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ABSTRACT

Given an unnormalized probability density π ∝ e−V , estimating its normalizing

constant Z =
∫
Rd e
−V (x)dx or free energy F = − logZ is a crucial problem

in Bayesian statistics, statistical mechanics, and machine learning. It is challeng-
ing especially in high dimensions or when π is multimodal. To mitigate the high
variance of conventional importance sampling estimators, annealing-based meth-
ods such as Jarzynski equality and annealed importance sampling are commonly
adopted, yet their quantitative complexity guarantees remain largely unexplored.
We take a first step toward a non-asymptotic analysis of annealed importance sam-

pling. In particular, we derive an oracle complexity of Õ
(

dβ2A2

ε4

)
for estimating

Z within ε relative error with high probability, where β is the smoothness of V
and A denotes the action of a curve of probability measures interpolating π and
a tractable reference distribution. Our analysis, leveraging Girsanov theorem and
optimal transport, does not explicitly require isoperimetric assumptions on the tar-
get distribution. Finally, to tackle the large action of the widely used geometric
interpolation of probability distributions, we propose a new normalizing constant
estimation algorithm based on reverse diffusion samplers and establish a frame-
work for analyzing its complexity.

1 INTRODUCTION

We study the problem of estimating the normalizing constant Z =
∫
Rd e
−V (x)dx of an unnormalized

probability density function (p.d.f.) π ∝ e−V on Rd, so that π(x) = 1
Z e−V (x). The normalizing

constant appears in various fields: in Bayesian statistics, when e−V is the product of likelihood
and prior, Z is also referred to as the marginal likelihood or evidence (Gelman et al., 2013); in
statistical mechanics, when V is the Hamiltonian1, Z is known as the partition function, and F :=
− logZ is called the free energy (Chipot & Pohorille, 2007; Lelièvre et al., 2010; Pohorille et al.,
2010). The task of normalizing constant estimation has numerous applications, including computing
log-likelihoods in probabilistic models (Sohl-Dickstein & Culpepper, 2012), estimating free energy
differences (Lelièvre et al., 2010), and training energy-based models in generative modeling (Song
& Kingma, 2021; Carbone et al., 2023; Sander et al., 2025). It is challenging in high dimensions or
when π is multimodal (i.e., V has a complex landscape).

Conventional approaches based on importance sampling (Meng & Wong, 1996) are widely adopted
to tackle this problem, but they suffer from high variance due to the mismatch between target and
proposal distributions when the target distribution is complicated (Chatterjee & Diaconis, 2018).
To alleviate this issue, the technique of annealing tries constructing a sequence of intermediate
distributions that bridge these two distributions, which motivates several popular methods including
path sampling (Chen & Shao, 1997; Gelman & Meng, 1998), annealed importance sampling (AIS,
Neal (2001)), and sequential Monte Carlo (SMC, Doucet et al. (2000); Del Moral et al. (2006); Syed

1Up to a multiplicative constant β =
1

kBT
known as the thermodynamic beta, where kB is the Boltzmann

constant and T is the temperature. When borrowing terminologies from physics, we ignore this quantity for
simplicity.
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et al. (2024)) in statistics literature, as well as thermodynamic integration (TI, Kirkwood (1935)) and
Jarzynski equality (JE, Jarzynski (1997); Ge & Jiang (2008); Hartmann et al. (2019)) in statistical
mechanics literature. In particular, JE points out the connection between the free energy difference
between two states and the work done over a series of trajectories linking these two states, while
AIS constructs a sequence of intermediate distributions and estimates the normalizing constant by
importance sampling over these distributions. These are our primary focus in this paper.

Despite the empirical success of annealing-based methods (Ma et al., 2013; Krause et al., 2020;
Mazzanti & Romero, 2020; Yasuda & Takahashi, 2022; Chen & Ying, 2024; Schönle et al., 2025),
the theoretical understanding of their performance is still limited. Existing works for importance
sampling mainly focus on the asymptotic bias and variance of the estimator (Meng & Wong, 1996;
Gelman & Meng, 1998), while works on JE usually simplify the problem by assuming the work
follows simple distributions (e.g., Gaussian or gamma) (Echeverria & Amzel, 2012; Arrar et al.,
2019). Moreover, only analyses asymptotic in the number of particles derived from central limit
theorem exist (Lelièvre et al., 2010, Sec. 4.1). In this paper, we aim to establish a rigorous non-
asymptotic analysis of estimators based on JE and AIS, while introducing minimal assumptions
on the target distribution. Moreover, we also propose a new algorithm based on reverse diffusion
samplers to tackle a potential shortcoming of AIS.

Contributions. Our key technical contributions are summarized as follows.

• We discover a novel strategy for analyzing the complexity of normalizing constant estimation,
applicable to a wide range of target distributions (see Assumps. 1 and 2) that may not satisfy isoperi-
metric conditions such as log-concavity.
• In Sec. 4, we study JE and prove an upper bound on the time required for running the annealed
Langevin dynamics to estimate the normalizing constant within ε relative error with high probability.
The final bound depends on the action of the curve, specifically the integral of the squared metric
derivative in Wasserstein-2 distance.
• Building on the insights from the analysis of the continuous dynamics, in Sec. 5 we establish the
first non-asymptotic oracle complexity bound for AIS, representing the first analysis of normalizing
constant estimation algorithms without assuming a log-concave target distribution.
• Finally, in Sec. 6, we point out a potential limitation of the geometric interpolation commonly
used in annealing. To address this issue, we propose a novel algorithm based on reverse diffusion
samplers and build up a framework for analyzing its oracle complexity.

2 PRELIMINARIES

2.1 STOCHASTIC DIFFERENTIAL EQUATIONS AND GIRSANOV THEOREM

Throughout this paper, (Bt) and (Wt) represent standard Brownian motions (BM) on Rd. For a
stochastic differential equation (SDE) X = (Xt)t∈[0,T ] defined on Ω = C([0, T ];Rd), the distribu-

tion of X over Ω is called the path measure of X , defined by PX : measurable A ⊂ Ω 7→ Pr(X ∈
A). The following lemma, as a corollary of the Girsanov theorem (Üstünel & Zakai, 2013, Prop.
2.3.1 & Cor. 2.3.1), provides a method for computing the Radon-Nikodým (RN) derivative and KL
divergence between two path measures, which serves as a key technical tool in our proof.

Lemma 1. Assume we have the following two SDEs with t ∈ [0, T ]:

dXt = at(Xt)dt+ σdBt, X0 ∼ µ; dYt = bt(Yt)dt+ σdBt, Y0 ∼ ν.

Denote the path measures of X and Y as PX and PY , respectively. Then for any trajectory ξ ∈ Ω,

log
dPX

dPY
(ξ) = log

dµ

dν
(ξ0) +

1

σ2

∫ T

0

⟨at(ξt)− bt(ξt), dξt⟩ −
1

2σ2

∫ T

0

(∥at(ξt)∥2 − ∥bt(ξt)∥2)dt.

In particular, plugging in ξ ← X ∼ PX , we can compute the KL divergence:

KL(PX∥PY ) = KL(µ∥ν) + 1

2σ2

∫ T

0

EPX ∥at(Xt)− bt(Xt)∥2dt.

We now define the backward SDE, which can be perceived as the time-reversal of a forward SDE.
Given a BM (Bt)t∈[0,T ], let its time-reversal be (B←t := BT−t)t∈[0,T ]. We say that a process
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(X←t )t∈[0,T ] satisfies the backward SDE dX←t = at(X
←
t )dt + σdB←t , t ∈ [0, T ]; X←T ∼ ν if

its time-reversal (Xt = X←T−t)t∈[0,T ] satisfies the following forward SDE: dXt = −aT−t(Xt)dt+
σdBt, t ∈ [0, T ]; X0 ∼ ν.

The forward and backward SDEs are related through the Nelson’s relation (Lem. 3), which also
allows us to calculate the RN derivative between path measures of forward and backward SDEs
(Lem. 4). We postpone the detailed derivations to App. A.

2.2 WASSERSTEIN DISTANCE, METRIC DERIVATIVE, AND ACTION

We provide a concise overview of essential concepts in optimal transport (OT) that will be used in
the paper. See standard textbooks (Villani, 2003; 2008; Ambrosio et al., 2008; 2021) for details.

For two probability measures µ, ν on Rd with finite second-order moments, the Wasserstein-2 (W2)

distance between µ and ν is defined as W2(µ, ν) = infγ∈Π(µ,ν)

(∫
∥x− y∥2γ(dx, dy)

) 1
2 , where

Π(µ, ν) is the set of all couplings of (µ, ν). The Brenier’s theorem states that when µ has a Lebesgue
density, then there exists a unique coupling (id×Tµ→ν)♯ µ that reaches the infimum. Here, ♯ stands

for the push-forward of a measure (T♯µ(·) = µ({ω : T (ω) ∈ ·})), and Tµ→ν is known as the OT
map from µ to ν and can be written as the gradient of a convex function.

Given a vector field v = (vt)t∈[a,b] and a curve of probability measures ρ = (ρt)t∈[a,b] with finite

second-order moment on Rd, we say that v generates ρ if the continuity equation ∂tρt+∇·(ρtvt) =
0, t ∈ [a, b] holds in the weak sense. The metric derivative of ρ at t ∈ [a, b] is defined as

|ρ̇|t := lim
δ→0

W2(ρt+δ, ρt)

|δ| ,

which can be interpreted as the speed of this curve. We say ρ is absolutely continuous (AC) if |ρ̇|t
exists and is finite for Lebesgue-a.e. t ∈ [a, b]. The metric derivative and the continuity equation are
related through the following fact (Ambrosio et al., 2008, Thm. 8.3.1 & Prop. 8.4.5):

Lemma 2. For an AC curve of probability measures (ρt)t∈[a,b], any vector field (vt)t∈[a,b] that gen-

erates (ρt)t∈[a,b] satisfies |ρ̇|t ≤ ∥vt∥L2(ρt) for Lebesgue-a.e. t ∈ [a, b]. Moreover, there exists an

a.s. unique vector field (v∗t ∈ L2(ρt))t∈[a,b] that generates (ρt)t∈[a,b] and satisfies |ρ̇|t = ∥v∗t ∥L2(ρt)

for Lebesgue-a.e. t ∈ [a, b], which is v∗t = limδ→0
Tρt→ρt+δ

−id
δ .

Finally, we define the action of an AC curve of probability measures (ρt)t∈[a,b] as
∫ b

a
|ρ̇|2tdt, which

plays a key role in characterizing the efficiency of a curve for normalizing constant estimation. For
basic properties of the action and its relation to isoperimetric inequalities such as log-Sobolev and
Poincaré inequalities, we refer the reader to Guo et al. (2025, Lem. 3 & Ex. 1).

2.3 LANGEVIN DIFFUSION AND LANGEVIN MONTE CARLO

The (overdamped) Langevin diffusion (LD) with target distribution π ∝ e−V is the solution to

dXt = −∇V (Xt)dt+
√
2dBt, t ∈ [0,∞). (1)

Under mild regularity conditions, π is the unique stationary distribution of this SDE, and when π has
good properties such as strong log-concavity, Xt converges to π in probability rapidly. In practice,
when the closed-form solution of this SDE is unavailable, one usually leverages the Euler-Maruyama
scheme to discretize Eq. (1), leading to the (overdamped) Langevin Monte Carlo (LMC) algo-
rithm: with step size h > 0, iterate the following update rule for k = 0, 1, ...:

X(k+1)h = Xkh−h∇V (Xkh)+
√
2(B(k+1)h−Bkh), where B(k+1)h−Bkh

i.i.d.∼ N (0, hI) . (2)

2.4 REVERSE DIFFUSION SAMPLERS

Inspired by score-based generative models (Song et al., 2021), recent advancements have led to
the development of multimodal samplers based on reversing the Ornstein-Uhlenbeck (OU) process
(Huang et al., 2024a;b; He et al., 2024; Vacher et al., 2025). In this paper, we collectively refer to
these methods as the reverse diffusion samplers (RDS).
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The following OU process transforms any target distribution π into ϕ := N (0, I) as T →∞:

dYt = −Ytdt+
√
2dBt, t ∈ [0, T ]; Y0 ∼ π, (3)

We denote the law of Yt by πt. The time-reversal (Y←t := YT−t ∼ πT−t)t∈[0,T ] satisfies the SDE

dY←t = (Y←t + 2∇ log πT−t(Y
←
t ))dt+

√
2dWt, t ∈ [0, T ]; Y←0 ∼ πT (≈ ϕ). (4)

Hence, to draw samples from π, it suffices to approximate the scores∇ log πt and discretize Eq. (4),
which can be implemented in various ways. For example, by Tweedie’s formula (Robbins, 1992),
∇ log πt is an affine function of E(Y0|Yt = ·) (Eq. (34)), while the law of Y0|Yt = · is analytically
tractable (Eq. (35)) and provably easier to sample from than the target π (Huang et al., 2024a).

3 PROBLEM SETTING

Motivated by Brosse et al. (2018); Ge et al. (2020), given an accuracy threshold ε ≪ 1, our goal
is to study the complexity (measured by the number of calls to the oracles V and ∇V ) required to

obtain an estimator Ẑ of Z such that with Ω(1) probability, the relative error is within ε:

Pr

(∣∣∣∣∣
Ẑ

Z
− 1

∣∣∣∣∣ ≤ ε

)
≥ 3

4
. (5)

Remark. We make two remarks regarding this criterion. First, similar to how taking the mean of
i.i.d. estimates reduces variance, we show in Lem. 11 that the probability above can be boosted

to any 1 − ζ using the median trick: obtaining O
(
log 1

ζ

)
i.i.d. estimates satisfying Eq. (5) and

taking their median. Therefore, we focus on the task of obtaining a single estimate satisfying Eq. (5)
hereafter. Second, Eq. (5) also allows us to quantify the complexity of estimating the free energy
F = − logZ, which is often of greater interest in statistical mechanics than the partition function
Z. We show in App. G that estimating Z with O(ε) relative error and estimating F with O(ε)
absolute error share the same complexity up to constants. Further discussion of this guarantee,
including a literature review and the comparison with bias and variance, is deferred to App. G.

Recall that the rationale behind annealing involves a gradual transition from π0, a simple distri-
bution that is easy to sample from and estimate the normalizing constant, to π1 = π, the more
complicated target distribution. Throughout this paper, we define a curve of probability measures(
πθ = 1

Zθ
e−Vθ

)
θ∈[0,1]

, where V1 = V is the potential of π, and the normalizing constant Z1 = Z

is what we need to estimate. We do not specify the exact form of this curve now, but only introduce
the following mild regularity assumption on the curve, as assumed in classical textbooks such as
Ambrosio et al. (2008; 2021); Santambrogio (2015):

Assumption 1. The potential [0, 1] × Rd ∋ (θ, x) 7→ Vθ(x) ∈ R is jointly C1, and the curve

(πθ)θ∈[0,1] is AC with finite action A :=
∫ 1

0
|π̇|2θ dθ.

For the purpose of non-asymptotic analysis, we further introduce the following mild assumption:

Assumption 2. V is β-smooth, and there exists x∗, with ∥x∗∥ =: R ≲ 1√
β

such that ∇V (x∗) = 0.

Moreover, let m :=
√
Eπ ∥ · ∥2 < +∞.

Remark. Finding a global minimum of (possibly non-convex) V is challenging, but it is always
feasible to find some x+ close to a stationary point x∗ using optimization algorithms (e.g., Allen-
Zhu & Li (2018)) within negligible cost compared with the complexity for normalizing constant
estimation. By considering the translated distribution π(· − x+), we can assume the existence of a
stationary point near 0. The assumption R ≲ 1√

β
is for technical purposes in our proof.

Equipped with this foundational setup, we now proceed to introduce the annealed LD and annealed
LMC algorithms, and establish an analysis for JE and AIS.
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4 ANALYSIS OF THE JARZYNSKI EQUALITY

To elucidate how annealing works in the task of normalizing constant estimation, we first consider
annealed Langevin diffusion (ALD), which runs LD with a dynamically changing target distribu-
tion. We introduce a reparameterized curve (π̃t = π t

T
)t∈[0,T ] for some large T to be determined

later, and define the ALD as the following SDE:

dXt = ∇ log π̃t(Xt)dt+
√
2dBt, t ∈ [0, T ]; X0 ∼ π̃0. (6)

The following Jarzynski equality provides a connection between the work functional and the free
energy difference, which naturally yields a method for normalizing constant estimation.

Theorem 1 (Jarzynski equality (Jarzynski, 1997)). Let P→ be the path measure of Eq. (6), and
define the work functional W and the free energy difference ∆F as

W (X) :=
1

T

∫ T

0

∂θVθ|θ= t
T
(Xt)dt, ∆F := − log

Z1

Z0
.

Then we have the following relation: EP→ e−W = e−∆F .

Below, we sketch the proof from Vargas et al. (2024, Prop. 3.3), which offers a crucial aspect for
our analysis. The complete proof is detailed in App. C.1.

Sketch of Proof. Let P← be the path measure of the following backward SDE:

dXt = −∇ log π̃t(Xt)dt+
√
2dB←t , t ∈ [0, T ]; XT ∼ π̃T . (7)

Leveraging Girsanov theorem (Lem. 1) and Itô’s formula, one can establish the following identity
of the RN derivative, known as the Crooks fluctuation theorem (Crooks, 1998; 1999):

log
dP→

dP←
(X) = −

∫ T

0

(∂t log π̃t)(Xt)dt = W (X)−∆F, a.s. X ∼ P→, (8)

which directly implies JE by the identity EP→
dP←

dP→ = 1.

