ν)− µsn(ν)| γ(dν)

]
≲ ϵII,

(C.15)

where we used the assumption on the estimation error (Assump. 5.3) in the last inequality. Then we1387

can further reduce (C.13) to1388

∫ sn+1

ρn

∫

D

(
E
[
µ̂∗
ρn
(ν)
]
− E [µ̂ρn

(ν)]
)
γ(dν)ds ≲

∫ sn+1

ρn

(
ϵII∆n +O(∆2

n)
)
ds ≲ ϵII∆

2
n +∆3

n,

and the proof is complete.1389

Corollary C.19. For the interval (sn, sn+1] for n ∈ [0 : N − 1], we have the following error bound:1390

E [(II.5)] =E

[ ∫ sn+1

ρn

∫

D

(α1µρn
(ν)− α2µsn(ν)) log (α1µ̂ρn

(ν)− α2µ̂sn(ν)) γ(dν)ds

−

∫ sn+1

ρn

∫

D

(α1µρn
(ν)− α2µsn(ν)) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

]

≲∆3
n +∆2

nϵII.
1391
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Proof. Since the two integrands in (II.5) only differ by replacing µ̂∗
ρn
(ν) with µ̂ρn

(ν), we have the1392

following upper bound by using the assumption on the boundedness of the intensities (Assump. 5.21393

(II))1394

E [(II.5)]

≲E

[∫ sn+1

ρn

∫

D

|α1µρn
(ν)− α2µsn(ν)|

1

α1µ̂ρn
(ν)− α2µ̂sn(ν)

α1

∣∣µ̂ρn
(ν)− µ̂∗

ρn
(ν)
∣∣ γ(dν)ds

]

≲E

[∫ sn+1

ρn

∫

D

∣∣µ̂ρn
(ν)− µ̂∗

ρn
(ν)
∣∣ γ(dν)ds

]

≲∆nE

[∫

D

∣∣µ̂ρn
(ν)− µ̂∗

ρn
(ν)
∣∣
]
γ(dν)

(C.16)
Applying the same arguments as in Prop. C.18, which uses the generators L and L∗ defined in (C.14),1395

we can bound the RHS above as follows1396

E
[∣∣µ̂∗

ρn
(ν)− µ̂ρn

(ν)
∣∣]

=E
[∣∣(µ̂sn(ν) + L

∗µ̂sn(ν)∆n +O(∆2
n)
)
−
(
µ̂sn(ν) + Lµ̂sn(ν)∆n +O(∆2

n)
)∣∣]

≲∆nE [|(L∗ − L)µ̂sn(ν)|] +O(∆
2
n) ≲ ∆nϵII +O(∆

2
n)

(C.17)

where the last inequality follows from (C.15). Substituting (C.17) into (C.16) then yields the desired1397

upper bound.1398

Proposition C.20. For the interval (sn, sn+1] with n ∈ [0 : N − 1], we have the following error1399

bound:1400

E [(I.3)] =E

[∫ ρn

sn

∫

D

(µs(ν)− µsn(ν))
(
log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
− log µ̂sn(ν)

)
γ(dν)ds

]

≲∆3
n.

1401

Proof. First, we observe by Dynkin’s formula (Thm. C.10) that1402

E [|µs(ν)− µsn(ν)|] = E

[∣∣∣∣
∫ s

sn

Lµsnds+O(∆
2
n)

∣∣∣∣
]
≲ ∆n,

and also1403

E [|µ̂s(ν)− µ̂sn(ν)|] = E

[∣∣∣∣
∫ s

sn

L∗µ̂snds+O(∆
2
n)

∣∣∣∣
]
≲ ∆n. (C.18)

Secondly, applying the given assumption (Assump. 5.2 (II)) on the boundedness of the intensities1404

yields1405

E
[∣∣log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
− log µ̂sn(ν)

∣∣]

≲
1

µ̂sn(ν)
E
[∣∣α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)− µ̂sn(ν)

∣∣]

≲E
[∣∣α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)− µ̂sn(ν)

∣∣]

