
Evaluating the design space of diffusion-based

generative models

Yuqing Wang
Simons Institute

University of California, Berkeley
yq.wang@berkeley.edu

Ye He
School of Mathematics

Georgia Institute of Technology
yhe367@gatech.edu

Molei Tao
School of Mathematics

Georgia Institute of Technology
mtao@gatech.edu

Abstract

Most existing theoretical investigations of the accuracy of diffusion models, albeit
significant, assume the score function has been approximated to a certain accuracy,
and then use this a priori bound to control the error of generation. This article
instead provides a first quantitative understanding of the whole generation process,
i.e., both training and sampling. More precisely, it conducts a non-asymptotic con-
vergence analysis of denoising score matching under gradient descent. In addition,
a refined sampling error analysis for variance exploding models is also provided.
The combination of these two results yields a full error analysis, which elucidates
(again, but this time theoretically) how to design the training and sampling pro-
cesses for effective generation. For instance, our theory implies a preference toward
noise distribution and loss weighting in training that qualitatively agree with the
ones used in Karras et al. [30]. It also provides perspectives on the choices of time
and variance schedules in sampling: when the score is well trained, the design in
Song et al. [46] is more preferable, but when it is less trained, the design in Karras
et al. [30] becomes more preferable.

1 Introduction

Diffusion models became a very popular generative modeling approach in various domains, including
computer vision [20, 7, 27, 28, 38, 51], natural language processing [6, 34, 37], various modeling
tasks [15, 41, 55], and medical, biological, chemical and physical applications [3, 17, 43, 49, 23, 56]
(see more surveys in [53, 11, 14]). Karras et al. [30] provided a unified empirical understanding of
the derivations of model parameters, leading to new state-of-the-art performance. Karras et al. [31]
further upgraded the model design by revamping the network architectures and replacing the weights
of the network with an exponential moving average. As diffusion models gain wider usage, efforts to
understand and enhance their generation capability become increasingly meaningful.

In fact, a rapidly increasing number of theoretical works already analyzed various aspects of diffusion
models [32, 19, 52, 16, 12, 8, 18, 9, 13, 39, 44, 25]. Among them, a majority [32, 19, 52, 16, 12, 8, 18]
focus on sampling/inference; more precisely, they assume the score error is within a certain accuracy
threshold (i.e. the score function is well trained in some sense), and analyze the discrepancy between
the distribution of the generated samples and the true one. Meanwhile, there are a handful of
results [44, 25] that aim at understanding different facets of the training process. See more detailed
discussions of existing theoretical works in Section 1.1.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

However, as indicated in Karras et al. [30], the performance of diffusion models also relies on the
interaction between design components in both training and sampling, such as the noise distribution,
weighting, time and variance schedules, etc. While focusing individually on either the training or
generation process provides valuable insights, a holistic quantification of the actual generation capa-
bility can only be obtained when both processes are considered altogether. Therefore, motivated by
obtaining deeper theoretical understanding of how to maximize the performance of diffusion models,
this paper aims at establishing a full generation error analysis, combining both the optimization and
sampling processes, to partially investigate the design space of diffusion models.

More precisely, we focus on the variance exploding setting [46], which is also the foundation of
continuous forward dynamics in Karras et al. [30]. Our main contributions are summarized as follows:

• For denoising score matching objective, we establish the exponential convergence of its gradient
descent training dynamics (Theorem 1). We develop a new method for proving a key lower bound
of gradient under the semi-smoothness framework [1, 35, 57, 58].

• We extend the sampling error analysis in [8] to the variance exploding case (Theorem 2), under
only the finite second moment assumption (Assumption 3) of the data distribution. Our result
applies to various variance and time schedules, and implies a sharp almost linear complexity in
terms of data dimension under optimal time schedule.

• We conduct a full error analysis of diffusion models, combining training and sampling (Theorem 3).

• We qualitatively derive the theory for choosing the noise distribution and weighting in the training
objective, which coincides with Karras et al. [30] (Section 4.1). More precisely, our theory implies
that the optimal rate is obtained when the total weighting exhibits a similar “bell-shaped” pattern
used in Karras et al. [30].

• We develop a theory of choosing time and variance schedules based on both training and sampling
(Section 4.2). Indeed, when the score error dominates, i.e., the neural network is less trained and not
very close to the true score, polynomial schedule [30] ensures smaller error; when sampling error
dominates, i.e., the score function is well approximated, exponential schedule [46] is preferred.

Figure 1: Structure of this paper.

Conclusions and limitations are in Appendix A.

1.1 Related works

Sampling. There has been significant progress
in quantifying the sampling error of the gener-
ation process of diffusion models, assuming the
score function is already approximated within
certain accuracy. Most existing works [e.g.,
16, 12, 8] focused on the variance preserving
(VP) SDEs, whose discretizations correspond to DDPM. For example, Benton et al. [8] is one of
the latest results for the VPSDE-based diffusion models, and it only needs a very mild assumption:
the data distribution has finite second moment. The iteration complexity is shown to be almost
linear in the data dimension and polynomial in the inverse accuracy, under exponential time schedule.
However, a limited amount of works [32, 24, 54] analyzed the variance exploding (VE) SDEs, whose
discretizations correspond to Score Matching with Langevin dynamics (SMLD) [45, 46]. To our
best knowledge, Yang et al. [54] obtained the best result so far for VE assuming the data distribution
has bounded support: the iteration complexity is polynomial in the data dimension and the inverse
accuracy, under the uniform time schedule. In contrast, our work only assumed that the data dis-
tribution has finite second moment, and by extending the stochastic localization approach in [8] to
VESDE, we obtain an iteration complexity that is polynomial in the data dimension and the inverse
accuracy, under more general time schedules as well. Note the improved complexity in terms of the
inverse accuracy and the data dimension dependencies; in fact, under the exponential time schedule,
our complexity is almost linear in the data dimension, which recovers the state-of-the-art result for
VPSDE-based diffusion models.

Training. To our best knowledge, the only works that quantify the training process of the diffusion
models are Shah et al. [44] and Han et al. [25]. Shah et al. [44] employed the DDPM formulation and
considered data distributions as mixtures of two spherical Gaussians with various scales of separation,
together with K spherical Gaussians with a warm start. Then the score function can be analytically
solved, and they modeled it in a teacher-student framework solved by gradient descent. They also
provided the sample complexity bound under these specific settings. In contrast, our results work for
general data distributions for which the true score is unknown, and training analysis is combined with

2

sampling analysis. Han et al. [25] considered the GD training of a two-layer ReLU neural network
with the last layer fixed, and used the neural tangent kernel (NTK) approach to establish a first result
on generalization error. They uniformly sampled the time points in the training objective, assumed
that the Gram matrix of the kernel is away from 0 (implying a lower bound on the gradient), and
lacked a detailed non-asymptotic characterization of the training process. In contrast, we use the deep
ReLU network with L layers trained by GD and prove instead of assuming that the gradient is lower
bounded by the objective function. Moreover, we obtain a non-asymptotic bound for the optimization
error, and our bound is valid for general time and variance schedules, which allows us to obtain a full
error analysis.

Convergence of neural networks training. The convergence analysis of neural networks under
gradient descent has been a longstanding challenge and has been developed into an extensive field.
Here we will only focus on results mostly related to the techniques used in this paper. One line
of them is approaches directly based on neural tangent kernel (NTK) [22, 21, 5, 47, 36]. However,
existing works in this direction focus more on either scalar output, or vector output but with only
one layer trained under two-layer networks, which is insufficient for diffusion models. Another
line of research also considers overparameterized models in a regime analogous to NTK, though
not necessarily explicitly resorting to kernels. Instead, it directly quantifies the lower bound of the
gradient [1, 35, 2, 57, 58] and uses a semi-smoothness property to prove exponential convergence.
Our results align with the latter line, but we develop a new method for proving the lower bound
of the gradient and adopt assumptions that are closer to the setting of diffusion models. See more
discussions in Section 3.1.

1.2 Notations

We denote ∥ ⋅ ∥ to be the ℓ2 norm for both vectors and matrices, and ∥ ⋅ ∥F to be the Frobenius norm.
For the discrete time points, we use ti to denote the time point for forward dynamics and t←i for
backward dynamics. For the order of terms, we follow the theoretical computer science convention to
use O(⋅),Θ(⋅),Ω(⋅). We also denote f ≲ g if f ≤ Cg for some universal constant C.

2 Basics of diffusion-based generative models

In this section, we will introduce the basic forward and backward dynamics of diffusion models, as
well as the denoising score matching setting under which a model is trained.

2.1 Forward and backward processes

Consider a forward diffusion process that pushes an initial distribution P0 to Gaussian

dXt = −ftXt dt +
√

2σ2
t dWt, (1)

where dWt is the Brownian motion, Xt is a d-dim. random variable, and Xt ∼ Pt. Under mild
assumptions, the process can be reversed and the backward process is defined as follows

dYt = (fT−t Yt + 2σ
2
T−t∇ log pT−t(Yt))dt +√2σ2

T−t dW̃t, (2)

where Y0 ∼ PT , and pt is the density of Pt. Then YT−t and Xt have the same distribution with density
pt [4], which means the dynamics (2) will push (near) Gaussian distribution back to (nearly) the
initial distribution P0. To apply the backward dynamics for generative modeling, the main challenge
lies in approximating the term ∇ log pT−t(Yt) which is called score function. It is common to use a
neural network to approximate this score function and learn it via the forward dynamics (1); then,
samples can be generated by simulating the backward dynamics (2).

2.2 The training of score function via denoising score matching

In order to learn the score function, a natural starting point is to consider the following score matching
objective [e.g., 29]

Lconti(θ) = 1

2
∫

T

t0

w(t)EXt∼Pt
∥S(θ; t,Xt) −∇x log pt(Xt)∥2 dt (3)

where S(θ; t,Xt) is a θ-parametrized neural network, w(t) is some weighting function, and the
subscript means this is the continuous setup. Ideally one would like to minimize this objective
function to obtain θ; however, pt in general is unknown, and so is the true score function ∇x log pt.
One of the solutions is denoising score matching proposed by Vincent [48], where one, instead of
directly matching the true score, leverages conditional score for which initial condition is fixed so
that pt∣0 is analytically known.

3

More precisely, given the linearity of forward dynamics (1), its exact solution is explicitly known:

Let µt = ∫ t

0 fs ds, and σ̄2
t = 2 ∫ t

0 e2µs−2µtσ2
s ds. Then the solution is Xt = e−µtX0 + σ̄tξ, where

ξ ∼ N (0, I). We also have Xt∣X0 ∼ N (e−µtX0, σ̄
2
t I) and gt(x∣y) = (2πσ̄2

t)−d/2 exp(−∥x −
e−µty∥2/(2σ̄2

t)), which is the density of Xt∣X0. Then the objective can be rewritten as

Lconti(θ) = 1

2
∫

T

t0

w(t)EX0
EXt∣X0

∥S(θ; t,Xt) −∇ log gt(Xt∣X0)∥2dt + 1

2
∫

T

t0

w(t)Ctdt

=
1

2
∫

T

t0

w(t) 1
σ̄t

EX0
Eξ∥σ̄tS(θ; t,Xt) + ξ∥2dt + 1

2
∫

T

t0

w(t)Ctdt (4)

where Ct = EXt
∥∇ log pt∥2 −EX0

EXt∣X0
∥∇ log gt(Xt∣X0)∥2. For completeness, we will provide a

detailed derivation of these results in Appendix C and emphasize that it is just a review of existing
results in our notation.

Throughout this paper, we adopt the variance exploding (VESDE) setting [46], where ft = 0 and
hence µt = 0, which also aligns with the setup in the classic of EDM [30].

3 Error analysis for diffusion-based generative models

In this section, we will quantify both the training and sampling processes, and then integrate them
into a more comprehensive generation error analysis.

3.1 Training

In this section, we consider a practical implementation of denoising score matching objective,
represent the score by a deep ReLU network, and establish the exponential convergence of GD
training dynamics.

Training objective function. Consider a quadrature discretization of the time integral in (4) based
on deterministic1 collocation points 0 < t0 < t1 < t2 < ⋯ < tN = T . Then

Lconti(θ) ≈ L̄(θ) + C̄, (5)
where C̄ = 1

2 ∑N
j=1w(tj)(tj − tj−1)Ctj , and

L̄(θ) = 1

2

N

∑
j=1

w(tj)(tj − tj−1) 1

σ̄tj

EX0
Eξ∥σ̄tjS(θ; tj ,Xtj) + ξ∥2. (6)

Define βj = w(tj)(tj − tj−1) 1
σ̄tj

to be the total weighting. Consider the empirical version of L̄ (6) .

Denote the initial data to be {xi}ni=1 with xi ∼ P0, and the noise to be {ξij}Nj=1 with ξij ∼N (0, Id).
Then the input data of the neural network is {tj ,Xij}n,Ni=1,j=1 = {tj , xi + σ̄tjξij}n,Ni=1,j=1 and the output

data is {ξij/σ̄tj}n,Ni=1,j=1 if σ̄tj ≠ 0. Consequently, L̄(θ) (6) can be approximated by the following

L̄em(θ) = 1

2n

n

∑
i=1

N

∑
j=1

βj∥σ̄tjS(θ; tj , xi + σ̄tjξij) + ξij∥2. (7)

We will use (7) as the training objective function in our analysis. For simplicity, we also denote

f(θ; i, j) = βj∥σ̄tjS(θ; tj , xi + σ̄tjξij) + ξij∥2 and then L̄em(θ) = 1
2n ∑n

i=1∑N
j=1 f(θ; i, j). Note

the time dependence can be absorbed into the X dependence. More precisely, because σ̄t is a
monotonically increasing function of t, we can replace tj in the inputs by σ̄tj to indicate the time

dependence. This is then equivalent to augmenting Xij to be d + 1 dimensional with (xi)d+1 ∶= 0
and (ξij)d+1 ∶= 1. For simplified presentation, we will slightly abuse notation and still use d as the
input dimension rather than d + 1.

Architecture. The analysis of diffusion model training is in general very challenging. One obvious
factor is the complex score parameterizations used in practice such as U-Net [42] and transformers [40,
34]. In this paper, we simplify the architecture and consider deep feedforward networks. Although
it is still far from practical usage, note this simple structure can already provide insights about the
design space, as shown in later sections, and is more complicated than existing works [25, 44] related
to the training of diffusion models (see Section 1.1). More precisely, we consider the standard deep
ReLU network with bias absorbed:

S(θ; tj ,Xij) =WL+1σ(WL⋯W1σ(W0Xij)), (8)

1Otherwise it is no longer GD training but stochastic GD.

4

where θ = (W0,⋯,WL+1), W0 ∈ R
m×d,WL+1 ∈ R

d×m, Wℓ ∈ R
m×m for ℓ = 1,⋯, L, and σ(⋅) is the

ReLU activation.

Algorithm. Let θ(k) = (W0,W
(k)
1 ,⋯,W

(k)
L ,WL+1). We consider the gradient descent (GD) algo-

rithm as follows

θ(k+1) = θ(k) − h∇L̄em(θ(k)), (9)

where h > 0 is the learning rate. We fix W0 and WL+1 throughout the training process and only update
W1,⋯,WL, which is a commonly used setting in the convergence analysis of neural networks [1, 10,
25].

Initialization. We employ the same initialization as in Allen-Zhu et al. [1], which is to set (W (0)
ℓ)ij ∼

N (0, 2
m
) for ℓ = 0,⋯, L, i, j = 1,⋯,m, and (W (0)

L+1)ij ∼N (0, 1d) for i = 1⋯, d, j = 1⋯,m.

For this setup, the main challenge in our convergence analysis for denoising score matching lies
in the nature of the data. 1) The output data that neural network tries to match is an unbounded
Gaussian random vector, and cannot be rescaled as assumed in many theoretical works (for example,
Allen-Zhu et al. [1] assumed the output data to be of order o(1)). 2) The input data Xij is the sum of
two parts: xi which follows the initial distribution P0, and a Gaussian noise σ̄tjξij . Therefore, any
assumption on the input data needs to agree with this noisy and unbounded nature, and commonly
used assumptions like data separability [1, 35] can no longer be used.

To deal with the above issues, we instead make the following assumptions.

Assumption 1 (On network hyperparameters and initial data of the forward dynamics). We assume
the following holds:

1. Data scaling: ∥xi∥ = Θ(d1/2) for all i.

2. Input dimension: d = Ω(poly(log(nN))).
We remark that the first assumption focuses only on the initial data xi instead of the whole solution
of the forward dynamics Xij which incorporates the Gaussian noise. Also, this assumption is indeed
not far away from reality; for example, it holds with high (at least 1 −O(exp(−Ω(d))) probability
for standard Gaussian random vectors. The requirement for input dimension d is to ensure that d is
not too small, or equivalently the number of data points is not exponential in d.

We also make the following assumptions on the hyperparameters of the denoising score matching.
Assumption 2 (On the design of diffusion models). We assume the following holds:

1. Weighting: ∑N
j=1w(tj)(tj − tj−1)σ̄tj = O(N).

2. Variance: σ̄t0 > 0 and σ̄tN = Θ(1).
The first assumption is to guarantee that the weighting function w(t) is properly scaled. This
expression w(tj)(tj − tj−1)σ̄tj is obtained from proving the upper and lower bounds of the gradient
of (7), and is different from the total weighting βi defined above. In the second assumption, σ̄t0 > 0
ensures the output ξij/σ̄tj is well-defined. The σ̄tN = Θ(1) guarantees that the scales of the noise
σ̄tjξij and the initial data xi are of the same order at the end of the forward process, namely, the
initial data xi is eventually push-forwarded to near Gaussian with the proper variance. Therefore,
Assumption 2 aligns with what has been used in practice (see Section 4 and Karras et al. [30], Song
et al. [46] for examples).

