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Abstract

To build intelligent machine learning systems, there are two broad approaches. One approach is
to build inherently interpretable models, as endeavored by the growing field of causal representation
learning. The other approach is to build highly-performant foundation models and then invest
efforts into understanding how they work. In this work, we relate these two approaches and study
how to learn human-interpretable concepts from data. Weaving together ideas from both fields, we
formally define a notion of concepts and show that they can be provably recovered from diverse data.
Experiments on synthetic data and large language models show the utility of our unified approach.

1 Introduction

A key goal of modern machine learning is to learn representations of complex data that are human-
interpretable and can be controlled. This goal is of paramount importance given the breadth and
importance of ML in today’s world. There seem to be two broad approaches toward such intelligent
systems. The first approach is to build models that are inherently interpretable and then subsequently
focus on how to extract maximum performance from them; and the second approach is to build high-
performance neural models, and then subsequently invest efforts to understand the inner workings of
such models.

A prominent example of the first camp is the field of Causal Representation Learning (CRL) [82, 81].
CRL is an intricate interplay of ideas from causality, latent variable modeling and deep learning, with the
main goal being to reconstruct the true generative factors of data. To ensure that the true generative
factors can be provably recovered, CRL relies on the central theme of identifiability which posits that a
unique model fits the data, which in turn implies that the problem of learning the generative factors is
well-posed and therefore should theoretically be amenable to modern techniques. If such a generative
model reconstruction can be done, the model will naturally enjoy a host of desired properties such as
robustness and generalization. While this endeavor has been somewhat successful in many domains such
as computer vision [41, 103, 2], robotics [58, 9, 54, 113] and genomics [90, 112], it is unclear how it relates
to the research on foundation models.

The other camp is more empirical, where one tries to build a high-performance model where performance
is measured via various downstream tasks and then eventually invest efforts into explaining or interpreting
how they work. For instance, large language models and other foundation models are built to be highly
performant for a variety of tasks. Owing to their incredible success, there is a growing but heavily-debated
belief that such models are truly “intelligent” because they have indeed learned the true underlying
generative factors somehow, sometimes referred to as the “world model”. While we are far from scientifically
verifying this, the community has invested tremendous efforts into interpretability research of foundation
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models, e.g., the field of mechanistic interpretability [66] aims to reverse engineer what large language
models learn.

In this work, we take a first step toward unifying these approaches. We focus on the goal of
learning identifiable human-interpretable concepts from complex high-dimensional data. Specifically, we
build a theory of what concepts mean for complex high-dimensional data and then study under what
conditions such concepts are identifiable, i.e., when can they be unambiguously recovered from data. To
formally define concepts, we leverage extensive empirical evidence in the foundation model literature that
surprisingly shows that, across multiple domains, human-interpretable concepts are often linearly encoded
in the latent space of such models (see Section 2), e.g., the sentiment of a sentence is linearly represented
in the activation space of large language models [96]. Motivated by this rich empirical literature, we
formally define concepts as affine subspaces of some underlying representation space. Then we connect it
to causal representation learning by proving strong identifiability theorems for only desired concepts rather
than all possible concepts present in the true generative model. Therefore, in this work we tread the
fine line between the rigorous principles of causal representation learning and the empirical capabilities
of foundation models, effectively showing how causal representation learning ideas can be applied to
foundation models.

Let us be more concrete. For observed data X that has an underlying representation Zu with
X = fu(Zu) for an arbitrary distribution on Zu and a (potentially complicated) nonlinear underlying
mixing map fu, we define concepts as affine subspaces AZu = b of the latent space of Zus, i.e., all
observations falling under a concept satisfy an equation of this form. Since concepts are not precise
and can be fuzzy or continuous, we will allow for some noise in this formulation by working with the
notion of concept conditional distributions (Definition 3). Of course, in general, fu and Zu are very
high-dimensional and complex, as they can be used to represent arbitrary concepts. Instead of ambitiously
attempting to reconstruct fu and Zu as CRL would do, we go for a more relaxed notion where we attempt
to learn a minimal representation that represents only the subset of concepts we care about ; i.e., a simpler
decoder f and representation Z—different from fu and Zu—such that Z linearly captures a subset of
relevant concepts as well as a valid representation X = f(Z). With this novel formulation, we formally
prove that concept learning is identifiable up to simple linear transformations (the linear transformation
ambiguity is unavoidable and ubiquitous in CRL). This relaxes the goals of CRL to only learn relevant
representations and not necessarily learn the full underlying model. It further suggests that foundation
models do in essence learn such relaxed representations, partially explaining their superior performance
for various downstream tasks.

Apart from the above conceptual contribution, we also show that to learn n (atomic) concepts, we
only require n+ 2 environments under mild assumptions. Contrast this with the adage in CRL [41, 11]
where we require dim(Zu) environments for most identifiability guarantees, where as described above we
typically have dim(Zu) ≫ n+ 2. These theoretical insights are then validated on synthetic data, where
we use a contrastive algorithm to learn such representations for a given collection of concepts.

Moving ahead to real-world data and foundation models, we proceed to show an effective application
of our framework to large language models (LLMs). In particular, we consider the alignment problem
of making pre-trained LLMs more truthful. First, we make the assumption that pre-trained LLMs have
already learnt the concept of truth linearly, as has been empirically observed in Li et al. [51] (see also
Section 2 for more evidence). Therefore, we can apply our ideas, which we use to mechanistically reason
about how the recent Inference-Time Intervention technique [51] steers pre-trained LLMs to give more
truthful responses to questions. Then, we exploit our insights to extend this technique, by building
steering matrices rather than steering vectors to align LLMs towards concepts. Preliminary experiments
using LLaMA [97] show the efficacy of our approach on the TruthfulQA dataset [53].

In summary, our contributions are:

1. We formalize the notion of distributions induced by abstract concepts in complex domains such
as images or text. Our definition of concept conditional distributions allows both continuous and
fuzzy concepts.

2. We prove near-optimal identifiability results for learning a collection of concepts from a diverse set
of environments. We also verify our guarantees via a contrastive learning algorithm on synthetic
data. Thus, our work presents a novel framework for identifying concepts by weaving together ideas
from causal representation learning and foundation models.

3. We show the applicability of our ideas toward mechanistic interpretability, by explaining why
inference-time steering vectors align large language models toward abstract concepts such as
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truthfulness. Furthermore, we extend this idea and propose to use steering matrices instead of
steering vectors for better alignment. Our experiments with LLaMA [97] on TruthfulQA [53] show
improved performance.

2 Related work

Causal representation learning Causal representation learning (CRL) [82, 81] aims to learn generative
factors of high-dimensional data. This exciting field has seen significant progress in the last few years
[41, 9, 85, 47, 62, 45, 11, 28, 1, 104]. A fundamental perspective in this field is to ensure that the model
parameters we attempt to recover are identifiable [41, 18, 106]. Identifiability is the notion that the model
parameters we learn are equivalent to the true model parameters up to simple transformations. However,
it’s not clear until this work how this relates to the representations learned by foundation models. Our
work acts as a bridge between these two approaches. We will elaborate more on the connection of our
framework to CRL in Appendix B.

Linearity of representations Sometimes referred to as the linear representation hypothesis, it is
commonly believed that well-trained foundation models in multiple domains learn linear representations
of human-interpretable concepts, with experimental evidence going back at least a decade [61, 92, 4].
This has been experimentally observed in computer vision models [72, 76, 7, 23, 43, 107, 98], language
models [61, 70, 4, 16, 95, 22], large language models [12, 96, 65, 63, 51, 68, 30, 40], and other intelligent
systems [59, 83]. Various works have also attempted to justify why this happens [49, 4, 27, 3, 24, 84].

We take a different angle: Given that this phenomenon has been observed for certain concepts of
interest, how does this enable recovery of the concepts themselves? Consequently, our model assumptions
are well-founded and our theory applies to multiple domains of wide interest.

Concepts from pre-trained models Concept discovery is an important sub-field of machine learning
which attempts to understand the behavior of powerful neural models. We do not attempt to list the
numerous experimental works in this direction, see e.g., Schut et al. [83], Carvalho et al. [13]. However,
theoretical progress in this direction is relatively limited. Prior works have attempted to formalize the
notion of concepts [107, 68, 83], however their definitions seem specific to the model and domain under
consideration, e.g., Park et al. [68] focus on binary concepts via large language model representations
of counterfactual word pairs, whereas our general concept definitions are applicable to all domains.
Importantly, they do not provide identifiable recovery guarantees from data. To the best of our knowledge,
ours is the first work to do this for general human-interpretable concepts, by exploiting ideas from the
causal representation learning literature.

3 Setup

In this section, we provide a formal definition of concepts, which are high-level abstractions present in
data. This allows us to develop a theoretical framework for associated data distributions and identifiability
theory. For the sake of intuition, we can think of the data as images of different objects and the color of
the object as a concept.

3.1 Generative model

We assume that the observed data X lies in a space X ⊆ R
dx of dimension dx and has an underlying

representation X = f(Z) for latent variables Z that lie in a latent concept space R
dz of dimension dz.

In contrast to most prior works we do not take the viewpoint that Z represents the true underlying
mechanism that generated the data. Instead we simply assume that the latent representation has the
geometric property that it maps certain regions of the observation space to linear subspaces of the
latent space (motivated by the foundation models literature). Then we investigate to what extent this
assumption results in the identifiability of such representations.

Assumption 1 (Mixing function). The non-linear f is injective and differentiable.

Injectivity and differentiability are standard assumptions in representation learning. However, we
make no additional assumptions on f : The map from latent space to observation space can be arbitrarily
non-linear. For the rest of this subsection, fix a data representation f−1.
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Zu Z

fu f

Preserve concept linearity

(a) Zu and fu are underlying and arbitrarily compli-
cated, whereas (simpler) Z, f are learned.

(b) Concepts live in affine subspaces. The two sub-
spaces in the figure correspond to the same concept
but of different valuations.

Figure 1: Illustration of our framework

We now define concepts living in the latent space R
dz . Informally, we think of an (atomic) concept as

a vector a ∈ R
dz such that for a given valuation b ∈ R

n, the set of all observations X that satisfy this
concept is given by {X = f(Z)|⟨a, Z⟩ = b}. For instance, for an object in an image X, if a ∈ R

dz is the
concept of red color, b ∈ R could indicate the intensity; then all datapoints X satisfying this concept, i.e.,
all images with an object that has color red with intensity b, can be characterized as X = f(Z) where Z
satisfies ⟨a, Z⟩ = b. For a 3D visualization, see Fig. 1b We make this intuition formal below.

Definition 1 (Concepts). A concept C is a linear transformation A : Rdz → R
dC . The dimension of the

concept will be denoted by dim(C) = dC . A valuation is a vector b ∈ R
dC and we say that a datapoint X

satisfies the concept C with valuation b if the evaluation map satisfies AZ = b where Z = f−1(X).

In this work, we are interested in learning a collection of m concepts C1, . . . , Cm from observed
data. By left multiplying by the pseudo-inverse A+, we can equivalently assume A is a projector matrix.
However, the current definition is more suitable for embeddings of real models.

When we talk of learning concepts C, we are in particular interested in learning the evaluation
map Af−1(x). This is a more modest objective than learning the entire map f which is the usual goal
in identifiability theory. While the latter typically requires stringent assumptions, in particular Ω(dz)
environments are necessary, our weaker identifiability results only need O(dC) ≪ O(dz) environments.
To simply our analysis, we can view each concept as being composed of one dimensional concepts, which
warrants the following definition.

Definition 2 (Atoms). We define an atom (short for atomic concept) to be any concept C with dim(C) = 1.

Intuitively, atomic concepts are fundamental concepts that live in a space of co-dimension 1 in latent
space, and thus are equivalently defined by vectors a ∈ R

dz . For the sake of intuition, we can think of
red color, size of object, etc., as examples of atomic concepts. Any generic concept is then composed
of a collection of atomic concepts, e.g., the concept C of all small dark red objects will correspond to
dim(C) = 2 with row 1 corresponding to the atomic concept of red color with large valuation (dark red
objects) and row 2 corresponding to the atomic concept of object size with low valuation (small objects).

3.2 Data distributions

We now define the distributions of datasets over concepts. We will predominantly work with distributions
of Z over R

dz , as the resulting distribution of X = f(Z) over R
dx can be obtained via a simple change of

variables.
To build intuition, consider the case where we first collect a base dataset with some underlying

distribution and then collect concept datasets via filtering. For instance, we could first collect a set of
images of all objects and then, to collect a dataset of dark red colored objects, we filter them to only keep
images of dark red colored objects. We call the former the base distribution and the latter the concept
conditional distribution corresponding to our concept.

