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Abstract

Large Language Models (LLMs) have the capacity to store and recall facts. Through

experimentation with open-source models, we observe that this ability to retrieve

facts can be easily manipulated by changing contexts, even without altering their

factual meanings. These findings highlight that LLMs might behave like an associative

memory model where certain tokens in the contexts serve as clues to retrieving facts. We

mathematically explore this property by studying how transformers, the building blocks

of LLMs, can complete such memory tasks. We study a simple latent concept association

problem with a one-layer transformer and we show theoretically and empirically that

the transformer gathers information using self-attention and uses the value matrix for

associative memory.

1 Introduction

What is the first thing that would come to mind if you were asked not to think of an ele-

phant? Chances are, you would be thinking about elephants. What if we ask the same thing

to Large Language Models (LLMs)? Obviously, one would expect the outputs of LLMs to be

heavily influenced by tokens in the context [Bro+20]. Could such influence potentially prime

LLMs into changing outputs in a nontrivial way? To gain a deeper understanding, we focus

on one specific task called fact retrieval [Men+22; Men+23] where expected output answers

are given. LLMs, which are trained on vast amounts of data, are known to have the capabil-

ity to store and recall facts [Men+22; Men+23; DCAT21; Mit+21; Mit+22; Dai+21]. This abil-

ity raises natural questions: How robust is fact retrieval, and to what extent does it depend

on semantic meanings within contexts? What does it reveal about memory in LLMs?

In this paper, we first demonstrate that fact retrieval is not robust and LLMs can be easily

fooled by varying contexts. For example, when asked to complete “The Eiffel Tower is in the

city of”, GPT-2 [Rad+19] answers with “Paris”. However, when prompted with “The Eiffel

Tower is not in Chicago. The Eiffel Tower is in the city of”, GPT-2 responds with “Chicago”.

See Figure 1 for more examples, including Gemma and LLaMA. On the other hand, humans

do not find the two sentences factually confusing and would answer “Paris” in both cases.

We call this phenomenon context hijacking. Importantly, these findings suggest that LLMs

might behave like an associative memory model. Specifically, we refer to an associative

memory model in which LLMs rely on certain tokens in contexts to guide the retrieval of

memories, even if such associations formed are not inherently semantically meaningful.

This contrasts with the ideal behavior, where LLMs would generalize by understanding

new contexts, reasoning through them, and integrating prior knowledge.

1

a
rX

iv
:2

4
0
6
.1

8
4
0
0
v
2
  
[c

s.
C

L
] 

 2
7
 N

o
v
 2

0
2
4



Figure 1: Examples of context hijacking for various LLMs, showcasing that fact retrieval is not

robust.

This associative memory perspective raises further interpretability questions about how

LLMs form such associations. Answering these questions can facilitate the development

of more robust LLMs. Unlike classical models of associative memory in which distance

between memory patterns are measured directly and the associations between inputs and

outputs are well-specified, fact retrieval relies on a more nuanced notion of similarity mea-

sured by latent (unobserved) semantic concepts. To model this, we propose a synthetic task

called latent concept association where the output token is closely related to sampled tokens

in the context but wherein similarity is measured via a latent space of semantic concepts.

We then investigate how a one-layer transformer [Vas+17], a fundamental component of

LLMs, can tackle this memory retrieval task in which various context distributions corre-

spond to distinct memory patterns. We demonstrate that the transformer accomplishes the

task in two stages: The self-attention layer gathers information, while the value matrix func-

tions as associative memory. Moreover, low-rank structure also emerges in the embedding

space of trained transformers. These findings provide additional theoretical validation for

numerous existing low-rank editing and fine-tuning techniques [Men+22; Hu+21].

Contributions Specifically, we make the following contributions:

1. We systematically demonstrate context hijacking for various open source LLM models

including GPT-2 [Rad+19], LLaMA-2 [Tou+23] and Gemma [Tea+24], which show

that fact retrieval can be misled by contexts (Section 3), reaffirming that LLMs lack

robustness to context changes [Shi+23; Pet+20; CSH22; Yor+23; PE21].

2. We propose a synthetic memory retrieval task termed latent concept association,

allowing us to analyze how transformers can accomplish memory recall (Section 4).

Unlike classical models of associative memory, our task creates associations in a

latent, semantic concept space as opposed to directly between observed tokens. This

perspective is crucial to understanding how transformers can solve fact retrieval

problems by implementing associative memory based on similarity in the latent space.

3. We theoretically (Section 5) and empirically (Section 6) study trained transformers on

this latent concept association problem, showing that self-attention is used to aggre-

gate information while the value matrix serves as associative memory. And moreover,

we discover that the embedding space can exhibit a low-rank structure, offering ad-

ditional support for existing editing and fine-tuning methods [Men+22; Hu+21].
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2 Literature review

Associative memory Associative memory has been explored within the field of neu-

roscience [Hop82; Seu96; BYBOS95; Ska+94; SS22]. The most popular models among

them is the Hopfield network [Hop82] and its modern successors [Ram+20; Mil+22; Zha23;

Hu+24d; Wu+23; Hu+24b; Hu+24c; Wu+24a; Hu+24a] are closely related to the attention

layer used in transformers [Vas+17]. In addition, the attention mechanism has also been

shown to approximate another associative memory model known as sparse distributed

memory [BP21]. Beyond attention, Radhakrishnan et al. [RBU20] and Jiang and Pehlevan

[JP20] show that overparameterzed autoencoders can implement associative memory as

well. This paper studies fact retrieval as a form of associative memory. Another closely

related area of research focuses on memorization in deep neural networks. Henighan

et al. [Hen+23] shows that a simple neural network trained on toy model will store data

points in the overfitting regime while storing features in the underfitting regime. Feldman

[Fel20] and Feldman and Zhang [FZ20] study the interplay between memorization and

long tail distributions while Kim et al. [KKM22] and Mahdavi et al. [MLT23] study the

memorization capacity of transformers.

Interpreting transformers and LLMs There’s a growing body of work on understand-

ing how transformers and LLMs work [LLR23; AZL23a; AZL23b; AZL24; EI+24; Tar+23b;

Tar+23a; Li+24], including training dynamics [Tia+23a; Tia+23b; She+24] and in-context

learning [Xie+21; Gar+22; Bai+24; Bai+24]. Recent papers have introduced synthetic

tasks to better understand the mechanisms of transformers [Cha22; Liu+22; Nan+23;

Zha+22; Zho+24], such as those focused on Markov chains [Bie+24; Ede+24; NDL24;

Mak+24]. Most notably, Bietti et al. [Bie+24] and subsequent works [CDB23; CSB24]

study weights in transformers as associative memory but their focus is on understanding

induction head [Ols+22b] and one-to-one map between input query and output memory. An

increasing amount of research is dedicated to understanding the internals of pre-trained

LLMs, broadly categorized under the term “mechanistic interpretability” [Elh+21; Ols+22a;

Gev+23; Men+22; Men+23; Jia+24; Raj+24; Has+24; Wan+22; McG+23; Gei+21; Gei+22;

Gei+24; Wu+24b].

Knowledge editing and adversarial attacks on LLMs Fact recall and knowledge

editing have been extensively studied [Men+22; Men+23; Has+24; Sak+23; DCAT21;

Mit+21; Mit+22; Dai+21; Zha+23; Tia+24; Jin+23], including the use of in-context learning

to edit facts [Zhe+23]. This paper aims to explore a different aspect by examining the

robustness of fact recall to variation in prompts. A closely related line of work focuses

on adversarial attacks on LLMs [see Cho+24, for a review]. Specifically, prompt-based

adversarial attacks [Xu+23; Zhu+23; Wan+23b] focus on the manipulation of answers

within specific classification tasks while other works concentrate on safety issues [Liu+23a;

PR22; Zou+23; Apr+22; Wan+23a; Si+22; Rao+23; SMR23; Liu+23b]. Yu et al. [Yu+24] and

Luo et al. [Luo+24] also study jailbreak phenomena within the context of modern Hopfield

network. There are also works showing LLMs can be distracted by irrelevant contexts

in problem solving [Shi+23], question answering [Pet+20; CSH22; Yor+23] and factual

reasoning [PE21]. Although phenomena akin to context hijacking have been reported in

different instances, the goals of this paper are to give a systematic robustness study for

fact retrieval, offer a framework for interpreting it in the context of associative memory,

and deepen our understanding of LLMs.