The following theorem summarizes our convergence result for the training of the score function.

Theorem 1 (Convergence of GD). Define a set of indices to be G(s) = {(i, j)∣f(θ(s); i, j) ≥
f(θ(s); i′, j′) for all i′, j′}. Then given Assumption 1 and 2, for any ϵtrain > 0, there ex-

ists some M(ϵtrain) = Ω (poly(n,N, d,L, T /t0, log(1
ϵtrain
))), s.t., when m ≥ M(ϵtrain), h =

Θ(nN
mminj w(tj)(tj−tj−1)σ̄tj

), and k = O(d 1−a0
2 n2N log(d

ϵtrain
)), with probability at least 1 −

O(nN) exp(−Ω(d2a0−1)), we have

L̄em(θ(k)) ≤ k−1

∏
s=0

⎛⎝1 −C5h w(tj∗(s))(tj∗(s) − tj∗(s)−1)σ̄tj∗(s)
⎛⎝md

a0−1

2

n3N2

⎞⎠⎞⎠ L̄em(θ(0))
where the universal constant C5 > 0, a0 ∈ (12 ,1), and (i∗(s), j∗(s)) = argmax(i,j)∈G(s) w(tj)(tj −
tj−1)σ̄tj . Moreover, when K = Θ(d 1−a0

2 n2N log(d
ϵtrain
)),

L̄em(θ(K)) ≤ ϵtrain.
5

The above theorem implies that for denoising score matching objective L̄em(θ), GD has exponential

convergence. For example, if we simply take j∗ = minj w(tj)(tj − tj−1)σ̄tj , then L̄em(θ(k+1)) is

further upper bounded by (1 −C6h w(tj∗)(tj∗ − tj∗−1)σ̄tj∗
(md

a0−1

2

n3N2))k+1 L̄em(θ(0)). The rate of

convergence can be interpreted in the following way: 1) at the kth iteration, we collect all the indices

of the time points into G(k) where f(θ; i, j) has the maximum value; 2) we then choose the maximum
of w(tj)(tj − tj−1)σ̄tj among all such indices and denote the index to be j∗(k), and obtain the decay

ratio bound for the next iteration as 1 −C6h w(tj∗(k))(tj∗(k) − tj∗(k)−1)σ̄tj∗(k) (md
a0−1

2

n3N2).
Remark 1 (Can ϵtrain be arbitrarily small? Some ramifications of the denoising setting). Let us first
see some facts about L̄em and L̄. Under minimal assumption of the existence of score function and in
the zero-time-discretization-error limit, the score matching objective can be made zero and therefore
the denoising score matching objective is bounded below by −C̄, which is nonnegative and zero only
when the data distribution is extremely special (we thus write −C̄ > 0 from hereon unless confusion
arises). That is, minθ L̄(θ) ≥ minany function S L̄ = −C̄ > 0 according to (4). Since L̄em → L̄ as the

sample size of the training data set n →∞, we have L̄em ≥ −C̄ − cn > 0 for some constant cn > 0
and cn → 0 as n→∞.

However, Theorem 1 seems to imply L̄em(θ(k))→ 0 as k →∞ since L̄em(θ(K)) ≤ ϵtrain and ϵtrain
is arbitrary, and it seems to contradict the −C̄ > 0 lower bound. However, there is no contradiction
due to the combination of two facts. First, the theorem states that for arbitrary ϵtrain > 0, there exists
a critical size, such that for overparameterized network beyond this size, GD can render the loss
L̄em(θ) eventually no greater than ϵtrain. If we fix the network size, i.e., with m,L, d given, then K
is given, and Theorem 1 says nothing about GD’s behavior after K iterations. That is, we do not

know whether lim supk→∞ L̄em(θ(k)) = 0. Second, our optimization setting requires the sample size
n to be smaller than the network width m (Assumption 1). Thus, when m is fixed, the sample size n
is upper bounded.

The above discussion implies, within the validity of our theory, for any fixed network width m, if
ϵtrain is small, the sample size n cannot be too large, meaning L̄em(θ) − L̄(θ) may not be small.
Therefore, we can simultaneously have L̄em(θ) close to 0 and L̄(θ) close to −C̄ > 0.

Main technical steps for proving Theorem 1. The proof of Theorem 1 is in Appendix D, where
the analysis framework is adapted from Allen-Zhu et al. [1]. Roughly speaking, the key proof
in this framework is to establish the lower bound of the gradient. Then by integrating it into the
semi-smoothness property of the neural network, we can obtain the exponential rate of convergence
of gradient descent. For the lower bound of gradient, we develop a new method to deal with the
difficulties in the denoising score matching setting (see the discussions earlier in this section).

Our new proof technique adopts a different decoupling of the gradient and leverages a high probability
bound based on a high-dimensional geometric idea. See Appendix D.1 for a proof sketch and more
details.

3.2 Sampling

In this section, we establish a nonasymptotic error bound of the backward process in the variance
exploding setting, which is an extension to Benton et al. [8]. For simplified notations, denote the
backward time schedule as {t←j }0≤j≤N such that 0 = t←0 < t

←

1 < ⋯ < t
←

N = T − δ.

Generation algorithm. We consider the exponential integrator scheme for simulating the backward
SDE (2) with ft ≡ 0

2. The generation algorithm can be piecewisely expressed as a continuous-time
SDE: for any t ∈ [t←j , t←j+1),

dȲt = 2σ
2
T−tS(θ;T − t←j , Ȳt←

j
)dt +√2σ2

T−tdW̄t. (10)

Initialization. Denote qt ∶= Law(Ȳt) for all t ∈ [0, T − δ]. We choose the Gaussian initialization,
q0 =N (0, σ̄2

T).
Our convergence result relies on the following assumption.

Assumption 3. The distribution P0 has a finite second moment: Ex∼P0
[∥x∥2] =m2

2 <∞.

Next we state the main convergence result, whose proof is provided in Appendix E.

2The exponential integrator scheme is degenerate since ft ≡ 0. Time discretization is applied when we
evaluate the score approximations {S(θ; t, Ȳt)}.

6

Theorem 2. Under Assumption 3, for any δ ∈ (0,1) and T > 1, we have

KL(pδ ∣qT−δ) ≲ m2
2

σ̄2
T°

EI

+

N−1

∑
j=0

γjσ
2
T−t←

j
EYt←

j
∼pT−t←

j

[∥S(θ;T − t←j , Yt←
j
) −∇ log pT−t←

j
(Yt←

j
)∥2]

´¹¹¸¹¹¹¶
ES

+ d
N−1

∑
j=0

γj ∫
t←j+1

t←
j

σ4
T−t

σ̄4
T−t

dt +m2
2
∫ t←1
0 σ2

T−tdt

σ̄4
T

+ (m2
2 + d)N−1∑

j=1

(1 − e−σ̄2
T−t←

j) σ̄4
T−t←

j
− σ̄2

T−t←
j+1

σ̄2
T−t←

j−1

σ̄2
T−t←

j−1
σ̄4
T−t←

j´¹¹¹¸¹¹¶
ED

.

(11)
where γj ∶= t

←

j+1 − t
←

j for all j = 0,1,⋯,N − 1 is the stepsize of the generation algorithm in (10).

Theorem 2 is a VESDE-based diffusion model’s analogy of what’s proved in Benton et al. [8] for
VPSDE-based diffusion model, only requiring the data distributions to have finite second moments,
and it achieves the sharp almost linear data dimension dependence under the exponential time
schedule. The major differences from [8] are (1) the initialization error in the VESDE case is
handled differently (see Lemma 10); (2) Theorem 2 applies to varies choices of time schedules,
which enables to investigate the design space of the diffusion model, as we will discuss in Section 4.
Worth mentioning is, Yang et al. [54] also obtained polynomial complexity results for VESDE-based
diffusion models with uniform stepsize, but under stronger data assumption (assuming compact
support). Compared to their result, complexity implied by Theorem 2 has better accuracy and data
dimension dependencies. A detailed discussion on complexities is given in Appendix I.1.

Terms EI ,ED,ES in (11) represent the three types of errors: initialization error, discretization error,
and score estimation error, respectively. Term EI quantifies the error between the initial density of the
sampling algorithm q0 and the ideal initialization pT , which is the density when the forward process
stops at time T . Term ED is the error stemming from the discretization of the backward dynamics.
Term ES characterizes the error of the estimated score function and the true score, and is related to
the optimization error of L̄em. Important to note is, in Theorem 2, population loss is needed instead
of the empirical version L̄em (7). Besides this, the weighting γjσ

2
T−t←

j
is not necessarily the same as

the total weighting in L̄em (7) βj , depending on choices of w(tj) and time and variance schedules
(see more discussion in Section 4). We will later on integrate the optimization error (Theorem 1) into
this score error ES to obtain a full error analysis in Section 3.3.

Remark 2 (sharpness of dependence in d and m2
2). In one of the simplest cases, when the data

distribution is Gaussian, the score function is explicitly known. Hence KL(pδ ∣qT−δ) can be explicitly
computed as well, which verifies that the dependence of parameters d and m2

2 is sharp in EI and ED.

3.3 Full error analysis

In this section, we combine the analyses from the previous two sections to obtain an end-to-end
generation error bound.

Before providing the main result of this section, let us first clarify some terminologies.

Time schedule, variance schedule, and total weighting. The terms time schedule and variance
schedule respectively refer to the choice of t←j and σ̄tj in sampling. Meanwhile, note both the training
and sampling processes require the proper choices of time and variance, and these choices are not
necessarily the same for both processes. For training, the effect of these two is integrated into the
total weighting βj , which is also influenced by an additional weighting parameter w(tj). In this
theoretical paper, when studying the generation error, we aim to apply the optimization result to better
understand the effect of optimization on sampling. Therefore, to simplify the analysis and discussions
in Section 4, we choose the same time and variance schedules for both training and sampling.

The main result is stated in the following.

Theorem 3. Under the same conditions as Theorem 1,2, and that K is such that GD reaches ϵtrain in
at most Kth iterations, we have

KL(pδ ∣qT−δ) ≲ EI +ED + max
1≤j≤N

σ2
tN−j

w(tN−j) (ϵtrain + ϵn + ϵest + ϵapprox)
where EI ,ED are defined in Theorem 2, ϵtrain is defined in Theorem 1, ϵn = ∣L̄(θ(K))−L̄em(θ(K))+
L̄em(θ∗)− L̄(θ∗)∣, ϵest = ∣L̄(θ∗)− L̄(θF)∣, ϵapprox = ∣L̄(θF)+ C̄ ∣. In these terms, C̄ is defined in (5),

7

θ∗ = argminθ,s.t.,L̄em(θ)=0 L̄(θ) and θF = arg inf{θ∶S(θ)∈F} ∣L̄(θ) + C̄ ∣ with F = {ReLU network

function defined in (8), with d = Ω(poly(log(nN))),m = Ω (poly(n,N, d,L, T /t0))}.
In this theorem, the discretization error ED and initialization error EI are the same as Theorem 2.
For the score error ES , our optimization result is valid for general time schedules and therefore can
directly fit into the sampling error analysis, which is in contrast to existing works [25, 44] (see more
discussions in Section 1.1). The coefficient maxj σ

2
tN−j
/w(tN−j) results from different weightings

in ES and L̄em, i.e., γjσ
2
T−t←

j
and βj . We will discuss the effect of maxj σ

2
tN−j
/w(tN−j) under

different time and variance schedules in Section 4.

The way we bound EYt←
j
∼pT−t←

j

[∥S(θ;T − t←j , Yt←
j
) −∇ log pT−t←

j
(Yt←

j
)∥2] in ES (see Theorem 2)

is to decompose it into the optimization error ϵtrain, statistical error ϵn, estimation error ϵest, and
approximation error ϵapprox. This gives clear intuition to results, but we also note it may not give a
tight bound. In fact, we have

ϵn + ϵtrain = ∣L̄(θ(K)) − L̄em(θ(K)) + L̄em(θ∗) − L̄(θ∗)∣ + ∣L̄em(θ(K)) − L̄em(θ∗)∣
≥ L̄(θ(K)) + L̄(θ∗) ≥ 2min

θ
L̄(θ) ≥ −2C̄ > 0.

ϵn can still be small if we take n→∞, but that means ϵtrain has to be large, and our generation error
bound cannot be made 0. It is unclear yet whether this is due to limitation of our analysis or intrinsic,
and will be left for future investigation.

Another related note is, in this paper, we focus on ϵtrain and the effect of optimization, but the analyses
of ϵn, ϵest, and ϵapprox are also important and possible [13, 39, 25, 50]. On the other hand, again,
whether it is optimal to decompose the full error into these four is unclear.

To better see the parameter dependence of the error bound in Theorem 3, the following is an example
with simplified results, where we employ the schedules in EDM [30].

Corollary 1 (Full error analysis under EDM [30] designs). Under the same conditions as Theorem 3,
we have

KL(pδ ∣qT−δ) ≲ m2
2

T 2
+
da2T

1
a

δ
1
aN

+ (m2
2 + d)(a2T

1
a

δ
1
aN
+
a3T

2
a

δ
2
aN2

) + 1

N

⎛⎜⎝C9 +
⎛⎝1 −C8h

⎛⎝md
a0−1

2

n3N2

⎞⎠⎞⎠
K⎞⎟⎠ ,

where C8, C9 > 0 and a = 7 in [30].

4 Theory-based understanding of the design space and its relation to existing

empirical counterparts

This section theoretically explores preferable choices of parameters in both training and sampling, and
shows that they agree with the ones used in EDM [30] and Song et al. [46] in different circumstances.

4.1 Choice of total weighting for training

This section develops the optimal total weighting βj for training objective (7). We qualitatively show
in two steps that “bell-shaped” weighting, which is the one used in EDM [30], will lead to the optimal
rate of convergence: Step 1) ∥σ̄tjS(θ; tj ,Xij) + ξij∥ as a function of j is inversely “bell-shaped”;

Step 2) f(θ; i, j) = βj∥σ̄tjS(θ; tj ,Xij) + ξij∥ should be close to each other for any i, j.

4.1.1 Inversely “bell-shaped” loss ∥σ̄tjS(θ; tj ,Xij) + ξij∥ as a function of time index j
Proposition 1. Under the same assumptions as Theorem 1, for any θ and i = 1,⋯, n, we have

1. ∀ϵ1 > 0, ∃ δ1 > 0, s.t., when 0 ≤ σ̄tj < δ1, ∥σ̄tjS(θ; tj , xi + σ̄tjξij) + ξij∥ > ∥ξij∥ − ϵ1.
2. ∀ϵ2 > 0, ∃M > 0, s.t., when σ̄tj >M , ∥σ̄tjS(θ; tj , xi + σ̄tjξij)+ ξij∥ ≥M2(∥S(θ; tj , ξij)∥− ϵ2).
The above proposition can be interpreted in the following way. Given any network S, when σ̄tj

is very small, 1 implies that ∥σ̄tjS(θ; tj , xi + σ̄tjξ) + ξij∥ is away from 0 by approximately ∥ξij∥
which is of order

√
d with high probability, i.e., it cannot be small. When σ̄tj is large, 2 shows that

as it becomes larger and larger, i.e., as M increases, ∥σ̄tjS(θ; tj , xi + σ̄tjξ) + ξij∥ will also increase.

Therefore, the function ∥σ̄tjS(θ; tj ,Xij) + ξij∥ has most likely an inversely “bell-shaped” curve in
terms of j dependence.

8

4.1.2 Ensuring comparable values of f(θ; i, j) for optimal rate of convergence

Corollary 2. Under the same conditions as Theorem 1, for some large K ′ > 0, if ∣f(θ(k+K′); i, j) −
f(θ(k+K′); l, s)∣ ≤ ϵ holds for all k > 0 and all (i, j), (l, s), with some small universal constant ϵ > 0,
then we have, for some constant C7 > 0,

L̄em(θ(k+K′)) ≤ ⎛⎝1 −C7h max
j=1,⋯,N

w(tj)(tj − tj−1)σ̄tj

⎛⎝md
a0−1

2

n3N2

⎞⎠⎞⎠
k

L̄em(θ(K′)).

10!2 100 102

7<

0

1

2

3

4

5

6

7

-
E
D

M

Figure 2: Weighting
choice βEDM in EDM.

The above corollary shows that if f(θ(k); i, j)’s are almost the same for
any i, j, then the decay ratio of the next iteration is minimized. More

precisely, the index set G(k) defined in Theorem 1 is roughly the whole
set {1,⋯,N}, and therefore w(tj∗)(tj∗ − tj∗−1)σ̄tj∗

can be taken as the

maximum value over all j, which consequently leads to the optimal rate.

4.1.3 “Bell-shaped” weighting: our theory and EDM

Combining the above two aspects, the optimal rate of convergence
leads to the choice of total weighting βj such that f(θ; i, j) =
βj∥σ̄tjS(θ; tj ,Xtj) + ξij∥ is close to each other; as a result, the total
weighting should be chosen as a “bell-shaped” curve as a function of j
according to the shape of the curve for ∥σ̄tjS(θ; tj ,Xtj) + ξij∥.
Before comparing the preferable weighting predicted by our theory and the intuition-and-empirics-
based one in EDM [30], let us first recall that the EDM training objective3 can be written as
Eσ̄∼ptrain

Ey,nλ(σ̄)∥Dθ(y + n; σ̄) − y∥2
=

1

Z1
∫ e

−
(log σ̄−Pmean)2

2P2
std

σ̄2 + σ2
data

σ̄σ2
data

EX0,ξ∥σ̄s(θ; t,Xt) + ξ∥2 dσ̄, (12)

where Z1 is a normalization constant, and we denote βEDM(σ̄) = e− (log σ̄−Pmean)2
2P2

std
σ̄2
+σ2

data

σ̄σ2
data

to be the

total weighting of EDM. Note the dependence on σ̄ and time j can be freely switched due to their
1-to-1 correspondence.