Fix a nonlinearity f . We assume that the base data distribution is the distribution of X = f(Z) with
Z ∼ p, where p is the underlying distribution on R

dz . In what follows, we will abuse notation and use p
for both the distribution and the corresponding probability density which we assume exists. We make no
further assumptions on p since we do not wish to model the collection of real-life datasets that have been
collected from nature and which could be very arbitrary.
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We now define the concept conditional distribution, which is a distribution over X that is induced by
noisy observations of a particular concept at a particular valuation. Formally, assume we want to condition
on some atomic concept a ∈ R

dz with valuation b. It is reasonable to assume that this conditioning is a
noisy operation. For instance, human beings are great at distilling concepts from noised images, e.g.,
they recognize cars in a misty environment. We formalize this by assuming that data collection is based
on a noisy estimate b̃ = ⟨a, z⟩+ ϵ where ϵ is independent of z and its density is a symmetric distribution
with density q(ϵ). Then we consider the concept conditional distribution

pC(z) = p(z |̃b = b) ∝ p(̃b = b|z)p(z)

= q(b− ⟨a, z⟩)p(z)
(1)

where we used Bayes theorem in the last step. This definition directly extends to higher dimensional
concepts which are concisely defined as follows.

Definition 3 (Concept conditional distribution). For a concept C with associated linear map A and an
arbitrary valuation b ∈ R

dim(C), we define the concept conditional distribution to be the set of observations
X respecting this concept, which is defined as the resampled distribution of X = f(Z) where Z ∼ pC with

pC(Z) ∝ p(Z)
∏

k≤dim(C)

q((AZ − b)k) (2)

This is by no means the only possible definition, and we present feasible alternate definitions in
Appendix C. We remark that our formulation is related to the iVAE setting [41] and the auxiliary variable
setting for identifiable ICA in Hyvarinen et al. [36] and we discuss the relation later. Note that the
majority of recent identifiability results relied on interventional data while we only consider conditional
information here.

We are ready to define our main problem of interest.

Problem 1. We are given an observational dataset X0 = f(Z0) corresponding to the latent base
distribution p along with datasets X1, . . . , Xm corresponding to concept conditional datasets for different
concepts C1, . . . , Cm and corresponding valuations b1, . . . , bm over the same latent space R

dz with the same
mixing f . Under what conditions (and up to which symmetries) can we learn the concepts C1, . . . , Cm,
which includes the linear maps A1, . . . , Am, and the concept valuations Aef−1(x)?

Toward this end, a fundamental question is whether this problem is even possible, i.e., whether it is
well-defined. This ties to the question of identifiability of such parameters of interest. Therefore, we make
the following definition. Informally, for the setting above, we say that the concepts (C1, A1), . . . , (Cm, Am)
with associated nonlinearity f are identifiable (and thus learnable) if for any other collection of different
parameters that fit the data, they are linearly related to the true parameters.

Definition 4 (Identifiability). Given datasets X0, X1, . . . , Xm corresponding to the observational
distribution and m concepts C1, . . . , Cm with underlying distribution p on R

dz , nonlinearity f , linear
maps A1, . . . , Am and valuations b1, . . . , bm, we say the concepts are identifiable if the following holds:

Consider any different collection of parameters f̃ , d̃z, p̃, concepts (C̃1, Ã1), . . . , (C̃m, Ãm) and valuations

b̃1, . . . , b̃m that also generate the same observations X0, X1, . . . , Xm. Then there exists a shift w ∈ R
dz ,

permutation matrices P e and invertible diagonal matrices Λe such that for all e and x,

Ãef̃−1(x) = ΛeP eAe(f−1(x) + w), (3)

i.e., we can evaluate the concept evaluations on the data up to linear reparametrizations. Moreover, there

exists a linear map T : Rd̃z → R
dz such that the concepts and their evaluations are related as follows

Ãe = P eAeT−1, b̃e = ΛeP e(be −Aew). (4)

The main message of this definition is that identifiability implies we can identify the nonlinear map
f−1 within the span of the subspace of the concepts of interest, and therefore we can recover the concepts
of interest from our data. That is, if certain concepts are identifiable, then we will be able to learn
these concept representations up to linearity, even if they can be highly nonlinear functions of our data.
Such concept discovery is useful because they can then be used for further downstream tasks such as
controllable generative modeling.
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We emphasize that in contrast to previous work we are not aiming to identify f completely. Let us
now clarify why no stronger identifiability results can be expected. Firstly, we cannot hope to resolve
the linear transformation ambiguity because the latent space is not directly observed. In other words,
a concept evaluation can be defined either as ⟨a, Z⟩ or as ⟨Ta, T−⊤Z⟩ for an invertible linear map T .
However, for the purposes of downstream tasks, this is fine since the learned concepts will still be the
same in principle. Secondly, we cannot expect to recover f−1 outside the span of the concepts because
we do not manipulate the linear spaces outside the span therefore we do not learn this information from
our observed data so this is also tight. The permutation matrix captures the fact that the ordering of the
concepts does not matter. Therefore, this definition captures the most general identifiability guarantee
that we can hope for in our setting and furthermore, this suffices for downstream tasks such as controllable
data generation.

Because we will only be interested in recovering the set of concepts up to linear transformations,
without loss of generality, we will fix the base collection of atomic concepts. That is, we assume that each
concept Ce corresponds to a linear map Ae whose rows are a subset of C, where C = {a1, . . . , an} is a set
of atomic concepts that we wish to learn. Moreover, we assume that they are linearly independent, since
we want them to encode distinct concepts.

Assumption 2. There exists a set of atomic concepts C = {a1, . . . , an} of linearly independent vectors
such that each concept Ce under consideration contains as rows a subset Se of C and all concepts in C
appear, i.e.,

⋃
e S

e = [n].

Remark 1. Note that identifiability as defined in Definition 4 implies that the atoms can be identified in
the sense that there is a permutation π ∈ Sn and λi ̸= 0 such that for T as in Definition 4 and some λi

ã⊤π(i) = a⊤i T
−1 (5)

⟨ãπ(i), f̃
−1(x)⟩ = λi

(
⟨ai, f

−1(x)⟩+ ⟨ai, w⟩
)
, (6)

i.e., we can evaluate the valuations of the atomic concepts up to linear reparametrization.

4 Main Result

In this section, we will be interested to identify a class of distinct concepts from data. As discussed
earlier, we wish to recover them as per our precise definition of identifiability, which as we saw is the best
possible.

The punchline is that when we have rich datasets, i.e., sufficiently rich concept conditional datasets,
then we can recover the concepts. Importantly, we only require a number of datasets that depends only
on the number of atoms n we wish to learn (in fact, O(n) datasets), and not on the underlying latent
dimension dz of the true generative process. This is a significant departure from most works on causal
representation learning, since the true underlying generative process could have dz = 1000, say, whereas
we may be interested to learn only n = 5 concepts, say. In this case, causal representation learning
necessitates at least ∼ 1000 datasets, whereas we show that ∼ n+ 2 = 7 datasets are enough if we only
want to learn the n atomic concepts. We will explain the connection to causal representation learning in
Appendix B. Let us now discuss our main assumptions.

Assumption 3. We choose the distribution q to be Gaussian with mean 0 and variance σ2 for some
σ2 > 0.

We relate the concepts Ce to the atoms. Recall that we defined the index sets Se = {i ∈ [n] : ai ∈
C is a row of Ae} of atomic concepts in environment e.

We define the environment-concept matrix M ∈ R
m×n indexed by environments and atoms by

Mei =

{
1
σ2 if i ∈ Se

0 otherwise.
(7)

Similarly, we consider the environment-valuation matrix B ∈ R
m×n given by

Bei =

{
bek
σ2 if i ∈ Se and row k of Ae is ai,

0 otherwise.
(8)

We now state our assumptions on the diversity of the concept conditional distributions that will ensure
identifiability.
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Assumption 4 (Environment diversity I). The environment-concept matrix M ∈ R
m×n has rank n

and there is a vector v ∈ R
m such that v⊤M = 0 and all entries of v⊤B are non-zero (B denotes that

environment-valuation matrix).

We remark that this assumption can only hold for m ≥ n + 1 and indeed is satisfied under mild
assumptions on the environments if m = n+ 1, as the following lemma shows.

Lemma 1. Assumption 4 is satisfied almost-surely if there are n+ 1 concept conditional distributions
such that every n rows of the environment-concept matrix are linearly independent and the be are drawn
independently according to a continuous distribution.

We also assume one additional diversity condition.

Assumption 5 (Environment diversity II). For every pair of atoms ai and aj with i ̸= j there is an
environment e such that i ∈ Se and j /∈ Se.

We remark that these are the only assumptions about the sets Se. In particular, we do not need to
know the sets Se. In the proof, we will extract these sets based on a the signatures they leave on the
datasets. We can now state our main result.

Theorem 1. Suppose we are given m context conditional datasets X1, . . . , Xm and the observational
dataset X0 such that Assumptions 1, 2, 3, 4, and 5 hold. Then the concepts are identifiable as per
Definition 4.

Remark 2. Assumption 4 can only be satisfied for m ≥ n + 1, i.e., the result requires at least n + 2
environments. On the other hand, Lemma 1 assures that n+ 2 environments are typically sufficient. We
expect that the result could be slightly improved by showing identifiability for n+ 1 environments under
suitable assumptions. However, this would probably require more advanced techniques from algebraic
statistics [20] compared to the necessary techniques for our result.

As mentioned before, our setting somewhat resembles the iVAE setting in Khemakhem et al. [41] and
therefore, their proof techniques can also be applied, with several modifications, to derive identifiability
results in our setting (however our formulation and application are very different). We notably remark
that this approach will require more environments because their main assumption is that the matrix
Λ = (M,B) ∈ R

m×2n has rank 2n so that 2n + 1 environments are necessary. Moreover, this rank
condition is much stronger than Assumption 4. For completeness and as a warm-up we prove this result
in Appendix A.

The full proof of Theorem 1 can be found in Appendix A. Although the proof is fairly involved, we
present the core idea here. Given two sets of parameters that fit the data, we show they’re linearly related.
To do this, we first equate the log-odds, which by assumption will be quadratic polynomials. Taking
derivatives, we will be able to obtain linear equations with coefficients depending on our environment
matrices. By a careful linear algebraic analysis, we can conclude identifiability. The diversity assumptions
ensure invertibility of various matrices that show up, which lets us solve the equations.

5 Experiments

We present two slates of experiments to supplement our framework. In Section 5.1, we validate our results
on synthetic data, via an end-to-end contrastive learning algorithm for concept learning. We additionally
propose a rejection sampling algorithm to sample from concept conditional distributions in Appendix G.
In Section 5.2, we focus on real-world settings especially on large language models (LLMs). We show how
our techniques can be used to align pre-trained LLMs towards abstract concepts such as truthfulness.

5.1 End-to-end Contrastive learning algorithm

In this section, we will validate our insights on synthetically generated data in order to verify our results
on identifiability. We present an end-to-end framework based on contrastive learning (similar to [11]) to
learn the nonlinearity as well as concepts from data. The model architecture is designed based on our
concept conditional distribution parametrization.

The core idea is to utilize contrastive learning as follows. For each concept conditional distribution
Xe, we train a neural network to distinguish concept samples x ∼ Xe from base samples x ∼ X0. First,
we compute the true log-odds for this classification problem.

7



Lemma 2. For any concept index e, there exist some constants ce such that

ln(pe(Z))− ln(p(Z))

=

n∑

i=1

(
−
1

2
Mei⟨ai, Z

e⟩2 +Bei⟨ai, Z
e⟩

)
+ ce

where M,B are the environment-concept matrix and the environment-valuation matrix defined in (7) and
(8).

The proof is in Appendix E. Now, let’s try to learn the n atomic concepts up to linearity. To do this,
we build a neural architecture for this classification problem with the final layer mimicking the log-odds
expression above, which can then be trained end-to-end. Because of the careful parametrization of the
last layer, this will encourage the model to learn the representations as guaranteed by our results. The
details are deferred to Appendix E.

Sampling from concept conditional distributions A common task in controllable generative
modeling is being able to generate data from a known concept. Note that this is not straightforward in
our setting because the normalization term in Eq. (2) is not efficiently computable. To do this efficiently,
we also outline a simple algorithm (Algorithm 1 in Appendix G) to sample from the concept conditional
distribution for a known concept. Our proposed algorithm is based on rejection sampling and the
algorithm as well as the complexity analysis are deferred to Appendix G.

Synthetic experiments We test our proposed method on synthetic data as follows. We sample the
base distribution from a Gaussian Mixture model and experiment with both linear and nonlinear mixing
functions. The parameters are all chosen randomly. The number of concepts n is intentionally chosen to
be less than the ground truth dimension dz and the number of concepts is m = n+ 1 as per our theory.
Additional details are deferred to Appendix F.

