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A B S T R A C T

The relationship between soil water content (θ) and suction (h, referring to the absolute value of pressure head),
is described by the soil water retention curve (SWRC). Our earlier research (Fu et al. (2021, 2023a) [J.
Hydrol.127171]; [J. Hydrol.129898]) recognized underlying correlations between SWRCs and soil thermal
conductivity (λ) versus θ curves, and developed methodologies to ascertain the parameters of the van Genuchten
(vG) equation using λ(θ) measurements, described by the Ghanbarian & Daigle (GD) equation, and basic soil
characteristics. Limitations intrinsic to the van Genuchten equation restrict the GD-vG approach to generate
precise estimates only in the wet and medium suction range, specifically h ranging from 0 to 150 mH2O. The
validity of these approaches in the dry region remains uncertain. In this study, we associated the Peters-Durner-
Iden (PDI) model parameters to those of the GD model. An initial examination was performed on the lineari-
zation processes needed to derive the hydraulic continuity water content (θhc) from the capillary water
component as characterized by the PDI model and to choose the suction at oven dryness (h0) based on PDI model
performance. Subsequently, two piecewise functions and two pedo-transfer functions were formulated to
compute the PDI model parameters utilizing soil porosity, particle size distribution, and GD parameters, based on
a calibration dataset comprising 25 different soils. The new GD-PDI approach was subsequently assessed with six
independent soils and juxtaposed with the previous GD-vG approach. The GD-PDI approach outperformed the
GD-vG approach, particularly within the dry range.

1. Introduction

Understanding the behavior of water in unsaturated porous media
poses a significant challenge for vadose zone studies. To accurately
describe water behavior in unsaturated soils, it is crucial to obtain ac-
curate estimates of soil water retention functions. The soil water
retention curve (SWRC) describes the relationship between suction (h,
also the absolute of pressure head) and soil water content (θ).

Various analytical functions to describe the SWRC can be found in
the literature (Brooks and Corey, 1964; van Genuchten, 1980; Kosugi,
1994). Most of them mainly account for water held in capillary spaces
and not water films adsorbed to solid surfaces. Consequently, while they
accurately represent the SWRC in the medium to wet moisture range,
they fail to describe the observed trend in the dry region. Over the past
three decades, numerous attempts have been made to obtain a complete

retention curve over the entire moisture range (Ross et al., 1991;
Campbell and Shiozawa, 1992; Rossi and Nimmo, 1994; Fayer and
Simmons, 1995; Webb, 2000; Groenevelt and Grant, 2004; Khlosi et al.,
2006; Zhang, 2011). However, existing models, such as those proposed
by Fayer and Simmons (1995), Khlosi et al. (2006), and Zhang (2011),
frequently fall short in achieving zero water content particularly when
dealing with soils that have a wide range of pore sizes (Peters, 2013). In
recent years, the Peters-Durner-Iden (PDI) model system has emerged as
a successful option. Initially introduced by Peters (2013) and subse-
quently refined by Iden and Durner (2014), this model has demonstrated
its effectiveness in accurately describing the entire soil water retention
curve (SWRC) from saturation to oven dryness, and for simulating water
redistribution in desert soil (Luo et al., 2020; Peters et al., 2021; Peters
et al., 2023).

Direct measurements of SWRCs can be challenging and time-
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consuming, especially when considering larger spatial scales (Zhang
et al., 2018; Dai et al., 2019). To overcome this limitation, pedo-transfer
functions (PTFs) have been developed, which estimate SWRC-model
parameters using available soil property values such as soil texture,
bulk density, and organic carbon content (Van Looy et al., 2017). Ma-
chine learning algorithms, including artificial neural network (Zhang
and Schaap, 2017; Rudiyanto et al., 2021), random forests (Wang et al.,
2022) and regression method (Weber et al., 2020), have been increas-
ingly employed to build modern PTFs, offering improved capacity to
handle the non-linear relationships and complexity between predictors
and target values. However, the reliability of PTFs is uncertain and re-
quires careful validation when applied to regions or conditions beyond
their original development. Furthermore, it is increasingly recognized
that current PTFs do not explicitly account for pedological properties,
soil structure, temporal variations, and climate influences which also
affect soil hydraulic properties (Vereecken et al., 2022; Weber et al.,
2024).

