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The forests of coastal Alaska and British Columbia are globally significant for their high carbon storage capacity
and complex forest structure, hosting some of the densest values of aboveground biomass in the world. These
ecosystems support biodiversity, provide critical habitat, and serve as long-term carbon sinks, offering resilience
to climate change. However, comprehensive, spatially continuous estimates of forest structure across this region
have been limited, particularly across political boundaries. In this study, we used a Gradient Nearest Neighbor
(GNN) modeling approach to integrate extensive forest inventory plot data with satellite-derived environmental
variables. This approach enabled us to produce moderate-resolution (30-meter) maps of aboveground biomass,
species biomass, forest age, basal area, and additional structural attributes. Our results indicated that climate and
topography accounted for the majority of the explainable variation across all modeling regions. Predictions of
aboveground live biomass were higher than previous estimates, particularly in Southeast Alaska, where estimates
were 30-53 % greater than previous studies. Forest structure varied across the region, with older forests found in
Southeast Alaska and higher tree densities in British Columbia. Collectively, the coastal forests of Alaska and
British Columbia store approximately 3.58 petagrams of carbon. These spatially explicit maps offer critical in-
sights for carbon monitoring, forest management, and biodiversity conservation across this ecologically diverse
and politically fragmented landscape.

understand natural disturbance regimes (Kennedy et al., 2014), and
estimate carbon stocks. They can also be useful for modelers, as baseline

1. Introduction

Today’s most pressing challenges in natural resource management
and conservation planning extend across vast spatial scales, often
traversing political boundaries, land ownerships, administrative juris-
dictions, and intricate ecological gradients. A multitude of interacting
threats, such as wildfires, invasive species, and climate change, along-
side balancing various benefits like wildlife habitat preservation,
watershed health, and timber supply (DeGayner et al., 2005; Shanley
et al., 2015) necessitates an accurate and complete understanding of our
forested systems that traverses these human boundaries and environ-
mental gradients. Consequently, there is a growing demand among an-
alysts and decision-makers for comprehensive, highly detailed, and
spatially-complete data on vegetation and land cover. Maps of vegeta-
tion structure and composition are helpful for land managers to delin-
eate potential habitat for wildlife (Vogeler and Cohen, 2016),
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conditions for projecting changes in the environment due to climate
change (Lucash et al., 2023). However, in remote regions of the world,
these maps may be either too coarse or completely lacking altogether
(Fassnacht et al., 2024).

One such area is the forests of the Pacific coast of North America,
which include nearly 30 % of all temperate rainforests on Earth (Veblen
and Alaback, 1996). These forests are globally significant for their role
in storing and cycling carbon and are home to some of the highest
aboveground carbon densities in the world (Alaback, 1996; Yatskov
et al., 2019). Regionally and locally, they are valued for their ability to
provide ecosystem services and their cultural significance by Indigenous
communities, playing a crucial role in supporting regional economies (e.
g. timber, berry and salmon production; Crone and Mehrkens, 2013).
They are described as being among the most intact tracts of coastal
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Fig. 1. GNN modeling region of the temperate rainforests of North America separated into five sub-modeling regions.

temperate rainforests in the world (Alaback, 1996; DellaSala et al.,
2022, 2011; Suttles et al., 1997). Yet despite their global and regional
significance, there is a relative lack of consistent, cross-boundary, spatial
data at resolutions appropriate for informing monitoring efforts and
management decisions across the temperate rainforests of North
America.

Efforts to map these forests encounter obstacles such as limited
spatial and temporal coverage, sampling bias, and the high cost and
labor of data collection (McRoberts and Westfall, 2014). Networks of
ground observations in these remote regions lack the granularity needed
to capture the complex and heterogeneous nature of these forested re-
gions, where variations in topography, climate, and species composition
are pronounced (Beamish et al., 2020; Bidlack et al., 2017; Kane et al.,
2008). Field surveys provide highly accurate and detailed data at spe-
cific locations. However, due to the time-consuming, labor-intensive,
and expensive nature of data collection, only a small fraction of vast
geographic areas can be practically surveyed. Furthermore, remote
areas, such as designated Wilderness Areas, often lack permanent plot
support and infrequent remeasurement periods, making monitoring
change in these systems challenging (Bidlack et al., 2017).

To address these limitations, researchers have increasingly combined
field-sampled forest structure data with satellite imagery, which is
spatially complete, spectrally consistent, frequently remeasured, and
often available for free (Banskota et al., 2014; Ohmann and Gregory,
2002; Wulder et al., 2012). This combination has allowed for compre-
hensive estimates of forest structure over large areas, mitigating issues
such as high costs, limited spatial coverage, and long intervals between
repeated measurements of traditional field-based inventories (Lister
et al., 2020; White et al., 2016). Some methods focus on extrapolating
localized data obtained from field samples across entire regions using
statistical predictive modeling, such as linear regression, Random Forest

(RF), and gradient nearest neighbor (GNN) imputation (Krebs et al.,
2019; Matasci et al., 2018; Zald et al., 2016). These approaches relate
localized forest measurements to multispectral images and other geo-
spatial datasets to facilitate forest structure and composition mapping.
The integration of field data and satellite imagery thus provides an
effective solution for creating comprehensive forest structure estimates,
enhancing the accuracy and efficiency of forest inventory and man-
agement practices.

A significant challenge in forest research and management has been
the lack of harmonized datasets that bridge multiple forest inventory
systems across political boundaries. Our study integrates datasets from
two national inventory systems—the USDA Forest Service Forest In-
ventory and Analysis (FIA) program and the Forest Analysis Inventory
Branch (FAIB) in British Columbia—into a unified, cross-border frame-
work. This integration represents a novel effort to reconcile differences
in inventory methodologies, creating a unified, cross-border training
dataset that enables consistent analysis of forest structure and compo-
sition. We then created a cloud-free and terrain-corrected satellite
composite of the entire region, combining it with continuous environ-
mental layers such as climate, disturbance, and landcover type. Field
data were integrated with remotely-sensed data using a Gradient
Nearest Neighbor (GNN) imputation technique, which models forest
attributes through Canonical Correspondence Analysis (CCA) and im-
putes results across the landscape based on Euclidean distances
(Ohmann and Gregory, 2002). This method enables the mapping of
various forest attributes across a broad geographic area and allows for
the imputation of any forest attribute derived from field observations to
similar pixels throughout the landscape.

