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Abstract

Discrete diffusion models have emerged as a powerful generative modeling frame-
work for discrete data with successful applications spanning from text generation
to image synthesis. However, their deployment faces challenges due to the high
dimensionality of the state space, necessitating the development of efficient in-
ference algorithms. Current inference approaches mainly fall into two categories:
exact simulation and approximate methods such as 7-leaping. While exact meth-
ods suffer from unpredictable inference time and redundant function evaluations,
T-leaping is limited by its first-order accuracy. In this work, we advance the latter
category by tailoring the first extension of high-order numerical inference schemes
10 to discrete diffusion models, enabling larger step sizes while reducing error. We
11 rigorously analyze the proposed schemes and establish the second-order accuracy
12 of the -trapezoidal method in KL divergence. Empirical evaluations on GPT-2
13 level text and ImageNet-level image generation tasks demonstrate that our method
14 achieves superior sample quality compared to existing approaches under equivalent
15 computational constraints.
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s 1 Introduction

17 Diffusion and flow-based models on discrete spaces [1-10] have emerged as a cornerstone of modern
18 generative modeling for categorical data, offering unique advantages in domains where continuity
19 assumptions fail. Unlike their continuous counterparts, discrete diffusion models inherently accom-
20 modate data with discrete structures, e.g., language tokens, molecular sequences, tokenized images,
21 and graphs, enabling principled generation and inference in combinatorially complex spaces. These
22 models have exerted a large impact on numerous applications, from the design of molecules [11],
23 proteins [12], and DNA sequences [13, 14] under biophysical constraints, to the generation of high-
24 fidelity text [15] and images [16] via autoregressive or masked transitions, efc.. Beyond standalone
25 tasks, discrete diffusion models also synergize with methodologies, ranging from tensor networks [17]
26 to guidance mechanisms [18-20].

27 Discrete diffusion models, despite their broad applicability, face a critical bottleneck: inference
28 inefficiency. Current inference methods include: (1) exact simulation methods [21], which ensure
29 unbiased sampling from the pre-trained model but suffer from unpredictable inference time and
30 redundant score evaluations, resulting in poor scaling w.r.t. dimensionality; and (2) approximate
31 methods such as 7-leaping [22], which offer simple and parallelizable implementation but, due to
s2 their first-order accuracy, requires small step sizes to control discretization error, forcing a stringent
33 trade-off between speed and sample quality.

3+ To address these limitations in possibly computationally constrained environments, we develop
35 high-order numerical schemes tailored for discrete diffusion model inference. Drawing inspirations
36 from acceleration techniques developed for ordinary differential equations (ODEs) [23], stochastic
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differential equations (SDEs) [24, 25], chemical reaction simulations [26], and most recently continu-
ous diffusion [27-29], our work represents the first successful adaptation of high-order numerical
schemes to the discrete diffusion domain. Through careful design, these high-order schemes provide
unprecedented efficient and versatile solutions for discrete diffusion model inference.

Our Contributions. The main contributions of this paper are summarized as follows:

* We introduce the first high-order numerical solvers for discrete diffusion model inference, namely
the #-Runge-Kutta-2 (§-RK-2) method and the #-trapezoidal method;

* We rigorously establish the theoretical properties of both methods, proving second-order con-
vergence of the §-trapezoidal method and conditional second-order convergence of the -RK-2
method;

* We empirically validate our theoretical results and demonstrate the superior performance of the
0-trapezoidal method through comprehensive evaluations on large-scale text and image generation
benchmarks.

1.1 Related Works

Here we briefly review related works and defer a more detailed discussion to App. A.

Discrete Diffusion Models. Since their introduction, discrete diffusion models have undergone
significant refinements, including the development of score-entropy loss [30] and flow-matching
formulation [31, 32]. These models generally fall into two categories based on their noise distribution:
uniform [30, 20] and masked (absorbing state) [33-35, 21], each offering unique advantages in
modeling discrete distributions. Recent theoretical advances have emerged through studies [36-38].

High-Order Scheme for Continuous Diffusion Models. The development of high-order numerical
schemes for solving ODEs and SDEs represents decades of research, as comprehensively reviewed in
[23, 39, 40]. These schemes have recently been adapted to accelerate continuous diffusion model
inference, encompassing approaches such as the exponential integrators [41-43], Adams-Bashforth
methods [29, 44, 45], Taylor methods [27, 46] and (stochastic) Runge-Kutta methods [47, 28, 48-51].

High-Order Scheme for Chemical Reaction Systems. Regarding approximate methods for simu-
lating compound Poisson processes and chemical reaction systems with state-dependent intensities,
efforts have been made on the 7-leaping method [52], and its extensions [53, 54, 26, 55]. For a quick
review of the problem setting and these methods, one may refer to [56, 57]. The adaption of these
methods to discrete diffusion models presents unique challenges due to the presence of both time and
state-inhomogeneous intensities in the underlying Poisson processes.

2 Preliminaries

In this subsection, we review several basic concepts and previous error analysis results of discrete
diffusion models.

2.1 Discrete Diffusion Models

In discrete diffusion models, one considers a continuous-time Markov chain (CTMC) (z;)o<¢<7 on
a finite space X as the forward process. We represent the distribution of x; by a vector p, € AlXI,
where A/XI denotes the probability simplex in RI*!. Given a target distribution py, the CTMC satisfies
the following equation:

d
% = Qp:, where Q; = (Qi(Y, 7))z yex .1

is the rate matrix at time ¢ satisfying

(1) Qt(xax) = - ZQt(yvm)v VCC S X; (11) Qt(xvy) Z Oa VSL’ 7& Yy € X
y#x

Below, we will use the notation QY = Q; — diag Q;. It can be shown that the corresponding
backward process is of the same form but with a different rate matrix [58]:

do o o Ea(y) A Y. X
Ds _ Qsﬁsa where Qs(y7 IL‘) — ) ps(x) Qs (aly)a X 7é (/RSP (2.2)
ds — >y sy ), Vr=yeX
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is the rate matrix and % denotes *7_,. The rate matrix Q; is often chosen to possess certain sparse
structures such that the forward process converges to a simple distribution that is easy to sample from.
Popular choices include the uniform and absorbing state cases [30], where the forward process (2.1)
converges to the uniform distribution on X and a Dirac distribution, respectively.

Common training practice is to define the score function (or the score vector) as s;(x) =
(st(z,y))yex = 3 (r) for any z € X, ¢t € [0,7] and estimate it by a neural network 57(z),

where the parameters ¢ are trained by minimizing the score entropy [30, 59] for some weights y; > 0
as:

mln/ Uiy mop, { ; Qie(we,y (St(xta y)log ii((zt’z)) s¢(we,y) +§?($t7y)) }dt 2.3)

Similar to the continuous case, the backward process is approx1mated by another CTMC dqs qus,

with gy = P and rate matrix QS, where QS( y,x) = $2(x,y)Q,(x,y) for any z # y € X. The
inference is done by first sampling from p., and then evolving the CTMC accordingly. For simplicity,
we drop the superscript ¢ hereafter.

2.2 Stochastic Integral Formulation of Discrete Diffusion Models

Discrete diffusion models can also be formulated as stochastic integrals, which is especially useful
for their theoretical analysis [38]. In this section, we briefly recapitulate relevant results therein and
refer to App. B for mathematical details. Below we work on the probability space (€2, B,P) and
denote the pairwise difference set of the state space X by D := {z — y :  # y € X}. In this work,
we focus on the case where X = [S]? with d data dimensions and S sites along each dimension.

We first introduce the Poisson random measure, a key concept in the formulation.

Definition 2.1 (Informal Definition of Poisson Random Measure). The random measure N[A](dt,dv)
on Rt x D is called a Poisson random measure with evolving intensity A w.r.t. a measure ~y on
D if, roughly speaking, the number of jumps of magnitude v during the infinitesimal time interval
(t,t + dt] is Poisson distributed with mean A:(v)~y(dv)dt.

The forward process (2.1) can thus be represented by the following stochastic integral:

xt:mo—i—/ot/DuN[/\](ds,du),

where the intensity A is defined as \;(v,w) = QY(z;- (w) + v, 2, (w)) if 7,- (w) + v € X and 0
otherwise. Here, the outcome w € 2 and x;- denotes the left limit of the cadlag process x; at time

t with x¢g- = xo. We will also omit the variable w, should it be clear from context. The backward
process in discrete diffusion models (2.2) can also be represented similarly as:
Ys = Yo +/ / vN[u](ds, dv), 2.4)
o Jb

where the intensity y is defined as ,us(u w) = 5 (Yo s Ys— + 1)Q°(ys-,ys— + V) ifyy— +v € X
and O otherwise. Durlng inference, ¥ = 7o + fo fD vN|ji](ds, dv) is used instead of (2.4), where
the estimated intensity /i is defined by replacing the true score s; with the neural network estimated
score 8y in p5(v,w). . In the following, we also denote the intensity u5(v, w) at time s by pus(v, y,-)
with slight abuse of terminology to emphasize its dependency on w through y,- (w).

3 Numerical Schemes for Discrete Diffusion Model Inference

Before introducing the proposed numerical schemes, we first review existing numerical schemes for
discrete diffusion models, including exact simulation methods and the 7-leaping method, and discuss
their merits and limitations.

3.1 Exact Simulation Methods

Unlike continuous diffusion models, where exact simulation is beyond reach, discrete diffusion
models permit inference without discretization error. Notable examples of unbiased samplers include
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uniformization [36] for the uniform state case and the First-Hitting Sampler (FHS) [21] for the
absorbing state case. The main idea behind these methods is to first sample the next jump time and
then the jump itself. Theoretical analysis [38] reveals that such schemes lack guarantees with finite
computation budget, since the number of required jumps (and thus the inference time) follows a
random distribution with expectation Q2(d). This computational restriction may be less favorable for
high-dimensional applications, such as generative modeling of DNA or protein sequences.

Furthermore, the absence of discretization error does not necessarily translate to superior sample
quality, given the inherent estimation errors in neural network-based score functions. This limitation
is further amplified by the highly skewed distribution of jumps, with a concentration occurring during
the terminal phase of the backward process, when the neural network-based score function exhibits
the highest estimation error. This phenomenon stems from the potential singularity of the target
distribution pg, which induces singularities in the score function, making accurate neural network
estimation particularly challenging during that phase (cf. Assump. 4.4 [38]).

Fig. 1 illustrates an application of the

uniformization algorithm to discrete —— Perplexity

diffusion inference for text generation, 3000 —— NFE intensity r100
with detailed experimental parameters > \ =
presented in Sec. 6.3 and App. D.3. 3 2000 >0 5
As the process approaches the target = 130 3
distribution (t — T"), the number of ~ 1000 g
jumps (in terms of the number of score 500 /
function evaluations, NFE) grows un- 100 | s TS 10
bounded, while perp]exity improve- 0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0

t

Figure 1: An illustrative application of the uniformization
redundant function evaluations. Al- algorithm to discrete diffusion models for text generation.
though early stopping is commonly The x-axis denotes the time of the backward process, and
adopted at T'—§ for some small § < 1 the y-axis denotes the frequency of jumps (NFE). Perplexity
to alleviate this inefficiency, this ap- Cconvergence occurs before the NFE grows unbounded.
proach introduces challenges in its selection, particularly under computational constraints or when
efficiency-accuracy trade-offs are desired. Moreover, the variable jump schedules across batch
samples complicate parallelization efforts in exact methods, highlighting the need for more adaptable
and efficient algorithmic solutions.

ments become negligible. This skew-
ness of computational effort results in

3.2 Approximate Method: 7-Leaping Method

The 7-leaping method [52, 22] represents a widely adopted scheme that effectively addresses both
dimensionality scaling and inference time control challenges. This Euler-type scheme approximates
the backward process with time-dependent intensity i; via the following updates:

Jera =T+ y_vP ((v)A), 3.1)

veD

where A denotes the time step and P(-) denotes a Poisson random variable. In general, one may
design different discretization schemes for 7-leaping, and the summation in (3.1) is parallelizable,
underscoring the method’s flexibility and efficiency. We refer to Alg. 3 and App. B.2 for a detailed
description of the 7-leaping method for discrete diffusion model inference. Regarding convergence
properties as the time discretization becomes increasingly refined, theoretical analyses by [22, 38]
have established the error bounds of the 7-leaping method, the results of which are summarized in
the following theorem. Further discussion can be found in App. B.2.