3 Context hijacking in LLMs

In this section, we run experiments on LLMs including GPT-2 [Rad+19], Gemma [Tea+24]

(both base and instruct models) and LLaMA-2-7B [Tou+23] to explore the effects of context
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(a) Hijacking generically (b) Hijacking based on Relation ID P190

Figure 2: Context hijacking can cause LLMs to output false target. The figure shows efficacy score

versus the number of prepends for various LLMs on the CounterFact dataset under two hijacking

schemes.

hijacking on manipulating LLM outputs. As an example, consider Figure 1. When we

prompt the LLMs with the context “The Eiffel Tower is in the city of”, all 4 LLMs output the

correct answer (“Paris”). However, as we see in the example, we can actually manipulate

the output of the LLMs simply by modifying the context with additional factual informa-

tion that would not confuse a human. We call this context-hijacking. Due to the different

capacities and capabilties of each model, the examples in Figure 1 use different hijacking

techniques. This is most notable on LLaMA-2-7B, which is a much larger model than the

others. Of course, as expected, the more sophisticated attack on LLaMA also works on

GPT-2 and Gemma. Additionally, the instruction-tuned version of Gemma can understand

special words like “not” to some extent. Nevertheless, it is still possible to systematically

hijack these LLMs, as demonstrated below.

We explore this phenomenon at scale with the CounterFact dataset introduced in [Men+22],

a dataset of difficult counterfactual assertions containing a diverse set of subjects, rela-

tions, and linguistic variations. CounterFact has 21,919 samples, each of which are

given by a tuple (p, o∗, o_, s, r). From each sample, we have a context prompt p with a

true target answer o∗ (target_true) and a false target answer o_ (target_false), e.g. the

prompt p = “Eiffel Tower can be found in” has true target o∗ = “Paris” and false target

o_ = “Guam”. Additionally, the main entity in p is the subject s (s = “Eiffel Tower”) and the

prompt is categorized into relations r (for instance, other samples with the same relation

ID as the example above could be of the form “The location of {subject} is”, “{subject} can

be found in”, “Where is {subject}? It is in”). For additional details on how the dataset was

collected, see [Men+22].

For a hijacking scheme, we report the Efficacy Score (ES) [Men+22], which is the proportion

of samples for which the token probabilities satisfy Pr[o_] > Pr[o∗] after modifying the

context, that is, the proportion of the dataset that has been successfully manipulated. We

experiment with two hijacking schemes for this dataset. We first hijack by prepending the

text “Do not think of {target_false}” to each context. For instance, the prompt “The Eiffel

Tower is in” gets changed to “Do not think of Guam. The Eiffel Tower is in”. In Figure 2a,

we see that the efficacy score rises significantly after hijacking. Here, we prepend the

hijacking sentence k times for k = 0, . . . ,5 where k = 0 yields the original prompt. We see

that additional prepends increase the score further.

In the second scheme, we make use of the relation ID r to prepend factually correct

sentences. For instance, one can hijack the example above to “The Eiffel Tower is not

located in Guam. The Eiffel Tower is in”. We test this hijacking philosophy on different

relation IDs. In particular, Figure 2b reports hijacking based on relation ID P190 (“twin

city”). And we see similar patterns that with more prepends, the ES score gets higher. It

is also worth noting that one can even hijack by only including words that are semantically
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close to the false target (e.g., “France” for false target “French”). This suggests that context

hijacking is more than simply the LLM copying tokens from contexts. Additional details and

experiments for both hijacking schemes and for other relation IDs are in Appendix B.

These experiments show that context hijacking changes the behavior of LLMs, leading them

to output incorrect tokens, without altering the factual meaning of the context. It is worth

noting that similar fragile behaviors of LLMs have been observed in the literature in differ-

ent contexts [Shi+23; Pet+20; CSH22; Yor+23; PE21]. See Section 2 for more details.

Context hijacking indicates that fact retrieval in LLMs is not robust and that accurate

fact recall does not necessarily depend on the semantics of the context. As a result,

one hypothesis is to view LLMs as an associative memory model where special tokens

in contexts, associated with the fact, provide partial information or clues to facilitate

memory retrieval [Zha23]. To better understand this perspective, we design a synthetic

memory retrieval task to evaluate how the building blocks of LLMs, transformers, can

solve it.

4 Problem setup

In the context of LLMs, fact or memory retrieval, can be modeled as a next token prediction

problem. Given a context (e.g., “The capital of France is”), the objective is to accurately

predict the next token (e.g., “Paris”) based on the factual relation between context and the

following token.

Previous papers [Ram+20; Mil+22; BP21; Zha23] have studied the connection between

attention and autoassociative and heteroassociative memory. For autoassociative memory,

contexts are modeled as a set of existing memories and the goal of self-attention is to

select the closest one or approximations to it. On top of this, heteroassociative memory

[Mil+22; BP21] has an additional projection to remap each output to a different one,

whether within the same space or otherwise. In both scenarios, the goal is to locate the

closest pattern within the context when provided with a query (up to a remapping if it’s

heteroassociative).

Fact retrieval, on the other hand, does not strictly follow this framework. The crux of the

issue is that the output token is not necessarily close to any particular token in the context

but rather a combination of them and the “closeness” is intuitively measured by latent

semantic concepts. For example, consider context sentence “The capital of France is” with

the output “Paris”. Here, none of the tokens in the context directly corresponds to the word

“Paris”. Yet some tokens contain partial information about “Paris”. Intuitively, “capital”

aligns with the “isCapital” concept of “Paris”, while “France” corresponds to the “isFrench”

concept linked to “Paris” where all the concepts are latent. To model such phenomenon, we

propose a synthetic task called latent concept association where the output token is closely

related to tokens in the context and similarity is measured via the latent space.

4.1 Latent concept association

We propose a synthetic prediction task where for each output token y, tokens in the context

(denoted by x) are sampled from a conditional distribution given y. Tokens that are similar

to y will be favored to appear more in the context, except for y itself. The task of latent

concept association is to successfully retrieve the token y given samples from p(x|y). The

synthetic setup simplifies by not accounting for the sequential nature of language, a choice

supported by previous experiments on context hijacking (Section 3). We formalize this task

below.

To measure similarity, we define a latent space. Here, the latent space is a collection

of m binary latent variables Zi. These could be viewed as semantic concept variables.
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Let Z = (Z1, ..., Zm) be the corresponding random vector, z be its realization, and Z be

the collection of all latent binary vectors. For each latent vector z, there’s one associated

token t ∈ [V ]= {0, ...,V −1} where V is the total number of tokens. Here we represent the

tokenizer as ι where ι(z) = t. In this paper, we assume that ι is the standard tokenizer

where each binary vector is mapped to its decimal number. In other words, there’s a one to

one map between latent vectors and tokens. Because the map is one to one, we sometimes

use latent vectors and tokens interchangeably. We also assume that every latent binary

vector has a unique corresponding token, therefore V = 2m.

Under the latent concept association model, the goal is to retrieve specific output tokens

given partial information in the contexts. This is modeled by the latent conditional distri-

bution:

p(z|z∗)=ωπ(z|z∗)+ (1−ω)Unif(Z )

where

π(z|z∗)∝

{

exp(−DH(z, z∗)/β) z ∈N (z∗),

0 z ∉N (z∗).

Here DH is the Hamming distance, N (z∗) is a subset of Z \ {z∗} and β > 0 is the tem-

perature parameter. The use of Hamming distance draws a parallel with the notion of

distributional semantics in natural language: “a word is characterized by the company

it keeps” [Fir57]. In words, p(z|z∗) says that with probability 1−ω, the conditional dis-

tribution uniformly generate random latent vectors and with probability ω, the latent

vector is generated from the informative conditional distribution π(z|z∗) where the support

of the conditional distribution is N (z∗). Here, π represents the informative conditional

distribution that depends on z∗ whereas the uniform distribution is uninformative and

can be considered as noise. The mixture model parameter ω determines the signal to noise

ratio of the contexts.

Therefore, for any latent vector z∗ and its associated token, one can generate L context

token words with the aforementioned latent conditional distribution:

• Uniformly sample a latent vector z∗

• For l = 1, ...,L−1, sample zl ∼ p(z|z∗) and tl = ι(zl).