Assume for the moment that (i) Z0 is known, (ii) we can exactly simulate Eq. (6), and (iii) we
can calculate the work functional W (X) given any continuous trajectory X . According to Thm. 1,

Ẑ := Z0e
−W (X) with X ∼ P→ is an unbiased estimator of Z = Z0e

−∆F . We establish an upper
bound on the time T required to run the ALD in order to satisfy the accuracy criterion Eq. (5) in the
following theorem, whose proof is detailed in App. C.2.

Theorem 2. Under Assump. 1, it suffices to choose T = 32A
ε2 to obtain Pr

(∣∣∣ ẐZ − 1
∣∣∣ ≤ ε

)
≥ 3

4 .

To illustrate the proof idea of Thm. 2, note that while the ALD (Eq. (6)) targets the distribution π̃t

at time t, there is always a lag between π̃t and the actual law of Xt. Similarly, the backward SDE
(Eq. (7)) can also be seen as a time-reversed ALD which targets π̃t at time t, and the same lag exists.

This lag turns out to be the source of the error in the estimator Ẑ.

To alleviate the issue of high variance in estimating free energy differences, Vaikuntanathan &
Jarzynski (2008) proposed adding a compensatory drift term vt(Xt) to the ALD (Eq. (6)). Ideally,
the optimal choice would eliminate the lag entirely, ensuring Xt ∼ π̃t for all t ∈ [0, T ]. Inspired
by this, we compare the path measure of ALD P→ to the SDE having the perfect compensatory
drift term, whose path measure P has marginal distribution π̃t at time t. To make possible the per-
fect match, vt must satisfy the Fokker-Planck equation. The Girsanov theorem (Lem. 1) enables
the computation of KL(P∥P→) and KL(P∥P←), which are related to ∥vt∥2L2(π̃t)

. Finally, among

all admissible drift terms vt, Lem. 2 suggests the optimal choice of v∗t = limδ→0
Tπ̃t→π̃t+δ

−id
δ to

minimize this norm, thereby leading to the metric derivative | ˙̃π|t and the action A. Through this
approach, we derive a bound not explicitly relying on isoperimetric assumptions.

A similar connection between free energy and action integral was discovered in stochastic thermo-
dynamics (Sekimoto, 2010; Seifert, 2012), one paradigm for non-equilibrium thermodynamics. By
the second law of thermodynamics, the averaged dissipated work, defined as the averaged work mi-
nus the free energy difference, i.e.,Wdiss :=W−∆F := EP→W −∆F , is non-negative. When the
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underlying process is modeled by an overdamped LD,Wdiss can be quantified by an action integral
divided by the length of the process (Aurell et al., 2011; Chen et al., 2020). This follows from the
observation that Wdiss = KL(P→∥P←) and then a similar argument to that above. This connec-
tion provides a finer description of the second law of thermodynamics (Aurell et al., 2012) over a
finite time horizon. Finally, we also observe that our bound aligns with the O

(
1
T

)
decay rate of the

variance of the work in Mazonka & Jarzynski (1999) (see also Lelièvre et al. (2010, Chap. 4.1.4)),
computed when the curve consists of Gaussian distributions with linearly varying means.

5 ANALYSIS OF THE ANNEALED IMPORTANCE SAMPLING

In practice, it is not feasible to simulate the ALD precisely, nor is it possible to evaluate the exact
value of the work W (X). Therefore, discretization and approximation are required. To address this,
we first outline the following annealed importance sampling (AIS) equality akin to JE.

Theorem 3 (Annealed importance sampling equality (Neal, 2001)). Suppose we have probability
distributions πℓ = 1

Zℓ
fℓ, ℓ ∈ [[0,M ]] and transition kernels Fℓ(x, ·), ℓ ∈ [[1,M ]], and assume that

each πℓ is an invariant distribution of Fℓ, ℓ ∈ [[1,M ]]. Define the path measure

P→(x0:M ) = π0(x0)

M∏

ℓ=1

Fℓ(xℓ−1, xℓ). (9)

Then the same relation between the work function W and free energy difference ∆F holds:

EP→ e−W = e−∆F , where W (x0:M ) := log
M−1∏

ℓ=0

fℓ(xℓ)

fℓ+1(xℓ)
and ∆F := − log

ZM

Z0
.

Proof. Since πℓ is invariant for Fℓ, the following backward transition kernels are well-defined:

Bℓ(x, x
′) =

πℓ(x
′)

πℓ(x)
Fℓ(x

′, x), ℓ ∈ [[1,M ]] .

By applying these backward transition kernels sequentially, we define the backward path measure

P←(x0:M ) = πM (xM )

M∏

ℓ=1

Bℓ(xℓ, xℓ−1). (10)

It can be easily demonstrated, as in Eq. (8), that log dP→

dP← (x0:M ) = W (x0:M )−∆F . Consequently,

the identity EP→
dP←

dP→ = 1 implies the desired equality.

To study non-asymptotic complexity guarantees, we focus on a widely used curve in theoretical
analysis (Brosse et al., 2018; Ge et al., 2020), which we refer to as the geometric interpolation2:

πθ =
1

Zθ
fθ =

1

Zθ
exp

(
−V − λ(θ)

2
∥ · ∥2

)
, θ ∈ [0, 1], (11)

where λ(·) is a decreasing function with λ(0) = 2β and λ(1) = 0, referred to as the annealing
schedule. With this choice of λ(0), by Assump. 2, the potential of π0 is β-strongly-convex and
3β-smooth, making sampling and normalizing constant estimation relatively easy. To estimate Z0,

we use the TI algorithm from Ge et al. (2020), which requires Õ

(
d

3
2

ε2

)
gradient oracle calls. In

a nutshell, TI is an equilibrium method that constructs a series of intermediate distributions and
estimates adjacent normalizing constant ratios via expectation under these intermediate distributions,
realized through MCMC sampling from each intermediate distribution. As TI is peripheral to our
primary focus, we defer its full description and complexity analysis to App. H.1 and Lem. 6.

2Eq. (11) differs slightly from a widely used curve in applications (Gelman & Meng, 1998; Neal, 2001):

πθ ∝ π1−λ(θ)ϕλ(θ), where ϕ is a prior distribution (typically Gaussian). We refer to both as geometric inter-
polation.

6
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Given the curve Eq. (11), we introduce discrete time points 0 = θ0 < θ1 < ... < θM = 1 to be
specified later, and adopt the framework outlined in Thm. 3 by setting πℓ = 1

Zℓ
fℓ to correspond

to πθℓ = 1
Zθℓ

fθℓ , albeit with a slight abuse of notation. To estimate the normalizing constant,

we need to sample from the forward path measure P→, and calculate the work function along the
trajectory. Since πθℓ must be an invariant distribution of the transition kernel Fℓ in P→, we define
Fℓ via running LD targeting πθℓ for a short time Tℓ, i.e., Fℓ(x, ·) is given by the law of XTℓ

in the
following SDE initialized at X0 = x:

dXt = ∇ log πθℓ(Xt)dt+
√
2dBt, t ∈ [0, Tℓ]. (12)

In this setting, AIS can be interpreted as a discretized version of JE (Lelièvre et al., 2010, Remark
4.5). However, in practice, exact samples from π0 are often unavailable, and the simulation of LD
cannot be performed perfectly. To capture these practical considerations, we define the following
sampling path measure:

P̂→(x0:M ) = π̂0(x0)

M∏

ℓ=1

F̂ℓ(xℓ−1, xℓ), (13)

where π̂0 is the law of an approximate sample from π0, and the transition kernel F̂ℓ is a discretization
of the LD in Fℓ, defined as running one step of annealed Langevin Monte Carlo (ALMC) using
the exponential integrator discretization scheme (Zhang & Chen, 2023; Zhang et al., 2023b;a) with

step size Tℓ. Formally, F̂ℓ(x, ·) is the law of XTℓ
in the following SDE initialized at X0 = x:

dXt = −
(
∇V (X0) + λ

(
θℓ−1 +

t

Tℓ
(θℓ − θℓ−1)

)
Xt

)
dt+

√
2dBt, t ∈ [0, Tℓ]. (14)

Here, instead of simply setting F̂ℓ as one step of LMC targeting πθℓ , the dynamically changing λ(·)
helps reduce the discretization error, as will be shown in our proof. Furthermore, with a sufficiently
small step size, the overall discretization error can also be minimized, motivating us to apply just
one update step in each transition kernel.

We refer readers to Line 18 for a summary of the detailed implementation of our proposed AIS
algorithm, including the TI procedure and the update rules in Eq. (14). The following theorem

delineates the oracle complexity of the algorithm required to obtain an estimate Ẑ meeting the
desired accuracy criterion (Eq. (5)), whose detailed proof can be located in App. D.

Theorem 4. Let Ẑ be the AIS estimator described as in Line 18, i.e., Ẑ := Ẑ0e
−W (x0:M ) where

Ẑ0 is estimated by TI and x0:M ∼ P̂→. Under Assumps. 1 and 2, consider the annealing schedule
λ(θ) = 2β(1− θ)r for some 1 ≤ r ≲ 1. UseAr to denote the action of (πθ)θ∈[0,1] to emphasize the

dependence on r. Then, the oracle complexity for obtaining an estimate Ẑ that satisfies the criterion

Pr
(∣∣∣ ẐZ − 1

∣∣∣ ≤ ε
)
≥ 3

4 is

Õ

(
d

3
2

ε2
∨ mβA

1
2
r

ε2
∨ dβ2A2

r

ε4

)
. (15)

Our proposed algorithm consists of two phases: first, estimating Z0 by TI, which is provably effi-
cient for well-conditioned distributions, and second, estimating Z by AIS, which is better suited for
handling non-log-concave distributions. The three terms in Eq. (15) arise from (i) ensuring the accu-

racy of Ẑ0, (ii) controlling KL(P∥P←), and (iii) controlling KL(P∥P→), respectively, as discussed
in 2. above. Due to the non-log-concavity of π, the action A is typically large, making (iii), the cost
for controlling the discretization error, the dominant complexity. Finally, the ε-dependence can be
interpreted as the total duration T = Θ

(
1
ε2

)
required for the continuous dynamics to converge (as

in Thm. 2) divided by the step size Θ̃(ε2) to control the discretization error.

6 NORMALIZING CONSTANT ESTIMATION VIA REVERSE DIFFUSION

SAMPLER

From the analysis of JE and AIS (Thms. 2 and 4), the choice of the interpolation curve (πθ)θ∈[0,1]
is crucial for the complexity of AIS. The geometric interpolation (Eq. (11)) is widely adopted in

7
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practice due to the availability of closed-form scores of the intermediate distributions πθ. For cer-
tain structured non-log-concave distributions, the associated action is polynomial in the problem
parameters, enabling efficient AIS. For instance, Guo et al. (2025, Ex. 2) analyzed a Gaussian
mixture target distribution with identical covariance, means having the same norm, and arbitrary
weights. However, for general target distributions, the action of the related curve can grow pro-
hibitively large. To illustrate this, we establish an exponential lower bound on the action of a curve
starting from a Gaussian mixture, highlighting the potential inefficiency of AIS under geometric
interpolation. Our key technical tool is a closed-form expression of the W2 distance in R expressed
by the inverse c.d.f.s of the involved distributions (A similar approach was used independently in
Chemseddine et al. (2025)). We then lower bound the metric derivative near the target distribution,
where the curve changes the most drastically. The proof of this result is detailed in App. E.1.

Proposition 1. Consider the Gaussian mixture target distribution π = 1
2 N (0, 1) + 1

2 N (m, 1)

on R for some sufficiently large m ≳ 1, whose potential is m2

2 -smooth. Under the setting in AIS

(Thm. 4), define πθ(x) ∝ π(x)e−
λ(θ)
2 x2

, θ ∈ [0, 1], where λ(θ) = m2(1− θ)r for some 1 ≤ r ≲ 1.

Then, the action of the curve (πθ)θ∈[0,1] is lower bounded by Ar ≳ m4e
m2

40 .

Motivated by RDS, we propose leveraging the curve along the OU process in AIS. To support this
idea, we first present the following proposition, whose proof is available in App. E.2.

Proposition 2. Let πt be the law of Yt in the OU process (Eq. (3)) initialized from Y0 ∼ π ∝ e−V ,
where V is β-smooth and let m2 := Eπ ∥ · ∥2 <∞. Then,

∫∞
0
|π̇|2tdt ≤ dβ +m2.

This proposition shows that under fairly weak conditions on the target distribution, the action of
the curve along the OU process, (πT−t)t∈[0,T ], behaves much better than Eq. (11). Hence, our
analysis of JE (Thm. 2) suggests that this curve is likely to yield more efficient normalizing constant
estimation. Furthermore, recall that in our earlier proof, we introduced a compensatory drift term
vt to eliminate the lag in ALD. The same principle applies here: ensuring Xt precisely following
the reference trajectory is advantageous, which results in the time-reversal of OU process (Eq. (4)).
Building on this insight, we propose an RDS-based algorithm for normalizing constant estimation,
and establish a framework for analyzing its oracle complexity. The proof is in App. E.3.

Theorem 5. Assume a total time duration T , an early stopping time δ ≥ 0, and discrete time points
0 = t0 < t1 < ... < tN = T − δ ≤ T . For t ∈ [0, T − δ), let t− denote tk if t ∈ [tk, tk+1).
Let s· ≈ ∇ log π· be a score estimator, and ϕ = N (0, I). Consider the following two SDEs on
[0, T − δ] representing the sampling trajectory and the time-reversed OU process, respectively:

Q† : dXt = (Xt + 2sT−t−(Xt−))dt+
√
2dBt, X0 ∼ ϕ; (16)

Q : dXt = (Xt + 2∇ log πT−t(Xt))dt+
√
2dBt, X0 ∼ πT .

Let Ẑ := e−W (X), X ∼ Q† be the estimator of Z, where the functional X 7→W (X) is defined as

log ϕ(X0) + V (XT−δ) + (T − δ)d+

∫ T−δ

0

(
∥sT−t−(Xt−)∥2dt+

√
2
〈
sT−t−(Xt−), dBt

〉)
.

Then, to ensure Ẑ satisfies Eq. (5), it suffices that KL(Q∥Q†) ≲ ε2 and TV(π, πδ) ≲ ε.

For detailed implementation of this algorithm including the update rule in Eq. (16) and the compu-
tation of W (X), see Line 10. To determine the overall complexity, we leverage existing results for
RDS (Huang et al., 2024a;b; He et al., 2024; Vacher et al., 2025) to derive the oracle complexity to
achieve KL(Q∥Q†) ≲ ε2. When early stopping is needed (i.e., δ > 0), we establish in Lem. 8 that

choosing δ ≍ ε2

β2d2 suffices to ensure ε-closeness in TV distance between πδ and π, under weak

assumptions similar to Assump. 2. The detailed complexity analysis is deferred to App. E.5.

As discussed, RDS can be viewed as an optimally compensated ALD using the OU process as
the trajectory. We conclude this section by contrasting these two approaches. On the one hand,
analytically-tractable curves such as the geometric interpolation offer closed-form drift terms at all
time points, but may exhibit poor action properties (Prop. 1) or bad isoperimetric constants (Chehab
et al., 2025), making annealed sampling challenging. On the other hand, alternative curves like
the OU process may have better properties in action and isoperimetric constants, but their drift
terms, often related to the scores of the intermediate distributions, lack closed-form expressions,
and estimating these terms is also non-trivial. This highlights a fundamental trade-off between the
complexity of the drift term estimation and the property of the interpolation curve.
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A PRELIMINARIES (CONTINUED)

Notations and definitions. For a, b ∈ R, let [[a, b]] := [a, b] ∩ Z, a ∧ b := min(a, b), and a ∨
b := max(a, b). For a, b > 0, the notations a ≲ b, b ≳ a, a = O(b), b = Ω(a) indicate that
a ≤ Cb for some constant C > 0, and the notations a ≍ b, a = Θ(b) stand for a ≲ b ≲ a.

Õ (·) , Θ̃ (·) hide logarithmic dependence in O(·),Θ(·). A function U ∈ C2(Rd) is α(> 0)-strongly-
convex if ∇2U ⪰ αI , and is β(> 0)-smooth if −βI ⪯ ∇2U ⪯ βI . We do not distinguish
probability measures on Rd from their Lebesgue densities. For two probability measures µ, ν, the
total-variation (TV) distance is TV(µ, ν) = supmeasurable A |µ(A)−ν(A)|, and the Kullback-Leibler

(KL) divergence is KL(µ∥ν) =
∫
log dµ

dν dµ. We call Eµ ∥ · ∥2 the second-order moment of µ.

Finally, a function T : Rd × Rd → [0,+∞) is a transition kernel if for any x, T (x, ·) is a p.d.f.

The theories of backward stochastic integral and the Girsanov theorem are adapted from Vargas et al.
(2024). Here, we include relevant results and proofs to ensure a self-contained presentation.

Lemma 3 (Nelson’s relation (Nelson, 1967; Anderson, 1982)). Given a BM (Bt)t∈[0,T ] and its

time-reversal (B←t = BT−t)t∈[0,T ], the following two SDEs

dXt = at(Xt)dt+ σdBt, X0 ∼ p0; dYt = bt(Yt)dt+ σdB←t , YT ∼ q

have the same path measure if and only if

q = pT , and bt = at − σ2∇ log pt, ∀t ∈ [0, T ],

where pt is the p.d.f. of Xt.

Proof. The proof is by verifying the Fokker-Planck equation. For X , we have

∂tpt = −∇ · (atpt) +
σ2

2
∆pt.