Connections between soil thermal conductivity (λ) versus water
content (θ) curves and soil water retention curves have been studied.
Earlier research has identified distinct regions within λ(θ) curves with
bound water content values also playing a crucial role in determining
soil hydraulic properties, as indicated by SWRCs (Tarnawski and Gori,
2002; Lu and Dong, 2015). Fu et al. (2021a) proposed a parametric
method to estimate SWRCs from measured λ(θ) values and basic soil
parameters. However, this method has limitations near saturation due to
the Lu and Dong (2015) model assumptions on which it was based. The
Ghanbarian and Daigle (GD) model was developed using a combination
of percolation theory and effective medium approximation to effectively
describe variations in λ with θ across a range from saturation to oven
dryness (Ghanbarian and Daigle, 2016). Building upon this work, Fu
et al. (2023b) investigated the inherent correlation between λ(θ) curves
and SWRCs using GD and van Genuchten (vG) models, respectively.
They established relationships between GD model parameters and
several important water content values, such as residual water content,
water content at the SWRC inflection point, and the hydraulic continuity
water content estimated from a SWRC. They concluded that strong
correlations observed between these model parameters can be attributed
to an intrinsic correlation between heat transfer and water retention
mechanisms. Furthermore, Fu et al. (2023a) developed approaches to
estimate the van Genuchten model parameters based on λ(θ) measure-
ments described by the GD model. Although yielding satisfactory results
on independent validation, their applicability in the dry range is ques-
tionable due to the limitations of the vG model, as discussed earlier.

The aim of this study is to propose a novel method to estimate a
complete SWRC using λ(θ) measurements. The PDI and GD models are
employed as they have the capability to accurately depict entire SWRCs
and λ(θ) curves from saturation to oven dryness. A newly developed GD-
PDI approach is established using a calibration dataset comprising 25
different soil samples, and it is subsequently validated using an addi-
tional six independent soils.

2. Theory

2.1. GD-vG approach

Heat transfer and water retention in soils, governed in part by soil
thermal conductivity (λ) and water retention curves, are coupled. Fu
et al. (2023b) investigated the intrinsic correlation between λ(θ) and
SWRC using the GD and vG models. The GD model includes two pa-
rameters: scaling exponent ts and critical water content θc and its details
are provided in Appendix A. The vG model is expressed as,

θ − θr
θs − θr

= [1 + (α h)
n

]
(1/n−1) (1)

where θs and θr are saturated and residual water content (m3 m−3),

respectively. α and n (>1) are parameters in the vG model.
Using 20 soils from the literature, Fu et al. (2023a) linked critical

water content θc to pore size distribution parameter n and found a strong
logarithmic correlation between them as follows:

1
n

= 0.2721ln(θc) + 1.3904 (2)

Eq. [2] is consistent with previous studies in which the critical water
content θc was reported to be closely related to soil clay content: with
increasing clay content, θc increases (Ghanbarian and Daigle, 2016; Fu
et al., 2023c). The pore size distribution parameter n, which is used as a
surrogate for “soil coarseness”, is also a function of clay content (Leh-
mann et al., 2020; Rudiyanto et al., 2021). Coarser soils have a relatively
narrow pore size distribution, and generally have relatively large values
of n (Carsel and Parrish, 1988).