• For l = L, sample z ∼π(z|z∗) and tL = ι(z).

Consequently, we have x = (t1, .., tL) and y= ι(z∗). The last token in the context is generated

specifically to make sure that it is not from the uniform distribution. This ensures that the

last token can use attention to look for clues, relevant to the output, in the context. Let D
L

be the sampling distribution to generate (x, y) pairs. The conditional probability of y given

x is given by p(y|x). With slight abuse of notation, given a token t ∈ [V ], we define N (t)=

N (ι−1(t)). we also define DH(t, t′)= DH(ι−1(t), ι−1(t′)) for any pair of tokens t and t′.

For any function f that maps the context to estimated logits of output labels, the training

objective is to minimize this loss of the last position:

E(x,y)∈DL [ℓ( f (x), y)]

where ℓ is the cross entropy loss with softmax. The error rate of latent concept association

is defined by the following:

R
DL ( f )=P(x,y)∼DL [argmax f (x) ̸= y]

And the accuracy is 1−R
DL ( f ).
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4.2 Transformer network architecture

Given a context x = (t1, .., tL) which consists of L tokens, we define X ∈ {0,1}V×L to be its

one-hot encoding where V is the vocabulary size. Here we use χ to represent the one-hot

encoding function (i.e., χ(x)= X ). Similar to [LLR23; Tar+23a; Li+24], we also consider

a simplified one-layer transformer model without residual connections and normaliza-

tion:

f L(x)=
[

WE
TWV attn(WEχ(x))

]

:L
(4.1)

where

attn(U)=Uσ
( (WKU)T (WQU)

√

da

)

,

WK ∈R
da×d is the key matrix, and WQ ∈R

da×d is the query matrix and da is the attention

head size. σ : RL×L → (0,1)L×L is the column-wise softmax operation. WV ∈ R
d×d is the

value matrix and WE ∈R
d×V is the embedding matrix. Here, we adopt the weight tie-in

implementation which is used for Gemma [Tea+24]. We focus solely on the prediction of

the last position, as it is the only one relevant for latent concept association. For conve-

nience, we also use h(x) to mean
[

attn(WEχ(x))
]

:L, which is the hidden representation after

attention for the last position, and f L
t (x) to represent the logit for output token t.

5 Theoretical analysis

In this section, we theoretically investigate how a single-layer transformer can solve the

latent concept association problem. We first introduce a hypothetical associative memory

model that utilizes self-attention for information aggregation and employs the value matrix

for memory retrieval. This hypothetical model turns out to mirror trained transformers

in experiments. We also examine the role of each individual component of the network:

the value matrix, embeddings, and the attention mechanism. We validate our theoretical

claims in Section 6.

5.1 Hypothetical associative memory model

In this section, we show that a simple single-layer transformer network can solve the latent

concept association problem. The formal result is presented below in Theorem 1; first we

require a few more definitions. Let WE(t) be the t-th column of the embedding matrix WE .

In other words, this is the embedding for token t. Given a token t, define N1(t) to be the

subset of tokens whose latent vectors are only 1 Hamming distance away from t’s latent

vector: N1(t) = {t′ : DH(t′, t)) = 1}∩N (t). For any output token t, N1(t) contains tokens

with the highest probabilities to appear in the context.

The following theorem formalizes the intuition that a one-layer transformer that uses

self-attention to summarize statistics about the context distributions and whose value

matrix uses aggregated representations to retrieve output tokens can solve the latent

concept association problem defined in Section 4.1.

Theorem 1 (informal). Suppose the data generating process follows Section 4.1 where

m ≥ 3, ω= 1, and N (t)=V \{t}. Then for any ε> 0, there exists a transformer model given

by (4.1) that achieves error ε, i.e. R
DL ( f L)< ε given sufficiently large context length L.

More precisely, for the transformer in Theorem 1, we will have WK = 0 and WQ = 0. Each

row of WE is orthogonal to each other and normalized. And WV is given by

WV =
∑

t∈[V ]

WE(t)(
∑

t′∈N1(t)

WE(t′)T ) (5.1)
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A more formal statement of the theorem and its proof is given in Appendix A (Theo-

rem 7).

Intuitively, Theorem 1 suggests having more samples from p(x|y) can lead to a better recall

rate. On the other hand, if contexts are modified to contain more samples from p(x| ỹ)

where ỹ ̸= y, then it is likely for transformer to output the wrong token. This is similar to

context hijacking (see Section 5.5). The construction of the value matrix is similar to the

associative memory model used in [Bie+24; CSB24], but in our case, there is no explicit

one-to-one input and output pairs stored as memories. Rather, a combination of inputs are

mapped to a single output.

While the construction in Theorem 1 is just one way that a single-layer transformer can

tackle this task, it turns out empirically this construction of WV is close to the trained WV ,

even in the noisy case (ω ̸= 1). In Section 6.1, we will demonstrate that substituting trained

value matrices with constructed ones can retain accuracy, and the constructed and trained

value matrices even share close low-rank approximations. Moreover, in this hypothetical

model, a simple uniform attention mechanism is deployed to allow self-attention to count oc-

currences of each individual tokens. Since the embeddings are orthonormal vectors, there is

no interference. Hence, the self-attention layer can be viewed as aggregating information of

contexts. It is worth noting that, in different settings, more sophisticated embedding struc-

tures and attention patterns are needed. This is discussed in the following sections.

5.2 On the role of the value matrix

The construction in Theorem 1 relies on the value matrix acting as associative memory.

But is it necessary? Could we integrate the functionality of the value matrix into the

self-attention module to solve the latent concept association problem? Empirically, the

answer seems to be negative as will be shown in Section 6.1. In particular, when the

context length is small, setting the value matrix to be the identity would lead to subpar

memory recall accuracy.

This is because if the value matrix is the identity, the transformer would be more susceptible

to the noise in the context. To see this, notice that given any pair of context and output

token (x, y), the latent representation after self-attention h(x) must live in the polyhedron

Sy to be classified correctly where Sy is defined as:

Sy = {v : (WE(y)−WE(t))T v > 0 where t ̸∈ [V ]\{y}}

Note that, by definition, for any two tokens y and ỹ, Sy ∩S ỹ = ;. On the other hand,

because of the self-attention mechanism, h(x) must also live in the convex hull of all the

embedding vectors:

CV =Conv(WE(0), ...,WE(|V |−1))

In other words, for any pair (x, y) to be classified correctly, h(x) must live in the intersection

of Sy and CV . Due to the stochastic nature of x, it is likely for h(x) to be outside of this

intersection. The remapping effect of the value matrix can help with this problem. The

following lemma explains this intuition.

Lemma 2. Suppose the data generating process follows Section 4.1 where m ≥ 3, ω= 1 and

N (t)= {t′ : DH(t, t′))= 1}. For any single layer transformer given by (4.1) where each row of

WE is orthogonal to each other and normalized, if WV is constructed as in (5.1), then the

error rate is 0. If WV is the identity matrix, then the error rate is strictly larger than 0.

Another intriguing phenomenon occurs when the value matrix is the identity matrix. In this

case, the inner product between embeddings and their corresponding Hamming distance

varies linearly. This relationship can be formalized by the following theorem.
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Theorem 3. Suppose the data generating process follows Section 4.1 where m ≥ 3, ω= 1

and N (t)=V \{t}. For any single layer transformer given by (4.1) with WV being the identity

matrix, if the cross entropy loss is minimized so that for any sampled pair (x, y),

p(y|x)= p̂(y|x)= softmax( f L
y (x))

there exists a > 0 and b such that for two tokens t ̸= t′,

〈WE(t),WE(t′)〉 =−aDH(t, t′)+b

5.3 Embedding training and geometry

The hypothetical model in Section 5.1 requires embeddings to form an orthonormal basis.

In the overparameterization regime where the embedding dimension d is larger than

the number of tokens V , this can be approximately achieved by Gaussian initialization.

However, in practice, the embedding dimension is typically smaller than the vocabulary size,

in which case it is impossible for the embeddings to constitute such a basis. Empirically, in

Section 6.2, we observe that with overparameterization (d >V ), embeddings can be frozen

at their Gaussian initialization, whereas in the underparameterized regime, embedding

training is required to achieve better recall accuracy.