Let ⋆←t := ⋆T−t. Then p←t satisfies

∂tp
←
t = ∇ · (a←t p←t )− σ2

2
∆p←t = −∇ · ((−a←t + σ2∇ log p←t )p←t ) +

σ2

2
∆p←t ,

which means (X←t )t∈[0,T ] has the same path measure as the following SDE:

dZt = −(a←t − σ2∇ log p←t )(Zt)dt+ σdBt, Zt ∼ p←t .

On the other hand, by definition, (Y←t )t∈[0,T ] satisfies the forward SDE

dY←t = −b←t (Y←t )dt+ σdBt, Y0 ∼ q,

and thus the claim is evident.

Definition 1 (Backward stochastic integral). For two continuous stochastic processes X and Y on
C([0, T ];Rd), the backward stochastic integral of Y with respect to X is defined as

∫ T

0

⟨Yt, ∗dXt⟩ := Pr - lim
∥Π∥→0

n−1∑

i=0

〈
Yti+1 , Xti+1 −Xti

〉
,

where Π = {0 = t0 < t1 < ... < tn = T} is a partition of [0, T ], ∥Π∥ := max
i∈[[1,n]]

(ti+1 − ti), and

the convergence is in the probability sense. When both X and Y are continuous semi-martingales,
one can equivalently define

∫ T

0

⟨Yt, ∗dXt⟩ :=
∫ T

0

⟨Yt, dXt⟩+ [X,Y ]T , (17)

where [X,Y ]· is the cross quadratic variation process3 of the local martingale parts of X and Y .

3The notation used in Karatzas & Shreve (1991) is ⟨·, ·⟩
·

. We use square brackets here to avoid conflict with
the notation for inner product.
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Remark. Although rarely used in practice, the backward stochastic integral is sometimes referred
to as the Hänggi-Klimontovich integral in the literature. Recall that the Itô integral is defined as the
limit of Riemann sums when the leftmost point of each interval is used, while the Stratonovich inte-
gral is based on the midpoint and the backward integral uses the rightmost point. The equivalence
in Eq. (17) can be justified in Karatzas & Shreve (1991, Chap. 3.3).

Lemma 4 (Continuation of Lem. 1). 1. If we replace the SDEs in Lem. 1 with

dXt = at(Xt)dt+ σdB←t , XT ∼ µ; dYt = bt(Yt)dt+ σdB←t , YT ∼ ν,

while keeping other assumptions and notations unchanged, then for any trajectory ξ ∈ Ω,

log
dPX

dPY
(ξ) = log

dµ

dν
(ξT ) +

1

σ2

∫ T

0

⟨at(ξt)− bt(ξt), ∗dξt⟩ −
1

2σ2

∫ T

0

(∥at(ξt)∥2 − ∥bt(ξt)∥2)dt,

and consequently,

KL(PX∥PY ) = KL(µ∥ν) + 1

2σ2

∫ T

0

EPX ∥at(Xt)− bt(Xt)∥2dt.

2. Define the following two SDEs from 0 to T :

dXt = at(Xt)dt+ σdBt, X0 ∼ µ; dYt = bt(Yt)dt+ σdB←t , YT ∼ ν.

Denote the path measures of X and Y as PX and PY , respectively. Then for any trajectory ξ ∈ Ω,

log
dPX

dPY
(ξ) = log

µ(ξ0)

ν(ξT )
+

1

σ2

∫ T

0

(⟨at(ξt), dξt⟩ − ⟨bt(ξt), ∗dξt⟩)−
1

2σ2

∫ T

0

(∥at(ξt)∥2 − ∥bt(ξt)∥2)dt.

Proof. 1. Let ⋆←t := ⋆T−t. We know that

dX←t = −a←t (X←t )dt+ σdBt, X
←
0 ∼ µ; dY←t = −b←t (Y←t )dt+ σdBt, Y

←
0 ∼ ν.

Let PX← and PY← be the path measures of X← and Y←, respectively. From Lem. 1, we know that

log
dPX←

dPY←
(ξ) = log

dµ

dν
(ξ0)−

1

σ2

∫ T

0

⟨a←t (ξt)− b←t (ξt), dξt⟩ −
1

2σ2

∫ T

0

(∥a←t (ξt)∥2 − ∥b←t (ξt)∥2)dt.

Since PX←(dξ) = Pr(X← ∈ dξ) = Pr(X ∈ dξ←) = PX(dξ←), we obtain

log
dPX

dPY
(ξ) = log

dPX←

dPY←
(ξ←)

= log
dµ

dν
(ξ←0 )− 1

σ2

∫ T

0

⟨a←t (ξ←t )− b←t (ξ←t ), dξ←t ⟩ −
1

2σ2

∫ T

0

(∥a←t (ξ←t )∥2 − ∥b←t (ξ←t )∥2)dt

= log
dµ

dν
(ξT ) +

1

σ2

∫ T

0

⟨at(ξt)− bt(ξt), ∗dξt⟩ −
1

2σ2

∫ T

0

(∥at(ξt)∥2 − ∥bt(ξt)∥2)dt.

To justify the last equality, if ξ, η are two continuous stochastic processes, then by definition,

∫ T

0

⟨ξ←t , dη←t ⟩ = Pr - lim
∥Π∥→0

n−1∑

i=0

〈
ξ←ti−1

, η←ti − η←ti−1

〉

= Pr - lim
∥Π∥→0

n−1∑

i=0

〈
ξT−ti−1 , ηT−ti − ηT−ti−1

〉

= Pr - lim
∥Π∥→0

−
n−1∑

i=0

〈
ξT−ti−1 , ηT−ti−1 − ηT−ti

〉

= −
∫ T

0

⟨ξt, ∗dηt⟩ . (18)

On the other hand, ∫ T

0

ξ←t dt =

∫ T

0

ξT−tdt =

∫ T

0

ξtdt.
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Therefore, the equality of RN derivative holds. Plugging in ξ ← X , we have

log
dPX

dPY
(X) = log

dµ

dν
(XT )+

1

σ

∫ T

0

⟨at(Xt)− bt(Xt), ∗dB←t ⟩+
1

2σ2

∫ T

0

∥at(Xt)−bt(Xt)∥2dt.

To obtain the KL divergence, it suffices to show the expectation of the second term is zero. Let

Mt :=

∫ T

t

⟨ar(Xr)− br(Xr), ∗dB←r ⟩ , t ∈ [0, T ].

By Eq. (18), we have

M←t = −
∫ t

0

⟨a←r (X←r )− b←r (X←r ), dBr⟩ .

Since dX←t = −a←t (X←t )dt+σdBt, we conclude that M←t is a (forward) martingale, and thus M
is a backward martingale with EMt = EM←T−t = 0.
2. We present a formal proof by considering the process dZt = σdBt and Z0 ∼ λ, the Lebesgue
measure. As a result, formally Zt ∼ λ for all t, so it can also be written as dZt = σdB←t , ZT ∼ λ.
The result follows by applying Lem. 1 to X and Z and 1. to Y and Z.

Remark. The Girsanov theorem requires a technical condition ensuring that a local martingale is
a true martingale, typically verified via the Novikov condition (Karatzas & Shreve, 1991, Chap. 3,
Cor. 5.13), which can be challenging to establish. However, when only an upper bound of the KL
divergence is needed, the approximation argument from Chen et al. (2023, App. B.2) circumvents
the verification of the Novikov condition. For additional context, see Chewi (2022, Sec. 3.2). In this
paper, we omit these technical details and always assume that the Novikov condition holds.

Definition 2 (Isoperimetric inequalities). A probability measure π on Rd satisfies a Poincaré in-
equality (PI) with constant C, or C-PI, if for all f ∈ C∞c (Rd),

Varπ f ≤ C Eπ ∥∇f∥2.
It satisfies a log-Sobolev inequality (LSI) with constant C, or C-LSI, if for all 0 ̸≡ f ∈ C∞c (Rd),

Eπ f
2 log

f2

Eπ f2
≤ 2C Eπ ∥∇f∥2.

Furthermore, α-strong-log-concavity implies 1
α -LSI, and C-LSI implies C-PI (Bakry et al., 2014).

B PSEUDO-CODES OF THE ALGORITHMS

See Lines 10 and 18 for the detailed implementation of the AIS and RDS algorithms, respectively.

C PROOFS FOR SEC. 4

C.1 A COMPLETE PROOF OF THM. 1

Proof. By Girsanov theorem (Lem. 4), we have

log
dP→

dP←
(ξ) = log

π̃0(ξ0)

π̃T (ξT )
+

1

2

∫ T

0

(⟨∇ log π̃t(ξt), dξt⟩+ ⟨∇ log π̃t(ξt), ∗dξt⟩).

We first prove the following result (Vargas et al., 2024, Eq. (15)): if dxt = at(xt)dt+
√
2dBt, then

∫ T

0

⟨at(xt), ∗dxt⟩ =
∫ T

0

⟨at(xt), dxt⟩+ 2

∫ T

0

tr∇at(Xt)dt.

Proof. Due to Eq. (17), it suffices to calculate [a(X), X]T . By Itô’s formula, we have

dat(xt) = (∂tat(xt) + ⟨∇at(xt), at(xt)⟩+∆at(xt))dt+
√
2∇atdBt,
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Algorithm 1: Normalizing constant estimation via AIS.

Input: The target distribution π ∝ e−V , smoothness parameter β, total time T ; TI annealing
schedule λ0 > ... > λK = 0; AIS annealing schedule λ(·) with λ(0) = 2β, AIS time
points 0 = θ0 < ... < θM = 1.

Output: Ẑ, an estimation of Z =
∫
Rd e
−V (x)dx.

1 // Phase 1: estimate Z0 via TI.

2 Define V0 := V + β∥ · ∥2, ρk :∝ exp
(
−V0 − λk

2 ∥ · ∥2
)
, and gk := exp

(
λk−λk+1

2 ∥ · ∥2
)

, for

k ∈ [[0,K − 1]];

3 Initialize Ẑ0 ← exp
(
−V0(0) +

∥∇V0(0)∥2
2(3β+λ0)

)(
2π

3β+λ0

) d
2

;

4 for k = 0 to K − 1 do

5 Obtain N i.i.d. approximate samples x
(k)
1 , ..., x

(k)
N from ρk (e.g., using LMC or proximal

sampler);

6 Update Ẑ0 ←
(

1
N

∑N
n=1 gk(X

(k)
n )

)
Ẑ0;

7 end
8 // Phase 2: estimate Z via AIS.
9 Approximately sample x0 from π0 (e.g., using LMC or proximal sampler);

10 Initialize W ← − 1
2 (λ(θ0)− λ(θ1))∥x0∥2;

11 for ℓ = 1 to M − 1 do
12 Sample an independent ξ ∼ N (0, Id);

13 Define Λ(t) :=
∫ t

0
λ
(
θℓ−1 +

τ
Tℓ
(θℓ − θℓ−1)

)
dτ , where Tℓ := T (θℓ − θℓ−1);

14 Update

xℓ ← e−Λ(Tℓ)xℓ−1−
(∫ Tℓ

0
e−(Λ(Tℓ)−Λ(t))dt

)
∇V (xℓ−1)+

(
2
∫ Tℓ

0
e−2(Λ(Tℓ)−Λ(t))dt

) 1
2

ξ;

// see Lem. 12 for the derivation
15 ;

16 Update W ←W − 1
2 (λ(θℓ)− λ(θℓ+1))∥xℓ∥2;

17 end

18 return Ẑ = Ẑ0e
−W

and hence

[a(X), X]T =

[∫ ·

0

√
2∇at(xt)dBt,

∫ ·

0

√
2dBt

]

T

= tr

∫ T

0

2∇at(xt)dt.

Therefore, for X ∼ P→, we have

log
dP→

dP←
(X) = log

π̃0(X0)

π̃T (XT )
+

∫ T

0

(⟨∇ log π̃t(Xt), dXt⟩+∆ log π̃t(Xt)dt).

On the other hand, by Itô’s formula, we have

d log π̃t(Xt) = ∂t log π̃t(Xt) + ⟨∇ log π̃t(Xt), dXt⟩+∆ log π̃t(Xt)dt.

Taking the integral, we immediately obtain Eq. (8), and the proof is complete.

C.2 PROOF OF THM. 2

Proof. The proof builds on the techniques developed in Guo et al. (2025, Thm. 1). We define P as
the path measure of the following SDE:

dXt = (∇ log π̃t + vt)(Xt)dt+
√
2dBt, t ∈ [0, T ]; X0 ∼ π̃0, (19)
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Algorithm 2: Normalizing constant estimation via RDS.

Input: The target distribution π ∝ e−V , total time duration T , early stopping time δ ≥ 0, time
points 0 = t0 < t1 < ... < tN = T − δ; score estimator s· ≈ ∇ log π·.

Output: Ẑ, an estimation of Z =
∫
Rd e
−V (x)dx.

1 Sample X0 ∼ N (0, I), and initialize W := −∥X0∥2
2 − d

2 log 2π;

2 for k = 0 to N − 1 do

3 Sample an independent pair of

(
ξ1
ξ2

)
∼ N

(
0,

(
1 ρk
ρk 1

)
⊗ I

)
, where the correlation is

ρk =
√
2(etk+1−tk−1)√

(e2(tk+1−tk)−1)(tk+1−tk)
, and ⊗ stands for the Kronecker product;

4 Update Xtk+1
← etk+1−tkXtk + 2(etk+1−tk − 1)sT−tk(Xtk) +

√
e2(tk+1−tk) − 1ξ1; // see

Lem. 13 for the derivation
5 ;

6 Update W ←W + (tk+1 − tk)∥sT−tk(Xtk)∥2 +
√

2(tk+1 − tk) ⟨sT−tk(Xtk), ξ2⟩; // see
Lem. 13 for the derivation

7 ;

8 end
9 Update W ←W + V (XtN ) + (T − δ)d;

10 return Ẑ = e−W .

where the vector field (vt)t∈[0,T ] is chosen such that Xt ∼ π̃t under P for all t ∈ [0, T ]. According

to the Fokker-Planck equation4, (vt)t∈[0,T ] must satisfy the PDE

∂tπ̃t = −∇ · (π̃t(∇ log π̃t + vt)) + ∆π̃t = −∇ · (π̃tvt), t ∈ [0, T ],

which means that (vt)t∈[0,T ] generates (π̃t)t∈[0,T ]. The Nelson’s relation (Lem. 3) implies an equiv-
alent definition of P as the path measure of

dXt = (−∇ log π̃t + vt)(Xt)dt+
√
2dB←t , t ∈ [0, T ]; XT ∼ π̃T .

Now we bound the probability of ε relative error:

Pr

(∣∣∣∣∣
Ẑ

Z
− 1

∣∣∣∣∣ ≥ ε

)
= P→

(∣∣∣∣
e−W

e−∆F
− 1

∣∣∣∣ ≥ ε

)
= P→

(∣∣∣∣
dP←

dP→
− 1

∣∣∣∣ ≥ ε

)

≤ 1

ε
EP→

∣∣∣∣
dP←

dP→
− 1

∣∣∣∣ =
2

ε
TV(P←,P→)

≤ 2

ε
(TV(P,P→) + TV(P,P←))

≤
√
2

ε

(√
KL(P∥P→) +

√
KL(P∥P←)

)
. (20)

In the second line above, we apply Markov inequality along with an equivalent definition of the TV

distance: TV(µ, ν) = 1
2

∫ ∣∣∣dµdλ − dν
dλ

∣∣∣ dλ, where λ is a measure that dominates both µ and ν. The

third line follows from the triangle inequality for TV distance, while the final line is a consequence

of Pinsker’s inequality KL ≥ 2TV2.

By Girsanov theorem (Lems. 1 and 4), it is straightforward to see that

KL(P∥P←) = KL(P∥P→) =
1

4
EP

∫ T

0

∥vt(Xt)∥2dt =
1

4

∫ T

0

∥vt∥2L2(π̃t)
dt.

Leveraging the relation between metric derivative and continuity equation (Lem. 2), among all vector
fields (vt)t∈[0,T ] that generate (π̃t)t∈[0,T ], we can choose the one that minimizes ∥vt∥L2(π̃t), thereby

4We assume the existence of a unique curve of probability measures solving the Fokker-Planck equation
given the drift and diffusion terms, guaranteed under mild regularity conditions (Le Bris & Lions, 2008).
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making ∥vt∥L2(π̃t) = | ˙̃π|t, the metric derivative. With the reparameterization π̃t = πt/T , we have
the following relation by chain rule:

| ˙̃π|t = lim
δ→0

W2(π̃t+δ, π̃t)

|δ| = lim
δ→0

W2(π(t+δ)/T , πt/T )

T |δ/T | =
1

T
|π̇|t/T .

Employing the change-of-variable formula leads to

KL(P∥P←) = KL(P∥P→) =
1

4

∫ T

0

| ˙̃π|2tdt =
1

4T

∫ 1

0

|π̇|2θdθ =
A
4T

.

Therefore, it suffices to choose T = 32A
ε2 to make the r.h.s. of Eq. (20) less than 1

4 .

D PROOF OF THM. 4

A sketch of proof. We present a high-level proof sketch using Fig. 1. The continuous dynamics,
comprising the forward path P→, the backward path P←, and the reference path P, are depicted as
three black curves. To address discretization error, the ℓ-th red (purple) arrow proceeding from left

to right represents the transition kernel F̂ℓ (Bℓ), whose composition forms P̂→ (P←).

π0 = πθ0
πθ1

πθM−1

πθM = π1

P←

P→

P→

P

P̂→

π̂0 ≈ π0

πθℓ−1

πθℓ

Figure 1: Illustration of the proof idea for Thm. 4.