Fu et al. (2023a) also established a strong correlation (R2 of 0.94)
between critical water content θc and hydraulic continuity water content
(θhc) as follows:

θhc = 0.1046ln(θc) +0.5464 (3)

The justification of Eq. [3] can be attributed to the intrinsic correlation
between heat transfer and water flow processes as θhc indicates a critical
water content where capillary-driven hydraulic continuity is disrupted
(Lehmann et al., 2008). At θ values larger than θhc, λ increases mainly
due to capillary water replacing air bubbles in the pore space, and thus
as water content increases the rate of λ increases gradually decrease (Fu
et al., 2023b). θhc can be estimated from a SWRC with fitted vG model
parameters as follows:

θhc = (θs − θr)

[

1 +

(
n− 1
n

)1−2n
]1−n

n

+ θr (4)

Detailed derivation steps of Eq. [4] are provided in Appendix B.
Fu et al. (2023a) presented the following equations to estimate vG

model parameters θs and α from soil property values and GD model
parameters:

θs = ϕ (5)

ln(α)=4.03+1.07fsand−8.31fclay−14.55ϕ−1.16λsat+0.19ts+29.69θc
(6)

where fsand (g g−1), fclay (g g−1), ϕ, and λsat (W m−2 K−1) are sand con-
tent, clay content, porosity, and saturated thermal conductivity,
respectively.

In summary, Fu et al. (2023a) introduced an approach, referred to as
the GD-vG approach, to estimate the vG parameters from λ(θ) mea-
surements and basic soil properties (i.e., particle size distribution and
porosity). This approach involves several steps: First, θc and ts values are
determined by fitting the GDmodel to measured λ(θ) values; Next, n, θhc,
θs and α are estimated using Eqs. [2], [3], [5] and [6], respectively;
Finally, θr is calculated from Eq. [4] once the values of n and θs are
known.

2.2. Hydraulic continuity water content estimated with the Peters-Durner-
Iden model

The hydraulic continuity water content (θhc in Eqs. [3] and [4]) is
associated with the suction at which the hydraulically connected thick
liquid films within the soil pore space are disrupted and stage-I soil
water evaporation (i.e., a high and relatively constant evaporation rate
supported by capillary flow to the surface) cannot be maintained
(Lehmann et al., 2008; Assouline et al., 2014). The spatial extent of the
film region depends on capillary pressure forces driving liquid flow from
a receding drying front to the soil surface. Lehmann et al. (2008)
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assumed that the capillary pressure required for draining the largest and
smallest drainable pores in this “active” range can be represented by the
air-entry suction (ha) and the suction at which hydraulic continuity for
capillary flow is interrupted (hhc), respectively. The assumption is
justified as the vG model can accurately describe the SWRC within the
capillary regime which mainly depends on the pore size distribution.
Previous studies reported that ha can be approximated from the inter-
section of the tangent line drawn across the inflection point of a SWRC
and a horizontal line drawn at θs (Fredlund and Xing, 1994; Zhai and
Rahardjo, 2012; Fu et al., 2021b). Then hhc can be computed symmet-
rically as the intersection of the tangent line and a horizontal line drawn
across the inflection point and θr modeled by the vG model, respectively
(Fig. 1a). However, each soil has a unique maximum h value at which
water content approaches zero (Zhang et al., 2017), marking the concept
of θr as being inappropriate. Additionally, previous studies also find that
unconstrained curve fitting can produce non-physical negative θr values
(Groenevelt and Grant, 2004; Haverkamp et al., 2005), which inevitably
yield unreliable θhc estimates from Eq. [4].

Water retention in soils is controlled by two mechanisms: capillarity
and adsorption, which depend on pore size distribution, mineral surface
and composition, respectively (Lu, 2016). At a fixed h value, capillary
water and adsorbed water coexist within the soil. These two types of
water vary in their quantities and contribute independently to the soil’s
overall water content. The linearization method presented in Lehmann
et al. (2008) is proposed to estimate the characteristic length supporting
capillary-driven liquid flow, which is mainly determined by the width of
the pore size distribution. Thus, linearization procedures need to be
conducted on the capillary water component only, rather than on the
complete SWRC. However, the vG equation does not explicitly distin-
guish between adsorption and capillary water within the SWRC curve.
Considering the limitations regarding the vG model discussed above, Fu
et al. (2023a, 2023b) used SWRC data from 0 to 150 mH2O to determine
vG model parameters before calculating θhc. This pragmatic constraint
gave good model performance for the conditions tested, but also limited
the applicability of the GD-vG approach to estimate the SWRC over the
complete saturation range. To address this limitation, we adopt the
Peters-Durner-Iden (PDI) model here as it can describe the full SWRC
from saturation to oven dryness well and distinguish the capillary and
adsorption water components.

