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A B S T R A C T

The forests of coastal Alaska and British Columbia are globally signi+cant for their high carbon storage capacity 
and complex forest structure, hosting some of the densest values of aboveground biomass in the world. These 
ecosystems support biodiversity, provide critical habitat, and serve as long-term carbon sinks, offering resilience 
to climate change. However, comprehensive, spatially continuous estimates of forest structure across this region 
have been limited, particularly across political boundaries. In this study, we used a Gradient Nearest Neighbor 
(GNN) modeling approach to integrate extensive forest inventory plot data with satellite-derived environmental 
variables. This approach enabled us to produce moderate-resolution (30-meter) maps of aboveground biomass, 
species biomass, forest age, basal area, and additional structural attributes. Our results indicated that climate and 
topography accounted for the majority of the explainable variation across all modeling regions. Predictions of 
aboveground live biomass were higher than previous estimates, particularly in Southeast Alaska, where estimates 
were 30–53 % greater than previous studies. Forest structure varied across the region, with older forests found in 
Southeast Alaska and higher tree densities in British Columbia. Collectively, the coastal forests of Alaska and 
British Columbia store approximately 3.58 petagrams of carbon. These spatially explicit maps offer critical in
sights for carbon monitoring, forest management, and biodiversity conservation across this ecologically diverse 
and politically fragmented landscape.

1. Introduction

Today’s most pressing challenges in natural resource management 
and conservation planning extend across vast spatial scales, often 
traversing political boundaries, land ownerships, administrative juris
dictions, and intricate ecological gradients. A multitude of interacting 
threats, such as wild+res, invasive species, and climate change, along
side balancing various bene+ts like wildlife habitat preservation, 
watershed health, and timber supply (DeGayner et al., 2005; Shanley 
et al., 2015) necessitates an accurate and complete understanding of our 
forested systems that traverses these human boundaries and environ
mental gradients. Consequently, there is a growing demand among an
alysts and decision-makers for comprehensive, highly detailed, and 
spatially-complete data on vegetation and land cover. Maps of vegeta
tion structure and composition are helpful for land managers to delin
eate potential habitat for wildlife (Vogeler and Cohen, 2016), 

understand natural disturbance regimes (Kennedy et al., 2014), and 
estimate carbon stocks. They can also be useful for modelers, as baseline 
conditions for projecting changes in the environment due to climate 
change (Lucash et al., 2023). However, in remote regions of the world, 
these maps may be either too coarse or completely lacking altogether 
(Fassnacht et al., 2024).

One such area is the forests of the Paci+c coast of North America, 
which include nearly 30 % of all temperate rainforests on Earth (Veblen 
and Alaback, 1996). These forests are globally signi+cant for their role 
in storing and cycling carbon and are home to some of the highest 
aboveground carbon densities in the world (Alaback, 1996; Yatskov 
et al., 2019). Regionally and locally, they are valued for their ability to 
provide ecosystem services and their cultural signi+cance by Indigenous 
communities, playing a crucial role in supporting regional economies (e. 
g. timber, berry and salmon production; Crone and Mehrkens, 2013). 
They are described as being among the most intact tracts of coastal 
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temperate rainforests in the world (Alaback, 1996; DellaSala et al., 
2022, 2011; Suttles et al., 1997). Yet despite their global and regional 
signi+cance, there is a relative lack of consistent, cross-boundary, spatial 
data at resolutions appropriate for informing monitoring efforts and 
management decisions across the temperate rainforests of North 
America.

Efforts to map these forests encounter obstacles such as limited 
spatial and temporal coverage, sampling bias, and the high cost and 
labor of data collection (McRoberts and Westfall, 2014). Networks of 
ground observations in these remote regions lack the granularity needed 
to capture the complex and heterogeneous nature of these forested re
gions, where variations in topography, climate, and species composition 
are pronounced (Beamish et al., 2020; Bidlack et al., 2017; Kane et al., 
2008). Field surveys provide highly accurate and detailed data at spe
ci+c locations. However, due to the time-consuming, labor-intensive, 
and expensive nature of data collection, only a small fraction of vast 
geographic areas can be practically surveyed. Furthermore, remote 
areas, such as designated Wilderness Areas, often lack permanent plot 
support and infrequent remeasurement periods, making monitoring 
change in these systems challenging (Bidlack et al., 2017).

To address these limitations, researchers have increasingly combined 
+eld-sampled forest structure data with satellite imagery, which is 
spatially complete, spectrally consistent, frequently remeasured, and 
often available for free (Banskota et al., 2014; Ohmann and Gregory, 
2002; Wulder et al., 2012). This combination has allowed for compre
hensive estimates of forest structure over large areas, mitigating issues 
such as high costs, limited spatial coverage, and long intervals between 
repeated measurements of traditional +eld-based inventories (Lister 
et al., 2020; White et al., 2016). Some methods focus on extrapolating 
localized data obtained from +eld samples across entire regions using 
statistical predictive modeling, such as linear regression, Random Forest 

(RF), and gradient nearest neighbor (GNN) imputation (Krebs et al., 
2019; Matasci et al., 2018; Zald et al., 2016). These approaches relate 
localized forest measurements to multispectral images and other geo
spatial datasets to facilitate forest structure and composition mapping. 
The integration of +eld data and satellite imagery thus provides an 
effective solution for creating comprehensive forest structure estimates, 
enhancing the accuracy and ef+ciency of forest inventory and man
agement practices.

A signi+cant challenge in forest research and management has been 
the lack of harmonized datasets that bridge multiple forest inventory 
systems across political boundaries. Our study integrates datasets from 
two national inventory systems—the USDA Forest Service Forest In
ventory and Analysis (FIA) program and the Forest Analysis Inventory 
Branch (FAIB) in British Columbia—into a uni+ed, cross-border frame
work. This integration represents a novel effort to reconcile differences 
in inventory methodologies, creating a uni+ed, cross-border training 
dataset that enables consistent analysis of forest structure and compo
sition. We then created a cloud-free and terrain-corrected satellite 
composite of the entire region, combining it with continuous environ
mental layers such as climate, disturbance, and landcover type. Field 
data were integrated with remotely-sensed data using a Gradient 
Nearest Neighbor (GNN) imputation technique, which models forest 
attributes through Canonical Correspondence Analysis (CCA) and im
putes results across the landscape based on Euclidean distances 
(Ohmann and Gregory, 2002). This method enables the mapping of 
various forest attributes across a broad geographic area and allows for 
the imputation of any forest attribute derived from +eld observations to 
similar pixels throughout the landscape.