1. Analogously to the analysis of JE (Thm. 2), define the reference path measure P with transition

kernels F ∗ℓ such that xℓ ∼ πθℓ . Given the sampling path measure P̂→, define P
→

as the version of

P̂→ without the initialization error, i.e., by replacing π̂0 with π0 in Eq. (13).

2. Show that it suffices to obtain an accurate estimate Ẑ0 and initialization distribution π̂0, together

with sufficiently small KL divergences KL(P∥P←) and KL(P∥P→), which quantify the closeness
between the continuous dynamics and the discretization error in implementation, respectively.
3. Using the chain rule, decompose KL(P∥P←) into the sum of KL divergences between each pair
of transition kernels Fℓ and F ∗ℓ (i.e., the sum of green “distances”). As in the proof of the con-
vergence of JE (Thm. 2), F ∗ℓ , a transition kernel from πθℓ−1

to πθℓ , is realized by ALD with a
compensatory vector field, ensuring the SDE exactly follows the trajectory (πθ)θ∈[θℓ−1,θℓ]. Simi-

larly, by applying the chain rule and Girsanov theorem, we can express KL(P∥P→) as the sum of
the blue “distances”, allowing for a similar analysis.
4. Finally, derive three necessary conditions on the time steps θℓ to control both KL(P∥P←) and

KL(P∥P→). Choosing a proper schedule yields the desired complexity bound.

The full proof. With the forward and backward path measures P→ and P← defined in Eqs. (9)
and (10), we further define the reference path measure

P(x0:M ) = π0(x0)

M∏

ℓ=1

F ∗ℓ (xℓ−1, xℓ), (21)
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where F ∗ℓ can be an arbitrary transition kernel transporting πθℓ−1
to πθℓ , i.e., it satisfies

πθℓ(y) =

∫
F ∗ℓ (x, y)πθℓ−1

(x)dx, ∀y ∈ Rd =⇒ xℓ ∼ πθℓ , ∀ℓ ∈ [[0,M ]] .

Define the backward transition kernel of F ∗ℓ as

B∗ℓ (x, x
′) =

πθℓ−1
(x′)

πθℓ(x)
F ∗ℓ (x

′, x), ℓ ∈ [[1,M ]] ,

which transports πθℓ to πθℓ−1
. Equivalently, we can write

P(x0:M ) = π1(xM )

M∏

ℓ=1

B∗ℓ (xℓ, xℓ−1).

Straightforward calculations yield

KL(P∥P→) =

M∑

ℓ=1

Eπθℓ−1
(xℓ−1) KL(F ∗ℓ (xℓ−1, ·)∥Fℓ(xℓ−1, ·)),

KL(P∥P←) =

M∑

ℓ=1

Eπθℓ
(xℓ) KL(B∗ℓ (xℓ, ·)∥Bℓ(xℓ, ·))

=

M∑

ℓ=1

KL(πθℓ−1
(xℓ−1)F

∗
ℓ (xℓ−1, xℓ)∥πθℓ(xℓ−1)Fℓ(xℓ−1, xℓ)) (22)

= KL(P∥P→) +
M∑

ℓ=1

KL(πθℓ−1
∥πθℓ). (23)

Also, recall that the sampling path measure P̂→ is defined in Eq. (13) starts at π̂0, the distribution of
an approximate sample of π0. For convenience, we define the following path measure, which differs

from P̂→ only from the initial distribution:

P
→
(x0:M ) = π0(x0)

M∏

ℓ=1

F̂ℓ(xℓ−1, xℓ). (24)

Equipped with these definitions, we first prove a lemma about a necessary condition for the estimator

Ẑ to satisfy the desired accuracy Eq. (5).

Lemma 5. Define the estimator Ẑ := Ẑ0e
−W (x0:M ), where x0:M ∼ P̂→, and Ẑ0 is independent of

x0:M . To make Ẑ satisfy the criterion Eq. (5), it suffices to meet the following four conditions:

Pr

(∣∣∣∣∣
Ẑ0

Z0
− 1

∣∣∣∣∣ ≥
ε

8

)
≤ 1

8
, (25)

TV(π̂0, π0) ≲ 1, (26)

KL(P∥P←) ≲ ε2, (27)

KL(P∥P→) ≲ 1. (28)

Proof. Recall that Z = Z0e
−∆F . Using Lem. 9, we have

Pr

(∣∣∣∣∣
Ẑ

Z
− 1

∣∣∣∣∣ ≥ ε

)
≤ Pr

(∣∣∣∣∣log
Ẑ

Z

∣∣∣∣∣ ≥
ε

2

)
= Prx0:M∼P̂→

(∣∣∣∣∣log
Ẑ0

Z0
+ log

e−W (x0:M )

e−∆F

∣∣∣∣∣ ≥
ε

2

)

≤ Pr

(∣∣∣∣∣log
Ẑ0

Z0

∣∣∣∣∣ ≥
ε

4

)
+ P̂→

(∣∣∣∣log
e−W

e−∆F

∣∣∣∣ ≥
ε

4

)

≤ Pr

(∣∣∣∣∣
Ẑ0

Z0
− 1

∣∣∣∣∣ ≥
ε

8

)
+ P̂→

(∣∣∣∣
e−W

e−∆F
− 1

∣∣∣∣ ≥
ε

8

)
.
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The first term is≤ 1
8 if Eq. (25) holds. To bound the second term, using the definition of TV distance

and the triangle inequality, we have

P̂→
(∣∣∣∣

e−W

e−∆F
− 1

∣∣∣∣ ≥
ε

8

)

≤ TV(P̂→,P→) + P→
(∣∣∣∣

e−W

e−∆F
− 1

∣∣∣∣ ≥
ε

8

)

≤ TV(P̂→,P
→
) + TV(P

→
,P) + TV(P,P→) + P→

(∣∣∣∣
dP←

dP→
− 1

∣∣∣∣ ≥
ε

8

)
.

Recall that by definition (Eqs. (13) and (24)), the distributions of x1:M conditional on x0 are the

same under P̂→ and P
→

. Hence, TV(P̂→,P
→
) = TV(π̂0, π0). Applying Pinsker’s inequality and

leveraging Eq. (20), we have

P̂→
(∣∣∣∣

e−W

e−∆F
− 1

∣∣∣∣ ≥
ε

8

)

≲ TV(π̂0, π0) +

√
KL(P∥P→) +

√
KL(P∥P→) +

√
KL(P∥P→) +

√
KL(P∥P←)

ε
.

Note that from Eq. (23) we know that KL(P∥P→) ≤ KL(P∥P←), so if Eqs. (26) to (28) hold up to

some small enough absolute constants, we can achieve P̂→
(∣∣∣ e

−W

e−∆F − 1
∣∣∣ ≥ ε

8

)
≤ 1

8 , and therefore

Pr
(∣∣∣ ẐZ − 1

∣∣∣ ≥ ε
)
≤ 1

4 .

In the next lemma, we show how to sample from π0 and estimate Ẑ0 within the desired accuracy.

Lemma 6. 1. Using LMC initialized at µ0 = N
(
0, β−1I

)
, the oracle complexity for obtaining a

sample following a distribution π̂0 that is O(1)-close in TV distance to π0 is Õ(d).

2. The oracle complexity for obtaining an estimator Ẑ0 of Z0 such that Eq. (25) holds is Õ

(
d

3
2

ε2

)
.

Remark. Since R ≲ 1√
β

, for both cases the dependence on R is negligible.

Proof. 1. The bound comes from Vempala & Wibisono (2019, Theorem 2) (see also Chewi (2022,
Theorem 4.2.5)). In particular, the bound there depends on logKL(µ0∥π0). We show that
KL(µ0∥π0) has a uniform upper bound over all R ≲ 1. The proof is as follows.

Note that π0’s potential V0 = V + 2β
2 ∥ · ∥2 is β-strongly-convex and 3β-smooth. Let x′ be its

global minimizer, which satisfies ∇V (x′) + 2βx′ = 0. Recall from Assump. 2 that ∇V (x∗) = 0,
∥x∗∥ ≤ R. So we have

2β∥x′∥ = ∥∇V (x′)−∇V (x∗)∥ ≤ β∥x′ − x∗∥ ≤ β(∥x′∥+R) =⇒ ∥x′∥ ≤ R.

Therefore,

KL(µ0∥π0) = Eµ0
[logµ0 − log π0]

= Eµ0

[
−β

2
∥ · ∥2 + d

2
log

β

2π
+ V0 + logZ0

]

= −d

2
+

d

2
log

d

2π
+ Eµ0

V0 + logZ0.

By strong-convexity and smoothness,

Eµ0
V0 ≤ Eµ0

[
V0(x

′) +
3β

2
∥ · −x′∥2

]
= V0(x

′) +
3β

2

(
d

β
+R2

)
;

logZ0 = log

∫
e−V0(x)dx ≤ log

∫
exp

(
−V0(x

′)− β

2
∥x− x′∥2

)
dx

= −V0(x
′) +

d

2
log

β

2π
,

so we conclude that

KL(µ0∥π0) ≤ d+ d log
β

2π
+

3βR2

2
.
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2. The result is adapted from Ge et al. (2020, Section 3), with two key modifications. First, we relax
their assumption that the global minimizer is at zero, requiring instead that the global minimizer x′

satisfies ∥x′∥ ≤ R ≲ 1√
β

. Second, we use replace their Metropolis-Hasting adjusted Langevin algo-

rithm (MALA) with the proximal sampler (Fan et al., 2023), which achieves improved dimensional
dependence. For completeness, we include a proof sketch in App. H.2 and refer the readers to the
original work for full technical details. Our analysis confirms that these relaxations have negligible
impact on the final bounds.

Next, we study how to satisfy the conditions in Eqs. (27) and (28) while minimizing oracle com-
plexity. Given that we already have an approximate sample from π0 and an accurate estimate of Z0,
we proceed to the next step of the AIS algorithm. Since each transition kernel requires one call to

the oracle of ∇V , and by plugging in fθ ← V + λ(θ)
2 ∥ · ∥2 in AIS (Thm. 3), the work function

W (x0:M ) is independent of V , it follows that the remaining oracle complexity is M . The result is
formalized in the following lemma.

Lemma 7. To minimize the oracle complexity, it suffices to find the minimal M such that there exists
a sequence 0 = θ0 < θ1 < ... < θM = 1 satisfying the following three constraints:

M∑

ℓ=1

∫ θℓ

θℓ−1

(λ(θ)− λ(θℓ))
2dθ ≲

ε4

m2A , (29)

M∑

ℓ=1

(θℓ − θℓ−1)
2 ≲

ε4

dβ2A2
, (30)

max
ℓ∈[[1,M ]]

(θℓ − θℓ−1) ≲
ε2

βA . (31)

Proof. We break down the argument into two steps.

Step 1. We first consider Eq. (27).

Note that when defining the reference path measure P, the only requirement for the transition kernel
F ∗ℓ is that it should transport πθℓ−1

to πθℓ . Our aim is to find the “optimal” F ∗ℓ ’s in order to minimize
the sum of KL divergences, which can be viewed as a static Schrödinger bridge problem (Léonard,
2014; Chen et al., 2016; 2021). By data-processing inequality,

Cℓ := inf
F∗ℓ

KL(πθℓ−1
(xℓ−1)F

∗
ℓ (xℓ−1, xℓ)∥πθℓ(xℓ−1)Fℓ(xℓ−1, xℓ)) ≤ inf

Pℓ
KL(Pℓ∥Qℓ),

where the infimum is taken among all path measures from 0 to Tℓ with the marginal constraints
Pℓ

0 = πθℓ−1
and Pℓ

Tℓ
= πθℓ ; Qℓ is the path measure of Eq. (12) (i.e., LD with target distribution

πθℓ ) initialized at X0 ∼ πθℓ .

For each ℓ ∈ [[1,M ]], define the following interpolation between πθℓ−1
and πθℓ :

µℓ
t := πθℓ−1+

t
Tℓ

(θℓ−θℓ−1), t ∈ [0, Tℓ].

Let Pℓ be the path measure of

dXt = (∇ logµℓ
t + uℓ

t)(Xt)dt+
√
2dBt, t ∈ [0, Tℓ]; X0 ∼ πθℓ−1

,

where the vector field (uℓ
t)t∈[0,Tℓ] is chosen such that Xt ∼ µℓ

t under Pℓ, and in particular, the
marginal distributions at 0 and Tℓ are πθℓ−1

and πθℓ , respectively. By verifying the Fokker-Planck
equation, the following PDE needs to be satisfied:

∂tµ
ℓ
t = −∇ · (µℓ

t(∇ logµℓ
t + uℓ

t)) + ∆µℓ
t = −∇ · (µℓ

tu
ℓ
t), t ∈ [0, Tℓ],

meaning that (uℓ
t)t∈[0,Tℓ] generates (µℓ

t)t∈[0,Tℓ]. Similar to the proof of JE (Thm. 2), using the rela-
tion between metric derivative and continuity equation (Lem. 2), among all vector fields generating
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(µℓ
t)t∈[0,Tℓ], we choose (uℓ

t)t∈[0,Tℓ] to be the a.s.-unique vector field that satisfies ∥uℓ
t∥L2(µℓ

t)
= |µ̇ℓ|t

for Lebesgue-a.e. t ∈ [0, Tℓ], which implies (using the chain rule)
∫ Tℓ

0

∥uℓ
t∥2L2(µℓ

t)
dt =

∫ Tℓ

0

|µ̇ℓ|2tdt

=

∫ Tℓ

0

(
θℓ − θℓ−1

Tℓ
|π̇|θℓ−1+

t
Tℓ

(θℓ−θℓ−1)

)2

dt =
θℓ − θℓ−1

Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ.

By Lem. 3, we can equivalently write Pℓ as the path measure of the following backward SDE:

dXt = (−∇ logµℓ
t + uℓ

t)(Xt)dt+
√
2dB←t , t ∈ [0, Tℓ]; XT ∼ πθℓ .

Recall that Qℓ is the path measure of Eq. (12) initialized at X0 ∼ πθℓ , so Xt ∼ πθℓ for all t ∈ [0, Tℓ].
By Nelson’s relation (Lem. 3), we can equivalently write Qℓ as the path measure of

dXt = −∇ log πθℓ(Xt)dt+
√
2dB←t , t ∈ [0, Tℓ]; XTℓ

∼ πθℓ .

The purpose of writing these two path measures in the way of backward SDEs is to avoid the extra
term of the KL divergence between the initialization distributions πθℓ−1

and πθℓ at time 0 when

calculating KL(Pℓ∥Qℓ). To see this, by Girsanov theorem (Lem. 4), the triangle inequality, and the
change-of-variable formula, we have

Cℓ ≤ KL(Pℓ∥Qℓ) =
1

4

∫ Tℓ

0

∥∥∥∥u
ℓ
t −∇ log

µℓ
t

πθℓ

∥∥∥∥
2

L2(µℓ
t)

dt

≲

∫ Tℓ

0

∥uℓ
t∥2L2(µℓ

t)
dt+

∫ Tℓ

0

∥∥∥∥∇ log
µℓ
t

πθℓ

∥∥∥∥
2

L2(µℓ
t)

dt

=
θℓ − θℓ−1

Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ +
Tℓ

θℓ − θℓ−1

∫ θℓ

θℓ−1

∥∥∥∥∇ log
πθ

πθℓ

∥∥∥∥
2

L2(πθ)

dθ.

Remark. Our bound above is based on a specific interpolation between πθℓ−1
and πθℓ along the

curve (πθ)θ∈[θℓ−1,θℓ]. This approach is inspired by, yet slightly differs from, Conforti & Tamanini
(2021, Theorem 1.6), where the interpolation is based on the Wasserstein geodesic. As we will
demonstrate shortly, our formulation simplifies the analysis of the second term (the Fisher diver-
gence), making it more straightforward to bound.

Now, summing over all ℓ ∈ [[1,M ]], we can see that in order to ensure KL(P∥P←) ≤∑M
ℓ=1 Cℓ ≤ ε2,

we only need the following two conditions to hold:

M∑

ℓ=1

θℓ − θℓ−1
Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ ≲ ε2, (32)

M∑

ℓ=1

Tℓ

θℓ − θℓ−1

∫ θℓ

θℓ−1

∥∥∥∥∇ log
πθ

πθℓ

∥∥∥∥
2

L2(πθ)

dθ ≲ ε2. (33)

Since
∑M

ℓ=1

∫ θℓ
θℓ−1
|π̇|2θdθ = A, it suffices to choose

Tℓ

θℓ − θℓ−1
=: T ≍ A

ε2
, ∀ℓ ∈ [[1,M ]]

to make the l.h.s. of Eq. (32) O(ε2). Notably, T is the summation over all Tℓ’s, which has the same
order as the total time T for running JE (Eq. (6)) in the continuous scenario, in Thm. 1. Plugging
this Tℓ into the second summation, and noticing that by Eq. (11) and Lem. 15,

∥∥∥∥∇ log
πθ

πθ′

∥∥∥∥
2

L2(πθ)

= Ex∼πθ
∥(λ(θ)− λ(θ′))x∥2 ≤ (λ(θ)− λ(θ′))2m2,

we conclude that Eq. (29) implies Eq. (33).