Table 1: Linear identifiability when number of concepts n is less than underlying latent dimension dz,
averaged over 5 seeds

Type of mixing f n dz Obs dim dx R2↑ MCC↑

Linear 2 3 4 0.98 0.98
Nonlinear 2 3 4 0.94 0.96

Linear 3 4 6 0.99 0.86
Nonlinear 3 4 6 0.97 0.92

Linear 4 8 10 0.97 0.87
Nonlinear 4 8 10 0.94 0.87

In Table 1, we show the metrics achieved by our contrastive learning algorithm on this data, where we
report the R2 and Mean Correlation Coefficient (MCC) metrics [41, 42] of the recovered latents with
respect to the ground truth concept valuations. There are no baselines since we are in a novel setting
where standard causal representation learning baselines do not easily apply. However, our metrics are
comparable to what’s usually reported in such highly nonlinear settings [109, 11].

We remark that variations of the contrastive method can be designed for harder synthetic settings and
different problems related to concept discovery. However, we will move onto real-life data experiments
next.

5.2 Alignment of Large Language Models

In this section, we show an application of our framework to alignment of Large Language Models (LLMs).
In particular, we exploit our ideas to improve the Inference-Time Intervention technique [51] to promote
LLMs to be more truthful. In contrast to previous sections, we will focus on exactly one concept –
truthfulness with two relevant valuations – false and true. We concretize this by assuming this concept is
linear and the valuations correspond to real numbers (as evidenced by Li et al. [51], see also Section 2 for
more evidence). The downstream task is to make pre-trained LLMs answer truthfully, i.e., change the
valuation of this concept from false to true, without affecting any other orthogonal concepts.
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Thus, in contrast to the previous section where we trained an end-to-end model to learn both the
non-linearities as well as the concepts, we will now assume that the non-linearity has already been learned
up to a linear transformation (by large-scale training of LLMs). This aligns with our theoretical insights
because the training data for powerful LLMs are diverse, so they essentially satisfy our core assumptions
(see also the related work [29] that proposes that context is environment in LLM training). Therefore,
we simply focus on the downstream tasks, which in this section is LLM alignment. The difficulty, of
course, is that we do not know the concept matrix or the valuations. A detailed introduction to large
language models (LLMs) and the Inference-Time Intervention (ITI) technique is deferred to Appendix D.
We present a simplified summary here.

Given a context x, a GPT-style LLM outputs a representation f(x), which is then decoded into
probabilities of the next token. ITI is an activation patching technique that controls the behavior of LLMs
during inference time, in particular it promotes truthfulness. ITI proposes to modify the forward pass
(during inference time) to f(x) + ασ · η where η is a trained steering vector, σ is the standard deviation
of the representations in this direction and α is a tunable hyperparameter.1

Here, the steering vectors are intended to steer the LLM towards truthful responses. To train them, the
work [51] uses a set of counterfactual pairs (cFi , c

T
i ) of false and true reponses to the same questions (for

instance from the TruthfulQA dataset [53]), compute the difference of their representations f(cTi )− f(cFi )
and the normalized mean difference is used as the steering vector η.

First, we use our framework to mechanistically reason about how ITI modifies the internal representa-
tions and illustrate why the mean is a good choice. We present an intuitive summary here, postponing
details to Appendix D. If we consider the concept conditional distributions of the true and false valuations
of our truthfulness concept (assume for simplicity it’s an atomic concept a with valuations bT , bF ), then
they concentrate in their respective hyperplanes ⟨a, f(cTi )⟩ = bT and ⟨a, f(cFi )⟩ = bF . Now, consider the
steering vector η, the normalized mean of the f(cTi )−f(cFi ). The crucial insight is that if we have a diverse
set of counterfactual pairs, then in the hyperplane orthogonal to a, the fluctuations of f(cTi )− f(cFi ) get
averaged and should disappear when taking the mean. Therefore, η will be parallel to a, which is the
optimal steering vector. This intuition can be generalized to non-atomic concepts, as we will describe
in Appendix D.3. In summary, our framework enables progress on mechanistic interpretability [66], an
emerging field which aims to understand LLM mechanisms.

Next, we propose a modification of this technique as follows. First, we use our insights to arrive at the
intuition that any weighted mean of the counterfactual differences should roughly have the same steering
behavior. And moreover, we choose the weights dynamically, with weights being similarities of the test
sentence to the sentences from the training set. This enables similar sentences in the training set to have
a higher vote in the choice of steering vector. With this new idea, we use as steering vector

η(x) =
∑

i

⟨λ(x), λ(cFi )⟩(f(c
T
i )− f(cFi ))

where λ is a sentence embedding (such as SBERT [79]). We detail this further in Appendix D.3. Finally,
we also show how to implement this efficiently using steering matrices instead of steering vectors.

Table 2: Comparison of steering vectors for LLM alignment

Technique α Acc (%) CE loss KL div.

Baseline - 25.7 2.16 0.0
Random direction 20 25.8 2.19 0.02
CCS direction 5 26.2 2.21 0.06
ITI: Probe weight dir. 15 27.0 2.21 0.06
ITI: Mass mean shift 20 28.8 2.41 0.27

Steering matrices (ours) 15 29.5 2.61 0.41

In Table 2, we show the results of our experiments with steering matrices. We use the open-source
large language model LLaMA [97] with 7 billion parameters and the sentence transformer SBERT [79] for
the sentence embedding. We report the accuracy of the multiple-choice track of TruthfulQA [51] over 3
random seeds and also the Cross-Entropy Loss and KL divergence of the model pre- and post-intervention.
Higher accuracy is better and lower CE loss, and KL divergence indicate that the original model has not

1Note that the simplified version is stated here. In ITI, η is not actually a constant vector because it’s an autoregressive
model. However a constant vector is added to each layer during inference time (which is sufficient for relaying intuition in
this section). See Appendix D for details.
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been significantly modified. Here, the baselines are the unmodified model, random direction intervention,
Contrast-Consistent Search (CCS) direction [12] and two different direction choices using vanilla ITI; and
2-fold cross validation is used. Additional technical details are deferred to Appendix D.

We see that the multiple-choice accuracy improved, showcasing the potential of our steering matrices
technique which is novel in the field of LLM alignment to the best of our knowledge. Note that this is
meant to be a proof of concept and not meant to be a comprehensive study of this specific technique. For
exploratory purposes, we outline potential modifications to our technique in Appendix D which could
potentially improve the performance, both in terms of accuracy as well as in terms of invasiveness. These
form an exciting direction for a more comprehensive study of our proposed ideas, which we leave for
future work.

6 Conclusion

In this work, we exploited ideas from both the causal representation learning and the foundations model
literature to study the problem of learning human-interpretable concepts from data. We proposed a formal
definition of concepts and studied under what conditions they can be provably recovered, suggesting
what representations foundation models learn. Finally, synthetic experiments and large language model
alignment experiments showcase the utility of our ideas.

While we have made initial progress in unifying these disparate fields, this direction holds a lot of
promise. We believe there’s a lot of upside in utilizing ideas from identifiable representation learning in
order to theoretically analyze what representations foundation models learn, as it will help us understand,
explain, and improve their capabilities.
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A Proofs of the main results

In this appendix we provide the proofs of our results, in particular the proof of our main result, Theorem 1.
However, as a warm-up we first start in Appendix A.1 with a proof of the simpler result that can be
shown based on the iVAE approach. In Appendix A.2 we prove Theorem 1 and in Appendix A.3 we
prove the additional lemmas that appear in the paper.

A.1 Proof of identifiability with 2n+ 1 environments

As a warm-up and to provide a connection to earlier results we show here how to obtain identifiability by
adapting the iVAE framework to our context. Indeed, our mathematical setting is related to the setting
used in [41] in the sense that the environments are generated by modulation with certain exponential
families. Therefore, we can essentially apply their proof techniques to prove identifiability (with some
modifications), albeit this requires the suboptimal number of 2m+1 environments (there are two sufficient
statistics for the Gaussian distribution).

Theorem 2. Suppose data satisfies Assumption 1, 2, and 3 and the environment statistics matrix Λ has
rank 2n. Assume we know the number of atoms n. Then identifiability in the sense of Definition 4 holds.

We remark that the rank condition can only be satisfied for 2n + 1 environments (observational
distribution and 2n concept conditional distributions. For this theorem the assumption that the filtering
distribution is always the same is not necessary. Instead we could consider variances (σe

k)
2 depending on

environment e and row k, i.e., the filtering distribution q(σe
k
)2 is Gaussian with varying variance. The

generalization of the environment-concept matrix M ∈ R
m×n is given by

Mei =

{
1

(σe
k
)2 if i ∈ Se and row k of Ae is ai

0 otherwise.
(9)

Similarly the generalization of the environment-valuation matrix B ∈ R
m×n is given by

Bei =

{
bek

(σe
k
)2 if i ∈ Se and row k of Ae is ai,

0 otherwise.
(10)

We now prove Theorem 2. We use essentially the same ideas as in the proof of Theorem 1 in
Khemakhem et al. [41] (followed by the same reasoning as in Sorrenson et al. [87], Kivva et al. [45] but
since our concepts are not axis aligned and we only extract some information about the mixing we give a
complete proof.

Proof of Theorem 2. Suppose there are 2 sets of parameters that generate the same data X0, X1, . . . , Xm.

Denote by .̃ the latter set of parameters, e.g., Xe is distributed as f̃(Z̃e) where Z̃e ∈ R
d̃z corresponds to

the concept class C̃e with distribution Z̃e ∼ p̃e and the same distribution is generated by f(Ze) where

f and f̃ are injective and differentiable. Let C = {a1, . . . , an} be the set of atomic concepts in the first

setting and let C̃ = {ã1, . . . , ãn} be the set of atomic concepts in the second setting (here we use that n

is assumed to be known). We also consider the transition function φ = f̃−1f and in the following we

always write Z̃ = φ(Z). The equality f(Ze)
D
= Xe D

= f̃(Z̃e) implies φ(Ze)
D
= Z̃e. This implies that for all

environments e

pe(Z) = | det Jφ−1 | · p̃e(Z̃) (11)

Taking the logarithm and subtracting this for some e = 1, . . . ,m from the base distribution we obtain

ln(p(Z))− ln(pe(Z)) = ln(p̃(Z̃))− ln(p̃e(Z̃)). (12)

Using the definition (2) we can rewrite for some constants ce and c′e

ln(p(Z))− ln(pe(Z)) =

dim(Ce)∑

k=1

(AeZe − be)2k
2(σe

k)
2

− c′e

=

n∑

i=1

(
1

2
Mei⟨ai, Z

e⟩2 −Bei⟨ai, Z
e⟩

)
− ce.

(13)
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Here we used the environment-concept matrix and the environment-valuation matrix in the second step
which were defined in (7) and (8) (in (9) and (10) for varying variance). We define the vector p(Z) with
components pe(Z) = ln(p(Z))− ln(pe(Z)). Then we find the relation

p(Z) =
1

2
M



⟨a1, Z⟩2

...
⟨an, Z⟩2


−B



⟨a1, Z⟩

...
⟨an, Z⟩


 . (14)

Together with (12) we conclude that

1

2
M



⟨a1, Z⟩2

...
⟨an, Z⟩2


−B



⟨a1, Z⟩

...
⟨an, Z⟩


 =

1

2
M̃



⟨ã1, Z̃⟩2

...

⟨ãn, Z̃⟩2


− B̃



⟨ã1, Z̃⟩

...

