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Understanding the impacts of land surface processes on summer extreme precipitation is crucial for accurate
climate predictions. This study investigated these impacts across three subregions of eastern China (North China,
Central China, and South China) using the regional Climate-Weather Research and Forecasting model with two
land surface parameterization schemes: the Conjunctive Surface-Subsurface Process (CSSP) scheme and the
NOAH Land Surface Model (NOAH). When compared with observational and reanalysis data, both schemes were
found to successfully reproduce the spatial distribution of extreme precipitation, with the CSSP scheme showing
distinct advantages in simulating evapotranspiration. The influence of land surface processes on summer extreme
precipitation varies among the three subregions, largely depending on soil moisture conditions. In North China, a
transitional zone between arid and humid regions, soil moisture primarily influences extreme precipitation, with
biases arising from difference between the lifting condensation level and the planetary boundary layer height. In
Central China, where soil moisture is moderate, soil moisture and net radiation jointly influence extreme pre-
cipitation, with biases linked to the planetary boundary layer height. In South China, where soil moisture is
mostly saturated during summer, net radiation dominates the variability of land surface variables, with latent
heat bias leading to extreme precipitation bias. Overall, soil moisture affects extreme precipitation by altering the
energy and stability of the planetary boundary layer and the lifting condensation level. These findings could
inform the assessment and future improvement of models, and support the monitoring and predicting of extreme
precipitation events.

1. Introduction research on the patterns of extreme precipitation holds considerable

scientific value.

Over the past century, global temperatures have risen steadily owing
to both combustion of fossil fuels and unsustainable energy and land use.
This has led to more frequent and intense extreme weather events
worldwide, posing increasing risk to natural ecosystems and human
populations (IPCC, 2023). During 1961-2021, China experienced an
increasing trend in extreme rainfall events, with notable regional vari-
ations, indicating a rising level of climate-related risk (China Meteoro-
logical Administration Climate Change Centre, 2022). Therefore, further

Extreme precipitation is difficult to simulate accurately, and under-
standing the physical mechanisms underlying model biases remains a
challenge. General circulation models (GCMs) are essential tools used
for studying climate variability and change (IPCC, 2013). Many studies
have assessed the ability of GCMs to simulate the climate of China.
Although GCMs have been found broadly capable of capturing the mean
surface and extreme temperature distributions, substantial uncertainty
remains regarding their ability to simulate precipitation characteristics
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(Hu et al., 2014). For example, the Coupled Model Intercomparison
Project phase 5 (CMIP5) simulations show severe wet biases in western
and northern China, together with dry biases in southeastern China,
thereby exhibiting marked regional variations (Chen and Frauenfeld,
2014; Jiang et al., 2015). Although the latest CMIP phase 6 (CMIP6)
models generally reduce the dry biases seen in CMIP5 simulations, wet
biases persist in the intensity of heavy precipitation over eastern China,
particularly in the region of the mid-lower reaches of the Yangtze River
(Zhu et al., 2020; Zhang et al., 2024).

In contrast to GCMs, regional climate models (RCMs) boast superior
ability in unraveling regional processes owing to their refined repre-
sentation of the underlying physics at higher resolution. Consequently,
RCMs demonstrate great improvement in capturing regional precipita-
tion characteristics. Previous studies that utilized a nested GCM-RCM
approach to simulate temperature and precipitation demonstrated
enhanced performance in downscaling both the spatial distributions and
the seasonal variations of extreme temperature and extreme precipita-
tion in China, thereby elucidating more regional-scale features (Zou and
Zhou, 2013; Wei et al., 2019). The Climate-Weather Research and
Forecasting (CWRF) model, which is a new-generation RCM developed
by Liang et al. (2012), has refined representation of the key physical
processes in the Weather Research and Forecasting (WRF) model, and
represents a remarkable advancement in the simulation of the climate of
China. In comparison with other popular RCMs, the CWRF model can
more realistically capture the annual cycle and the interannual varia-
tions in mean and extreme precipitation, and the distributions of the two
rain belts present in summer along the Yangtze River and over South
China (Liu et al., 2008; Liang et al., 2012). Its simulation of tele-
connections with large-scale circulation features is also good, which
partly explains its better performance in precipitation simulation (Li
et al., 2020). Jiang et al. (2021) nested the Community Climate System
and CWRF models to project precipitation over China from 2018 to
2050, which indicated that the downscaling correction of the current
climate simulation by the CWRF model could be applied systematically
to future climate projections.

Land surface processes have crucial impact on precipitation (Koster
et al., 2004; Findell et al., 2011; Wei et al., 2018). Approximately 30 %
of Earth's surface has complex and heterogeneous land cover. Land
surface variables such as soil moisture, soil temperature, vegetation, and
snow cover regulate the fluxes of energy, water, and carbon by parti-
tioning the available energy, thereby exerting notable influence on the
climate both regionally and globally (Seneviratne et al., 2006; Zhang
et al., 2011a; Wang et al., 2021; Yao et al., 2021). The Global Land-
—Atmosphere Coupling Experiment, which investigated the role of soil
moisture in climate feedbacks in past and future climate systems, yiel-
ded two key findings: (1) marked model discrepancies in the simulation
of the response of both precipitation and temperature to soil moisture
variations, and (2) more pronounced impacts of soil moisture variations
on precipitation and temperature in the transitional zone between arid
and humid regions. Several studies highlighted the important role of the
fluxes of water vapor and heat from the land surface to the atmosphere
in shaping the development of the planetary boundary layer (PBL),
thereby affecting precipitation and playing a critical role in land surface
hydrology and atmospheric processes. Soil moisture and snow cover can
alter the surface albedo and local water cycles with consequential effects
on precipitation. Moreover, complex interactions also exist between
vegetation and the atmosphere, whereby changes in vegetation not only
modify land surface flux exchanges by adjusting the surface albedo and
roughness, but also influence processes such as precipitation intercep-
tion, evapotranspiration, and soil infiltration, thereby affecting the
water cycle and subsequently influencing precipitation. Additionally,
the subsurface soil temperature, owing to its prolonged memory, holds
considerable potential value for summer climate prediction (Hirschi
et al., 2011; Seneviratne et al., 2010; Miralles et al., 2012; Hagemann
et al.,, 2016; Hauser et al., 2017). In conclusion, land-atmosphere
interaction has become recognized as an indispensable component in
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climate research, representing a frontier topic of current interdisci-
plinary concern (Findell et al., 2017; Findell et al., 2023; Findell et al.,
2024; Li et al., 2018; Chen et al., 2019; Qiao et al., 2023; Yang et al.,
2023).