A brief review of the PDI water retention model is provided in Ap-
pendix C and more details can be found in Peters et al. (2023). In the
following, we will show the derivation to deduce the hydraulic conti-
nuity water content estimated from the PDI model using the full SWRC
data from saturation to dry. The graphical linearization details are

provided in Fig. 1b. The capillary water component (θcap) in the PDI
water retention model can be obtained by combining Eqs. [C1]-[C3],

θcap = (θs − θr)
[1 + (α h)

n
]
(1/n−1)

− [1 + (α h0)
n

]
(1/n−1)

1 − [1 + (α h0)
n

]
(1/n−1)

(7)

where h0 is the suction at oven dryness. The first and second derivatives
of Eq. [7] with respect to h are therefore described as,

dθcap
dh

= (θs − θr)
( − n+ 1)αnhn−1[1 + (α h)

n
]
(−2+1/n)

1 − [1 + (α h0)
n

]
(1/n−1)

(8)

d2θcap
dh2

=
(θs − θr)( −n+1)αnhn−2[1+ (α h)

n
]
(−3+1/n)

{1+n[(α h)
n

−1 ]}

1− [1+ (α h0)
n

]
(1/n−1)

(9)

An analogous expression for Eq. [B3] is thus obtained by solving
d2θc
dh2 = 0,

h*i =
1
α

(

1 −
1
n

)1/n

(10)

where h* i is the suction at the inflection point of the capillary water
component. Substituting h* i from Eq. [10] into Eq. [7] yields,

θi−cap = (θs − θr)

(

2 − 1
n

)−1+1/n

− [1 + (α h0)
n

]
(1/n−1)

1 − [1 + (α h0)
n

]
(1/n−1)

(11)

where θi-cap is the water content at the inflection point of the capillary
water component and its corresponding slope (i.e., first derivative) is
expressed as

[
dθcap
dh

]

h=h*i

=

(θs − θr)( − n+ 1)α
(

1 − 1
n

)(1−1/n)(

2 − 1
n

)(−2+1/n)

1 − [1 + (α h0)
n

]
(1/n−1)

(12)

We first draw a tangent line at the inflection point (h* i, θi-cap) using
the slope from Eq. [12], which then intersects with a horizontal line
drawn across θr (= 0 for the capillary water retention component as
shown in Fig. 1b). The intersection point of these lines marks the suction
which is synonymous to the hydraulic continuity suction (h* hc) for the
PDI model, as

Fig. 1. Linearization method to determine the hydraulic continuity water content based on the van Genuchten (vG) model and Peters-Durner-Iden (PDI) model for
Soil 2 in this study. Fitted parameters are: θs = 0.46 m3/m−3(−|-), θr = 0.07 m3/m−3(−|-), α = 0.71 m−1 and n = 2.97 (dimensionless) for the vG model; θs = 0.46
m3/m−3(−|-), θr = 0.09 m3/m−3(−|-), α = 0.72 m−1 and n = 3.16 (dimensionless) for the PDI model. The hydraulic continuity water content based on the vG model
(θhc) and the PDI model (θ* hc) are 0.16 and 0.17 m3/m−3(−|-), respectively.
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h*hc =

(

2 − 1
n

)−1+1/n

− [1 + (α h0)
n

]
(1/n−1)

(n− 1)α
(

1 − 1
n

)(1−1/n)(

2 − 1
n

)(−2+1/n)
+
1
α

(

1 −
1
n

)1/n

(13)

Substituting Equation [13] into the PDI model (refer to Appendix C)
allows for the expression of the hydraulic continuity water content (θ*
hc) in relation to the parameters of the PDI model (θs, θr, α, n, and h0).
Owing to its intricate nature, we refrain from providing an explicit
expression in this context. However, we do provide a Python code to
facilitate its computation.