This raises the question: What kind of embedding geometry is learned in the underparam-

eterized regime? Experiments reveal a close relationship between the inner product of

embeddings for two tokens and the Hamming distance of these tokens (see Figure 3b and

Figure C.5 in Appendix C.2). Approximately, we have the following relationship:

〈WE(t),WE(t′)〉 =

{

b0 t = t′

−aDH(t, t′)+b t ̸= t′
(5.2)

for any two tokens t and t′ where b0 > b and a > 0. One can view this as a combination

of the embedding geometry under Gaussian initialization and the geometry when WV is

the identity matrix (Theorem 3). Importantly, this structure demonstrates that trained

embeddings inherently capture similarity within the latent space. Theoretically, this

embedding structure (5.2) can also lead to low error rate under specific conditions on b0,b

and a, which is articulated by the following theorem.

Theorem 4 (Informal). Following the same setup as in Theorem 1, but embeddings obey

(5.2), then under certain conditions on a,b and if b0 and context length L are sufficiently

large, the error rate can be arbitrarily small, i.e. R
DL ( f L)< ε for any 0< ε< 1.

The formal statement of the theorem and its proof is given in Appendix A (Theorem 8).

Notably, this embedding geometry also implies a low-rank structure. Let’s first consider

the special case when b0 = b. In other words, the inner product between embeddings and

their corresponding Hamming distance varies linearly.

Lemma 5. If embeddings follow (5.2) and b = b0 and N (t)=V \{t}, then rank(WE)≤ m+2.

When b0 > b, the embedding matrix will not be strictly low rank. However, it can still exhibit

approximate low-rank behavior, characterized by an eigengap between the top and bottom

singular values. This is verified empirically (see Figure C.9-C.12 in Appendix C.4).

5.4 The role of attention selection

As of now, attention does not play a significant role in the analysis. But perhaps unsurpris-

ingly, the attention mechanism is useful in selecting relevant information. To see this, let’s

consider a specific setting where for any latent vector z∗, N (z∗)= {z : z∗
1
= z1}\{z∗}.

9



Essentially, latent vectors are partitioned into two clusters based on the value of the first

latent variable, and the informative conditional distribution π only samples latent vectors

that are in the same cluster as the output latent vector. Empirically, when trained under

this setting, the attention mechanism will pay more attention to tokens within the same

cluster (Section 6.3). This implies that the self-attention layer can mitigate noise and

concentrate on the informative conditional distribution π.

To understand this more intuitively, we will study the gradient of unnormalized attention

scores. In particular, the unnormalized attention score is defined as:

ut,t′ = (WKWE(t))T (WQWE(t′))/
√

da.

Lemma 6. Suppose the data generating process follows Section 4.1 and N (z∗)= {z : z∗
1
=

z1}\ {z∗}. Given the last token in the sequence tL, then

∇ut,tL
ℓ( f L)=∇ℓ( f L)T (WE)TWV (αt p̂tWE(t)− p̂t

L
∑

l=1

p̂tl
WE(tl))

where for token t, αt =
∑L

l=1
1[tl = t] and p̂t is the normalized attention score for token t.

Typically, αt is larger when token t and tL belong to the same cluster because tokens within

the same cluster tend to co-occur frequently. As a result, the gradient contribution to the

unnormalized attention score is usually larger for tokens within the same cluster.

5.5 Context hijacking and the misclassification of memory re-

call

In light of the theoretical results on latent concept association, a natural question arises:

How do these results connect to context hijacking in LLMs? In essence, for the latent concept

association problem, the differentiation of output tokens is achieved by distinguishing

between the various conditional distributions p(x|y). Thus, adding or changing tokens

in the context x so that it resembles a different conditional distribution can result in

misclassification. In Appendix C.5, we present experiments showing that mixing different

contexts can cause transformers to misclassify. This partially explains context hijacking

in LLMs (Section 3). On the other hand, it is well-known that the error rate is related

to the KL divergence between conditional distributions of contexts [Cov99]. The closer

the distributions are, the easier it is for the model to misclassify. Here, longer contexts,

primarily composed of i.i.d samples, suggest larger divergences, thus higher memory recall

rate. This is theoretically implied by Theorem 1 and Theorem 4 and empirically verified in

Appendix C.6. Such result is also related to reverse context hijacking (Appendix B) where

prepending sentences including true target words can improve fact recall rate.

6 Experiments

The main implications of the theoretical results in the previous section are:

1. The value matrix is important and has associative memory structure as in (5.1).

2. Training embeddings is crucial in the underparameterized regime, where embeddings

exhibit certain geometric structures.

3. Attention mechanism is used to select the most relevant tokens.

To evaluate these claims, we conduct several experiments on synthetic datasets. Additional

experimental details and results can be found in Appendix C.
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(a) Value matrix training (b) Embedding structure (c) Attention Pattern

Figure 3: Key components of the single-layer transformer working together on the latent concept

association problem. (a) Fixing the value matrix WV as the identity matrix results in lower accuracy

compared to training WV . The figure reports average accuracy for both fixed and trained WV with

L = 64. (b) When training in the underparameterized regime, the embedding structure is approximated

by (5.2). The graph displays the average inner product between embeddings of two tokens against the

corresponding Hamming distance between these tokens when m = 8. (c) The self-attention layer can

select tokens within the same cluster. The figure shows average attention score heat map with m = 8

and the cluster structure from Section 5.4.

6.1 On the value matrix WV

In this section, we study the necessity of the value matrix WV and its structure. First, we

conduct experiments to compare the effects of training versus freezing WV as the identity

matrix, with the context lengths L set to 64 and 128. Figure 3a and Figure C.1 show that

when the context length is small, freezing WV can lead to a significant decline in accuracy.

This is inline with Lemma 2 and validates it in a general setting, implying the significance

of the value matrix in maintaining a high memory recall rate.

Next, we investigate the degree of alignment between the trained value matrix WV and the

construction in (5.1). The first set of experiments examines the similarity in functionality

between the two matrices. We replace value matrices in trained transformers with the

constructed ones like in (5.1) and then report accuracy with the new value matrix. As a

baseline, we also consider randomly constructed value matrix, where the outer product

pairs are chosen randomly (detailed construction can be found in Appendix C.1). Figure C.2

indicates that the accuracy does not significantly decrease when the value matrix is

replaced with the constructed ones. Furthermore, not only are the constructed value

matrix and the trained value matrix functionally alike, but they also share similar low-

rank approximations. We use singular value decomposition to get the best low rank

approximations of various value matrices where the rank is set to be the same as the number

of latent variables (m). We then compute smallest principal angles between low-rank

approximations of trained value matrices and those of constructed, randomly constructed,

and Gaussian-initialized value matrices. Figure C.3 shows that the constructed ones have,

on average, smallest principal angles with the trained ones.

6.2 On the embeddings

In this section, we explore the significance of embedding training in the underparamerized

regime and embedding structures. We conduct experiments to compare the effects of

training versus freezing embeddings with different embedding dimensions. The learn-

ing rate is selected as the best option from {0.01,0.001} depending on the dimensions.

Figure C.4 clearly shows that when the dimension is smaller than the vocabulary size

(d < V ), embedding training is required. It is not necessary in the overparameterized

regime (d >V ), partially confirming Theorem 1 because if embeddings are initialized from

a high-dimensional multi-variate Gaussian, they are approximately orthogonal to each

other and have the same norms.

The next question is what kind of embedding structures are formed for trained transformers
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in the underparamerized regime. From Figure 3b and Figure C.5, it is evident that the

relationship between the average inner product of embeddings for two tokens and their

corresponding Hamming distance roughly aligns with (5.2). Perhaps surprisingly, if we plot

the same graph for trained transformers with a fixed identity value matrix, the relationship

is mostly linear as shown in Figure C.6, confirming our theory (Theorem 3).

As suggested in Section 5.3, such embedding geometry (5.2) can lead to low rank structures.

We verify this claim by studying the spectrum of the embedding matrix WE . As illustrated

in Appendix C.4, Figure C.9-C.12 demonstrate that there are eigengaps between top and

bottom singular values, suggesting low-rank structures.