⟨ãn, Z̃⟩


 (15)

Since by assumption Λ̃ = (M̃, B̃) ∈ R
m×2n has rank 2n there is a vector v such that v⊤M̃ = 0 and

v⊤B̃ = −ei (ei ∈ R
dz denotes the i-th standard basis vector). Thus we find that

⟨ãi, Z̃⟩ =
1

2
v⊤M



⟨a1, Z⟩2

...
⟨an, Z⟩2


− v⊤B



⟨a1, Z⟩

...
⟨an, Z⟩


 . (16)

In other words ⟨ãi, Z̃⟩ can be expressed as a quadratic polynomial in Z. We apply the same reasoning for

⟨ãi, Z̃⟩2, i.e., pick a vector v′ such that 1
2v

′⊤M̃ = ei and v′⊤B̃ = 0 to obtain a relation

⟨ãi, Z̃⟩2 =
∑

j

ηj⟨aj , Z⟩2 + ℓ(Z) (17)

for some coefficients ηj and some affine function ℓ of Z. The following reasoning is now the same as

in Kivva et al. [45], Sorrenson et al. [87]. We thus find that ⟨ãi, Z̃⟩ and its square can be written as

polynimials of degree at most 2 in Z. This implies that in fact ⟨ãi, Z̃⟩ is an affine function of Z (otherwise
its square would be a quartic polynomial), i.e., we can write

⟨ãi, Z̃⟩ =
∑

j

λj⟨aj , Z⟩+ Ci = ⟨
∑

j

λjaj , Z⟩+ Ci. (18)

Equating the square of this relation with (17) and taking the gradient with respect to Z (as a polynomial
the function is differentiable) we find

2
∑

j

ηjaj⟨aj , Z⟩+ w = 2
∑

j

λjaj⟨
∑

j

λjaj , Z⟩+ w′ (19)

for two vectors w and w′. The equality (for Z = 0) implies w = w′. Now linear independence of aj
implies that for each r

ηrar = λr

∑

j

λjaj . (20)

Applying linear independence again we conclude that either λr = 0 or λj = 0 for all j ̸= r. This implies
that there is at most one r such that λr ̸= 0. The relation (18) and the bijectivity of φ implies that there
is exactly on r(i) such that λr(i) ̸= 0 and therefore

⟨ãi, Z̃⟩ = λr(i)⟨ar(i), Z⟩+ Ci. (21)

Applying the same argument in the reverse direction we conclude that there is a permutation π ∈ Sn

such that

⟨ãπ(i), Z̃⟩ = λi⟨ai, Z⟩+ Ci. (22)

By linear independence we can find an invertible linear map T such that

ã⊤π(i) = a⊤i T
−1 (23)
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(i.e, T⊤ãπ(i) = ai) and a vector w ∈ R
dz (the ai are linearly independent) such that

⟨ãπ(i), Z̃⟩ = λi(⟨ai, Z⟩+ ⟨ai, w⟩). (24)

In particular the relations (5) and (6) hold. Now it is straightforward to see that if i ∈ Se, i.e., ai is

a row of Ae then ãπ(i) is a row of Ãe and vice versa. Indeed, this follows from (15) for environment e
together with (24) and linear independence of the atoms. Therefore we conclude from (23) that there is a
permutation P e such that

Ãe = P eAeT−1. (25)

Moreover, (24) then implies setting Z = f−1(x), Z̃ = f̃−1(x)

Ãef̃−1(x) = ΛeP eAe(f−1(x) + w) (26)

holds for the same permutation matrix P e and a diagonal matrix Λe whose diagonal entries can be related
to (24). Let us assume now that row k of Ae is ai and row k′ of Ãe is ãπ(i). Now we consider the subspace

H ⊂ R
dz containing all Z such that ⟨Z, aj⟩ = 0 for j ̸= i. Via (24) this implies that ⟨ãj , Z̃⟩ is constant

for j ̸= π(i). Then we conclude from (15) that for Z ∈ H

(⟨ai, Z⟩ − bek)
2

2(σe
k)

2
=

(⟨ãπ(i), Z̃⟩ − b̃ek′)2

2(σ̃e
k′)2

+ cek (27)

for some constant cek. Using (24) this implies that

(⟨ai, Z⟩ − bek)
2

2(σe
k)

2
=

(λi(⟨ai, Z⟩+ ⟨ai, w⟩)− b̃ek′)2

2(σ̃e
k′)2

+ cek. (28)

Comparing the quadratic term and the linear term (note that ⟨ai, Z⟩ can take any value on H) we find

1

2(σe
k)

2
=

λ2
i

2(σ̃e
k′)2

(29)

−
bek

2(σe
k)

2
= −

λib̃
e
k′ − λ2

i ⟨ai, w⟩

2(σ̃e
k′)2

(30)

Combining the equation we obtain

b̃ek′ = λi(b
e
k − ⟨ai, w⟩) (31)

This implies then the relation

b̃ = ΛeP e(b+Aew). (32)

A.2 Proof of Theorem 1

In this section we prove our main Theorem 1. The proof is structured in several steps: First we remove
the symmetries of the representation and derive the key relations underlying the proof. Then we show
that we can identify the environment-concept matrix M and then also the valuations collected in B. Once
this is done we can complete the proof. We will need the following lemma to conclude the proof.

Lemma 3. The relations (3) and (6) in Definition 4 define an equivalence relation of representations if
we assume that the underlying atoms form a linearly independent set.

The proof of this lemma can be found in Appendix A.3.

Remark 3. Without the assumption on the underlying atoms the lemma is not true. In this case a slightly
different scaling must be chosen (e.g., (Λe)−1b̃e = ΛeP ebe − P eAew instead of b̃e = ΛeP e(be − Aew)).
Since our results address the case of atoms we used the simpler definition in the main paper.

We can allow slightly more general filtering distributions where q is Gaussian with variance σ2
i if

we filter on concept i, i.e., the variance needs to be constant for different environments and the same
atom but might depend on the atom. The proof will cover this case, the simple case stated in the main
paper is obtained by setting σ2

i = σ2. Some steps of the proof (e.g., the expressions for the difference of
the log-densities) agree with the proof of Theorem 2. To keep the proof self contained we repeat a few
equations.

Proof of Theorem 1. We proceed in several steps.
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Step 1: Reduction to standard form. Let us first transform every possible data representation into
a standard form. Recall that we have the set of atomic concepts C = {a1, . . . , an}. Recall that we defined
the environment-concept matrix M ∈ R

m×n in (7) and note that the natural generalisation reads

Mei =

{
1
σ2

i

if ai is a row of Ae,

0 otherwise.
(33)

We say that concept an is conditioned on the environment e. Note that the nonzero entries of row e
of M encode the set Se. To pass from Ae to its rows ai we assume that the e-th row of Ae is aie

j
, i.e.,

aie
j
= (Ae)⊤ej . Recall also consider the environment-valuation matrix B which is given by

Bei =

{
bek
σ2

i

if ai is row k of Ae,

0 otherwise.
(34)

Denoting by qσ2 the centered Gaussian distribution with variance σ2 we find in environment e

ln(p(Z))− ln(pe(Z)) = −

dim(Ce)∑

k=1

ln q(σe
k
)2((A

eZe − be)k) =

dim(Ce)∑

k=1

(AeZe − be)2k
2(σe

k)
2

− c′e

=

n∑

i=1

1

2
Mei⟨ai, Z

e⟩2 −Bei⟨ai, Z
e⟩ − ce.

(35)

Now we consider an invertible linear map T : Rdz → R
dz such that T−⊤ai = ei for all 1 ≤ i ≤ n. Such a

map exists because we assume that the ai are linearly independent. Moreover, we consider a shift vector
λ ∈ R

dz with λi = 0 for i > n which we fix later. We define Σ ∈ R
dz×dz to be the diagonal matrix with

entries Σii = σi for 1 ≤ i ≤ n and Σii = 1 for i > n. Now we consider the linear map L(z) = Σ−1Tz − λ
and a new representation given by

z = L(z), f = f ◦ L−1, C = {e1, . . . , en}, σi = 1, A
e
= AeT−1, p(z̃) = p(L−1z̃)| detT−1|.

(36)

We also define

b
e

k =
bek
σi

− λi if row k of Ae is ai. (37)

Define M and B in terms of A
e
, b

e
and σ2

i as before. We remark that all entries of M are either 0 or 1
and note that

M = MDiag(σ2
1 , . . . , σ

2
n) (38)

B = BDiag(σ−1
1 , . . . , σ−1

n )−MDiag(λ1, . . . , λn). (39)

We claim that this model generates the same observations as the original model. By definition L∗p = p
(as mentioned before, we slightly abuse notation and here refer to the distributions). Next, we calculate
for any δ

−2 ln q1(⟨ei, L(z)⟩ − δ) = (⟨ei, L(z)⟩ − δ)2

= (⟨ei,ΣTz − λ⟩ − δ)2

= (σ−1
i ⟨T⊤ei, z⟩ − λi − δ)2

=
(⟨ai, z⟩ − σiλi − σiδ)

2

σ2
i

= −2 ln qσ2

i
(⟨ai, z⟩ − σiλi − σiδ).

(40)

Using this for δ = b
e

k and some k such that row k of Ae is ai we find

−2 ln q1(⟨ei, L(z)⟩ − b
e

k) = −2 ln qσ2

i
(⟨ai, z⟩ − σiλi − σib

e

k) = −2 ln qσ2

i
(⟨ai, z⟩ − bek). (41)
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This then implies that for z̃ = L(z)
∏

k

q1((Ã
ez̃ − b̃e)k) ∝

∏

k

qσe
k
((Aez − be)k) . (42)

Combining this with the definition (2) and the definition p(z̃) = p(L−1z̃)| detT−1| we find that for
z = L(z)

pe(z̃) ∝ pe(z) (43)

and thus f(Z
e
)

D
= f(Ze)

D
= Xe. Moreover, one directly sees that the two representations are also equivalent

in the sense of Definition 4. We now fix the vector λ such that each row of B has mean zero. Finally,
by changing the sign of z̃i we can in addition assume that for every i the first non-zero Bei is positive.
Finally we remark that Assumption 4 is still satisfied for M and B. Indeed, w⊤M = 0 implies w⊤M = 0
by (38). But then w⊤B = w⊤BDiag(σ−1

1 , . . . , σ−1
n ) by (39) which has all entries different from zero if

this holds for w⊤B. In the following we will therefore always assume that the representation satisfies the
properties of the Z variables and we remove the modifier in the following. The plan is now to show that
M and B can be identified up to permutations of the rows (under the fixed normalization we derived in
this step) and then show that every two representations with the same M and B can be identified.

Step 2: The key identity Let us here restate the key identity based on the difference of the log-
densities. As is common in identifiability results for multi-environment data with general mixing we
consider the difference in log densities. Consider

ln p0(z)− ln pe(z) =

n∑

i=1

1

2
Mei⟨ei, z⟩

2 −Bei⟨ei, z⟩ − c′e

=

n∑

i=1

1

2
Meiz

2
i −Beizi − c′e

(44)

for some constant c′e. Those functions will play a crucial role in the following and we will denote

ge(z) = ln p0(z)− ln pe(z) (45)

Note that since the log-density changes only by the Jacobian for pushforward measures we find that

ge(z) = ln p0(z)− ln pe(z) = ln p0X(f(z))− ln peX(f(z)) = Ge(f(z)) = Ge(x). (46)

Note that the functions Ge(x) can be estimated from the distributions of Xe. We remark X might be
supported on a submanifold if dz and dx do not agree making the definition of the density subtle. But
we can just consider any chart locally and consider the density of the pushforward with respect to the
Lebesgue measure. The resulting difference expressed in Ge will be independent of the chart as the
determinant cancels thus Ge is a well defined function. The relation

ge(z) = Ge(f(z)) = Ge(x) (47)

will be crucial in the following because it shows that properties of ge are closely linked to the identifiable
functions Ge.

Step 3: Identifiability of environment-concept matrix Let us now show that we can identify
which concepts are contained in which environment (up to relabeling of the concepts). Recall that
Se = {i ∈ [n] : ai is a row of Ae } and we similarly define ST =

⋃
e∈T Se for all subsets T ⊂ [m]. The

main observation is that we can identify |ST | = |
⋃

e∈T Se| for all subsets T ⊂ [m]. To show this we
consider the set

IT = argmin
z

∑

e∈T

ge(z). (48)

Note that the function ge are convex functions, and they can be decomposed as sums of functions in zi,
i.e., for some functions hT

i

∑

e∈T

ge(z) =

n∑

i=1

hT
i (zi). (49)
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Now if i ∈ ST then i ∈ Se for some e and thus Mei ̸= 0 for the e and hT
i is the sum of quadratic function

in xi which as a strictly convex function has a unique minimum zTi . On the other hand, if i /∈ ST then
i /∈ Se for e ∈ T and thus Mei = 0 for all e ∈ T and hT

i (zi) = 0. Thus we conclude that

IT = {z ∈ R
dz : zi = zTi for i ∈ ST }. (50)

This is an affine subspace of dimension dz − |ST |. The relations Ge(f(z)) = ge(z) imply that

f(IT ) = argmin
x

∑

e∈T

Ge(x). (51)

Note that Ge(x) is identifiable from the datasets Xe and thus the submanifold (by assumption on f)
f(IT ) is identifiable and by finding its dimension we obtain dz − |ST |. Since dz is the dimension of the
data manifold f(X) we can indeed identify |ST | for all T ⊂ [m]. In particular, the total number of atomic
concepts n = |S[m]| is identifiable (assuming that all atomic concepts are filtered upon at least once).
Now, it is a standard result that we can identify the matrix M up to permutation of the atomic concepts.
Indeed, we can argue by induction in m to show this. For m = 1 we just have |S1| atomic concepts
appearing in environment 1 and n− |S1| concepts not appearing. For the induction step m → m+ 1 we
consider the sizes |ST∪{m+1}| for T ⊂ [m]. Applying the induction hypothesis we can complete Mei for
all columns such that Mm+1,i = 1. Similarly, we can consider the sizes |ST | − |ST∪{m+1}| to identify the
matrix M for concepts not used in environment m+ 1.