Theorem 3.1 (Thm. 4.7 in [38]). Under a certain discretization scheme and technical assumptions,
and given an e-accurate score function, the following error bound holds:

Dxr(psllgr—s) S exp(=T) + € + KT, (3.2)

where § < 1 is the early stopping time, k controls the step size, and T is the time horizon. The
notation < indicates the inequality holds up to a constant factor as k — 0.

The error bound (3.2) decouples three error sources of the 7-leaping scheme: the truncation error
O(e~T), the score estimation error €, and the discretization error O(xT). Similar to the case for
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the Euler method for ODEs and the Euler-Maruyama scheme for SDEs, the 7-leaping method is a
first-order scheme in terms of the discretization error O(xT).

4 Algorithms: High-Order Inference Schemes

A natural improvement of 7-leaping is to develop high-order schemes for discrete diffusion models. As
a foundational example, consider the second-order Runge-Kutta (RK-2) method with two stages [23]
for solving the ODE dx; = f;(x;)d¢t. This method represents one of the simplest high-order
numerical schemes:

Tion = Te + fe(@)0D,  Tepa =To+ [(1— 55)fe(@0) + gy frroa(@pon)] A (D)
This scheme reduces to the exact midpoint method when 6 = % and Heun’s method when 6 = 1. The
underlying intuition stems from the observation that for f € C2(R), [(1 — 55) f(0) + 55 f(6A)] A

offers a second-order approximation of fOA f(z)dz in contrast to f(0)A, which is only first-order.
This approach has been successfully adapted for SDE simulation [24] and continuous diffusion model
inference [48, 28, 29, 49, 51]. Notably, these methods enhance sample quality and computational
efficiency without requiring additional model training, making the development of high-order schemes
for discrete diffusion inference both theoretically appealing and practically viable.

In this section, we propose two different high-order solvers for discrete diffusion model inference.
We will primarily focus on two-stage algorithms aiming for second-order accuracy. Specifically,
we will introduce the 6-RK-2 method and the #-Trapezoidal method. Throughout this section, we
assume a time discretization scheme (si)ie[ow] with0 = sg < --- < sy =T — 6, where 0 is the
early stopping time and use the shorthand notations ;. = max{0, *}. For any s € (s,,, $p+1] and
n € [0: N — 1], we define |s| = s, ps = (1 — 0)sp, + 08p11, Ap, = Snt1 — Sn, and O-section
points as p, = (1 — 0)s, + 0s,4+1. We choose y(dv) to be the counting measure on D.

4.1 6-RK-2 Method

We first present the 8-RK-2 method, which is simple in design and serves as a natural analog of
the second-order RK method for ODEs (4.1) in terms of time and state-dependent Poisson random
measures, as a warm-up for the #-trapezoidal method. We note that similar methods have been
proposed for simulating SDEs driven by Brownian motions or Poisson processes, such as the
stochastic [24] and the Poisson [54] RK methods. A summary of this method is given in Alg. 1.

Intuitively, the #-RK-2 method is
a two-stage algorithm that: Algorithm 1: §-RK-2 Method

(i) Firstly, it runs 7-leaping with Input: o ~ qo, 0 € (0,1], (Sn, Pn)nejo:n—1] [ [
step size 0A,, obtains an infer- Qutput: A sample Usn ~ K,
mediate state Z/;n at the f-section { forn=0to N —1do N

point p,, and evaluates the inten- T Ton + X ep VP (s, (V)0A,);
sity iy, there; \ ﬂp," o 5 - ve "

(ii) Then another step of - o o e L
leaping for a full step A,, is run > ven VP <1ﬁsn>0 [(1 - @) Hs,, + ﬁﬂ:n]Jr (V)An)§
using a weighted sum of the in-  , opq

tensities at the current time point
sn, and the #-section point p,,.

We emphasize that our method is different from the midpoint method proposed in [52] for simulating
chemical reactions, where the Poisson random variable in the first step is replaced by its expected
magnitude. Such modification is in light of the lack of continuity and orderliness of the state space.

4.2 0O-Trapezoidal Method

As to be shown theoretically and empirically, the conceptually simple -RK-2 method may have
limitations in terms of both accuracy and efficiency. To this end, we propose the following 6-
trapezoidal method, which is developed based on existing methods proposed for simulating SDEs [25]
and chemical reactions [26]. Below, we introduce two parameters that will be used extensively later:

1—6)%462 .
o] = mandag = (29(+9), WlthO{l — Qg = 1.
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The 6-trapezoidal method is sum-
marized in Alg. 2.  Intuitively, Algorithm 2: #-Trapezoidal Method

this method separates eacfh inter- Input: o ~ o, 0 € (0, 1], (S0, p)meforn 1) s -
val (8y, Sp+1] into two sub-intervals P

. -~ ~ ~ra
(Sn, pn] and (py,, $p11], on which sim- Output: A sample §sy ~ Gy,
ulations are detached with differentin- ! for n=0 to N —1do . OA Y-
tensities designed in a balanced way. 2 Ypu & Ysu + 20en VP (s, (V)0A);

3 :D\Sn-f—l — @\;nJr
Compared to the §-RK-2 method, R N
the f-trapezoidal method is also two- 2 vep VP ((alﬂzn - 042/~Lsn)+ ()1 - Q)An)§
stage with an identical first step. The
second step, however, differs in two
major aspects:

4 end

(1) The second step starts from the intermediate state @;n instead of 7, and only runs for a fractional
step (1 — 6)A,, rather than a full step A,,;

(2) The weighted sum is comprised of an altered pair of coefficients (a1, —as), performing an
extrapolation instead of interpolation with coefficients (1 — 35, 57) as in the §-RK-2 method with

0 e [%7 1]. This feature will be shown to render the algorithm unconditionally second-order.

Following the common practice in the litera- Inference Process
ture [22], we reject updates with multiple jumps .
[22] ) p pie jump _ r-Leaping :

along one dimension in both algorithms, ensur- : : Hsp
ing their well-posedness. A simple analysis T g I
shows that rejection only happens with prob- = (). - 9-RK-2
ability O(k), and we refer to further details — 1
in Rmk. C.4. We refer to Props. C.2 and C.3 for : D) (1 — )., + %Hf,, :
the stochastic integral formulations of these two S : B B

algorithms. We provide a visual comparison be- . D) Ly
tween the §-RK-2 method and the #-trapezoidal ! ! R N "
method in Fig. 2. : (D) anfiy, — azfls, :
(1-96)A,

f-Trapezoidal
|

A,

~ ~ ~
ysn ypn y8n+1

5 Theoretical Analysis

Figure 2: Comparison between 7-leaping method
In this section, we provide the theoretical results and our proposed second-order schemes.
of the #-trapezoidal and §-RK-2 methods. The goal of this section is to show that under certain
conditions, both methods are second-order accurate, improving from the first-order accuracy of the
7-leaping method (¢f Thm. 3.1). Our theoretical analysis also reveals that the §-trapezoidal method
is more robust to the choice of ¢ than §-RK-2, to be confirmed by our empirical results in Sec. 6.

5.1 Assumptions

For simplicity, we impose a periodic boundary condition on the state space X = [S], i.e., embed the
state space in the d-dimensional torus T, to streamline the proofs (cf. Rmk. C.4).

Assumption 5.1 (Convergence of Forward Process). The forward process converges to the stationary
distribution exponentially fast, i.e., Dky(pr||pso) S exp(=T).

This assumption ensures rapid convergence of the forward process, controlling error when terminated
at a sufficiently large time horizon 7, and is automatically satisfied in the masked state case and the
uniform state case, given sufficient connectivity of the graph (cf. [38]). The exponential rate aligns
with continuous diffusion models (cf. [60]).

Assumption 5.2 (Regularity of Intensity). For the true intensity s (v, y,— ) and the estimated intensity
s (v, ys— ), it holds almost everywhere w.rt. ps(v,ys-)y(dv)ps- (dy,-) that: (1) Both intensities
belong to C*([0, T — 4)); (2) Both intensities are upper and lower bounded on [0, T — §].

This assumes two key requirements of the scores: (1) the forward process maintains sufficient
smoothness, which is achievable through appropriate time reparametrization; and (2) if and only if a
state y € X is achievable by the forward process and v is a permissible jump therefrom, then both its
true and estimated intensity are bounded, corresponding to Assumps. 4.3(i), 4.4, and 4.5 [38].
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Assumption 5.3 (Estimation Error). For all grid points and 0-section points, the estimation er-
ror of the neural network-based score is small, i.e., for any s € Upejo:N—1]15n; Pn}, We have

(W E [ (1) (log 2 = 1) + 1)) 1(@w)] < €3 @) E [fy s(v) = s ()] 1(@w)] < e,

This assumption quantifies the proximity of the estimated intensity /i to the true intensity p after
sufficient training. Compared with [38], the additional L part in (2) is required for technical reasons,
which is similar to [61, 51]. In practice, such additional assumptions may be realized by adding extra
penalty terms to the objective function during training.

5.2 Convergence Guarantees

The following theorem summarizes our theoretical guarantees for the 6-trapezoidal method:

Theorem 5.4 (Second Order Convergence of #-Trapezoidal Method). Suppose 8 € (0,1] and
ufty  — ofijs) > 0 for all s € [0,T — 0], then the following error bound holds for Alg. 2
under Assumps. 5.1 to 5.3:

Dxr(psl|ar%) S exp(—=T) + (&1 + en)T + £°T,
where § is the early stopping time, k = max,cjo.N—1] An, 1.€., the largest stepsize, and Ef:,fi% is the
distribution obtained by Alg. 1 as defined in Prop. C.2.

The complete proof is presented in App. C.2. The outline is to first bound Dy, (ps HffTri%) by the
KL divergence between the corresponding path measures, as established in Thm. C.5, and then
decompose the integral in the log-likelihood and bound respectively, where the primary technique
used is Dynkin’s formula (Thm. C.10). With a term-by-term comparison with Thm. 3.1, we observe
a significant improvement in the discretization error term from O(kT') to O(k2T'). This confirms
that the #-trapezoidal method achieves second-order accuracy given a sufficient time horizon 7" and
accurate score estimation, with empirical validation presented in Sec. 6.

Theorem 5.5 (Conditional Second-Order Convergence of §-RK-2 Method). Suppose 6 € (0, %] and
(1- %)ﬁw + %ﬁ;s > 0forall s € [0,T — ), then the following error bound holds for Alg. 1
under Assumps. 5.1 to 5.3:

D (psl|@rss) S exp(=T) + (&1 + en)T + £°T,

where ¢ is the early stopping time, k = max,¢c[o:N—1] An, 1.€., the largest stepsize, and @?55 is the
distribution obtained by Alg. 2 as defined in Prop. C.3.