Several spatially explicit datasets of forest structure and composition 
exist for Canada and Alaska. For instance, Canada has national-scale 
maps of biomass, forest structure, tree species distributions, and forest 

Fig. 1. GNN modeling region of the temperate rainforests of North America separated into +ve sub-modeling regions.
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age (e.g., Hermosilla et al., 2022; Maltman et al., 2023; Matasci et al., 
2018). Alaska also has datasets focused on tundra and Arctic vegetation 
and aboveground biomass (e.g., Berner et al., 2018). While these data
sets provide valuable insights, they are often limited to speci+c 
geographic areas. In contrast, our study integrates the Gradient Nearest 
Neighbor (GNN) imputation method with a harmonized, cross-boundary 
training dataset, combining multiple forest inventory systems from both 
Canada and the United States. This represents a novel approach for 
addressing data gaps and achieving consistency in mapping forest 
structure and composition across the transboundary region of the North 
American temperate rainforest.

The goal of this study was to improve our understanding of forest 
composition and structure across the coastal temperate rainforests of 
Alaska and British Columbia by developing spatially explicit maps that 
integrate cross-border forest inventory data. To achieve this goal, our 
objectives were to: (1) create spatially explicit, cross- border, predictions 
of forest biomass, forest composition, and structural metrics including 
aboveground biomass, forest age, basal area, and volume using +eld 
inventory data, with predictors derived from multispectral, climate, 
disturbance, and landcover maps; (2) determine the environmental 
variables that have the strongest inJuence on the spatial patterns of 
aboveground biomass, basal area, density, and volume of live and dead 
trees across the region; (3) benchmark the forest biomass stock pre
dictions against regional and global estimates; and (4) assess the 
modeled outputs to identify environmental gradients that may require 
additional plot support to improve representation.

2. Methods

2.1. Study area

The study area for this project spans nearly 29.9 million hectares of 
coastal regions of coastal British Columbia up through Southeast Alaska 
to Kodiak Island (Fig. 1). It spans large climatic, physiographic, geologic, 
and vegetation gradients with a latitudinal gradient of 48◦N to 61◦N and 
a longitudinal gradient of 121◦W to 154◦W. The forests in this region 
experience a maritime climate characterized by mild temperatures, high 
humidity, and abundant precipitation throughout the year, supporting 
some of the highest amounts of above- and belowground biomass in the 
world (Buma et al., 2016; McNicol et al., 2019). Winters are mild, with 
temperatures ranging from 0◦C to 10◦C, accompanied by substantial 
rainfall and occasional snowfall in the southern extents, with increasing 
amounts of snow with increasing latitude and elevation. Springs bring 
increasing temperatures and abundant rain showers, while summers 
remain cool with temperatures ranging from 15◦C to 25◦C and persistent 
fog and mist.

The study area was split into +ve separate modeling regions based on 
climatic differences, administrative boundaries, and species composi
tion. The western Kenai Peninsula and the Anchorage Bowl comprise 
portions of the Cook Inlet Basin and represent a transition to the boreal 
forest biome, characterized by cooler winters, warmer summers, and far 
less annual precipitation than the temperate maritime region (Nowacki 
et al., 2003). In contrast, modeling regions within the temperate coastal 
rainforest are characterized generally by warmer winters and cooler 
summers, with substantial annual precipitation. Alaska comprises two 
temperate modeling regions: the Southcentral region, which surrounds 
the Gulf of Alaska, and the Southeast region, which encompasses the 
Tongass National Forest. Coastal British Columbia was split into two 
separate modeling regions as well, with the northern extent of the 
Douglas-+r range as the boundary between the two (Hermann and 
Lavender, 1990).

2.2. Forest plot data

Forest inventory data were obtained and combined from both the 
United States and British Columbia (Fig. 2). In British Columbia, we 
utilized sample plots from the Forest Analysis and Inventory Branch 
(FAIB; Government of British Columbia, 2023) while in Alaska plot data 
was obtained from the USDA Forest Service Forest Inventory and 
Analysis Program (FIA; Gray et al., 2012). The two inventories have 
somewhat different purposes, with FIA measuring vegetation in per
manent plots on forested lands across the United States while the FAIB 
database helps determine an appropriate annual allowable cut (AAC) for 
the timber harvest regions of British Columbia. The USDA FIA uses a 
systematic grid of permanent plots that are approximately 1 hectare in 
size, with four subplots, and data are collected on trees greater than 5 in. 
in diameter at breast height (DBH). British Columbia’s FAIB, on the 
other hand, uses a mix of +xed-radius (0.01 ha in size) and 
variable-radius plot designs, often focusing on commercial species. For 
both datasets, plots were +ltered to the latest remeasurement date and 
trees that were greater than 12.7 cm DBH, with plot collection dates 
ranging between 2004 and 2019. There were multiple plots within the 
FAIB dataset that contained the same coordinates (n = 42), and these 
plots were also removed from analysis. Variable radius plots from the 
FAIB database were also omitted from the analysis to maintain consis
tency between the two different inventory systems. In total, 2755 plot 
observations were used, with 2074 from FIA and 681 from FAIB.

To calculate individual tree-level biomass across both datasets, 
Kozak stem taper equations (Kozak et al., 1969) were used to estimate 
the total volume of each standing stem. The Kozak taper equations were 
selected for several reasons. Firstly, it was discovered that the compo
nent ratio method (CRM) used by the FIA (Woodall et al., 2011) has 

Fig. 2. Plot location by country of origin, with FIA plot locations labeled in green and FAIB plot locations in yellow. FIA plot locations are shown here using the 
publicly available fuzzed coordinates.
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potentially been underestimating individual tree biomass (Chojnacky 
et al., 2014; Westfall et al., 2024). Secondly, the Kozak equations were 
speci+cally developed for the region to estimate tree volume and ac
count for trees with broken tops. Tree stem volume was then converted 
to standing biomass with species-speci+c wood densities (Jenkins et al., 
2003). After converting individual tree biomass to unit/area densities 
via the supplied expansion factors, plot data was reassessed for erro
neous biomass densities at whole-plot level. Plots with biomass densities 
well outside the known range of upper biomass limits for the region 
(n = 94) were omitted from the analysis (Buma et al., 2016; Krumlik, 
1974; Smithwick et al., 2002). Forest structural attributes, found in 
Table 1, were then summarized for each plot.