27



Published as a Frontiers in Probabilistic Inference (FPI) workshop paper at ICLR 2025

Step 2. Now consider the other constraint Eq. (28). By chain rule and data-processing inequality,

KL(P∥P→) =

M∑

ℓ=1

KL(πθℓ−1
(xℓ−1)F

∗
ℓ (xℓ−1, xℓ)∥πθℓ−1

(xℓ−1)F̂ℓ(xℓ−1, xℓ)) ≤
M∑

ℓ=1

KL(Pℓ∥Q̂ℓ),

where Pℓ is the previously defined path measure of the SDE

dXt = (∇ logµℓ
t + uℓ

t)(Xt)dt+
√
2dBt

=

(
−∇V (Xt)− λ

(
θℓ−1 +

t

Tℓ
(θℓ − θℓ−1)

)
Xt + uℓ

t(Xt)

)
dt+

√
2dBt, t ∈ [0, Tℓ]; X0 ∼ πθℓ−1

,

and Q̂ℓ is the path measure of Eq. (14) initialized at X0 ∼ πθℓ−1
, i.e.,

dXt =

(
−∇V (X0)− λ

(
θℓ−1 +

t

Tℓ
(θℓ − θℓ−1)

)
Xt

)
dt+

√
2dBt, t ∈ [0, Tℓ]; X0 ∼ πθℓ−1

.

By Lem. 1, triangle inequality, and the smoothness of V , we have

KL(Pℓ∥Q̂ℓ) =
1

4

∫ Tℓ

0

EPℓ ∥∇V (Xt)−∇V (X0)− uℓ
t(Xt)∥2dt

≲

∫ Tℓ

0

EPℓ

[
∥∇V (Xt)−∇V (X0)∥2 + ∥uℓ

t(Xt)∥2
]
dt

≤ β2

∫ Tℓ

0

EPℓ ∥Xt −X0∥2dt+
∫ Tℓ

0

∥uℓ
t∥2L2(µℓ

t)
dt

To bound the first part, note that under Pℓ, we have

Xt −X0 =

∫ t

0

(∇ logµℓ
τ + uℓ

τ )(Xτ )dτ +
√
2Bt.

Thanks to the fact that Xt ∼ µℓ
t under Pℓ,

EPℓ ∥Xt −X0∥2 ≲ EPℓ

∥∥∥∥
∫ t

0

(∇ logµℓ
τ + uℓ

τ )(Xτ )dτ

∥∥∥∥
2

+ E ∥
√
2Bt∥2

≲ t

∫ t

0

EPℓ ∥(∇ logµℓ
τ + uℓ

τ )(Xτ )∥2dτ + dt

≲ t

∫ t

0

(
∥∇ logµℓ

τ∥2L2(µℓ
τ )

+ ∥uℓ
τ∥2L2(µℓ

τ )

)
dτ + dt

≲ Tℓ

∫ Tℓ

0

(
∥∇ logµℓ

τ∥2L2(µℓ
τ )

+ ∥uℓ
τ∥2L2(µℓ

τ )

)
dτ + dTℓ, ∀t ∈ [0, Tℓ],

where the second inequality follows from Jensen’s inequality (Cheng et al., 2018, Sec. 4):

∥∥∥∥
∫ t

0

fτdτ

∥∥∥∥
2

= t2∥Eτ∼Unif(0,t) fτ∥2 ≤ t2 Eτ∼Unif(0,t) ∥fτ∥2 = t

∫ t

0

∥fτ∥2dτ.

Therefore,

KL(Pℓ∥Q̂ℓ)

≤ β2

∫ Tℓ

0

EPℓ ∥Xt −X0∥2dt+
∫ Tℓ

0

∥uℓ
t∥2L2(µℓ

t)
dt

≤ β2T 2
ℓ

∫ Tℓ

0

∥∇ logµℓ
τ∥2L2(µℓ

τ )
dτ + (β2T 2

ℓ + 1)

∫ Tℓ

0

∥uℓ
τ∥2L2(µℓ

τ )
dτ + dβ2T 2

ℓ

= β2T 2
ℓ

Tℓ

θℓ − θℓ−1

∫ θℓ

θℓ−1

∥∇ log πθ∥2L2(πθ)
dθ + (β2T 2

ℓ + 1)
θℓ − θℓ−1

Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ + dβ2T 2
ℓ .
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Recall that the potential of πθ is (β + λ(θ))-smooth. By Lem. 14 and the monotonicity of λ(·),
∫ θℓ

θℓ−1

∥∇ log πθ∥2L2(πθ)
dθ ≤

∫ θℓ

θℓ−1

d(β + λ(θ))dθ ≤ d(θℓ − θℓ−1)(β + λ(θℓ−1)).

Thus,

KL(P∥P→) ≤
M∑

ℓ=1

(
β2T 3

ℓ d(β + λ(θℓ−1)) + (β2T 2
ℓ + 1)

θℓ − θℓ−1
Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ + dβ2T 2
ℓ

)

=

M∑

ℓ=1

(
β2dT 2

ℓ (Tℓ(β + λ(θℓ−1)) + 1) + (β2T 2
ℓ + 1)

θℓ − θℓ−1
Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ
)

Assume maxℓ∈[[1,M ]] Tℓ ≲
1
β , i.e., Eq. (31). so maxℓ∈[[1,M ]] Tℓ(β+λ(θℓ−1)) ≲ 1, due to λ(·) ≤ 2β.

We can further simplify the above expression to

KL(P∥P→) ≤
M∑

ℓ=1

(
β2dT 2

ℓ +
θℓ − θℓ−1

Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ
)

≲ β2d

(
M∑

ℓ=1

T 2
ℓ

)
+ ε2

= β2dT 2
M∑

ℓ=1

(θℓ − θℓ−1)
2 + ε2 ≲ β2d

A2

ε4

M∑

ℓ=1

(θℓ − θℓ−1)
2 + ε2.

So Eq. (31) implies that the r.h.s. of the above equation is O(1).

Finally, we have arrived at the last step of proving Thm. 4, that is to decide the schedule of θℓ’s.

Define ϑℓ := 1− θℓ, ℓ ∈ [[0,M ]]. We consider the annealing schedule λ(θ) = 2β(1− θ)r for some
1 ≤ r ≲ 1, and to emphasize the dependence on r, we use Ar to represent the action of (πθ)θ∈[0,1].
The l.h.s. of Eq. (29) is

M∑

ℓ=1

∫ θℓ

θℓ−1

(λ(θ)− λ(θℓ))
2dθ ≤

M∑

ℓ=1

(θℓ − θℓ−1)(2β(1− θℓ−1)
r − 2β(1− θℓ)

r)2

=

M∑

ℓ=1

(ϑℓ−1 − ϑℓ)(2βϑ
r
ℓ−1 − 2βϑr

ℓ)
2

≲ β2
M∑

ℓ=1

(ϑℓ−1 − ϑℓ)(ϑ
r
ℓ−1 − ϑr

ℓ)
2

≲ β2
M∑

ℓ=1

(ϑℓ−1 − ϑℓ)(ϑℓ−1 − ϑℓ)
2 = β2

M∑

ℓ=1

(ϑℓ−1 − ϑℓ)
3,

where the last inequality comes from Lem. 10. So to satisfy Eq. (29), it suffices to ensure

M∑

ℓ=1

(ϑℓ−1 − ϑℓ)
3 ≲

ε4

m2β2Ar
,

while Eq. (30) and Eq. (31) are equivalent to

M∑

ℓ=1

(ϑℓ−1 − ϑℓ)
2 ≲

ε4

dβ2A2
r

, max
ℓ∈[[1,M ]]

(ϑℓ−1 − ϑℓ) ≲
ε2

βAr
.

Since we are minimizing the total number of oracle calls M , the Hölder’s inequality implies that the
optimal schedule of ϑℓ’s is an arithmetic sequence, i.e., ϑℓ = 1− ℓ

M . We need to ensure

1

M2
≲

ε4

m2β2Ar
,

1

M
≲

ε4

dβ2A2
r

,
1

M
≲

ε2

βAr
.
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So it suffices to choose 1
M ≍ ε2

mβA
1
2
r

∧ ε4

dβ2A2
r

, which implies the oracle complexity

M ≍ mβA
1
2
r

ε2
∨ dβ2A2

r

ε4
.

□

E PROOFS FOR SEC. 6

E.1 PROOF OF PROP. 1

Proof. The claim of smoothness follows from Guo et al. (2025, Lem. 7). Throughout this proof,
let ϕ and Φ denote the p.d.f. and c.d.f. of the standard normal distribution N (0, 1), respectively.
Unless otherwise specified, the integration ranges are assumed to be (−∞,∞).

Note that

π(x)e−
λ
2 x2 ∝

(
e−

x2

2 + e−
(x−m)2

2

)
e−

λ
2 x2

= e−
λ+1
2 x2

+ e−
λm2

2(λ+1) e−
λ+1
2 (x− m

λ+1 )
2

=
1

1 + e−
λm2

2(λ+1)

N
(
x

∣∣∣∣0,
1

λ+ 1

)
+

e−
λm2

2(λ+1)

1 + e−
λm2

2(λ+1)

N
(
x

∣∣∣∣
m

λ+ 1
,

1

λ+ 1

)
.

Define S(θ) := 1
1+m2(1−θ)r , and let

πs(x) :∝ π(x)e−
1/s−1

2 x2

= w(s)N (x|0, s) + (1− w(s))N (x|sm, s) ,

where

w(s) =
1

1 + e−(1−s)m2/2
, w′(s) = − e−(1−s)m

2/2m2/2

(1 + e−(1−s)m2/2)2
.

By definition, πθ = πS(θ). The p.d.f. of πs is

fs(x) =
w(s)√

s
ϕ

(
x√
s

)
+

1− w(s)√
s

ϕ

(
x− sm√

s

)
,

and the c.d.f. of πs is

Fs(x) = w(s)Φ

(
x√
s

)
+ (1− w(s))Φ

(
x− sm√

s

)
.

We now derive a formula for calculating the metric derivative. From Villani (2003, Thm. 2.18),

W 2
2 (µ, ν) =

∫ 1

0
(F−1µ (y) − F−1ν (y))2dy, where Fµ, Fν stand for the c.d.f.s of µ, ν. Assuming

regularity conditions hold, we have

lim
δ→0

W 2
2 (πs, πs+δ)

δ2
= lim

δ→0

∫ 1

0

(
F−1s+δ(y)− F−1s (y)

δ

)2

dy =

∫ 1

0

(∂sF
−1
s (y))2dy.

Consider change of variable y = Fs(x), then dy
dx = fs(x). As x = F−1s (y), (F−1s )′(y) = dx

dy =
1

fs(x)
. Taking derivation of s on both sides of the equation x = F−1s (Fs(x)) yields

0 = ∂sF
−1
s (Fs(x)) + (F−1s )′(Fs(x))∂sFs(x)

= ∂sF
−1
s (y) +

1

fs(x)
∂sFs(x).

Therefore,
∫ 1

0

(∂sF
−1
s (y))2dy =

∫ (
∂sFs(x)

fs(x)

)2

fs(x)dx =

∫
(∂sFs(x))

2

fs(x)
dx.
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Consider the interval x ∈
[
m
2 − 0.1, m

2 + 0.1
]
, and fix the range of s to be [0.9, 0.99]. We have





1− w(s) = 1
1+e(1−s)m2/2

≍ 1
e(1−s)m2/2

, ∀m ≳ 1

−w′(s) = e(1−s)m2/2m2/2

(1+e(1−s)m2/2)2
≍ m2

e(1−s)m2/2
, ∀m ≳ 1

First consider upper bounding fs(x). We have the following two bounds:

w(s)√
s
ϕ

(
x√
s

)
≲ e−

x2

2s ≤ e−
(m/2−0.1)2

2×0.99 ≤ e−
m2

8 , ∀m ≳ 1,

1− w(s)√
s

ϕ

(
x− sm√

s

)
≲

1

e(1−s)m2/2
e−

(sm−x)2

2s = exp

(
−1

2

[
(sm− x)2

s
+ (1− s)m2

])
.

The term in the square brackets above is

(sm− x)2

s
+ (1− s)m2 ≥ 1

s

(
sm− m

2
− 0.1

)2
+ (1− s)m2

=
m2

4s
− 0.2

(
1− 1

2s

)
m+

0.01

s

≥ m2

4× 0.99
− 0.1m+ 0.1 ≥ m2

4
, ∀m ≳ 1.

Hence, we conclude that fs(x) ≲ e−
m2

8 .

Next, we consider lower bounding the term (∂sFs(x))
2. Note that

−∂sFs(x) = −w′(s)
(
Φ

(
x√
s

)
− Φ

(
x− sm√

s

))

+ w(s)ϕ

(
x√
s

)
x

2s
3
2

+ (1− w(s))ϕ

(
x− sm√

s

)(
x

2s
3
2

+
m

2s
1
2

)
.

As x ∈
[
m
2 − 0.1, m

2 + 0.1
]

and s ∈ [0.9, 0.99], all these three terms are positive. We only focus on
the first term. Note the following two bounds:





Φ
(

x√
s

)
≥ Φ

(
m
2 − 0.1

)
≥ 3

4 , ∀m ≳ 1,

Φ
(

x−sm√
s

)
≤ Φ

(
m/2+0.1−sm√

s

)
≤ Φ(−0.4m+ 0.1) ≤ 1

4 , ∀m ≳ 1.

Therefore, we have

−∂sFs(x) ≳
m2

e(1−s)m2/2
.

To summarize, we derive the following lower bound on the metric derivative:

|π̇|2s =

∫
(∂sFs(x))

2

fs(x)
dx ≥

∫ m
2 +0.1

m
2 −0.1

(∂sFs(x))
2

fs(x)
dx

≳

∫ m
2 +0.1

m
2 −0.1

m4e−(1−s)m
2

e−m2/8
dx

≳ m4e(s−
7
8 )m

2 ≥ m4e
m2

40 , ∀s ∈ [0.9, 0.99].

Finally, recall that S(θ) := 1
1+m2(1−θ)r , and πθ = πS(θ). Hence, by chain rule of derivative,

|π̇|θ = |π̇|S(θ)|S′(θ)|. Let

Θ := {θ ∈ [0, 1] : S(θ) ∈ [0.9, 0.99]} =
[
1−

(
1/0.9− 1

m2

) 1
r

, 1−
(
1/0.99− 1

m2

) 1
r

]
.
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We have

Ar =

∫ 1

0

|π̇|2θdθ =

∫ 1

0

|π̇|2S(θ)|S′(θ)|2dθ ≥
∫

Θ

|π̇|2S(θ)|S′(θ)|2dθ

≥ min
θ∈Θ
|S′(θ)| ·

∫

Θ

|π̇|2S(θ)|S′(θ)|dθ = min
θ∈Θ
|S′(θ)| ·

∫ 0.99

0.9

|π̇|2sds.

Since

|S′(θ)| = m2r(1− θ)r−1

(1 +m2(1− θ)r)2
≥

m2r
(

1/0.99−1
m2

)1−1/r

(
1 +m2

(
1/0.9−1

m2

))2 ≳ m2/r ≳ 1, ∀θ ∈ Θ,

the proof is complete.

Remark. In the above theorem, we established an exponential lower bound on the metric derivative

of the W2 distance, given by limδ→0
W2(πs,πs+δ)

|δ| . In OT, another useful distance, the Wasserstein-1

(W1) distance, defined as W1(µ, ν) = infγ∈Π(µ,ν)

∫
∥x− y∥γ(dx, dy), is a lower bound of the W2

distance. Below, we present a surprising result regarding the metric derivative of W1 distance on
the same curve of probability distributions. This result reveals an exponentially large gap between
the W1 and W2 metric derivatives on the same curve, which is of independent interest.

Theorem 6. Define the probability distributions πs as in the proof of Prop. 1, for some large enough
m ≳ 1. Then, for all s ∈ [0.9, 0.99], we have

lim
δ→0

W1(πs, πs+δ)

|δ| ≲ 1.

Proof. Since W1(µ, ν) =
∫
|Fµ(x)− Fν(x)|dx (Villani, 2003, Thm. 2.18), by assuming regularity

conditions, we have

lim
δ→0

W1(πs, πs+δ)

|δ| =

∫
|∂sFs(x)|dx

≤
∫ ∣∣∣∣w

′(s)

(
Φ

(
x√
s

)
− Φ

(
x− sm√

s

))∣∣∣∣ dx

+

∫ ∣∣∣∣w(s)ϕ
(

x√
s

)
x

2s
3
2

∣∣∣∣ dx

+

∫ ∣∣∣∣(1− w(s))ϕ

(
x− sm√

s

)(
x

2s
3
2

+
m

2s
1
2

)∣∣∣∣ dx.

To bound the first term, notice that for any λ > 0,

Φ

(
x√
s

)
− Φ

(
x− sm√

s

)
≲





√
sme−

(x−sm)2

2s , x−sm√
s
≥ λ;

√
sme−

x2

2s , x√
s
≤ −λ;

1, otherwise.

Therefore, using Gaussian tail bound 1− Φ(λ) ≤ 1
2e
−λ2

2 , the first term is bounded by

≲
m2

e(1−s)m2/2

[
2
√
sλ+ sm+ sm(1− Φ(λ)) + smΦ(−λ)

]

≲
m2

e(1−s)m2/2
[λ+m+ e−

λ2

2 ]
λ←Θ(m)

≲
m3

e(1−s)m2/2
= o(1).

The second term is bounded by

≲

∫
ϕ

(
x√
s

)
|x|dx = s

∫
ϕ(u)|u|du ≲ 1.
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Finally, the third term is bounded by

≲
1

e(1−s)m2/2

∫
ϕ

(
x− sm√

s

)
(|x|+m)dx

≲
1

e(1−s)m2/2

∫
ϕ(u)(|u|+m)du ≲

m

e(1−s)m2/2
= o(1).