The proof of the theorem above is provided in App. C.3. The restricted range of 6 is caused by one
specific error term (I11.4) (C.9) that permits bounding with Jensen’s inequality only when 6 € (0, 5],
similar to its counterpart (II.4) (C.11) in the 6-trapezoidal method. The limitation arises partially
because the weighted sum with coefficients (1 — 2—19, %) becomes an extrapolation only if 1 — 2—19 <0,
a feature that naturally holds for all 6 € (0, 1] in the #-trapezoidal method. These theoretical findings
are consistent with the empirical observations in Fig. 6 of App. D.3, where the performance of -RK-2
method clearly peaks when 6 € (0, %]

Remark 5.6 (Comparison between Trapezoidal and RK-2 Methods). Trapezoidal methods were
originally proposed by [25] as a minimal second-order scheme in the weak sense for simulating
SDEs. In simulating chemical reaction contexts, [26] claimed that trapezoidal methods also achieve
second-order convergence for covariance error apart from the weak error, a property not shared
by midpoint (RK-2) methods. Our empirical results partly reflect these findings, while we defer
theoretical investigation of covariance error convergence in discrete diffusion models to future work.

Remark 5.7 (Remark on the Positivity of Extrapolated Intensity). Due to the extrapolation nature,
both our theorems require an additional assumption on the positivity of the extrapolated intensity,
which is classically assumed in [25, 26], and the resolution of this issue is a long-standing open
problem. The best result so far is Prop. 5 [26], claiming clamping the intensity above 0 only causes an
error of order O(KP), for any large integer p. We empirically evaluate this assumption in Tab. 3 with
the text generation task (Sec. 6.2) and find that positivity occurs for both methods with high probability
over 95%, approaching 100% with increasing NFE. We refer to further discussion in Rmk. C.6.
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6 Experiments

Based on the theoretical analysis, we expect the f-trapezoidal method to outperform the 7-leaping
method and the 6-RK-2 method in terms of sample quality, given the same number of function
evaluations. This section empirically validates the anticipated effectiveness of our proposed 6-
trapezoidal method (Alg. 2) through comprehensive evaluations across text and image generation
tasks. Our comparative analysis includes established discrete diffusion samplers as baselines, e.g.,
the Euler method [33], 7-leaping [22], Tweedie 7-leaping [30], First-Hitting Sampler (FHS) [21],
and Parallel Decoding [62]. We conduct evaluations on both uniform and masked discrete diffusion
models, with detailed experimental protocols provided in App. D.

6.1 15-State Toy Model

We first evaluate the performance of the
f-trapezoidal method using a 15-state toy
model (d = 1, S = 15). The target distribu- T

tion is uniformly generated from A'5, with g =
rate matrix Q = = E — I, where E is the g

all-one and I is the identity matrix. This
setup provides analytically available score
functions, allowing isolation and quantifi-
cation of numerical errors introduced by
inference algorithms. We apply both the

6-RK-2
A O-Trapezoidal
6-RK-2 Fitted T
--- 6-Trapezoidal Fitted -
--- 6-RK-2 Fitted (last 4 points) TSa

128 256 512 1024

Number of Steps

16 32 64

f-trapezoidal and the 6-RK-2 method to
generate 10° samples and estimate the KL
divergence between the true ground truth
po and the generated distribution qr.

Figure 3: Empirical KL divergence between the true
and generated distribution of the toy model vs. number
of steps. Data are fitted with linear regression with 95%

) ) confidence interval by bootstrapping.

For a fair comparison, we choose § = %

for both methods, and the results are presented in Fig. 3. While both methods exhibit super-linear
convergence as the total number of steps grows, the 0-trapezoidal method outperforms the -RK-2
method in terms of both absolute value and convergence rate, while the §-RK-2 method takes longer
to enter the asymptotic regime. Moreover, the fitted line indicates that the §-trapezoidal method

approximately converges quadratically w.r.t. the step count, confirming our theories.

6.2 Text Generation

For the text generation task, we employ the pre-
trained score function from RADD [33] as our
base model for benchmarking inference algo-
rithms. RADD is a masked discrete diffusion

Table 1: Generative perplexity of texts generated
by different sampling algorithms. Lower values
are better, with the best in bold.

model with GPT-2-level text generation capa- Method NFE =128 NFE — 1024
bilities [63] and is trained on the OpenWebText FHS < 122.732 < 109.406
dataset [64] with d = 1024 and S = 50258. Euler < 86.276 < 44.686
Our comparative analysis maintains consistent ~ Tweedie 7-leap. < 85.738 < 44.257
computational resources across methods, quan- ~ 7-leaping < 52.366 < 28.797
O-trapezoidal < 49.051 < 27.553

tified through the number of score function eval-
uations (NFE), and evaluates the sample quality
produced by FHS, the Euler method, 7-leaping, Tweedie 7-leaping, and our proposed -trapezoidal
method. We generate text sequences of 1024 tokens and measure their generative perplexity following
the evaluation protocol established in [33].

Tab. 1 presents the results for both low (128) and high (1024) NFE, with comprehensive results across
additional NFE values in Tab. 2. The empirical results demonstrate that the §-trapezoidal method
consistently produces better samples under a fixed computation budget compared with existing
popular inference algorithms. Notably, it outperforms Euler and Tweedie 7-leaping, two of the
best-performing samplers adopted by RADD, by a large margin. It also consistently prevails over
FHS, which performs exact simulation at high NFE (1024), supporting again our observations that
being free of discretization error does not necessarily imply better sampling quality. These results
validate the practical efficiency and accuracy of Alg. 2.
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uations (NFE). Lower values are better. Lower is better.

6.3 Image Generation

Our experiments on image generation utilize the pre-trained score function from MaskGIT [62, 65]
as the base model, which can be converted into a masked discrete diffusion model by introducing a
noise schedule (see App. D.3). MaskGIT employs a masked image transformer architecture trained
on ImageNet [66] of 256 x 256 resolution, where each image amounts to a sequence of 256 discrete
image tokens following VQ-GAN tokenization [67] (d = 256, S = 1025). We evaluate the -
trapezoidal method against FHS, the Euler method, 7-leaping, and parallel decoding under equivalent
NFE budgets ranging from 4 to 64. Following the setting in [62], we generate 5 x 10* images and
compute their Fréchet Inception Distance (FID) against the ImageNet validation split.

Fig. 4 reveals that f-trapezoidal method (Alg. 2) consistently achieves lower (and thus better) FID
values compared to both the Euler method and 7-leaping across all NFE values. While FHS and
parallel decoding show advantages at extremely low NFE (< 8), their performance saturates with
increased computational resources, making them less favorable compared to our rapidly converging
method. Additional results, including generated image samples (Fig. 8), are detailed in App. D.

Algorithm Hyperparameters. We evaluate the performance of the 6-trapezoidal method across
various # and NFE values for both text and image generation tasks. As illustrated in Fig. 5, we
observe that the #-trapezoidal method demonstrates robustness to 6, with a flat landscape near the
optimal choice. Our empirical analysis suggests that § € [0.3, 0.5] consistently yields competitive
performance across different tasks.

7 Conclusion and Future Works

In this work, we introduce the 6-RK-2 and 6-trapezoidal methods as pioneering high-order numerical
schemes tailored for discrete diffusion model inference. Through rigorous analysis based on their
stochastic integral formulations, we establish second-order convergence of the 6-trapezoidal method
and that of the §-RK-2 method under specified conditions. Our analysis indicates that the f-trapezoidal
method generally provides superior robustness and computational efficiency compared to the §-RK-
2 method. Our empirical evaluations, spanning both a 15-dimensional model with precise score
functions and large-scale text and image generation tasks, validate our theoretical findings and
demonstrate the superiority performance of our proposed #-trapezoidal method over existing samplers
in terms of sample quality under equivalent computational constraints. Additionally, we provide a
comprehensive analysis of the method’s robustness by examining the optimal choice of the parameter
0 in our schemes.

Future research directions include comparative analysis of these schemes and development of more
sophisticated numerical approaches for discrete diffusion model inference, potentially incorporating
adaptive step sizes and parallel sampling methodologies. From the perspective of applications, these
methods may also show promise for tasks in computational chemistry and biology, particularly in the
design of molecules, proteins, and DNA sequences.
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A Further Discussion on Related Works

In this section, we provide a more detailed literature review of both continuous and discrete diffusion
models, as well as several studies on the numerical methods for SDEs and chemical reaction systems,
which are highly related to our work.

Discrete Diffusion Models: Methodology, Theory, and Applications. Discrete diffusion and
flow-based models [1-4, 6-10, 22] have recently been proposed as generalizations of continuous
diffusion models to model discrete distributions.

Such models have been widely used in various areas of science and engineering, including but
not limited to modeling retrosynthesis [68], combinatorial optimization [69, 70], solving inverse
problems [71, 72] and sampling high-dimensional discrete distributions [73, 74], designing molecules,
proteins, and DNA sequences [75, 13, 76, 12, 77-79, 31, 80, 11, 81, 82], image synthesis [83-85],
text summarization [15], as well as the generation of graph [86-93], layout [94, 95], motion [96, 97],
sound [22, 98], image [16, 99—-101], speech [102], electronic health record [103], tabular data [104]
and text [105-110, 34, 35, 111, 14]. Inspired by the huge success achieved by discrete diffusion
models in practice, researchers have also conducted some studies on the theoretical properties of
these models, such as [36-38, 112].

An extensive amount of work has also explored the possibility of making discrete diffusion mod-
els more effective from many aspects, such as optimizing the sampling schedule [113], adding
correctors [114], developing fast samplers [115], designing correctors based on information learnt
by the model [114], simplifying the loss function for training [116], adding editing-based refine-
ments [117], synergizing these models with other techniques and methodologies like distillation [118],
Ehrenfest processes [119], Glauber dynamics [120], tensor networks [17], enhanced guidance mecha-
nisms [121, 18-20], structured preferential generation [122], the plan-and-denoise framework [123]
and alternative metrics, e.g., the Fisher information metric [124]. However, to the best of our knowl-
edge, existing work on accelerating the inference of discrete diffusion models is relatively sparse
compared to the ones we listed above, which makes it a direction worth exploring and serves as one
of the main motivations behind this work.

Numerical Methods for SDEs and Chemical Reaction Systems. Below, we review advanced
numerical methods proposed for simulating SDEs and chemical reaction systems, which are the main
techniques adopted in our work. For the simulation of SDEs driven by Brownian motions, many stud-
ies have been performed to design more accurate numerical schemes, which have been widely applied
to tackle problems in computational physics, optimization, and Monte Carlo sampling. Examples
of such work include the Milstein method [125], explicit methods [126], multistep methods [127],
extrapolation-type methods [128, 25], stochastic Runge Kutta methods [24, 129-132], splitting meth-
ods [133], methods based on gaussian mixtures [134], randomized midpoint method [135], parallel
sampling methods [136, 137] as well as high-order methods for stochastic gradient Markov Chain
Monte Carlo [138, 139], underdamped and overdamped Langevin Monte Carlo [140-144]. For a
more comprehensive list of related numerical methods, one may refer to [39, 145, 146, 40, 57].

Regarding the simulation of chemical reaction systems, numerical methods can be categorized into
two classes. The first class consists of exact simulation methods, which are similar to the Kinetic
Monte Carlo (KMC) method [147] developed for simulating spin dynamics and crystal growth
in condensed matter physics. Examples of such methods include the Gillespie algorithm (or the
Stochastic Simulation Algorithm, a.k.a. SSA) [148, 149] and its variants for multiscale modeling [150—
153], the next reaction method and its variants [154, 155], uniformization-based methods [156], etc.
The second class of methods are approximate simulation methods, including but not limited to
the 7-leaping method [52] and its variants [157, 158, 53, 54, 159-165, 55, 166, 167, 26, 168—171].
For a subset of the methods listed above, numerical analysis has also been performed in many
works [172—176] to justify their validity.