Research using the CWRF model to simulate regional extreme pre-
cipitation over China is lacking, particularly with regard to the influence
of land surface processes on extreme precipitation. Hence, the objectives
of this study were to assess the skill of the CWRF model in simulating
extreme precipitation over China using different land surface schemes,
and to further explore the impacts of land surface processes on extreme
precipitation over China and the related physical mechanisms.

2. Model, data, and methods
2.1. Model

The CWRF model used in this study is a climate extension of the WRF
model, but with marked improvement in the parameterization of
physical processes compared with that of the WRF model (Liang et al.,
2012). The improvements involve land-atmosphere-ocean interactions,
convection—-microphysics interactions, and cloud-aerosol-radiation in-
teractions. The CWRF model also integrates optional parameterization
schemes for ocean, PBL, cumulus, microphysics, cloud, aerosol, and
radiation processes, which are coupled across all components to ensure
maximum consistency throughout the model (Liang et al., 2012).

Of particular relevance to this study, the CWRF model incorporated
two land surface parameterization schemes, the Conjunctive Surfa-
ce-Subsurface Process (CSSP) scheme and the NOAH Land Surface
Model (NOAH) scheme, which were used to predict the distributions of
soil temperature and moisture, land hydrological changes, and land-
—atmosphere flux exchanges. The CSSP scheme divides the soil into 11
layers and employs a three-dimensional volume-averaged soil moisture
transport model, incorporating lateral flow and subgrid heterogeneity
induced by topographic features. It handles surface and subsurface
runoff using dynamic prediction to produce more reasonable variations
in the saturated zone depth. The CSSP scheme serves as the core land
surface scheme (Choi et al., 2006; Choi et al., 2007; Choi et al., 2013;
Yuan and Liang, 2011). The NOAH scheme divides the soil into 4 layers
and employs a Richard's equation derived under the assumptions of ri-
gidity, isotropy, and one-dimensional vertical flow. Simultaneously, it
regulates surface and subsurface runoff employing equilibrium
approximation (Ek and Mahrt, 1991; Ek et al., 2003; Chen and Dudhia,
2001; Niu et al., 2011). Further details are provided in Table S1.

The computational domain of the CWRF model adopted in this study
was centered at 35.18°N, 110°E on the Lambert conformal map pro-
jection, with grid spacing of 30 km, encompassing 171 (longitude) x
231 (latitude) grid points (Fig. S1). There were 36 vertical layers, with
the top-layer pressure set at 50 hPa. Liu et al. (2008) demonstrated that
this computational domain is optimal for regional climate modeling in
China, yielding better performance in terms of statistical errors, corre-
lations, and mean precipitation.

2.2. Data

In this study, the CWRF simulations were driven by ERA-I reanalysis
dataset (Dee et al., 2011) as the initial and boundary conditions. The
horizontal resolution of ERA-I data is 0.75°longitude by 0.75°latitude.
Each CWRF simulation was initialized on October 1, 1979 and inte-
grated continuously through to December 31, 2016 with 6-hourly lateral
boundary forcing and daily sea surface temperature variation from ERA-
I. No additional data assimilation or nudging within the CWRF
computational domain was included. The initial 3 months were
considered as a spin-up and were not used in the subsequent analyses.
The simulation results from 1982 to 2016 (totaling 35 years) were used
in this study. Given that summer exhibits the most pronounced land-
—atmosphere coupling in East Asia, our primary assessment period
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focused on summer (June-July-August) during 1982-2016.

We used the CN05.1 dataset of daily precipitation and temperature at
2-m height (Tyy,) over China as reference for model evaluation. The
CNO5.1 gridded dataset is generated through interpolation of observa-
tions recorded since 1961 at 2416 stations distributed across mainland
China, boasting resolution of 0.25° x 0.25°. This dataset is used widely
in investigations of extreme precipitation throughout China (Wu and
Gao, 2013; Liang et al., 2018). Daily data of soil moisture and evapo-
transpiration were sourced from the ERA5-Land reanalysis dataset
(Munoz-Sabater et al., 2021), with resolution of 0.1° x 0.1°. Soil
moisture was defined as the surface layer, i.e., 0-10 cm. Additionally,
daily data of sensible heat, latent heat, PBL height (PBLH), and radiation
data were extracted from the ERAS reanalysis dataset (Hersbach et al.,
2020), with resolution of 0.25° x 0.25°. For convenience of comparison,
the CNO5.1 data and reanalysis data were interpolated to the model's
horizontal resolution of 30 km. Although this interpolation might have
induced minor biases, these biases were considered negligible (Sun and
Liang, 2020a, 2020b).

2.3. Methods

Owing to the effects of the geographical environment and the
monsoon, the variation in extreme precipitation over China exhibits
remarkable regional differences. Eastern China, which is the primary
area for summer precipitation, is characterized by a dense network of
observation stations; therefore, we paid special attention to the occur-
rence of extreme precipitation in eastern China. Following the division
of different terrain heights over China (Liang et al., 2018), three key
subregions in eastern China were identified: North China (NC), Central
China (CC), and South China (SC), as shown in Fig. 1. The names of the
specific regions mentioned in this paper are marked with red bold fonts
in Fig. S2.

Based on the definitions from the Expert Team on Climate Change
Detection and Indices (Frich et al., 2002; Zhang et al., 2011b), this study
adopted three extreme precipitation indices: R95p, R10, and P95. In
particular, we focused on P95, which is defined as the 95th percentile of
wet days (defined as daily precipitation >1 mm/d), consistent with Sun
and Liang (2020b). The R95p and R10 indices were considered to vali-
date the reliability of the P95 simulations. Table 1 lists the definitions of
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Table 1

Definitions of extreme precipitation indices.
Label  Index Definition Index

Unit
P95 95th percentile of wet days mm/d
R95p  Summer annual total precipitation when daily precipitation mm
amount on a wet day is > P95

R10 Summer annual count of days when precipitation is >10 mm d

these indices. The ERA5 and CWRF model outputs do not include the
lifting condensation level (LCL) and moist static energy (MSE), the
definitions for these parameters are presented as Egs. (1) and (2), with
the definition of LCL adopted from Wei et al. (2021):

Zio, ~ 125 X (Tom — Ta) )

where Ty, is air temperature at 2-m height (unit: °C), and Ty is the dew
point temperature (unit: °C). The unit of Z;¢; is meter.