Several spatially explicit datasets of forest structure and composition
exist for Canada and Alaska. For instance, Canada has national-scale
maps of biomass, forest structure, tree species distributions, and forest
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Fig. 2. Plot location by country of origin, with FIA plot locations labeled in green and FAIB plot locations in yellow. FIA plot locations are shown here using the

publicly available fuzzed coordinates.

age (e.g., Hermosilla et al., 2022; Maltman et al., 2023; Matasci et al.,
2018). Alaska also has datasets focused on tundra and Arctic vegetation
and aboveground biomass (e.g., Berner et al., 2018). While these data-
sets provide valuable insights, they are often limited to specific
geographic areas. In contrast, our study integrates the Gradient Nearest
Neighbor (GNN) imputation method with a harmonized, cross-boundary
training dataset, combining multiple forest inventory systems from both
Canada and the United States. This represents a novel approach for
addressing data gaps and achieving consistency in mapping forest
structure and composition across the transboundary region of the North
American temperate rainforest.

The goal of this study was to improve our understanding of forest
composition and structure across the coastal temperate rainforests of
Alaska and British Columbia by developing spatially explicit maps that
integrate cross-border forest inventory data. To achieve this goal, our
objectives were to: (1) create spatially explicit, cross- border, predictions
of forest biomass, forest composition, and structural metrics including
aboveground biomass, forest age, basal area, and volume using field
inventory data, with predictors derived from multispectral, climate,
disturbance, and landcover maps; (2) determine the environmental
variables that have the strongest influence on the spatial patterns of
aboveground biomass, basal area, density, and volume of live and dead
trees across the region; (3) benchmark the forest biomass stock pre-
dictions against regional and global estimates; and (4) assess the
modeled outputs to identify environmental gradients that may require
additional plot support to improve representation.

2. Methods
2.1. Study area

The study area for this project spans nearly 29.9 million hectares of
coastal regions of coastal British Columbia up through Southeast Alaska
to Kodiak Island (Fig. 1). It spans large climatic, physiographic, geologic,
and vegetation gradients with a latitudinal gradient of 48°N to 61°N and
a longitudinal gradient of 121°W to 154°W. The forests in this region
experience a maritime climate characterized by mild temperatures, high
humidity, and abundant precipitation throughout the year, supporting
some of the highest amounts of above- and belowground biomass in the
world (Buma et al., 2016; McNicol et al., 2019). Winters are mild, with
temperatures ranging from 0°C to 10°C, accompanied by substantial
rainfall and occasional snowfall in the southern extents, with increasing
amounts of snow with increasing latitude and elevation. Springs bring
increasing temperatures and abundant rain showers, while summers
remain cool with temperatures ranging from 15°C to 25°C and persistent
fog and mist.

The study area was split into five separate modeling regions based on
climatic differences, administrative boundaries, and species composi-
tion. The western Kenai Peninsula and the Anchorage Bowl comprise
portions of the Cook Inlet Basin and represent a transition to the boreal
forest biome, characterized by cooler winters, warmer summers, and far
less annual precipitation than the temperate maritime region (Nowacki
et al., 2003). In contrast, modeling regions within the temperate coastal
rainforest are characterized generally by warmer winters and cooler
summers, with substantial annual precipitation. Alaska comprises two
temperate modeling regions: the Southcentral region, which surrounds
the Gulf of Alaska, and the Southeast region, which encompasses the
Tongass National Forest. Coastal British Columbia was split into two
separate modeling regions as well, with the northern extent of the
Douglas-fir range as the boundary between the two (Hermann and
Lavender, 1990).

2.2. Forest plot data

Forest inventory data were obtained and combined from both the
United States and British Columbia (Fig. 2). In British Columbia, we
utilized sample plots from the Forest Analysis and Inventory Branch
(FAIB; Government of British Columbia, 2023) while in Alaska plot data
was obtained from the USDA Forest Service Forest Inventory and
Analysis Program (FIA; Gray et al.,, 2012). The two inventories have
somewhat different purposes, with FIA measuring vegetation in per-
manent plots on forested lands across the United States while the FAIB
database helps determine an appropriate annual allowable cut (AAC) for
the timber harvest regions of British Columbia. The USDA FIA uses a
systematic grid of permanent plots that are approximately 1 hectare in
size, with four subplots, and data are collected on trees greater than 5 in.
in diameter at breast height (DBH). British Columbia’s FAIB, on the
other hand, uses a mix of fixed-radius (0.01 ha in size) and
variable-radius plot designs, often focusing on commercial species. For
both datasets, plots were filtered to the latest remeasurement date and
trees that were greater than 12.7 cm DBH, with plot collection dates
ranging between 2004 and 2019. There were multiple plots within the
FAIB dataset that contained the same coordinates (n = 42), and these
plots were also removed from analysis. Variable radius plots from the
FAIB database were also omitted from the analysis to maintain consis-
tency between the two different inventory systems. In total, 2755 plot
observations were used, with 2074 from FIA and 681 from FAIB.

To calculate individual tree-level biomass across both datasets,
Kozak stem taper equations (Kozak et al., 1969) were used to estimate
the total volume of each standing stem. The Kozak taper equations were
selected for several reasons. Firstly, it was discovered that the compo-
nent ratio method (CRM) used by the FIA (Woodall et al., 2011) has
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Table 1

Forest composition and structural data obtained from forest plot observations.
Variable code Units Description
total_bio gm 2 plot level aboveground tree biomass density
snag_bio g'm 2 Plot level biomass of standing dead trees

2 species specific biomass densities g'm~2 (

Table 2)

*species* gm2  g'm~

BA_GE_3 m?hectare ! Basal area of live trees
BAC_GE_3 m?%hectare ! Basal area of live conifers
BAH_GE_3 m?hectare ! Basal area of live hardwoods
TPH_live trees'hectare ! Density of live trees
TPH_dead trees'hectare™  Density of dead trees
TPH_Con trees'hectare ! Density of live conifers
TPH_Hw trees'hectare ! Density of live hardwoods
VPH_live m>hectare ! Volume of live trees
VPH_dead m>hectare ! Volume of dead trees
VPH_Con m>hectare ! Volume of live conifers
VPH_Hw m>hectare™! Volume of live hardwoods
AGE_DOM years 95th percentile of tree ages
QMD live cm Quadratic mean diameter of all live trees
Table 2

Tree species included in study.