Continuous Diffusion Models: Methodology, Theory, and Acceleration. Continuous diffusion
and probability flow-based models [177-186] have also been the most popular methods in generative
modeling, with a wide range of applications in science and engineering. For a list of related work
on the theoretical studies and applications of these models, one may refer to the literature review
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conducted in [187, 38]. Here we will only review studies on accelerating the inference of continuous
diffusion models, which motivates our work.

An incomplete list of accelerating methods includes approximate mean direction solver [188], restart
sampling [189], gaussian mixture solvers [190], self-consistency [191-194], knowledge distilla-
tion [195-199], combination with underdamped Langevin dynamics [200], operator learning [201]
and more recently ideas from accelerating large language models (LLMs) like caching [202] and spec-
ulative decoding [203]. Among all the proposed accelerating methods, one major class of methods
are developed based on techniques from numerical analysis like adaptive step sizes [204], exponential
integrators [41-43], predictor-corrector solver [205], Adams-Bashforth methods [29, 44, 45], Taylor
methods [27, 46], Picard iteration and parallel sampling [206-210, 187], (stochastic) Runge-Kutta
methods [47, 28, 48-51] and randomized midpoint method [211, 212]. In contrast, there have been
fewer studies on the acceleration of discrete diffusion models via techniques from numerical analysis,
which inspires the study undertaken in this paper.

B Mathematical Background

In this section, we provide the mathematical background for the stochastic integral formulation of
discrete diffusion models, the error analysis of the 7-leaping method, and useful lemmas for the
theoretical analysis of high-order schemes for discrete diffusion models.

B.1 Stochastic Integral Formulation of Discrete Diffusion Models

Throughout this section, we will assume that (€2, 7, P) is a probability space, X is a finite-state space,
and denote the pairwise difference set of the state space by D := {x —y :  # y € X}. We also
assume that the pairwise difference set X is equipped with a metric || - ||, a finite measure 7, and a
o-algebra 5.

As a warm-up, we introduce the definition of the Poisson random measure for a time-homogeneous
counting process.

Definition B.1 (Poisson Random Measure [38, Definition A.1]). The random measure N (dt,dv)
on RT x D is called a Poisson random measure w.x.t. measure vy if it is a random counting measure
satisfying the following properties:
(i) Forany B € Band (0 < s < t,
N((s,t] x B) ~ P (v(B)(t — 5));

(ii) For any t > 0 and pairwise disjoint sets { B;};c[n) C B,
{NU(By) = N((0,8] % Bi)}epm
are independent stochastic processes.

Then we define the Poisson random measure with evolving intensities. The term “evolving” refers to
that the intensity is both time and state-dependent.

Definition B.2 (Poisson Random Measure with Evolving Intensity [38, Definition A.3]). Suppose
At (y) is a non-negative predictable process on R™ x D x Q) satisfying that for any 0 < T < T,

fOT Ae(v)dt < oo, a.s..

The random measure N[\ (dt,dv) on RT x D is called a Poisson random measure with evolving
intensity A¢(v) w.r.t. measure y if it is a random counting measure satisfying the following properties:

(i) Forany B € Band 0 < s < t,

NN((s,4] x B) (/ /A ¥(dv) dT>

(it) For anyt > 0 and pairwise disjoint sets { B;};c|n) C B,
{Ne[A(Bs) == N[A|((0,¢] x B;)}

are independent stochastic processes.

1€[n]
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Remark B.3 (Construction of Poisson Random Measure with Evolving Intensity). As discussed
in Thm. A.4 in [38] and originally proposed by [213], the Poisson random measure with evolving
intensity can be constructed in the following way.

One first augments the (X, B,v) measure space to a product space (D x R, B x B(R),~y x m),
where m is the Lebesgue measure on R, and B(R) is the Borel o-algebra on R. The Poisson random
measure with evolving intensity A\, (V) can be defined in the augmented measure space as

t
Nt x B)i= [ [ [ Toceer, 0N idr, duag), ®.1)
s JBJR
where N (dr,dv, d€) is the Poisson random measure on R x D x R w.r.t. measure v(dy)d&.

The following theorem provides the change of measure theorem for Poisson random measure with
evolving intensity, which is crucial for the theoretical analysis of numerical schemes for discrete
diffusion models.

Theorem B.4 (Change of Measure for Poisson Random Measure with Evolving Density [38,
Thm. 3.3]). Let N[A](dt,dv) be a Poisson random measure with evolving intensity \:(v), and
hi(v) a positive predictable process on R™ x D x €. Suppose the following exponential process is a
local F;-martingale:

Zu[h] = exp ( /0 t /D log by (V) N[N (dt x dv) — /0 t /D (he(v) — 1))\t(u)7(du))7 (B.2)

and Q is another probability measure on (), F) such that Q < P with Radon-Nikodym derivative
AQ/dP|5, = Zh]

Then the Poisson random measure N[\|(dt, dv) under the measure Q is a Poisson random measure
with evolving intensity Ay (v)hy(v).

B.2 Error Analysis of 7-leaping

The 7-leaping method was originally proposed by [52] and adopted for the inference of discrete
diffusion models by [22]. A summary of the algorithm is given in Alg. 3. In this subsection, we
provide a sketch for the error analysis of the 7-leaping method when applied to discrete diffusion
models, which will be compared with that of high-order schemes later on.

Algorithm 3: 7-Leaping Method for Discrete Diffusion Model Inference

Input: o ~ qo, 0 € [0, 1], time discretization (sy, pn)nefo:n—1)» M, 1 as defined in Prop. C.2.
Output: A sample 7, ~ G .
1 forn=0to N —1do

2 Ysnir < s, + Z VP (fis, (V) An);
veD

3 end

Proof of Thm. 3.1. As we are considering the case where X = [S]%, i.e. the state space is a d-
dimensional grid with S states along each dimension, we have log |X| = dlog S. Then we consider a
simple time-homogeneous transition matrix Q; = @ that allows jumps between neighboring states
with equal probability. Specifically, we have

_JL =yl =1,
Q(y7x) o {—2d, T =y,

which can be verified to satisfy Assumption 4.3(i) in [38] with C' = 1 and D = D =2d. Assump-
tion 4.3(ii) is also satisfied, as shown in Example B.10 of [38].

Then we may apply Thm. 4.7 in [38] by using the required time discretization scheme according to
the properties of the target distribution and plugging in the corresponding values of C, D, D. The
result follows by scaling the transition matrix @ by %, equivalent to scaling the time by d. O
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C Proofs

In this section, we provide the missing proofs in the main text. We will first provide the proofs of
the stochastic integral formulations of high-order schemes for discrete diffusion models in App. C.1.
Then we will provide the proofs of the main results for the f-trapezoidal method in App. C.2 and the
0-RK-2 method in App. C.3. We remark that the proof for the 6-trapezoidal method requires more
techniques and is more involved, to which the proof for the -RK-2 method is analogous. In App. C.4,
we provide the detailed lemmas and computations omitted in the proofs of Thm. 5.4 and Thm. 5.5.

C.1 Stochastic Integral Formulations of High-Order Schemes

In order to rigorously analyze the -RK-2 method, we need the following definition:

Definition C.1 (Intermediate Process). We define the intermediate process y: piecewisely on

(Sny Snt1] as follows:
[ [N s, (R
Sp JD

where the intensity [is, is given by [is, (V,Ys, ) = ’;\Sn (Us,,» Us,, + V)Q (ysn, Us, + V), L.e., Y is the
process obtained by performing T-leaping from time s, to s with zntenwty 1.
The following proposition provides the stochastic integral formulation of this method.

Proposition C.2 (Stochastic Integral Formulation of §-RK-2 Method). The 6-RK-2 method (Alg. 1)
is equivalent to solving the following stochastic integral:

gRE = gRK 4 / / vN [a®¥] (ds, dv), (C.2)
in which the intensity %X is defined as a weighted sum
A () = (1= g)iiLs) (B U1S) + 55, (1,5, (C3)
and the intermediate intensity 1* is defined piecewisely as
s, 73) = 855, 05+ v)QYTS, U5 +v), (C4

with the intermediate process §: defined in (C.1) for the corresponding interval. We wzll call yR¥ the
interpolating process of the 0-RK-2 method and denote the distribution of =X by gt

The following proposition establishes the stochastic integral formulation of the 8-trapezoidal method,
whose proof can be found in App. C.1.

Proposition C.3 (Stochastic Integral Formulation of 6-Trapezoidal Method). The 6-trapezoidal
method (Alg. 2) is equivalent to solving the following stochastic integral:

g = gt + / / N[E'P)(ds, dv) (C.5)
where the intensity 1%?P is defined piecewisely as
[P (v) = Loy, is) (v, ﬂtfjp) + 1s>p, (041!7,1 (v, y,,) — asfiys) (v, ﬂfi?p)>+- (C.6)

Above, 1.y denotes the indicator function and the intermediate process y; is defined in (C.1) for the

corresponding interval. We will call the process J'*#P the interpolating process of the -trapezoidal
method and denote the distribution of J**P by q'P.

Proof of Prop. C.2 and Prop. C.3. Without loss of generality, we give the proof on the interval
(Sns Sny1) forn € [0 : N — 1], and the generalization to the whole interval [0, T'] is straightforward.

Notice that once we condition on the filtration F;, and construct the intermediate process Ut as
specified in (C.1) along the interval (s, $y+1], the intermediate 1ntens1ty i* and the piecewise
intensity /i| ;| do not evolve with time s or the interpolating processes yRE (or 3P, respectively)
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since it only depends on the state, the intensity at the beginning of the interval s,, and other randomness
that is independent of the interpolating process.

Therefore, the stochastic integral on this interval can be rewritten as for the §-RK-2 scheme that

Sn41
ﬂi}il —ysn / /VN [P (ds, dv)

— R / VNS (50, 5041), )
D

— K / VPERS () (3041 — 50))7(d0),

and for the 6-Trapezoidal scheme that

Sn+1
:I/\;:,afl :Atrap+/ /I/N trap ds dl/)
ytrap+/VN[ trap]((s7l,sn+l},dy)
D

—girer g / P () (s i1 — 50))(dw),

and the statement follows by taking -y(dv) as the counting measure. O

Remark C.4 (Remark on Rejection Sampling and Periodicity Assumption). The rejection sampling
procedure in both algorithms (Algs. 1 and 2) guarantees well-posedness in the rare scenarios where
a large drawn value of Poisson random variables or multiple simultaneous jumps in one coordinate
would result in an update out of the state space X = [S]?. To enforce this, we simply allow at most
one jump per update across the summation, for example, in the update

Ty < o + D VP (fls, (1)0A),
veD

as the standard practice in the literature [22, 38]. The indicator function 15, ¢ in Alg. 1 is also
used to ensure that only valid jumps from the current state ys,, are considered, while in Alg. 2, this
is implicitly guaranteed by taking the positive part ofalﬁ;",n — aofis,, which implies the positivity
of alﬁ;",n and thus the validity of the jumps @?n. We point out that the single-jump rule is only
a convenient sufficient condition, one should notice that this condition is not necessary for the
well-posedness of our algorithms, since our setting of the state space X carries both orderliness
and algebraic structure, and thus one could in principle admit multiple simultaneous jumps without
ambiguity.