MSE = C,T+Lq+gz (2)

where G, is the specific heat capacity at constant pressure (unit: J/
(Kg-K)), T is temperature on the absolute scale (unit: K), L is latent heat
(unit: W/m?), q is specific humidity (unit: Kg/Kg), and z is height (unit:
m). The unit of MSE is Joules per kilogram.

To quantify the relative contributions of land surface variables to
extreme precipitation and to resolve the problem of multicollinearity,
we employed the open-source ‘lavvan’ software on the ‘R' platform to
construct a Structural Equation Model (SEM) for assessment of the
simulation. This method was introduced for climatic diagnosis of
extreme precipitation by Sun and Liang (2020b). All parameter settings
were configured by adopting default algorithms, including the
maximum likelihood estimation. The SEM comprises manifest and latent
variables, and it can test hypotheses of causal relationships between
variables based on prior theories and researches. It has been proven
powerful in exploring complex causal relationships between variables,
largely because it does not require the normality assumption and can
effectively handle non-normally distributed variables using bootstrap
analysis (Finney and DiStefano, 2013; Nevitt and Hancock, 2009). Prior
to constructing the SEM, all data were normalized with a zero mean and
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Fig. 1. Terrain height and regional division in China. Shading denotes terrain height (m). NC, CC, and SC stand for North China, Central China, and South China,

respectively (from Liang et al., 2018).
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unit deviation, resulting in standardized path coefficients. The final
model had to meet the following conditions: (1) statistically significant
path coefficients must remain consistent with the correlations; (2) the
comparative fit index, one of the measures affected least by the sample
size, is in the range 0.0-1.0, with values close to 1.0 indicating good fit
(>0.90 to avoid accepting a misspecified model); (3) the standardized
root mean square residual has a value below 0.08, indicating good
model fit (0 indicates perfect fit); and (4) the root mean square error of
approximation has a value below 0.08, indicating good fit (Hu and
Bentler, 1999; Hooper et al., 2008).

To assess quantitatively the similarity in the spatial distribution be-
tween the simulations and the observations, Taylor diagrams were uti-
lized to represent the pattern correlation coefficient, standard deviation,
and centered root mean square error. A higher pattern correlation co-
efficient, a value of the standard deviation closer to 1, and a smaller
centered root mean square error indicate better model simulation per-
formance. In comparison of the time series correlation, the temporal
correlation coefficient was calculated using Pearson correlation co-
efficients. Furthermore, the root mean square error was employed to
measure the deviations between the simulations and the observations.
For the aforementioned correlation coefficients, student-t-tests were
conducted, following a t-distribution of N-2 degrees of freedom, where N
represents the sample size. The t-statistic value was calculated based on
the correlation coefficients (r) of the simulations and the observations,
and its absolute value was compared with the critical value from the t-
distribution table at the defined significance level. If the absolute value
exceeded the critical value, the correlation coefficient was considered
statistically significant (Wei, 1999).

r

VR ©

t=

3. Simulations of extreme precipitation with different land
surface parameterization schemes

Fig. 2 presents the spatial distribution of extreme precipitation in
China during summer, comparing observations with CWRF simulations
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using the CSSP and NOAH schemes. In terms of the mean precipitation,
the observations reveal two rain belts located in the Yangtze River and
SC (Fig. 2a). The simulation with the CSSP scheme closely matches the
observations but tends to overestimate precipitation in southwestern
China and SC, and underestimate precipitation in the middle and lower
reaches of the Yangtze River (Fig. 2e). The rain belt simulated using the
NOAH scheme in the Yangtze River is less distinct, and the precipitation
in most regions of China is generally underestimated (Fig. 2i). The CSSP
and NOAH schemes both overestimate precipitation in Northeast China,
possibly because of the sparse distribution of observation stations in the
mountainous regions, which could lead to underestimation of total
precipitation and intensity (Liang et al., 2018). Hence, higher-resolution
monitoring stations and objective terrain adjustments are needed to
provide more accurate reference data for model assessments.

Observation indicates that P95 decreases from the southeast toward
the northwest over China (Fig. 2b). The CSSP and NOAH schemes both
capture the high-value areas of P95 effectively but tend to overestimate
P95 in Northeast China and central-western China, and neither schemes
captures the areas of high P95 in Chongqing City, Guizhou Provinces,
and SC (Fig. 2f and j).

Similar to P95, R95p also exhibits a distribution with a southeast-to-
northwest gradient (Fig. 2c). The R95p simulated by the CSSP scheme is
consistent with the observations (Fig. 2g), whereas the NOAH scheme
fails to reproduce the spatial distribution of R95p effectively, narrowing
the overall areas of high R95p and underestimating precipitation in
Chongqing City, Guizhou Province and Hunan Province (Fig. 2k).

The values of R10 gradually decrease from the south toward the
north, with southwestern, southern, and southeastern China represent-
ing areas of high R10 (Fig. 2d). The CSSP and NOAH schemes both
severely underestimate R10 in the middle and lower reaches of the
Yangtze River, but substantially overestimate it in SC. Additionally, the
CSSP scheme generates a fake center of high R10 in southwestern China
(Fig. 2h and 1).

Fig. 3 presents the frequency distributions and spatial distributions
of extreme precipitation simulations biases. The frequency distributions
are described using kernel density estimators. It can be seen that the
CSSP and NOAH schemes exhibit similar bias frequencies in mean
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Fig. 2. (a, e, i) Spatial distributions of mean precipitation (mm/d), (b, f, j) P95 (mm/d), (c, g, k) R95p (mm) and (d, h, 1) R10 (d) from the (a-d) observations, (e-h) the
CSSP scheme and (i-1) the NOAH scheme simulations in summer during 1980-2016.
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Fig. 3. (a-d) Frequency distributions and (e-i) spatial distributions of biases in (a, e, i) mean precipitation (mm/d), (b, f, j) P95 (mm/d), (c, g, k) R95p (mm) and (d, h,
1) R10 (d) from (e-h) the CSSP scheme and (i-1) the NOAH scheme simulations in summer during 1980-2016.

precipitation, with peaks around the value of 0 mm/d. The NOAH
scheme shows a slightly left-skewed frequency pattern, indicating a
more negative (dry) bias (Fig. 3a). In terms of spatial distributions
(Fig. 3e and i), notable regional variations exist between the CSSP and
NOAH schemes. The CSSP scheme exhibits weak negative biases in the
middle and lower reaches of the Yangtze River, whereas it shows posi-
tive biases in other regions of China (Fig. 3e). The NOAH scheme shows
more pronounced negative biases compared with those of the CSSP
scheme, and these are primarily evident along the southeastern edge of
the Tibetan Plateau and in Yunnan Province, Sichuan Province, CC, and
SC (Fig. 3i).