E.2 PROOF OF PROP. 2

Proof. Note that (πt)t∈[0,∞) satisfies the Fokker-Planck equation ∂tπt = ∇·
(
πt∇ log πt

γ

)
. Hence,

the vector field
(
vt := −∇ log πt

γ

)
t∈[0,∞)

generates (πt)t∈[0,∞), and each vt can be written as a

gradient field of a potential function. Thus, by the uniqueness result in Lem. 2, we conclude that

|π̇|2t =

∥∥∥∥∇ log
πt

γ

∥∥∥∥
2

L2(πt)

= FI(πt∥γ) ≤ e−2t FI(π∥γ),

where FI is the Fisher divergence, and the last inequality is due to Villani (2003, Eq. 9.34). Finally,
using the smoothness of V and Lem. 14, we have

FI(π∥γ) = Eπ(x) ∥ − ∇V (x) + x∥2 ≤ 2(Eπ ∥∇V ∥2 + Eπ ∥ · ∥2) ≤ 2(dβ +m2),

E.3 PROOF OF THM. 5

Proof. By Nelson’s relation (Lem. 3), Q is equivalent to the path measure of the following SDE:

dXt = Xtdt+
√
2dB←t , t ∈ [0, T − δ]; XT−δ ∼ πδ.

Leveraging Girsanov theorem (Lem. 4), we know that for a.s. X ∼ Q†:

log
dQ†

dQ
(X)

= log
ϕ(X0)

πδ(XT−δ)
+ (T − δ)d+

∫ T−δ

0

(
∥sT−t−(Xt−)∥2dt+

√
2
〈
sT−t−(Xt−), dBt

〉)

= logZ +W (X) + log
dπ

dπδ

(XT−δ).

Thus, the equation EQ†
dQ
dQ†

= 1 implies

Z = EQ†(X) e
−W (X) dπδ

dπ
(XT−δ).

Since Ẑ
Z = dQ

dQ†
(X) dπ

dπδ
(XT−δ), we have

Pr

(∣∣∣∣∣
Ẑ

Z
− 1

∣∣∣∣∣ ≥ ε

)
= PrX∼Q†

(∣∣∣∣
dQ

dQ†
(X)

dπ

dπδ

(XT−δ)− 1

∣∣∣∣ ≥ ε

)

≤ PrX∼Q†

(∣∣∣∣
dQ

dQ†
(X)− 1

∣∣∣∣ ≳ ε

)
+ PrX∼Q†

(∣∣∣∣
dπ

dπδ

(XT−δ)− 1

∣∣∣∣ ≳ ε

)
.

The inequality is due to the fact that |ab− 1| ≥ ε implies |a− 1| ≥ ε
3 or |b− 1| ≥ ε

3 for ε ∈ [0, 1].
It suffices to make both terms above O(1). To bound the first term, we use the similar approach as
in the proof of Eq. (20) in Thm. 2:

PrX∼Q†

(∣∣∣∣
dQ

dQ†
(X)− 1

∣∣∣∣ ≳ ε

)
= Q†

(∣∣∣∣
dQ

dQ†
− 1

∣∣∣∣ ≳ ε

)
≲

TV(Q,Q†)

ε
≲

√
KL(Q∥Q†)

ε
.
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Hence, it suffices to let TV(Q,Q†)2 ≲ KL(Q∥Q†) ≲ ε2. To bound the second term, we have

PrX∼Q†

(∣∣∣∣
dπ

dπδ

(XT−δ)− 1

∣∣∣∣ ≳ ε

)
≤ PrX∼Q

(∣∣∣∣
dπ

dπδ

(XT−δ)− 1

∣∣∣∣ ≳ ε

)
+TV(Q,Q†)

≤ πδ

(∣∣∣∣
dπ

dπδ

− 1

∣∣∣∣ ≳ ε

)
+TV(Q,Q†)

≲
TV(πδ, π)

ε
+ ε.

Therefore, it suffices to make TV(πδ, π) ≲ ε.

E.4 AN UPPER BOUND OF THE TV DISTANCE ALONG THE OU PROCESS

Lemma 8. Assume that the target distribution π ∝ e−V satisfies Assump. 2, with the exception that
R ≲ 1√

β
. Let πδ be the distribution of Yδ in the OU process (Eq. (3)) initialized at Y0 ∼ π, for some

δ ≲ 1. Then,

TV(π, πδ) ≲ δ(βm2 + βRm+ d+ β) + δ
1
2 d

1
2 β(m+R).

Remark. Consider a simplified case where R ≪ 1, β ≳ 1, and m2 ≍ d. Then it suffices to choose

δ ≲ ε2

β2d2 in order to guarantee TV(π, πδ) ≲ ε.

Proof. Our proof is inspired by Lee et al. (2023, Lem. 6.4), which addresses the case where V is
Lipschitz.

Without loss of generality, suppose π = e−V . Let ϕ be the p.d.f. of N (0, I), and define σ2 :=
1 − e−2δ ≍ δ. We will use the following inequality: |ea − eb| ≤ (ea + eb)|a − b|, which is due to
the convexity of the exponential function. By the smoothness of V ,

∥∇V (x)∥ = ∥∇V (x)−∇V (x∗)∥ ≤ β∥x− x∗∥ ≤ β(∥x∥+R).

Define π′(x) = edδπ(eδx), and thus πδ(x) =
∫
π′(x + σu)ϕ(u)du. Using triangle inequality, we

bound TV(π, π′) and TV(π′, πδ) separately. First,

TV(π, π′) =
1

2

∫
|e−V (x) − e−V (eδx)+dδ|dx

≲

∫
(π(x) + π′(x))(|V (eδx)− V (x)|+ dδ)dx.

By the smoothness,

|V (eδx)− V (x)| ≤ ∥∇V (x)∥(eδ − 1)∥x∥+ β

2
(eδ − 1)2∥x∥2

≲ β(∥x∥+R)δ∥x∥+ βδ2∥x∥2

≲ βδ∥x∥2 + βδR∥x∥.

=⇒ TV(π, π′) ≲ δ

∫
(π(x) + π′(x))(β∥x∥2 + βR∥x∥+ d)dx.

Note that ∫
π(x)(β∥x∥2 + βR∥x∥+ d)dx ≤ βm2 + βRm+ d.

Since Eπ′ φ = Eπ φ(e
−δ·), we also have

∫
π′(x)(β∥x∥2 + βR∥x∥ + d)dx ≲ βm2 + βRm + d.

We thus conclude that
TV(π, π′) ≲ δ(βm2 + βRm+ d).

Next,

TV(π′, πδ) =
1

2

∫ ∣∣∣∣
∫
(π′(x+ σu)− π′(x))ϕ(u)du

∣∣∣∣ dx

≲

∫∫
|π′(x+ σu)− π′(x)|ϕ(u)dudx

≲

∫∫
(π′(x+ σu) + π′(x))|V (eδ(x+ σu))− V (eδx)|ϕ(u)dudx.
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Again, by smoothness,

V (eδ(x+ σu))− V (eδx) ≤ ∥∇V (eδx)∥eδσ∥u∥+ β

2
e2δσ2∥u∥2

≲ β(eδ∥x∥+R)eδσ∥u∥+ βe2δσ2∥u∥2

≲ β(∥x∥+R)δ
1
2 ∥u∥+ βδ∥u∥2.

Therefore,

TV(π′, πδ) ≲ βδ
1
2

∫∫
(π′(x+ σu) + π′(x))(∥u∥∥x∥+ ∥u∥R+ δ

1
2 ∥u∥2)ϕ(u)dudx.

Note that
∫∫

π′(x)(∥u∥∥x∥+ ∥u∥R+ δ
1
2 ∥u∥2)ϕ(u)dudx

≲ Eπ′ ∥ · ∥d
1
2 +Rd

1
2 + δ

1
2 d ≤ md

1
2 +Rd

1
2 + δ

1
2 ;∫∫

π′(x+ σu)(∥u∥∥x∥+ ∥u∥R+ δ
1
2 ∥u∥2)ϕ(u)dudx

=

∫∫
π′(y)(∥u∥∥y − σu∥+ ∥u∥R+ δ

1
2 ∥u∥2)ϕ(u)dudy

≲

∫∫
π′(y)(∥u∥∥y∥+ ∥u∥R+ δ

1
2 ∥u∥2)ϕ(u)dudy

≲ md
1
2 +Rd

1
2 + δ

1
2 .

Therefore, TV(π′, πδ) ≲ βδ
1
2 (md

1
2 +Rd

1
2 + δ

1
2 ). The proof is complete.

E.5 DISCUSSION ON THE OVERALL COMPLEXITY OF RDS

In RDS, an accurate score estimate s· ≈ ∇ log π· is critical for the algorithmic efficiency. Existing
methods estimate scores through different ways. Here, we review the existing methods and their
complexity guarantees for sampling, and leverage Thm. 5 to derive the complexity of normalizing
constant estimation. Throughout this section, we always assume that the target distribution π ∝ e−V

satisfies m2 := Eπ ∥ · ∥2 <∞ and that V is β-smooth.

(I) Reverse diffusion Monte Carlo. The seminal work directly leveraged the following Tweedie’s
formula (Robbins, 1992) to estimate the score: Huang et al. (2024a)

∇ log πt(x) = Eπ0|t(x0|x)
e−tx0 − x

1− e−2t
, (34)

where

π0|t(x0|x) ∝x0
exp

(
−V (x0)−

∥x0 − etx∥2
2(e2t − 1)

)
(35)

is the posterior distribution of Y0 conditional on Yt = x in the OU process (Eq. (3)). The paper
proposed to sample from π0|t(·|x) by LMC and estimate the score via empirical mean, which has a
provably better LSI constant than the target distribution π (see Huang et al. (2024a, Lem. 2)). They
show that if the scores∇ log πt are uniformly β-Lipschitz, and assume that there exists some c > 0
and n > 0 such that for any r > 0, V + r∥ · ∥2 is convex for ∥x∥ ≥ c

rn , then w.p. ≥ 1 − ζ, the

overall complexity for guaranteeing KL(Q∥Q†) ≲ ε2 is

O

(
poly

(
d,

1

ζ

)
exp

(
1

ε

)O(n)
)
,

which is also the complexity of obtaining a Ẑ satisfying Eq. (5).
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(II) Recursive score diffusion-based Monte Carlo. A second work Huang et al. (2024b) pro-
posed to estimate the scores in a recursive scheme. Assuming the scores ∇ log πt are uniformly
β-Lipschitz, they established a complexity

exp

(
β3 log3

(
β, d,m2,

1

ζ

))

in order to guarantee KL(Q∥Q†) ≲ ε2 w.p. ≥ 1− ζ.

(III) Zeroth-order diffusion Monte Carlo. The following work He et al. (2024) proposed a
zeroth-order method that leverages rejection sampling to sample from π0|t(·|x). When V is β-
smooth, they showed that with a small early stopping time δ, the overall complexity for guaranteeing
KL(Q∥Q†) ≲ ε2 is

exp

(
Õ(d) log β log

1

ε

)
.

(IV) Self-normalized estimator. Finally, a recent work Vacher et al. (2025) proposed to estimate
the scores in a different approach:

∇ log πt(x) = −
1

1− e−2t
E[ξe−V (et(x−ξ))]

E[e−V (et(x−ξ))]
, where ξ ∼ N

(
0, (1− e−2t)I

)
.

Assume that V is β-smooth, and the distributions along the OU process starting from π ∝ e−V

and π′ ∝ e−2V have potentials whose Hessians are uniformly ⪰ −βI , then the complexity for
guaranteeing EKL(Q∥Q†) ≲ ε2 is

O

((
β(m2 ∨ d)

ε

)O(d)
)
.

F SUPPLEMENTARY LEMMAS

Lemma 9. For x > 0 and ε ∈
(
0, 1

2

)
, define x0 := | log x| and x1 := |x− 1|. Then xi ≥ ε implies

x1−i ≥ ε
2 , and xi ≤ ε implies x1−i ≤ 2ε, for both i = 0, 1.

This follows from the standard calculus approximation log x ≈ x − 1 when x ≈ 1. The proof is
straightforward and is left as an exercise for the reader.

Lemma 10. For any 0 ≤ a ≤ b ≤ 1 and r ≥ 1, br − ar ≤ r(b− a).

Proof. This is immediate from the decreasing property of the function φ(x) := xr − rx, x ∈ [0, 1],
since φ′(x) = r(xr−1 − 1) ≤ 0.

Lemma 11 (The median trick (Jerrum et al., 1986)). Let Ẑ1, ..., ẐN be N(≥ 3) i.i.d. random
variables satisfying

Pr

(∣∣∣∣∣
Ẑn

Z
− 1

∣∣∣∣∣ ≤ ε

)
≥ 3

4
, ∀n ∈ [[1, N ]] ,

and let Ẑ∗ be the median of Ẑ1, ..., ẐN . Then

Pr

(∣∣∣∣∣
Ẑ∗
Z
− 1

∣∣∣∣∣ ≤ ε

)
≥ 1− e−

N
72 .

In particular, for any ζ ∈
(
0, 1

4

)
, choosing N =

⌈
72 log 1

ζ

⌉
, the probability is at least 1− ζ.
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Proof. Let An :=
{∣∣∣ Ẑn

Z − 1
∣∣∣ > ε

}
, which are i.i.d. events happening w.p. p ≤ 1

4 . If

∣∣∣ Ẑ∗Z − 1
∣∣∣ > ε,

then there are at least
⌊
N
2

⌋
An’s happening, i.e., SN :=

∑N
n=1 1An ≥

⌊
N
2

⌋
. Then,

Pr

(∣∣∣∣∣
Ẑ∗
Z
− 1

∣∣∣∣∣ > ε

)
≤ Pr

(
SN ≥

⌊
N

2

⌋)
= Pr

(
SN − ESN ≥

⌊
N

2

⌋
− pN

)

≤ Pr

(
SN − ESN ≥

N

12

)
≤ e−

N
72 ,

where the first inequality on the second line follows from the fact that
⌊
N
2

⌋
≥ N−1

2 ≥ N
3 for all

N ≥ 3, and the last inequality is due to the Hoeffding’s inequality.

Lemma 12. The update rule of AIS (Eq. (14)) is:

XTℓ
= e−Λ(Tℓ)X0 −

(∫ Tℓ

0

e−(Λ(Tℓ)−Λ(t))dt

)
∇V (X0) +

(
2

∫ Tℓ

0

e−2(Λ(Tℓ)−Λ(t))dt

) 1
2

ξ,

where Λ(t) :=
∫ t

0
λ
(
θℓ−1 +

τ
Tℓ
(θℓ − θℓ−1)

)
dτ , and ξ ∼ N (0, I) is independent of X0.

Proof. By Itô’s formula, we have

d
(
eΛ(t)Xt

)
= eΛ(t) (Λ′(t)Xtdt+ dXt) = eΛ(t)

(
−∇V (X0)dt+

√
2dBt

)
.

Integrating over t ∈ [0, Tℓ], we obtain

eΛ(Tℓ)XTℓ
−X0 = −

(∫ Tℓ

0

eΛ(t)dt

)
∇V (X0) +

√
2

∫ Tℓ

0

eΛ(t)dBt,

=⇒ XTℓ
= e−Λ(Tℓ)X0 −

(∫ Tℓ

0

e−(Λ(Tℓ)−Λ(t))dt

)
∇V (X0) +

√
2

∫ Tℓ

0

e−(Λ(Tℓ)−Λ(t))dBt,

and
√
2
∫ Tℓ

0
e−(Λ(Tℓ)−Λ(t))dBt ∼ N

(
0,
(
2
∫ Tℓ

0
e−2(Λ(Tℓ)−Λ(t))dt

)
I
)

by Itô isometry.

Lemma 13. The update rule of the RDS (Eq. (16)) is

Xtk+1
= etk+1−tkXtk + 2(etk+1−tk − 1)sT−tk(Xtk) + Ξk,

where

Ξk :=

∫ tk+1

tk

√
2e−(t−tk+1)dBt ∼ N

(
0, (e2(tk+1−tk) − 1)I

)
,

and the correlation matrix between Ξk and Btk+1
−Btk is

Corr(Ξk, Btk+1
−Btk) =

√
2(etk+1−tk − 1)√

(e2(tk+1−tk) − 1)(tk+1 − tk)
I.

Proof. By applying Itô’s formula to Eq. (16) for t ∈ [tk, tk+1], we have

d(e−tXt) = e−t(−Xtdt+ dXt) = e−t(2sT−tk(Xtk)dt+
√
2dBt)

=⇒ e−tk+1Xtk+1
− e−tkXtk = 2(e−tk − e−tk+1)sT−tk(Xtk) +

∫ tk+1

tk

√
2e−tdBt.

The covariance between two zero-mean Gaussian random variables Ξk and Btk+1
−Btk is

Cov(Ξk, Btk+1
−Btk) = E

[
Ξk(Btk+1

−Btk)
T
]

= E

[(∫ tk+1

tk

√
2e−(t−tk+1)dBt

)(∫ tk+1

tk

dBt

)T
]

=

∫ tk+1

tk

√
2e−(t−tk+1)dt · I =

√
2(etk+1−tk − 1)I.

Finally, Corr(u, v) = diag(Cov u)−
1
2 Cov(u, v) diag(Cov v)−

1
2 yields the correlation.
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Lemma 14 (Chewi (2022, Lemma 4.E.1)). Consider a probability measure µ ∝ e−U on Rd.

1. If ∇2U ⪰ αI for some α > 0 and x⋆ is the global minimizer of U , then Eµ ∥ · −x⋆∥2 ≤ d
α .

2. If ∇2U ⪯ βI for some β > 0, then Eµ ∥∇U∥2 ≤ βd.

Lemma 15. Define π̂λ ∝ exp
(
−V − λ

2 ∥ · ∥2
)
, λ ≥ 0. Then under Assump. 2, Eπ̂λ

∥ · ∥2 ≤ m2 for
all λ ≥ 0.