Over the full inference process, the total probability of rejection is at most O(k). Below, we give a
brief justification and we refer to Proposition A.14 in [38] for a complete proof of this claim. During
the update aforementioned, the probability of at least two jumps occurring is bounded by

P <ZP(ﬁsn(v)9An) > 1) =1-P (P (Z fis, (u)@An> < 1)
vebD veD

=1 —exp (— Z s, (Z/)GAn> (1 + Z s, (V)QAH>

veD veD

2
S (Z fis, (v em) < A2

veD

Summing O(A2) over N steps gives Zg;ol A2 < kT, and an identical argument applies to the
second update in each iteration. Hence, the overall rejection rate is at most O(k).

When we impose periodic boundary conditions, X = [S|? is equipped with a convenient algebraic
structure: addition and scalar multiplication are globally well-defined. In that case, Algs. 1 and 2
match exactly the stochastic integral formulations in Props. C.2 and C.3. This alignment removes
the need for per-step rejection, streamlines the application of the change-of-measure argument, and
greatly simplifies the convergence proofs of Thms. 5.4 and 5.5. Even without periodicity, those
theorems hold with probability at least 1 — O(k), as shown above.
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C.2 Convergence Analysis of the -Trapezoidal Method

Theorem C.5. Let py.;_5 and q\(t)r;p_ s be the path measures of the backward process with the
stochastic integral formulation (2.4) and the interpolating process (C.5) of the 0-trapezoidal method
(Alg. 2), then it holds that

- /¢ 4
Dxr.(pr—sllap™) < Dxn(Po.r—sll Gt -s)

/T 5/ (,LL& logmiy(l)/) — ps(v) + AP (v )> V(dl/)ds] ’ (C.7)

where the intensity 1**?P is defined in (C.5), and the expectation is taken w.r.t. both paths generated
by the backward process (2.4) and the randomness of the Poisson random measure used in the first
step of each iteration of the algorithm, i.e., the construction of the intermediate process (C.1), which
is assumed to be independent of that of the backward process.

<Dxkwr(Pollq0) +E

Proof. First, we will handle the randomness introduced by the Poisson random measure in the first
step of each iteration of the f-trapezoidal method. For the ease of presentation, we encode the
aforementioned randomness as a random variable ¢ and suppose it is still supported on the probability
space (2, F,P) while being independent of the backward process. Then for each realization of ¢,
the intermediate process 47 is constructed as in (C.1) and the corresponding intensity /7 is defined
in (C.4).

Given the stochastic integral formulation of the backward process (2.4) and the interpolating process
of the #-trapezoidal method (C.5), we have by Thm. B.4 that this particular realization of the path
measure g 4* s can be obtained by changing the path measure jo.;_, with the Radon-Nikodym
derivative

2| 2| e (- / [ 1o Amp’VNst,de / [ ) = e @) a(anas).

Le.,

~trap
- a - H
DKL(PO:T%HZI\S T 5100 =E [log ZTLS [ [ ”

/ o [ (w0 lgmi()) )+ ) v(du)ds].

Then it is easy to see by the data processing inequality and the chain rule of KL divergence that

Dxv(pr—sl1@77%) < Dxv(Po.r—sl@oirs) < B [Dxw(dr_sllar51¢)]

-/OT—J/D <MS(V) logfm_us( V) + AP (v )) 7(d1/)d81,

and the proof is complete. O

=E

=Dx1(Pollq0) + E

In the following, we will provide the outline of the proof of Thm. 5.4, where we leave the proof of
several lemmas and detailed calculations to App. C.4 for the clarity of presentation.

Proof of Thm. 5.4. Throughout this proof, including the subsequent lemmas and propositions that
will be detailed in App. C.4, we will assume that (ys)sc[o,7] is a process generated by the path
measure p,. of the backward process with the stochastic integral formulation (2.4) and set it as the
underlying paths of the expectation in (C.7) as required by Thm. C.5. Especially, ys ~ p, holds for
any s € [0, T']. For simplicity, we will assume that the process ys is left-continuous at each grid point
s; for i € [0 : N, which happens with probability one.

We first consider the interval (s, s,+1] forn € [0 : N — 1], and thus we have | s| = s,, and ps = pp,.
Within this interval, we will denote its intermediate process as appeared in (C.1) as y;, and the
corresponding intermediate intensity as appeared in (C.4) as 1i%. In the following discussion, we will
assume implicitly that the processes are conditioned on the filtration F5, .
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1174 By the definition of the intensity i**#P(v) as specified in (C.6)

~trap __

ot = 18<Ps“L5J + 15>, (Oéllips - OZZIJJsz)

1175 we can rewrite the corresponding part of the integral in (C.7) as

/:m/ (Ms ) log Atrdi()) — ps(v) + P (v )) y(dv)ds
</ 5 / +) / ( (v)log ﬁgil(ay()y) = ps(v) + ﬁifﬂp(u)) y(dv)ds
/ ) / ( v)log ﬁsf(y )) — ps(v) + Hs, (v)) v(dv)ds

(I
+/in+1 /D <,us(1/) log "ol ps (V) ] 1s(v) + oa il (v) — azﬁsn(y)) ~(dv)ds,

V) — asjis, (v

(In

1176 where the assumption that a1 15, — afi|s) > 0 forall s € [0, T — §] is applied here for the second
1177 term (II) above.

1178 Decomposition of the Integral. Next, we decompose the integral (I) and (II) into several terms,
1179 the magnitudes of which or combinations of which are to be bounded.

1180 (i) The first term is decomposed as

(1) = (L1) + (L.2) + (1.3) + (L4),

1181 where each term is defined as

0= [ [ (@02 04 0, 0)) s

(12) = / " / (110 () 108 10 () — 12 () =t () 108 1, (v) + pin, () ¥(dw)dls,

(13) / [ 0120 = 1, ) o (0175, () = i, () = 08 i, () 7 (),
)= [ [ e, 108 (e, ) - aafe, () r(aw)as
_/pn/D,uS(u) log (alﬁ;n(u)—agﬁsn(u)) ~v(dv)ds.

1182 (ii) The second term is decomposed as
(I1) = (I1.1) 4+ (11.2) + (I1.3) + (II.4) + (IL.5) + (IL.6),

1183 where each term is defined as

Sn+1 v N
(IL1) = oy / / <up” v) log KLz EV; — tp, (V) + Tip, (V)) v(dv)ds
Pn

~ / T (00 2 )+, ) ) (),

)= [ [ e 1081, 0) = ) 1 @)

_ / - [ (i, () 108 115, (v) = 115, () = 22, () Jog s, (V) = s, (V)7 (dV) s,
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)= [ [ (75,00 - i, @) 2(av)as

n D
= [ [ (@t ) 108y, () = e, () 0o, () 7 ()
[ [ @, ) = @z, ) 108 (@17, ) = a5, ()7 (),
)= [ [ @t = a2 () Yo (17, ) = a2, () () s

(I1.6) = /S,L+1 /(Oél,upn(l/) — agpis, (v)) log (alﬁ;n(u) — agfls, (I/)) ~(dv)ds

[ [ o tos (i, ) - s, ) ).

n

Bounding the Error Terms. Then we briefly summarize the intuitions and related techniques
used in the bounds of the terms above, and the detailed calculations and proofs of the lemmas and
propositions are deferred to App. C.4.

(i) Error due to estimation error associated with the intensity: The terms (I.1) and (II.1) are
bounded by the assumption on the estimation error of the intensity fi5 (Assump. 5.3), as
E[(L.1) + (I1.1)] < 0Aner + a1 (1 — 0)Aper = 0Ae1 + %Anel < Ape,
for any 0 € (0, 1].
The term (I1.4) is bounded by Prop. C.9, as
E[(IL4)] S Aner,
where Jensen’s inequality is applied here based on the convexity of the loss.

(ii) Error related to the smoothness of intensity: By Cor. C.13, the terms (I.2) and (I1.2) are
bounded by

E[(1.2) + (11.2)] < A3.
By Cor. C.14, the terms (I.4) and (I1.6) are bounded by

E[(1.4) + (11.6)] < A3.

Intuitively, the bounds on these terms closely relate to the properties of the jump process and
quantify the smoothness assumption on the intensity s (Assump. 5.2), especially when the
intensity does not vary significantly within the interval (s,,, $,,11]. The main technique used
for bounding these terms is Dynkin’s Formula (Thm. C.10). The third-order accuracy here
directly follows from the intuition provided in Sec. 4 based on numerical quadrature.

(iii) Errorinvolving the intermediate process: The terms (I1.3) and (I1.5) are bounded by Prop. C.18
and Cor. C.19 respectively as follows

E[(11.3)] S A3 + A2¢yy, and E[(IL5)] < A3 + A2ey,
The term (I.3) is bounded by Prop. C.20 as below
E[(L3)] < AJ.

The three terms above all involve the intermediate process y; and the corresponding intermedi-
ate density fi%.
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In conclusion, by summing up all these terms, we have

Sn41
/ / (:ué lOg Atrai()) - :ué( ) + Atrap( )> ’y(dv)ds
,SAn(GI + EH) =+ Az =+ AZGH S An(el + EH) + AEL

Therefore, the overall error is bounded by first applying Thm. C.5 and then the upper bound derived
above to each interval (s,,, $,+1], Which yields

/T 6/ (Ns ) log ﬁﬁagz)y) — hs(v) + 1P (v )) 'Y(d’/)ds]

1

SDxL(Bolldo) + Y (An(er + en) + AJ)
n=0

Sexp(—T) + T(er + enr) + k2T,
as desired. O

o ¢
Dk (pr—sllap™)

<Dxw(Pollgo) + E
N—

Remark C.6 (Discussion on the Positivity Assumption). In the following, we will take the positivity
assumption in Thm. 5.4 as an example, and the case of the 0-RK-2 method is similar. In the statement
of Thm. 5.4, we have assumed that

aufi, (V) — azfijs)(v) >0

in(C.6) forall s € [0, T — 6], which allows us to replace (a1 1y (v) — azfi|s) (1/)) N by the difference

itself. [25] showed that this approximation is at most of O(A2) within the corresponding interval,
and [26] further proved that for any order p > 1, there exists a sufficiently small step size /\ such
that this approximation is at least p-th order, i.e., of order O(AP) for that step.

We give a brief justification of this assumption here. We consider the expectation of the difference
itself, which is given by

E [oafiy, (v) = aofijs) ()] = E [fijs) (v) + ar (i, (v) = . (¥) + a1 (T, (v) — s (v))]
21 —ay(ker+ k) =1—0(k),
where we used E [|ﬁ:‘, (V) —Hp,(v)]] < kew, as established in Eq. (C.17) and

E |, (v) = fips) ()] S k. as shown in Eq. (C.18). Therefore, as long as the step sizes Ay,
are sufficiently small, the positivity assumption is valid in the sense that the expectation of the
difference is at least 1 — O(k).

C.3 Convergence Analysis of the 6-RK-2 Method

Here we may again apply the data processing inequality and the chain rule of KL divergence to upper
bound the error associated with the -RK-2 method. A statement of the upper bound is provided
in Thm. C.7 below, whose proof is omitted here since it is similar to that of Thm. C.5 above.

Theorem C.7. Let po.r_5 and Gos_s be the path measures of the backward process with the
stochastic integral formulation (2.4) and the interpolating process (C.2) of the 0-RK-2 method (
Alg. 1), then it holds that

D (br_slafss) < Dxr(Bo.r—sll @i —s)

[ ] (o8 50 o) 4 2510 v(du)ds], P

where the intensity iI"X is defined in (C.2), and the expectation is taken w.r.t. both paths generated
by the backward process (2.4) and the randomness of the Poisson random measure used in the first
step of each iteration of the algorithm, i.e., the construction of the intermediate process (C.1), which
is assumed to be independent of that of the backward process.