Figure 2 plots the total weighting of EDM βEDM as a function of σ̄. As is shown in the picture, this is
a “bell-shaped” curve4, which coincides with our choice of total weighting in the above theory. When
σ̄ is very small or very large, according to Proposition 1, the lower bound of ∥σ̄tjS(θ; tj ,Xtj) + ξij∥
cannot vanish and therefore needs the smallest weighting over all σ̄. When σ̄ takes the middle value,
the scale of the output data ξij/σ̄j is roughly the same as the input data Xij and therefore makes it
easier for the neural network to fit the data, which admits larger weighting.

4.2 Choice of time and variance schedules

This section will discuss the choice of time and variance schedules based on the three errors
ES ,ED,EI in the error analysis of Section 3.3. Two situations will be considered based on how
well the score function is approximated in training: when the network is less trained, ES dominates
and polynomial schedule [30] is preferable; when the score function is well approximated, ED +EI

dominates and exponential schedule [46] is better.

4.2.1 When score error ES dominates

As is shown in Theorem 3, the main impact of different time and variance schedules on score error
ES appears in the term maxj σ

2
tN−j
/w(tN−j), when the score function is approximated to a certain

accuracy. It remains to compute w(t) under various choices of schedules.

General rule of constructing w(t). To ensure fair comparisons between different time and variance
schedules, we maintain a fixed total weighting in the training objective. Additionally, to facilitate
comparisons with practical usage, we adopt the total weighting in EDM, i.e., βj = C3βEDM(σ̄tj),
for some universal constant C3 > 0. The reason for using the EDM total weighting is that according
to Section 4.1, our total weighting βj should be “bell-shaped” as a function of j, which agrees
qualitatively with the one used in EDM.

3In EDM [30], they use Pmean = −1.2, Pstd = 1.2, σdata = 0.5, σ̄min = 0.002, σ̄max = 80.
4This horizontal axis is in log-scale and the plot in regular scale is a little bit skewed, not precisely a “bell”

shape. However, we remark that the trend of the curve still matches our theory.

9

Polynomial schedule [30] vs exponential schedule [46]. We fix ϵn, ϵtrain and apply the two
schedules (Table 1) separately to the above total weighting β (hence w). Then, compute
maxj σ

2
tN−j
/w(tN−j) which is a factor in score error ES (Thm.3) in Table 2. The Exp.’s result

1
2
(σ̄max − σ̄max (σ̄2

min

σ̄2
max
) 1/N) is larger5 than the Poly.’s result (σ̄max − (σ̄1/ρ

max −
σ̄1/ρ
max−σ̄

1/ρ
min

N
)ρ) for

large N , meaning the poly. time schedule in EDM is better than the exp. schedule in [46]. Note these
two terms are both of order 1/N as N →∞ and therefore the difference lies in their prefactors.

Table 1: Polynomial and exponential (time) schedules.

Variance schedule σ̄t Time schedule tj

Poly. [30] t (σ̄1/ρ
max − (σ̄1/ρ

max − σ̄
1/ρ
min)N−jN

)ρ
Exp. [46]

√
t σ̄2

max (σ̄2
min

σ̄2
max
)N−j

N

Table 2: Comparisons between different schedules.

ES (score error) dominates ED +EI (sampling error) dominates

maxj σ
2
tj
/w(tj) Choice N Choice

Poly. [30] C4 (σ̄max − (σ̄1/ρ
max −

σ̄1/ρ
max−σ̄

1/ρ
min

N
)ρ) ! Ω(m2

2∨d

d
ρ2(σ̄max

σ̄min
)1/ρσ̄2

max)
Exp. [46] C4 ⋅

1
2
(σ̄max − σ̄max (σ̄2

min

σ̄2
max
) 1/N) Ω (m2

2∨d

d
ln(σ̄max

σ̄min
)2σ̄2

max) !

4.2.2 When discretization error ED and initialization error EI dominate

In this section, we compare the two different schedules in Table 1 by studying the iteration complexity
of the sampling algorithm, i.e., number of time points N , when ED +EI dominates.

General rules of comparison. We consider the case when the discretization and initialization errors
are bounded by the same quantity ϵ, i.e., EI +ED ≲ ε. Then according to Theorem 2 and Theorem 3,
we compute the iteration complexity for achieving this error using the two schedules in Table 1.
To make the comparison more straightforward, we adopt T = tN = Θ(poly(ε−1)) and therefore

σ̄max = Θ(ε−1/2). More details are provided in Appendix I.1.

Polynomial schedule [30] vs exponential schedule [46]. As is shown in the last column of Table 2,
the iteration complexity under exponential schedule [46] has the poly-logarithmic dependence on
the ratio between maximal and minimal variance (σ̄max/σ̄min)6, which is better than the complexity
under polynomial schedule [30], which is polynomially dependent on σ̄max/σ̄min. Both complexities
are derived from Theorem 2 by choosing different parameters.

Remark 3 (The existence of optimal ρ in the polynomial schedule [30]). For fixed σ̄max and σ̄min,

the optimal ρ that minimizes the iteration complexity is ρ = 1
2
ln (σ̄max

σ̄min
). In [30], it was empirically

observed that with fixed iteration complexity, there is an optimal value of ρ that minimizes the FID.
Our result indicates that, for fixed σ̄max and σ̄min, hence the desired accuracy in KL divergence
being fixed, there is an optimal value of ρ that minimizes the iteration complexity to reach the fixed
accuracy. Even though we consider a different metric/divergence instead of FID, our result still
provides a quantitative support to the existence of optimal ρ observed in [30].

Acknowledgments and Disclosure of Funding

The authors are grateful for the partially support by NSF DMS-1847802, Cullen-Peck Scholarship,
and GT-Emory Humanity.AI Award. We thank the anonymous reviewers for their helpful comments.

5This holds under parameters used in either Song et al. [46] or Karras et al. [30].
6The exponential time schedule under the variance schedule in [30] also has the poly-logarithmic dependence

on σ̄max/σ̄min. Under both variance schedules in [30] and [46], it can be shown that exponential time schedule
is optimal. Details are provided in Appendix I.1.

10

References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International conference on machine learning, pages 242–252. PMLR,
2019.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent
neural networks. Advances in neural information processing systems, 32, 2019.

[3] Namrata Anand and Tudor Achim. Protein structure and sequence generation with equivariant
denoising diffusion probabilistic models. arXiv preprint arXiv:2205.15019, 2022.

[4] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[5] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019.

[6] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

[7] Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko.
Label-efficient semantic segmentation with diffusion models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=SlxSY2UZQT.

[8] Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-linear
convergence bounds for diffusion models via stochastic localization. In The Twelfth International
Conference on Learning Representations, 2024.

[9] Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising
auto-encoders and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

[10] Qi Cai, Zhuoran Yang, Jason D Lee, and Zhaoran Wang. Neural temporal-difference learning
converges to global optima. Advances in Neural Information Processing Systems, 32, 2019.

[11] Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, and
Stan Z Li. A survey on generative diffusion models. IEEE Transactions on Knowledge and
Data Engineering, 2024.

[12] Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative
modeling: User-friendly bounds under minimal smoothness assumptions. In International
Conference on Machine Learning, pages 4735–4763. PMLR, 2023.

[13] Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation
and distribution recovery of diffusion models on low-dimensional data. In International
Conference on Machine Learning, pages 4672–4712. PMLR, 2023.

[14] Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview of diffusion
models: Applications, guided generation, statistical rates and optimization. arXiv preprint
arXiv:2404.07771, 2024.

[15] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan.
Wavegrad: Estimating gradients for waveform generation. In International Conference on Learn-
ing Representations, 2021. URL https://openreview.net/forum?id=NsMLjcFaO8O.

[16] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as
easy as learning the score: theory for diffusion models with minimal data assumptions. ICLR,
2023.

[17] Hyungjin Chung and Jong Chul Ye. Score-based diffusion models for accelerated mri. Medical
image analysis, 80:102479, 2022.

11

[18] Giovanni Conforti, Alain Durmus, and Marta Gentiloni Silveri. Score diffusion models without
early stopping: finite fisher information is all you need. arXiv preprint arXiv:2308.12240, 2023.

[19] Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
TMLR, 2022.

[20] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[21] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pages
1675–1685. PMLR, 2019.

[22] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[23] Chenru Duan, Yuanqi Du, Haojun Jia, and Heather J Kulik. Accurate transition state generation
with an object-aware equivariant elementary reaction diffusion model. Nature Computational
Science, 3(12):1045–1055, 2023.

[24] Xuefeng Gao and Lingjiong Zhu. Convergence analysis for general probability flow odes of
diffusion models in wasserstein distances. arXiv preprint arXiv:2401.17958, 2024.

[25] Yinbin Han, Meisam Razaviyayn, and Renyuan Xu. Neural network-based score estimation in
diffusion models: Optimization and generalization. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=h8GeqOxtd4.

[26] Ye He, Kevin Rojas, and Molei Tao. Zeroth-order sampling methods for non-log-concave
distributions: Alleviating metastability by denoising diffusion. arXiv preprint arXiv:2402.17886,
2024.

[27] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim
Salimans. Cascaded diffusion models for high fidelity image generation. Journal of Machine
Learning Research, 23(47):1–33, 2022.

[28] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and
David J Fleet. Video diffusion models. Advances in Neural Information Processing Systems,
35:8633–8646, 2022.

[29] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[30] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

[31] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli
Laine. Analyzing and improving the training dynamics of diffusion models. arXiv preprint
arXiv:2312.02696, 2023.

[32] Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.

[33] Yongjae Lee and Woo Chang Kim. Concise formulas for the surface area of the intersection of
two hyperspherical caps. KAIST Technical Report, 2014.

[34] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto.
Diffusion-lm improves controllable text generation. Advances in Neural Information Processing
Systems, 35:4328–4343, 2022.

[35] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic
gradient descent on structured data. Advances in neural information processing systems, 31,
2018.

12

[36] Xin Liu, Zhisong Pan, and Wei Tao. Provable convergence of nesterov’s accelerated gradient
method for over-parameterized neural networks. Knowledge-Based Systems, 251:109277, 2022.

[37] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by
estimating the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

[38] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano
Ermon. SDEdit: Guided image synthesis and editing with stochastic differential equations. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=aBsCjcPu_tE.

[39] Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal
distribution estimators. In International Conference on Machine Learning, pages 26517–26582.
PMLR, 2023.

[40] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[41] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,
2022.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer, 2015.

[43] Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom
Blundell, Pietro Lió, Carla Gomes, Max Welling, et al. Structure-based drug design with
equivariant diffusion models. arXiv preprint arXiv:2210.13695, 2022.

[44] Kulin Shah, Sitan Chen, and Adam Klivans. Learning mixtures of gaussians using the ddpm
objective. Advances in Neural Information Processing Systems, 36:19636–19649, 2023.

[45] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[46] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
International Conference on Learning Representations, 2021.

[47] Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff
bound. arXiv preprint arXiv:1906.03593, 2019.

[48] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[49] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

[50] Andre Wibisono, Yihong Wu, and Kaylee Yingxi Yang. Optimal score estimation via empirical
bayes smoothing. arXiv preprint arXiv:2402.07747, 2024.

[51] Junde Wu, RAO FU, Huihui Fang, Yu Zhang, Yehui Yang, Haoyi Xiong, Huiying Liu, and
Yanwu Xu. Medsegdiff: Medical image segmentation with diffusion probabilistic model. In
Medical Imaging with Deep Learning, 2023. URL https://openreview.net/forum?id=
Jdw-cm2jG9.

[52] Kaylee Yingxi Yang and Andre Wibisono. Convergence in KL and Rényi divergence of the
unadjusted langevin algorithm using estimated score. NeurIPS Workshop on Score-Based
Methods, 2022.

13

[53] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

[54] Ruofeng Yang, Zhijie Wang, Bo Jiang, and Shuai Li. The convergence of variance exploding
diffusion models under the manifold hypothesis. OpenReview, 2024.

[55] Jongmin Yoon, Sung Ju Hwang, and Juho Lee. Adversarial purification with score-based
generative models. In International Conference on Machine Learning, pages 12062–12072.
PMLR, 2021.

[56] Yuchen Zhu, Tianrong Chen, Evangelos A Theodorou, Xie Chen, and Molei Tao. Quantum
state generation with structure-preserving diffusion model. arXiv preprint arXiv:2404.06336,
2024.

[57] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. Advances in neural information processing systems, 32, 2019.

[58] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine learning, 109:467–492, 2020.

14

Appendix

A Conclusions and limitations

Conclusions. In this paper, we provide a first full error analysis incorporating both optimization
and sampling processes. For the training process, we provide a first result under a deep neural
network and prove the exponential convergence into a neighborhood of minima. At the same time,
we extend the current analysis to the variance exploding case for sampling. Moreover, based on
the full error analysis, we establish a quantitative understanding of the error bound under the two
schedules. Consequently, we conclude with a qualitative illustration of the "bell-shaped" weighting
and the choices of schedules under well-trained and less-trained cases.

Limitations. The network architecture we used in the model is a deep ReLU network. Although
being so far the most complicated architecture for theoretical results, it is still far from what is used
in practice like U-Nets and transformers. Moreover, regarding the full error analysis, we only focus
on the optimization and sampling error and do not dissect the generalization error. When bridging the
theoretical results with practical designs of diffusion models, our results are mostly qualitative and
we only compare two existing schedules under two extreme cases, when the network is well-trained
and less-trained. Thus, theoretical implications on practical designs remain to be explored. We will
leave these perspectives for future exploration.

B Notations

Xt Solution of forward dynamics (1)
Yt Solution of backward dynamics (2)

Ȳt Solution of generation algorithm (10)
σt Diffusion coefficient of (1) and (2)
σ̄t Standard deviation of Xt (4)
Lconti Continuous-time score-matching objective (3)

L̄ Discrete-time denoising score-matching objective (population version)

L̄em Discrete-time denoising score-matching objective (empirical version) (7)
Ct Constant between score-matching and denoising score-matching loss at time t (4)

C̄ Constant between score-matching and denoising score-matching loss over all discrete times
(5)

xi Sample from the initial data distribution P0 (7)
Xij Sample from the distribution Pt at time t (7)
tj The jth time point for forward process (6)
t←j The jth time point for backward process (10)

δ The first (last) time point of the forward (backward) dynamics, i.e., t0 (11)
T Stopping time of the forward dynamics (11)
γj Difference between backward time points, t←j+1 − t

←

j (11)

pt Density of the solution of forward dynamics at time t (and backward dynamics at time
T − t) (11)

qt Density of the solution of the generation algorithm at time t (11)
w(t) Weighting function (3)
βj Total weighting, i.e. w(tj)(tj − tj−1)/σ̄tj (7)
βEDM Total weighting used in EDM [30] (12)
σ̄max (σ̄min) Maximum (minimum) of σ̄tj (Table 2)
n Number of samples from the initial distribution P0 (7)
N Number of time steps when discretizing the forward and backward dynamics (6)
d Dimension of input, output data, and the solutions of the dynamics (1) and (2)
S Deep ReLU network (parameterization of score function)
θ All the parameters in the network S (8)
Wℓ The weight in the ith layer of the network S (8)

θ(k) The kth iteration of the weights θ through GD (9)

W
(k)
ℓ The kth iteration of the weights Wℓ through GD (9)

m Width of the network (8)

15

L Depth of the network (8)(i∗(s), j∗(s)) Index of the largest loss and w(tj)(tj − tj−1)σ̄tj at the sth iteration (Theorem 1)

m2
2 Second moment of the initial distribution P0 (11)

EI Initialization error (11)
ED Discretization error (11)
ES Score error (11)
ϵtrain Optimization error (Theorem 1)
ϵn Statistical error (Theorem 3)
ϵest Estimation error (Theorem 3)
ϵapprox Approximation error (Theorem 3)

θ∗ Minimum point of L̄ when L̄em = 0 (Theorem 3)
θF Optimal parameter in the function class (Theorem 3)

C Derivation of denoising score matching objective

In this section, we will derive the denoising score matching objective, i.e. show the equivalence of (3)
and (4). For simplicity, we denote Sθ to be the neural network we use S(θ; t,Xt).
Consider

EXt∼Pt
∥S(θ; t,Xt) −∇ log pt∥2 = EXt

[∥Sθ∥2 − 2 ⟨Sθ,∇ log pt⟩] +EXt
∥∇ log pt∥2, (13)

where pt is the density of Xt.

Since pt(x) = ∫ p0(y)qt(x∣y)dy, where qt(⋅) is the density of Xt∣X0, then we have

EXt
⟨Sθ,∇ log pt⟩ = ∫ S⊺θ∇ log pt ⋅ pt dxt

= ∫ S⊺θ∇pt dxt

=∬ S⊺θ∇qt(x∣y)p0(y)dxdy
=∬ S⊺θ∇ log qt(x∣y)p0(y)qt(x∣y)dxdy
= EX0∼P0

EXt∣X0∼Qt
⟨Sθ,∇ log qt(xt∣x0)⟩ .