The P95 bias frequency simulated by the CSSP scheme exhibits a
bimodal pattern, with peaks close to 0 and 20 mm/d, whereas the NOAH
scheme shows only one prominent peak at 0 mm/d. This suggests that
the positive biases in the CSSP scheme are greater than those in the
NOAH scheme (Fig. 3b). Spatial distributions (Fig. 3f and j) reveal that
the spatial patterns of the P95 simulation biases in both the CSSP and
NOAH schemes are similar, with notable negative biases in P95
observed in Yunnan Province, southeastern Sichuan Province, SC, and
the middle and lower reaches of the Yangtze River basin; the remaining
regions of China exhibit positive biases.

The bias frequency distribution of R95p closely resembles that of
P95, with the CSSP scheme displaying a bimodal pattern peaking at
around 0 and 150 mm, whereas the NOAH scheme shows peaks at
around 0 and 250 mm, although the bimodal pattern is considered
atypical. At around 150 mm, the CSSP scheme shows notably higher
probability density estimations compared with those of the NOAH
scheme, indicating more pronounced positive biases (Fig. 3c). As shown
in Fig. 3g and k, the CSSP and NOAH schemes both have notable
negative biases in Yunnan Provinces and Sichuan Province, SC, and CC,
with weaker negative biases in the northwestern Xinjiang Uygur
Autonomous Region; the remaining regions of China show positive
biases. Moreover, the CSSP scheme demonstrates more evident positive
biases compared with the NOAH scheme.

The CSSP and NOAH schemes both show similar R10 bias frequency
distributions, with narrow peaks at around 0 d (Fig. 3d). Regarding the
spatial distributions (Fig. 3h and 1), the CSSP scheme exhibits weak
negative biases in CC and positive biases across the remainder of China.
The NOAH scheme generates broader areas and intensities of negative
biases compared with the CSSP scheme, with negative biases occurring
in Yunnan Province, the middle and lower reaches of the Yangtze River
basin, and Northeast China; the remaining regions of China exhibit
positive biases.

Fig. 4 presents Taylor diagrams of the pattern correlation coefficient
for extreme precipitation in three subregions: NC, CC, and SC. The azi-
muth indicates the pattern correlation coefficient between the obser-
vations and the simulations, and the polar radius indicates the standard
deviation of the observations and the simulations. Overall, the CSSP
scheme outperforms the NOAH scheme in simulating both mean pre-
cipitation and R10, exhibiting higher correlation coefficients and lower
standard deviations. For P95 and R95p, in NC and CC, the simulations of
the CSSP and NOAH schemes are comparable, but the NOAH scheme
demonstrates superior simulation performances for P95 in NC, exhibit-
ing lower standard deviations. In SC, the simulations of the CSSP and
NOAH schemes are relatively poor, possibly owing to the complex
mechanisms regulating precipitation in SC, as indicated by previous
studies (Zhang et al., 2017, 2018; Gu et al., 2018; Xue et al., 2022).

Fig. 5 illustrates the temporal correlation coefficients and root mean
square errors for extreme precipitation across the three subregions. For
mean precipitation, the NOAH scheme excels in capturing the temporal
evolution trend in NC, outperforming the CSSP scheme with a higher
temporal correlation coefficient and a lower root mean square error. In
contrast, the CSSP scheme demonstrates superior capability in CC and
SC, exhibiting higher temporal correlation coefficients compared with
those of the NOAH scheme. However, the CSSP scheme also produces a
higher root mean square error in SC owing to its tendency to over-
estimate mean precipitation (Fig. 3a and e). Notably, the NOAH scheme
fails to accurately capture the temporal evolution trend in SC. Regarding
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respectively. Red and blue colors represent the CSSP scheme and the NOAH scheme, respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

P95, neither the CSSP scheme nor the NOAH scheme successfully cap- schemes show comparable performance in SC, yet both yield a large root
tures the temporal evolution trend in NC. In CC, the CSSP scheme out- mean square error, particularly the CSSP scheme, indicating a certain
performs the NOAH scheme, exhibiting a higher temporal correlation degree of overestimation or underestimation of P95 (Fig. 3b, f, and j).

coefficient and a lower root mean square error. The CSSP and NOAH In terms of R95p, the CSSP and NOAH schemes are both relatively
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Fig. 5. Temporal correlation coefficient (TCC) and root mean square error (RMSE) of extreme precipitation in North China (NC), Central China (CC), and South
China (SC) from the CSSP scheme and NOAH scheme simulations in summer during 1980-2016. Left and right y-axes represent TCC and RMSE, respectively. Dark
blue, green, red, and light blue colors indicate mean precipitation (mm/d), P95 (mm/d), R95p (mm), and R10 (d), respectively. Bars with and without slashes
indicate the simulations of the NOAH scheme and the CSSP scheme, respectively. Black dashed line indicates statistical significance at the 95 % confidence level in
the student-t-test. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

poor in NC, which might be related to their poor simulation of P95 in
that region. In both SC and CC, the CSSP scheme demonstrates superior
performance compared with the NOAH scheme. For example, the NOAH
scheme struggles to capture the temporal evolution trend of R95p in SC
and yields a lower temporal correlation coefficient and a higher root
mean square error in CC. For R10, the NOAH scheme shows better
simulation performance in NC, with a higher temporal correlation co-
efficient and a lower root mean square error. In CC, the capabilities of
the CSSP and NOAH schemes are comparable. The CSSP scheme out-
performs the NOAH scheme in SC, albeit with a certain degree of
overestimation or underestimation that results in a relatively high root
mean square error (Fig. 3d, h, and 1).