<Dxkr(Pollqo) +E
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Following the same flow as in the proof of Thm. 5.4, we will first provide an outline of the proof
of Thm. 5.5, and defer the proof of several key lemmas and detailed calculations to App. C.4 for the
clarity of presentation. We will also comment on the differences that may lead to the less desirable
numerical properties of the §-RK-2 method.

Proof of Thm. 5.5. In the following proof sketch, we will be using the same notation as in the proof
of Thm. 5.4, and we will assume that the process y, is left-continuous at each grid point s; for
i € [0 : N]. We also start by taking a closer look at the integral within each interval (s,,, S,+1] for
n € [0 : N — 1], and denote the intermediate process as appeared in (C.1) as y* and the corresponding
intermediate intensity as appeared in (C.4) as fi}.

As defined in (C.3), the intensity 7% (v) is given by
ALt w) = (1= 55) By (v) + g5, (v),

which helps us rewrite the corresponding part of the integral in (C.8) as

7 (metion iy — e + 75509 ) atanias
-
fis(v)

115 () 0g _ _
( (1= 5)iie, () + B, (v)

— (V) + (1= 35) fis, (V) + ;,ﬁ;JW) v(dv)ds.

(I11)

Above we again use the positivity assumption that (1 — 55)7i|s] + %ﬁ;s > 0 for the term (I1I)
above, just as what we have done in the proof and discussion of Thm. 5.4 above.

Decomposition of the Integral. Then we perform a similar decomposition of the integral as in the
proof of Thm. 5.4 as follows:

(ITI) = (IIL.1) + (1I1.2) + (II1.3) + (IIL.4) + (IIL5) + (IIL6),

where each term is defined as

i) = (1= ) [ [ (108 (5205 ) = e, 0+ . () 1 (0
o / (upn ) log (upn ) Lo (V) + Hp, (v )) v(dv)ds,
(1r1.2) = / / (1 () 1og 11 () — 11y () 7(d¥)ds
A

/ (= ) (e () 108 110, (V) = 0) + 2 (tipn () 108 1, () — i () 4(dw)ds,

Sn41
(IIL.3) / 29 (A5, (V) = Hp, (v)) v(dv)ds,

(II1.4)

A "“/
Sn+41
(I11.5) /

Snt1 / (1= 55) ts, () + s511p,, (1)) log ((1 = 55) s, (v) + 219/7:n( V) (dv)ds,

30) Hsa (V) + b0, () 1og (1 = 55) s, (V) + 957, (V) ¥(dv)ds,

/ ) b () 08 i, (V) + 2, () log iy, (1)) 7(dv)ds
/ LY tian (V) + 1 (1)) 10g (1= 25 Fran () + i, () (dw)ds

(I1L.6) /+/ ((1 = 25) 15, () + 55100, () Jog (1 = 35) is,, (V) + 55105, (v)) ¥(dv)ds
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[ i (0 ) )+ 5, ()t

Bounding the Error Terms. Then we briefly summarize the intuitions and related techniques used
in the bound of the terms above,. Detailed calculations and proofs of the lemmas and propositions
used here are deferred to App. C.4.

(i) Error due to the intensity estimation: The terms in (II1.1) are bounded by the assumption on
the estimation error of the intensity s (Assump. 5.3) as follows

E[(IHl)] S ( 7) A n€l + A n€l = Anq,
for any 0 € (0, 1].

(ii) Error related to the smoothness of intensity: By Cor. C.16 and Cor. C.17, the terms (I111.2) and
(II1.6) are bounded by

E[(I11.2)] < A2, and E[(IIL6)] < A?,
respectively.
(iil) Error involving the intermediate process: The term (I11.3) and (II1.5) are bounded in almost
the same way as that of Prop. C.18 and Cor. C.19. By simply altering the integral upper limits,

we obtain that

E[II1.3)] S A2 4+ A2ey, E[(IIL5)] S A3 + AZq.

The only term that cannot be directly bounded based on results in App. C.4 is (II.4), which is given
by

E [(IT1.4)] { / o / 39) Hs, (V) 108 s, (V) + 9541, () 10g i, (v)) v(dv)ds
[ = )0+ e ) 105 (1= 55) )+ () 2 ()
(C.9)

Recall that in the proof of its counterpart (Prop. C.9), we utilized the convexity of the loss function and
the extrapolation nature of the second step in the §-trapezoidal method (C.6) to bound the error term.
However, the same technique cannot be directly applied to the §-RK-2 method for any 6 € [0, 1], as
the intensity 7i5X is an interpolation of the intensity fis when 6 € (%, 1]. Therefore, below we will

first focus on the case when 6 € (0, 3].

To be specific, by the assumption on the estimation error (Assump. 5.3), we can reduce (C.9) to
Sn+1 N 1 N
B[ [ (0= ) e (0010870, 0) + ot () o 7y (1)

/ oo / LY i () + 5. () Tog (1 = ) fis,, () + 57, (v)) V(d”>d5]’

(C.10)
which can then be upper bounded based on Jensen’s inequality and the convexity of the loss function
for 6 € (0, 3].

Summing up the bounds of the terms above, we have

Sn+1
[ (1008 ol )+ 5000 ) (s
SAp(er+en) + A3 £ A2erp S AL (e +ep) + A2
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Consequentially, the overall error of the §-RK-2 method is bounded by

Dy (pr_sllarss)

/T 6/ </¢s lgﬁRK(()) —,us(l/)-i—ﬁ?K(u)) ’y(du)ds]

1

S DKL(poHQO + Z n 6I + 611) + A?L)
n=0

Sexp(—=T) + T(er + err) + k2T,

< DxL(Pollqo) + E
N—

which suggests that the §-RK-2 is also of second order when 6 € (0, %] For the other case when
0 e (%, 1], we will provide a brief discussion in the remark below. O

Remark C.8 (Discussions on the case when 6 € (%, 1]). For6 € (%, 1], the term (C.10) is positive
and thus not necessarily bounded. One may wonder if, despite being positive, this term is still of
at least second order. However, the answer seems negative. By applying the Dynkin’s formula
(Thm. C.10 and Cor. C.11) to s log [is in the term (111.4), we have that the first integral in (C.9) can
be expanded as follows

{ /+ / 35) Hs, (V) 10g i, (V) + 35140, (V) log i, (v)) 7(dv)ds
=i [ [ o0 108 0, (0) + 080 (1, () o, () (00
_%) / e /D s, () og fis.. (1) y(dv)ds + O(A2)

~ 1 ~
B [ 10, () 087, (17 (0) + 582 [ £, ()0, () () + O(A2).
D D
Similarly, applying Dynkin’s formula to the following function

Gs(,ys-) = (ggs (1, Ys—) + (1 = 55) s, (V,ys-)) log (a5 s (v, ys—) + (1 = 55) Fs,, (0 y5-))

with Go(v,ys,, ) = ps, (V, s, ) 10g [is, (v, ys, ) allows us to expand the second integral in (C.9) as
below

E[/ N | (gt () + (1= g5) s, () L0 (58, (v) + (1 = 5g) s, (1)) (dv)ds

A, / G (ys. )y(dv) + OA2 / LG, (ya,)1(dV) + O(AY),
D
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where

LG, (V,Ys,)

~ Oslts,, (,Ys,,)
1 1 1 Osths, (Vs Ys,,
=550shs, (Vs Ys, ) 10g s, (V,Ys, ) + sgtts, (Vs Ys, ) 5 —=

20 20 20 fis, (1, Us,)

+% / /”Lsn (Vv yS'n, + V/) IOg (%ﬁs(ya yS'n, + V/) + (1 - %) //‘L\Sn (V, ySn + V/)) ’Y(dyl)
D

_ﬁ /D s, (v, ys,, ) log fis,, (v, ys, )y (dv)

Osits,, (v, Ys,.)
+(1-4 ROATS L 28880\ Ion/
(= 2) o) 5 0

+ (1 - %) /D.Usn(yv Ys, + V/) log (%ﬁs(% Ys, + V/) + (1 - %) //]’Sn(y7 Ys, + V/)) ’y(dl/)

—(1- %) /D o, (0. 108 B, (v e, )y ()

Ostis, (V, Ys, )

:%88/%” (V) Ys,,) log s, (V) Ys,, ) + %Nsn (¥, Ys,,) /-/lsn (V7 ysn)

25 [ Hsn (s, + V) 108 i (v, s, + 1))
D
+ (1 - %) / ws, (v, ys, +v")loglis(v,ys, + v )y(dV)
D
_ﬁ /Dlj‘sn (1/7 ysn)log ﬁsn (V7 ysn)'Y(dy/) - (1 - 710) /]IDMS" (U, ysn)log ﬁSn (V, ysn)'}/(dyl).

This further implies that

0LG, (1s,) = 5L (115, () log i, ()

+ 25 / (s, (v, ys, + V") 1og fis(v, ys, + V') = ps, (v, ys, ) log fis,, (v, ys,, ) v(dv').
D

Comparing the first and second order terms in the two expansions of the two integrals in (C.9) above
then implies that the term (I11.4) is of at most second order.

C.4 Lemmas and Propositions

In this section, we provide the detailed proofs of the lemmas and propositions omitted in the proof
of Thm. 5.4 and Thm. 5.5.

Error due to the Intensity Estimation. Apart from the terms (I.1) and (II.1) in the proof
of Thm. 5.4 and the term (III.1) in the proof of Thm. 5.5, we also need to bound the error terms
(I1.4) in terms of the intensity estimation error, which is given by the following proposition. Notably,
the following bound also utilizes the convexity of the loss function and the extrapolation nature of the
second step in the #-trapezoidal method (C.6).

Proposition C.9. For the interval (s, sp+1] forn € [0 : N — 1], we have the following error bound:

E[(I14)] E[ [ | (@t 0110878, () — a0 o, () 1 ()

- / / (@111, (v) — 2, (1)) 108 (@1, (v) — 0271, (1)) y(dw)ds| 1D

SAnGH-
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1204 Proof. We first define and bound three error terms (I1.4.1), (11.4.2), and (I1.4.3) with score estima-
1295 tion error (Assump. 5.3) as follows:

E[|(I1.4.1)]] =E {

/SnH / a1 (pp,, (V) log i, (v) — Lip, (v) log fip, (v)) v(dv)ds

Pn

D
Sn+1
<o [ [l @) = B )l o, 02 @0
Pn
Sn+1
<E {/ / |tep, (V) — p, (V)] ’y(dy)ds} < Aper,
,L D

1296 Similarly, we also have

E[|(IL4.2)] = E [

/ /D s (pts,, (v) 108 fis,, (v) = s, (v) log fi,, (1)) Y(dv)ds

} :5 Zk77,€Ha
1297 and

E[|(11.4.3)[] :E[

/sn+1 /(Ozl.upn(l/) — anfis, (V) log (aifi,, (V) — asfis, (v)) y(dv)ds

|

D
[ [ @i () = i, () 108 (i, (v) = 27, () ()

SAgerr.

1208 The remaining term (I1.4.4) = (I1.4) — (I1.4.1) — (I1.4.2) — (IL.4.3) is then given by
Sn41
) = [ [ (@, () 108y, (v) = afn, () o8 e, () ()

_ /an /D(ozlﬂpn (1/) - Oé2ﬁsn(V)) log (051/7% (V) - aQﬂsn (V)) 7(dy)ds <0,

1299 where the last inequality follows from Jensen’s inequality, i.e.,
arzlogr — asylogy < (a1x — any) log(a1z — any),
1300 for oy, 9 > 0 and a; — e = 1. Therefore, by summing up the terms above, we have
E[(I1.4)] < E[(I1.4.1) 4 (I1.4.2) 4 (I1.4.3) + (I1.4.4)] < Ape,
1301 and the proof is complete. O

1302 Error Related to the Smoothness of Intensity. Below we first present the Dynkin’s formula,
1303 which is the most essential tool for the proof of the error related to the smoothness of the intensity.