Then

(13) = EX0∼P0
EXt∣X0∼Qt

[∥Sθ∥2 − 2 ⟨Sθ,∇ log qt(xt∣x0)⟩] +EXt
∥∇ log pt∥2

= EX0
EXt∣X0

∥Sθ −∇ log qt∥2´¹¹¹¸¹¹¶
(∆)

+C,

where C = EXt
∥∇ log pt∥2 −EX0

EXt∣X0
∥∇ log qt(xt∣x0)∥2.

Moreover, Xt∣X0 ∼N (e−µtX0, σ̄
2
t I), and its density function is

qt(x∣y) = (2πσ̄2
t)−d/2 exp(−∥x − e−µty∥2

2σ̄2
t

) .
Then

(∆) = EX0
EXt∣X0

∥Sθ −∇ log qt∥2
= EX0

EXt∣X0
∥Sθ −∇x (−∥Xt − e

−µtX0∥2
2σ̄2

t

)∥2

= EX0
EXt∣X0

∥Sθ +
Xt − e

−µtX0

σ̄2
t

∥2

= EX0
Eϵt ∥Sθ +

ϵt

σ̄2
t

∥2 .

16

Let ξ = ϵt
σ̄t
∼N (0, I). Then

(∆) = EX0
Eξσ̄t ⋅

1

σ̄2
t

∥σ̄tSθ + ξ∥2
=

1

σ̄t

EX0
Eξ∥σ̄tSθ + ξ∥2

D Proofs for training

In this section, we will prove Theorem 1.

Before introducing the concrete proof, we first redefine the deep fully connected feedforward network

rij,0 =W0Xij , qij,0 = σ(rij,0),
rij,ℓ =Wℓqij,ℓ−1, qij,ℓ = σ(rij,ℓ), for ℓ = 1,⋯, L

S(θ; tj ,Xij) =WL+1qij,L

where W0 ∈ R
m×d,WL+1 ∈ R

d×m and Wℓ ∈ R
m×m; σ is the ReLU activation. We also denote qij,−1

to be Xij .

We also follow the notation in Allen-Zhu et al. [1] and denote Di,ℓ ∈ R
m×m to be a diagonal matrix

and (Di,ℓ)kk = 1(Wℓqij,ℓ−1)k>0 for k = 1,⋯,m. Then

qij,ℓ =Dij,ℓWℓqij,ℓ−1

For the objective (7), the gradient w.r.t. to the kth row of Wℓ for ℓ = 1,⋯, L is the following

∇(Wℓ)k L̄em(θ) = 1

n

n

∑
i=1

N

∑
j=1

w(tj)(tj − tj−1)
[(WL+1Dij,LWL⋯Dij,ℓWℓ+1´¹¹¹¸¹¹¶

Rij,ℓ+1

)⊺(σ̄tjWL+1qij,L + ξij)]k qij,ℓ−1 1(Wℓqij,ℓ−1)k>0

Throughout the proof, we use both L̄em(θ) and L̄em(W) to represent the same value of the loss

function, where W = (W1,⋯,WL), and we let a = b = 1
2

.

Next, we will prove Theorem 1.

Proof of Theorem 1. First by Lemma 4,

L̄em(W (0)) = O(d2a∑
j

w(tj)(tj − tj−1)/σ̄tj)
Also, ∥∇L̄em(θ)∥ ≤√Lmaxℓ ∥∇Wℓ

L̄em(θ)∥. Then we have

∥W (k)
−W (0)∥ ≤ k−1

∑
i=0

h∥∇L̄em(W (i))∥
≤ O(√md2a−1NLmax

j
w(tj)(tj − tj−1)σ̄tj)hkmax

i

√
L̄em(W (i))

≤ O(√md2a−1NLmax
j

w(tj)(tj − tj−1)σ̄tj d
a)hk√∑

j

w(tj)(tj − tj−1)/σ̄tj ∶= ω

Let h = Θ(nN
mminj w(tj)(tj−tj−1)σ̄tj

) and k = O(d 1−a0
2 n2N log(d

ϵtrain
)),

where ϵtrain > 0 is some small constant. Then ω =

O(log(d
ϵtrain
)d1−

a0
2 n3N5/2L1/2
√
m

√
maxj w(tj)(tj−tj−1)σ̄tj ∑k w(tj)(tj−tj−1)/σ̄tj

minj w(tj)(tj−tj−1)σ̄tj

) and by Lemma 8,

17

with probability at least 1 −O(nN) exp(−Ω(d2a0−1)),
L̄em(W (k+1))
≤ L̄em(W (k)) − h∥∇L̄em(W (k))∥2
+ h
√
L̄em

√
∑
j

w(tj)(tj − tj−1)σ̄tjO(ω1/3L2
√
m logmda/2)∥∇L̄em(W (k))∥

+ h2
√
L̄em

√
∑
j

w(tj)(tj − tj−1)σ̄tjO(L2
√
mda)∥∇L̄em(W (k))∥2

≤
⎛⎝1 − hw(tj∗)(tj∗ − tj∗−1)σ̄tj∗

⋅Ω
⎛⎝md

a0−1

2

n3N2

⎞⎠⎞⎠ L̄em(W (k))
+ hC

m5/6d7/12−a0/6

N1/6n2/3(logm)1/6√L
√∑j w(tj)(tj − tj−1)σ̄tj minj w(tj)(tj − tj−1)σ̄tj

maxj w(tj)(tj − tj−1)σ̄tj ∑k w(tj)(tj − tj−1)/σ̄tj

L̄em(W (k))
≤
⎛⎝1 − hw(tj∗)(tj∗ − tj∗−1)σ̄tj∗

⋅Ω
⎛⎝md

a0−1

2

n3N2

⎞⎠⎞⎠ L̄em(W (k))

where C > 0 is some constant, a0 ∈ (1/2,1); the second inequality follows from Lemma 7 with

∥∇WL
L̄em(θ(k))∥2 = Ω⎛⎝md

a0−1

2

n3N2
w(tj∗)(tj∗ − tj∗−1)σ̄tj∗

⎞⎠ L̄em(θ(k)),
which is obtained inductively; the last inequality follows from m =

Ω
⎛⎝d13/2−2a0/3n14/3N11L3(logm)(maxj w(tj)(tj−tj−1)σ̄tj ∑k w(tj)(tj−tj−1)/σ̄tj

minj w(tj)(tj−tj−1)σ̄tj

√
∑j w(tj)(tj−tj−1)σ̄tj

)6⎞⎠

D.1 Proof of lower bound of the gradient at the initialization

In this section, we will show the main part of the convergence analysis, which is the following lower
bound of the gradient.

Lemma 1 (Lower bound). With probability 1 −O(nN) exp(−Ω(d2a0−1)), we have

∥∇L̄em(θ(0))∥2 ≥ C6

⎛⎝md
a0−1

2

n3N2
w(tj∗)(tj∗ − tj∗−1)σ̄tj∗

⎞⎠ L̄em(θ(0))
where (i∗, j∗) = argmax∥√w(tj)(tj−tj−1)

σ̄tj

(σ̄tjWL+1qij,L + ξij)∥, 1
2
< a0 < 1, and C6 > 0 is some

universal constant.

Below is the proof sketch of Lemma 1.

Proof sketch. We first decompose the gradient of the kth row of WL ∇(WL)k L̄em(θ) =
1
n
w(tj∗)(tj∗ − tj∗−1)(WL+1)k⊺(σ̄tj∗

WL+1qi∗j∗,L + ξi∗j∗)qi∗j∗,L−11(WLqi∗j∗,L−1)k>0´¹¹¹¸¹¹¶
∇1

+
1
n ∑(i,j)≠(i∗,j∗)w(tj)(tj − tj−1)(WL+1)k⊺(σ̄tjWL+1qij,L + ξij) qij,L−11(WLqij,L−1)k>0´¹¹¸¹¹¶

∇2

where (i∗, j∗) indicates the sample index with the largest loss value.

Then we first fix (qij,L−1)s = 1, and prove that the index set of both (qi∗j∗,L)s > 0 and

∑(i,j)≠(i∗,j∗)w(tj)(tj − tj−1)σ̄tj1(WLqij,L−1)k>0(qij,L)s > 0 is order m with high probability.

18

Next, we conditioned on the index set we’ve found, then we can decouple each element of∇(WL)k L̄em

with high probability. We prove that with high probability

∠(WL+1σ̄tj∗
qi∗j∗,L + ξi∗j∗ ,WL+1 ∑

(i,j)≠(i∗,j∗)
αijqij,L + ∑

(i,j)≠(i∗,j∗)
ᾱijξij) ≤ π − cd a0−1

2 ,

for some constant c > 0 and 1
2
< a0 < 1. Based on this, we show that with probability at least

1 −O(nN) exp(−Ω(d)),
P ((∇1)s > 0, (∇2)s > 0) ≥ cd a0−1

2 ,

for some c > 0. Then we prove that with probability at least 1 − exp(−Ω(md
a0−1

2))
∣{k ∶ (W k

L+1)⊺v ≥ 0, (W k
L+1)⊺(u + ξ) ≥ 0}∣ = Θ(md

a0−1

2).
with high probability, the event (∇1)s > 0 and (∇2)s > 0 has probability at least of order d(a0−1)/2

where a0 ∈ (1/2,1).
Now, we deal with (qij,L−1)s and prove that if the above results hold for (qij,L−1)s = 1, then there
exists an index set with cardinality of order m/(nN) such that (∇1)s > 0 and (∇2)s > 0 also hold in
this index set.

In the end, combining all the steps above yields the lower bound.

Here is the complete proof.

Proof. The main idea of the proof of lower bound is to decouple the elements in the gradient and
incorporate geometric view. We focus on ∇WL

L̄em(θ).
Step 1: Rewrite ∇(WL)k L̄em(θ) to be the (i∗, j∗)th term g1 plus the rest nN − 1 terms g2.

Let (i∗, j∗) = argmax∥√w(tj)(tj−tj−1)
σ̄tj

(σ̄tjWL+1qij,L + ξij)∥. Let

gij,L = w(tj)(tj − tj−1)(WL+1)k⊺(σ̄tjWL+1qij,L + ξij) qij,L−1.
Then

∇(WL)k L̄em(θ)
=
1

n
w(tj∗)(tj∗ − tj∗−1)(WL+1)k⊺(σ̄tj∗

WL+1qi∗j∗,L + ξi∗j∗) qi∗j∗,L−11(WLqi∗j∗,L−1)k>0´¹¹¸¹¹¶
∇1

+
1

n
∑

(i,j)≠(i∗,j∗)
w(tj)(tj − tj−1)(WL+1)k⊺(σ̄tjWL+1qij,L + ξij) qij,L−11(WLqij,L−1)k>0

´¹¹¸¹¹¶
∇2

Also define

∇1,s =
1

n
w(tj∗)(tj∗ − tj∗−1)σ̄tj∗

(WL+1)k⊺WL+1qi∗j∗,L (qi∗j∗,L−1)s1(WLqi∗j∗,L−1)k>0´¹¹¸¹¹¹¶
∇11,s

+
1

n
w(tj∗)(tj∗ − tj∗−1) (WL+1)k⊺ξi∗j∗ (qi∗j∗,L−1)s1(WLqi∗j∗,L−1)k>0´¹¹¸¹¹¹¶

∇12,s

∇2,s =
1

n
∑

(i,j)≠(i∗,j∗)
w(tj)(tj − tj−1)σ̄tj(WL+1)k⊺WL+1qij,L (qij,L−1)s1(WLqij,L−1)k>0

´¹¹¹¸¹¹¶
∇21,s

+
1

n
∑

(i,j)≠(i∗,j∗)
w(tj)(tj − tj−1)(WL+1)k⊺ξij qij,L−1(qij,L−1)s1(WLqij,L−1)k>0

´¹¹¹¸¹¹¹¶
∇22,s

19

Our goal is to show that with high probability, there are at least O(md
a0−1

2

nN
) number of rows k such

that ∇11,s ≥ 0,∇12,s ≥ 0,∇21,s ≥ 0,∇22,s ≥ 0. Then we can lower bound ∥∇(WL)k L̄em(θ)∥2 by∥∇1∥2, which can be eventually lower bounded by L̄em(θ).
Step 2: Consider [∇(WL)k L̄em(θ)]s. For (g2)s, first take (qij,L−1)s = 1 for all (i, j) ≠ (i∗, j∗).
Then we only need to consider

∇
′

2,s =
1

n
∑

(i,j)≠(i∗,j∗)
w(tj)(tj − tj−1)(WL+1)k⊺(σ̄tjWL+1qij,L + ξij)1(WLqij,L−1)k>0

which is independent of s. For ∇1, since qi∗,j∗,L−1 ≥ 0 which does not affect the sign of this term,
we can also first take (qi∗,j∗,L−1)s = 1 for all s.

Step 3: We focus on ∇11 and ∇21 and we would like to pick the non-zero elements in this two terms.
More precisely, let

N1 = {s ∣ (qi∗j∗,L)s > 0, s = 1,⋯,m} ,
N2 =

⎧⎪⎪⎨⎪⎪⎩s ∣ ∑
(i,j)≠(i∗,j∗)

w(tj)(tj − tj−1)σ̄tj1(WLqij,L−1)k>0(qij,L)s > 0, s = 1,⋯,m
⎫⎪⎪⎬⎪⎪⎭

Let αij = w(tj)(tj − tj−1)σ̄tj1(WLqij,L−1)k>0 ≥ 0. Then

∑
(i,j)≠(i∗,j∗)

w(tj)(tj − tj−1)σ̄tj1(WLqij,L−1)k>0(qij,L)s
= ∑
(i,j)≠(i∗,j∗)

αij(qij,L)s = ∑
(i,j)≠(i∗,j∗)

αijσ(WLqij,L−1)s.
If

∑
(i,j)≠(i∗,j∗)

αij(WLqij,L−1)s = (WL)s ∑
(i,j)≠(i∗,j∗)

αijqij,L−1 > 0,

then there must be at least one pair of (i, j) s.t. αij(WLqij,L−1)s = αijσ(WLqij,L−1)s > 0, which
implies ∑(i,j)≠(i∗,j∗) αij(qij,L)s > 0. Therefore, it suffices to consider

N1 = {s ∣ (qi∗j∗,L)s = (WL)sqi∗j∗,L−1 > 0, s = 1,⋯,m} ,
N ′2 =

⎧⎪⎪⎨⎪⎪⎩s ∣ (WL)s ∑
(i,j)≠(i∗,j∗)

αijqij,L−1 > 0

⎫⎪⎪⎬⎪⎪⎭ .
Since (qij,L−1)s ≥ 0, we have

⟨qi∗j∗,L−1, ∑
(i,j)≠(i∗,j∗)

αijqij,L−1⟩ ≥ 0,
i.e.,∠

⎛⎝qi∗j∗,L−1, ∑
(i,j)≠(i∗,j∗)

αijqij,L−1
⎞⎠ ≤ π

2

By Lemma 2 and Proposition 2, we have

P
⎛⎝(WL)sqi∗j∗,L−1 > 0, (WL)s ∑

(i,j)≠(i∗,j∗)
αijqij,L−1 > 0

⎞⎠
= P
⎛⎝ (WL)s∥(WL)s∥qi∗j∗,L−1 > 0,

(WL)s∥(WL)s∥ ∑
(i,j)≠(i∗,j∗)

αijqij,L−1 > 0
⎞⎠

≥
1

4
.

Also (WL)s’s are i.i.d. multivariate Gaussian. By Chernoff bound,

P(∣N1 ∩N
′

2∣ ∈ (δ1m
4
, δ2

m

4
)) ≤ 1 − 2e−Ω(m)

20

for some small δ1 ≤
1
4

and δ2 ≤ 4, i.e., ∣N1 ∩N
′
2∣ = Θ(m) with probability at least 1 − 2e−Ω(m).

Step 4: Next we condition on N1 ∩N
′
2 and consider (WL+1)k⊺WL+1σ̄tj∗

qi∗j∗,L + (WL+1)k⊺ξi∗j∗
and (WL+1)k⊺WL+1∑(i,j)≠(i∗,j∗) αijqij,L + (WL+1)k⊺∑(i,j)≠(i∗,j∗) ᾱijξij , where ᾱij = αij/σ̄ij .

We would like to prove that with high probability

∠(WL+1σ̄tj∗
qi∗j∗,L + ξi∗j∗ ,WL+1 ∑

(i,j)≠(i∗,j∗)
αijqij,L + ∑

(i,j)≠(i∗,j∗)
ᾱijξij) ≤ π − cd a0−1

2 ,

for some constant c > 0 and 1
2
< a0 < 1.

First, since ξij ∼N (0, Id), by Bernstein’s inequality, with probability at least 1 − exp(−Ω(d)), we

have ∥ξij∥2 = Θ(d). Similarly, since (WL+1qij,L)s ∼ N (0, 2∥qij,L∥2m
), by Berstein’s inequality and

Lemma 4, with probability at least 1 − exp(−Ω(d)), we have ∥WL+1qij,L∥2 = Θ(d). By union
bounds, the above holds for all i, j with probability at least 1 − 2nN exp(−Ω(d)).
Let v =

WL+1∑(i,j)≠(i∗,j∗) αijqij,L+∑(i,j)≠(i∗,j∗) ᾱijξij

∥WL+1∑(i,j)≠(i∗,j∗) αijqij,L+∑(i,j)≠(i∗,j∗) ᾱijξij∥ and u = WL+1σ̄tj∗
qi∗j∗,L. For notational

simplicity, we use ξ to denote ξi∗j∗ . Fix v, u and consider the probability of event A

A = {v⊺(u + ξ) ≤ −√1 − c0da0−1∥u + ξ∥}
for some c0 > 0 and 1

2
< a0 < 1.