Thus, we can and will assume after permuting the atomic concepts that M is some fixed matrix.

Step 4: Identifiability of concept valuations Next, we show that we can also identify the matrix
B. We do this column by column, i.e., for one atomic concept after another. Assume we consider atomic
concept i. Then we consider the set Ti = {e : Mei = 0} of concepts that not filter on atomic concept i.
By Assumption 5 there is for every i′ ̸= i an environment e such that i′ is filtered on, i.e., Mei′ ̸= 0. This
implies STi

= [n] \ {i}. Then we consider as in (50) the set ITi
given by

ITi
= {z ∈ R

dz : zi′ = zTi

i′ for i′ ∈ [n] \ {i}}. (52)

Note that all zi′ for i ̸= i′ are constant on ITi
. Thus we find for any environment e such that i ∈ Se.

ge(z) =

n∑

j=1

1

2
Mejz

2
j −Bejzj − c′e

=

n∑

j ̸=i

1

2
Mejz

2
j −Bejzj − c′e +

1

2
z2i −Beizi

= cTi,e +
1

2
z2i −Beizi

(53)

on ITi
for some constant cTi

.
Now we consider two concepts e1 ̸= e2 such that atomic concept i is contained in these two environments.

Then we consider the set

Ie1Ti
= argmin

z∈ITi

ge1(z) = {z ∈ R
dz : zi′ = zTi

i′ for i′ ∈ [n] \ {i}, zi = Be1i}. (54)

Note that in the second equality we used that ge1(z) depends on zi through z2i /2 − Be1izi so it is
minimized at Be1i. Now we find using (53)

min
z∈I

e1
Ti

ge2(z)−min
ITi

ge2(z) = min
z∈I

e1
Ti

cTi,e2 +
1

2
z2i −Be2izi −min

ITi

(
cTi,e2 +

1

2
z2i −Be2izi

)

= cTi,e2 +
1

2
B2

e1i
−Be1iBe2i −

(
cTi,e2 +

1

2
B2

e2i
−B2

e2i

)

=
(Be1i −Be2i)

2

2
.

(55)

As before, this quantity is identifiable from observations because f(Ti) can be identified and we can
minimize Ge2(x) over f(Ti).
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This allows us to identify Be1i −Be2i up to a sign. However, we can evaluate this expression over all
pairs e1 and e2 and pick the one with the maximal difference. Then all remaining values Bei for e such
that i is filtered on in e must satisfy Bei ∈ [Be1i, Be2i]. Together with identifiability of |Bei −Be1i| this
allows us to identify all Bei up to one sign indeterminacy and a constant shift. However, in the first step
we ensured that

∑
e Bei = 0 for all i which determines the shift and the sign is fixed by our choice of

making the first non-zero entry positive. Thus, we can assume that our two representations have the
same M and B.

Step 5: Identifiability of concepts We are now ready to prove our identifiability result.
Assume we have two representations Ze, f , p and Z̃e, f̃ , and p̃ such that the corresponding environment-

concept and environment-valuation matrices agree, i.e., M = M̃ and B = B̃. We consider the transition
function φ = f̃−1 ◦ f which is by assumption differentiable. What we want to show is that φ(z)i = zi
for all z ∈ R

dz and 1 ≤ i ≤ n. We now decompose z = (zc, zo) into the concept part and the orthogonal
part. We fix zo ∈ R

dz−n and define the function ιo(zc) = (zc, zo), the projection πc((zc, zo)) = zc,
and φo : Rn → R

n given by φo(zc)i = φ(ιo(zc) = φ((zc, zo))i. Note that φo is differentiable but not
necessarily injective. Let us denote by g : Rdz → R

m the function with coordinates ge = ge and similarly
we define G : M → R

d. Identifiability will be based on the crucial relation

g(ιo(zc)) = G(f(ιo(zc))) = G(f̃(φo(zc))) = g(φo(zc)). (56)

Here we used in the last step that ge is defined in terms of M and B and thus agrees for both representations.
Note that g is just a quadratic function. Differentiating we obtain

Dig
e(z) = Meizi −Bei. (57)

Concisely this can be written as

Dg = MDiag(z1, . . . , zn)−B. (58)

Differentiating (56) we find

MDiag(z1, . . . , zn)−B = (MDiag(z̃1, . . . , z̃n)−B)Dφo(zc). (59)

Let v be a vector as in Assumption 4. Denote by M+ ∈ R
n×m the pseudoinverse of M which has rank n

because M has. We consider the matrix M̃+ ∈ R
n+1×m given by

M̃+ =

(
M+

v⊤

)
(60)

Let us multiply the relation (59) by M̃+ and find that




z1 0
. . .

0 zn
0 . . . 0


− M̃+B =







z̃1 0
. . .

0 z̃n
0 . . . 0


− M̃+B


Dφo(zc) (61)

Note that the first n rows of the left hand side are Diag(z1, . . . , zn)−M+B. This matrix is invertible for
almost all values of zc = (z1, . . . , zn)

⊤ because its determinant is a non-zero polynomial (the coefficient
of the term z1 · . . . zn is 1) which vanishes only on a set of measure zero. Outside of this set the left hand
side of has rank n. Then the equality (61) implies that also the right hand side has rank n and thus
Dφo(zc) has rank n and thus is invertible. For zc outside of this set there is up to scaling a unique vector
w ̸= 0 (depending on z1, . . . , zn such that

w⊤







z1 0
. . .

0 zn
0 . . . 0


− M̃+B


 = 0 (62)
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From (61) we conclude using the invertibility of Dφo(zc) that

w⊤







z̃1 0
. . .

0 z̃n
0 . . . 0


− M̃+B


 = 0. (63)

Next, we claim that for almost all values of zc the vector w has all entries different from 0 (this property
is invariant under rescaling). Actually we need this only for entries 1 to n but the case n + 1 is a bit
simpler so we show it first. We show this by proving that for each entry wi there is only a null set of zc

such that wi = 0. Let w = (w′, 0) for some w′ ∈ R
n and w′ ̸= 0, i.e., wn+1 = 0. Then

0 = w⊤







z1 0
. . .

0 zn
0 . . . 0


− M̃+B


 = w′⊤(Diag(z1, . . . , zn)−M+B) (64)

But this implies that Diag(z1, . . . , zn)−M+B has non-trivial kernel, i.e., does not have full rank and we
have seen above that this happens only for a subset of measure 0 of all zc. Next we show that the same is
true if w1 = 0. Decompose 0 ̸= w = (0, w′). Then we find

0 = w⊤







z1 0
. . .

0 zn
0 . . . 0


− M̃+B


 = w′⊤







0 z2 0 0

. . .
. . .

0 zn
0 . . . . . . 0


− (M̃+B)2:(n+1)


 (65)

Thus we conclude that the matrix on the right hand side is not invertible. Its determinant is a polynomial

in z2, . . . , zn and its highest degree term is ±z2 · . . . · zn · (M̃+B)(n+1),1. By definition of M̃+B we find

(M̃+B)(n+1),1 = (v⊤B)1 ≠ 0 by Assumption 4 (recall that we showed invariance of the assumption under
the transformation of M and B). We find that the determinant is a non-zero polynomial and the set
of its zeros is a set of measure 0 of all z2, . . . , zn but since it does not depend on z1 this holds true for
almost all zc. The same reasoning for i = 2, . . . , n implies that for every i the set of zc such that wi = 0
is a set of measure zero. We have therefore shown that for almost all zc the rank of the left hand side of
(61) is n and the corresponding vector w ≠ 0 has all entries different from zero. Subtracting (62) and
(63) we obtain

0 = w⊤




z1 0
. . .

0 zn
0 . . . 0


− w⊤




z̃1 0
. . .

0 z̃n
0 . . . 0


 =

(
w1(z1 − z̃1), . . . wn(zn − z̃n), 0

)
. (66)

Now wi ≠ 0 implies zi = z̃i. We conclude that for almost all zc the relation φo(zc) = zc holds. By

continuity this implies that the relation actually holds everywhere. We conclude that πcf̃−1f((zc, zo)) = zc

for a fixed zo but since zo was arbitrary the relation holds for all zo and all zc. Thus we conclude that
for 1 ≤ i ≤ n

⟨ei, f̃
−1(x)⟩ = ⟨ei, φ(f

−1(x))⟩ = ⟨ei, f
−1(x)⟩ (67)

holds. This implies that those two representations satisfy (3) and (4) (with P e = Λe = Id and T = Id).
But since this relation is an equivalence relation in our setting by Lemma 3 and since we showed equivalence
to a representation in standard form in the first step we conclude that also any two representations are
related through (3) and (4) thus finishing the proof.

A.3 Remaining proofs

Here we prove the remaining auxiliary results.
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Proof of Lemma 1. Since M ∈ R
m×n has rank n and m = n+ 1 there is exactly one vector v ∈ R

m such
that v⊤M = 0 and v ≠ 0. We claim that this vector has all entries different from zero. Indeed suppose
vm = 0 which then implies v⊤1:(m−1)M1:(m−1) = 0. But by assumption every n × n submatrix of M is

invertible (this is equivalent to the rows being linearly independent) so we conclude that v1:(m−1) = 0
which is a contradiction to v ≠ 0. The same reasoning applies to every entry. Note that the assumption
on M implies that every column has at least one non-zero entry, i.e., every column of B has one entry
sampled from a continuous distribution. But then the probability that v is orthogonal to a column is
zero because this is a codimension 1 hyperplane of all valuations of this row (since all entries of v are
non-zero).

Proof of Lemma 3. Reflexivity is obvious, just pick T = Id, w = 0, Λe = P e = Iddim(Ce). To show

symmetry we first consider the atoms. Let T̃ = T−1 and π̃ = π−1. Then

a⊤π̃(i) = a⊤π−1(i)T
−1T = ãπ◦π−1(i)T̃

−1 = ãiT̃
−1. (68)

Let w̃ be a vector such that for all 1 ≤ i ≤ n

⟨ai, w⟩ = −
1

λi

⟨ãπ(i), w̃⟩. (69)

Such a vector exists by linear independence of ãi. Let λ̃i = λ−1
π̃(i). Then we find that the relation (6),

namely

⟨ãπ(i), f̃
−1(x)⟩ = λi

(
⟨ai, f

−1(x)⟩+ ⟨ai, w⟩
)

(70)

implies

⟨aπ̃(i), f
−1(x)⟩ =

1

λπ̃(i)
⟨ãπ◦π̃(i), f̃

−1(x)⟩ − ⟨aπ̃(i), w⟩ =
1

λπ̃(i)
⟨ãi, f̃

−1(x)⟩+
1

λπ̃(i)
⟨ãπ◦π̃(i), w̃⟩

= λ̃i(⟨ãi, f̃
−1(x)⟩+ ⟨ãi, w̃⟩).

(71)

It remains to be shown that this lifts to the concepts Ce. We first note that the relation (6) together
with (69) and (3) implies that

ΛeP eAew = −Ãew̃. (72)

Let P̃ e = (P e)−1 and Λ̃e = (P e)−1(Λe)−1P e. Then (3) combined with the previous disply implies

Aef−1(x) = (P e)−1(Λe)−1Ãef̃−1(x)−Aew = Λ̃eP̃ eÃef̃−1(x) + (P e)−1(Λe)−1Ãw̃ = Λ̃eP̃ eÃe(f̃−1(x) + w̃).
(73)

The relation

Ae = P̃ eÃeT̃−1 (74)

is a direct consequence of the definitions of P̃ e and T̃ and (4) and the relation

be = Λ̃eP̃ e(̃be − Ãew) (75)

follows exactly as in (73). The proof of transitivity is similar (first establish the relations on the atomic
concepts then lift it to Ce).

B Comparison to Causal Representation Learning

In this appendix we describe causal representation learning and discuss the similarities and differences
between the viewpoint taken in this paper and the standard setting in causal representation learning.