Species Species Code Common name
Abies amabilis 11 pacific silver fir
Abies grandis 17 grand fir

Abies lasiocarpa 19 subalpine fir
Chamaecyparis nootkatensis 42 Alaska yellow cedar
Picea glauca 94 white spruce

Picea mariana 95 black spruce

Picea sitchensis 98 Sitka spruce

Pinus contorta 108 lodgepole pine
Pinus monticola 119 western white pine
Pseudotsuga menziesii 202 Douglas-fir

Taxus brevifolia 231 Pacific yew

Thuja plicata 242 western redcedar
Tsuga heterophylla 263 western hemlock
Tsuga mertensiana 264 mountain hemlock
Acer macrophyllum 312 bigleaf maple
Alnus rubra 351 red alder

Betula papyrifera 375 paper birch
Populus tremuloides 746 quaking aspen
Populus trichocarpa 747 black cottonwood

potentially been underestimating individual tree biomass (Chojnacky
et al., 2014; Westfall et al., 2024). Secondly, the Kozak equations were
specifically developed for the region to estimate tree volume and ac-
count for trees with broken tops. Tree stem volume was then converted
to standing biomass with species-specific wood densities (Jenkins et al.,
2003). After converting individual tree biomass to unit/area densities
via the supplied expansion factors, plot data was reassessed for erro-
neous biomass densities at whole-plot level. Plots with biomass densities
well outside the known range of upper biomass limits for the region
(n = 94) were omitted from the analysis (Buma et al., 2016; Krumlik,
1974; Smithwick et al., 2002). Forest structural attributes, found in
Table 1, were then summarized for each plot.

2.3. Gradient nearest neighbor predictions

To model forest composition and structure across all forested land
within the study area, we used Gradient Nearest Neighbor (GNN)
imputation as described in Ohmann et al., (2011) and Ohmann and
Gregory, (2002). The GNN imputation modeling method was chosen due
to its robustness to the nonlinear responses expected of vegetation
communities to environmental gradients and to the response matrices
containing many null values and without normal distributions, which is
common in plant community ecology. This arises from the use of the
constrained ordination method called canonical correspondence anal-
ysis (CCA; Ter Braak, 1986) as the basis for relating the multivariate

Table 3
Environmental predictor variables that will be used in GNN mapping.
Predictor Band Description
name
Landsat 8 blue Landsat 8 blue band
Composite
green Landsat 8 green band
red Landsat 8 red band
NIR Landsat 8 near infrared band
SWIR1 Landsat 8 shortwave infrared 2 band
SWIR2 Landsat 8 shortwave infrared 1 band
Landsat 8 indices R54 Landsat 8 near infrared band / Landsat 8 red
band
R65 Landsat 8 shortwave infrared 1 / Landsat 8 near
infrared
R67 Landsat 8 shortwave infrared 1 / Landsat 8
shortwave infrared 2
NDVI Landsat 8 normalized difference vegetation
index
Landsat 8 brightness Axis 1 from tasseled cap transformation of

Tasseled Cap Landsat 8 surface reflectance.

greenness Axis 2 from tasseled cap transformation of
Landsat 8 surface reflectance.
wetness Axis 3 from tasseled cap transformation of
Landsat 8 surface reflectance.
Landcover landcov National Land Cover Database (NLCD)
Landcover classifications
Topography elevation Elevation (m)
slope Slope (degrees)
Location latitude Northing based on EPSG:3338 (m)
longitude Easting based on EPSG:3338 (m)
Climate biol Mean annual air temperature
bio4 Temperature seasonality (°C/100)
bio5 Mean daily air temperature of the warmest
month (°C)
biol2 Annual precipitation amount (kg'm~2)
bio14 Precipitation amount of the driest month
(kg'm~2)
biol5 Precipitation seasonality (kg'm~2)
Disturbance TSD Time since disturbance obtained from

Landtrendr (Kennedy et al., 2010)

forest inventory data to geospatial predictors. CCA is best suited to
community datasets where (1) species responses to the environment are
unimodal and (2) the important underlying environmental variables
have been measured. Because CCA uses data on the environment to
structure the community analysis, and CCA plots points in a space
defined by environmental variables, CCA can be considered a “direct
gradient analysis” method.

To map forest attributes (Table 1), along with species specific
biomass densities (Table 2), we imputed the mean of the five plots most
similar to each 30-m pixel (spatial grain of predictor variables; see
Section 2.3.1) based on the CCA model results. The selection of the five
nearest neighbors for each pixel was based on the weighted Euclidean
distance within multivariate gradient space between a pixel environ-
mental values and those observed at a plot location. We chose to impute
the mean of the five nearest neighbors because previous research on
nearest neighbor imputation indicated that imputing the mean of several
neighbors can result in improved prediction accuracy for individual
forest structure variables compared to using only the nearest neighbor
(Bell et al., 2023; Chirici et al., 2016; McRoberts, 2012). For each
modeling region, we utilized plot data within the region and any directly
neighboring regions. Due to the low plot support in portions of the
Northern BC region, we also included plots from Southeast Alaska when
modeling the Southern BC region. A total of 693 plot observations were
used for the western Kenai region, 1831 plots for Southcentral Alaska,
2066 plots for Southeast Alaska, 2053 plots for the northern region of
coastal British Columbia, and 2053 plots for the southern region of
coastal British Columbia. This approach enhanced plot support for each
region and helped minimize the introduction of artificial boundaries in
our results.
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2.3.1. Mapped explanatory data