Then consider the following event that has larger probability than A

(v⊺(u + ξ))2 ≥ (1 − c0da0−1)∥u + ξ∥2 (14)

⇐⇒ (v⊺u)2 − (1 − c0da0−1)∥u∥2 + 2(v⊺uv − (1 − c0da0−1)u)⊺ξ + (v⊺ξ)2 ≥ (1 − c0da0−1)∥ξ∥2
(15)

Since (v⊺u)2 ≤ ∥u∥2 where the equality holds when v = u
∥u∥ , we have

LHS ≤ c0d
a0−1∥u∥2 + 2(v⊺uv − (1 − c0da0−1)u)⊺ξ + (v⊺ξ)2

Also, since ∥u∥2 = O(d) with probability at least 1 − 2nN exp(−Ω(d)), we have

P (∣2(v⊺uv − (1 − c0da0−1)u)⊺ξ∣ ≥ da0) ≤ 2 exp(−c d2a0

∥u∥2) = 2 exp(−Ω(d2a0−1))
for some constant c > 0.

Therefore, with probability at least 1 −O(nN) exp(−Ω(d2a0−1))
LHS of (15) ≤ cda0 + (v⊺ξ)2

for some constant c > 0.

Then

P(v⊺(u + ξ) ≤ −√1 − c0da0−1∥u + ξ∥)
≤ P((v⊺(u + ξ))2 ≥ (1 − c0da0−1)∥u + ξ∥2)
≤ P((v⊺ξ)2 ≥ (1 − c′da0−1)∥ξ∥2)
= P(v⊺ ξ∥ξ∥ ≥

√(1 − c′da0−1)) + P(−v⊺ ξ∥ξ∥ ≥
√(1 − c′da0−1))

= P(∠(v, ξ∥ξ∥) ≥ arccos(−
√(1 − c′da0−1))) + P(∠(−v, ξ∥ξ∥) ≥ arccos(−

√(1 − c′da0−1)))
= 2P(∠(v, ξ∥ξ∥) ≥ π − c′′d

a0−1

2)
=

C

(d 1−a0
2)d−1√d

21

where the second equality follows from Lemma 2; the third equality follows from series expansion;
the forth equality follows from (16); c′, c′′, C > 0 are some constants.

Thus with probability at least 1 − C

(d
1−a0

2)d−1
√
d

,

v⊺(u + ξ) ≥ −√1 − c0da0−1∥u + ξ∥
i.e.∠(v, u + ξ) ≤ π − cd a0−1

2

for some c > 0.

Then by Lemma 2, with probability at least 1 −O(nN) exp(−Ω(d)),
P ((W k

L+1)⊺v ≥ 0, (W k
L+1)⊺(u + ξ) ≥ 0) ≥ cd a0−1

2 ,

for some c > 0.

Since (W k
L+1) are iid Guassian vectors for k = 1,⋯,m, by Chernoff bound on Bernoulli variable

1{(Wk
L+1
)⊺v≥0,(Wk

L+1
)⊺(u+ξ)≥0}, we have, with probability at least 1 − exp(−Ω(md

a0−1

2))
∣{k ∶ (W k

L+1)⊺v ≥ 0, (W k
L+1)⊺(u + ξ) ≥ 0}∣ = Θ(md

a0−1

2).
Step 5: Combining the above 4 steps, we would like to obtain the lower bound of the gradient.

For each k, consider (qij,L−1)s for (i, j) ≠ (i∗, j∗) and denote qs = {(qij,L−1)s}(i,j)≠(i∗,j∗) ={σ((WL−1)sqij,L−2)}(i,j)≠(i∗,j∗). Let q̄s = {(WL−1)sqij,L−2}(i,j)≠(i∗,j∗) and q̄s ∼ N (0,QQ⊺),
where each row of Q is q⊺ij,L−2 for (i, j) ≠ (i∗, j∗). Thus, qs is q̄s projected to the nonnegative

orthant.

Let 1 = (1,1,⋯,1) ∈ RnN−1. Therefore, if ⟨βk,1⟩ ≥ 0 for some βk ∈ R
nN−1, then at least half of the

nonnegative orthant is contained in {v ∈ RnN−1 ∶ ⟨βk, v⟩ ≥ 0}, i.e., there exists a constant ck > 0, s.t.

P(⟨βk, qs⟩ ≥ 0) ≥ ck ≥ min
k=1,⋯,m

ck > 0, for all s = 1,⋯,m

Then since βk ∈ R
nN−1 for k = 1,⋯,m and nN ≪ m, there exists a set of indices K ⊆ {1,⋯,m}

with ∣K∣ = Θ(m
nN
) and a set of indices S ⊆ {1,⋯,m} with ∣S ∣ = Θ(m), s.t., ⟨βk, qs⟩ ≥ 0, for

k ∈ K, s ∈ S .

Let qKij,ℓ = (qij,ℓ)k∈K. Then by Bernstein’s inequality, we can also obtain that ∥qKij,ℓ∥2 = Θ(d) with

probability at least 1 − nN exp(−Ω(d)).
Combine all of the above and apply the Claim 9.5 in Allen-Zhu et al. [1], we obtain, with probability
at least 1 −O(nN) exp(−Ω(d2a0−1)),
∥∇WL

L̄em(θ(0))∥2F ≥ 1

n2
C6w(tj∗)2(tj∗ − tj∗−1)2 1

d
∥σ̄tj∗

WL+1qi∗j∗,L + ξi∗j∗∥2∥qKi∗j∗,L−1∥2 1

nN
md

a0−1

2

≥ C6md
a0−1

2 w(tj∗)(tj∗ − tj∗−1)σ̄tj∗

1

n3N2
L̄em(θ(0)),

where C6 > 0 is some universal constant, 1
2
< a0 < 1, and the second inequality follows from the

definition of i∗, j∗.

D.1.1 Geometric ideas used in the proof

Proposition 2. Consider w ∼N (0, I), where w ∈ Rn. Then ∥w∥ and w
∥w∥ are independent random

variables and w
∥w∥ ∼ Unif(Sn−1).

Lemma 2. Let w ∼ Unif (Sn−1), where S
n−1
= {x ∈ Rn∣∥x∥ = 1}. Then for two vectors v1, v2 ∈ R

n,

P(w⊺v1 ≥ 0, w⊺v2 ≥ 0) = π −∠(v1, v2)
2π

.

22

Proof. Since w ∼ Unif(Sn−1), we only need to consider the area of the event. It is obvious that the
set {w ∈ Sn−1∣w⊺vi} is a semi-hypersphere. Therefore, we only need to consider the intersection of
two semi-hypersphere, i.e.,

P(w⊺v1 ≥ 0, w⊺v2 ≥ 0) = area of {w ∈ Sn−1∣w⊺v1 ≥ 0} ∩ area of {w ∈ Sn−1∣w⊺v2 ≥ 0}
area of the hypersphere

=
π −∠(v1, v2)

2π
.

Next we follow the notations and definitions in Lee and Kim [33]. Consider the unit hypersphere in
R

d, Sd−1 = {x ∈ Rd ∣ ∥x∥ = 1}. The area of Sd−1 is

Ad(1) = 2πd/2

Γ(d/2) .
Lemma 3. Fix ξ1 ∈ S

d−1 and let ξ2 ∼ Unif (Sd−1), where S
d−1
= {x ∈ Rd∣∥x∥ = 1}. Then with

probability at least 1 − exp(−Ω(d)), we have∠(ξ1, ξ2) ≤ 3π
4

.

Proof. For any fixed ξ1, all the ξ2’s that satisfy ∠(ξ1, ξ2) ≥ π − θ are on a hyperspherical cap. By
Lee and Kim [33], the area of the hypersperical cap is

Aθ
d(1) = 1

2
Ad(1)Isin2 θ (d − 1

2
,
1

2
) .

Then

P(∠(ξ1, ξ2) ≥ π − θ) = Aθ
d(1)

Ad(1) =
1

2
Isin2 θ (d − 1

2
,
1

2
)∝ 1

2

θd−1√
π
√

d−1
2

. (16)

Let θ = π
4
< 1. Then with probability at least 1 − exp(−Ω(d)), we have∠(ξ1, ξ2) ≤ 3π

4
.

D.2 Proofs related to random initialization

Consider Wi =W
(0)
i in this section.

Lemma 4. If ϵ ∈ (0,1), with probability at least 1 − O(nN)e−Ω(min(ϵ2d4b−1,ϵd2b)), ∥Xij∥2 ∈[∥e−µtj xi∥2 + σ̄2
tj
d − ϵσ̄2

tj
d2b, ∥e−µtj xi∥2 + σ̄2

tj
d + ϵσ̄2

tj
d2b] for all i = 1,⋯, n and j = 0,⋯,N − 1.

Moreover, with probability at least 1 −O(L)e−Ω(mϵ2/L) over the randomness of Ws for s = 0,⋯, L,
we have ∥qij,ℓ∥ ∈ [∥Xij∥(1 − ϵ), ∥Xij∥(1 + ϵ)] for fixed i, j. Therefore, with probability at least

1 −O(nNL)e−Ω(min(mϵ2/L,ϵ2d4b−1,ϵd2b)), we have Ω(db) = ∥qij,ℓ∥ = O(da).
Proof. Consider 1

σ̄tj

Xij =
e
−µtj

σ̄tj

xi+ξij . Since ξij ∼N (0, I), ∥ 1
σ̄tj

Xij∥2 follows from the noncentral

χ2 distribution and E∥ 1
σ̄tj

Xij∥2 = d+∥ e−µtj

σ̄tj

xi∥2 (this includes the time variable at the dth dimension).

By Berstein inequality,

P(∣∥ 1

σ̄tj

Xij∥2 −E∥ 1

σ̄tj

Xij∥2∣ ≥ t) ≤ 2 exp(− cmin(t2
d
, t))

i.e.,P(∣∥e−µtj xi + σ̄tjξij∥2 − (σ̄2
tj
d + ∥e−µtj xi∥2)∣ ≥ σ̄2

tj
t) ≤ 2 exp(− cmin(t2

d
, t))

Therefore, with probability at least 1 −O(nN)e−Ω(min(ϵ2d4b−1,ϵd2b)), ∥Xij∥2 ∈ [∥e−µtj xi∥2 + σ̄2
tj
d −

ϵσ̄2
tj
d2b, ∥e−µtj xi∥2 + σ̄2

tj
d + ϵσ̄2

tj
d2b] for all i = 1,⋯, n and j = 0,⋯,N − 1, where ϵ ∈ (0,1). The

second part of the Lemma follows the similar proof in Lemma 7.1 of Allen-Zhu et al. [1]. The last
part follows from union bound and Assumption 1.

23

Lemma 5 (Upper bound). Under the random initialization of Wi for i = 0,⋯, L, with probability at

least 1 −O(nNL)e−Ω(min(mϵ2/L,ϵ2d4b−1,ϵd2b)), we have

∥∇Wℓ
L̄em(θ(0))∥2 = O (md2a−1N max

j
w(tj)(tj − tj−1)σ̄tj) L̄em(θ(0)).

Proof. For any ℓ = 1, ⋅, L, we have∥∇Wℓ
L̄em(θ)∥2F

=

m

∑
k=1

∥∇(Wℓ)k L̄em(θ)∥2
=

m

∑
k=1

∥ 1
n

n

∑
i=1

N

∑
j=1

w(tj)(tj − tj−1)
× [(WL+1Dij,LWL⋯Dij,ℓWℓ+1)⊺(σ̄tjWL+1qij,L + ξij)]k qij,ℓ−1 1(Wℓqij,ℓ−1)k>0∥

2

≤
N

n

n

∑
i=1

N

∑
j=1

w(tj)2(tj − tj−1)2 m

∑
k=1

∥(WL+1Dij,LWL⋯Dij,ℓWℓ+1)⊺k(σ̄tjWL+1qij,L + ξij)∥2 ⋅ ∥qij,ℓ−1∥2
≤ C7d

2am

d

N

n

n

∑
i=1

N

∑
j=1

w(tj)2(tj − tj−1)2 ⋅ ∥σ̄tjWL+1qij,L + ξij∥2
≤ C7d

2amN

d
max

j
w(tj)(tj − tj−1)σ̄tj L̄em(θ)

where the first inequality follows from Young’s inequality; the second inequality follows from
Lemma 4 and Lemma 7.4 in Allen-Zhu et al. [1]; C7 > 0

D.3 Proofs related to perturbation

Consider W
per
i =W

(0)
i +W ′

i for i = 1,⋯, L in this section. We follow the same idea in Allen-Zhu
et al. [1] to consider the network value of perturbed weights at each layer. We use the superscript
“per” to denotes the perturbed version, i.e.,

r
per
ij,0 =W0Xij , q

per
ij,0 = σ(rperij,0),

r
per
ij,ℓ =W

per
ℓ q

per
ij,ℓ−1, q

per
ij,ℓ = σ(rperij,ℓ), for ℓ = 1,⋯, L

S(θper; tj ,Xij) =WL+1q
per
ij,L

We also similarly define the diagonal matrix D
per
ij,ℓ for the above network.

The following Lemma measures the perturbation of each layer. The lemma differs from Lemma 8.2
in Allen-Zhu et al. [1] by a scale of da. For sake of completeness, we state it in the following and the
proof can be similarly obtained.

Lemma 6. Let ω ≤ 1
C7L9/2(logm)3da for some large C > 1. With probability at least 1 −

exp(−Ω(damω2/3L)), for any ∆W s.t. ∥∆W ∥ ≤ ω, we have

1. r
per
ij,ℓ − rij,ℓ can be decomposed to two part r

per
ij,ℓ − rij,ℓ = r

′

ij,ℓ,1 + r
′

ij,ℓ,2, where ∥r′ij,ℓ,1∥ =
O(ωL3/2da) and ∥r′ij,ℓ,2∥∞ = O(ωL5/2√logmdam−1/2).

2. ∥Dper
ij,ℓ −Dij,ℓ∥0 = O(mω2/3L) and ∥(Dper

ij,ℓ −Dij,ℓ)rperij,ℓ∥ = O(ωL3/2da).
3. ∥rperij,ℓ − rij,ℓ∥ and ∥qperij,ℓ − qij,ℓ∥ are O(ωL5/2√logmda).

D.4 Proofs related to the evolution of the algorithm

Lemma 7 (Upper and lower bounds of gradient after perturbation). Let

ω = O
⎛⎝ L̄∗em

L9(logm)2n3N3d
1−a0

2

⋅
minj w(tj)(tj − tj−1)σ̄tj

max{maxj w(tj)(tj − tj−1)σ̄tj ,∑j(w(tj)(tj − tj−1)σ̄tj)2}
⎞⎠ .

24

Consider θper s.t. ∥θper − θ∥ ≤ ω, where θ follows from the Gaussian initialization. Then with

probability at least 1 −O(nN)e−Ω(d2a0−1),

∥∇Wℓ
L̄em(θper)∥2 = O (md2a−1N max

j
w(tj)(tj − tj−1)σ̄tj) L̄em(θper),

∥∇WL
L̄em(θper)∥2 = Ω⎛⎝md

a0−1

2

n3N2
w(tj∗)(tj∗ − tj∗−1)σ̄tj∗

⎞⎠min{L̄em(θ), L̄em(θper)},

for ℓ = 1,⋯, L.

Proof. Consider the following terms

∇(Wℓ)k L̄em(θ) = 1

n

n

∑
i=1

N

∑
j=1

w(tj)(tj − tj−1)
× [(WL+1Dij,LWL⋯Dij,ℓWℓ+1)⊺(σ̄tjWL+1qij,L + ξij)]k qij,ℓ−1 1(Wℓqij,ℓ−1)k>0 (17)

∇
per

(Wℓ)k L̄em(θ) = 1

n

n

∑
i=1

N

∑
j=1

w(tj)(tj − tj−1)
× [(WL+1Dij,LWL⋯Dij,ℓWℓ+1)⊺(σ̄tjWL+1q

per
ij,L + ξij)]k qij,ℓ−1 1(Wℓqij,ℓ−1)k>0, (18)

∇(Wℓ)k L̄em(θper) = 1

n

n

∑
i=1

N

∑
j=1

w(tj)(tj − tj−1)
× [(WL+1D

per
ij,LW

per
L ⋯D

per
ij,ℓW

per
ℓ+1)⊺(σ̄tjWL+1q

per
ij,L + ξij)]k qperij,ℓ−1 1(Wper

ℓ
q
per

ij,ℓ−1
)k>0 (19)

Then

∥∇Wℓ
L̄em(θ) −∇per

Wℓ
L̄em(θ)∥2F

=

m

∑
k=1

∥∇(Wℓ)k L̄em(θ) −∇per

(Wℓ)k L̄em(θ)∥2
≤
N

n

n

∑
i=1

N

∑
j=1

w(tj)2(tj − tj−1)2 m

∑
k=1

∥(WL+1Dij,LWL⋯Dij,ℓWℓ+1)⊺k(σ̄tjWL+1(qij,L − qperij,L))∥2 ⋅ ∥qij,ℓ−1∥2
≤ C8d

2am

d

N

n

n

∑
i=1

N

∑
j=1

w(tj)2(tj − tj−1)2 ⋅ ∥σ̄tjWL+1(qij,L − qperij,L)∥2
≤ C ′8d

2am

d
N

N

∑
j=1

w(tj)2(tj − tj−1)2(ωL5/2√logmda)2
≤ C̃8

⎛⎝md
a0−1

2

n3N2
w(tj∗)(tj∗ − tj∗−1)σ̄tj∗

⎞⎠ L̄∗em

where the first two inequalities follow the same as the proof of Lemma 5; the third inequality follows
from Lemma 6; the last inequality follows from the definition of ω.