≲E
[
α1

∣∣µ̂∗
ρn
(ν)− µ̂sn(ν)

∣∣]

≲E
[∣∣µ̂∗

ρn
(ν)− µ̂ρn

(ν)
∣∣]+ E [|µ̂ρn

(ν)− µ̂sn(ν)|]

≲∆n +∆nϵII +O(∆
2
n) ≲ ∆n

(C.19)

where the last inequality follows from (C.17) proved above. Therefore, we may further deduce that1406

E [(I.3)]

≤

∫ ρn

sn

∫

D

E [|µs(ν)− µsn(ν)|]

E
[∣∣log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
− log (α1µ̂ρn

(ν)− α2µ̂sn(ν))
∣∣] γ(dν)ds

≲∆3
n,

where the first inequality is due to the independency of ys and y∗s for s ∈ [sn, ρn], and the proof is1407

complete.1408
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D Details of Numerical Experiments1409

In Apps. D.1 to D.3, we present additional numerical results for the 15-dimensional toy model, text1410

generation, and image generation, respectively.1411

D.1 15-Dimensional Toy Model1412

We first derive the closed-form formula of the marginal distributions pt in this model. Recall that the
state space X = {1, 2, ..., d} with d = 15, and the initial distribution is p0 ∈ ∆d. The rate matrix at
any time is Q = 1

d
E − I . By solving (2.1), we see that

pt = etQp0 =

(
1− e−t

d
E + e−tI

)
p0,

and therefore pt converges to the uniform distribution p∞ = 1
d
1 as t → ∞. The formula of pt1413

directly yields the scores st(x) =
pt

pt(x)
.1414

During inference, we initialize at the uniform distribution q0 = p∞ and run from time 0 to T =1415

12. The truncation error of this choice of time horizon is of the magnitude of 10−12 reflected by1416

DKL(pT ∥p∞), and therefore negligible. The discrete time points form an arithmetic sequence.1417

We generate 106 samples for each algorithm and use np.bincount to obtain the empirical distribution
q̂T as the output distribution. Finally, the KL divergence is computed by

DKL(p0∥q̂T ) =

d∑

i=1

p0(i) log
p0(i)

q̂T (i)
.

We also perform bootstrapping for 1000 times to obtain the 95% confidence interval of the KL1418

divergence, the results are shown by the shaded area in Fig. 3. The fitted lines are obtained by1419

standard linear regression on the log-log scale with the slopes marked beside each line in Fig. 3.1420

D.2 Text Generation1421

For text generation, we use the small version of RADD [33] checkpoint1 trained with λ-DCE loss.1422

We choose an early stopping time δ = 10−3 for a stable numerical simulation. Since RADD is a1423

masked discrete diffusion model, we can freely choose the noise schedule σ(t) used in the inference1424

process. We consider the following log-linear noise schedule used in the model training,1425

σ(t) =
1− ϵ

1− (1− ϵ)t
, σ̄(t) =

∫ t

0

σ(s)ds = − log(1− (1− ϵ)t) (D.1)

where we choose ϵ = 10−3.1426

The score function sθ(xt, t) used for computing the transition rate matrix can be computed from the1427

RADD score model pθ using the following formula from [33],1428

sθt (xt) =
e−σ̄(t)

1− e−σ̄(t)
pθ(xt), (D.2)

where the model pθ is trained to approximate the conditional distribution of the masked positions1429

given all unmasked positions. More specifically, let d be the length of the sequence and {1, 2, ..., S}1430

be the vocabulary set (not including the mask token). Then given a partially masked sequence1431

x = (x1, ..., xd), the model pθ(x) outputs a d × S matrix whose (ℓ, s) element approximates1432

PX∼pdata
(xℓ = s|XUM = xUM) when xℓ is mask, and is 1Xℓ,s if otherwise. Here, xUM represents1433

the unmasked portion of the sequence x.1434

We adopt a uniform discretization of the time interval (δ, 1]. For θ-RK-2 and θ-Trapezoidal, we1435

pick θ = 1
2 . We compare our proposed θ-RK-2 and θ-Trapezoidal with the Euler method, Tweedie1436

τ -leaping, τ -leaping, and we present full results across all NFEs ranging from 16 to 1024 in Tab. 2.1437

For each method, we generate 1024 samples with it and compute the averaged perplexities. All the1438

experiments are run on a single NVIDIA A100 GPU.1439

1https://huggingface.co/JingyangOu/radd-lambda-dce
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Table 2: Generative perplexity of texts generated by different sampling algorithms. Lower values are
better, with the best in bold.