The explanatory variables used in the GNN imputation were
continuous raster layers describing observed satellite reflectance values,
topography, climate, landcover, location, and disturbance (Table 3). All
layers were sampled to the same resolution (30 m) and extent using the
terra package (Hijmans, 2023) in R (R Core Team, 2023). Depending on
if the predictor variable was categorical or continuous, the resampling
method used was either accomplished using bilinear interpolation or
nearest neighbor respectively. A cloud-free and terrain-corrected
Landsat 8 composite, calibrated for surface reflectance, was generated
in Google Earth Engine (GEE; Gorelick et al., 2017) using a modified
version of an image pre-processing tool developed by Hurni et al.,
(2017). This version replaces SRTM elevation data with JAXA ALOS
elevation data due to data availability at high latitudes (Tadono et al.,
2016). The Landsat 8 image collection was filtered to months with
minimal snow cover (May-August). The CFMASK algorithm in GEE was
employed to assess pixel quality, enabling the exclusion of cloud edges
and shadows and assigned reflectance was determined by calculating
the median value of each pixel within the annual time series. Images
used were captured between 2016 and 2021, with priority given to
pixels that were captured in 2018.

In addition to individual spectral bands, Tasseled Cap trans-
formations (TCT) were calculated based on the Landsat imagery,
providing a set of spectral indices effective at capturing changes in the
density and vigor of vegetative foliage (Greenness), surface reflectance
from the particles that make up the bare earth (Brightness), and surface
moisture (Wetness) (Crist and Cicone, 1984). TCT condenses the
multidimensional spectral data into a few key components that simplify
the complex spectral information, facilitating the analysis of land cover
changes, vegetation health, and ecosystem monitoring (Cohen and
Goward, 2004).

To represent areas that have been disturbed in the past the Landsat-
based detection of Trends in Disturbance and Recovery (LandTrendr)
algorithm, implemented in GEE, was used (Kennedy et al., 2018, 2010).
LandTrendr exploits time-series satellite imagery to detect and charac-
terize land cover changes over time. It was developed to analyze time
series data from Landsat satellite imagery, focusing on identifying and
quantifying disturbances (like logging, fires, or storms) and subsequent
recovery processes. It uses a pixel-based approach to identify temporal
trends and abrupt changes in spectral characteristics and is particularly
useful for assessing long-term trends and disturbances in large-scale
ecosystems. LandTrendr was used to detect disturbed pixels across the
entire continuous Landsat collection (1985 — 2021). To ensure distur-
bance from harvests were fully represented, historical harvest bound-
aries (Forest Analysis and Inventory Branch, 2023; USDA, 2022) were
added to the LandTrendr output of disturbed pixels providing a layer
that represents the time since disturbance (2021 - year of disturbance) for
both human and natural causes.

Climate, landcover, and topographic layers were also included due to
their influence on observed vegetation patterns found in northwest
forests (Ohmann and Spies, 1998). Downscaled climatology’s were
derived from CHELSA V2.1 (Karger et al., 2017) while topographic
layers, such as elevation and slope, were developed from JAXA ALOS
(Tadono et al., 2016). Landcover classes (NLCD) from the
Multi-Resolution Land Characteristics (MRLC) Consortium were used as
predictors of vegetation type and as a tool to mask non-forested areas
from this analysis. Developed and barren areas were masked from
analysis.

2.4. Model evaluation

To evaluate CCA model performance at individual sites, we
compared a subset of predicted values to observed values using a
modified-leave-one-out-cross-validation. This was done for each indi-
vidual modeling region, and then again for all modeling regions to show
overall agreement across the study area. For each of the compared
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Fig. 3. Associations between vegetation and explanatory variables from ca-
nonical correspondence analysis for the Tongass modeling region. The arrow
length represents the strength of the correlation between the environmental
variables and the plot forest structure.

vegetation attributes, the 6 nearest neighbors were predicted. The first
nearest neighbor was omitted, being that it would represent the
observed site we are comparing to, and the mean of the second- through
sixth-nearest neighbor was calculated. This has been used in previous
studies as a computationally efficient method similar to leave-one-out-
cross-validation (Ohmann and Gregory, 2002). Statistical comparisons
were used to quantify how well the models predicted observed values
and if there were any trends in systematic and unsystematic bias
(Riemann et al., 2010). To assess the relationship between observed and
predicted values, we used a geometric mean functional relationship
(GMFR) regression to account for errors. We compared this to the 1:1
line which represents perfect agreement between observed and pre-
dicted data. Systematic and unsystematic errors were characterized by
agreement coefficients (ACsys and ACuns). To evaluate how well the

Table 4
Variation explained by subsets of variables in canonical correspondence
analysis.

Percent variation explained by modeling region

Grouped West Gulf of  Southeast Northern Southern
Explanatory Kenai AK AK BC BC
variables
Climate 18.7 % 9.2 % 7.3% 8.1% 9.5 %
Topography 13.1% 8.5% 8.1 % 8.0 % 9.1 %
Spectral 15.0% 6.2% 7.0 % 5.3 % 5.5%
Tasseled Cap 7.7 % 2.7 % 2.6 % 6.3 % 6.4 %
Climate 23.3% 12.2% 10.6 % 11.9% 12.5%
+ Topography
Topography 25.2% 12.5% 12.6 % 12.4 % 13.5%
+ Spectral
Tasseled Cap 15.2% 6.3 % 7.0 % 7.9 % 8.2%
+ Spectral
Climate 29.9 % 15.9 % 15.1 % 15.1 % 15.4 %
+ Topography
+ Spectral
Climate 26.7 % 13.9% 12.6 % 15.8 % 15.7 %
+ Topography
+ Tasseled Cap
All predictor 30.0 % 16.0 % 15.1 % 16.5% 16.8 %

groups
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Fig. 4. Regressions of aboveground live biomass (top) and age of dominant species (bottom) to environmental variables shown to have strong influence on model

outcomes based on CCA results.

model classified individual species extents, we reported accuracy (Acc),
balanced accuracy (ACCp), as well as omission and commission error.
(Olofsson et al., 2014; Sokolova and Lapalme, 2009).