25

Also, we have

∥∇per

(Wℓ)k L̄em(θ) −∇(Wℓ)k L̄em(θper)∥
≤ ∥ 1

n

n

∑
i=1

N

∑
j=1

w(tj)(tj − tj−1)
× [(WL+1D

per
ij,LW

per
L ⋯D

per
ij,ℓW

per
ℓ+1 −WL+1Dij,LWL⋯Dij,ℓWℓ+1)⊺(σ̄tjWL+1q

per
ij,L + ξij)]k

× q
per
ij,ℓ−1 1(Wper

ℓ
q
per

ij,ℓ−1
)k>0∥

+ ∥ 1
n

n

∑
i=1

N

∑
j=1

w(tj)(tj − tj−1)[(WL+1Dij,LWL⋯Dij,ℓWℓ+1)⊺(σ̄tjWL+1q
per
ij,L + ξij)]k

× (qij,ℓ−1 1(Wℓqij,ℓ−1)k>0 − q
per
ij,ℓ−1 1(Wper

ℓ
q
per

ij,ℓ−1
)k>0)∥

Then

∥∇per
Wℓ
L̄em(θ) −∇Wℓ

L̄em(θper)∥2F
≤ 2

N

n

n

∑
i=1

N

∑
j=1

w(tj)2(tj − tj−1)2 ⋅ ∥qperij,ℓ−1∥2
×

m

∑
k=1

∥(WL+1D
per
ij,LW

per
L ⋯D

per
ij,ℓW

per
ℓ+1 −WL+1Dij,LWL⋯Dij,ℓWℓ+1)⊺k(σ̄tjWL+1q

per
ij,L + ξij)∥2

+ 2
N

n

n

∑
i=1

N

∑
j=1

w(tj)2(tj − tj−1)2 ⋅ ∥qij,ℓ−1 1(Wℓqij,ℓ−1)k>0 − q
per
ij,ℓ−1 1(Wper

ℓ
q
per

ij,ℓ−1
)k>0∥2

×

m

∑
k=1

∥(WL+1Dij,LWL⋯Dij,ℓWℓ+1)⊺k(σ̄tjWL+1q
per
ij,L + ξij)∥2

≤ C9(ω2L5 logmd2a)(L3/2 logmm1/2)m
d

N

n

n

∑
i=1

N

∑
j=1

w(tj)2(tj − tj−1)2 ⋅ ∥σ̄tjWL+1q
per
ij,L + ξij∥2

+C ′9(ω2L5 logmd2a)m
d

N

n

n

∑
i=1

N

∑
j=1

w(tj)2(tj − tj−1)2 ⋅ ∥σ̄tjWL+1q
per
ij,L + ξij∥2

≤ C̃9

⎛⎝md
a0−1

2

n3N2
w(tj∗)(tj∗ − tj∗−1)σ̄tj∗

⎞⎠ L̄em(θper)
where the first inequality follows from Young’s inequality and the above decomposition; the second

inequality follows from Lemma 7.4, 8.7 in Allen-Zhu et al. [1] (with s = O(damω2/3L)) and
Lemma 6; the last inequality follows from the definition of ω.

For upper bound, we only need to consider ∇
per

(Wℓ)k L̄em(θ) and ∇(Wℓ)k L̄em(θper). By similar

argument as Lemma 5, with probability at least 1 −O(nNL)e−Ω(min(mϵ2/L,ϵ2d4b−1,ϵd2b)), we have

∥∇per

(Wℓ)k L̄em(θ)∥2 = O (md2a−1N max
j

w(tj)(tj − tj−1)σ̄tj) L̄em(θper).
Then

∥∇Wℓ
L̄em(θper)∥2

≤ 2∥∇per
Wℓ
L̄em(θ)∥2F + 2∥∇per

Wℓ
L̄em(θ) −∇Wℓ

L̄em(θper)∥2F
= O (md2a−1N max

j
w(tj)(tj − tj−1)σ̄tj) L̄em(θper).

26

Also,

∥∇W L̄em(θper)∥2
≥ ∥∇WL

L̄em(θper)∥2
≥
1

3
∥∇WL

L̄em(θ)∥2 − ∥∇Wℓ
L̄em(θ) −∇per

Wℓ
L̄em(θ)∥2F − ∥∇per

Wℓ
L̄em(θ) −∇Wℓ

L̄em(θper)∥2F
= Ω
⎛⎝md

a0−1

2

n3N2
w(tj∗)(tj∗ − tj∗−1)σ̄tj∗

⎞⎠min{L̄em(θ), L̄em(θper)}.

Note when interpolation is not achievable, this lower bound is always away from 0, which means the
current technique can only evaluate the lower bound outside a neighbourhood of the minimizer. More
advanced method is needed and we leave it for future investigation.

Lemma 8 (semi-smoothness). Let ω = Ω. With probability at least 1−e−Ω(logm) over the randomness

of θ(0), we have for all θ s.t. ∥θ − θ(0)∥ ≤ ω, and all θper s.t. ∥θper − θ∥ ≤ ω,

L̄em(θper) ≤ L̄em(θ) + ⟨∇L̄em(θ), θper − θ⟩
+

√
L̄em(θ)√∑

j

w(tj)(tj − tj−1)σ̄tjO(ω1/3L2
√
m logmda/2)∥θper − θ∥

+

√
L̄em(θ)√∑

j

w(tj)(tj − tj−1)σ̄tjO(L2
√
mda)∥θper − θ∥2

Proof. By definition,

L̄em(θper) − L̄em(θ) − ⟨∇L̄em(θ), θper − θ⟩
=
1

n

n

∑
i=1

N

∑
j=1

w(tj)(tj − tj−1)(σ̄tjWL+1qij,L + ξij)⊺WL+1

× (qperij,L − qij,L −
L

∑
ℓ=1

Dij,LWij,L⋯Wij,ℓ+1Dij,ℓ(W per
ij,ℓ −Wij,ℓ)qij,ℓ)

+
1

2σ̄tj

w(tj)(tj − tj−1)∥σ̄tjWL+1(qperij,L − qij,L)∥2.
Similar to the proof of Theorem 4 in Allen-Zhu et al. [1], we obtain the desired bound by using Cauchy-

Schwartz inequality. Note, in our case, due to the order of input data, we choose s = O(damω2/3L)
in Allen-Zhu et al. [1] and therefore the bound is slightly different from theirs.

E Proofs for sampling

In this section, we prove Theorem 2. The proof includes two main steps: 1. decomposing
KL(pδ ∣qT−δ) into the initialization error, the score estimation errors and the discretization errors;
2. estimating the initialization error and the discretization error based on our assumptions. In the
following context, we introduce the proof of these two steps separately.

Proof of Theorem 2. Step 1: The error decomposition follows from the ideas in [12] of studying
VPSDE-based diffusion models. According to the chain rule of KL divergence, we have

KL(pδ ∣qT−δ) ≤ KL(pT ∣q0) +Ey∼pT
[KL(pδ∣T (⋅∣y)∣qT−δ∣0(⋅∣y))],

27

Apply the chain rule again for at across the time schedule (T − t←j)0≤j≤N−1, the second term can be
written as

Ey∼pT
[KL(pδ∣T (⋅∣y)∣qT−δ∣0(⋅∣y))]

≤

N−1

∑
j=0

Eyj∼pT−t←
j

[KL(pT−t←
j+1
∣T−t←

j
(⋅∣yj)∣qt←

j+1
∣t←
j
(⋅∣yj))]

≤
1

2

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tE[∥s(θ;T − t←j , Yt←

j
) −∇ log pT−t(Yt)∥2]dt

≤

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tE[∥s(θ;T − t←j , Yt←

j
) −∇ log pT−t←

j
(Yt←

j
)∥2]dt

+

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tE[∥∇ log pT−t←

j
(Yt←

j
) −∇ log pT−t(Yt)∥2]dt,

where the second inequality follows from Lemma 9. Therefore, the error decomposition writes as

KL(pδ ∣qT−δ) ≲ KL(pT ∣q0) + N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tE[∥s(θ;T − t←j , Yt←

j
) −∇ log pT−t←

j
(Yt←

j
)∥2]dt

+

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tE[∥∇ log pT−t←

j
(Yt←

j
) −∇ log pT−t(Yt)∥2]dt (20)

where the three terms in (20) quantify the initialization error, the score estimation error and the
discretization error, respectively.

Step 2: In this step, we estimate the three error terms in Step 1. First, recall that pT = p∗N (0, σ̄2
T Id)

and q0 =N (0, σ̄2
T Id), hence the initialization error KL(pT ∣q0) can be estimated as follows,

KL(pT ∣q0) = KL(p ∗N (0, σ̄2
T Id)∣N (0, σ̄2

T Id)) ≲ m2
2

σ̄2
T

, (21)

where the inequality follows from Lemma 10. Hence we recover the term EI in (11).

Next, since σt is non-decreasing in t, the score estimation error can be estimated as

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tE[∥s(θ;T − t←j , Yt←

j
) −∇ log pT−t←

j
(Yt←

j
)∥2]dt

≤

N−1

∑
j=0

γjσ
2
T−t←

j
E[∥s(θ;T − t←j , Yt←

j
) −∇ log pT−t←

j
(Yt←

j
)∥2]. (22)

Hence, we recover the term ES in (11).

Last, we estimated the discretization error term. Our approach is motivated by analyses of VPSDEs
in [8, 26]. We defines a process Lt ∶= ∇ log pT−t(Yt). Then we can relate discretization error to
quantities depending on Lt, and therefore bound the discretization error via properties of {Lt}0≤t≤T .
According to Lemma 12, we have

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tE[∥∇ log pT−t←

j
(Yt←

j
) −∇ log pT−t(Yt)∥2]dt

≤ 2d
N−1

∑
j=0
∫

t←j+1

t←
j

∫
t

t←
j

σ2
T−tσ

2
T−uσ̄

−4
T−ududt

´¹¹¸¹¹¶
N1

+

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tdtσ̄

−4
T−t←

j
E[tr(ΣT−t←

j
(XT−t←

j
))]

´¹¹¸¹¹¹¶
N2

−

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tσ̄

−4
T−tE[tr(ΣT−t(XT−t))]dt

´¹¹¹¸¹¹¹¶
N3

.

28

Since t↦ σt is non-decreasing and t↦ E[tr(ΣT−t(XT−t))] is non-increasing, we have

N1 = 2d
N−1

∑
j=0
∫

T−t←j

T−t←
j+1

∫
T−u

T−t←
j+1

σ2
t dtσ

2
uσ̄
−4
u du ≤ 2d

N−1

∑
j=0

γj ∫
T−t←j

T−t←
j+1

σ4
t σ̄
−4
t dt,

N2 =

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tdtσ̄

−4
T−t←

j
E[tr(ΣT−t←

j
(XT−t←

j
))],

N3 ≤ −

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tσ̄

−4
T−tdtE[tr(ΣT−t←

j+1
(XT−t←

j+1
))].

Therefore, we obtain

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tE[∥∇ log pT−t←

j
(Yt←

j
) −∇ log pT−t(Yt)∥2]dt

≤ 2d
N−1

∑
j=0

γj ∫
T−t←j

T−t←
j+1

σ4
t σ̄
−4
t dt +

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tdtσ̄

−4
T−t←

j
E[tr(ΣT−t←

j
(XT−t←

j
))]

−

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tσ̄

−4
T−tdtE[tr(ΣT−t←

j+1
(XT−t←

j+1
))]

= 2d
N−1

∑
j=0

γj ∫
T−t←j

T−t←
j+1

σ4
t σ̄
−4
t dt +∫

t←1

0
σ2
T−tdtσ̄

−4
T E[tr(ΣT (XT))]

+

N−1

∑
j=1

(∫ t←j+1

t←
j

σ2
T−tσ̄

−4
T−t←

j
dt −∫

t←j

t←
j−1

σ2
T−tσ̄

−4
T−tdt)E[tr(ΣT−t←

j
(XT−t←

j
))]. (23)

The above bound depends on E[tr(Σt(Xt))], hence we estimate E[tr(Σt(Xt))] for different values
of t.

First, we have

E[tr(Σt(Xt))] = E[E[∥X0∥2∣Xt] − ∥E[X0∣Xt]∥2] ≤ E[∥X0∥2] =m2
2.

Meanwhile,

E[tr(Σt(Xt))] = E[tr(Cov(X0 −Xt∣Xt))] = E[E[∥X0 −Xt∥2∣Xt]] − ∥E[X0 −Xt∣Xt]∥2
≤ E[∥X0 −Xt∥2] = σ̄2

t d

Therefore, E[tr(Σt(Xt))] ≤ min(m2
2, σ̄

2
t d) ≲ (1 − e−σ̄2

t)(m2
2 + d). Plug this estimation into (23)

and we get

N−1

∑
j=0
∫

t←j+1

t←
j

σ2
T−tE[∥∇ log pT−t←

j
(Yt←

j
) −∇ log pT−t(Yt)∥2]dt

≲ d
N−1

∑
j=0

γj ∫
T−t←j

T−t←
j+1

σ4
t σ̄
−4
t dt +∫

t←1

0
σ2
T−tdtσ̄

−4
T m2

2

+ (m2
2 + d)N−1∑

j=1

(1 − e−σ̄2
T−t←

j)(∫ t←j+1

t←
j

σ2
T−tσ̄

−4
T−t←

j
dt −∫

t←j

t←
j−1

σ2
T−tσ̄

−4
T−tdt)

≲ d
N−1

∑
j=0

γj ∫
T−t←j

T−t←
j+1

σ4
t σ̄
−4
t dt +m2

2
∫ t←1
0 σ2

T−tdt

σ̄4
T

+ +(m2
2 + d)N−1∑

k=1

(1 − e−σ̄2
T−t←

j) σ̄4
T−t←

j
− σ̄2

T−t←
j+1

σ̄2
T−t←

j−1

σ̄2
T−t←

j−1
σ̄4
T−t←

j

,

where the last inequality follows from the definition of σ̄t and integration by parts. The proof of
Theorem 2 is completed.

Lemma 9. Let {Yt}0≤t≤T be the solution to (2) with ft ≡ 0 and p←
t+s∣s(⋅∣y) be the conditional

distribution of Ys+t given {Ys = y}. Let {Ȳt}0≤t≤T be the solution to (11) qt+s∣s(⋅∣y) be the conditional

distribution of Ȳs+t given {Ȳs = y}. Then for any fixed t ∈ (0, γj], we have

Ey∼p←
t←
j

KL(p←t←
j
+t∣t←

j
(⋅∣y)∣qt←

j
+t∣t←

j
(⋅∣y)) ≤ 1

2
σ2
T−tE[∥s(θ;T − t←j , Yt←

j
) −∇ log pT−t(Yt)∥2]

29

Proof of Lemma 9. According to [12, Lemma 6], we have

KL(p←t←
j
+t∣t←

j
(⋅∣y)∣qt←

j
+t∣t←

j
(⋅∣y))

≤ −2σ2
T−t ∫ p←t←

j
+t∣t←

j
(x∣y)∥∇ log

p←
t←
j
+t∣t←

j
(x∣y)

qt←
j
+t∣t←

j
(x∣y) ∥2dx

+ 2σ2
T−tEp←

t←
j
+t∣t←

j

(x∣y)[⟨∇ log pT−t(x) − s(θ;T − t←j , Yt←
j
),∇ log

p←
t←
j
+t∣t←

j
(x∣y)

qt←
j
+t∣t←

j
(x∣y) ⟩]

≤
1

2
σ2
T−tEp←

t←
j
+t∣t←

j

(x∣y)[∥∇ log pT−t(x) − s(θ;T − t←j , Yt←
j
)∥2],

where the last inequality follows from Young’s inequality. Therefore, Lemma 9 is proved after taking
another expectation.

Lemma 10. For any probability distribution p satisfying Assumption 3 and q being a centered
multivariate normal distribution with covariance matrix σ2Id, we have

KL(p ∗ q∣q) ≤ m2
2

2σ2
.

Proof of Lemma 10.

KL(p ∗ q∣q) ≤ ∫ KL(q(⋅ − y)∣q(⋅))p(dy) = ∫ KL(N (y, σ2Id)∣N (0, σ2Id))p(dy)
=
1

2
∫ ln(1) − d + tr(Id) + ∥y∥2σ−2p(dy) = m2

2

2σ2
,

where the inequality follows from convexity of KL(⋅∣q) and the second identity follows from KL-
divergence between multivariate normal distributions.

Lemma 11. Let {Xt}0≤t≤T be the solution to (1) with ft ≡ 0 and p0∣t(⋅∣x) be the conditional

distribution of X0 given {Xt = x}. Define

mt(Xt) ∶= EX∼p0∣t(⋅∣Xt)[X], Σt(Xt) = CovX∼p0∣t(⋅∣Xt)(X). (24)

Let {Yt}0≤t≤T be the solution to (2) with ft ≡ 0 and q0∣t(⋅∣x) be the conditional distribution of Y0

given {Yt = x}. Define

m̄t(Yt) ∶= EX∼q0∣t(⋅∣Yt)[X], Σ̄t(Yt) = CovX∼q0∣t(⋅∣Yt)(X). (25)

Then we have for all t ∈ (0, T),
dm̄t(Yt) =√2σT−tσ̄

−2
T−tΣ̄t(Yt)dW̃t,

and
d

dt
E[Σt(Xt)] = 2σ2

t σ̄
−4
t E[Σt(Xt)2].