6.3 On the attention selection mechanism

In this section, we examine the role of attention pattern by considering a special class of

latent concept association model as defined in Section 5.4. Figure 3c and Figure C.7 clearly

show that the self-attention select tokens in the same clusters. This suggests that attention

can filter out noise and focus on the informative conditional distribution π. We extend

experiments to consider cluster structures that depend on the first two latent variables

(detailed construction can be found in Appendix C.3) and Figure C.8 shows attention

pattern as expected.

7 Conclusions

In this work, we first presented the phenomenon of context hijacking in LLMs, which

suggested that fact retrieval is not robust against variations of contexts. This indicates

that LLMs might function like associative memory where tokens in contexts are clues to

guide memory retrieval. To investigate this perspective further, we devised a synthetic

task called latent concept association and examined theoretically and empirically how

single-layer transformers are trained to solve this task. These results provide further

insights into the inner workings of transformers and LLMs, and can hopefully stimulate

further work into interpreting and understanding the mechanisms by which LLMs predict

tokens and recall facts.

8 Limitations

The context hijacking experiments were only conducted on open-source models and not

on commercial models like GPT-4. Nevertheless, even in the official GPT-4 technical re-

port [Ach+23], there is an example similar to context hijacking (the Elvis Perkins example).

In that example, the prompt is “Son of an actor, this American guitarist and rock singer

released many songs and albums and toured with his band. His name is "Elvis" what?”.

GPT-4 answers with Presley, even though the answer is Perkins (Elvis Presley is not the

son of an actor). GPT-4 can be viewed as distracted by all the information related to music

and answers Presley. In fact, it is known that LLMs can be easily distracted by contexts

in use cases other than fact retrieval such as problem-solving [Shi+23]. So we reasonably

suspect that similar behavior still exists in larger models but is harder to exploit. On the

other hand, the theoretical section only focuses on single-layer transformer network. While

single-layer networks already demonstrate some interesting phenomena including low-

rank structures, the functionality of multi-layer transformers is much different compared

to single-layer transformers with the notable emergence of induction head [Elh+21].
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A Additional Theoretical Results and Proofs

A.1 Proofs for Section 5.1

Theorem 1 can be stated more formally as follows:

Theorem 7. Suppose the data generating process follows Section 4.1 where m ≥ 3, ω= 1,

and N (t)=V \{t}. Assume there exists a single layer transformer given by (4.1) such that

a) WK = 0 and WQ = 0, b) Each row of WE is orthogonal to each other and normalized, and

c) WV is given by

WV =
∑

i∈[V ]

WE(i)(
∑

j∈N1(i)

WE( j)T ).

Then if L >max{
100m2 log(3/ε)

(exp(− 1
β )−exp(− 2

β ))2
,

80m2|N (y)|

(exp(− 1
β )−exp(− 2

β ))2
} for any y, then

R
DL ( f L)≤ ε,

where 0< ε< 1.

Proof. First of all, the error is defined to be:

R
DL ( f L)=P(x,y)∼DL [argmax f L(x) ̸= y]

=PyPx|y[argmax f L(x) ̸= y]

Let’s focus on the conditional probability Px|y[argmax f L(x) ̸= y].

By construction, the single layer transformer model has uniform attention. Therefore,

h(x)=
∑

i∈N (y)

αiWE(i)

where αi =
1
L

∑L
k=1

1{tk = i} which is the number of occurrence of token i in the sequence.

By the latent concept association model, we know that

p(i|y)=
exp(−DH(i, y)/β)

Z

where Z =
∑

i∈N (y) exp(−DH(i, y)/β).

Thus, the logit for token y is

f L
y (x)=

∑

i∈N1(y)

αi

And the logit for any other token ỹ is

f L
ỹ (x)=

∑

i∈N1( ỹ)

αi

For the prediction to be correct, we need

max
ỹ

f L
y (x)− f L

ỹ (x)> 0

By Lemma 3 of [Dev83], we know that for all ∆ ∈ (0,1), if
|N (y)|

L
≤

∆
2

20
, we have

P
(

max
i∈N (y)

|αi − p(i|y)| >∆
)

≤P
(

∑

i∈N (y)

|αi − p(i|y)| >∆
)

≤ 3exp(−L∆2/25)
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Therefore, if L ≥max{
25log(3/ε)

∆2 ,
20|N (y)|

∆2 }, then with probability at least 1−ε, we have,

max
i∈N (y)

|αi − p(i|y)| ≤∆

f L
y (x)− f L

ỹ (x)=
∑

i∈N1(y)

αi −
∑

j∈N1( ỹ)

α j

=
∑

i∈N1(y)

αi −
∑

i∈N1(y)

p(i|y)+
∑

i∈N1(y)

p(i|y)

−
∑

j∈N1( ỹ)

p( j|y)+
∑

j∈N1( ỹ)

p( j|y)−
∑

j∈N1( ỹ)

α j

≥
∑

i∈N1(y)

p(i|y)−
∑

j∈N1( ỹ)

p( j|y)−2m∆

≥ exp(−
1

β
)−exp(−

2

β
)−2m∆

Note that because of Lemma 10, there’s no neighboring set that is the superset of another.

Therefore as long as ∆<
exp(− 1

β )−exp(− 2
β )

2m
,

f L
y (x)− f L

ỹ (x)> 0

for any ỹ.

Finally, if L >max{
100m2 log(3/ε)

(exp(− 1
β )−exp(− 2

β ))2
,

80m2|N (y)|

(exp(− 1
β )−exp(− 2

β ))2
} for any y, then

Px|y[argmax f L(x) ̸= y]≤ ε

And

R
DL ( f L)=P(x,y)∼DL [argmax f L(x) ̸= y]

=PyPx|y[argmax f L(x) ̸= y]≤ ε

A.2 Proofs for Section 5.2

Lemma 2. Suppose the data generating process follows Section 4.1 where m ≥ 3, ω= 1 and

N (t)= {t′ : DH(t, t′))= 1}. For any single layer transformer given by (4.1) where each row of

WE is orthogonal to each other and normalized, if WV is constructed as in (5.1), then the

error rate is 0. If WV is the identity matrix, then the error rate is strictly larger than 0.

Proof. Following the proof for Theorem 7, let’s focus on the conditional probability:

Px|y[argmax f L(x) ̸= y]

By construction, we have

h(x)=
∑

i∈N1(y)

αiWE(i)

where αi =
1
L

∑L
k=1

1{tk = i} which is the number of occurrence of token i in the sequence.

Let’s consider the first case where WV is constructed as in (5.1). Then we know that for

some other token ỹ ̸= y,

f L
y (x)− f L

ỹ (x)=
∑

i∈N1(y)

αi −
∑

i∈N1( ỹ)

αi = 1−
∑

i∈N1( ỹ)

αi
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By Lemma 10, we have that for any token ỹ ̸= y,

f L
y (x)− f L

ỹ (x)> 0

Therefore, the error rate is always 0.

Now let’s consider the second case where WV is the identity matrix. Let j be a token in the

set N1(y). Then there is a non-zero probability that context x contains only j. In that case,

h(x)=WE( j)

However, we know that by the assumption on the embedding matrix,

f L
y (x)− f L

j (x)= (WE(y)−WE( j))T h(x)=−∥WE( j)∥2
< 0

This implies that there’s non zero probability that y is misclassified. Therefore, when WV

is the identity matrix, the error rate is strictly larger than 0.