As noted above, maps were generated based on the mean of the five
nearest-neighbor distances, creating a spatial representation of how well
the conditions characterized by the predictor variables in each pixel are

represented in the training dataset. Pixel values in this map represent the
mean Euclidean distances from the environmental gradients a pixel
represents to the nearest neighbors imputed by GNN. While this is not a
true measure of uncertainty, it highlights areas where the environmental
conditions in the training dataset may not fully capture the variability
present in the broader landscape (Ohmann and Gregory, 2002; Ohmann
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Fig. 5. Comparison of predicted to observed data from the leave-one-out cross-validation analysis. Displayed is the 1:1 line with the GMFR line plotted in red. Data
points are colorized by density to surrounding points, with yellow illustrating areas of highest point density.

et al., 2011; Moeur and Stage, 1995).
3. Results
3.1. Explanatory variables relationship to plot data

Environmental variables, such as elevation, slope, location, and
climate, all had a strong influence on forest biomass, structure, and
species composition (Fig. 3). However, the performance of explanatory
variables in predicting forest structure varied across the different
modeling regions (Table 4). To evaluate this, we quantified the variance
explained by different groups of variables. These groups include Climate
(all climate predictors), Topography (latitude, longitude, elevation, and
slope), spectral (individual spectral reflectance bands from Landsat
composite), and Tasseled Cap (transformed wetness, brightness, and
greenness bands). Individually, climate and topography were shown to
be the most influential at explaining the variation in the models (7.3 % -
18.7 %), while Landsat-derived products, such as Tassled Cap and in-
dividual spectral bands, were less influential (15.0 % - 2.6 %). The
combination of topographic predictors, such as elevation and slope, with
Landsat spectral data accounted for 75-80 % of the explainable variance
across all modeling regions.

Environmental variables that strongly influence vegetation structure
influenced structural prediction outcomes in different ways (Fig. 4). For
example, with increases in observed elevation, prediction results tren-
ded towards lower levels of aboveground biomass. Elevation had the
opposite trend for stand age, with stands increasing in age with
increasing elevation. Increases in mean annual temperature resulted in
increases in aboveground biomass. However, this didn’t hold true for
stand age, where there seemed to be little effect. Spatial location showed
expected patterns of a decreasing ability to support large amounts of
aboveground biomass with increasing latitude. Increases in longitude

(eastward) also showed an increase in both aboveground biomass and
stand age and may be an effect of distance from accessible coastal forest
land. A multimodal pattern also emerges when looking at how spatial
context affects stand age and biomass, which is likely due to multiple
large islands in the region and are also evidence of younger forests being
spatially located near coastlines that are easily accessed for the use of
timber.

3.2. Forest carbon and structural attribute predictions

Our modeling efforts yielded thirty-nine individual maps of above-
ground biomass, forest structure, and composition (e.g., Fig. 6 & 7). The
resulting spatial predictions of forest structural attributes showed
varying levels of accuracy across the study area. At the plot level, pre-
dictions of AGB (R? = 0.38), stand age (R? = 0.28), and QMD (R? = 0.36)
demonstrated the highest agreement with observations, while spatial
predictions of snag biomass (R> = 0.19) show the lowest levels of
agreement (Fig. 5). The modified leave-one-out cross-validation analysis
showed a trend of overpredictions in the lower range of observed values
while underpredicting in the upper range (GMFR line). This result is
common in Landsat-based approaches to estimating forest structure
(Bell et al., 2018). It is also likely attributed to using the mean values
across five nearest neighbor maps truncating observed extremes.

Regionally, the distributions of predicted biomass and structural
metrics (e.g., Fig. 6) exhibit similar patterns to observed data from field
plots. While the predicted median values closely align with the observed
values across all plots, the upper and lower quantiles in the predicted
values are slightly condensed compared to the observed plot data
(Fig. 8). Across all regions, AGB ranged from a median of 5413 g-m~ in
Upper Kenai to 38,355 g-m~2 in Northern BC, with a total median of
31,506 g-m~2. Stand age varied considerably, with the oldest median
stands in Southeast Alaska (101 years), while Upper Kenai had the
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Fig. 6. Mapped results of GNN imputation model for the full modeling region. The four variables selected here represent the main categories of predicted struc-

tural metrics.

youngest (50 years). BA and snag biomass showed similar variability,
with Southeast Alaska and Northern BC having some of the highest
medians. Tree density (TPH) was highest in Southern BC (median 674
trees-hectare™), and live volume was highest in Northern BC (median
1172 m?). Across all regions, the total median values for AGB, TPH, and
live volume were 31,506 g-m™, 445 trees-hectare, and 1038 m®,
respectively, reflecting substantial variability in forest structure across
the study area.

3.3. Imputed maps of individual species

Biomass density maps were created for 19 overstory species in the
region (Table 2). These maps provide predictions of species spatial
extent and abundance and were compared to mapped plot locations
where the species was observed (Fig. 9, A1). The most common species
throughout the study area is Tsuga heterophylla, with predictions
extending throughout the whole mapped region and having a mean live
aboveground biomass density of 15,643 g-m2. While Chamaecyparis
nootkatensis also had a similar predicted extent, it was less abundant and
contributed less overall to the aboveground biomass in the region, with a
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Fig. 7. Examples of forest structural predictions. Rows are representative of different places within the study region, with Juneau on top, Zarembo Island in the
middle, and Vancouver on the bottom. Columns represent the satellite imagery, structural attribute, and a select species prediction.

mean live aboveground biomass density of only 5235 g-m™. When
comparing the presence of predicted species to the observed plot data,
levels of agreement varied significantly by species. We were quite
effective at identifying areas where species are not present (low omis-
sion error) but were shown to over-predict where species were present,
often predicting species presences within their range but not observed at
a particular site (high commission error). Commission errors were most
substantial in species that have expansive ranges and whose habitat is
less constrained to environmental gradients (Table Al), resulting in

reduced model performance relative to other species, such as Picea
sitchensis (Accp = 0.62) and Tsuga heterophylla (Acc, = 0.64), compared
to species such as Pseudotsuga menziesii (Accp, = 0.96) and Populus tri-
chocarpa (Accy = 0.97). Though broadly distributed, some species with
large commission errors have limited spatial extents on the landscapes
within relatively broad ranges, such as the presence of Picea sitchensis
within the western and southern portions of the Kodiak Archipelago and
the northern distribution of Pseudotsuga mengziesii being artificially
limited by modeling region.
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3.4. Model uncertainty

A map of the mean Euclidian distance in gradient space was made to
examine spatial patterns in the uncertainty of our predictions and rep-
resentation in our training dataset (Fig. 10). The lowest Euclidian dis-
tances were seen in low-elevation areas of the Tongass as well as the
boreal transition zone of the Kenai, while higher Euclidian distances
were observed in areas of high elevation. Patterns of Euclidean distances
seemed to be driven by the level of plot support for a particular region,
with the lowest Euclidean distances in areas that were well represented
by either FIA or FAIB plot data and higher distances in places such as
wilderness areas and parks.