2.3. A new approach to estimate a complete full range SWRC from λ(θ)
data

As discussed above, the GD-vG approach was established using
SWRC data only from h values of 0 to 150 mH2O. If one relates θc to θ*
hc, and n is estimated from the PDI model fitted to the complete SWRC
dataset, the following piecewise linear equations between θ* hc and 1/n
with θc are proposed,

1/n = a1θc + a2 θc ≤ θ1 (14a)

1/n = a3θc + a4 θc > θ (14b)

θ*hc = f(θs, θr, α, n, h0) = b1θc + b2 θc ≤ θ2 (15a)

θ*hc = f(θs, θr, α, n, h0) = b3θc + b4 θc > θ2 (15b)

where a and b are empirical parameters, and θ1 and θ2 are threshold
water contents.

The Eq. [5] assumption that θs is equal to porosity does not hold for
most soils. For field soils, repeated wetting–drying cycles often leads to a
quasi-saturated condition, characterized by the existence of entrapped
air in the pores of a water-saturated soil. As a result, θs values are
typically smaller than the porosity (Fayer and Hillel, 1986). Therefore,
we construct the following function to estimate θs:

θs = c1 + c2fsand + c3ϕ (16)

where the c-terms are empirical coefficients. Obviously, c3 must be close
but slightly smaller than unity because of the strong correlation between
θs and ϕ. Sand content is used as a predictor accounting for the influence
of texture.

An analogous pedo-transfer function to Eq. [6] is established,

ln(α) = d1 + d2fclay + d3ϕ + d4ln(λsat)+d5θc (17)

where d-terms are empirical coefficients. Two important facts regarding
Eq. [17] need be highlighted. First, a reduced number of predictors are
used in comparison to Eq. [6] to augment the robustness and univer-
sality of the model. Second, the natural logarithm of λsat is employed due
to its significantly greater magnitude relative to the other predictive
factors.

The calibration of the above equations follows these steps. First, the
GD and PDI models, respectively, are fitted to the measured λ(θ) and
SWRC data to obtain their respective model parameters. Then, θ* hc is
estimated from PDI model parameters (θs, θr, α, n) following steps out-
lined in section 3.3. Subsequently, the coefficients in Eqs. [14]-[17] are
determined using the known values of θc, ts, θ* hc and n obtained in the
prior steps. Once these steps are completed, a new approach to estimate
the complete full range SWRC from λ(θ) measurements is developed.

3. Materials and methods

We compiled a dataset consisting of 31 soil samples from the liter-
ature, including 25 for model calibration and 6 for model validation. The

SWRC data cover a h range of 0 to 105 m, and the λ(θ) data span from dry
to saturation. Soils 1–25 were chosen as the calibration dataset to
represent a diverse range of soil properties. These soils exhibited varying
textures, with sand content ranging from 0.09 to 1 g g−1 and clay content
ranging from 0 to 0.54 g g−1. Additionally, they had varying quartz
content, ranging from 0.12 to 1 g g−1, and porosity values, which range
from 0.32 to 0.60 m3 m−3. A summary of these soil characteristics can be
found in Table 1. The validation dataset, consisting of Soils 26–31, is
consistent with that of Fu et al. (2023a) to streamline the comparative
analysis. Apart from the available θ(h) and λ(θ) datasets, the selected
soils in the validation dataset were constrained by the requirement that
soil properties such as bulk density, particle density and soil texture
were known, because they are required inputs for the GD-vG approach
(Table 2).

The GD model requires a dry soil thermal conductivity value (λdry)
and λsat as input parameters. For soils without λdry and λsat measure-
ments (Soils 1–5, 15 and 16), values were estimated using the following
empirical functions of Lu et al. (2007) and Johansen (1975),

λdry = −0.56ϕ +0.51 (18)

λsat = λ1−ϕ
s λϕ

w =
(

λfqq λ1−fq
o

)1−ϕ
λϕ
w (19)

where λs, λq, λo, and λw are thermal conductivities of soil solids, quartz
(7.7W/m K−1), other minerals, and water (0.56W/m K−1), respectively;
and fq is the volumetric fraction of quartz, which can be assumed as
being equal to the mass fraction of quartz (reported in Table 1) as most
soil minerals have density values similar to 2.65 Mg m−3 (Tarnawski
et al., 2015). The value for λo is taken as 2.0 W/m K−1 for soils with fq >

0.2, and 3.0 W/m K−1 for soils with fq ≤ 0.2 (Johansen, 1975). A
comprehensive review of Eqs. [18] and [19] has been provided in pre-
vious studies (He et al., 2021; Fu et al., 2023c, 2023d), and thus it is not
addressed again here.