Causal Representation Learning (CRL) [82, 81] is a modern machine learning field that aims to learn
representations of data that correspond to the true generative process. More precisely, if we assume that
data X is generated as X = f(Z) where Z are latent causal factors and f is some arbitrary nonlinearity,
the goal is to learn f as well as the distribution of Z. To make this more aligned with reality, the latent
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variables Z are assumed to have causal relationships among them. For instance, Z1, Z2 could correspond
to shape and size of an object respectively and f could correspond to the rendering of an image of the
object. Then, using datasets of images, we wish to learn latent variables that correspond to shape and
size respectively, along with the image rendering map. CRL incorporates ideas from the field of causality
[88, 69, 71, 77, 89] into the field of latent variable models and is a generalization of nonlinear independent
component analysis [15, 33, 35] and disentangled representation learning [8, 71, 48]. The field has seen
a surge of advances in the last few years, e.g., [41, 44, 25, 55, 47, 10, 62, 115, 28, 78, 101, 38, 37, 93]
and featured several workshops on Causal Representation Learning, among others at UAI 2022, CLeaR
2023 and NeurIPS 2023. As motivated in Schölkopf et al. [82], CRL enables many desiderata such as
robustness, out of distribution generalization, and in addition enables planning and alignment. CRL has
been successfuly applied to many domains, already showing fascinating progress in genomics [112, 90]
and holds great promise for other domains such as vision or text (see references above).

At the same time, research into foundation models for text, images and other fields has burgeoned in
recent years. Significant progress has been made to enable robustness, prediction and generalization among
other desiderata. Much of this research has been largely experimental and has not strictly followed the
paradigms set forth in causal representation learning. We therefore endeavor to answer this discrepancy
in this work with our unified framework.

To describe the intuition, we will re-emphasize the goal of CRL below, because our work critically
departs from this goal.

Causal representation learning aims to find the true underlying generative factors for a data
distribution.

The issue here is that attempts towards CRL often conflate the notion of causal generative factors with
human interpretable factors. That is, it’s tempting to imagine that generative factors for a dataset are
natural causes that are interpretable to human beings. However, there is no reason that this should
indeed be the case.

In our work, we take significant inspiration from the framework of causal representation learning and
present a slightly relaxed paradigm that is weaker, but more general and also importantly, aligns better
with many high-performance foundation models in the literature. We now describe the setup of CRL
more formally in Appendix B.1. Then, in Appendix B.2, we discuss conceptual differences between causal
representation learning and our framework.

B.1 Formal setup

We assume that we observe data X ∈ R
dx with the generative model X = f(Z) where Z ∈ R

dz are the
latent variables and f is a deterministic mixing function. The dataset X is sampled from a distribution
p and the goal is to recover the mixing function f as well as the distributions of the underlying latent
variables Z1, . . . , Zdz

. To this end, this problem is over-parameterized since multiple pairs of Z and f
could fit the dataset apriori, so the field of representation learning makes various assumptions to learn
this model identifiably. Here, identifiability is the notion that a unique set of parameters fit the model
(up to trivial transformations). This makes the problem well-defined and feasible (however it could still
be a hard problem to solve in practice). Below, we informally summarize two classes of prior works that
enable such identifiability guarantees.

1. Disentangled representation learning: In this setting, we assume that the distributions of Z1, . . . , Zdz

are jointly independent. Different studies constrain the distribution of the variables Z1, . . . , Zdz
,

e.g., each Zi is independently sampled from N(0, 1). This is also the setting studied in nonlinear
independent component analysis [15, 33].

2. Causal Representation Learning: This setting is more general than the one above where we relax
the independence assumption on the Zi, instead we assume that they have causal relationships
among them. For instance, they could satisfy a linear structural causal model with Gaussian noise,
i.e., Z = AZ + ϵ, ϵ ∼ N(0, I) where A encodes a weighted directed acyclic graph. As stated, this
setting is more general then the above, since having no causal relationships (i.e., A = 0) essentially
indicates joint independence.

As explained earlier, in both these domains, a critical notion is that of identifiability [41, 18, 106],
which posits that the given dataset(s) are diverse enough for the modeling assumptions, in order to ensure
that a unique set of parameters fit the data.
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It’s folklore that the disentangled representation learning model is not identifiable if all Zi are
Gaussian [34, 56]. However, under appropriate assumptions, e.g., distributional, sparsity or observed
side-information, the model becomes identifiable, see e.g., Khemakhem et al. [41], Hyvarinen and Morioka
[32], Brehmer et al. [9], Shen et al. [85], Lachapelle et al. [47], Moran et al. [62], Zheng et al. [114], Kivva et al.
[45], Buchholz et al. [10], Zimmermann et al. [115], Gresele et al. [28], Rajendran et al. [78]. In addition,
various works have proposed methods to learn them (with modest success) [25, 109, 19, 110, 52, 17, 10, 11].

B.2 Conceptual differences

In this section, we highlight the conceptual differences between causal representation learning and our
framework.

Are causal generative concepts necessarily interpretable? While it’s tempting to imagine the
true causal generative factors as being naturally human interpretable concepts (e.g., intuitive abstractions
such as shape, size or color of an object), there’s no obvious reason why this should be the case. The
perspective that we take in this work is that the number of true generative factors could be prohibitively
large so that attempting to learn them is infeasible, whereas the number of desired human-interpretable
concepts is much smaller. Moreover, we constantly come up with new concepts of interest since human-
interpretable concepts are constantly evolving, e.g., the concept of mobile phones was not existent 100
years ago, but is a valid concept to learn now. Therefore, as opposed to working with a rigid model as in
causal representation learning, we take the approach of working with a dynamic representation learning
model.

Number of environments needed When the ground truth generative process has ambient latent
dimention dz, for causal representation learning to be feasible, we usually require dz environments or
datasets. For instance, in the iVAE setting above [41], we require dzk + 1 ≥ dz + 1 environments. This is
indeed necessary, as counterexamples show. However, it’s not clear what the value of dz is for complex
datasets, and it could potentially be prohibitively large.

But the question remains, do we need to learn the entire generative model for solving downstream
tasks? Along these lines, there is a tremendous research effort attempting to relax such requirements by
imposing various inductive or domain biases and by building a theory of partial identifiability [45, 54, 46].
This is for good reason, since even though it would be ideal to learn the full ground truth generative
model, it may be too ambitious or prohibitively large and moreover it maybe not be necessary for most
downstream tasks we care about, therefore it suffices to learn what’s necessary. On this note, the relevant
task of learning only a subset of the generative latent variables is not easy as the latent variables interact
in potentially complicated ways and research in this front is non-trivial and limited progress has been
made.

In this work however, we show that if we only wish to learn m ≪ dz concepts, it suffices to have O(m)
environments instead of O(dz) environments. Therefore, our results can be viewed as a result on partial
identifiability with sublinear number of environments.

Multi-node interventions Multi-node interventions are an exciting area of study in CRL, since they
are a natural extension of existing works and are more useful for modeling various real-life datasets where
it can be hard to control precisely one factor of variation. This is easily incorporated in our setting by
utilizing non-atomic concepts, since each non-atomic concept is a collection of vectors corresponding to
atomic concepts and can be modified simultaneously by changing the valuation.

Conditional vs. interventional data In this work we focus on conditional data and identification of
concept values, while most of the recent identifiability results focus on interventional data and identification
of the causal structure [89, 100, 11, 38, 103]. In general conditional data is more frequently available.
Conditional data can be obtained by selection through filtering, e.g., patients that are admitted to
different hospitals based on the severity of their condition or by the availability of label information as
in the CLIP setting [74]. Thus conditional data can be obtained by observing the system in different
condtions. On the other hand interventional data requires manipulation of the system which is more
difficult to obtain in general. Moreover, many of the theoretical results require perfect interventions which
can be achieved by randomized control trials but are otherwise a very strong assumption. We note that
in typical applications we do not think of concepts as being causal variables that are connected by a
graph. On the other hand, our framework can accomodate the case where concepts correspond to causal
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variables. Our identifiability result does not allow us to learn the causal structure. However, identifying
the causal variables reduces the problem from causal representation learning to causal inference (with
observational data) which is still a difficult problem but nevertheless substantially simpler than CRL.

C Alternate definitions of concept conditional measure

In this section, we present alternate feasible definitions for data distributions than the one we introduced
in Section 3.2. While we went with the definition most suited for practice, these alternate definitions are
also justifiable in different scenarios and are exciting avenues for further study.

We want to essentially define a concept C via a conditional measure pC where the concept C is identified
with an affine subspace C = {Z ∈ R

dz : ACZ = bC} for some AC ∈ R
k×dz , bC ∈ R

k. We consider the
shifted parallel linear subspace C0 = {Z : ACZ = 0} and the orthogonal splitting R

dz = C0 ⊕V . Suppose
we have a distribution qV on the space V which will typically be a Gaussian centred around vC ∈ V
which is the unique solution of ACvC = bC . In addition we have a base distribution p on R

dz . We will
assume that all distributions have a smooth density so that conditional probabilities are pointwise well
defined. There are at least three ways to create the context conditional measure pC .

1. The first option is to enforce that the distribution of the V marginal pC(v) =
∫
C0

pC(v, c) dc exactly

matches qV (v) while the in-plane distribution pC(c|v = v0) ∝ pC(c, v0) remains invariant, i.e., equals
p(c|v = v0). Under this condition, there is a unique measure pC given by

pC(c, v) ∝ qV (v)
p(c, v)∫

C0

p(c′, v) dc′
.

In other words, to get (c, v) we sample v ∼ qV and then c ∼ p(c|v) according to the conditional
distribution.

2. The second option is to again enforce the V marginal but instead of keeping the in plane distribution
we average over the V space. Then we obtain

pC(c, v) ∝ qV (v)

∫

V

p(c, v′) dv′.

This corresponds (vaguely) to a do(v) operation from causal inference, i.e., we sample according to
p(v, c) and then do a random intervention on v with target distribution qV .

3. The third option is to take a Bayesian standpoint. Then we view p as a prior and qV as the context
dependent acceptance probability, i.e., we sample by p and then accept with probability qV . Then
we find

pC(c, v) =
p(c, v)qV (v)∫

p(c, v)qV (v) dv dc
∝ p(c, v)qV (v). (76)

This is probably the closest aligned to practice, so this is the one we study in this work. To justify
this option, imagine the following scenario. If we wish to learn the concept of red color, a first step
would be to curate a dataset of red objects. To do this, we first consider a collection of photos
of objects of varying color and then filter out the ones that look red. The concept conditional
measure we define aligns with this process. To learn the actual red concept accurately, our theory
predicts that it is sufficient to have additional datasets of objects that are not red, from which we
can distinguish red objects, thereby learning the concept of red color.

The next question is how to define the measure qV . When considering a single concept ACZ = bC the
most natural option to consider N(vC , σ2IdV ) where vC ∈ V is the unique solution of ACvC = bC and
σ > 0 is a positive constant. This is what we do in this work (note that σ2 can be set to 1 by scaling the
concept and valuation accordingly).

However, we can also use alternate definitions as suggested above. For instance, we can set AZ
D
=

N(bC , Id). Then Z ∼ N(vC , (A⊤A)−1). However, this runs into some technical issues we sketch (and leave
to future work to handle this). Consider the intersection of multiple concepts Ce. In this case the concept
space is given by the intersection C =

⋂
Ce and C0 =

⋂
(Ce)0 and we have the orthogonal decomposition

R
dz = C0 ⊕

∑
V e. In general the spaces V e are not necessarily orthogonal but it is reasonable to assume
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that the non-degeneracy condition dim(
∑

V i) =
∑

dim(V e) holds. Now set V =
∑

V e. If we choose
just the standard normal distribution for qV e we can define just as in our approach

qV ∼ N(vC , σ2IdV ). (77)

The second option is to enforce that the marginals of qV agree with qV e , i.e., qV (ΠV e(v) ∈ O) = qV e(O)
for O ⊂ V e. This results in the set of equations for all i

AeΣ(Ae)⊤ = IdV e . (78)

It is likely that this system has a unique solution when non-degeneracy holds for V e and this is clearly
true for orthogonal spaces but it is not clear how to solve this in general.

D Inference-Time Intervention of Large Language Models

In this section, we first briefly describe Large Language Models and the recent Inference-Time Intervention
(ITI) technique proposed for LLM alignment, which we build on. Then, we use our framework to provide
better intuition on some intriguing observations about ITI, including why it works. And then we exploit
our ideas to improve the performance of ITI by choosing the steering direction to be a matrix instead of
a vector.

D.1 Preliminaries

Large Language Models (LLMs) LLMs are large models capable of generating meaningful text
given a context sentence. Due to large-scale training, modern LLMs have shown remarkable capabilities
and achieve expert-human-like performance in many benchmarks simultaneously. The architecture of
many generative pre-trained transformers (GPT)-style LLMs consists of several transformer layers stacked
on top of each other. Since we’ll be intervening on them during inference, we’ll describe the transformer
architecture [102, 21] briefly here. First, the sequence of input tokens (tokens are sub-word units) are
encoded into a vector x0 using a (learned) text embedding matrix and in many cases also a positional
embedding matrix. Then, a series of transformer layers act on this vector which passes through a
residual stream, to obtain vectors x0, x1, . . . , xn. The final vector xn is then decoded back into token
probabilities with a (learned) unembedding matrix. Each transformer layer consists of a multi-head
attention mechanism and a standard multilayer perceptron, which captures the nonlinearity.