Theorem 3. Suppose the data generating process follows Section 4.1 where m ≥ 3, ω= 1

and N (t)=V \{t}. For any single layer transformer given by (4.1) with WV being the identity

matrix, if the cross entropy loss is minimized so that for any sampled pair (x, y),

p(y|x)= p̂(y|x)= softmax( f L
y (x))

there exists a > 0 and b such that for two tokens t ̸= t′,

〈WE(t),WE(t′)〉 =−aDH(t, t′)+b

Proof. Because for any pair of (x, y), the estimated conditional probability matches the true

conditional probability. In particular, let’s consider two target tokens y1, y2 and context

x = (ti, ..., ti) for some token ti such that p(x|y1)> 0 and p(x|y2)> 0, then

p(y1|x)

p(y2|x)
=

p(x|y1)p(y1)

p(x|y2)p(y2)
=

p(x|y1)

p(x|y2)
=

p̂(x|y1)

p̂(x|y2)
= exp((WE(y1)−WE(y2))T h(x))

The second equality is because p(y) is the uniform distribution. By our construction,

p(x|y1)

p(x|y2)
=

p(ti|y1)L

p(ti|y2)L
= exp((WE(y2)−WE(y1))T h(x))= exp((WE(y1)−WE(y2))TWE(ti))

By the data generating process, we have that

L

β
(DH(ti, y2)−DH(ti, y1))= (WE(y1)−WE(y2))TWE(ti)

Let ti = y3 such that y3 ̸= y1, y3 ̸= y2, then

L

β
DH(y3, y1)−WE(y1)TWE(y3)=

L

β
DH(y3, y2)−WE(y2)TWE(y3)

For simplicity, let’s define

Ψ(y1, y2)=
L

β
DH(y1, y2)−WE(y1)TWE(y2)

Therefore,

Ψ(y3, y1)=Ψ(y3, y2)

Now consider five distinct labels: y1, y2, y3, y4, y5. We have,

Ψ(y3, y1)=Ψ(y3, y2)=Ψ(y4, y2)=Ψ(y4, y5)
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In other words, Ψ(y3, y1) = Ψ(y4, y5) for arbitrarily chosen distinct labels y1, y3, y4, y5.

Therefore, Ψ(t, t′) is a constant for t ̸= t′.

For any two tokens t ̸= t′,
L

β
DH(t, t′)−WE(t)TWE(t′)= C

Thus,

WE(t)TWE(t′)=−
L

β
DH(t, t′)+C

A.3 Proofs for Section 5.3

Theorem 4 can be formalized as the following theorem.

Theorem 8. Following the same setup as in Theorem 7, but embeddings follow (5.2) then

if b > 0, ∆1 > 0, 0<∆<
exp(− 1

β )−exp(− 2
β )

2m
, L ≥max{

25log(3/ε)

∆2 ,
20|N (y)|

∆2 } for any y, and

0< a <
2exp( 1

β
)

(|V |−2)m2

and

b0 >max{
a(m−2)m+∆1

exp(− 1
β

)−exp(− 2
β

)−2m∆
+b,

(b−a)∆1 −
|V |−2

2
abm2 exp(− 1

β
)+

|V |−2
2

a2(m−2)m2

1−
|V |−2

2
am2 exp(− 1

β
)

}

we have

R
DL ( f L)≤ ε

where 0< ε< 1.

Proof. Following the proof of Theorem 7, let’s also focus on the conditional probability

Px|y[argmax f L(x) ̸= y]

By construction, the single layer transformer model has uniform attention. Therefore,

h(x)=
∑

i∈N (y)

αiWE(i)

where αi =
1
L

∑L
k=1

1{tk = i} which is the number of occurrence of token i in the sequence.

For simplicity, let’s define αy = 0 such that

h(x)=
∑

i∈[V ]

αiWE(i)

Similarly, we also have that if L ≥ max{
25log(3/ε)

∆2 ,
20|N (y)|

∆2 }, then with probability at least

1−ε, we have,

max
i∈[V ]

|αi − p(i|y)| ≤∆

Also define the following:

φk(x)=
∑

j∈N1(k)

WE( j)T
(

∑

i∈[V ]

αiWE(i)
)

vk(y)=WE(y)TWE(k)
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Thus, the logit for token y is

f L
y (x)=

|V |−1
∑

k=0

vk(y)φk(x)

Let’s investigate φk(x). By Lemma 9,

φk(x)=
∑

i∈[V ]

αi(
∑

j∈N1(k)

WE( j)TWE(i))

= (b0 −b)
∑

j∈N1(k)

α j +
∑

i∈[V ]

αi(−a(m−2)DH(k, i)+ (b−a)m)

Thus, for any k1,k2 ∈ [V ],

φk1
(x)−φk2

(x)= (b0 −b)(
∑

j1∈N1(k1)

α j1
−

∑

j2∈N1(k2)

α j2
)

+
∑

i∈[V ]

αia(m−2)(DH(k2, i)−DH(k1, i))

Because −m ≤ DH(k2, i)−DH(k1, i)≤ m, we have

(b0 −b)(
∑

j1∈N1(k1)

α j1
−

∑

j2∈N1(k2)

α j2
)−a(m−2)m

≤φk1
(x)−φk2

(x)≤

(b0 −b)(
∑

j1∈N1(k1)

α j1
−

∑

j2∈N1(k2)

α j2
)+a(m−2)m

For prediction to be correct, we need

max
ỹ

f L
y (x)− f L

ỹ (x)> 0

This also means that

max
ỹ

|V |−1
∑

k=0

(

vk(y)−vk( ỹ)
)

φk(x)> 0

One can show that for any k, if ι−1(k̃)= ι−1(y)⊗ ι−1( ỹ)⊗ ι−1(k) where ⊗ means bitwise XOR,

then

vk(y)−vk( ỹ)= vk̃( ỹ)−vk̃(y) (A.1)

First of all, if k = y, then k̃ = ỹ, which means

vk(y)−vk( ỹ)= vk̃( ỹ)−vk̃(y)= b0 +aDH(y, ỹ)−b

If k ̸= y, ỹ, then (A.1) implies that

DH(k, y)−DH(k, ỹ)= DH(k̃, ỹ)−DH(k̃, y)

We know that DH(k, y) is the number of 1s in ι−1(k)⊗ ι−1(y) and,

ι−1(k̃)⊗ ι−1(y)= ι−1(y)⊗ ι−1( ỹ)⊗ ι−1(k)⊗ ι−1(y)= ι−1( ỹ)⊗ ι−1(k)

Similarly,

ι−1(k̃)⊗ ι−1( ỹ)= ι−1(y)⊗ ι−1(k)
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Therefore, (A.1) holds and we can rewrite f L
y (x)− f L

ỹ (x) as

f L
y (x)− f L

ỹ (x)=
|V |−1
∑

k=0

(

vk(y)−vk( ỹ)
)

φk(x)

= (b0 −b+aDH(y, ỹ))(φy(x)−φ ỹ(x))

+
∑

k ̸=y, ỹ,DH (k,y)≥DH (k, ỹ)

a(DH(k, y)−DH(k, ỹ))(φk(x)−φk̃(x))

We already know that b0 > b > 0 and a > 0, thus, b0 −b+aDH(y, ỹ)> 0 for any pair y, ỹ.

We also want φy(x)−φ ỹ(x) to be positive. Note that

φy(x)−φ ỹ(x)≥ (b0 −b)(exp(−
1

β
)−exp(−

2

β
)−2m∆)−a(m−2)m

We need ∆<
exp(− 1

β )−exp(− 2
β )

2m
and for some positive ∆1 > 0, b0 needs to be large enough such

that

φy(x)−φ ỹ(x)>∆1

which implies that

b0 >
a(m−2)m+∆1

exp(− 1
β

)−exp(− 2
β

)−2m∆
+b (A.2)

On the other hand, for k ̸= y, ỹ, we have

φk(x)−φk̃(x)≥ (b0 −b)(
∑

j1∈N1(k)

α j1
−

∑

j2∈N1(k̃)

α j2
)−a(m−2)m

≥ (b0 −b)(−(m−1)exp(−
1

β
)−exp(−

2

β
)−2m∆)−a(m−2)m

≥ (b0 −b)(−(m−1)exp(−
1

β
)−exp(−

2

β
)+exp(−

2

β
)−exp(−

1

β
))−a(m−2)m

≥−(b0 −b)mexp(−
1

β
)−a(m−2)m

Then, we have

f L
y (x)− f L

ỹ (x)≥ (b0 −b+a)∆1 −
|V |−2

2

(

(b0 −b)am2 exp(−
1

β
)+a2(m−2)m2

)

≥

(

1−
|V |−2

2
am2 exp(−

1

β
)
)

b0 − (b−a)∆1 +
|V |−2

2
abm2 exp(−

1

β
)−

|V |−2

2
a2(m−2)m2

The lower bound is independent of ỹ, therefore, we need it to be positive to ensure the

prediction is correct. To achieve this, we want

1−
|V |−2

2
am2 exp(−

1

β
)> 0

which implies that

a <
2exp( 1

β
)

(|V |−2)m2
(A.3)

And finally we need

b0 >
(b−a)∆1 −

|V |−2
2

abm2 exp(− 1
β

)+
|V |−2

2
a2(m−2)m2

1−
|V |−2

2
am2 exp(− 1

β
)

(A.4)
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To summarize, if b > 0, ∆1 > 0, 0<∆<
exp(− 1

β )−exp(− 2
β )

2m
, L ≥max{

25log(3/ε)

∆2 ,
20|N (y)|

∆2 } for any

y, and

0< a <
2exp( 1

β
)

(|V |−2)m2

and

b0 >max{
a(m−2)m+∆1

exp(− 1
β

)−exp(− 2
β

)−2m∆
+b,

(b−a)∆1 −
|V |−2

2
abm2 exp(− 1

β
)+

|V |−2
2

a2(m−2)m2

1−
|V |−2

2
am2 exp(− 1

β
)

}

we have

R
DL ( f L)≤ ε

where 0< ε< 1.