Method NFE = 16 NFE = 32 NFE = 64 NFE = 128

FHS ≤ 307.425 ≤ 186.594 ≤ 141.625 ≤ 122.732
Euler ≤ 277.962 ≤ 160.586 ≤ 111.597 ≤ 86.276
Tweedie τ -leaping ≤ 277.133 ≤ 160.248 ≤ 110.848 ≤ 85.738
τ -leaping ≤ 126.835 ≤ 96.321 ≤ 69.226 ≤ 52.366
θ-RK-2 ≤ 127.363 ≤ 109.351 ≤ 86.102 ≤ 64.317
θ-Trapezoidal ≤ 123.585 ≤ 89.912 ≤ 66.549 ≤ 49.051

Method NFE = 256 NFE = 512 NFE = 1024

FHS ≤ 113.310 ≤ 113.026 ≤ 109.406
Euler ≤ 68.092 ≤ 55.622 ≤ 44.686
Tweedie τ -leaping ≤ 70.102 ≤ 55.194 ≤ 44.257
τ -leaping ≤ 41.694 ≤ 33.789 ≤ 28.797
θ-RK-2 ≤ 49.816 ≤ 40.375 ≤ 33.971
θ-Trapezoidal ≤ 39.959 ≤ 32.456 ≤ 27.553

From the table, we observe that θ-Trapezoidal consistently outperforms all other approaches and1440

generates samplers with better perplexities across all NFEs. We also noticed that both the Euler1441

method and Tweedie τ -leaping share a similar performance, which is beaten by a large margin by1442

θ-RK-2 and τ -leaping.1443
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Figure 6: Sampling quality vs. θ ∈ (0, 1] in θ-RK-2 algorithm. Sampling quality is quantified through
FID.

In Fig. 6, we present the performance of θ-RK-2 with respect to different choices of θ at NFE 32 and1444

64. We observe that the performance of θ-RK-2 has a flat landscape around the optimal θ choices,1445

which fall in the range [0.15, 0.4]. In general, as is evident from the curve, the method performs1446

better when using extrapolation to compute the transition rate matrix, which once again certifies the1447

correctness of our theoretical results (Thm. 5.5) and discussions therebelow.1448

Table 3: Percentage of positive extrapolated intensities for different algorithms across NFE values.

Method NFE = 32 NFE = 64 NFE = 128 NFE = 256 NFE = 512 NFE = 1024

θ-RK-2 97.21 ± 3.1 98.31 ± 2.0 98.01 ± 1.3 99.27 ± 0.9 99.44 ± 0.7 99.52 ± 0.6
θ-Trapezoidal 95.67 ± 4.8 97.06 ± 3.6 98.22 ± 2.4 98.87 ± 1.6 99.24 ± 1.1 99.43 ± 0.9

In Tab. 3, we present the percentage of positive extrapolated intensities for different algorithms across1449

NFE values. This partially validates the assumption in our theoretical analysis (Thms. 5.4 and 5.5)1450

that the intensity remains positive throughout the sampling process.1451
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D.3 Image Generation1452

For the image generation, we use the checkpoint of MaskGIT [62, 65] reproduced in Pytorch2. Recall1453

that the MaskGIT is a masked image model which, given a partially masked sequence, outputs the1454

conditional distributions of the masked positions given the unmasked portion, just like the model1455

pθ(·) in the aforementioned masked text model, RADD. Therefore, by similarly introducing a time1456

noise schedule σ(t) (for which we adopt the same log-linear schedule (D.1) in our experiment), we1457

obtain a masked discrete diffusion model akin to the RADD. The score function can be computed1458

accordingly using the model output as in (D.2).1459

We choose an early stopping time δ = 10−3, and adopt a uniform discretization of the time interval1460