1304 Theorem C.10 (Dynkin’s Formula). Let (y:).co,r) be the following process:

=+ | t [ oNtilas, )

1305 where N[u|(ds,dv) is a Poisson random measure with intensity p of the form ps(v,y,- ). For any
1306 f € C'([0,7] x X), we define the generator of the process (yt )i, as below

Lf:(y) = lim Jerr (Year) = fe(ye)

T—0t T

g — y] i)+ / (Foly + ) — fo)) (v g ().

(C.12)
1307 Then we have that

Elfitw)] = folw) +E | [ t LA ()]

1308
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Proof. The definition and the form of the generator £, as well as the Dynkin’s formula are all
well-known in the literature of jump processes. We refer readers to detailed discussions on these
topics in [214].

Here we take X () = (¢t,y:), =z = (,€), a(t,X(t)) = 0, o(t,X(t)) = 0, v(¢t, X(t7),2) =
v1o<e<p,(v,y, ) in the statement of Thm. 1.19 in [214] and replace the compensated Poisson random

measure N (dt, dz) with the Poisson random measure N (ds, dv, d¢) defined as Rmk. B.3. Then we
are allowed to use the ordinary Poisson random measure instead of the compensated one since we are
working with a finite measure y(dv).

From Thm. 1.22 in [214], we have that
LF(y) = Oifily) + /D /R (Fi(y + Vlocecm o) — foly) 7(dv)de

= 0ufuly) + / (Foly + ) — i (9)) e ) (),

and the proof is complete. O
In many cases below, we will need the following first-order expansion of the expectation of the

function f;(y;) by assuming the second-order smoothness of the function f.

Corollary C.11. Suppose that the process (yt)c(o,-)] and the generator L are defined as in Thm. C.10.
If we further assume that f € C?([0, 7] x X), then it holds that

E[fi(ye)] = fo(yo) + tLfo(yo) + O(t?).

Proof. We expand the function f;(y,) from ¢ = 0 as follows
t
E[fe(ye)] =fo(yo) + E {/ Efs(ys)d5:|
0
= L Lfs(y,)do | d
ot +E | [ £ (fol) + [ £rtur)ae ) as]
— L E e o (Yo )dods | ,
foton) + Lot + 2| [ [ 25 uaos
where £2 is the second-order generator of the process (Yt)te(o,7) defined as follows
1,0 = £ (008 0) + [ Gty +0) = o) o ()
= 21,0 +2 [ (@nfoly+ ) = 90 o) el ()
4 [ Galw 42 = F2(0) Qo)1)
D
[ Gty tv ) = oty +0) = foly - 0) + £ola) o a7 ()1 (00,
DJD

which is bounded uniformly by a constant based on the assumption on the smoothness of the function
f up to the second order and the boundedness of the measure y(dv). Therefore, the second-order
term above is of magnitude O(#?), and the proof is complete. O

The following lemma provides a general recipe for bounding a combination of errors, which resembles
standard analysis performed for numerical quadratures. In fact, the following lemma can be easily
proved by Taylor expansion when the process (yt)te[O,T] is constant, i.e., y; = y. Cor. C.11 offers an
analogous approach to perform the expansion when the process (y;):c[o,7] is not constant.
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Lemma C.12. For any function f € C?([0,7] x X) and the true backward process (y;)ico,r] defined
in (2.4), it holds that

or T -
E [ ; fo(yo)ds + /97' (a1 for (Yor) — a2fo(yo)) ds */0 fS(yS)dS]

< 73,

~

Proof. Let L be the generator defined in Thm. C.10. By applying the Dynkin’s formula (Thm. C.10
and Cor. C.11) to the function f;(y;) and plugging in the expression of the generator £, we have that

orT T T T
folw)ds —az [ fotw)ds+ar [ faruar)ds— [ fs(ys>ds]
orT or 0

=07 fo(yo) — a2 (1 — 8)7 fo(yo) + a1 (1 — 0)7 (fo(yo) + OTL fo(yo))
- / (folwo) + SLIo(30)) ds + O(7*)

E

2

.

= (9 - 042(1 — 9) + 041(1 - 9) - 1) Tfo(y()) + 041(1 - 9)97’2£f0(y0) - ?ﬁfo(yo) + 0(73),
which is of the order O(73) by noticing that

2
9—a2(1—0)+a1(1—9)_1:(29(110_92;95 ) —(1-0)=0
ar(1-0)0 -5 1= 20(1 0)( —-0)0— 5 =
and the proof is complete. O

We remark that in Thm. C.10, Cor. C.11, and Lem. C.12, the smoothness of the function f implies
that its derivatives up to the relevant order are bounded by constants independent of the time step 7.
This condition is verified in the subsequent proofs.

Then we are ready to bound some of the error terms in the proof of Thm. 5.4 with Lem. C.12.
Corollary C.13. For the interval (sy, Sp+1] for n € [0 : N — 1], we have the following error bound:
|E[(I.2) + (IL.2)]|

’ U+/ s (v) log rs (v) — s (1)) 7(dv)ds

_ /pn ‘/D (:usn (V) log Hs,, (V) + s, (V)) ’)/(dV)dS

-/ | @10, 0108 10, () = 11, ) = 20, () 08 10, 0) — i, <u>>)v<dv>ds}
<A3 '

Proof. The bound is obtained by applying Lem. C.12 with f being the function

fulye) = / 112(v) log 1 (v)y (),

Strictly speaking, f,(ys) is actually in the form of fs(y,- ), but the argument can be easily extended
to this case by assuming time continuity of the function f. O

Corollary C.14. For the interval (s, sp+1] forn € [0 : N — 1], we have the following error bound:
|E[(I.4) + (IL.6)]|

’ U / ps,. (v)log (enfiy, (v) — aofis, (v) 7(dv)ds
+ /+ | (s, (v) — azpis, (v)) log (a7t (v) — azfis, (v) v(dv)ds

/
- /+ /D“s(”) log (i, (v) — asfis, (v)) ’Y(du)ds]

< A3
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Proof. Note that the intermediate process ¥ defined in (C.1) is driven by a Poisson random mea-
sure that is independent of the Poisson random measure driving the process s within the interval
(81, Sn+1]- Therefore, the error bound is obtained by

1) Takmg the expectation w.r.t. the intermediate process ¥ and thus the intermediate intensity
[k, and

(2) Then applying Lem. C.12 with f being the following function
fs(ys) = /D pus(V)E [log (aufiy, (v) — afis, (v))] y(dv).

The result follows directly. O

Now we turn to the error term (II1.6) in Thm. 5.5, for which we need the following variant
of Lem. C.12.

Lemma C.15. For any function f € C?([0, 7] x X) and the true backward process (Yt )te(o,7) defined
in (2.4), it holds that

E [ (= 3) o) + oty s [ fs<ys>ds}

3.

~

Proof. The proof is similar to that of Lem. C.12. Specifically, we let £ be the generator defined
in Thm. C.10, apply the Dynkin’s formula (Thm. C.10 and Cor. C.11) to the function f;(y;) and plug
in the expression of the generator £, which yields

E {/OT (1= 35) folyo) + 55for(yor)) ds — /OT fs(ys)d‘s:|

T

— (1= L) rholyo) + 2 /0 " (Folyo) + 0L Fo(yo)) ds — / (folwo) + SLfolwo)) ds + O(*)

0
=0(r%),
as desired. O

Corollary C.16. For the interval (s, sp+1] forn € [0 : N — 1], we have the following error bound:
|E [(IIL.2)]]

‘ [/S"“/ pus (V) log pis (V) — pus(v)) y(dv)ds

/ / (L= &) (ttan () 108 pray () — ) + 2 (g () 108 pi, () — pip () v(du)ds}
< A3

Proof. By applying Lem. C.15 with f being the function
Folw) = [ (o) og el

we have that the result follows directly. O

Corollary C.17. Foranyn € [0 : N — 1] and the corresponding interval (s,,, Sp+1), we have the
following error bound:

|E [(I1L6)]

:' [// 55) ts, (V) + 5ghp, (V) 10g (1 = 55) s, (V) + 3570, (1)) 7(dv)ds

_/s:n+1/Dus(u)log((1—zlg)ﬁsn(u)-y L (v ))’Y(du)ds} <A

n-
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Proof. Following the arguments in the proof of Cor. C.14, the error bound is obtained by first taking
the expectation w.r.t. the intermediate process y* and thus the intermediate intensity /2%, and then
applying Lem. C.15 with f being the function

fulys) = / 1 (WE [log (1= 2%) Bra, (v) + 75, ()] 4(dv),
as desired. O

Error involving the Intermediate Process.

Proposition C.18. For the interval (s, Sp+1] withn € [0 : N — 1], we have the following error
bound:

Sn41
[(IL.3)] [/ / s, () = fip, (v)) V(dV)dS} S A+ Al

Proof. First, we rewrite the error term (II.3) as

[(I1.3)] [/ ”“/ i, (v ﬁpn(u))y(d,,)ds}
s / im /D (B (755, ()] = E[fp, ()]) v(dw)ds.

Then we expand the integrand by applying the Dynkin’s formula (Thm. C.10 and Cor. C.11) to the
function fis(v) w.r.t. the intermediate process (y)sef and the process (Ys)se|s,,p.] Tespectively
as follows

E (75, ()] = Elfp, )]
=E [, (v) + L7, (1) A + O(A2)] — E [, (v) + L7, (1) A + O(A2)]
=E[(L" = L)fis, (v)An] + O(A7),
where the generators £* and L are defined as in (C.12) w.r.t. the processes (y%)se(s,,p,] and
(Ys) se[sn.pn]- Tespectively, i.e., for any function f € C*([sy, p,] x X), we have

£ 1) = 0, fuly) + /D Py + ) — f2(4)) o ()1(d0),

(C.13)

Snspn]

(C.14)
LL0) = 0.5.0)+ [ (ol +) = £.0) (o).
Therefore, for the term E [|(L* — £)[is, (v)|] evaluated at s = s,,, we have
BUC ~ O, ] = || [ (B 9) = e (00) (B 0) = 1, 0) 20|
L (C.15)

B | [1..0) 0@ S e

where we used the assumption on the estimation error (Assump. 5.3) in the last inequality. Then we
can further reduce (C.13) to

Sn+1 Sn+41
/ / (75, ()] — E [, () v(dv)ds < / (A + O(A2)) ds < enA? + A3,

n

and the proof is complete. O

Corollary C.19. For the interval (s, sp+1] forn € [0 : N — 1], we have the following error bound:

E[(IL5)] =E [ / / (01, () — i, () log (i, (v) — ofis, (v) A(dv)ds
_ /5n+1 /D(al'up"(y> — aops, (V) log (alﬁ:n (v) — asfis, (1/)) ~v(dv)ds

,SAf, + A?LEH.
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1392 Proof. Since the two integrands in (I1.5) only differ by replacing /i (v) with 7i,, (), we have the
1393 following upper bound by using the assumption on the boundedness of the intensities (Assump. 5.2
1394 (H))

[(I1.5)]

9n+1 1
a1py, (V) —a v — — a1 |, (V) — @ (V)| y(dv)ds
[ 10305, (0) = 0, ()] e [ () = 7, ()] ()

| [ [ -7, W)~ (a@v)as]

S0 | [ (7,00 = 7, 0] @)

(C.16)
1395 Applying the same arguments as in Prop. C.18, which uses the generators £ and £* defined in (C.14),
1396 we can bound the RHS above as follows