Overall, we found that the spatial distribution of P95 closely re-
sembles that of R95p, which is because P95 serves as the foundation of
R95p (Fig. 2b and c). The CSSP and NOAH schemes both successfully
reproduce the spatial distributions of P95 and R95p, albeit with north-
ward shift in the high-value regions, resulting in poor simulations for SC
(Fig. 2 f and j). Significant negative biases are observed in CC and SC,
while positive biases are observed in NC (Fig. 3f and j). Neither scheme
adequately captures R10, particularly true of the NOAH scheme (Fig. 2h
and 1), leading to underestimation across most areas of CC, and over-
estimation in NC and SC (Fig. 3h and 1). Therefore, the subsequent
analysis focuses on land surface processes to explore the reasons for the
aforementioned biases in the three subregions.

4. Simulations of spatial distributions of soil moisture and
evapotranspiration

Soil moisture affects precipitation by altering the exchange of ma-
terial and energy at the land-atmosphere interface (Koster et al., 2003;
Hohenegger et al., 2009; Schaefli et al., 2012; Qing et al., 2023). On one
hand, soil moisture is closely linked to evapotranspiration, and variation
in evapotranspiration affects both the atmospheric moisture content and
the amount of water vapor transferred from the land to the atmosphere,
thereby having impact on precipitation. On the other hand, soil moisture
also modifies the distribution of surface energy, which alters the sta-
bility of the lower-level atmosphere and subsequently affects
precipitation.

Fig. 6 depicts the spatial distributions of surface soil moisture,
evapotranspiration, and their respective simulation biases. According to
the ERA5-Land data, the distribution of soil moisture in China decreases
gradually from the south toward the north, with high values in the east
of the Tibetan Plateau and to the south of the Yangtze River, and low
values in western Inner Mongolia, with NC serving as the transitional

zone (Fig. 6a). The simulations of two schemes are similar, with both
capturing the spatial distribution of soil moisture and showing better
simulation performance in NC. In contrast to the reanalysis data, the
simulations exhibit high soil moisture exclusively within SC (Fig. 6b and
c). Furthermore, soil moisture biases are negative in the southeast of the
Tibetan Plateau, Yunnan Province and Sichuan Province, and in SC and
CC. Conversely, positive biases exist across other regions of China, with
prominent occurrence in western Inner Mongolia and western parts of
the Tibetan Plateau (Fig. 6g and h).

As shown by the ERA5-Land data, there is gradual reduction in
evapotranspiration from the southeast toward the northwest in China.
Taking a line from Yunnan Province to Jilin Province, the area on the
eastern side features high evapotranspiration, and the area on the
western side features transitional and low evapotranspiration, with the
transitional zone predominantly spanning from the Tibetan Plateau to
eastern Inner Mongolia. Evapotranspiration in the Xinjiang Uyghur
Autonomous Region and western Inner Mongolia is low, with negative
evapotranspiration throughout the summer, indicating that the atmo-
sphere transfers water vapor to the land surface (Fig. 6d). In contrast to
the NOAH scheme, the CSSP scheme demonstrates considerably better
simulation performance, capturing the spatial distribution of evapo-
transpiration. Nevertheless, there is underestimation in the eastern Ti-
betan Plateau and the middle and lower reaches of the Yangtze River,
which could possibly explain the negative biases in precipitation simu-
lated by the CSSP scheme in SC and CC. It is also shown to overestimate
evapotranspiration in eastern Inner Mongolia and northeastern China
(Fig. 6e and j). The NOAH scheme fails to capture the spatial distribution
in evapotranspiration, resulting in severe underestimation in most areas
of China (Fig. 6f and k). On one hand, owing to the integration of
vegetation and soil surface parameters in the NOAH scheme, it cannot
accurately compute the related water and carbon fluxes. On the other
hand, Qing et al. (2023) identified that vegetation provides the water
required for evapotranspiration by accessing subsurface water. In cases
where the CSSP and NOAH schemes demonstrate similar simulation
performance in terms of surface soil moisture, the poor simulation of
evapotranspiration by the NOAH scheme might be attributable to its
treatment of the vertical distribution of soil moisture. The NOAH scheme
assumes an even distribution of soil moisture in each subsurface layer,
neglecting the actual geographical distribution of bedrock depth, and
employs the simplest equilibrium approximation to handle surface and
subsurface runoff. Owing to the lack of dynamic response, this might
lead to insufficient accuracy in describing real hydrological processes,
resulting in inaccurate simulation of evapotranspiration, and conse-
quently generating more severe negative biases in simulating
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Fig. 6. (a-c) Climatological mean surface soil moisture (m®/m®) and (d-f) evapotranspiration (mm/d) from (a, d) ERA5-Land reanalysis, (b, €) the CSSP scheme and
(c, f) the NOAH scheme simulations in summer during 1980-2016. (g, h) Soil moisture biases between the simulations and ERA5-Land reanalysis, (j, k) evapo-
transpiration biases between the simulations and ERA5-Land reanalysis, and (i) soil moisture bias and (1) evapotranspiration bias between the CSSP and NOAH

schemes in summer.

precipitation.

In summary, compared with the NOAH scheme, the CSSP scheme
demonstrates notable advantages in simulating evapotranspiration,
attributable to its dynamic prediction and detailed characterization of
surface and subsurface runoff changes (Choi et al., 2006; Choi et al.,
2007; Choi et al., 2013; Yuan and Liang, 2011; Liang et al., 2012).
Therefore, the CSSP scheme was further employed in this study to
analyze the influences of land surface processes on precipitation and the
related physical mechanisms.

5. Influences of land surface processes on extreme precipitation
and the related physical mechanisms

The P95 index, as the foundation of R95p, is more robust and can
display key features of the simulation distributions compared with R10
without being distorted by anomalies, which means that it can better

reflect the characteristics of extreme precipitation (Fan et al., 1994; Karl
and Knight, 1998; Frich et al., 2002). Therefore, this study employed the
P95 index to investigate both the influences of land surface processes on
extreme precipitation and the causes of the simulation biases in extreme
precipitation. To filter out weather disturbances, we adopted the
method of Wei et al. (2021) to calculate the correlation coefficients of
10-d average values for each variable in June-July—August (nine values
each year). Furthermore, all correlation analysis and SEM analysis used
bias values, where P95 is defined as the simulations minus the obser-
vations, and other variables are defined as the simulations minus the
reanalysis values.

Previous studies revealed that the influence of soil moisture on
evapotranspiration is determined largely by climatic conditions. Koster
et al. (2009) summarized three ideal relationships between soil moisture
and evapotranspiration: (1) when soil moisture is too low, there is
insufficient water to drive evapotranspiration, resulting in zero



C. Zhang et al.

evapotranspiration; (2) when soil moisture is too high, evapotranspira-
tion is driven primarily by solar radiation and is not influenced by soil
moisture; and (3) when soil moisture is at an intermediate level,
evapotranspiration increases as soil moisture increases.