(δ, 1] for θ-RK-2, θ-Trapezoidal, τ -leaping and the Euler method. For parallel decoding, we use a1461

linear randomization strategy in the re-masking step and an arccos masking scheduler, the same as1462

the recommended practice in [62]. For each method, we generate 50k samples in a class-conditioned1463

way and compute its FID against the validation split of ImageNet. We use classifier-free guidance to1464

enhance the generation quality and choose the guidance strength to be w = 3.1465
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Figure 7: FID of images generated by sampling algorithms vs. number of function evaluations (NFE)
with different parameter choices. Lower values are better.

We present the full results for NFE ranging from 4 to 64 in Fig. 7. All the experiments are run1466

on 1 NVIDIA A100. Notably, θ-Trapezoidal with θ = 1
3 is the best-performing method except1467

for extremely low NFE budgets. While θ-Trapezoidal with θ = 1
2 in general demonstrates a less1468

competitive performance, it converges to the same generation quality as θ = 1
3 in the high NFE1469

regime. We also noticed that when using extrapolation with θ = 1
3 , θ-RK-2 beats τ -leaping for NFE1470

larger than 8, which again accords with our theoretical prediction of its competitive performance in1471

θ ∈ (0, 12 ] regime.1472

To investigate the robustness of θ-RK-2 with respect to the choice of θ, we also benchmark its1473

performance across multiple choices at NFE 32 and 64, and we present the results in Fig. 6. Again,1474

similar to the behavior of θ-Trapezoidal, the performance of θ-RK-2 has a flat landscape around the1475

optimal θ choices, which typically falls in the range [0.3, 0.5]. In general, as is evident from the curve,1476

the method performs better when using extrapolation to compute the transition rate matrix, which1477

once again certifies the correctness of our theoretical results.1478

Finally, we visualize some images generated with θ-Trapezoidal on 6 different classes in Fig. 8.1479

θ-Trapezoidal consistently generates high-fidelity images that are visually similar to the ground truth1480

ones and well aligned with the concept.1481

2https://github.com/valeoai/Maskgit-pytorch
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Figure 8: Visualization of samples generated by θ-Trapezoidal. Upper Left: Aircraft carrier
(ImageNet-1k class: 933); Upper Middle: Pirate (ImageNet-1k class: 724); Upper Right: Volcano
(ImageNet-1k class: 980); Lower Left: Ostrich (ImageNet-1k class: 009); Lower Middle: Cheese-
burger (ImageNet-1k class: 933); Lower Right: Beer bottle (ImageNet-1k class: 440).
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NeurIPS Paper Checklist1482

The checklist is designed to encourage best practices for responsible machine learning research,1483

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove1484

the checklist: The papers not including the checklist will be desk rejected. The checklist should1485

follow the references and follow the (optional) supplemental material. The checklist does NOT count1486

towards the page limit.1487

Please read the checklist guidelines carefully for information on how to answer these questions. For1488

each question in the checklist:1489

• You should answer [Yes] , [No] , or [NA] .1490

• [NA] means either that the question is Not Applicable for that particular paper or the1491

relevant information is Not Available.1492

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).1493

The checklist answers are an integral part of your paper submission. They are visible to the1494

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it1495

(after eventual revisions) with the final version of your paper, and its final version will be published1496

with the paper.1497

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.1498

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a1499

proper justification is given (e.g., "error bars are not reported because it would be too computationally1500

expensive" or "we were unable to find the license for the dataset we used"). In general, answering1501

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we1502

acknowledge that the true answer is often more nuanced, so please just use your best judgment and1503

write a justification to elaborate. All supporting evidence can appear either in the main paper or the1504

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification1505

please point to the section(s) where related material for the question can be found.1506

IMPORTANT, please:1507

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",1508

• Keep the checklist subsection headings, questions/answers and guidelines below.1509