E (|7, (v) = fip, (v)]]
=E [| (fls,, () + L7 fis, (1) An + O(A})) = (Bis, (v) + L5, ) A, + O(A}))[] (€17
SAE[(L" = L), (V)[] + O(A}) S Aper + O(AY)

1397 where the last inequality follows from (C.15). Substituting (C.17) into (C.16) then yields the desired
1398 upper bound. O

139 Proposition C.20. For the interval (sy, Spt+1] withn € [0 : N — 1], we have the following error
1400  bound:

E[(1.3)] =E [/pn/ ps(v) = pis, (v)) (log (aafiy, (v) — aofis, (v) — log fis, (v)) y(dv)ds

1402 Proof. First, we observe by Dynkin’s formula (Thm. C.10) that

E{l1s(v) — pto, ()] = E [ [ s+ o)

:| 5 Ana
1403 and also
E([7(v) — fia, (v [ / f,ds + O(A2)

1404 Secondly, applying the given assumption (Assump. 5.2 (II)) on the boundedness of the intensities
1405 yields

} <A, (C.18)

E [[log (en i, (v) — asfis, (v)) — log fis, (v)]]

’Sﬁsnl(V)E [loai, (v) — asfis, (v) — fis,, (V)]

<E [|eafiy, (v) — asfis,, (v) — fis, (¥)]] (C.19)
<SE [ad |7y, (v) = fis, (V) ]
SE (|75, @) = fip, )] + E |7, () = fis,, ()]
SO+ Aper + O(A2) S A,
1406 where the last inequality follows from (C.17) proved above. Therefore, we may further deduce that
[(1.3)]

/ " / s ) — ey )]

E [[log (alﬁzn (v) = aofis, (v)) = log (a1fip, (v) — afis, (v)[] v(dv)ds

<A3

~Y n’

1207 where the first inequality is due to the independency of y; and y* for s € [s,,, p,], and the proof is
1408 complete. O
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D Details of Numerical Experiments

In Apps. D.1 to D.3, we present additional numerical results for the 15-dimensional toy model, text
generation, and image generation, respectively.

D.1 15-Dimensional Toy Model

We first derive the closed-form formula of the marginal distributions p, in this model. Recall that the
state space X = {1, 2,...,d} with d = 15, and the initial distribution is py € A?. The rate matrix at
any time is Q = 7E I By solving (2.1), we see that

1—e? _
p; =e'9py = ( y tI) Po,

and therefore p; converges to the uniform distribution p., = 51 as t — oo. The formula of p;
directly yields the scores s;(z) =

Pt
pe(w)”
During inference, we initialize at the uniform distribution gy = poo and run from time 0 to T =
12. The truncation error of this choice of time horizon is of the magnitude of 10~'2 reflected by
Dx1.(pr||Po), and therefore negligible. The discrete time points form an arithmetic sequence.

We generate 10° samples for each algorithm and use np . bincount to obtain the empirical distribution
gr as the output distribution. Finally, the KL divergence is computed by

Dxr(pollgr) Zpo OgA .).

We also perform bootstrapping for 1000 times to obtain the 95% confidence interval of the KL
divergence, the results are shown by the shaded area in Fig. 3. The fitted lines are obtained by
standard linear regression on the log-log scale with the slopes marked beside each line in Fig. 3.

D.2 Text Generation

For text generation, we use the small version of RADD [33] checkpoint! trained with A\-DCE loss.
We choose an early stopping time § = 103 for a stable numerical simulation. Since RADD is a
masked discrete diffusion model, we can freely choose the noise schedule o () used in the inference
process. We consider the following log-linear noise schedule used in the model training,

olt) = ﬁ 5(t) = /0 o(s)ds = —log(1 — (1 - €)t) (D.1)

where we choose ¢ = 1073.

The score function sg(x¢, t) used for computing the transition rate matrix can be computed from the
RADD score model py using the following formula from [33],

—5(t)
e

S?(mt) = ( )pe(wt)7 (DZ)

1—e9C

where the model py is trained to approximate the conditional distribution of the masked positions
given all unmasked positions. More specifically, let d be the length of the sequence and {1, 2, ..., S}
be the vocabulary set (not including the mask token). Then given a partially masked sequence
x = (z1,...,2%), the model py(x) outputs a d x S matrix whose (¢, s) element approximates
PxX paua (27 = 8| X ™ = £UM) when 2* is mask, and is 1 x¢ , if otherwise. Here, V™ represents
the unmasked portion of the sequence .

We adopt a uniform discretization of the time interval (J, 1]. For §-RK-2 and #-Trapezoidal, we
pick 6 = % We compare our proposed §-RK-2 and #-Trapezoidal with the Euler method, Tweedie
T-leaping, T-leaping, and we present full results across all NFEs ranging from 16 to 1024 in Tab. 2.
For each method, we generate 1024 samples with it and compute the averaged perplexities. All the

experiments are run on a single NVIDIA A100 GPU.

"https://huggingface.co/JingyangOu/radd-lambda-dce
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Table 2: Generative perplexity of texts generated by different sampling algorithms. Lower values are
better, with the best in bold.

Method NFE = 16 NFE=32 NFE=64 NFE=128
FHS <307.425 <186.594 <141.625 < 122.732
Euler <277.962 <160.586 < 111.597 < 86.276
Tweedie 7-leaping < 277.133 < 160.248 < 110.848 < 85.738
T-leaping < 126.835 <96.321 < 69.226 < 52.366
0-RK-2 <127.363 <109.351 < 86.102 <64.317
0-Trapezoidal <123.585 < 89.912 <66.549 <49.051
Method NFE = 256 NFE =512 NFE = 1024
FHS <113.310 < 113.026 < 109.406
Euler < 68.092 < 55.622 < 44.686
Tweedie T-leaping < 70.102 < 55.194 < 44.257
T-leaping < 41.694 < 33.789 < 28.797
0-RK-2 < 49.816 < 40.375 <33.971
0-Trapezoidal <39.959 < 32.456 < 27.553

From the table, we observe that §-Trapezoidal consistently outperforms all other approaches and
generates samplers with better perplexities across all NFEs. We also noticed that both the Euler
method and Tweedie 7-leaping share a similar performance, which is beaten by a large margin by
0-RK-2 and 7-leaping.

9.0
w5l —7 6-RK-2 (NFE = 32) s
sel 6-RK-2 (NFE = 64)
8.4 r
082 /"/
T
8.0 \ o
7.8 N/‘\/
76 K/—/
74 S /e//
Tt

0.10 0.20 030 040 050 0.60 0.70 0.80 0.90 1.00
6

Figure 6: Sampling quality vs. 8 € (0, 1] in §-RK-2 algorithm. Sampling quality is quantified through
FID.

In Fig. 6, we present the performance of §-RK-2 with respect to different choices of 6 at NFE 32 and
64. We observe that the performance of #-RK-2 has a flat landscape around the optimal 6 choices,
which fall in the range [0.15,0.4]. In general, as is evident from the curve, the method performs
better when using extrapolation to compute the transition rate matrix, which once again certifies the
correctness of our theoretical results (Thm. 5.5) and discussions therebelow.

Table 3: Percentage of positive extrapolated intensities for different algorithms across NFE values.

Method NFE = 32 NFE=64 NFE=128 NFE=256 NFE=512 NFE = 1024

0-RK-2 9721 £3.1 9831+£20 980113 9927+09 9944+£0.7 99.52+£0.6
0-Trapezoidal 95.67 £4.8 97.06£3.6 9822+24 9887+16 9924+1.1 9943+£09

In Tab. 3, we present the percentage of positive extrapolated intensities for different algorithms across
NFE values. This partially validates the assumption in our theoretical analysis (Thms. 5.4 and 5.5)
that the intensity remains positive throughout the sampling process.
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D.3 Image Generation

For the image generation, we use the checkpoint of MaskGIT [62, 65] reproduced in Pytorch?. Recall
that the MaskGIT is a masked image model which, given a partially masked sequence, outputs the
conditional distributions of the masked positions given the unmasked portion, just like the model
py(-) in the aforementioned masked text model, RADD. Therefore, by similarly introducing a time
noise schedule o(t) (for which we adopt the same log-linear schedule (D.1) in our experiment), we
obtain a masked discrete diffusion model akin to the RADD. The score function can be computed
accordingly using the model output as in (D.2).

We choose an early stopping time § = 1073, and adopt a uniform discretization of the time interval
(6, 1] for 8-RK-2, 6-Trapezoidal, T-leaping and the Euler method. For parallel decoding, we use a
linear randomization strategy in the re-masking step and an arccos masking scheduler, the same as
the recommended practice in [62]. For each method, we generate 50k samples in a class-conditioned
way and compute its FID against the validation split of ImageNet. We use classifier-free guidance to
enhance the generation quality and choose the guidance strength to be w = 3.

11.50 Zoom-in :esapmg
Euler
10.26 —&— Parallel Decoding
—%— 6-RK-2 (6=1/3)
27.00 9:15 —&— B-Trapezoidal (6 = 1/3)

_ 817 S —=—\ 6-Trapezoidal (6 = 1/2)
2 IR
S21011 N 7.29 —
g
5 6.50
2 16 32 64
0 16.35
o
°a
s e
v 12.73 —
=
v _—
@ g
<
(%3
B r//:><;\§§§
i

7.71 YE:SEZE;k\E\\‘\q

6.00

4 8 16 32 64

Number of Function Evaluations (NFE)

Figure 7: FID of images generated by sampling algorithms vs. number of function evaluations (NFE)
with different parameter choices. Lower values are better.

We present the full results for NFE ranging from 4 to 64 in Fig. 7. All the experiments are run
on 1 NVIDIA A100. Notably, #-Trapezoidal with § = % is the best-performing method except

for extremely low NFE budgets. While §-Trapezoidal with 6§ = % in general demonstrates a less
competitive performance, it converges to the same generation quality as § = % in the high NFE
regime. We also noticed that when using extrapolation with § = %, 0-RK-2 beats 7-leaping for NFE

larger than 8, which again accords with our theoretical prediction of its competitive performance in
0 € (0, 3] regime.

To investigate the robustness of -RK-2 with respect to the choice of 8, we also benchmark its
performance across multiple choices at NFE 32 and 64, and we present the results in Fig. 6. Again,
similar to the behavior of §-Trapezoidal, the performance of §-RK-2 has a flat landscape around the
optimal @ choices, which typically falls in the range [0.3, 0.5]. In general, as is evident from the curve,
the method performs better when using extrapolation to compute the transition rate matrix, which
once again certifies the correctness of our theoretical results.

Finally, we visualize some images generated with §-Trapezoidal on 6 different classes in Fig. 8.
0-Trapezoidal consistently generates high-fidelity images that are visually similar to the ground truth
ones and well aligned with the concept.

https://github.com/valeoai/Maskgit-pytorch
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Figure 8: Visualization of samples generated by #-Trapezoidal. Upper Left: Aircraft carrier
(ImageNet-1k class: 933); Upper Middle: Pirate (ImageNet-1k class: 724); Upper Right: Volcano
(ImageNet-1k class: 980); Lower Left: Ostrich (ImageNet-1k class: 009); Lower Middle: Cheese-
burger (ImageNet-1k class: 933); Lower Right: Beer bottle (ImageNet-1k class: 440).
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discusses the limitations of the work performed by the authors.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides the full set of assumptions and a complete (and correct)
proof.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper will open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper will specify all the training and test details (e.g., data splits, hy-
perparameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper will report error bars suitably and correctly defined or other appro-
priate information about the statistical significance of the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources (type of
compute workers, memory, time of execution) needed to reproduce the experiments.
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9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: There is no such risk.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets, used in the paper, are properly
credited and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented and the documen-
tation is provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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