In both the ERA5-Land reanalysis data and the CSSP scheme simu-
lations, NC is situated in a transitional zone of soil moisture, charac-
terized by insufficient soil moisture compared with the situation in SC
and CC (Fig. 6a and b). Evapotranspiration is controlled primarily by soil
moisture. The correlation coefficients of the biases between the surface
variables and extreme precipitation in NC, CC, and SC are shown in
Fig. 7a—c, respectively, where SWDOWN represents the solar radiation
received at the surface, and NSE represents the net radiation at the
surface, which comprises net longwave radiation and net shortwave
radiation. The definitions of other variables are listed in Table S2. It is
evident from Fig. 7a that soil moisture bias is correlated positively with
evapotranspiration bias, implying that as soil moisture becomes more
abundant, evapotranspiration intensifies. Additionally, evapotranspira-
tion contributes directly to precipitation by increasing the atmospheric
water vapor content, and it indirectly diminishes the wet bulb temper-
ature gradient by increasing near-surface humidity, resulting in
lowering of the LCL. This favors the generation of deeper clouds, which
are usually associated with greater moisture content and enhanced
likelihood of convective development. When the PBLH approaches the
LCL, it facilitates the triggering of convective and the development of
local precipitation (Santanello et al., 2011). The mechanisms via which
PBLH influences precipitation are complex. For example, intense
warming can elevate the top of the PBL to the LCL, thus triggering
convection and causing increased precipitation. Conversely, reduction
in the magnitude of MSE per unit mass of air within the PBL can suppress
cloud evolution, leading to reduced precipitation. The two interactions
rely on the ambient environmental conditions. Under moist soil condi-
tions, PBL development is greatly restricted and its top cannot reach the
LCL, which mainly causes reduced precipitation by decreasing the
magnitude of MSE per unit mass of air in the PBL. Under dry soil con-
ditions, PBL development is sufficient to offset the rise in the LCL
because of the decrease in low-level humidity, which triggers convection
and causes increased precipitation (Eltahir, 1998; Findell and Eltahir,
2003; Santanello et al., 2011). Therefore, in NC, where soil moisture is
insufficient, the PBLH and LCL jointly influence precipitation.

Although CC is characterized by abundant soil moisture in the ERA5-
Land data, it is underestimated in the simulations by the CSSP scheme,
placing it between NC and SC in terms of magnitude (Fig. 6a and b).
Therefore, in the bias correlation analysis, evapotranspiration in CC is
not only controlled by soil moisture, but also constrained to some extent
by the capacity of the atmosphere to absorb water vapor. Thus, it is
controlled by atmospheric conditions, primarily net radiation, as proven
by the positive correlation between net radiation bias and soil moisture
bias (Fig. 7b). On one hand, soil moisture could tend to enhance net
shortwave radiation at the surface by reducing the surface albedo. On
the other hand, the greenhouse effect associated with atmospheric water
vapor could lead to greater emission of downward longwave radiation,
resulting in reduction in outgoing longwave radiation from the surface
(Stefan-Boltzmann Law), thereby enhancing net radiation, heating the
surface, promoting evapotranspiration, and favoring the generation of
clouds and precipitation. Net radiation bias also shows positive corre-
lation with both sensible heat bias (0.78) and latent heat bias (0.92),
implying that increase in net radiation leads to greater heat flux (the sum
of sensible heat and latent heat) entering the PBL from the surface. With
enhancement of sensible heat, turbulent mixing is also strengthened,
promoting PBL development (0.96). Under relatively moist soil condi-
tions, reduction in the magnitude of MSE per unit mass of air within the
PBL has negative impact on precipitation.

In our simulations using the CSSP scheme, SC emerges with the
highest soil moisture, which is at a level sufficient to satisfy atmospheric
moisture demands (Fig. 6b). Evapotranspiration is controlled predomi-
nantly by atmospheric conditions (net radiation) with minimal influence
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from soil moisture. This partially explains why areas with maximum soil
moisture do not coincide with those experiencing peak evapotranspi-
ration (Fig. 6b and e). As depicted in Fig. 7c, soil moisture bias exhibits
negative correlation with evapotranspiration bias and positive correla-
tion with net radiation bias, and net radiation bias exhibits strong pos-
itive correlation with evapotranspiration bias (0.59), whereas
evapotranspiration bias shows significant positive correlation with P95
bias (0.68). It suggests that evapotranspiration in SC is less sensitive to
soil moisture but more sensitive to net radiation (Dirmeyer, 2011).
Enhanced net radiation heats the surface, thereby enhancing evapo-
transpiration and providing conditions more favorable for precipitation.

NC
| ~c (@)NC
P95 0.90 0.05

0.02
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Additionally, net radiation bias consistently exhibits positive correlation
with sensible heat bias (0.89) and latent heat bias (0.88), indicating
greater heat flux entering the PBL. Enhancement of sensible heat leads to
PBL uplift (0.96), which negatively affects precipitation by reducing the
magnitude of MSE per unit mass of air within the PBL. This trend is
similar to that observed in CC.

It is noteworthy that evapotranspiration bias is correlated positively
with LCL bias in both CC (0.98) and SC (0.86). Because evapotranspi-
ration in these areas is controlled primarily by net radiation, and net
longwave radiation is closely related to cloud properties or the LCL, it
mainly reflects the influence of the LCL on evapotranspiration. Thus, the
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Fig. 8. Mechanisms of land surface processes influencing P95 revealed by the CSSP scheme simulations in (a) North China (NC), (b) Central China (CC), and (c)
South China (SC) in summer. Rectangles and ovals represent manifest and latent variables, respectively. Solid lines indicate correlation coefficients passing the
significance test at the 90 % confidence level, with numbers on the lines representing the path coefficients. CFI, RMSEA, and SRMR denote comparative fit index, root
mean square error of approximation, and standardized root mean square residual, respectively.
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positive relationship among LCL, net radiation, and evapotranspiration
constitutes a causal chain. In contrast, in NC, soil moisture directly af-
fects evapotranspiration, which further influences the LCL, highlighting
the impact of the former on the latter (Wei et al., 2021).