4. Results and discussion

4.1. Uncertainty from variation in h0

The suction at oven dryness h0 is commonly set to 105 m as the
endpoint at the intersection with the y-axis to describe the SWRC (θ(h))
under dry conditions (Ross et al., 1991; Campbell and Shiozawa, 1992;
Fredlund and Xing, 1994; Fayer and Simmons, 1995; Rossi and Nimmo,
1994; Webb, 2000; Lu et al., 2008). Groenevelt and Grant (2004)
theoretically derived the value of h0 as 104.9 m using the Schofield
(1935) equation, which corresponds to 52 % relative humidity at 20 ◦C
(or 1 % relative humidity at 105 ◦C). Schneider and Goss (2012) pre-
sented a different value for h0, 104.8 m, which represents the average
value for a relative humidity between 30 % and 70 % at 20 ◦C (equiv-
alent to a relative humidity between 0.6 % and 1.8 % at 105 ◦C as
estimated via the Kelvin equation). They found that an h0 value of 104.8

m agrees better with the literature data than that of 105 m. However,
Arthur et al. (2013) pointed out that this outperformance could be
attributed to the fact that the lowest suction value in the dataset used by
Schneider and Goss (2012) ranged from 104.0 to 104.4 m.

The PDI model incorporates h0 in both the capillary and adsorption
water components (Eqs. [C2] and [C4]), ensuring that they converge to
zero at h0. Consequently, the value of h0 impacts the PDI model fitted
results, and thus the θ* hc value estimated frommodel parameters. Fig. 2
displays the PDI model fitted θ values with h0 = 105 m, h0 = 104.9 m and
h0 = 104.8 m versus the measured values for soils in the calibration
dataset. Surprisingly, for various h0 values, the fitted results are similar
with all points distributed closely along the 1:1 line, the slopes of the
regression lines are close to unity, and the intercepts are zero. For h0 =

105 m, the average root mean squared error (RMSE), average mean error
(ME) and average relative error (RE) values between the fitted results
with PDI model and the measured θ values were 0.009, 0.007 and 9.5 %,
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respectively, which were equal to or lower compared than the cases with
h0 = 104.9 m and 104.8 m. Thus, we set h0 as 105 m hereafter, although
this is different from the original PDI model value (i.e., 104.8 m) sug-
gested by Peters (2013) following Schneider and Goss (2012). Our re-
sults are also consistent with Arthur et al. (2013), who determined the

average h0 value should be kept at 104.9 m or 105.0 m using a larger
dataset including data from Schneider and Goss (2012). We must
emphasize here that using a fixed h0 does have merit: Campbell et al.
(1993) found a strong correlation between water content at 0.1 m and
clay content using h0 = 105.0 m; Schneider and Goss (2012) established a

Table 1
Soil ID, texture, particle size distribution (PSD), quartz content, porosity (ϕ), organic carbon content, and sources of soils (Soils 1–25) data used for model calibration in
this study. The star symbol identifies ϕ values calculated from actual bulk density values with an assumed particle density value of 2.65 g cm−3.