4. Discussion
4.1. Predicted patterns across the landscape

4.1.1. Forest biomass and structure

The spatial pattern of forest biomass and structure from the GNN
analysis matched expected patterns from observed data and previous
publications (Fig. 5; Alaback, 1996; Alaback and Juday, 1989; Harris
and Farr, 1974; MacKinnon, 2003). Aboveground biomass was shown to
have the highest values at lower elevations; however, this trend becomes
less apparent at the lowest elevation nearest to the coastline. This is
likely due to the management history in this region, with harvesting
targeted in high biomass and low elevation stands that were easy to
access (Brackley et al., 2009). Predicted median live aboveground
biomass values in the southern modeling regions were lower than those
computed from the observed plot data (Fig. 8). This observation may be
due to the inclusion of (generally lower biomass) plots from FIA data in
Alaska in predictions of forest structure throughout the northern and
southern regions of British Columbia. Differences in plot design can
introduce artifacts into nearest neighbor imputation, motivating some
mapping efforts that avoid mixed plot designs (e.g., Bell et al., 2021).
Being that the two forest plot networks work on slightly different data
collection protocols, it is difficult to determine if one is underestimating
or overestimating forest structural attributes. Because differences in
aboveground biomass densities were relatively minor, our integration of
these two plot data sources into a GNN may not contribute dramatically
to overall errors, but users leveraging the resulting maps across
modeling regions should consider the implications for their application.

Although the spatial patterns were similar, our overall predictions of
aboveground live biomass in the region trended higher than those of
previous studies (Fig. 11). Recent aspatial estimates indicate that the
temperate rainforests of Southeast Alaska have an average biomass
density of 21,890 g-m2 (Yatskov et al., 2019), which was 44.2 % lower
than our estimates of 39,234 g-m~2. Global attempts at spatially mapping
AGB by Blackard et al., (2008) and Santoro et al., (2018) show that the
temperate rainforests of Southeast Alaska have even lower biomass,
averaging 19,770 and 14,174 g-m™>, respectively. However, our results
are in agreement with another recent study (Carter and Buma, 2024),
which found that the average AGB was 42,579 g-m~ in the temperate
regions of Southeast Alaska and coastal British Columbia, which was
only 11 % higher than our estimates of 38,271 g-m™2 for the same region.
It is important to note that Carter and Buma (2024) also utilized the
Kozak taper equations in their biomass estimates. Other sources
contributing to higher biomass estimates may include the addition of
areas that were not previously accounted for in forest structural esti-
mates, such as wilderness areas and national parks. Additionally, po-
tential bias from pixel saturation observed in optical sensor data may
have influenced the estimation of forest biomass (e.g. Lu et al., 2016).

Stand age throughout the region ranged from 14 to 570 years, with
Southeast Alaska’s having the highest median stand age (101 years). The
spatial pattern of stand age was shown to be affected by elevation
(Fig. 4), with stand age increasing upslope, likely because they are
comprised of longer-lived tree species, such as Alaska yellow cedar. A
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Fig. 9. Mapped results of GNN imputation model for the full modeling region of species biomass (gm~2) and extent. The four species select show the spatial
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB. Additional species maps can be

found in Fig. Al.

sharp drop off in stand age at low elevations near the coast may also be a
combination of shorter-lived species, such as red alder, and previous
harvest activities targeted towards low-lying and easily accessible
stands. Although younger, forests in British Columbia were shown to
have larger trees (higher median QMD), and denser forests (higher
TPH), likely attributing to similar aboveground biomass densities
compared to forests in Southeast Alaska (Table 5, Fig. 8).

4.1.2. Individual species predictions
Despite the relatively good agreement between predicted and
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observed data (Fig. 5), there was a tendency toward commission errors
(Table Al), with individual species being predicted within their known
range (Fryer, 2018) but within plots where their presence was not
actually observed. This issue has been noted in other studies using
similar methods to estimate forest structural attributes in the Pacific
Northwest (Irvine, 2022; Ohmann and Gregory, 2002). These errors
likely stem from using the mean value from the five nearest neighbors
and the reliance on spectral and climate data as predictors. Much like
climate envelope modeling, commission errors can result from envi-
ronmental factors indicating suitable conditions for a species without
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Fig. 10. Map of mean nearest-neighbor distances for the k = 5 nearest neighbor predictions. Values in this map represent the mean Euclidean distance from the
environmental gradients a pixel represents to the nearest-neighbor imputed by GNN.

accounting for limitations such as seed availability or geographic bar-
riers (Elith and Leathwick, 2009). In this study, we addressed these is-
sues by creating separate modeling regions based on environmental and
vegetative conditions and the inclusion of spatial location as a predictor
variable. Despite these measures, these uncertainties should be consid-
ered when using these predictions.

4.2. Regional challenges

The amount of uncertainty in forest predictions varied by region, as
seen in Fig. 10. Areas with higher levels of uncertainty (i.e., greater
Euclidian distances) can be attributed to various sources, such as the
vicinity and density of plot data to a prediction cell, the quality of the
spectral data used, how parsimonious the model used may be, and un-
certainties in datasets chosen as predictors. Below, we discuss those
topics in relation to the temperate rainforests of North America.