Proof of Lemma 11. We first represent ∇logpt(Xt) and ∇2 log pt(Xt) via mt(Xt) and Σt(Xt).
Since {Xt}0≤t≤T solves (1), Xt = X0 + σ̄tξ with (X0, ξ) ∼ p⊗N (0, Id). Therefore, according to
Bayes rule, we have

∇ log pt(Xt) = 1

pt(Xt) ∫ ∇ log pt∣0(Xt∣x)p0,t(x,Xt)dx
= Ex∼p0∣t(⋅∣Xt)[σ̄−2t (Xt − x)]
= −σ̄−2t (Xt −mt(Xt)), (26)

30

where the second identity follows from the fact that pt∣0(⋅∣x) =N (x, σ̄2
t Id). The last identity follows

from the definition of mt(Xt) in Lemma 11. Similarly, according to Bayes rule, we can compute

∇
2 log pt(Xt)

=
1

pt(Xt) ∫ ∇2 log pt∣0(Xt∣x)p0,t(x,Xt)dx
+

1

pt(Xt) ∫ (∇ log pt∣0(Xt∣x))(∇ log pt∣0(Xt∣x))⊺p0,t(x,Xt)dx
−

1

pt(Xt)2 (∫ ∇ log pt∣0(Xt∣x)p0,t(x,Xt)dx)(∫ ∇ log pt∣0(Xt∣x)p0,t(x,Xt)dx)⊺
= −σ̄−2t Id + σ̄

−4
t Σt(Xt), (27)

where the second identity follows from the fact that pt∣0(⋅∣x) = N (x, σ̄2
t Id) and the definition of

Σt(Xt) in Lemma 11.

According to Bayes rule, we have

p0∣t(dx∣Xt)∝ exp(−1
2

∥Xt − x∥2
σ̄2
t

)p(dx)
and

q0∣t(dx∣Yt) = Z−1 exp(−1
2

∥Yt − x∥2
σ̄2
T−t

)p(dx)
= Z−1t exp(−1

2
σ̄−2T−t∥x∥2 + σ̄−2T−t⟨x,Yt⟩)p(dx)

∶= Z−1t exp(ht(x))p(dx), (28)

where Zt = ∫ exp(ht(x))p(dx) is a (random) normalization constant. From the above computations,
we can see that q0∣t(dx∣Yt) = p0∣T−t(dx∣XT−t) for all t ∈ [0, T]. Therefore, we have

m̄t(Yt) = EX∼q0∣t(⋅∣Yt)[X] =mT−t(XT−t), Σ̄t(Yt) = CovX∼q0∣t(⋅∣Yt)(X) = ΣT−t(XT−t),
where the identities hold in distribution. Therefore, to prove the first statement, it suffices to compute
dm̄t(Yt). To do so, we first compute dht(x), d[h(x), h(x)]t, dZt and d logZt.

dht(x) = σ̄−3T−t ˙̄σT−t∥x∥2dt − 2σ̄−3T−t ˙̄σT−tσ̄⟨x,Yt⟩dt + σ̄−2T−t⟨x, dYt⟩. (29)

According to the definition of Yt and (26), we have

dYt = 2σ
2
T−t∇ log pT−t(Yt)dt +√2σ2

T−tdW̃t

= −2σ2
T−tσ̄

−2
T−t(Yt − m̄t(Yt))dt +√2σ2

T−tdW̃t.

Therefore

d[h(x), h(x)]t = σ̄−4T−t∣x∣2[dY, dY]t = 2σ2
T−tσ̄

−4
T−t∥x∥2. (30)

Apply (29) and (30) and we get

dZt = ∫ exp(ht(x))(dht(x) + 1

2
d[h(x), h(x)]t)p(dx)

= σ̄−3T−t ˙̄σT−tEq0∣t(⋅∣Yt)[∥x∥2]Ztdt − 2σ̄
−3
T−t

˙̄σT−t⟨Yt, m̄t(Yt)⟩Ztdt

+ σ̄−2T−t⟨m̄t(Yt), dYt⟩Zt + σ
2
T−tσ̄

−4
T−tEq0∣t(⋅∣Yt)[∥x∥2]Ztdt, (31)

and

d logZt = Z
−1
t dZt −

1

2
Z−2t d[Z,Z]t

= −2σ̄−3T−t ˙̄σT−t⟨Yt, m̄t(Yt)⟩dt + σ̄−2T−t⟨m̄t(Yt), dYt⟩ − σ2
T−tσ̄

−4
T−t∥m̄t(Yt)∥2dt. (32)

31

If we further define Rt(Yt) ∶= q0∣t(dx∣Yt)
p(dx) = Z−1t exp(ht(x)). We have

dRt(Yt) = d exp(logRt(Yt)) = Rt(Yt)d(logRt(Yt)) + 1

2
Rt(Yt)d[logRt(Yt), logRt(Yt)]

= −Rt(Yt)d(logZt) +Rt(Yt)dht(x) + 1

2
Rt(Yt)d[ht(x) − logZt, ht(x) − logZt] (33)

With (29), (30), (31), (32) and (33), we have

dm̄t(Yt) = d∫ xRt(Yt)p(dx)
= ∫ x(− d(logZt) + dht(x) + 1

2
d[ht(x) − logZt, ht(x) − logZt])q0∣t(dx∣Yt)

=

√
2σT−tσ̄

−2
T−tΣ̄t(Yt)dW̃t, (34)

where most terms cancel in the last identity. Therefore, the first statement is proved. Next, we prove
the second statement. We have

d

dt
E[ΣT−t(XT−t)] = d

dt
E[Σ̄t(Yt)] = d

dt
E[ΣT−t(XT−t)]

=
d

dt
EYt∼pT−t

[Eq0∣t(⋅∣Yt)[x⊗2] − m̄t(Yt)⊗2]
=

d

dt
Eq0[x⊗2] − d

dt
E[m̄t(Yt)⊗2]

= −E[−2m̄t(Yt)dm̄t(Yt)⊺ + d[m̄t(Yt), m̄t(Yt)⊺]]
= 2σ̄−3T−t ˙̄σT−tE[Σ̄t(Yt)2]dt
= −2σ2

T−tσ̄
−4
T−tE[Σt(XT−t)2],

where the second last identity follows from (34) and the last identity follows from the definition of σ̄t.
Last, we reverse the time and get

d

dt
E[Σt(Xt)] = 2σ2

t σ̄
−4
t E[Σt(Xt)2].

The proof is completed.

Lemma 12. Under the conditions in Lemma 11, let {Yt}0≤t≤T be the solution to (2) with ft ≡ 0.
Define Lt ∶= ∇ log pT−t(Yt), then for any t ∈ [t←j , t←j+1), we have

E[∥Lt −Lt←
j
∥2] = 2d∫ t

t←
j

σ2
T−uσ̄

−4
T−udu + σ̄

−4
T−t←

j
E[tr(ΣT−t←

j
(XT−t←

j
))] − σ̄−4T−tE[tr(ΣT−t(XT−t))]

Proof of Lemma 12. First, according to the definition of Lt and Yt, it follows from Itô’s lemma that

dLt = ∇
2 log pT−t(Yt)(2σ2

T−t∇ log pT−t(Yt)dt +√2σT−tdW̃t) (35)

+∆(∇ log pT−t(Yt))σ2
T−tdt +

d(∇ log pT−t)
dt

(Yt)dt (36)

=

√
2σ2

T−t∇
2 log pT−t(Yt)dW̃t, (37)

where the last step follows from applying the Fokker Planck equation of (1) with ft ≡ 0, i.e.,
∂tpt = σ

2
t∆pt. Most of the terms are cancelled after applying the Fokker Planck equation. Now, for

fixed s > 0 and t > s, define Es,t ∶= E[∥Lt −Ls∥2]. Apply Itô’s lemma and (35), we have

dEs,t = 2E[⟨Lt −Ls, dLt⟩] + d[L]t
= 2E[⟨Lt −Ls,

√
2σ2

T−t∇ log pT−t(Yt)dW̃t⟩] + 2σ2
T−tE[∥∇2 log pT−t(Yt)∥2F]dt

= 2σ2
T−tE[∥∇2 log pT−t(Yt)∥2F]dt, (38)

32

where ∥A∥F denotes the Frobenius norm of any matrix A. According to (27), we have

dEs,t

dt
= 2σ2

T−tE[∥∇2 log pT−t(Yt)∥2F] = 2σ2
T−tE[∥∇2 log pT−t(XT−t)∥2F]

= 2σ2
T−tE[∥−σ̄−2T−tId + σ̄−4T−tΣT−t(XT−t)∥2F]

= 2dσ2
T−tσ̄

−4
T−t − 4σ

2
T−tσ̄

−6
T−tE[tr(ΣT−t(XT−t))] + 2σ2

T−tσ̄
−8
T−tE[tr(ΣT−t(XT−t)2)]

= 2dσ2
T−tσ̄

−4
T−t − 4σ

2
T−tσ̄

−6
T−tE[tr(ΣT−t(XT−t))] − σ̄−4T−t d

dt
E[tr(ΣT−t(XT−t))],

where the last identity follows from the proof of Lemma 11. Therefore, for any t ∈ [t←j , t←j+1), we
have

Et←
j
,t = 2d∫

t

t←
j

σ2
T−uσ̄

−4
T−udu − 4∫

t

t←
j

σ2
T−uσ̄

−6
T−uE[tr(ΣT−u(XT−u))]du

−∫
t

t←
j

σ̄−4T−u
d

du
E[tr(ΣT−u(XT−u))]

= 2d∫
t

t←
j

σ2
T−uσ̄

−4
T−udu − 4∫

t

t←
j

σ2
T−uσ̄

−6
T−uE[tr(ΣT−u(XT−u))]du

− σ̄−4T−tE[tr(ΣT−t(XT−t))] + σ̄−4T−t←
j
E[tr(ΣT−t←

j
(XT−t←

j
))]

+ 4∫
t

t←
j

σ2
T−uσ̄

−6
T−uE[tr(ΣT−u(XT−u))]

= 2d∫
t

t←
j

σ2
T−uσ̄

−4
T−udu − σ̄

−4
T−tE[tr(ΣT−t(XT−t))] + σ̄−4T−t←

j
E[tr(ΣT−t←

j
(XT−t←

j
))]

The proof is completed.

F Sampling error for Gaussian data distributions

In this section, we consider a special case when the data distribution is a mixture of Gaussians, i.e.,

p(x) =N (x;m,σ2Id), (39)

where N (x;m,σ2Id) is the density of Gaussian random vector with mean m and covariance σ2Id.
In this case, the score function ∇ log pt(x) can be explicitly calculated from any t > 0, see Lemma
14. Therefore, the sampling process (11) can be implemented with zero score estimation error via the
following piecewise SDE: for any t ∈ [t←j , t←j+1),

dȲt = 2σ
2
T−t∇ log pT−t←

j
(Ȳt←

j
)dt +√2σ2

T−tdW̄t. (40)

The iterates, (Ȳt←
j
), are all Gaussians with explicit means and covariance matrices, see Lemma 15.

As a consequence, we can quantify the quantity, KL(pδ ∣qT−δ) in Theorem 2 explicitly since both
distributions are Gaussians.

Lemma 13 (KL-divergence error for Gaussian data distribution). Assume the data distribution has
density given by (39). Let (Ȳt←

j
)Nj=0 be defined by (40) with initial condition Ȳ0 ∼ N (0, σ̄2

T Id).
Denote qt = Law(Ȳt) for all 0 ≤ t ≤ T − δ. Then

KL(pδ ∣qT−δ) = d

2
(Eσ − 1 − logEσ) + ∥m∥2 (σ2 + σ̄2

T)2
σ2 + σ̄2

δ

Eσ, (41)

where Eσ is a positive constant depending on the variance schedule (σ̄T−t←
j
)Nj=0, given by

E−1σ =
(σ2 + σ̄2

δ)σ̄2
T(σ2 + σ̄2

T)2 +
N−1

∑
j=0

(σ2 + σ̄2
δ)(σ̄2

T−t←
j
− σ̄2

T−t←
j+1
)

(σ2 + σ̄2
T−t←

j+1
)2 .

33

Proof of Lemma 13. pδ = p∗N (0, σ̄2
δ) =N (m, (σ2+σ̄2

δ)Id) and qT−δ = Law(Ȳt←
N
) =N (mN ,ΣN)

with (mN ,ΣN) given in Lemma 15. Therefore, we have

KL(pδ ∣qT−δ) = KL(N (m, (σ2
+ σ̄2

δ)Id)∣N (mN ,ΣN))
=
1

2
log

det(ΣN)
det((σ2 + σ̄2

δ)Id) −
d

2
+
1

2
tr((σ2

+ σ̄2
δ)Σ−1N) + (mN −m)⊺Σ−1N (m −mN)

=
d

2
log((σ2 + σ̄2

δ)σ̄2
T(σ2 + σ̄2

T)2 +
N−1

∑
j=0

(σ2 + σ̄2
δ)(σ̄2

T−t←
j
− σ̄2

T−t←
j+1
)

(σ2 + σ̄2
T−t←

j+1
)2) − d

2

+
d

2
((σ2 + σ̄2

δ)σ̄2
T(σ2 + σ̄2

T)2 +
N−1

∑
j=0

(σ2 + σ̄2
δ)(σ̄2

T−t←
j
− σ̄2

T−t←
j+1
)

(σ2 + σ̄2
T−t←

j+1
)2)−1

+ (σ̄2
T + (σ2

+ σ̄2
T)2 N−1

∑
j=0

(σ̄2
T−t←

j
− σ̄2

T−t←
j+1
)

(σ2 + σ̄2
T−t←

j+1
)2)

−1∥m∥2.

Lemma 14 (Explicit score function for mixture of Gaussian target). Assume the data distribution
has density given by (39), then the score function is given by

∇ log pt(x) = − x −m

σ2 + σ̄2
t

. (42)

Proof. Since the forward process (1) with ft ≡ 0 is the just a process that keeps adding noise, the
density pt along the process is a convolution between data density and a Gaussian density with mean
zero and covariance σ̄2

t Id:

pt(x) = p ∗N (⋅ ; 0, σ̄2
t Id)(x) =N (x;m, (σ2

+ σ̄2
t)Id).

Therefore, we have

∇pt(x) = (2π(σ2
+ σ̄2

t))−d/2 exp (− ∥x −m∥2
2(σ2 + σ̄2

t))(−
x −m

σ2 + σ̄2
t

)
= −

x −m

σ2 + σ̄2
t

N (x;m, (σ2
+ σ̄2

t)Id).
(42) follows directly from the above computations.

Lemma 15 (Gaussian iterates along the trajectory). Assume the data distribution has density given
by (39). Let (Ȳt←

j
) be defined by (40) with initial condition Ȳ0 ∼N (0, σ̄2

T Id). Then for all 0 ≤ j ≤ N ,

Ȳt←
j
∼N (mj ,Σj) with

mj =

σ̄2
T−t←

0
+ σ̄2

T−t←
j

σ2 + σ̄2
T−t←

0

m, (43)

Σj = ((σ
2 + σ̄2

T−t←
j
)2σ̄2

T(σ2 + σ̄2
T−t←

0
)2 +

j−1

∑
l=0

(σ2 + σ̄2
T−t←

j
)2(σ̄2

T−t←
l
− σ̄2

T−t←
l+1
)

(σ2 + σ̄2
T−t←

l+1

)2)Id. (44)

Proof of Lemma 15. According to Lemma 14, (40) can be written as

dȲt = −2σ
2
T−t

Ȳt←
j
−m

σ2 + σ̄2
T−t←

j

dt +
√

2σ2
T−tdW̄t,

34

which implies that for any j ∈ 0,1,⋯,N − 1:

Ȳt←
j+1
− Ȳt←

j
= −2

∫ t←j+1
t←
j

σ2
T−tdt

σ2 + σ̄2
T−t←

j

(Ȳt←
j
−m) +

¿ÁÁÀ2∫
t←
j+1

t←
j

σ2
T−tdtUj+1

= −

σ̄2
T−t←

j
− σ̄2

T−t←
j+1

σ2 + σ̄2
T−t←

j

(Ȳt←
j
−m) +√σ̄2

T−t←
j
− σ̄2

T−t←
j+1

Uj+1,

Ô⇒ Ȳt←
j+1
= (1 − σ̄2

T−t←
j
− σ̄2

T−t←
j+1

σ2 + σ̄2
T−t←

j

)Ȳt←
j
+

σ̄2
T−t←

j
− σ̄2

T−t←
j+1

σ2 + σ̄2
t←
j

m +
√

σ̄2
T−t←

j
− σ̄2

T−t←
j+1

Uj+1

(45)

where (Uj)Nj=1 are i.i.d. standard Gaussian vectors in R
d. Since Ȳt←

0
is Gaussian, by induction, we

prove that Ȳt←
j

is Gaussian for all j = 1,⋯,N . Denote Ȳt←
j
∼N (mj ,Σj). According to (45) and the

independence between Uj+1 and Ȳt←
j

, we have

mj+1 = (1 − σ̄2
T−t←

j
− σ̄2

T−t←
j+1

σ2 + σ̄2
T−t←

j

)mj +

σ̄2
T−t←

j
− σ̄2

T−t←
j+1

σ2 + σ̄2
t←
j

m,

Ô⇒ mj+1 −m =
σ2 + σ̄2

T−t←
j+1

σ2 + σ̄2
T−t←

j

(mj −m),
Ô⇒ mj =

σ2 + σ̄2
T−t←

j

σ2 + σ̄2
T−t←

0

(m0 −m) +m = σ̄2
T−t←

0
+ σ̄2

T−t←
j

σ2 + σ̄2
T−t←

0

m.