2.3. Gradient nearest neighbor predictions

To model forest composition and structure across all forested land 
within the study area, we used Gradient Nearest Neighbor (GNN) 
imputation as described in Ohmann et al., (2011) and Ohmann and 
Gregory, (2002). The GNN imputation modeling method was chosen due 
to its robustness to the nonlinear responses expected of vegetation 
communities to environmental gradients and to the response matrices 
containing many null values and without normal distributions, which is 
common in plant community ecology. This arises from the use of the 
constrained ordination method called canonical correspondence anal
ysis (CCA; Ter Braak, 1986) as the basis for relating the multivariate 

forest inventory data to geospatial predictors. CCA is best suited to 
community datasets where (1) species responses to the environment are 
unimodal and (2) the important underlying environmental variables 
have been measured. Because CCA uses data on the environment to 
structure the community analysis, and CCA plots points in a space 
de+ned by environmental variables, CCA can be considered a “direct 
gradient analysis” method.

To map forest attributes (Table 1), along with species speci+c 
biomass densities (Table 2), we imputed the mean of the +ve plots most 
similar to each 30-m pixel (spatial grain of predictor variables; see 
Section 2.3.1) based on the CCA model results. The selection of the +ve 
nearest neighbors for each pixel was based on the weighted Euclidean 
distance within multivariate gradient space between a pixel environ
mental values and those observed at a plot location. We chose to impute 
the mean of the +ve nearest neighbors because previous research on 
nearest neighbor imputation indicated that imputing the mean of several 
neighbors can result in improved prediction accuracy for individual 
forest structure variables compared to using only the nearest neighbor 
(Bell et al., 2023; Chirici et al., 2016; McRoberts, 2012). For each 
modeling region, we utilized plot data within the region and any directly 
neighboring regions. Due to the low plot support in portions of the 
Northern BC region, we also included plots from Southeast Alaska when 
modeling the Southern BC region. A total of 693 plot observations were 
used for the western Kenai region, 1831 plots for Southcentral Alaska, 
2066 plots for Southeast Alaska, 2053 plots for the northern region of 
coastal British Columbia, and 2053 plots for the southern region of 
coastal British Columbia. This approach enhanced plot support for each 
region and helped minimize the introduction of arti+cial boundaries in 
our results.

Table 1 
Forest composition and structural data obtained from forest plot observations.

Variable code Units Description
total_bio g·m−2 plot level aboveground tree biomass density
snag_bio g·m−2 Plot level biomass of standing dead trees
*species* _gm2 g·m−2 species speci+c biomass densities g·m−2 (

Table 2)
BA_GE_3 m2·hectare−1 Basal area of live trees
BAC_GE_3 m2·hectare−1 Basal area of live conifers
BAH_GE_3 m2·hectare−1 Basal area of live hardwoods
TPH_live trees·hectare−1 Density of live trees
TPH_dead trees·hectare−1 Density of dead trees
TPH_Con trees·hectare−1 Density of live conifers
TPH_Hw trees·hectare−1 Density of live hardwoods
VPH_live m3·hectare−1 Volume of live trees
VPH_dead m3·hectare−1 Volume of dead trees
VPH_Con m3·hectare−1 Volume of live conifers
VPH_Hw m3·hectare−1 Volume of live hardwoods
AGE_DOM years 95th percentile of tree ages
QMD_live cm Quadratic mean diameter of all live trees

Table 2 
Tree species included in study.

Species Species Code Common name
Abies amabilis 11 paci+c silver +r
Abies grandis 17 grand +r
Abies lasiocarpa 19 subalpine +r
Chamaecyparis nootkatensis 42 Alaska yellow cedar
Picea glauca 94 white spruce
Picea mariana 95 black spruce
Picea sitchensis 98 Sitka spruce
Pinus contorta 108 lodgepole pine
Pinus monticola 119 western white pine
Pseudotsuga menziesii 202 Douglas-+r
Taxus brevifolia 231 Paci+c yew
Thuja plicata 242 western redcedar
Tsuga heterophylla 263 western hemlock
Tsuga mertensiana 264 mountain hemlock
Acer macrophyllum 312 bigleaf maple
Alnus rubra 351 red alder
Betula papyrifera 375 paper birch
Populus tremuloides 746 quaking aspen
Populus trichocarpa 747 black cottonwood

Table 3 
Environmental predictor variables that will be used in GNN mapping.

Predictor Band 
name

Description

Landsat 8 
Composite

blue Landsat 8 blue band

​ green Landsat 8 green band
​ red Landsat 8 red band
​ NIR Landsat 8 near infrared band
​ SWIR1 Landsat 8 shortwave infrared 2 band
​ SWIR2 Landsat 8 shortwave infrared 1 band
Landsat 8 indices R54 Landsat 8 near infrared band / Landsat 8 red 

band
​ R65 Landsat 8 shortwave infrared 1 / Landsat 8 near 

infrared
​ R67 Landsat 8 shortwave infrared 1 / Landsat 8 

shortwave infrared 2
​ NDVI Landsat 8 normalized difference vegetation 

index
Landsat 8 

Tasseled Cap
brightness Axis 1 from tasseled cap transformation of 

Landsat 8 surface reJectance.
​ greenness Axis 2 from tasseled cap transformation of 

Landsat 8 surface reJectance.
​ wetness Axis 3 from tasseled cap transformation of 

Landsat 8 surface reJectance.
Landcover landcov National Land Cover Database (NLCD) 

Landcover classi+cations
Topography elevation Elevation (m)
​ slope Slope (degrees)
Location latitude Northing based on EPSG:3338 (m)
​ longitude Easting based on EPSG:3338 (m)
Climate bio1 Mean annual air temperature
​ bio4 Temperature seasonality (◦C/100)
​ bio5 Mean daily air temperature of the warmest 

month (◦C)
​ bio12 Annual precipitation amount (kg·m−2)
​ bio14 Precipitation amount of the driest month 

(kg·m−2)
​ bio15 Precipitation seasonality (kg·m−2)
Disturbance TSD Time since disturbance obtained from 