The impacts of land surface processes on P95 exhibit large uncer-
tainty, which depends not only on the climatic conditions, but also on
the positive and negative feedbacks of various parameters within a re-
gion. To quantify the relative contributions of different factors to P95 in
different regions, and to facilitate model improvement in future
research, we constructed the SEM for further analysis. Owing to the high
multicollinearity between latent heat and evapotranspiration (Fig. 7),
and because latent heat almost entirely reflects the variation in evapo-
transpiration, only latent heat was considered to simplify the model and
avoid multicollinearity.

Fig. 8 shows the mechanisms of land surface variables influencing
P95 based on the SEM for three subregions. Solid lines indicate corre-
lation coefficients passing the significance test at the 90 % confidence
level, and the values on the solid lines represent path coefficients, which
denote how changes in one variable affect changes in another. In NC,
latent heat bias and sensible heat bias are both sensitive to soil moisture
bias (0.263 and — 0.758, respectively), subsequently altering the LCL by
modifying the low-level atmospheric humidity (—0.832). Introducing
the latent variable L_P, inferred from manifest variables LCL and PBLH,
can more directly describe the impact on precipitation. The P95 bias is
affected only by L P bias (—4.853), indicating that overestimation of
precipitation occurs when the model underestimates the LCL and over-
estimates the PBLH. In the simulations with the CSSP scheme, notable
overestimation of sensible heat spans the entire region of NC (Fig. 9f),
contributing relatively by 0.567 to the PBLH biases and thereby
elevating the PBLH over the entire area of NC (Fig. 9r). Simultaneously,
overestimation of latent heat in the northern part of NC also leads to
increased low-level atmospheric humidity, causing reduction in the LCL
(Fig. 9u), and consequently contributing to reduction in L_P, which fa-
vors precipitation development. These are aligned harmoniously with
the distribution of P95 simulation bias (Fig. 3f), indicating that the
coupling between soil moisture and P95 is strong in the transitional zone
between arid and humid regions, consistent with conclusions derived
from the Global Land-Atmosphere Coupling Experiment (Koster et al.,
2004, 2006). Note that over the Tibetan Plateau, high elevations lead to
low Tapy and water vapor pressure, resulting in lower dew point tem-
perature differences. Eq. (1) may not be suitable for approximating LCL
in the Tibetan Plateau. This study, with a main focus on three sub-
regions in eastern China, ignored the elevation effect in the Tibetan
Plateau.

In CC, latent heat bias and sensible heat bias are also both influenced
by the soil moisture bias (0.254 and 0.668, respectively), but are
beginning to be influenced by the net radiation bias (0.813 and 0.494,
respectively). The bias in P95 is influenced solely by the PBLH bias
(—1.101). In the simulations with the CSSP scheme, there are significant
overestimation of net radiation in CC (Fig. 9¢) and underestimation of
soil moisture in CC (Fig. 8g), sing 30°N as a dividing line, the north of the
dividing line up to the northern boundary of CC is referred to as
Northern CC, while the south of the dividing line down to the southern
boundary of CC is referred to as Southern CC. It can be observed that
compared to sensible heat, latent heat is more sensitive to the changes in
soil moisture. As one moves south, soil moisture becomes more abun-
dant, leading to a decreasing influence of soil moisture on latent heat,
while the influence of net radiation increases. Therefore, the model
underestimates latent heat in Northern CC and overestimates it in
Southern CC (Fig. 9i). Additionally, sensible heat is overestimated
throughout the entire CC (Fig. 9f), which may be due to the significant
overestimation of net radiation in the model, indicating greater heat flux
from the surface into the PBL (Fig. 91). This promotes more vigorous
convection and faster growth of the PBL (Fig. 9r), weakening of the
magnitude of MSE per unit mass of air within the PBL (Fig. 90), and
underestimation of P95. Nevertheless, the negative biases in MSE per
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unit mass of air within the PBL can only correspond to limited areas of
negative biases in P95 (Fig. 3f), suggesting that P95 is influenced by a
combination of factors other than simply land surface processes.

In SC, latent heat bias and sensible heat bias are both influenced only
by the net radiation bias (0.880 and 0.893, respectively). The bias in P95
is influenced solely by the latent heat bias (0.886), indicating that
overestimation of latent heat by the model leads to overestimation of
P95. In the simulations with the CSSP scheme, the underestimation of
net radiation in SC leads to underestimation of latent heat (Fig. 9i),
which directly leads to the underestimation of P95. This is consistent
with the distribution of the P95 simulation biases (Fig. 3f), implying that
variations in local water vapor and its energy play a certain role in P95
in SC.

In summary, among the three subregions, NC, in the transitional
zone between arid and humid regions, exhibits relatively robust
coupling between soil moisture and P95. The crucial influence of soil
moisture on P95 stems from its capacity to modify the energy and sta-
bility of the PBL and LCL, thereby influencing the triggering mechanisms
that initiate P95.

6. Conclusion and discussion

This study analyzed the impact of land surface processes on the
simulation of summer extreme precipitation by the regional climate
model CWRF, focusing on three subregions in eastern China: NC, CC,
and SC. We evaluated the performance of two land surface parameter-
ization schemes, i.e., the CSSP and NOAH scheme, in simulating extreme
precipitation during summer. Results showed that the CSSP and NOAH
schemes exhibited similar simulation capabilities, closely reproducing
the spatial distributions of observed extreme precipitation. They
captured the position and movement of rain belts and the areas of high
precipitation, albeit with some degree of overestimation or underesti-
mation. There was no notable difference in the simulation of precipi-
tation biases between the CSSP and NOAH schemes. In simulating P95
and R95p, both schemes exhibited negative biases in SC and CC and
positive biases in NC. Nevertheless, the CSSP scheme presented reduc-
tion in negative biases in simulating mean precipitation and R10
compared with those of the NOAH scheme across the three subregions.
Moreover, the CSSP scheme also demonstrated better capability in
capturing the spatial distributions of both mean precipitation and R10
across the three subregions compared with that of the NOAH scheme.
However, neither the CSSP scheme nor the NOAH scheme could effec-
tively capture the spatial distributions of both P95 and R95p in SC. The
NOAH scheme exhibited greater ability in depicting the temporal evo-
lution trends of extreme precipitation in NC, whereas the CSSP scheme
performed better in SC and CC. These results indicate that, although the
CWRF has overall better performance when coupling the CSSP than
NOAH scheme, the latter provides skill enhancement in some regions.
This suggests the use of the multi-physics ensemble, including both CSSP
and NOAH, to enhance the CWRF capability in predicting mean and
extreme precipitation over China. Owing to model limitations and the
complexity of extreme precipitation, subsequent analysis of the influ-
ence of land surface processes on extreme precipitation might be barely
satisfactory.