Proof. Let Vλ := V + λ
2 ∥ · ∥2, and Zλ =

∫
e−Vλdx, so π̂λ = e−Vλ−logZλ . We have

d

dλ
logZλ =

Z ′λ
Zλ

= − 1

Zλ

∫
e−VλV ′λdx = −1

2
Eπ̂λ
∥ · ∥2,

=⇒ d

dλ
log π̂λ = −V ′λ −

d

dλ
logZλ =

1

2

(
Eπ̂λ
∥ · ∥2 − ∥ · ∥2

)
,

=⇒ d

dλ
Eπ̂λ
∥ · ∥2 =

∫
∥ · ∥2

(
d

dλ
log π̂λ

)
dπ̂λ =

1

2

((
Eπ̂λ
∥ · ∥2

)2 − Eπ̂λ
∥ · ∥4

)
≤ 0.

Lemma 16. If a function U on Rd satisfies 0 ≺ ∇2U ⪯ βI for some β > 0, and for any t ≥ 0, let

xt be the global minimizer of U + t
2∥ · ∥2. We have ∥xt∥ ≤ ∥x0∥

1+ t
β

.

Proof. Since ∇U(xt) + txt = 0, taking time derivative yields ∇2U(xt)ẋt + xt + tẋt = 0. Due to
convexity, ẋt = −(∇2U(xt) + tI)−1xt. Therefore,

1

2

d

dt
∥xt∥2 = xT

t ẋt = −xT
t (∇2U(xt) + tI)−1xt ≤ −

∥xt∥2
β + t

,

which implies d
dt

((
1 + t

β

)2
∥xt∥2

)
≤ 0, and thus the proof is complete.

G REVIEW AND DISCUSSION ON THE ERROR GUARANTEE (EQ. (5))

G.1 LITERATURE REVIEW OF EXISTING BOUNDS

Estimation of Z. Traditionally, the statistical properties of an estimator are typically analyzed

through its bias and variance. However, deriving closed-form expressions of the variance of Ẑ and

F̂ in JE remains challenging. Recall that the estimator Ẑ = Z0e
−W (X), X ∼ P→ for Z = Z0e

−∆F ,

and that JE implies Bias Ẑ = 0. For general (sub-optimally) controlled SDEs, Hartmann & Richter
(2024) established both upper and lower bounds of the relative error of the importance sampling
estimator, yet bounds tailored for JE are not well-studied. Inspired by this, we establish an upper

bound on the normalized variance Var Ẑ
Z in Prop. 3 at the end of this section using techniques in

Rényi divergence. However, we remark that connecting this upper bound to the properties of the
curve (e.g., action) is non-trivial, which we leave for future work.

Estimation of F . Turning to the estimator F̂ = − log Ẑ for F = − logZ, we have

Bias F̂ = EP→W −∆F =W −∆F =Wdiss.

Bounding the average dissipated work Wdiss = KL(P→∥P←) = −EP→
∫ T

0
(∂t log π̃t)(Xt)dt re-

mains challenging as well, as the law of Xt under P→ is unknown, thus complicating the bounding
of the expectation. To the best of our knowledge, Chen et al. (2020) established a lower bound in
terms of W2(π0, π1) via the Wasserstein gradient flow, but an upper bound remains elusive. Further-

more, E F̂ 2 = EP→(X) (logZ0 −W (X))
2

is similarly intractable to analyze.

For multiple estimators, i.e., F̂K := − log
(
Z0

1
M

∑K
k=1 e

−W (X(k))
)

where X(1), ..., X(K) i.i.d.∼
P→, Zuckerman & Woolf (2002; 2004) (see also Lelièvre et al. (2010, Sec. 4.1.5)) derived approx-

imate asymptotic bounds on Bias F̂K and Var F̂K via the delta method (or equivalently, the central
limit theorem and Taylor expansions). Precise and non-asymptotic bounds remain elusive to date.
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G.2 EQUIVALENCE IN COMPLEXITIES FOR ESTIMATING Z AND F

We prove the claim in Sec. 3 that estimating Z with O(ε) relative error and estimating F with
O(ε) absolute error share the same complexity up to absolute constants. This follows directly from

Lem. 9: for any ε ∈
(
0, 1

2

)
,

Eq. (5) =⇒ Pr
(
|F̂ − F | ≤ 2ε

)
≥ 3

4
, and Eq. (5) ⇐= Pr

(
|F̂ − F | ≤ ε

2

)
≥ 3

4
.

G.3 EQ. (5) IS WEAKER THAN BIAS AND VARIANCE

We demonstrate that Eq. (5) is a weaker criterion than controlling bias and variance, which is an
immediate result from the Chebyshev inequality:

Pr

(∣∣∣∣∣
Ẑ

Z
− 1

∣∣∣∣∣ ≥ ε

)
≤ 1

ε2
E

(
Ẑ

Z
− 1

)2

=
Bias2 Ẑ +Var Ẑ

ε2Z2
,

Pr
(
|F̂ − F | ≥ ε

)
≤ E(F̂ − F )2

ε2
=

Bias2 F̂ +Var F̂

ε2
.

On the other hand, suppose one has established a bound in the following form:

Pr

(∣∣∣∣∣
Ẑ

Z
− 1

∣∣∣∣∣ ≥ ε

)
≤ p(ε), for some p : [0,∞)→ [0, 1],

and assume that Ẑ is unbiased. Then this implies

Var
Ẑ

Z
= E

(
Ẑ

Z
− 1

)2

=

∫ ∞

0

Pr



(
Ẑ

Z
− 1

)2

≥ ε


 dε ≤

∫ ∞

0

p(
√
ε)dε.

G.4 AN UPPER BOUND ON THE NORMALIZED VARIANCE OF Ẑ IN JARZYNSKI EQUALITY

Proposition 3. Under the setting of JE (Thm. 1), let (vt)t∈[0,T ] be any vector field that generates

(π̃t)t∈[0,T ], and define P as the path measure of Eq. (19). Then,

Var
Ẑ

Z
≤
[
EP exp

(
14

∫ T

0

∥vt(Xt)∥2dt
)] 1

2

− 1.

Proof. The proof is inspired by Chewi et al. (2022). Note that

Var
Ẑ

Z
= E

(
Ẑ

Z

)2

− 1 = EP→

(
e−W (X)+∆F

)2
− 1 = EP→

(
dP←

dP→

)2

− 1,

which is the χ2 divergence from P← to P→. Recall the q(> 1)-Rényi divergence defined as

Rq(µ∥ν) = 1
q−1 logEν

(
dµ
dν

)q
, and that χ2(P←∥P→) = eR2(P

←∥P→) − 1. By the weak triangle

inequality of Rényi divergence (Chewi, 2022, Lem. 6.2.5):

R2(P
←∥P→) ≤ 3

2
R4(P

←∥P) + R3(P∥P→).

We now bound EP

(
dP→

dP

)q
for any q ∈ R. By Girsanov theorem (Lem. 1),

log
dP→

dP
(X) =

∫ T

0

(
− 1√

2
⟨vt(Xt), dBt⟩ −

1

4
∥vt(Xt)∥2dt

)
, a.s. X ∼ P.
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Therefore,

EP

(
dP→

dP

)q

= EP exp

∫ T

0

(
− q√

2
⟨vt(Xt), dBt⟩ −

q

4
∥vt(Xt)∥2dt

)

= EP exp

[∫ T

0

(
− q√

2
⟨vt(Xt), dBt⟩ −

q2

2
∥vt(Xt)∥2dt

)
+

∫ T

0

(
q2

2
− q

4

)
∥vt(Xt)∥2dt

]

≤
(
EP exp

[∫ T

0

(
−
√
2q ⟨vt(Xt), dBt⟩ − q2∥vt(Xt)∥2dt

)]) 1
2

·
(
EP exp

[(
q2 − q

2

)∫ T

0

∥vt(Xt)∥2dt
]) 1

2

,

where the last line is by the Cauchy-Schwarz inequality. Let Mt := −
√
2q
∫ t

0
⟨vr(Xr), dBr⟩,

X ∼ P be a continuous martingale with quadratic variation [M ]t =
∫ t

0
2q2∥vr(Xr)∥2dr. By

Karatzas & Shreve (1991, Chap. 3.5.D), the process t 7→ eMt− 1
2 [M ]t is a super martingale, and

hence E eMT− 1
2 [M ]T ≤ 1. Thus, we have

EP

(
dP→

dP

)q

≤
(
EP exp

[(
q2 − q

2

)∫ T

0

∥vt(Xt)∥2dt
]) 1

2

From Girsanov theorem (Lem. 4), we can similarly obtain the following RN derivative:

log
dP←

dP
(X) =

∫ T

0

(
− 1√

2
⟨vt(Xt), ∗dB←t ⟩ −

1

4
∥vt(Xt)∥2dt

)
, a.s. X ∼ P.

and use the same argument to show that EP

(
dP←

dP

)q
has exactly the same upper bound as EP

(
dP→

dP

)q
.

In particular, we can use the same martingale argument, whereas now the backward continuous

martingale is defined as M ′t := −
√
2q
∫ T

t
⟨vr(Xr), ∗dB←r ⟩, X ∼ P, with quadratic variation

[M ′]t =
∫ T

t
2q2∥vr(Xr)∥2dr. Therefore, we conclude that

R2(P
←∥P→) ≤ 1

4
logEP exp

(
14

∫ T

0

∥vt(Xt)∥2dt
)

+
1

4
logEP exp

(
5

∫ T

0

∥vt(Xt)∥2dt
)

≤ 1

2
logEP exp

(
14

∫ T

0

∥vt(Xt)∥2dt
)
.

H FURTHER DISCUSSION ON RELATED WORKS

Related works. We briefly review some related works, and defer detailed discussion to App. H.

• Methods for normalizing constant estimation. We mainly discuss two classes of methods here.

First, the equilibrium methods, such as TI (Kirkwood, 1935) and its variants (Brosse et al., 2018;
Ge et al., 2020; Chehab et al., 2023; Kook & Vempala, 2024), which involve sampling sequentially
from a series of equilibrium Markov transition kernels. Second, the non-equilibrium methods, such
as AIS (Neal, 2001), which samples from a non-equilibrium SDE that gradually evolves from a
prior distribution to the target distributions. In App. H.1, we show that TI is a special case of AIS
using the “perfect” transition kernels. Recent years have also witnessed the emergence of learning-
based non-equilibrium methods for normalizing constant estimation, which are typically byproducts
of sampling algorithms (Zhang & Chen, 2022; Nüsken & Richter, 2021; Richter & Berner, 2024;
Sun et al., 2024; Vargas et al., 2024; Albergo & Vanden-Eijnden, 2024; Blessing et al., 2025; Chen
et al., 2025). Additionally, there are also several methods based on particle filtering (e.g., Kostov &
Whiteley (2017); Jasra et al. (2018); Ruzayqat et al. (2022)).
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• Variance reduction in JE and AIS. Our poof methodology focuses on the discrepancy between the
sampling path measure and the reference path measure, which is related to the variance reduction
technique in applying JE and AIS. For example, Vaikuntanathan & Jarzynski (2008) introduced the
idea of escorted simulation, Hartmann et al. (2017) proposed a method for learning the optimal
control protocol in JE through the variational characterization of free energy, and Doucet et al.
(2022) leveraged score-based generative model to learn the optimal backward kernel. Quantifying
the discrepancy between path measures is the core of our analysis.
• Complexity analysis for normalizing constant estimation. Chehab et al. (2023) studied the asymp-
totic statistical efficiency of the curve for TI measured by the asymptotic mean-squared error, and
highlighted the advantage of the geometric interpolation. In terms of non-asymptotic analysis, ex-
isting works mainly rely on the isoperimetry of the target distribution. For instance, Andrieu et al.
(2016) derived bounds of bias and variance for TI under Poincaré inequality, Brosse et al. (2018)
provided complexity guarantees for TI under both strong and weak log-concavity conditions, while
Ge et al. (2020) improved the complexity under strong log-concavity using multilevel Monte Carlo.

H.1 THERMODYNAMIC INTEGRATION

(I) Review of TI. We first briefly review the thermodynamic integration (TI) algorithm. Its essence
is to write the free-energy difference as an integral of the derivative of free energy. Consider the
general curve of probability measures (πθ)θ∈[0,1] defined in Eq. (11). Then,

d

dθ
logZθ = − 1

Zθ

∫
e−Vθ(x)∂θVθ(x)dx = −Eπθ

∂θVθ =⇒ log
Z

Z0
= −

∫ 1

0

Eπθ
∂θVθdθ. (36)

One may choose time points 0 = θ0 < ... < θM = 1 and approximate Eq. (36) by a Riemann sum:

log
Z

Z0
≈ −

M−1∑

ℓ=0

(θℓ+1 − θℓ)Eπθℓ
∂θ|θ=θℓVθ, (37)

where the expectation under each πθℓ can be estimated by sampling from πθℓ . Nevertheless, there is
a way of writing the exact equality instead of the approximation in Eq. (37): since

log
Zθℓ+1

Zθℓ

= log

∫
1

Zθℓ

e−Vθℓ
(x)e−(Vθℓ+1

(x)−Vθℓ
(x))dx = logEπθℓ

e−(Vθℓ+1
−Vθℓ

),

by summing over ℓ = 0, ...,M − 1, we have

log
Z

Z0
=

M−1∑

ℓ=0

logEπθℓ
e−(Vθℓ+1

−Vθℓ
), (38)

which constitutes the estimation framework used in Brosse et al. (2018); Ge et al. (2020); Chehab
et al. (2023); Kook & Vempala (2024). Hence, we also use TI to name this algorithm.

(II) TI as a special case of AIS. We follow the notations used in Thm. 3 to demonstrate the
following claim: TI (Eq. (38)) is a special case of AIS with every transition kernel Fℓ(x, ·) chosen
as the perfect proposal πθℓ .

Proof. In AIS, with Fℓ(x, ·) = πθℓ in the forward path P→, we have P→(x0:M ) =
∏M

ℓ=0 πθℓ(xℓ).
In this special case,

W (x0:M ) = log

M−1∏

ℓ=0

e−Vθℓ
(xℓ)

e−Vθℓ+1
(xℓ)

,

and hence the AIS equality becomes the following identity, exactly the same as Eq. (36):

Z

Z0
= e−∆F = EP→ e−W =

M−1∏

ℓ=0

Eπθℓ
e−(Vθℓ+1

−Vθℓ
), (39)
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(III) Distinction between equilibrium and non-equilibrium methods. In our AIS framework, the
distinction lies in the choice of the transition kernels Fℓ(x, ·) within the AIS framework.

In equilibrium methods, the transition kernels are ideally set to the perfect proposal πθℓ . However, in
practice, exact sampling from πθℓ is generally infeasible. Instead, one can apply multiple MCMC it-
erations targeting πθℓ , leveraging the mixing properties of MCMC algorithms to gradually approach
the desired distribution πθℓ . Nonetheless, unless using exact sampling methods such as rejection
sampling – which is exponentially expensive in high dimensions – the resulting sample distribution
inevitably remains biased with a finite number of MCMC iterations.

In contrast, non-equilibrium methods employ transition kernels specifically designed to transport
πℓ−1 toward πℓ, often following a curve of probability measures. This distinguishes them as inher-
ently non-equilibrium. A key advantage of this approach over the equilibrium one is its ability to
provide unbiased estimates, as demonstrated in JE and AIS.

H.2 PROOF OF THE SECOND PART OF LEM. 6

Recall that our goal is to estimate π0’s normalizing constant Z0 =
∫
e−V0dx, where V0 is β-strongly

convex and 3β-smooth, with global minimizer x′ satisfying ∥x′∥ ≤ R ≲ 1√
β

. The aim is to obtain

an estimator Ẑ0 ≈ Z0 such that

Pr(F) ≤ 1

8
, where F :=

{∣∣∣∣∣
Ẑ0

Z0
− 1

∣∣∣∣∣ ≥
ε

8

}
. (40)

Following the discussion above, the TI algorithm goes as follows. Consider a sequence of non-
negative numbers λ0 > λ1 > ... > λK = 0, where there exists a common γ0 > 0 such that

λk = (1 + γ0)λk+1, for all k ∈ [[0,K − 2]]. Let ρk := 1
ζk
e−fk , where fk := V0 + λk

2 ∥ · ∥2 is

(β + λk)-strongly-convex and (3β + λk)-smooth. One can write

Z0 = ζK = ζ0

K−1∏

k=0

ζk+1

ζk︸ ︷︷ ︸
=:Gk

, where Gk = Eρk
exp

(
λk − λk+1

2
∥ · ∥2

)

︸ ︷︷ ︸
=:gk

,

and estimate each Gk by

Ĝk :=
1

N

N∑

n=1

gk(X̂
(k)
n ), X̂(k)

n
i.i.d.∼ ρ̂k ≈ ρk,

so the final estimator is Ẑ0 := ζ̂0
∏K−1

k=0 Ĝk, in which ζ̂0 ≈ ζ0. To proceed, we first prove the
following lemma.

Lemma 17. If

1. TV(ρ̂k, ρk) ≤ δ ≍ 1
NK , for all k ∈ [[0,K − 1]].

2. The estimate ζ̂0 satisfies

∣∣∣log ζ̂0
ζ0

∣∣∣ ≲ ε.

3. For all k ∈ [[0,K − 1]], the following equation holds:

Eρk
g2k

(Eρk
gk)

2 ≤ 1 +O(1). (41)

Then with N ≍ K
ε2 , Eq. (40) holds.