4.2.1. Scarcity of plot data

The FIA program in the United States and British Columbias FAIB are
both government-led initiatives tasked with monitoring and assessing
the status and trends of their respective countries’ forest resources. Both
programs have comprehensive approaches to forest inventory, collect-
ing data on forest extent, composition, and health, and play crucial roles
in providing valuable information to support informed decision-making,
policy development, and sustainable forest management practices.
However, there are notable differences between the two programs. One
significant distinction is the availability of plot data, particularly in
coastal British Columbia (Fig. 2). While the FIA program in the United
States maintains a robust network of permanent sample plots across all
forested regions (with the exception of Glacier Bay National Park and
wilderness areas), the FAIB dataset in British Columbia lacks spatial
coverage of the northern portions of the British Columbia coast. This
data gap poses challenges for accurately assessing forest conditions and
trends in this ecologically diverse and economically significant region,
whether using plot-based estimation approaches or model-based ap-
proaches (e.g., GNN).

Furthermore, FAIB employs both fixed and variable radius plots;
variable radius plots allow for flexible plot sizes based on tree diameter
(Avery and Burkhart, 1983), whereas FIA annual plot design uses a se-
ries of fixed radius plots at each survey site (Gray et al., 2012). Previous
studies show that the FIA fixed-radius plot design may lead to an un-
derestimation of tree density and volume in stands with large, spaced
out trees (Gray, 2003), while variable radius plots may be biased to-
wards trees with higher basal areas (Azuma and Monleon, 2011), and
lead to potentially overestimated stand volume. This difference in
sampling methodology can present challenges when making regional
estimates of forest structure, particularly when those estimates cross
political boundaries. Due to the differences in methodologies and
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resulting plot-level estimates between fixed and variable radius plots, all
variable radius plots included in FAIB were omitted and only fixed area
plots were used. This also had the effect of further diminishing the plot
densities in the southern region of the study area.

4.2.2. Quality of Landsat mosaic

Obtaining a complete Landsat mosaic in the temperate rainforests of
North America poses significant challenges due to environmental con-
ditions inherent to these regions. High latitudes, characteristic of
temperate rainforests, often result in terrain shadows, particularly in
areas with rugged topography, such as coastal mountains (Giles, 2001).
These shadows can obscure large portions of the landscape from satellite
sensors, leading to incomplete coverage in Landsat imagery (Schulmann
et al., 2015) or to overestimation of forest biomass and stand age as
models may confuse terrain shadowing with increased shadowing
related to tall, structurally complex forests (Irvine, 2022). Additionally,
consistent cloud cover and snowfall further complicate the acquisition of
high-quality satellite data (Braaten et al., 2015). Complete cloud cover is
frequent over the skies of the temperate rainforests, obstructing the view
of the Earth’s surface and limiting the availability of cloud-free imagery
for mosaic creation. Similarly, snow cover, which can persist for
extended periods in these regions, adds another layer of complexity by
altering surface reflectance properties and reducing the visibility of
underlying features.

In addition, obtaining remotely sensed imagery over a site within a
relatively close timeframe to the observed plot data collection is diffi-
cult. Developing methods that better allowed for temporal matches be-
tween observed plot data collection and remotely sensed reflectance
values could improve overall model predictions (e.g., McRoberts et al.,
2016).

4.2.3. Downscaled climate variables

Using downscaled CMIP5 global climate model data, particularly in
regions characterized by high topographic variability, can introduce
significant uncertainties into climate projections (Foley, 2010; Wootten
et al., 2017). Global climate models typically have coarse spatial reso-
lutions, which may not adequately capture local-scale variations in
terrain, land cover, and atmospheric dynamics. When downscaling these
coarse-resolution climate model outputs to finer spatial scales, such as
those relevant for regional or local climate assessments, uncertainties
can arise due to the inability of downscaling methods to accurately
represent complex topographic features (Ahmadalipour et al., 2018). In
areas with high topographic variability, such as the mountainous re-
gions of the coastal temperate rainforest, even downscaled climate
projections may struggle to capture the intricate interactions between
elevation, slope, aspect, and microclimatic conditions. Additionally, the
choice of downscaling technique, the resolution of input data, and the
treatment of physical processes can further contribute to uncertainties in
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Fig. 11. Comparison between the GNN aboveground biomass results of this study to other regional and global studies for the Tongass National Forest. Lowermost
panel compares the distribution of living aboveground biomass (Mg-ha™!, outliers omitted) between that of other studies with their corresponding maps above.
Studies include A. this study (30 m), B. Carter and Buma (2024) (30 m), C. Blackard et al. (2008) (250 m), and D. Santoro et al. (2018) (100 m).
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Table 5
Mean values of imputed GNN structural data for AGB, stand age, BA, snag
biomass, TPH, and live volume. Means are shown for each modeling region.

Variable Unit Mean
Upper Kenai AGB g-m™ 6773
Stand age years 51
BA cm?h! 8
Snag biomass gm™ 1982
TPH trees-hectare™ 230
Live volume m? 170
Gulf of AK AGB g-m™ 18,874
Stand age years 73
BA cm?h! 20
Snag biomass g-m™ 1584
TPH trees-hectare™ 278
Live volume m? 484
Southeast AK AGB g-m™ 39,234
Stand age years 113
BA cm?*h! 33
Snag biomass gm™ 6791
TPH trees-hectare™ 396
Live volume m? 978
Northern BC AGB g-m™ 38,440
Stand age years 98
BA cm?h! 43
Snag biomass g-m™ 531
TPH trees-hectare™ 720
Live volume m?® 1438
Southern BC AGB g-m™ 37,235
Stand age years 91
BA cm?h! 53
Snag biomass g-m™ 6536
TPH trees-hectare™ 820
Live volume m? 3139
Total AGB g-m™ 33,726
Stand age years 94
BA cm?h! 38
Snag biomass gm 5544
TPH trees-hectare™ 525
Live volume m? 1619

downscaled climate projections. Therefore, careful consideration of
these factors should be taken into account when choosing to use
downscaled climate variables as predictors in GNN, particularly in re-
gions with pronounced topographic variability.