We evaluated the performance of both scheme in simulating surface
soil moisture and evapotranspiration. The CSSP and NOAH schemes
both accurately depicted the distribution of surface soil moisture,
especially in the transitional zone between arid and humid regions in
NC. However, compared with the reanalysis data, underestimation of
soil moisture in the middle and lower reaches of the Yangtze River led to
the region of maximum soil moisture appearing only in SC. In terms of
evapotranspiration, the CSSP scheme demonstrated superior simulation
skill, closely aligning with the reanalysis data, which might be attrib-
utable to its more refined representation of the physical processes. In
contrast, the NOAH scheme struggled to capture the distribution of
evapotranspiration owing to its lack of dynamic response and other
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during 1980-2016.
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configuration limitations. This was the main reason why we selected the
CSSP scheme for further research.

We investigated the potential mechanisms via which land surface
processes might influence P95. First, we clarified the connection be-
tween P95 and various variables such as land surface variables, radia-
tion variables, and the boundary layer through correlation analysis.
Subsequently, we constructed a physically reasonable SEM to quanti-
tatively measure the relative contributions of different factors. Soil
moisture, net radiation, sensible heat, latent heat, PBLH, and LCL
emerged as the primary influencing factors, and analysis was conducted
using their bias values. Different physical mechanisms were identified as
operating in the different subregions, as outlined below.

In NC, soil moisture was found to play the dominant role in influ-
encing land surface variables. Introducing the latent variable L_P
revealed that the P95 bias is influenced solely by L_P (—4.853). When
L_P values are low, indicative of the close proximity of the LCL with the
PBLH, convective triggering and P95 development are favored. In CC,
evapotranspiration/latent heat was found to begin to show the influence
of atmospheric conditions (net radiation). The P95 bias was found
influenced by the PBLH bias (—1.101), indicating that PBL development
inhibited P95 by reducing the magnitude of MSE per unit mass of air
within the PBL. In SC, where soil moisture is abundant, net radiation
exerted the dominant impact on land surface variables. The P95 bias was
found influenced only by the latent heat bias (0.886), indicating that
evapotranspiration enhanced atmospheric humidity, and thereby posi-
tively affected P95.

In NC, relatively strong coupling was found between soil moisture
and P95, whereas in CC, the impact of land surface processes on P95 was
relatively weak. In SC, P95 was found predominantly influenced by at-
mospheric conditions, particularly by changes in water vapor and its
energy induced by net radiation. The development of extreme precipi-
tation requires stricter demands on moisture and convective conditions,
resulting from synergistic regulation by numerous factors. Compared
with the large-scale circulation, land surface processes exhibit greater
stability, and thus the impacts of land surface processes on extreme
precipitation might be masked by large-scale circulation factors (Koster
et al., 2011; Yang et al., 2015; Wei et al., 2016; Zhang et al., 2023).

The impacts of land surface processes on extreme precipitation are
complex and encompass variables beyond those analyzed above. Based
on previous research findings (e.g., Sun and Liang, 2020a, 2020b) and
available CWRF simulations, this study takes the energy balance
perspective via the lens of land-atmosphere interactions and selects the
key representative variables for the in-depth SEM analysis to identify the
critical physical mechanisms for extreme precipitation differences in
CSSP simulations. Our analysis, however, is not complete, warranting
further investigation through SEM or other machine learning ap-
proaches based on a more comprehensive list of surface and atmospheric
variables. Sun and Liang (2020b) pointed out that the occurrence of P95
is influenced by the combined effects of energy supply, water supply,
surface forcing, and cloud forcing. For example, deep convection can
reduce outgoing longwave radiation through the re-radiation process of
clouds, which can overcome the large reflected shortwave radiation at
the top of atmosphere based on radiative balance, resulting in a reduced
cloud radiative effect and a net warming effect to the Earth. Thus,
underestimating deep convection can lead to a reduction in extreme
precipitation. Additionally, the total precipitable water, in conjunction
with meridional winds or upward motion, plays a regulatory role on
P95, highlighting the importance of cloud microphysical processes in
simulating extreme precipitation, especially in inland areas that are
more dependent on water supply. Furthermore, Ty, can also influence
P95 by affecting total precipitable water, the fraction of low layers and
high layers cloud cover, and CAPE values. Our study did not include a
comprehensive list of the key atmospheric variables except for PBLH and
LCL that are directly related to land—convection—precipitation coupling.
The lack of data for the other “causal ingredient” variables listed in Sun
and Liang (2020b) limited our explanation of the full coupling

13

Atmospheric Research 314 (2025) 107783

mechanisms underlying the surface-atmosphere interactions affecting
extreme precipitation. This remains one of our future research goals.

Furthermore, Hohenegger et al. (2009) identified differences in the
land surface processes simulated by models when using different reso-
lutions. In simulations with 25-km resolution, soil moisture and pre-
cipitation exhibit strong positive feedback, whereas in simulations with
2.2-km resolution, soil moisture and precipitation show strong negative
feedback and produce different signals. Regional climate model down-
scaling has often been made with grid nesting at a ratio of 3:1 (Liang
et al., 2001, 2005). The choice for the ratio, however, is subjective and
can be relaxed to a wide range of values (Liang et al., 2019). This study
conducted long-term CWRF simulations at 30-km grids, with a nesting
ratio of approximate 1 (Liang et al., 2018), emphasizing the importance
of model physics enhancement. Zhao and Liang (2024) compared
CWRF's downscaling ability at 30, 15, and 10 km grids to determine the
resolution sensitivity for extreme precipitation in year 2003. They found
that the simulations at 15-km generally outperform those at 30-km
across the Yangtze River Basin. Conversely, the 10-km simulation
shows a consistent decline in performance compared to the 15-km run.
With the improving computer resources, CWRF based operational
climate forecasts has since been upgraded to 15-km in China. None-
theless, our results from this study using 30-km CWRF provide a baseline
understanding of the impact of land-atmosphere interactions on extreme
precipitation prediction for further improvement through multi-physics
ensemble (Zhao and Liang, 2024; Zhao et al., 2024) and resolution
refinement.
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