Proof. By definition of TV distance, for each pair of (n, k) one can construct a random variable

X
(k)
n ∼ ρk that only depends on X̂

(k)
n and satisfies Pr

(
X̂

(k)
n ̸= X

(k)
n

)
≤ δ. Define the event

E =
{
X̂(k)

n = X(k)
n : ∀n ∈ [[1, N ]] , k ∈ [[0,K − 1]]

}
.
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By independence, Pr(E) ≥ (1− δ)NK ≥ 1− δNK ≳ 1. If Pr(F|E) ≤ 1
16 and Pr(E∁) ≤ 1

16 , then

Pr(F) = Pr(F|E) Pr(E) + Pr(F|E∁) Pr(E∁) ≤ Pr(F|E) + Pr(E∁) ≤ 1

8
,

as desired.

To obtain Pr(F|E) ≤ 1
16 , from now on we always assume that E happens, and omit the condi-

tional notation (·|E) in probability and expectation for simplicity. Note that in this case, Ĝk =
1
N

∑N
n=1 gk(X

(k)
n ), X

(k)
n

i.i.d.∼ ρk, so E Ĝk = Gk. One can upper bound the probability of large
relative error as follows, leveraging Lem. 9:

Pr

(∣∣∣∣∣
Ẑ0

Z0
− 1

∣∣∣∣∣ ≳ ε

)
≤ Pr

(∣∣∣∣∣log
Ẑ0

Z0

∣∣∣∣∣ ≳ ε

)
= Pr

(∣∣∣∣∣log
ζ̂0
ζ0

+ log

K−1∏

k=0

Ĝk

Gk

∣∣∣∣∣ ≳ ε

)

≤ Pr

(∣∣∣∣∣log
ζ̂0
ζ0

+ log

K−1∏

k=0

Ĝk

Gk

∣∣∣∣∣ ≳ ε

)

≤ Pr

(∣∣∣∣∣log
K−1∏

k=0

Ĝk

Gk

∣∣∣∣∣ ≳ ε

)
≤ Pr

(∣∣∣∣∣

K−1∏

k=0

Ĝk

Gk
− 1

∣∣∣∣∣ ≳ ε

)

≲
1

ε2
E

(
K−1∏

k=0

Ĝk

Gk
− 1

)2

=
1

ε2

(
K−1∏

k=0

E Ĝ2
k

G2
k

− 1

)
,

where the last line is due to Markov inequality. Choosing N ≍ K
ε2 yields

E Ĝ2
k

G2
k

− 1 =
Var Ĝ2

k

G2
k

=
Eρk

g2k − (Eρk
gk)

2

N (Eρk
gk)

2 ≲
1

N
,

which implies

Pr

(∣∣∣∣∣
Ẑ0

Z0
− 1

∣∣∣∣∣ ≳ ε

)
≲

1

ε2

(
K−1∏

k=0

E Ĝ2
k

G2
k

− 1

)
≤ 1

ε2

((
1 +

1

N

)K

− 1

)
≲

K

Nε2
≲ 1.

The following lemmas show how to accurately estimate ζ0 and how to satisfy Eq. (41).

Lemma 18. With λ0 ≍ dβ
ε , ζ̂0 := exp

(
−V0(0) +

∥∇V0(0)∥2
2(3β+λ0)

)(
2π

3β+λ0

) d
2

satisfies

∣∣∣log ζ̂0
ζ0

∣∣∣ ≲ ε.

Proof. By assumption, f0 is (β + λ0)-strongly-convex and (3β + λ0)-smooth. Using quadratic
upper and lower bounds on f0,

exp

(
−f0(0) +

∥∇f0(0)∥2
2(3β + λ0)

)(
2π

3β + λ0

) d
2

≤ ζ0 ≤ exp

(
−f0(0) +

∥∇f0(0)∥2
2(β + λ0)

)(
2π

β + λ0

) d
2

.

Since f0(0) = V0(0), ∥∇f0(0)∥ = ∥∇V0(0)∥ = ∥∇V0(0)−∇V0(x
′)∥ ≤ 3β∥x′∥ ≲ √β,

1 ≤ ζ0

ζ̂0
≤ exp

(
β∥∇V0(0)∥2

(β + λ0)(3β + λ0)

)(
1 +

2β

β + λ0

) d
2

≤ exp

(
β2

(β + λ0)(3β + λ0)
+

dβ

β + λ0

)
.

So λ0 ≍ dβ
ε implies β2

(β+λ0)(3β+λ0)
+ dβ

β+λ0
≲ ε.

Lemma 19. For k = K − 1, λk ≍ β√
d

implies Eq. (41).

Proof. When k = K − 1, gk = exp
(
λk

2 ∥ · ∥2
)
. We have

Eρk
g2k

(Eρk
gk)

2 = Eπ0
exp

(
λk

2
∥ · ∥2

)
Eπ0

exp

(
−λk

2
∥ · ∥2

)
.
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Define

h1(λ) := Eπ0
exp

(
λ∥ · ∥2

)
Eπ0

exp
(
−λ∥ · ∥2

)
, λ ∈

[
0,

β

4

]
.

One can take derivative to obtain

d

dλ
log h1(λ) =

∫ λ

−λ
Varρs

∥ · ∥2ds,

where ρs ∝ exp(−V0 + s∥ · ∥2) is β
2 -strongly-log-concave and thus satisfies 2

β -LSI. Hence,

Varρs
∥ · ∥2 ≤ 8

β
Eρs
∥ · ∥2.

Let x′s be the global minimizer of V0 − s∥ · ∥2. By Lem. 16, ∥x′s∥ ≤ R. Leveraging Lem. 14, we
have

Varρs
∥ · ∥2 ≲

1

β

(
Eρs
∥ · −x′s∥2 + ∥x′s∥2

)
≤ 1

β

(
2d

β
+R2

)
≲

d

β2
.

So d
dλ log h1(λ) ≲

λd
β2 , and thus

Eρk
g2k

(Eρk
gk)

2 = h1

(
λk

2

)
= exp

(
O

(
λ2
kd

β2

))
= 1 +O

(
λ2
kd

β2

)
= 1 +O(1).

Lemma 20. For k ∈ [[0,K − 2]], Eq. (41) holds with γ0 = 1√
d

.

Proof. One can write gk = exp
(

γ0λk+1

2 ∥ · ∥2
)

. Simple calculation yields

Eρk
g2k

(Eρk
gk)

2 =
Eπ0

exp
(
− (1+γ0)λk+1

2 ∥ · ∥2
)
Eπ0

exp
(
− (1−γ0)λk+1

2 ∥ · ∥2
)

Eπ0
exp

(
−λk+1

2 ∥ · ∥2
)2 .

Define

h2(γ) := Eπ0
exp

(
− (1 + γ)λ

2
∥ · ∥2

)
Eπ0

exp

(
− (1− γ)λ

2
∥ · ∥2

)
, γ ∈

[
0,

1

2

]
.

One can similarly show

d

dγ
log h2(γ) =

λ2

4

∫ 1+γ

1−γ
Varρ̃t

∥ · ∥2dt,

where ρ̃t ∝ exp
(
−V0 − tλ

2 ∥ · ∥2
)

is (β + tλ)-strongly-log-concave and thus satisfies 1
β+tλ -LSI.

Hence, Varρ̃t
∥ · ∥2 ≤ 8

β+tλ Eρ̃t
∥ · ∥2.

Let x′′t be the global minimizer of V0 +
tλ
2 ∥ · ∥2. By Lem. 16, ∥x′′t ∥ ≤ R

1+ tλ
3β

. Therefore,

Varρ̃t
∥ · ∥2 ≲

1

β + tλ

(
Eρ̃t
∥ · −x′′t ∥2 + ∥x′′t ∥2

)
≲

1

β + tλ

(
d

β + tλ
+

β2R2

(β + tλ)
2

)
.

As a result,

d

dγ
log h2(γ) ≲ λ2

∫ 1+γ

1−γ

1

β + tλ

(
d

β + tλ
+

β2R2

(β + tλ)
2

)
dt

≤ λ2

∫ 1+γ

1−γ

1

tλ

(
d

tλ
+

β2R2

t2λ2

)
dt

≲ λ2γ · 1
λ

(
d

λ
+

β2R2

λ2

)
= γ

(
d+

β2R2

λ

)

=⇒ log
h2(γ0)

h2(0)
≲ γ2

0

(
d+

β2R2

λ

)
= 1 +

β2R2

dλ
.

Since λk+1 ≥ λK−1 ≍ β√
d

and R ≲ 1√
β

, β2R2

dλk+1
≲ 1, so

Eρk
g2
k

(Eρk
gk)

2 ≤ 1 +O(1).
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Finally, one can compute the total complexity as follows. The choice λ0 ≍ dβ
ε , λK−1 ≍ β√

d
, and

λk =
(
1 + 1√

d

)
λk+1 implies K = Θ̃(

√
d), and thus N ≍ K

ε2 = Θ̃
(√

d
ε2

)
. For each k, it is

necessary to obtain N i.i.d. approximate samples from ρk that are δ ≍ 1
NK = Θ̃

(
ε2

d

)
-close in

TV distance. Using proximal sampler (Fan et al., 2023), the complexity for obtaining one sample

is Õ(
√
d) (note that the condition numbers of fk’s are uniformly bounded by 3), so the total oracle

complexity is NK · Õ(
√
d) = Õ

(
d

3
2

ε2

)
. □

H.3 PATH INTEGRAL SAMPLER AND CONTROLLED MONTE CARLO DIFFUSION

In this section, we briefly discuss two learning-based samplers used for normalizing constant esti-
mation and refer readers to the original papers for detailed derivations. The path integral sampler
(PIS) shares structural similarities with the RDS framework discussed in Thm. 5, using the time-
reversal of a universal noising process that transforms any distribution into a prior – such as the OU
process in RDS that converges to the standard normal or the Brownian bridge in PIS that converges
to the delta distribution at zero. In contrast, the controlled Monte Carlo diffusion (CMCD) extends
the JE framework from Sec. 4, focusing on learning the compensatory drift term along an arbitrary
interpolating curve (πθ)θ∈[0,1], as long as the density of each intermediate distribution πθ is known
up to a constant.

Path integral sampler (PIS, Zhang & Chen (2022)). The PIS learns the drift term of a refer-
ence SDE that interpolates the delta distribution at 0 and the target distribution π, which is closely
connected with the Brownian bridge and the Föllmer drift (Chewi, 2022).

Fix a time horizon T > 0. For any drift term (ut)t∈[0,T ], letQu be the path measure of the following
SDE:

dXt = ut(Xt)dt+ dBt, t ∈ [0, T ]; X0
a.s.
= 0.

In particular, when u ≡ 0, the marginal distribution of XT under Q0 is N (0, T I) =: ϕT . Define
another path measure Q∗ by

Q∗(dξ[0,T ]) := Q0(dξ[0,T )|ξT )π(dξT ) = Q0(dξ[0,T ])
dπ

dϕT
(ξT ), ∀ξ ∈ C([0, T ];Rd)

and consider the problem

u∗ = argmin
u

KL(Qu∥Q∗) =⇒ Qu∗ = Q∗.

One can calculate the KL divergence between these path measures via Girsanov theorem (Lem. 1):

log
dQu

dQ∗ (X) = Wu(X) + logZ, a.s. X ∼ Qu, where

Wu(X) =

∫ T

0

⟨ut(Xt), dBt⟩+
1

2

∫ T

0

∥ut(Xt)∥2dt−
∥XT ∥2
2T

+ V (XT )−
d

2
log 2πT,

which implies Z = EQu e−W
u

, and KL(Qu∥Q∗) = EQu Wu + logZ. On the other hand, directly
applying Lem. 1 gives

KL(Qu∥Q∗) = 1

2

∫ T

0

EQu ∥ut(Xt)− u∗t (Xt)∥2dt.

In Zhang & Chen (2022, Theorem 3), the authors considered the effective sample size (ESS) defined

by ESS−1 = EQu

(
dQ∗
dQu

)2
as the convergence criterion, and stated that ESS ≥ 1 − ε as long as

supt∈[0,T ] ∥ut − u∗t ∥2L∞ ≤ ε
T . However, this condition is generally hard to verify since the closed-

form expression of u∗ is unknown, and the L∞ bound might be too strong. Using the criterion
(Eq. (5)) and the same methodology in proving the convergence of JE (Thm. 2), we can establish
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an improved result on the convergence guarantee of this estimator, relating the relative error to the
training loss of u, which is defined as

min
u

L(u) := EQu

[
1

2

∫ T

0

∥ut(Xt)∥2dt−
∥XT ∥2
2T

+ V (XT )

]
= KL(Qu∥Q∗)−logZ+

d

2
log 2πT

Proposition 4. Consider the estimator Ẑ := e−W
u(X), X ∼ Qu for Z. To achieve both

KL(Qu
T ∥π) ≲ ε2 (with Qu

T representing the law of XT in the sampled trajectory X ∼ Qu) and

Pr
(∣∣∣ ẐZ − 1

∣∣∣ ≤ ε
)
≥ 3

4 , it suffices to choose u that satisfies

L(u) = − logZ +
d

2
log 2πT +O(ε2).

Proof.

Pr

(∣∣∣∣∣
Ẑ

Z
− 1

∣∣∣∣∣ ≥ ε

)
= Qu

(∣∣∣∣
dQ∗
dQu

− 1

∣∣∣∣ ≥ ε

)
≲

TV(Qu,Q∗)
ε

≲

√
KL(Qu∥Q∗)

ε
.

Therefore, ensuring KL(Qu∥Q∗) ≲ ε2 up to some sufficiently small constant guarantees that
the above probability remains bounded by 1

4 . Furthermore, by the data-processing inequality,

KL(Qu
T ∥π) ≤ KL(Qu∥Q∗) ≲ ε2.

Controlled Monte Carlo Diffusion (CMCD, Vargas et al. (2024)). We borrow the notations
from Sec. 4 due to its similarity with JE.

Given (π̃t)t∈[0,T ] and the ALD (Eq. (6)), we know from the proof of Thm. 1 that to make Xt ∼ π̃t

for all t, the compensatory drift term (vt)t∈[0,T ] must generate (π̃t)t∈[0,T . Now, consider the task of

learning such a vector field (ut)t∈[0,T ] by matching the following forward and backward SDEs:

P→ : dXt = (∇ log π̃t + ut)(Xt)dt+
√
2dBt, X0 ∼ π̃0,

P← : dXt = (−∇ log π̃t + ut)(Xt)dt+
√
2dB←t , XT ∼ π̃T ,

where the loss is KL(P→∥P←), discretized in training. Obviously, when trained to optimality, both
P→ and P← share the marginal distribution π̃t at every time t. By Girsanov theorem (Lem. 4), one

can prove the following identity for a.s. X ∼ P→: log dP→
dP← (X) = W (X) +Cu(X)−∆F , where

∆F and W (X) are defined as in Thm. 1, and

Cu(X) := −
∫ T

0

(⟨ut(Xt),∇ log π̃t(Xt)⟩+∇ · ut(Xt))dt.

We refer readers to Vargas et al. (2024, Prop. 3.3) for the detailed derivation. By EP→
dP←
dP→ = 1, we

know that EP→ e−W (X)−Cu(X) = e−∆F . As the paper has not established inference-time perfor-
mance guarantee given the training loss, we prove the following result characterizing the relationship
between the training loss and the accuracy of the sampled distribution as well as the estimated nor-
malizing constant.

Proposition 5. Let Ẑ = Z0e
−W (X)−Cu(X), X ∼ P→ be an unbiased estimator of Z = Z0e

−∆F .
Then, to achieve both KL(P→T ∥π) ≲ ε2 (where P→T is the law of XT in the sampled trajectory

X ∼ P→) and Pr
(∣∣∣ ẐZ − 1

∣∣∣ ≤ ε
)
≥ 3

4 , it suffices to choose u that satisfies KL(P→∥P←) ≲ ε2.

Proof. The proof of this theorem follows the same reasoning as that of Prop. 4. For normalizing
constant estimation,

Pr

(∣∣∣∣∣
Ẑ

Z
− 1

∣∣∣∣∣ ≥ ε

)
= P→

(∣∣∣∣
dP←
dP→ − 1

∣∣∣∣ ≥ ε

)
≲

TV(P→,P←)

ε
≲

√
KL(P→∥P←)

ε
≲ 1.

For sampling, the result is an immediate corollary of the data-processing inequality.
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I CONCLUSION AND FUTURE WORK

In this paper, we analyzed the complexity of normalizing constant estimation using JE, AIS, and
RDS, establishing non-asymptotic convergence guarantees based on insights from continuous-time
analysis. Our analysis of JE (Thm. 2) applies to general interpolation curves without requiring
explicit isoperimetric assumptions, which significantly extends prior work limited to log-concave
distributions. While our main results (Thms. 2 and 4) provide upper complexity bounds, their tight-
ness remains an open question. Deriving general lower bounds would further clarify whether curves
with large action inherently require more oracle calls for both sampling and normalizing constant
estimation, thereby rigorously validating the arguments in Sec. 6. We also conjecture that our proof
techniques can be further extended to samplers beyond overdamped LD (e.g., Hamiltonian or un-
derdamped LD (Sohl-Dickstein & Culpepper, 2012)), and may be applied to estimating normaliz-
ing constants of compactly supported distributions on Rd (e.g., convex bodies volume estimation
(Cousins & Vempala, 2018)) and discrete distributions (e.g., Ising model and restricted Boltzmann
machines (Huber, 2015; Krause et al., 2020)) via the Poisson stochastic integral framework (Ren
et al., 2025a;b). We leave these directions for future research.
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