• Do not modify the questions and only use the provided macros for your answers.1510

1. Claims1511

Question: Do the main claims made in the abstract and introduction accurately reflect the1512

paper’s contributions and scope?1513

Answer: [Yes]1514

Justification: The abstract and introduction accurately reflect the paper’s contributions and1515

scope.1516

Guidelines:1517

• The answer NA means that the abstract and introduction do not include the claims1518

made in the paper.1519

• The abstract and/or introduction should clearly state the claims made, including the1520

contributions made in the paper and important assumptions and limitations. A No or1521

NA answer to this question will not be perceived well by the reviewers.1522

• The claims made should match theoretical and experimental results, and reflect how1523

much the results can be expected to generalize to other settings.1524

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1525

are not attained by the paper.1526

2. Limitations1527

Question: Does the paper discuss the limitations of the work performed by the authors?1528

Answer: [Yes]1529
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Justification: The paper discusses the limitations of the work performed by the authors.1530

Guidelines:1531

• The answer NA means that the paper has no limitation while the answer No means that1532

the paper has limitations, but those are not discussed in the paper.1533

• The authors are encouraged to create a separate "Limitations" section in their paper.1534

• The paper should point out any strong assumptions and how robust the results are to1535

violations of these assumptions (e.g., independence assumptions, noiseless settings,1536

model well-specification, asymptotic approximations only holding locally). The authors1537

should reflect on how these assumptions might be violated in practice and what the1538

implications would be.1539

• The authors should reflect on the scope of the claims made, e.g., if the approach was1540

only tested on a few datasets or with a few runs. In general, empirical results often1541

depend on implicit assumptions, which should be articulated.1542

• The authors should reflect on the factors that influence the performance of the approach.1543

For example, a facial recognition algorithm may perform poorly when image resolution1544

is low or images are taken in low lighting. Or a speech-to-text system might not be1545

used reliably to provide closed captions for online lectures because it fails to handle1546

technical jargon.1547

• The authors should discuss the computational efficiency of the proposed algorithms1548

and how they scale with dataset size.1549

• If applicable, the authors should discuss possible limitations of their approach to1550

address problems of privacy and fairness.1551

• While the authors might fear that complete honesty about limitations might be used by1552

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1553

limitations that aren’t acknowledged in the paper. The authors should use their best1554

judgment and recognize that individual actions in favor of transparency play an impor-1555

tant role in developing norms that preserve the integrity of the community. Reviewers1556

will be specifically instructed to not penalize honesty concerning limitations.1557

3. Theory assumptions and proofs1558

Question: For each theoretical result, does the paper provide the full set of assumptions and1559

a complete (and correct) proof?1560

Answer: [Yes]1561

Justification: The paper provides the full set of assumptions and a complete (and correct)1562

proof.1563

Guidelines:1564

• The answer NA means that the paper does not include theoretical results.1565

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1566

referenced.1567

• All assumptions should be clearly stated or referenced in the statement of any theorems.1568

• The proofs can either appear in the main paper or the supplemental material, but if1569

they appear in the supplemental material, the authors are encouraged to provide a short1570

proof sketch to provide intuition.1571

• Inversely, any informal proof provided in the core of the paper should be complemented1572

by formal proofs provided in appendix or supplemental material.1573

• Theorems and Lemmas that the proof relies upon should be properly referenced.1574

4. Experimental result reproducibility1575

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1576

perimental results of the paper to the extent that it affects the main claims and/or conclusions1577

of the paper (regardless of whether the code and data are provided or not)?1578

Answer: [Yes]1579

Justification: The paper fully discloses all the information needed to reproduce the main1580

experimental results of the paper.1581

Guidelines:1582
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• The answer NA means that the paper does not include experiments.1583

• If the paper includes experiments, a No answer to this question will not be perceived1584

well by the reviewers: Making the paper reproducible is important, regardless of1585

whether the code and data are provided or not.1586

• If the contribution is a dataset and/or model, the authors should describe the steps taken1587

to make their results reproducible or verifiable.1588

• Depending on the contribution, reproducibility can be accomplished in various ways.1589