Landtrendr (Kennedy et al., 2010)
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2.3.1. Mapped explanatory data
The explanatory variables used in the GNN imputation were 

continuous raster layers describing observed satellite reJectance values, 
topography, climate, landcover, location, and disturbance (Table 3). All 
layers were sampled to the same resolution (30 m) and extent using the 
terra package (Hijmans, 2023) in R (R Core Team, 2023). Depending on 
if the predictor variable was categorical or continuous, the resampling 
method used was either accomplished using bilinear interpolation or 
nearest neighbor respectively. A cloud-free and terrain-corrected 
Landsat 8 composite, calibrated for surface reJectance, was generated 
in Google Earth Engine (GEE; Gorelick et al., 2017) using a modi+ed 
version of an image pre-processing tool developed by Hurni et al., 
(2017). This version replaces SRTM elevation data with JAXA ALOS 
elevation data due to data availability at high latitudes (Tadono et al., 
2016). The Landsat 8 image collection was +ltered to months with 
minimal snow cover (May-August). The CFMASK algorithm in GEE was 
employed to assess pixel quality, enabling the exclusion of cloud edges 
and shadows and assigned reJectance was determined by calculating 
the median value of each pixel within the annual time series. Images 
used were captured between 2016 and 2021, with priority given to 
pixels that were captured in 2018.

In addition to individual spectral bands, Tasseled Cap trans
formations (TCT) were calculated based on the Landsat imagery, 
providing a set of spectral indices effective at capturing changes in the 
density and vigor of vegetative foliage (Greenness), surface reJectance 
from the particles that make up the bare earth (Brightness), and surface 
moisture (Wetness) (Crist and Cicone, 1984). TCT condenses the 
multidimensional spectral data into a few key components that simplify 
the complex spectral information, facilitating the analysis of land cover 
changes, vegetation health, and ecosystem monitoring (Cohen and 
Goward, 2004).

To represent areas that have been disturbed in the past the Landsat- 
based detection of Trends in Disturbance and Recovery (LandTrendr) 
algorithm, implemented in GEE, was used (Kennedy et al., 2018, 2010). 
LandTrendr exploits time-series satellite imagery to detect and charac
terize land cover changes over time. It was developed to analyze time 
series data from Landsat satellite imagery, focusing on identifying and 
quantifying disturbances (like logging, +res, or storms) and subsequent 
recovery processes. It uses a pixel-based approach to identify temporal 
trends and abrupt changes in spectral characteristics and is particularly 
useful for assessing long-term trends and disturbances in large-scale 
ecosystems. LandTrendr was used to detect disturbed pixels across the 
entire continuous Landsat collection (1985 – 2021). To ensure distur
bance from harvests were fully represented, historical harvest bound
aries (Forest Analysis and Inventory Branch, 2023; USDA, 2022) were 
added to the LandTrendr output of disturbed pixels providing a layer 
that represents the time since disturbance (2021 – year of disturbance) for 
both human and natural causes.

Climate, landcover, and topographic layers were also included due to 
their inJuence on observed vegetation patterns found in northwest 
forests (Ohmann and Spies, 1998). Downscaled climatology’s were 
derived from CHELSA V2.1 (Karger et al., 2017) while topographic 
layers, such as elevation and slope, were developed from JAXA ALOS 
(Tadono et al., 2016). Landcover classes (NLCD) from the 
Multi-Resolution Land Characteristics (MRLC) Consortium were used as 
predictors of vegetation type and as a tool to mask non-forested areas 
from this analysis. Developed and barren areas were masked from 
analysis.

2.4. Model evaluation

To evaluate CCA model performance at individual sites, we 
compared a subset of predicted values to observed values using a 
modi+ed-leave-one-out-cross-validation. This was done for each indi
vidual modeling region, and then again for all modeling regions to show 
overall agreement across the study area. For each of the compared 

vegetation attributes, the 6 nearest neighbors were predicted. The +rst 
nearest neighbor was omitted, being that it would represent the 
observed site we are comparing to, and the mean of the second- through 
sixth-nearest neighbor was calculated. This has been used in previous 
studies as a computationally ef+cient method similar to leave-one-out- 
cross-validation (Ohmann and Gregory, 2002). Statistical comparisons 
were used to quantify how well the models predicted observed values 
and if there were any trends in systematic and unsystematic bias 
(Riemann et al., 2010). To assess the relationship between observed and 
predicted values, we used a geometric mean functional relationship 
(GMFR) regression to account for errors. We compared this to the 1:1 
line which represents perfect agreement between observed and pre
dicted data. Systematic and unsystematic errors were characterized by 
agreement coef+cients (ACsys and ACuns). To evaluate how well the 

Fig. 3. Associations between vegetation and explanatory variables from ca
nonical correspondence analysis for the Tongass modeling region. The arrow 
length represents the strength of the correlation between the environmental 
variables and the plot forest structure.

Table 4 
Variation explained by subsets of variables in canonical correspondence 
analysis.

Percent variation explained by modeling region
Grouped 
Explanatory 
variables

West 
Kenai

Gulf of 
AK

Southeast 
AK

Northern 
BC

Southern 
BC

Climate 18.7 % 9.2 % 7.3 % 8.1 % 9.5 %
Topography 13.1 % 8.5 % 8.1 % 8.0 % 9.1 %
Spectral 15.0 % 6.2 % 7.0 % 5.3 % 5.5 %
Tasseled Cap 7.7 % 2.7 % 2.6 % 6.3 % 6.4 %
Climate 
þ Topography

23.3 % 12.2 % 10.6 % 11.9 % 12.5 %

Topography 
þ Spectral

25.2 % 12.5 % 12.6 % 12.4 % 13.5 %

Tasseled Cap 
+ Spectral

15.2 % 6.3 % 7.0 % 7.9 % 8.2 %

Climate 
þ Topography 
þ Spectral

29.9 % 15.9 % 15.1 % 15.1 % 15.4 %

Climate 
þ Topography 
þ Tasseled Cap

26.7 % 13.9 % 12.6 % 15.8 % 15.7 %

All predictor 
groups

30.0 % 16.0 % 15.1 % 16.5 % 16.8 %

J. Lamping et al.                                                                                                                                                                                                                                Forest Ecology and Management 583 (2025) 122576 

5 



model classi+ed individual species extents, we reported accuracy (Acc), 
balanced accuracy (ACCb), as well as omission and commission error. 
(Olofsson et al., 2014; Sokolova and Lapalme, 2009).