Lemma 5. If embeddings follow (5.2) and b = b0 and N (t)=V \{t}, then rank(WE)≤ m+2.

Proof. By (5.2), we have that

〈WE(i),WE( j)〉 =−aDH(i, j)+b

Therefore,

(WE)TWE =−aDH +b11
T

Let’s first look at DH which has rank at most m+1. To see this, let’s consider a set of m+1

tokens: {e0, e1, ..., em}⊆V where ek = 2k. Here e0 is associated with the latent vector of all

zeroes and the latent vector associated with ek has only the k-th latent variable being 1.

On the other hand, for any token i, we have that,

i =
∑

k:ι−1(i)k=1

ek

In fact,

DH(i)=
∑

k:ι−1(i)k=1

(

DH(ek)−DH(e0)
)

+DH(e0)

where DH(i) is the i-th row of DH , and for each entry j of DH(i), we have that

DH(i, j)=
∑

k:ι−1(i)k=1

(

DH(ek, j)−DH(e0, j)
)

+DH(e0, j)

This is because

DH(ek, j)−DH(e0, j)=

{

+1 if ι−1( j)k = 0

−1 if ι−1( j)k = 1

Thus, we can rewrite DH(i, j) as

DH(i, j)=
∑

k:ι−1(i)k=1

(

1[ι−1(i)k = 1, ι−1( j)k = 0]−1[ι−1(i)k = 1, ι−1( j)k = 1)]
)

+DH(e0, j)

=

m
∑

k=1

(

1[ι−1(i)k = 1, ι−1( j)k = 0]−1[ι−1(i)k = 1, ι−1( j)k = 1)]
)

+

m
∑

k=1

(

1[ι−1(i)k = 0, ι−1( j)k = 1]+1[ι−1(i)k = 1, ι−1( j)k = 1)]
)

=

m
∑

k=1

1[ι−1(i)k = 1, ι−1( j)k = 0]+1[ι−1(i)k = 0, ι−1( j)k = 1]

= DH(i, j)
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Therefore, every row of DH can be written as a linear combination of {DH(e0),DH(e1), ...,DH(em)}.

In other words, DH has rank at most m+1.

Therefore,

rank((WE)TWE)= rank(WE)≤ m+2.

Lemma 9. Let z(0) and z(1) be two binary vectors of size m where m ≥ 2. Then,

∑

z:DH (z(0),z)=1

DH(z, z(1))= (m−2)DH(z(0), z(1))+m

Proof. For z such that DH(z, z(0))= 1, we know that there are two cases. Either z differs

with z(0) on a entry but agrees with z(1) on that entry or z differs with both z(0) and z(1).

For the first case, we know that there are DH(z(0), z(1)) such entries. In this case, DH(z, z(1))=

DH(z(0), z(1))−1. For the second case, DH(z, z(1))= DH(z(0), z(1))+1.

Therefore,

∑

z:DH (z,z(0))=1

DH(z, z(1))

= DH(z(0), z(1))(DH(z(0), z(1))−1)+ (m−DH(z(0), z(1)))(DH(z(0), z(1))+1)

= (m−2)DH(z(0), z(1))+m

Lemma 10. If m ≥ 3 and N (t)=V \{t}, then N1(t) ̸⊆N1(t′) for any t, t′ ∈ [V ].

Proof. For any token t, N1(t) contains any token t′ such that DH(t, t′)= 1 by the conditions.

Then given a set N1(t), one can uniquely determine token t. This is because for the set

of latent vectors associated with N1(t), at each index, there could only be one possible

change.

A.4 Proofs for Section 5.4

Lemma 6. Suppose the data generating process follows Section 4.1 and N (z∗)= {z : z∗
1
=

z1}\ {z∗}. Given the last token in the sequence tL, then

∇ut,tL
ℓ( f L)=∇ℓ( f L)T (WE)TWV (αt p̂tWE(t)− p̂t

L
∑

l=1

p̂tl
WE(tl))

where for token t, αt =
∑L

l=1
1[tl = t] and p̂t is the normalized attention score for token t.

Proof. Recall that,

f L(x)=
[

WE
TWV attn(WEχ(x))

]

:L

=WE
TWV

L
∑

l=1

exp(utl ,tL
)

Z
WE(tl)

where Z is a normalizing constant.

Define p̂tl
=

exp(utl ,tL
)

Z
. Then we have

f L(x)=WE
TWV

L
∑

l=1

p̂tl
WE(tl)

26



Note that if tl = t then,
∂p̂tl

∂ut,tL

= p̂tl
(1− p̂tl

)

Otherwise,
∂p̂tl

∂ut,tL

=−p̂tl
p̂t

By the chain rule, we know that

∇ut,tL
ℓ( f L)=∇ℓ( f L)T (WE)TWV (

L
∑

l=1

1[tl = t]p̂tl
WE(t)−

L
∑

l=1

p̂tl
p̂tWE(tl))

Therefore,

∇ut,tL
ℓ( f L)=∇ℓ( f L)T (WE)TWV (αt p̂tWE(t)− p̂t

L
∑

l=1

p̂tl
WE(tl))

where αt =
∑L

l=1
1[tl = t].

B Additional experiments – context hijacking

In this section, we show the results of additional context hijacking experiments on the

CounterFact dataset [Men+22].

Reverse context hijacking In Figure 2a, we saw the effects of hijacking by adding in

“Do not think of {target_false}.” to each context. Now, we measure the effect of the reverse:

What if we prepend “Do not think of {target_true}.” ?

Based on the study in this paper on how associative memory works in LLMs, we should

expect the efficacy score to decrease. Indeed, this is what happens, as we see in Fig-

ure B.1.

Figure B.1: Prepending ‘Do not think of {target_true}.’ can increase the chance of LLMs to output

correct tokens. This figure shows efficacy score versus the number of prepends for various LLMs on

the CounterFact dataset with the reverse context hijacking scheme.
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Table 1: Examples of contexts in Relation IDs from CounterFact

Relation ID r Context p True target o∗ False target o_

P190 Kharkiv is a twin city of Warsaw Athens

P103 The native language of Anatole France is French English

P641 Hank Aaron professionally plays the sport baseball basketball

P131 Kalamazoo County can be found in Michigan Indiana

Table 2: Examples of hijack and reverse hijack formats based on Relation IDs

Relation ID r Context Hijack sentence Reverse Context Hijack sentence

P190 The twin city of {subject} is not {target_false} The twin city of {subject} is {target_true}

P103 {subject} cannot speak {target_false} {subject} can speak {target_true}

P641 {subject} does not play {target_false} {subject} plays {target_true}

P131 {subject} is not located in {target_false} {subject} is located in {target_true}

Hijacking based on relation IDs We first give an example of each of the 4 relation IDs

we hijack in Table 1.

Similar to Figure 2b, we repeat the hijacking experiments where we prepend factual

sentences generated from the relation ID. We use the format illustrated in Table 2 for

the prepended sentences. We experiment with 3 other relation IDs and we see similar

trends for all the LLMs in Figure B.2a, B.2b, and B.2d. That is, the efficacy score rises

for the first prepend and as we increase the number of prepends, the trend of ES rising

continues. Therefore, this confirms our intuition that LLMs can be hijacked by contexts

without changing the factual meaning.

Similar to Figure B.1, we experiment with reverse context hijacking where we give the

answers based on relation IDs, as shown in Table 2. We again experiment with the same

4 relation IDs and the results are in Figure B.3a - B.3d. We see that the efficacy score

decreases when we prepend the answer sentence, thereby verifying the observations of

this study.