For example, if the contribution is a novel architecture, describing the architecture fully1590

might suffice, or if the contribution is a specific model and empirical evaluation, it may1591

be necessary to either make it possible for others to replicate the model with the same1592

dataset, or provide access to the model. In general. releasing code and data is often1593

one good way to accomplish this, but reproducibility can also be provided via detailed1594

instructions for how to replicate the results, access to a hosted model (e.g., in the case1595

of a large language model), releasing of a model checkpoint, or other means that are1596

appropriate to the research performed.1597

• While NeurIPS does not require releasing code, the conference does require all submis-1598

sions to provide some reasonable avenue for reproducibility, which may depend on the1599

nature of the contribution. For example1600

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1601

to reproduce that algorithm.1602

(b) If the contribution is primarily a new model architecture, the paper should describe1603

the architecture clearly and fully.1604

(c) If the contribution is a new model (e.g., a large language model), then there should1605

either be a way to access this model for reproducing the results or a way to reproduce1606

the model (e.g., with an open-source dataset or instructions for how to construct1607

the dataset).1608

(d) We recognize that reproducibility may be tricky in some cases, in which case1609

authors are welcome to describe the particular way they provide for reproducibility.1610

In the case of closed-source models, it may be that access to the model is limited in1611

some way (e.g., to registered users), but it should be possible for other researchers1612

to have some path to reproducing or verifying the results.1613

5. Open access to data and code1614

Question: Does the paper provide open access to the data and code, with sufficient instruc-1615

tions to faithfully reproduce the main experimental results, as described in supplemental1616

material?1617

Answer: [Yes]1618

Justification: The paper will open access to the data and code, with sufficient instructions to1619

faithfully reproduce the main experimental results, as described in supplemental material.1620

Guidelines:1621

• The answer NA means that paper does not include experiments requiring code.1622

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1623

public/guides/CodeSubmissionPolicy) for more details.1624

• While we encourage the release of code and data, we understand that this might not be1625

possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not1626

including code, unless this is central to the contribution (e.g., for a new open-source1627

benchmark).1628

• The instructions should contain the exact command and environment needed to run to1629

reproduce the results. See the NeurIPS code and data submission guidelines (https:1630

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1631

• The authors should provide instructions on data access and preparation, including how1632

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1633

• The authors should provide scripts to reproduce all experimental results for the new1634

proposed method and baselines. If only a subset of experiments are reproducible, they1635

should state which ones are omitted from the script and why.1636
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• At submission time, to preserve anonymity, the authors should release anonymized1637

versions (if applicable).1638

• Providing as much information as possible in supplemental material (appended to the1639

paper) is recommended, but including URLs to data and code is permitted.1640

6. Experimental setting/details1641

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1642

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1643

results?1644

Answer: [Yes]1645

Justification: The paper will specify all the training and test details (e.g., data splits, hy-1646

perparameters, how they were chosen, type of optimizer, etc.) necessary to understand the1647

results.1648

Guidelines:1649

• The answer NA means that the paper does not include experiments.1650

• The experimental setting should be presented in the core of the paper to a level of detail1651

that is necessary to appreciate the results and make sense of them.1652

• The full details can be provided either with the code, in appendix, or as supplemental1653

material.1654

7. Experiment statistical significance1655

Question: Does the paper report error bars suitably and correctly defined or other appropriate1656

information about the statistical significance of the experiments?1657

Answer: [Yes]1658

Justification: The paper will report error bars suitably and correctly defined or other appro-1659

priate information about the statistical significance of the experiments.1660

Guidelines:1661

• The answer NA means that the paper does not include experiments.1662

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1663

dence intervals, or statistical significance tests, at least for the experiments that support1664

the main claims of the paper.1665

• The factors of variability that the error bars are capturing should be clearly stated (for1666

example, train/test split, initialization, random drawing of some parameter, or overall1667

run with given experimental conditions).1668

• The method for calculating the error bars should be explained (closed form formula,1669

call to a library function, bootstrap, etc.)1670

• The assumptions made should be given (e.g., Normally distributed errors).1671

• It should be clear whether the error bar is the standard deviation or the standard error1672

of the mean.1673

• It is OK to report 1-sigma error bars, but one should state it. The authors should1674