As noted above, maps were generated based on the mean of the +ve 
nearest-neighbor distances, creating a spatial representation of how well 
the conditions characterized by the predictor variables in each pixel are 

represented in the training dataset. Pixel values in this map represent the 
mean Euclidean distances from the environmental gradients a pixel 
represents to the nearest neighbors imputed by GNN. While this is not a 
true measure of uncertainty, it highlights areas where the environmental 
conditions in the training dataset may not fully capture the variability 
present in the broader landscape (Ohmann and Gregory, 2002; Ohmann 

Fig. 4. Regressions of aboveground live biomass (top) and age of dominant species (bottom) to environmental variables shown to have strong inJuence on model 
outcomes based on CCA results.
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et al., 2011; Moeur and Stage, 1995).

3. Results

3.1. Explanatory variables relationship to plot data

Environmental variables, such as elevation, slope, location, and 
climate, all had a strong inJuence on forest biomass, structure, and 
species composition (Fig. 3). However, the performance of explanatory 
variables in predicting forest structure varied across the different 
modeling regions (Table 4). To evaluate this, we quanti+ed the variance 
explained by different groups of variables. These groups include Climate 
(all climate predictors), Topography (latitude, longitude, elevation, and 
slope), spectral (individual spectral reJectance bands from Landsat 
composite), and Tasseled Cap (transformed wetness, brightness, and 
greenness bands). Individually, climate and topography were shown to 
be the most inJuential at explaining the variation in the models (7.3 % - 
18.7 %), while Landsat-derived products, such as Tassled Cap and in
dividual spectral bands, were less inJuential (15.0 % - 2.6 %). The 
combination of topographic predictors, such as elevation and slope, with 
Landsat spectral data accounted for 75–80 % of the explainable variance 
across all modeling regions.

Environmental variables that strongly inJuence vegetation structure 
inJuenced structural prediction outcomes in different ways (Fig. 4). For 
example, with increases in observed elevation, prediction results tren
ded towards lower levels of aboveground biomass. Elevation had the 
opposite trend for stand age, with stands increasing in age with 
increasing elevation. Increases in mean annual temperature resulted in 
increases in aboveground biomass. However, this didn’t hold true for 
stand age, where there seemed to be little effect. Spatial location showed 
expected patterns of a decreasing ability to support large amounts of 
aboveground biomass with increasing latitude. Increases in longitude 

(eastward) also showed an increase in both aboveground biomass and 
stand age and may be an effect of distance from accessible coastal forest 
land. A multimodal pattern also emerges when looking at how spatial 
context affects stand age and biomass, which is likely due to multiple 
large islands in the region and are also evidence of younger forests being 
spatially located near coastlines that are easily accessed for the use of 
timber.

3.2. Forest carbon and structural attribute predictions

Our modeling efforts yielded thirty-nine individual maps of above
ground biomass, forest structure, and composition (e.g., Fig. 6 & 7). The 
resulting spatial predictions of forest structural attributes showed 
varying levels of accuracy across the study area. At the plot level, pre
dictions of AGB (R2 = 0.38), stand age (R2 = 0.28), and QMD (R2 = 0.36) 
demonstrated the highest agreement with observations, while spatial 
predictions of snag biomass (R2 = 0.19) show the lowest levels of 
agreement (Fig. 5). The modi+ed leave-one-out cross-validation analysis 
showed a trend of overpredictions in the lower range of observed values 
while underpredicting in the upper range (GMFR line). This result is 
common in Landsat-based approaches to estimating forest structure 
(Bell et al., 2018). It is also likely attributed to using the mean values 
across +ve nearest neighbor maps truncating observed extremes.

Regionally, the distributions of predicted biomass and structural 
metrics (e.g., Fig. 6) exhibit similar patterns to observed data from +eld 
plots. While the predicted median values closely align with the observed 
values across all plots, the upper and lower quantiles in the predicted 
values are slightly condensed compared to the observed plot data 
(Fig. 8). Across all regions, AGB ranged from a median of 5413 g⋅m⁻² in 
Upper Kenai to 38,355 g⋅m⁻² in Northern BC, with a total median of 
31,506 g⋅m⁻². Stand age varied considerably, with the oldest median 
stands in Southeast Alaska (101 years), while Upper Kenai had the 

Fig. 5. Comparison of predicted to observed data from the leave-one-out cross-validation analysis. Displayed is the 1:1 line with the GMFR line plotted in red. Data 
points are colorized by density to surrounding points, with yellow illustrating areas of highest point density.
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youngest (50 years). BA and snag biomass showed similar variability, 
with Southeast Alaska and Northern BC having some of the highest 
medians. Tree density (TPH) was highest in Southern BC (median 674 
trees⋅hectare⁻¹), and live volume was highest in Northern BC (median 
1172 m³). Across all regions, the total median values for AGB, TPH, and 
live volume were 31,506 g⋅m⁻², 445 trees⋅hectare⁻¹ , and 1038 m³ , 
respectively, reJecting substantial variability in forest structure across 
the study area.

3.3. Imputed maps of individual species

Biomass density maps were created for 19 overstory species in the 
region (Table 2). These maps provide predictions of species spatial 
extent and abundance and were compared to mapped plot locations 
where the species was observed (Fig. 9, A1). The most common species 
throughout the study area is Tsuga heterophylla, with predictions 
extending throughout the whole mapped region and having a mean live 
aboveground biomass density of 15,643 g⋅m⁻². While Chamaecyparis 
nootkatensis also had a similar predicted extent, it was less abundant and 
contributed less overall to the aboveground biomass in the region, with a 

Fig. 6. Mapped results of GNN imputation model for the full modeling region. The four variables selected here represent the main categories of predicted struc
tural metrics.
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mean live aboveground biomass density of only 5235 g⋅m⁻². When 
comparing the presence of predicted species to the observed plot data, 
levels of agreement varied signi+cantly by species. We were quite 
effective at identifying areas where species are not present (low omis
sion error) but were shown to over-predict where species were present, 
often predicting species presences within their range but not observed at 
a particular site (high commission error). Commission errors were most 
substantial in species that have expansive ranges and whose habitat is 
less constrained to environmental gradients (Table A1), resulting in 

reduced model performance relative to other species, such as Picea 
sitchensis (Accb = 0.62) and Tsuga heterophylla (Accb = 0.64), compared 
to species such as Pseudotsuga menziesii (Accb = 0.96) and Populus tri
chocarpa (Accb = 0.97). Though broadly distributed, some species with 
large commission errors have limited spatial extents on the landscapes 
within relatively broad ranges, such as the presence of Picea sitchensis 
within the western and southern portions of the Kodiak Archipelago and 
the northern distribution of Pseudotsuga menziesii being arti+cially 
limited by modeling region.