In the lth layer, each single multi-head attention mechanism can be described as

xl+1 = xl +
H∑

h=1

Qh
l x

h
l , xh

l = Atthl (P
h
l xl)

Here, Ph
l and Qh

l are matrices that linearly map the vector to an activation space and back respectively,
and Att denotes the attention mechanism that allows communication across tokens. Here, we have kept
the notation consistent with Li et al. [51] for the sake of clarity.

In our setting, we consider the entire set of activations as the learnt latent vector Z. That is, the
input is x = x0 and the pre-trained model is essentially the function f such that f(x) consists of the
concatenation of the vectors {xl}l≥1, the intermediate activations {xh

l }l≥0 and also the output of the linear
transformations {Ph

l xl}l≥0, {Q
h
l x

h
l }l≥0. Our theory hinges on the assumption that pre-trained LLMs

satisfy the linear representation hypothesis, that is, various relevant concepts can be realized via linear
transformations of the latent transformation f(x). Indeed, this has been empirically observed to hold in
many prior works [12, 96, 65, 63, 51, 68, 30, 40] (see also related works on geometry of representations
[39, 40] and references therein). It’s a fascinating question why such models trained with next token
prediction loss also learn linear representations of various human-interpretable concepts such as sentiment,
see Jiang et al. [40] for recent progress on this problem.

It’s well-known that despite large-scale pretraining and subsequent improvement of pre-trained models
via techniques like Reinforcement Learning with Human Feedback (RLHF) and Supervised Fine-Tuning
(SFT) [67, 5, 97], significant issues still remain [86], e.g., the model can hallucinate or generate incorrect
responses (even though the model knows the correct response which can be extracted via other means,
e.g., Chain-of-Thought prompting [108]). Various methods have been proposed to fine-tune the models
[67, 5, 6, 97, 75] but many of them are expensive and time- and resource-intensive as they requires huge
annotation and computation resources. Therefore, more efficient techniques are highly desired, one of
which is the category of methods known as activation patching. activation patching (also called activation
editing or activation engineering) [31, 105, 91, 99, 116, 111, 50, 60].
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Inference-Time Intervention, an activation patching method for truthfulness Activation
patching is a simple minimally invasive technique to align LLMs to human-preferences. Specifically,
given various concepts such as truthfulness, activation patching makes modifications to the model during
inference time so that the desired concepts can be aligned. This technique can be thought of as an
application of the emerging field of mechanistic interpretability [66], which aims to interpret the learnt
latent vector in terms of human-interpretable concepts, thereby allowing us to reverse-engineer what large
models learn.

Activation patching has many variants [50, 31, 60], but we’ll focus on the simple technique of adding
steering vectors to various intermediate layers during intervention [91, 99, 51, 80]. This means that during
inference, the output activations are modified by adding a constant vector in order to promote alignment
of some concept. The vector will be learnt independently based on separate training data.

In particular, a recent technique called Inference-Time Intervention (ITI) was proposed to do this for
the specific concept of truthfulness. ITI focuses on the activation heads {Atthl (P

h
l xl)}l≥0 and add to them

steering vectors in order to promote truthfulness. To learn the steering vectors, a subset of the TruthfulQA
dataset [53], namely a dataset of questions qi with annotated true (ai,j , 0) and false answers (ai,j , 1),
are prepared as {qi, ai, yi}i=1,2,.... For each sample, the question and answer are concatenated as a pair
and the corresponding activations of the heads xh

l (for the final token) are computed via forward passes.
Then, a linear probe sigmoid(⟨θ, xh

l ⟩) is independently trained on each activation head to distinguish true
from false answers. Finally, the top K heads based on the accuracy of this classification task are chosen
(for a tunable hyperparameter K) and the steering vector θhl for the h-th head in layer l is chosen to
be the mean difference of the activations between the true and false inputs. The intuition is that this
direction roughly captures the direction towards truthfulness.

Formally, for the hth head of the lth layer, ITI adds the steering vector ασh
l θ

h
l so as to get

xl+1 = xl +

H∑

h=1

Qh
l (x

h
l + ασh

l θ
h
l ), xh

l = Atthl (P
h
l xl)

during inference. Here, θhl is the steering vector, σh
l is the standard deviation of the activations of this

head along the chosen direction and α is a hyperparameter. That is, the activations are shifted along
the truthful directions by a multiple of the standard deviation, and this is repeated autoregressively.
Note that this does not depend on the specific GPT-like model being used. The intuition is that during
inference, the activations are intervened upon to shift towards the truthful direction. The top K heads are
chosen to be minimally intrusive and also a design choice based on observations of the probing metrics.

Performance of ITI In Li et al. [51], ITI was shown to significantly improve the truthfulness of
various LLMs after having been trained on as few as a few dozen samples, compared to what’s needed
for Reinforcement Learning based techqniues [67, 26]. ITI was evaluated on the TruthfulQA benchmark
[53], which is a hard adversarial benchmark to evaluate truthfulness of language models. In particular, it
contains 817 questions with a multiple-choice and generation tracks, spanning 38 categories such as logical
falsehoods, conspiracies and common points of confusion. For the multiple-choice questions, the accuracy
is determined by the conditional probabilities of candidate answers given the question. Evaluating the
generation track questions is harder, and it is done by generating a model output and then evaluating
it via a finetuned GPT-3-13B model [53, 64]. Moreover, the choice of the intervention strength α is
calibrated so that it’s neither too small (to promote truthfulness) nor too large (to ensure the original
capabilities of the LLM are not lost). To check if the original capabilies are preserved, [51] compute two
additional quantities to measure how far the modified model deviates from the original model. These are
the Cross-Entropy (CE) loss, which is standard in language modeling and the Kullback–Leibler divergence
(KL div.) of the next token probabilities before and after intervention. To compute these quantities,
a subset of Open Web Text is used [73]. Finally, it was shown that ITI implemented on the LLaMA
[97], Alpaca [94] and Vicuna [14] models significantly improved their performance on the TruthfulQA
benchmark compared to the baseline models. Moreover, in many cases, it also beat other techniques such
as few-shot prompting and supervised fine-tuning. Please see Li et al. [51] for additional details.

D.2 Interesting observations of ITI

While the elegant ITI technique was designed to align LLMs towards truthfulness in practice, it also
raised fascinating and intriguing questions in mechanistic interpretability. In addition to improving the
technique of ITI itself, our work makes progress towards some of these questions via our framework.
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1. The authors of Li et al. [51] state in section 2 that although the technique works well in practice,
it’s not clear what ITI does to the model’s internal representations. In addition, prior works
[12, 96, 65, 63, 68, 40] have observed empirically that the latent representations learned by LLMs
seem to have interpretable linear directions, which ITI exploits. We use our framework to illustrate
in more detail one possible explanation of what ITI does to the model representations and why it
works, in the next section.

2. The authors visualize the geometry of “truth” representations in section 3.2 of their work via the
following experiment: For the most significant head (layer 14, head 18), after finding the first
truthful direction via the linear probing technique, they remove it and attempt to find a second
probe orthogonal to the first. They find surprisingly that the second probe is also very informative,
leading them to predict that the concept of “truth” lies in a subspace, not a single direction. Restated
in our framework, the concept of truthfulness is a non-atomic concept (as per Definition 2). This
served as an inspiration for our proposed technique in the next section, where we propose to use
steering matrices instead of steering vectors for LLM alignment.

3. As α was increased, the authors observed that truthfulness of the model increased however helpfulness
decreased. This suggests that the “truthfulness” and “helpfulness” concepts are not atomic (as per
Definition 2) however they share certain atomic concepts. We leave to future work the exciting
question of mechanistically extracting such common atomic concepts.

D.3 The choice of the steering vector

We will now analyze the truthfulness concept via our framework and give more insight on why the mean
of the differences is a reasonable choice of steering vector for ITI. Based on our theory, we will then
provide a modification to this choice that uses steering matrices instead of steering vectors. Since this
section is based on heuristics and informal assumptions, we will refrain from making any formal claims or
analyses. Indeed, a formal analysis of concepts in natural language is a hard problem in general and we
do not attempt it here. We conclude with ideas for potential extensions that’re worth exploring in future
work.

Denote the function h to be the sequence of head activations h(x) = (xh
l )l,h ∈ R

d. Note that while we
can study general steering vectors for the entire latent space of representations f(x) learned by LLMs as
some works do, ITI focuses only on steering the head activations h(x), so we will apply our framework to
this subset representation space. In addition, we will make the simplification that we neglect the effects
of the steering vector from bottom layers towards the top layers, which we do because we are dealing
with sparse steering vectors and also, each single head shift is minor and does not in isolation change the
behavior of the model as verified by experiments [51][Appendix B.1].

Applying our framework, we model the concept of truth via the concept matrix A ∈ R
dC×d and two

valuations b0, b1 ∈ R
dC corresponding to False and True respectively. In other words, the set of false

sentences and true sentences lie respectively in

Sfalse = {x|Ah(x) = b0}, Strue = {x|Ah(x) = b1}

Note that they only approximately lie in these spaces because of our notion of concept conditional
distribution. However, if we reasonably assume that the Gaussian concentration region is much smaller
than the separation between these hyperplanes, then the rest of the arguments in this section should
apply.

Now, a steering vector η is a vector such that it moves the activations from the false space to the true
space, while keeping other concepts unaffected. That is, if we pick a false sentence x, i.e., Ah(x) = b0,
then the steering vector η ∈ R

d essentially steers the activations so that A(h(x) + η) = b1. In other words,
it moves the sentence from false to true. Indeed, many vectors η do satisfy this equality, therefore the
goal is to find an optimal η that does not (significantly) affect other concepts of interest. Indeed, the ideal
steering vector will be A+(b1 − b0) where A+ is the pseudoinverse of A. This vector will precisely affect
this concept space and will not affect the concept valuations for any concept orthogonal to A. However,
the issue is that we do not know A and therefore we will approximate this steering vector from training
samples.

To this end, suppose we are given a collection of counterfactual sentence pairs cFi , c
T
i which correspond

to a false answer and a true answer for the same question qi. Consider the ith counterfactual pair cFi , c
T
i .

We will assume the reasonable scenario that the only difference among their concepts is the concept of
truthfulness. That is, for any other concept B that is orthogonal to A, the valuations of these pairs are
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identical. Suppose we stack all other (orthogonal) concepts of relevance for this particular counterfactual
sample into a matrix Bi, then we have

Ah(cFi ) = b0, Ah(cTi ) = b1, Bih(c
F
i ) = Bih(c

T
i )

for all i = 1, 2, . . ..
Now, it’s clear that for a single sample i, we cannot choose ηi = h(cTi )−h(cFi ) as a steering vector. This

is because for such a choice of steering vector, while it’s still the case that Bi(h(c
F
i )+ηi) = Bi(h(c

T
i )+ηi),

it need not be the case that Bj(h(x
F
j ) + ηi) = Bj(h(x

T
j ) + ηi) for some j ̸= i, i.e., not all orthogonal

concepts are preserved. This happens because ηi = h(cTi ) − h(cFi ) not only contains the correct shift
along the span of A but also unnecessarily shifts along the space orthogonal to Bi, which will affect Bj .

However, when we have a large enough number of contexts j with sufficient concept diversity, we can
make the reasonable prediction that since the context questions qj are sufficiently diverse (therefore Bj

are diverse), the corresponding projections Bjηi are essentially uncorrelated vectors as i varies. In this
case, we can pick η to be the mean of all the shift vectors ηi to achieve the desired effect. Therefore,
under the above simplifying assumptions, choosing η to be the mean of η1, η2, . . . will satisfy

Ah(x) = b0, A(h(x) + η) = b1 exact equalities for truth concept A

Bh(x) ≈ B(h(x) + η) approximate equalities for concepts B orthogonal to A

for any concept B orthogonal to A. This explains why the choice of mean of the activation differences
across counterfactual pairs is a reasonable choice of steering vector. This is precisely the technique used
in ITI. While they also experiment with other steering vectors, they found that this works the best for
their experiments.

Now, we will continue on our insights to analyze whether we can build better steering vectors η. We
present two crucial insights based on our analysis so far.

1. Looking at our desired equations, any weighted combination of ηi = h(cTi ) − h(cFi ) will satisfy
Ah(x) = b0, A(h(x) + η) = b1 exactly.