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1675

of Normality of errors is not verified.1676

• For asymmetric distributions, the authors should be careful not to show in tables or1677

figures symmetric error bars that would yield results that are out of range (e.g. negative1678

error rates).1679

• If error bars are reported in tables or plots, The authors should explain in the text how1680

they were calculated and reference the corresponding figures or tables in the text.1681

8. Experiments compute resources1682

Question: For each experiment, does the paper provide sufficient information on the com-1683

puter resources (type of compute workers, memory, time of execution) needed to reproduce1684

the experiments?1685

Answer: [Yes]1686

Justification: The paper provides sufficient information on the computer resources (type of1687

compute workers, memory, time of execution) needed to reproduce the experiments.1688
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Guidelines:1689

• The answer NA means that the paper does not include experiments.1690

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1691

or cloud provider, including relevant memory and storage.1692

• The paper should provide the amount of compute required for each of the individual1693

experimental runs as well as estimate the total compute.1694

• The paper should disclose whether the full research project required more compute1695

than the experiments reported in the paper (e.g., preliminary or failed experiments that1696

didn’t make it into the paper).1697

9. Code of ethics1698

Question: Does the research conducted in the paper conform, in every respect, with the1699

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1700

Answer: [Yes]1701

Justification: The research conducted in the paper conforms, in every respect, with the1702

NeurIPS Code of Ethics.1703

Guidelines:1704

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1705

• If the authors answer No, they should explain the special circumstances that require a1706

deviation from the Code of Ethics.1707

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1708

eration due to laws or regulations in their jurisdiction).1709

10. Broader impacts1710

Question: Does the paper discuss both potential positive societal impacts and negative1711

societal impacts of the work performed?1712

Answer: [NA]1713

Justification: There is no societal impact of the work performed.1714

Guidelines:1715

• The answer NA means that there is no societal impact of the work performed.1716

• If the authors answer NA or No, they should explain why their work has no societal1717

impact or why the paper does not address societal impact.1718

• Examples of negative societal impacts include potential malicious or unintended uses1719

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1720

(e.g., deployment of technologies that could make decisions that unfairly impact specific1721

groups), privacy considerations, and security considerations.1722

• The conference expects that many papers will be foundational research and not tied1723

to particular applications, let alone deployments. However, if there is a direct path to1724

any negative applications, the authors should point it out. For example, it is legitimate1725

to point out that an improvement in the quality of generative models could be used to1726

generate deepfakes for disinformation. On the other hand, it is not needed to point out1727

that a generic algorithm for optimizing neural networks could enable people to train1728

models that generate Deepfakes faster.1729

• The authors should consider possible harms that could arise when the technology is1730

being used as intended and functioning correctly, harms that could arise when the1731

technology is being used as intended but gives incorrect results, and harms following1732

from (intentional or unintentional) misuse of the technology.1733

• If there are negative societal impacts, the authors could also discuss possible mitigation1734

strategies (e.g., gated release of models, providing defenses in addition to attacks,1735

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1736

feedback over time, improving the efficiency and accessibility of ML).1737

11. Safeguards1738

Question: Does the paper describe safeguards that have been put in place for responsible1739

release of data or models that have a high risk for misuse (e.g., pretrained language models,1740

image generators, or scraped datasets)?1741
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Answer: [NA]1742

Justification: There is no such risk.1743

Guidelines:1744

• The answer NA means that the paper poses no such risks.1745

• Released models that have a high risk for misuse or dual-use should be released with1746

necessary safeguards to allow for controlled use of the model, for example by requiring1747

that users adhere to usage guidelines or restrictions to access the model or implementing1748

safety filters.1749

• Datasets that have been scraped from the Internet could pose safety risks. The authors1750

should describe how they avoided releasing unsafe images.1751

• We recognize that providing effective safeguards is challenging, and many papers do1752

not require this, but we encourage authors to take this into account and make a best1753

faith effort.1754

12. Licenses for existing assets1755

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1756

the paper, properly credited and are the license and terms of use explicitly mentioned and1757

properly respected?1758

Answer: [Yes]1759

Justification: The creators or original owners of assets, used in the paper, are properly1760

credited and the license and terms of use are explicitly mentioned and properly respected.1761