Fig. 7. Examples of forest structural predictions. Rows are representative of different places within the study region, with Juneau on top, Zarembo Island in the 
middle, and Vancouver on the bottom. Columns represent the satellite imagery, structural attribute, and a select species prediction.
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3.4. Model uncertainty

A map of the mean Euclidian distance in gradient space was made to 
examine spatial patterns in the uncertainty of our predictions and rep
resentation in our training dataset (Fig. 10). The lowest Euclidian dis
tances were seen in low-elevation areas of the Tongass as well as the 
boreal transition zone of the Kenai, while higher Euclidian distances 
were observed in areas of high elevation. Patterns of Euclidean distances 
seemed to be driven by the level of plot support for a particular region, 
with the lowest Euclidean distances in areas that were well represented 
by either FIA or FAIB plot data and higher distances in places such as 
wilderness areas and parks.

4. Discussion

4.1. Predicted patterns across the landscape

4.1.1. Forest biomass and structure
The spatial pattern of forest biomass and structure from the GNN 

analysis matched expected patterns from observed data and previous 
publications (Fig. 5; Alaback, 1996; Alaback and Juday, 1989; Harris 
and Farr, 1974; MacKinnon, 2003). Aboveground biomass was shown to 
have the highest values at lower elevations; however, this trend becomes 
less apparent at the lowest elevation nearest to the coastline. This is 
likely due to the management history in this region, with harvesting 
targeted in high biomass and low elevation stands that were easy to 
access (Brackley et al., 2009). Predicted median live aboveground 
biomass values in the southern modeling regions were lower than those 
computed from the observed plot data (Fig. 8). This observation may be 
due to the inclusion of (generally lower biomass) plots from FIA data in 
Alaska in predictions of forest structure throughout the northern and 
southern regions of British Columbia. Differences in plot design can 
introduce artifacts into nearest neighbor imputation, motivating some 
mapping efforts that avoid mixed plot designs (e.g., Bell et al., 2021). 
Being that the two forest plot networks work on slightly different data 
collection protocols, it is dif+cult to determine if one is underestimating 
or overestimating forest structural attributes. Because differences in 
aboveground biomass densities were relatively minor, our integration of 
these two plot data sources into a GNN may not contribute dramatically 
to overall errors, but users leveraging the resulting maps across 
modeling regions should consider the implications for their application.

Although the spatial patterns were similar, our overall predictions of 
aboveground live biomass in the region trended higher than those of 
previous studies (Fig. 11). Recent aspatial estimates indicate that the 
temperate rainforests of Southeast Alaska have an average biomass 
density of 21,890 g⋅m⁻² (Yatskov et al., 2019), which was 44.2 % lower 
than our estimates of 39,234 g⋅m⁻². Global attempts at spatially mapping 
AGB by Blackard et al., (2008) and Santoro et al., (2018) show that the 
temperate rainforests of Southeast Alaska have even lower biomass, 
averaging 19,770 and 14,174 g⋅m⁻², respectively. However, our results 
are in agreement with another recent study (Carter and Buma, 2024), 
which found that the average AGB was 42,579 g⋅m⁻² in the temperate 
regions of Southeast Alaska and coastal British Columbia, which was 
only 11 % higher than our estimates of 38,271 g⋅m⁻² for the same region. 
It is important to note that Carter and Buma (2024) also utilized the 
Kozak taper equations in their biomass estimates. Other sources 
contributing to higher biomass estimates may include the addition of 
areas that were not previously accounted for in forest structural esti
mates, such as wilderness areas and national parks. Additionally, po
tential bias from pixel saturation observed in optical sensor data may 
have inJuenced the estimation of forest biomass (e.g. Lu et al., 2016).

Stand age throughout the region ranged from 14 to 570 years, with 
Southeast Alaska’s having the highest median stand age (101 years). The 
spatial pattern of stand age was shown to be affected by elevation 
(Fig. 4), with stand age increasing upslope, likely because they are 
comprised of longer-lived tree species, such as Alaska yellow cedar. A 

Fig. 8. Comparison of observed (plot data) versus wall-to-wall predicted forest 
metrics by country.
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sharp drop off in stand age at low elevations near the coast may also be a 
combination of shorter-lived species, such as red alder, and previous 
harvest activities targeted towards low-lying and easily accessible 
stands. Although younger, forests in British Columbia were shown to 
have larger trees (higher median QMD), and denser forests (higher 
TPH), likely attributing to similar aboveground biomass densities 
compared to forests in Southeast Alaska (Table 5, Fig. 8).

4.1.2. Individual species predictions
Despite the relatively good agreement between predicted and 

observed data (Fig. 5), there was a tendency toward commission errors 
(Table A1), with individual species being predicted within their known 
range (Fryer, 2018) but within plots where their presence was not 
actually observed. This issue has been noted in other studies using 
similar methods to estimate forest structural attributes in the Paci+c 
Northwest (Irvine, 2022; Ohmann and Gregory, 2002). These errors 
likely stem from using the mean value from the +ve nearest neighbors 
and the reliance on spectral and climate data as predictors. Much like 
climate envelope modeling, commission errors can result from envi
ronmental factors indicating suitable conditions for a species without 

Fig. 9. Mapped results of GNN imputation model for the full modeling region of species biomass (gm−2) and extent. The four species select show the spatial 
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB. Additional species maps can be 
found in Fig. A1.
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accounting for limitations such as seed availability or geographic bar
riers (Elith and Leathwick, 2009). In this study, we addressed these is
sues by creating separate modeling regions based on environmental and 
vegetative conditions and the inclusion of spatial location as a predictor 
variable. Despite these measures, these uncertainties should be consid
ered when using these predictions.

4.2. Regional challenges

The amount of uncertainty in forest predictions varied by region, as 
seen in Fig. 10. Areas with higher levels of uncertainty (i.e., greater 
Euclidian distances) can be attributed to various sources, such as the 
vicinity and density of plot data to a prediction cell, the quality of the 
spectral data used, how parsimonious the model used may be, and un
certainties in datasets chosen as predictors. Below, we discuss those 
topics in relation to the temperate rainforests of North America.