Hijacking without exact target words So far, the experiments use prompts that either

contain true or false target words. It turns out, the inclusion of exact target words are

not necessary. To see this, we experiment a variant of the generic hijacking and reverse

hijacking experiments. But instead of saying “Do not think of {target_false}” or “Do not

think of {target_true}”. We replace target words with words that are semantically close.

Specifically, for relation P1412, we replace words representing language (e.g., “French”)

with their associated country name (e.g., “France”). As shown in Figure B.4, context

hijacking and reverse hijacing still work in this case.
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(a) Relation P103 (b) Relation P132

(c) Relation P190 (d) Relation P641

Figure B.2: Context hijacking based on relation IDs can result in LLMs output incorrect tokens.

This figure shows efficacy score versus the number of prepends for various LLMs on the CounterFact

dataset with hijacking scheme presented in Table 2.

C Additional experiments and figures – latent concept

association

In this appendix section, we present additional experimental details and results from the

synthetic experiments on latent concept association.

Experimental setup Synthetic data are generated following the model in Section 4.1.

Unless otherwise stated, the default setup has ω= 0.5, β= 1 and N (i)=V \{i} and L = 256.

The default hidden dimension of the one-layer transformer is also set to be 256. The model

is optimized using AdamW [LH17] where the learning rate is chosen from {0.01,0.001}.

The evaluation dataset is drawn from the same distribution as the training dataset and

consists of 1024 (x, y) pairs. Although theoretical results in Section 5 may freeze certain

parts of the network for simplicity, in this section, unless otherwise specified, all layers

of the transformers are trained jointly. Also, in this section, we typically report accuracy

which is 1−error.

C.1 On the value matrix WV

In this section, we provide additional figures of Section 6.1. Specifically, Figure C.1 shows

that fixing the value matrix to be the identity will negatively impact accuracy. Figure C.2

indicates that replacing trained value matrices with constructed ones can preserve accuracy

to some extent. Figure C.3 suggests that trained value matrices and constructed ones

share similar low-rank approximations. For the last two sets of experiments, we consider

randomly constructed value matrix, where the outer product pairs are chosen randomly,

defined formally as follows:
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(a) Relation P103 (b) Relation P132

(c) Relation P190 (d) Relation P641

Figure B.3: Reverse context hijacking based on relation IDs can result in LLMs to be more likely to

be correct. This figure shows efficacy score versus the number of prepends for various LLMs on the

CounterFact dataset with the reverse hijacking scheme presented in Table 2.

WV =
∑

i∈[V ]

WE(i)(
∑

{ j}∼Unif([V ])|N1(i)|

WE( j)T )

C.2 On the embeddings

This section provides additional figures from Section 6.2. Figure C.4 shows that in the

underparameterized regime, embedding training is required. Figure C.5 indicates that

the embedding structure in the underparameterized regime roughly follows (5.2). Finally

Figure C.6 shows that, when the value matrix is fixed to the identity, the relationship

between inner product of embeddings and their corresponding Hamming distance is mostly

linear.

C.3 On the attention selection mechanism

This section provides additional figures from Section 6.3. Figure C.7-C.8 show that at-

tention mechanism selects tokens in the same cluster as the last token. In particular, for

Figure C.8, we extend experiments to consider cluster structures that depend on the first

two latent variables. In other words, for any latent vector z∗, we have

N (z∗)= {z : z∗1 = z1 and z∗2 = z2}\ {z∗}

C.4 Spectrum of embeddings

We display several plots of embedding spectra (Figure C.9, Figure C.10, Figure C.11,

Figure C.12) that exhibit eigengaps between the top and bottom eigenvalues, suggesting
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(a) Hijacking P1412 (b) Reverse hijacking P1412

Figure B.4: Hijacking and reverse hijacking experiments on relation P1412 show that context

hijacking does not require exact target word to appear in the context. This figure shows efficacy score

versus the number of prepends for various LLMs on the CounterFact dataset.

(a) L = 64 (b) L = 128

Figure C.1: Fixing the value matrix WV as the identity matrix results in lower accuracy compared to

training WV , especially for smaller context length L. The figure reports accuracy for both fixed and

trained WV settings, with standard errors calculated over 10 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure C.2: When the value matrix is replaced with the constructed one in trained transformers,

the accuracy does not significantly decrease compared to replacing the value matrix with randomly

constructed ones. The graph reports accuracy under different embedding dimensions and standard

errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure C.3: The constructed value matrix WV has similar low rank approximation with the trained

value matrix. The figure displays average smallest principal angles between low-rank approximations

of trained value matrices and those of constructed, randomly constructed, and Gaussian-initialized

value matrices. Standard errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure C.4: In the underparameterized regime (d < V ), freezing embeddings to initializations

causes a significant decrease in performance. The graph reports accuracy with different embedding

dimensions and the standard errors are over 5 runs. Red lines indicate when d =V .

(a) m = 7 (b) m = 8

Figure C.5: The relationship between inner products of embeddings and corresponding Hamming

distances of tokens can be approximated by (5.2). The graph displays the average inner product

between embeddings of two tokens against the corresponding Hamming distance between these

tokens. Standard errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure C.6: The relationship between inner products of embeddings and corresponding Hamming

distances of tokens is mostly linear when the value matrix WV is fixed to be the identity. The graph

displays the average inner product between embeddings of two tokens against the corresponding

Hamming distance between these tokens. Standard errors are over 10 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure C.7: The attention patterns show the underlying cluster structure of the data generating

process. Here, for any latent vector, we have N (z∗)= {z : z∗
1
= z1}\ {z∗}. The figure shows attention

score heat maps that are averaged over 10 runs.

(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure C.8: The attention patterns show the underlying cluster structure of the data generating

process. Here, for any latent vector, we have N (z∗)= {z : z∗
1
= z1 and z∗

2
= z2}\{z∗}. The figure shows

attention score heat maps that are averaged over 10 runs.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure C.9: The spectrum of embedding matrix WE has eigengaps between the top and bottom

eigenvalues, indicating low rank structures. The figure shows results from 4 experimental runs.

Number of latent variable m is 7 and the embedding dimension is 32.

low-rank structures.

C.5 Context hijacking in latent concept association

In this section, we want to simulate context hijacking in the latent concept association model.

To achieve that, we first sample two output tokens y1 (true target) and y2 (false target)

and then generate contexts x1 = (t1
1
, ..., t1

L
) and x2 = (t2

1
, ..., t2

L
) from p(x1|y1) and p(x2|y2).

Then we mix the two contexts with rate pm. In other words, for the final mixed context

x = (t1, ..., tL), tl has probability 1− pm to be t1
l

and pm probability to be t2
l
. Figure C.13

shows that, as the mixing rate increases from 0.0 to 1.0, the trained transformer tends

to favor predicting false targets. This mirrors the phenomenon of context hijacking in

LLMs.

C.6 On the context lengths

As alluded in Section 5.5, the memory recall rate is closely related to the KL divergences

between context conditional distributions. Because contexts contain mostly i.i.d samples,

longer contexts imply larger divergences. This is empirically verified in Figure C.14 which

demonstrates that longer context lengths can lead to higher accuracy.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure C.10: The spectrum of embedding matrix WE has eigengaps between the top and bottom

eigenvalues, indicating low rank structures. The figure shows results from 4 experimental runs.

Number of latent variable m is 7 and the embedding dimension is 64.

(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure C.11: The spectrum of embedding matrix WE has eigengaps between the top and bottom

eigenvalues, indicating low rank structures. The figure shows results from 4 experimental runs.

Number of latent variable m is 8 and the embedding dimension is 32.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure C.12: The spectrum of embedding matrix WE has eigengaps between the top and bottom

eigenvalues, indicating low rank structures. The figure shows results from 4 experimental runs.

Number of latent variable m is 8 and the embedding dimension is 64.

(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure C.13: Mixing contexts can cause misclassification. The figure reports accuracy for true target

and false target under various context mixing rate. Standard errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure C.14: Increasing context lengths can improve accuracy. The figure reports accuracy across

various context lengths and dimensions. Standard errors are over 5 runs.
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