2. We could potentially choose the steering vector η to be a function of x instead of being a constant
vector, provided η(x) is efficiently computable during inference time.

Exploiting our first insight, we conclude that choosing any weighted combintaion of the ηi should be a
reasonable choice of steering vector provided we can control its effects on the spaces orthogonal to A.
That is, we can choose

η =
∑

i

wiηi =
∑

i

wi(h(c
T
i )− h(cFi ))

as our steering vector. This gives us the extra freedom to tune the weights w1, w2, . . . based on other
heuristics. Note that this also captures the choice of the top principal component of the steering vector
as experimented in [96].

Our second observation suggests that even the steering vector η could be a function of x, namely η(x),
provided it’s efficiently computable during inference. Therefore, this suggests the usage of

η(x) =
∑

i

wi(x)(h(c
T
i )− h(cFi ))

as our steering vector where the weights wi(x) depend on x.
Based on these two observations, we propose our ITI modification. We choose the steering vector to

be dependent on the context x, with weights chosen to be wi = ⟨λ(x), λ(cFi )⟩ for a sentence embedding λ
(such as Sentence-BERT [79]). That is,

η(x) =
∑

i

⟨λ(x), λ(cFi )⟩(h(c
T
i )− h(cFi ))

Indeed, this is reasonable as if a context x is close to cFi for a specific training sample i in terms
of their sentence embeddings λ(x) and λ(cFi ), then this particular sample’s steering vector should be
upsampled. In other words, we can think of the training sample contexts as voting on their respective
counterfactual steering vector, with weights determined by the similarity between the representation
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of the test context and the representation of the sample context. A justification would be that Bi(x)
(the relevant concepts for a datapoint) depend smoothly on x (proximity is measured by similarity of
embeddings) so it makes sense to upweight close points.

Finally, we need to argue that we can compute this efficiently during inference. For this, we exploit
the structure of our steering vector representation as follows.

η(x) =
∑

i

⟨λ(x), λ(cFi )⟩(h(c
T
i )− h(cFi ))

=

(∑

i

(h(cTi )− h(cFi ))λ(c
F
i )

′

)
h(x)

= Mh(x)

for the matrix M =
∑

i(h(c
T
i )− h(cFi ))λ(c

F
i )

′, where v′ denotes the tranposed vector. We remark that
the weights wi(x) as used could potentially be negative but this is not an issue since the projection of the
corresponding counterfactual vector in the direction of B is still random and we finally normalize η(x), so
the magnitude doesn’t matter.

Therefore, this steering can be done efficiently by precomputing the steering matrix M and then
during inference, we simply compute the steering vector η(x) as η(x) = Mh(x).

Implementation considerations We briefly note down some design choices we made in our imple-
mentation of the above method.

1. Since η(x) is a function of x, the standard deviation of the activation projection on this direction,
i.e., σh

l (x) cannot be precomputed (as Li et al. [51] do), therefore we compute them dynamically
during inference, which takes little overhead with fast tensorization operations (in particular, this is
not the slow step).

2. We opted to go with evaluating the model only on the multiple-choice questions. This is partly
because to evaluate the generated text, the recommended method is to use fine-tuned GPT-3-13B
models but OpenAI have retired many of their older models as of this year, and therefore, the
entire batch of experiments would have to be rerun with their newer models which could potentially
change the baselines, and also because this work is a proof-of-concept rather than a comprehensive
evaluation.

3. For computing the sentence embeddings, we only use the question prompts, as they contain all
relevant contexts. And we normalize η(x) during inference time.

Additional ideas for improvement We re-iterate that our experimental exploration is not exhaustive
and the preliminary experiments are merely meant to be a proof-of-concept. In this section, building on
our insights, we outline some further ideas to improve the performance of ITI. We leave to future work to
comprehensively explore these techniques in order to extract better performance towards LLM alignment.

1. Note that we opted to go with the weights ⟨λ(x), λ(cFi )⟩ where λ was chosen to be a sentence
transformer embedding [79]. While this is a reasonable choice, similarity metrics could be measured
in other ways, e.g., with other sentence embedding models.

2. Going further, the weights do not have to be similarity scores and could be chosen via other
heuristics. For instance, they could be chosen to be constants but potentially be optimized using a
hold-out test set.

3. As Li et al. [51] noted, the ITI technique could be applied on top of fine-tuned models in order to
further improve their performance. Therefore, our proposed modification could also potentially be
applied on top of fine-tuned models.

E Contrastive algorithm for end-to-end concept learning

In this section, we will describe the details of the contrastive learning method for learning concept
representations end-to-end. First, we will prove the computation of the true log-odds.
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Lemma 2. For any concept index e, there exist some constants ce such that

ln(pe(Z))− ln(p(Z))

=
n∑

i=1

(
−
1

2
Mei⟨ai, Z

e⟩2 +Bei⟨ai, Z
e⟩

)
+ ce

where M,B are the environment-concept matrix and the environment-valuation matrix defined in (7) and
(8).

Proof. This follows from Eq. (13) in the proof of Theorem 2.

From our main identifiability results, we can assume without loss of generality that the concept vectors
we learn are coordinate vectors. In other words, we consider a neural network hθ with parameters θ with
output neurons hθ

1, . . . , h
θ
n such that the n atomic concepts will now correspond to the concept vectors

e1, . . . , en (which is reasonable as they are only identifiable up to linear transformations). Therefore, for
each environment e, we can train classifiers of the form

ge(X,αe, βe
k, γ

e
k, θ) = αe −

dim(Ce)∑

k=1

(βk
eh

θ
k(X))2 +

dim(Ce)∑

k=1

γk
e (h

θ
k(X))

equipped with standard cross-entropy loss, for hyperparameters αe, βe
k, γ

e
k, θ. Indeed, this is reasonable

since if the training reaches the global optima in the ideal case, then the loss function will correspond to
the Bayes optimal classifier and therefore, ge(X,αe, βe

k, γ
e
k, θ) = ln(pe(Z))− ln(p(Z)), which along with

Lemma 2 will suggest that the learnt network h is linearly related to the function Aef−1, as desired.
Lastly, we choose the loss function to be the aggregated CE loss and an extra regularization term. That
is,

L =
∑

e

−Ej∼Unif({0,e})EX∼Xe

(
ln

e1j=ege(X)

1 + ege(X)

)

︸ ︷︷ ︸
CE loss for environment e

+ η∥β∥1

for a regularization hyperparameter η.

F Additional details about the synthetic setup

In this section, we detail our synthetic setup in Section 5.1. The base distribution is sampled from a
Gaussian mixture model with 3 components whose parameters are chosen randomly. The weights are
randomly chosen from Unif(0.3, 1) (and then normalized), the entries of the means are chosen from
Unif(−1, 1) and the covariance is chosen to be a diagonal matrix with entries in Unif(0.01, 0.015) (note
that the diagonal nature doesn’t really matter since a map f will be applied to this distribution). The
mixing function f is chosen to be either (i) linear or (ii) nonlinear with a 1-layer MLP containing 16
hidden neurons and LeakyReLU(0.2) activations.

The number of concepts n is intentionally chosen to be less than the ground truth dimension dz and
the number of concepts is m = n+ 1 as per our theory. The concepts are taken to be atomic, with the
concept vectors and valuations chosen randomly, where each entry of the concept vector is chosen i.i.d
from Unif(−0.3, 0.3), and the resampling distribution is chosen to be a Gaussian with variance 0.005.
Finally, we choose 5000 samples per environment, sampled via the rejection sampling Algorithm 1. For
the contrastive algorithm, we choose the architecture to either be linear or nonlinear with a 2-layer MLP
with 32 hidden neurons in each layer, with the final parametric layer chosen based on the known concept,
to have the form described above. We train for 100 epochs with η = 0.0001 and use Adam optimizer
with learning rates 0.5 for the parametric layer and 0.005 for the non-parametric layer, with a Cosine
Annealing schedule [57].

G Controllable generative modeling via rejection sampling

In this section, we will describe how to sample from a concept conditional distribution with a known
concept. Once the concepts are learned in our framework, we can use this technique to generate new data
satisfying various desired concepts, which will aid in controllable generative modeling.
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Consider the base distribution on Z ∈ R
dz with density p(Z). Suppose we wish to sample from a

concept C given by AZ = b and resampling distribution q. We additionally assume that q is efficiently
computable and an upper bound L is known for its density, i.e., L ≥ max(q).

Recall that the desired density is defined as

pC(Z) ∝ p(Z)
∏

i≤dim(C)

q((AZ − b)i)

Note that it’s infeasible to compute the normalization constant for such complex distributions. However,
we bypass this by using rejection sampling. We describe the procedure in Algorithm 1.

Algorithm 1: Rejection sampling for controllable generative modeling

Input:

• Base distribution p

• Resampling distribution q with upper bound L ≥ max(q)

• Concept C with transformation A and valuation C

Output: Returns a single sample from pC(Z)
1 M = Ldim(C)

// Repeat trials until condition is met

2 while True do
3 Z = yield(p)
4 U = yield(Unif(0, 1))

5 R = 1
M

∏
i≤dim(C) q((AZ − b)i)

6 if R ≥ U then
7 return Z

Informally, we first sample Z ∼ p (we overload notation for both density and the distribution) and an
independent variable U ∼ Unif(0, 1), the uniform distribution on (0, 1). We accept the variable Z if

1

M

∏

i≤dim(C)

q((AZ − b)i) ≥ U

for a predetermined upper bound M on the quantity
∏

i≤dim(C) q((AZ − b)i). If the inequality is false,
we simply reject the sample and repeat.

Now we will argue why this algorithm is correct, which is accomplished in Theorem 3. Let

NC =

∫

Z

p(Z)
∏

i≤dim(C)

q((AZ − b)i)

be the normalization constant in the definition of pC(Z). Therefore

pC(Z) =
1

NC

p(Z)
∏

i≤dim(C)

q((AZ − b)i)

Lemma 4. Let M ≥ max(q)dim(C) The acceptance probability of each iteration of the while loop in
Algorithm 1 is Pr[Z accepted] = NC

M

Proof. We have

Pr[Z accepted] = PrU,Z


U ≤

1

M

∏

i≤dim(C)

q((AZ − b)i)




= PrU,Z


U ≤

∏

i≤dim(C)

q((AZ − b)i)

max(q)


 since M ≥ max(q)dim(C)
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=

∫

Z

PrU


U ≤

∏

i≤dim(C)

q((AZ − b)i)

max(q)


 p(Z) dZ as U,Z are independent

=

∫

Z


 ∏

i≤dim(C)

q((AZ − b)i)

max(q)


 p(Z) dZ since

q((AZ − b)i)

max(q)
≤ 1 always

=

∫

Z

NCpC(Z)

M
dZ

=
NC

M

Before we prove correctness, we will remark on the expected number of trials needed for accepting
each sample.

Corollary 1. The expected number of trials needed to generate a single sample is M
NC

Proof. Note that each iteration of the while loop is independent, therefore the number of trials until
acceptance is distributed as a geometric random variable whose expectation is the inverse of the parameter.

This suggests that for our algorithm to be efficient in practice, M should be chosen as small as possible,
i.e., estimates of max(q) should be as tight as possible.

Theorem 3. Algorithm 1 yields samples from the concept conditional distribution pC .

Proof. The proof is at heart the proof of correctness of rejection sampling. For arbitrary parameters
t1, . . . , tdz

∈ R, let’s compute the cumulative density of the samples output by Algorithm 1 and show that
it matches the cumulative distribution function of pC(Z) evaluated at t1, . . . , tdz

, which will complete the
proof. That is, we wish to calculate

Pr[Z1 ≤ t1, . . . , Zdz
≤ tdz

|Z accepted] =
Pr[Z1 ≤ t1, . . . , Zdz

≤ tdz
, Z accepted]

Pr[Z accepted]

We already computed the denominator in Lemma 4. Therefore,

Pr[Z1 ≤ t1, . . . , Zdz
≤ tdz

|Z accepted]

=
M

NC

Pr[Z1 ≤ t1, . . . , Zdz
≤ tdz

, Z accepted]

=
M

NC

EZ

[
1Z1≤t1 . . .1Zdz≤tdz

· EU [1Z accepted]
]

=
M

NC

EZ


1Z1≤t1 . . .1Zdz≤tdz

·
1

M

∏

i≤dim(C)

q((AZ − b)i)


 from the proof of Lemma 4

=

∫

Z

1Z1≤t1 . . .1Zdz≤tdz
·

1

NC

∏

i≤dim(C)

q((AZ − b)i)p(Z) dZ

=

∫

Z

1Z1≤t1 . . .1Zdz≤tdz
· pC(Z) dZ

which is precisely the cumulative distribution function of pC(Z) evaluated at t1, . . . , tdz
.
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