4.2.1. Scarcity of plot data
The FIA program in the United States and British Columbias FAIB are 

both government-led initiatives tasked with monitoring and assessing 
the status and trends of their respective countries’ forest resources. Both 
programs have comprehensive approaches to forest inventory, collect
ing data on forest extent, composition, and health, and play crucial roles 
in providing valuable information to support informed decision-making, 
policy development, and sustainable forest management practices. 
However, there are notable differences between the two programs. One 
signi+cant distinction is the availability of plot data, particularly in 
coastal British Columbia (Fig. 2). While the FIA program in the United 
States maintains a robust network of permanent sample plots across all 
forested regions (with the exception of Glacier Bay National Park and 
wilderness areas), the FAIB dataset in British Columbia lacks spatial 
coverage of the northern portions of the British Columbia coast. This 
data gap poses challenges for accurately assessing forest conditions and 
trends in this ecologically diverse and economically signi+cant region, 
whether using plot-based estimation approaches or model-based ap
proaches (e.g., GNN).

Furthermore, FAIB employs both +xed and variable radius plots; 
variable radius plots allow for Jexible plot sizes based on tree diameter 
(Avery and Burkhart, 1983), whereas FIA annual plot design uses a se
ries of +xed radius plots at each survey site (Gray et al., 2012). Previous 
studies show that the FIA +xed-radius plot design may lead to an un
derestimation of tree density and volume in stands with large, spaced 
out trees (Gray, 2003), while variable radius plots may be biased to
wards trees with higher basal areas (Azuma and Monleon, 2011), and 
lead to potentially overestimated stand volume. This difference in 
sampling methodology can present challenges when making regional 
estimates of forest structure, particularly when those estimates cross 
political boundaries. Due to the differences in methodologies and 

resulting plot-level estimates between +xed and variable radius plots, all 
variable radius plots included in FAIB were omitted and only +xed area 
plots were used. This also had the effect of further diminishing the plot 
densities in the southern region of the study area.

4.2.2. Quality of Landsat mosaic
Obtaining a complete Landsat mosaic in the temperate rainforests of 

North America poses signi+cant challenges due to environmental con
ditions inherent to these regions. High latitudes, characteristic of 
temperate rainforests, often result in terrain shadows, particularly in 
areas with rugged topography, such as coastal mountains (Giles, 2001). 
These shadows can obscure large portions of the landscape from satellite 
sensors, leading to incomplete coverage in Landsat imagery (Schulmann 
et al., 2015) or to overestimation of forest biomass and stand age as 
models may confuse terrain shadowing with increased shadowing 
related to tall, structurally complex forests (Irvine, 2022). Additionally, 
consistent cloud cover and snowfall further complicate the acquisition of 
high-quality satellite data (Braaten et al., 2015). Complete cloud cover is 
frequent over the skies of the temperate rainforests, obstructing the view 
of the Earth’s surface and limiting the availability of cloud-free imagery 
for mosaic creation. Similarly, snow cover, which can persist for 
extended periods in these regions, adds another layer of complexity by 
altering surface reJectance properties and reducing the visibility of 
underlying features.

In addition, obtaining remotely sensed imagery over a site within a 
relatively close timeframe to the observed plot data collection is dif+
cult. Developing methods that better allowed for temporal matches be
tween observed plot data collection and remotely sensed reJectance 
values could improve overall model predictions (e.g., McRoberts et al., 
2016).

4.2.3. Downscaled climate variables
Using downscaled CMIP5 global climate model data, particularly in 

regions characterized by high topographic variability, can introduce 
signi+cant uncertainties into climate projections (Foley, 2010; Wootten 
et al., 2017). Global climate models typically have coarse spatial reso
lutions, which may not adequately capture local-scale variations in 
terrain, land cover, and atmospheric dynamics. When downscaling these 
coarse-resolution climate model outputs to +ner spatial scales, such as 
those relevant for regional or local climate assessments, uncertainties 
can arise due to the inability of downscaling methods to accurately 
represent complex topographic features (Ahmadalipour et al., 2018). In 
areas with high topographic variability, such as the mountainous re
gions of the coastal temperate rainforest, even downscaled climate 
projections may struggle to capture the intricate interactions between 
elevation, slope, aspect, and microclimatic conditions. Additionally, the 
choice of downscaling technique, the resolution of input data, and the 
treatment of physical processes can further contribute to uncertainties in 

Fig. 10. Map of mean nearest-neighbor distances for the k = 5 nearest neighbor predictions. Values in this map represent the mean Euclidean distance from the 
environmental gradients a pixel represents to the nearest-neighbor imputed by GNN.
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Fig. 11. Comparison between the GNN aboveground biomass results of this study to other regional and global studies for the Tongass National Forest. Lowermost 
panel compares the distribution of living aboveground biomass (Mg⋅ha−1, outliers omitted) between that of other studies with their corresponding maps above. 
Studies include A. this study (30 m), B. Carter and Buma (2024) (30 m), C. Blackard et al. (2008) (250 m), and D. Santoro et al. (2018) (100 m).
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downscaled climate projections. Therefore, careful consideration of 
these factors should be taken into account when choosing to use 
downscaled climate variables as predictors in GNN, particularly in re
gions with pronounced topographic variability.

4.2.4. Predictor selection
Canonical correspondence analysis (CCA) offers a robust alternative 

to multiple linear regression, particularly for handling data with 
numerous null values and non-normal distributions (Ter Braak, 1986). 
Unlike multiple linear regression, CCA does not require iterative suc
cessional runs to understand the effects of multiple predictors on 
numerous response variables. However, the careful selection of predic
tor variables remains crucial for effective model development and to 
avoid the issues associated with overly complex models (Bell and 
Schlaepfer, 2016). Previous studies in the Paci+c Northwest found that 
using individual spectral bands from Landsat decreased model perfor
mance (Ohmann et al., 2007; Ohmann and Gregory, 2002). This can be 
different depending on forest conditions and reJectance values and, for 
this study, exploratory attempts showed higher agreement in prediction 
outcomes with all Landsat 8 bands included in the CCA. In the +nal 
model, the individual Landsat bands showed little explanatory power, 
while the various spectral indices showed stronger relations in predict
ing forest structure (Fig. 3). Choosing appropriate environmental pre
dictors is essential, as community assemblages or structural conditions 
often correlate with similar environmental factors across the landscape.