Guidelines:1762

• The answer NA means that the paper does not use existing assets.1763

• The authors should cite the original paper that produced the code package or dataset.1764

• The authors should state which version of the asset is used and, if possible, include a1765

URL.1766

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1767

• For scraped data from a particular source (e.g., website), the copyright and terms of1768

service of that source should be provided.1769

• If assets are released, the license, copyright information, and terms of use in the1770

package should be provided. For popular datasets, paperswithcode.com/datasets1771

has curated licenses for some datasets. Their licensing guide can help determine the1772

license of a dataset.1773

• For existing datasets that are re-packaged, both the original license and the license of1774

the derived asset (if it has changed) should be provided.1775

• If this information is not available online, the authors are encouraged to reach out to1776

the asset’s creators.1777

13. New assets1778

Question: Are new assets introduced in the paper well documented and is the documentation1779

provided alongside the assets?1780

Answer: [Yes]1781

Justification: The new assets introduced in the paper are well documented and the documen-1782

tation is provided alongside the assets.1783

Guidelines:1784

• The answer NA means that the paper does not release new assets.1785

• Researchers should communicate the details of the dataset/code/model as part of their1786

submissions via structured templates. This includes details about training, license,1787

limitations, etc.1788

• The paper should discuss whether and how consent was obtained from people whose1789

asset is used.1790

• At submission time, remember to anonymize your assets (if applicable). You can either1791

create an anonymized URL or include an anonymized zip file.1792
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14. Crowdsourcing and research with human subjects1793

Question: For crowdsourcing experiments and research with human subjects, does the paper1794

include the full text of instructions given to participants and screenshots, if applicable, as1795

well as details about compensation (if any)?1796

Answer: [NA]1797

Justification: The paper does not involve crowdsourcing nor research with human subjects.1798

Guidelines:1799

• The answer NA means that the paper does not involve crowdsourcing nor research with1800

human subjects.1801

• Including this information in the supplemental material is fine, but if the main contribu-1802

tion of the paper involves human subjects, then as much detail as possible should be1803

included in the main paper.1804

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1805

or other labor should be paid at least the minimum wage in the country of the data1806

collector.1807

15. Institutional review board (IRB) approvals or equivalent for research with human1808

subjects1809

Question: Does the paper describe potential risks incurred by study participants, whether1810

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1811

approvals (or an equivalent approval/review based on the requirements of your country or1812

institution) were obtained?1813

Answer: [NA]1814

Justification: The paper does not involve research with human subjects.1815

Guidelines:1816

• The answer NA means that the paper does not involve crowdsourcing nor research with1817

human subjects.1818

• Depending on the country in which research is conducted, IRB approval (or equivalent)1819

may be required for any human subjects research. If you obtained IRB approval, you1820

should clearly state this in the paper.1821

• We recognize that the procedures for this may vary significantly between institutions1822

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1823

guidelines for their institution.1824

• For initial submissions, do not include any information that would break anonymity (if1825

applicable), such as the institution conducting the review.1826

16. Declaration of LLM usage1827

Question: Does the paper describe the usage of LLMs if it is an important, original, or1828

non-standard component of the core methods in this research? Note that if the LLM is used1829

only for writing, editing, or formatting purposes and does not impact the core methodology,1830

scientific rigorousness, or originality of the research, declaration is not required.1831

Answer: [NA]1832

Justification: The paper does not involve LLMs as any important, original, or non-standard1833

components.1834

Guidelines:1835

• The answer NA means that the core method development in this research does not1836

involve LLMs as any important, original, or non-standard components.1837

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1838

for what should or should not be described.1839
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