Again, according to (45) and the independence between Uj+1 and Ȳt←
j

, we get a relation between

consecutive covariance matrices:

Σj+1 = (1 − σ̄2
T−t←

j
− σ̄2

T−t←
j+1

σ2 + σ̄2
T−t←

j

)2Σj + (σ̄2
T−t←

j
− σ̄2

T−t←
j+1
)Id,

Ô⇒

Σj+1(σ2 + σ̄2
T−t←

j+1
)2 = Σj(σ2 + σ̄2

T−t←
j
)2 +

σ̄2
T−t←

j
− σ̄2

T−t←
j+1(σ2 + σ̄2

T−t←
j+1
)2 Id,

Ô⇒

Σj(σ2 + σ̄2
T−t←

j
)2 = Σ0(σ2 + σ̄2

T−t←
0
)2 +

j−1

∑
l=0

σ̄2
T−t←

l
− σ̄2

T−t←
l+1(σ2 + σ̄2

T−t←
l+1

)2 Id,
Ô⇒ Σj = ((σ

2 + σ̄2
T−t←

j
)2σ̄2

T(σ2 + σ̄2
T−t←

0
)2 +

j−1

∑
l=0

(σ2 + σ̄2
T−t←

j
)2(σ̄2

T−t←
l
− σ̄2

T−t←
l+1
)

(σ2 + σ̄2
T−t←

l+1

)2)Id.

G Full error analysis

Proof of Theorem 3. We only need to deal with ES . By applying the same schedules to training
objective, we obtain

ES =

N−1

∑
j=0

σ2
tN−j

w(tN−j) ⋅w(tN−j)(tN−j − tN−j−1)
1

σ̄tN−j

EX0
Eξ∥σ̄tN−js(θ; tN−j ,XtN−j) + ξ∥2

+

N−1

∑
j=0

σ2
tN−j

w(tN−j) ⋅w(tN−j)(tN−j − tN−j−1) ⋅C
≤max

j

σ2
tN−j

w(tN−j) ⋅ (L̄(W) + C̄).

35

Together with

L̄(W (k)) + C̄ ≤ ∣L̄(W (K)) − L̄em(W (K)) + L̄em(θ∗) − L̄(θ∗)∣ + ∣L̄em(W (K)) − L̄em(θ∗)∣
+ ∣L̄(θ∗) − L̄(θF)∣ + ∣L̄(θF) + C̄ ∣,

we have the result.

H Proofs for Section 4.1

H.1 Proof of “bell-shaped” curve

Proof of Proposition 1. Fix xi, ξij , σ̄tN . By definition of the network S(θ; tj ,Xij), it is continuous
with respect to Xij .

For 1, Xij = xi+σ̄tjξij , and thus S(θ; tj ,Xij) is also continuous w.r.t. σ̄tj . Also, since σ̄tj ∈ [0, σ̄tN],
there exists M0 > 0, s.t.,

S(θ; tj , xi + σ̄tjξij) ∈ [−M0,M0]d.
Then for any ϵ1 > 0, there exists δ = ϵ1√

dM0

> 0, s.t., ∀ 0 ≤ σ̄tj < δ1, we have

∥σ̄tjS(θ; tj , xi + σ̄tjξij) + ξij∥ ≥ ∥ξij∥ − ∥σ̄tjS(θ; tj , xi + σ̄tjξij)∥
≥ ∥ξij∥ −√dM0σ̄tj

≥ ∥ξij∥ − ϵ1.
For 2, by the positive homogeniety of ReLU,

S(θ; tj , xi + σ̄tjξij) = σ̄tjS (θ; tj , xi

σ̄tj

+ ξij) .
Consider σ̄tj ≥M , for some M > 0. Then

∥σ̄tjS(θ; tj , xi + σ̄tjξij) + ξij∥ = ∥σ̄2
tj
S (θ; tj , xi

σ̄tj

+ ξij) + ξij∥
≥ ∥σ̄2

tj
S (θ; tj , xi

σ̄tj

+ ξij)∥ − ∥ξij∥
≥M2 ∥S (θ; tj , xi

σ̄tj

+ ξij)∥ − ∥ξij∥ . (46)

For any y ∈ D(M), where D(M) = {y ∈ Rd ∶ ys ∈ [(ξij)s − ∣(xi)s∣/M, (ξij)s + ∣(xi)s∣/M], ∀ s =
1,⋯, d}, ∥S(θ; tj , y)∥ ≥ ∥S(θ; tj , ξij)∥ − ∥S(θ; tj , y) − S(θ; tj , ξij)∥. (47)

Since S is differentiable a.e., by the fundamental theorem of calculus,

S(θ; tj , y) − S(θ; tj , ξij) = ∫ y

ξij

S′x(θ; tj , x)dx.
Then

∥S(θ; tj , y) − S(θ; tj , ξij)∥ ≤ 1

M
⋅M1, (48)

where M1 =maxs(xi)s ⋅ ess supx∈D(M2) ∥S′x(θ; tj , x)∥ < +∞ for some fixed 0 <M2 <M .

Combining (46),(47), and (48), we have

∥σ̄tjS(θ; tj , xi + σ̄tjξij) + ξij∥ ≥M2 (∥S(θ; tj , ξij)∥ − M1

M
) − ∥ξij∥

=M2 (∥S(θ; tj , ξij)∥ − M1

M
−
∥ξij∥
M2
) .

Then ∀ ϵ2 > 0, there exists M =max{M1+

√
M2

1
+4ϵ2∥ξij∥

2ϵ2
,M2} > 0, s.t., when σ̄tj >M , we have

∥σ̄tjS(θ; tj , xi + σ̄tjξij) + ξij∥ ≥M2(∥S(θ; tj , ξij)∥ − ϵ2).

36

H.2 Proof of optimal rate

Proof of Corollary 2. If ∣f(θ(k); i, j) − f(θ(k); l, s)∣ ≤ ϵ for all i, j, l, s and k >K, then by Lemma 1

and 7, we choose the maximum f(θ(k); i, j) for the lower bound, which is of order O(ϵ) away from

the other f(θ(k); i, j)′s. Therefore, we can take j∗(k) = argmaxj f(θ(k); i, j) and absorb the O(ϵ)
error in constant factors. Then the result naturally follows.

H.3 Proof of comparisons of ES

Recall that the training objective of EDM is defined in the following

Eσ̄∼ptrain
Ey,nλ(σ̄)∥Dθ(y + n; σ̄) − y∥2 = 1

Z1
∫ 1

σ̄
e
−
(log σ̄−Pmean)2

2P2
std ⋅

σ̄2 + σ2
data

σ̄2σ2
data

⋅ σ̄2
EX0,ξ∥σ̄s(θ; t,Xt) + ξ∥2 dσ̄.

Let βj = C1βEDM, i.e.,

w(tj)
σ̄tj

(tj − tj−1) = C1 ⋅ e
−
(log σ̄tj

−Pmean)2
2P2

std ⋅
σ̄2
tj
+ σ2

data

σ̄2
tj
σ2
data

⋅ σ̄tj

w(tj) = C1 ⋅
σ̄tj

tj − tj−1
⋅ e
−
(log σ̄tj

−Pmean)2
2P2

std ⋅
σ̄2
tj
+ σ2

data

σ̄2
tj
σ2
data

⋅ σ̄tj

EDM. Consider σ̄t = t and tj = (σ̄1/ρ
max − (σ̄1/ρ

max − σ̄
1/ρ
min)N−jN

)ρ for j = 0,⋯,N . Then

w(tj) = C1 ⋅
tj

tj − tj−1
⋅ e
−
(log tk−Pmean)2

2P2
std ⋅

tj
2 + σ2

data

tjσ
2
data

= C1 ⋅
1

(σ̄1/ρ
max − (σ̄1/ρ

max − σ̄
1/ρ
min)N−jN

)ρ − (σ̄1/ρ
max − (σ̄1/ρ

max − σ̄
1/ρ
min)N−j+1N

)ρ

⋅ e
−
(log (σ̄1/ρ

max−(σ̄1/ρ
max−σ̄

1/ρ
min

)N−j
N

)ρ−Pmean)2
2P2

std ⋅

(σ̄1/ρ
max − (σ̄1/ρ

max − σ̄
1/ρ
min)N−jN

)2ρ + σ2
data

σ2
data

Then the maximum of
σ2
tj

w(tj) =
tj

w(tj) appears at j = N

max
j

σ2
tj

w(tj) =max
j

tj

w(tj) =
σ̄maxσ

2
datae

(Pmean−log σ̄max)2
2P2

std

C1(σ̄2
max + σ

2
data) ⋅

⎛⎝σ̄max −
⎛⎝σ̄1/ρ

max −
σ̄
1/ρ
max − σ̄

1/ρ
min

N

⎞⎠
ρ⎞⎠

Song et al. [46]. Consider σ̄t =

√
t and tj = σ̄

2
max (σ̄2

min

σ̄2
max
)N−j

N

for j = 0,⋯,N . Then

w(tj) = C1 ⋅

√
tj

tj − tj−1
⋅ e
−
(log√tj−Pmean)2

2P2
std ⋅

tj + σ
2
data√

tjσ
2
data

= C1 ⋅
1

σ̄2
max (σ̄2

min

σ̄2
max
)N−j

N

− σ̄2
max (σ̄2

min

σ̄2
max
)N−j+1

N

⋅ e
−

⎛⎜⎝log σ̄max(σ̄min
σ̄max

)
N−j
N

−Pmean

⎞⎟⎠
2

2P2
std ⋅

σ̄2
max (σ̄2

min

σ̄2
max
)N−j

N

+ σ2
data

σ2
data

Then

max
j

σ2
tj

w(tj) =max
j

1

2w(tj) =
σ̄maxσ

2
datae

(Pmean−log σ̄max)2
2P2

std

C1(σ̄2
max + σ

2
data) ⋅

1

2
(σ̄max − σ̄max (σ̄2

min

σ̄2
max

) 1/N)
37

I Proofs for Section 4.2

I.1 Proof when EI +ED dominates.

Under the EDM choice of variance, σ̄t = t for all t ∈ [0, T], and study the optimal time schedule
when ED +EI dominates. First, it follows from Theorem 2 that

EI +ED ≲
m2

2

T 2
+ d

N−1

∑
j=0

γ2
j(T − t←j)2

+ (m2
2 + d)(∑

T−t←
j
≥1

γ2
j(T − t←j)4 +

γ3
j(T − t←j)5 + ∑

T−t←
j
<1

γ2
j(T − t←j)2 +

γ3
j(T − t←j)3)

Based on the above time schedule dependent error bound, we quantify the errors under polynomial
time schedule and exponential time schedule.

Polynomial time schedule. we consider T − t←j = (δ1/a + (N − j)h)a with h = T 1/a
−δ1/a
N

and a > 1,

γj = a(δ1/a + (N − j − ϑ)h)a−1h for some ϑ ∈ (0,1). We have γj/h ∼ a(T − t←j) a−1
a and

EI +ED ≲
m2

2

T 2
+
da2T

1
a

δ
1
aN

+ (m2
2 + d)(a2T

1
a

δ
1
aN
+
a3T

2
a

δ
2
aN2

)
Therefore, to obtain EI +ED ≲ ε, it suffices to require T = Θ(m2

ε1/2) and the iteration complexity

N = Ω(a2(m2

δε
1
2

) 1
a
m2

2 + d

ε
)

For fixed m2, δ and ε, optimal value of a that minimizes the iteration complexity N is a = 1
2
ln(m2

δε1/2).
Once we let δ = σ̄min, T = σ̄max = Θ(m2

ε1/2) and a = ρ, the iteration complexity is

N = Ω(m2
2 ∨ d

d
ρ2(σ̄max

σ̄min

)1/ρσ̄2
max),

and it is easy to see that our theoretical result supports what’s empirically observed in EDM that there
is an optimal value of ρ that minimizes the FID.

Exponential time schedule. we consider γj = κ(T − t←j) with κ =
ln(T /δ)

N
, we have

EI +ED ≲
m2

2

T 2
+
d ln(T /δ)2

N
+ (m2

2 + d)(ln(T /δ)2
N

+
ln(T /δ)3

N2
)

Therefore, to obtain EI +ED ≲ ε, it suffices to require T = Θ(m2

ε
1
2

) and the iteration complexity

N = Ω(m2
2 + d

ε
ln(m2

δε
1
2

)2)
When m2 ≤ O(√d), the exponential time schedule is asymptotic optimal, hence it is better than the
polynomial time schedule when the initilization error and discretization error dominate. Once we let
δ = σ̄min, T = σ̄max = Θ(m2

ε1/2), the iteration complexity is

N = Ω(m2
2 ∨ d

d
ln (σ̄max

σ̄min

)2σ̄2
max).

Now we adopt the variance schedule in [46], σ̄t =

√
t for all t ∈ [0, T], it follows from Theorem 2

that

EI +ED ≲
m2

2

T
+ d

N−1

∑
j=0

γ2
j(T − t←j)2 + (m2

2 + d)(∑
T−t←

j
≥1

γ2
j(T − t←j)3 + ∑

T−t←
j
<1

γ2
j(T − t←j)2)

Polynomial time schedule. we consider T − t←j = (δ1/a + (N − j)h)a with h = T 1/a
−δ1/a
N

and a > 1,

γj = a(δ1/a + (N − j − ϑ)h)a−1h for some ϑ ∈ (0,1). We have γj/h ∼ a(T − t←j) a−1
a and

EI +ED ≲
m2

2

T
+
da2T

1
a

δ
1
aN

+ (m2
2 + d)a2T

1
a

δ
1
aN

38

Therefore, to obtain EI +ED ≲ ε, it suffices to require T = Θ(m2
2

ε
) and the iteration complexity

N = Ω(a2(m2
2

δε
) 1

a
m2

2 + d

ε
)

Once we let δ = σ̄2
min, T = σ̄2

max = Θ(m2
2

ε
) and a = ρ, the iteration complexity is

N = Ω(m2
2 ∨ d

d
ρ2(σ̄max

σ̄min

)2/ρσ̄2
max).

Compared to exponential time schedule with the EDM choice of variance schedule, this iteration

complexity is worse up to a factor (σ̄max

σ̄min
)1/ρ.

Exponential time schedule. we consider γj = κ(T − t←j) with κ =
ln(T /δ)

N
, we have

EI +ED ≲
m2

2

T
+
d ln(T /δ)2

N
+ (m2

2 + d) ln(T /δ)2
N

Therefore, to obtain EI +ED ≲ ε, it suffices to require T = Θ(m2
2

ε
) and the iteration complexity

N = Ω(m2
2 + d

ε
ln(m2

2

δε
)2)

Once we let δ = σ̄2
min, T = σ̄2

max = Θ(m2
2

ε
) and a = ρ, the iteration complexity is

N = Ω(m2
2 ∨ d

d
ln (σ̄max

σ̄min

)2σ̄2
max).

Compared to exponential time schedule with the EDM choice of variance schedule, this iteration
complexity has the same dependence on dimension parameters m2, d and the minimal/maximal
variance σ̄min, σ̄max.

Optimality of Exponential time schedule. For simplicity, we assume m2
2 = O(d). Then under both

schedules in [30] and [46], EIs only dependent on T , and are independent of the time schedule. Both
EDs satisfy

ED ≲ d
N−1

∑
j=0

γ2
j(T − t←j)2 ≲ ε

Let τj = ln (T−t←j
T−t←

j+1

) ∈ (0,∞). Then
γj

T−t←
j

= 1 − e−τj and ∑δ<T−t←
j
<T τj = ln(T /δ) is fixed.

Since x ↦ (1 − e−x)2 is convex on the domain x ∈ (0,∞), according the Jensen’s inequality,

∑δ<T−t←
j
<T

γ2
j

(T−t←
j
)2 reaches its minimum when τj are constant-valued for all j, which implies the

exponential schedule is optimal to minimize ED, hence optimal to minimize ED +EI .

39

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ” provided a
proper justification is given (e.g., ”error bars are not reported because it would be too computationally
expensive” or ”we were unable to find the license for the dataset we used”). In general, answering
”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state it in Section 1 and Appendix A.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 1 and Appendix A.

40

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[Yes]

Justification: See Appendix and Theorems in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: No experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

41

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: No experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

42

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA] .

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

43

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: It has been confirmed by Ethics reviewers.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section 1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.

44

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We show new methods and theorems.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

45

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

46

	Introduction
	Related works
	Notations

	Basics of diffusion-based generative models
	Forward and backward processes
	The training of score function via denoising score matching

	Error analysis for diffusion-based generative models
	Training
	Sampling
	Full error analysis

	Theory-based understanding of the design space and its relation to existing empirical counterparts
	Choice of total weighting for training
	Inversely ``bell-shaped'' loss tj S(;tj,Xij)+ij as a function of time index j
	 Ensuring comparable values of f(;i,j) for optimal rate of convergence
	``Bell-shaped'' weighting: our theory and EDM

	Choice of time and variance schedules
	When score error ES dominates
	When discretization error ED and initialization error EI dominate

	Conclusions and limitations
	Notations
	Derivation of denoising score matching objective
	Proofs for training
	Proof of lower bound of the gradient at the initialization
	Geometric ideas used in the proof

	Proofs related to random initialization
	Proofs related to perturbation
	Proofs related to the evolution of the algorithm

	Proofs for sampling
	Sampling error for Gaussian data distributions
	Full error analysis
	Proofs for Section 4.1
	Proof of ``bell-shaped'' curve
	Proof of optimal rate
	Proof of comparisons of ES

	Proofs for Section 4.2
	Proof when EI+ED dominates.