4.3. Management applications

Our spatially comprehensive maps, which extend from Kodiak Island 
down to the southern border of British Columbia, offer valuable 

opportunities to inform research, management, or policy decisions. For 
instance, this dataset enables consistent carbon accounting across the 
North American temperate rainforest, supporting climate change miti
gation strategies under international agreements. It can also guide cross- 
border conservation planning by identifying high-biomass or structur
ally unique areas, inform wild+re risk management by highlighting 
vulnerable forest structures, and support biodiversity initiatives by 
identifying critical habitats for species with ranges spanning the Can
ada–US border. Similar vegetation maps in other regions have been 
utilized to assess regional biomass and carbon storage, monitor distur
bance patterns, track land cover changes over time, and study vegetation 
responses to climatic shifts (Carter and Buma, 2024; Griesbauer and 
Scott Green, 2010; McNicol et al., 2019; Nowacki and Kramer, 1998). In 
the temperate forests of Southeast and southcentral Alaska and coastal 
British Columbia, these data can facilitate research on carbon and 
nutrient Juxes, investigate spatial patterns of forest structural classes 
critical for wildlife habitats, as well as informing regional forest land
scape models of initial vegetative conditions.

5. Conclusion

Ecosystems in coastal Alaska and British Columbia are signi+cant 
carbon reservoirs, storing approximately 3.58 Pg of terrestrial carbon. 
Although generally thought to be buffered by the coastal climate, 
climate change projections suggest complex responses in these ecosys
tems, with potential increases in carbon emissions in the boreal region, 
increases in sequestration rates in the coastal temperate zone, and 
changes in the balance of precipitation that falls as snow (Shanley et al., 
2015). Although timber harvest in this region has declined, it still re
mains actively managed in support of local and global economies, and 
signi+cantly impacts carbon storage and ecosystem services (Crotteau 
et al., 2022). Regardless, Southeast Alaska and coastal British Columbia 
comprise a signi+cant portion of the Earth’s remaining old-growth 
temperate rainforest, primarily held within Inventoried Roadless Areas 
(IRAs), Wilderness, and old growth reserves. However, changes in 
management priorities within IRAs present potential changes to these 
ecosystems and necessitate more comprehensive information about the 
forests in these areas, particularly given the recent shifts in regional 
forest management that focus on young growth harvesting, conservation 
of old growth, and carbon sequestration (DellaSala et al., 2022; Law 
et al., 2023).

Our 30-m resolution maps of aboveground biomass, forest structure, 
and species composition extend across the entire coastal regions of 
southern Alaska and British Columbia, traversing political boundaries, 
land ownerships, administrative jurisdictions, and ecological gradients. 
These spatially-complete maps may help land managers assess spatial 
patterns of forest structural attributes and be used in assessments of 
timber supply, carbon stocks, and delineation of potential wildlife 
habitat. They may also form the foundation for modeling efforts to assess 
the climate vulnerability of this vast C-rich ecosystem.
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Table 5 
Mean values of imputed GNN structural data for AGB, stand age, BA, snag 
biomass, TPH, and live volume. Means are shown for each modeling region.

Variable Unit Mean
Upper Kenai AGB g⋅m⁻² 6773

Stand age years 51
BA cm²⋅h⁻¹ 8
Snag biomass g⋅m⁻² 1982
TPH trees⋅hectare⁻¹ 230
Live volume m³ 170

Gulf of AK AGB g⋅m⁻² 18,874
Stand age years 73
BA cm²⋅h⁻¹ 20
Snag biomass g⋅m⁻² 1584
TPH trees⋅hectare⁻¹ 278
Live volume m³ 484

Southeast AK AGB g⋅m⁻² 39,234
Stand age years 113
BA cm²⋅h⁻¹ 33
Snag biomass g⋅m⁻² 6791
TPH trees⋅hectare⁻¹ 396
Live volume m³ 978

Northern BC AGB g⋅m⁻² 38,440
Stand age years 98
BA cm²⋅h⁻¹ 43
Snag biomass g⋅m⁻² 531
TPH trees⋅hectare⁻¹ 720
Live volume m³ 1438

Southern BC AGB g⋅m⁻² 37,235
Stand age years 91
BA cm²⋅h⁻¹ 53
Snag biomass g⋅m⁻² 6536
TPH trees⋅hectare⁻¹ 820
Live volume m³ 3139

Total AGB g⋅m⁻² 33,726
Stand age years 94
BA cm²⋅h⁻¹ 38
Snag biomass g⋅m⁻² 5544
TPH trees⋅hectare⁻¹ 525
Live volume m³ 1619
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Appendix

Table A1 
Species speci+c accuracy (Acc), balanced accuracy (Accb), omission, and commission error

Species Acc Accb Omission Error Commission Error
Abies amabilis 0.941 0.970 0.000 0.788
Abies lasiocarpa 0.989 0.994 0.000 0.968
Alnus rubra 0.794 0.883 0.043 0.863
Betula papyrifera 0.888 0.942 0.015 0.824
Chamaecyparis nootkatensis 0.615 0.790 0.005 0.842
Picea glauca 0.931 0.964 0.021 0.575
Picea mariana 0.953 0.976 0.018 0.700
Picea sitchensis 0.365 0.618 0.022 0.791
Pinus contorta 0.752 0.872 0.011 0.877
Populus tremuloides 0.947 0.974 0.200 0.947
Populus trichocarpa 0.901 0.942 0.028 0.793
Pseudotsuga menziesii 0.915 0.956 0.000 0.774
Taxus brevifolia 0.984 0.992 0.000 0.978
Thuja plicata 0.631 0.804 0.019 0.864
Tsuga heterophylla 0.505 0.644 0.026 0.620
Tsuga mertensiana 0.567 0.741 0.014 0.729
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Figure A1A. Mapped results of GNN imputation model for the full modeling region of species biomass (gm−2) and extent. The four species select show the spatial 
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB
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Figure A1B. Mapped results of GNN imputation model for the full modeling region of species biomass (gm−2) and extent. The four species select show the spatial 
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB
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Figure A1C. Mapped results of GNN imputation model for the full modeling region of species biomass (gm−2) and extent. The four species select show the spatial 
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB
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Figure A1D. Mapped results of GNN imputation model for the full modeling region of species biomass (gm−2) and extent. The four species select show the spatial 
constraints around areas of observed presence. Plot locations shown are the publicly available locations from both FIA and FAIB

Data availability

Maps generated from this study can be found at https://doi. 
org/10.5281/zenodo.13932139. Underlying forest plot data is con+
dential and cannot be shared. Publically available "fuzzed" plot data and 
code can be requested.
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