4.2.4. Predictor selection

Canonical correspondence analysis (CCA) offers a robust alternative
to multiple linear regression, particularly for handling data with
numerous null values and non-normal distributions (Ter Braak, 1986).
Unlike multiple linear regression, CCA does not require iterative suc-
cessional runs to understand the effects of multiple predictors on
numerous response variables. However, the careful selection of predic-
tor variables remains crucial for effective model development and to
avoid the issues associated with overly complex models (Bell and
Schlaepfer, 2016). Previous studies in the Pacific Northwest found that
using individual spectral bands from Landsat decreased model perfor-
mance (Ohmann et al., 2007; Ohmann and Gregory, 2002). This can be
different depending on forest conditions and reflectance values and, for
this study, exploratory attempts showed higher agreement in prediction
outcomes with all Landsat 8 bands included in the CCA. In the final
model, the individual Landsat bands showed little explanatory power,
while the various spectral indices showed stronger relations in predict-
ing forest structure (Fig. 3). Choosing appropriate environmental pre-
dictors is essential, as community assemblages or structural conditions
often correlate with similar environmental factors across the landscape.

4.3. Management applications

Our spatially comprehensive maps, which extend from Kodiak Island
down to the southern border of British Columbia, offer valuable
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opportunities to inform research, management, or policy decisions. For
instance, this dataset enables consistent carbon accounting across the
North American temperate rainforest, supporting climate change miti-
gation strategies under international agreements. It can also guide cross-
border conservation planning by identifying high-biomass or structur-
ally unique areas, inform wildfire risk management by highlighting
vulnerable forest structures, and support biodiversity initiatives by
identifying critical habitats for species with ranges spanning the Can-
ada-US border. Similar vegetation maps in other regions have been
utilized to assess regional biomass and carbon storage, monitor distur-
bance patterns, track land cover changes over time, and study vegetation
responses to climatic shifts (Carter and Buma, 2024; Griesbauer and
Scott Green, 2010; McNicol et al., 2019; Nowacki and Kramer, 1998). In
the temperate forests of Southeast and southcentral Alaska and coastal
British Columbia, these data can facilitate research on carbon and
nutrient fluxes, investigate spatial patterns of forest structural classes
critical for wildlife habitats, as well as informing regional forest land-
scape models of initial vegetative conditions.

5. Conclusion

Ecosystems in coastal Alaska and British Columbia are significant
carbon reservoirs, storing approximately 3.58 Pg of terrestrial carbon.
Although generally thought to be buffered by the coastal climate,
climate change projections suggest complex responses in these ecosys-
tems, with potential increases in carbon emissions in the boreal region,
increases in sequestration rates in the coastal temperate zone, and
changes in the balance of precipitation that falls as snow (Shanley et al.,
2015). Although timber harvest in this region has declined, it still re-
mains actively managed in support of local and global economies, and
significantly impacts carbon storage and ecosystem services (Crotteau
et al., 2022). Regardless, Southeast Alaska and coastal British Columbia
comprise a significant portion of the Earth’s remaining old-growth
temperate rainforest, primarily held within Inventoried Roadless Areas
(IRAs), Wilderness, and old growth reserves. However, changes in
management priorities within IRAs present potential changes to these
ecosystems and necessitate more comprehensive information about the
forests in these areas, particularly given the recent shifts in regional
forest management that focus on young growth harvesting, conservation
of old growth, and carbon sequestration (DellaSala et al., 2022; Law
et al., 2023).

Our 30-m resolution maps of aboveground biomass, forest structure,
and species composition extend across the entire coastal regions of
southern Alaska and British Columbia, traversing political boundaries,
land ownerships, administrative jurisdictions, and ecological gradients.
These spatially-complete maps may help land managers assess spatial
patterns of forest structural attributes and be used in assessments of
timber supply, carbon stocks, and delineation of potential wildlife
habitat. They may also form the foundation for modeling efforts to assess
the climate vulnerability of this vast C-rich ecosystem.
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Appendix

Table A1

Species specific accuracy (Acc), balanced accuracy (Accp), omission, and commission error

Species Acc Accp Omission Error Commission Error
Abies amabilis 0.941 0.970 0.000 0.788
Abies lasiocarpa 0.989 0.994 0.000 0.968
Alnus rubra 0.794 0.883 0.043 0.863
Betula papyrifera 0.888 0.942 0.015 0.824
Chamaecyparis nootkatensis 0.615 0.790 0.005 0.842
Picea glauca 0.931 0.964 0.021 0.575
Picea mariana 0.953 0.976 0.018 0.700
Picea sitchensis 0.365 0.618 0.022 0.791
Pinus contorta 0.752 0.872 0.011 0.877
Populus tremuloides 0.947 0.974 0.200 0.947
Populus trichocarpa 0.901 0.942 0.028 0.793
Pseudotsuga mengziesii 0.915 0.956 0.000 0.774
Taxus brevifolia 0.984 0.992 0.000 0.978
Thuja plicata 0.631 0.804 0.019 0.864
Tsuga heterophylla 0.505 0.644 0.026 0.620
Tsuga mertensiana 0.567 0.741 0.014 0.729
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Figure A1A. Mapped results of GNN imputation model for the full modeling region of species biomass (gm~2) and extent. The four species select show the spatial
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB
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Figure A1B. Mapped results of GNN imputation model for the full modeling region of species biomass (gm~2) and extent. The four species select show the spatial
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB

17



J. Lamping et al. Forest Ecology and Management 583 (2025) 122576

@ Observed species plot location

Populus tremuloides

-
§ 18 6,022
P

Populus trichocarpa

é 33 25,740
p

Taxus brevifolia

-
21.051745 296.31897
0 100 200 300 400km
~ A

[ EE .

Figure A1C. Mapped results of GNN imputation model for the full modeling region of species biomass (gm~2) and extent. The four species select show the spatial
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB

18



J. Lamping et al. Forest Ecology and Management 583 (2025) 122576

@ Observed species plot location

Tsuga heterophylla

Tsuga mertensiana

-
é 9 65,785
'dv

0 100 200 300 400km
| EE.

Figure A1D. Mapped results of GNN imputation model for the full modeling region of species biomass (gm’z) and extent. The four species select show the spatial
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB
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