Soil ID Soil name or texture Particle size distribution Quartz content ϕ Sources

2–0.05mm 0.05–0.002
mm

<0.002mm log10(h)
range

λ range

g g–1 g g–1 m3 m−3 m W m−1 K−1 ​
1 Quincy sand 0.95 0.03 0.02 0.63 0.43 0.2 – 5.0 0.2 – 1.4 McInnes (1981)
2 Ritzville silt loam 0.30 0.64 0.06 0.42 0.53 0 – 4.2 0.2 – 1.0 McInnes (1981)
3 Walla Walla silt loam 0.30 0.61 0.09 0.42 0.53 0.3 – 5.0 0.2 – 0.9 McInnes (1981)
4 Palouse silt loam 0.20 0.68 0.12 0.38 0.53 0.5 – 5.0 0.2 – 0.9 McInnes (1981)
5 Naff silt loam 0.20 0.57 0.23 0.45 0.53 1.0 – 4.6 0.2 – 1.0 McInnes (1981)
6 L-soil 0.91 0.07 0.02 − 0.45 −0.5 – 3.8 0.2 – 1.0 Cass et al. (1981)
7 Accusand 12/20 1 0 0 1 0.32* −1.7 – −0.1 0.3 – 2.9 Deepagoda et al. (2016)
8 Accusand 20/30 1 0 0 1 0.33* −2.6 – −0.5 0.3 – 2.9 Deepagoda et al. (2016)
9 Accusand 30/40 1 0 0 1 0.34* −3.0 – 0.2 0.3 – 2.9 Deepagoda et al. (2016)
10 Accusand 40/50 1 0 0 1 0.35* −1.2 – −0.3 0.3 – 2.9 Deepagoda et al. (2016)
11 Accusand 50/70 1 0 0 1 0.34* −1.4 – 0 0.4 – 3.3 Deepagoda et al. (2016)
12 Soil A − − − 0.69 0.38* −1.2 – 0.8 0.6 – 2.7 Wu et al. (2015)
13 Soil B − − − 0.77 0.36* −1.1 – 0.7 0.4 – 1.7 Wu et al. (2015)
14 Soil C − − − 0.78 0.32* −1.1 – 0.6 0.4 – 2.7 Wu et al. (2015)
15 Liuzhou lateritic clay 0.12 0.41 0.48 0.44 0.60 −1.0 – 3.2 0.2 – 1.0 Xu et al. (2019)
16 Guilin lateritic clay 0.14 0.32 0.54 0.12 0.60 −1.0 – 3.8 0.3 – 1.2 Xu et al. (2019)
17 sand 1 0 0 − 0.43* −2.0 – 2.2 0.3 – 2.5 Fu et al. (2021b)
18 silt loam 0.21 0.67 0.12 − 0.60* −2.0 – 2.2 0.2 – 1.1 Fu et al. (2021b)
19 clay loam 0.24 0.49 0.27 − 0.55* −2.0 – 2.2 0.4 – 1.2 Fu et al. (2021b)
20 loam 0.43 0.37 0.20 − 0.60 0.5 – 2.2 0.2 – 1.1 Sepaskhah & Boersma (1979)
21 silty clay loam 0.09 0.64 0.27 − 0.60 0.5 – 2.2 0.2 – 1.0 Sepaskhah & Boersma (1979)
22 clay loam 0.32 0.38 0.30 − 0.51* 0.4 – 5.0 0.2 – 1.4 Lu et al. (2007)
23 sand 0.92 0.07 0.01 − 0.40* −0.4 – 5.0 0.2 – 2.1 Lu et al. (2007)
24 sandy loam 0.67 0.21 0.12 − 0.48* −1.3 – 4.4 0.2 – 1.7 Lu et al. (2008)
25 loam 0.40 0.49 0.11 − 0.51* −1.0 – 5.0 0.2 – 1.6 Lu et al. (2008)

Table 2
Soil ID, texture, particle size distribution (PSD), quartz content, porosity (ϕ), and sources of soils (Soils 26–31) data used for model validation in this study. The star
symbol identifies ϕ values calculated from actual bulk density values with an assumed particle density value of 2.65 g cm−3.

Soil ID Soil name or texture Particle size distribution Quartz content ϕ Sources

2–0.05 mm 0.05–0.002
mm

<0.002 mm log10(h)
range

λ range

​ ​ g g–1 g g–1 g g–1 g g–1 m3 m−3 m W m–1 K−1 ​
26 sand 0.93 0.01 0.06 − 0.40* −2.0 – 4.0 0.3 – 2.1 Lu et al. (2008)
27 silt loam 0.27 0.51 0.22 − 0.50* −1.0 – 5.0 0.2 – 1.4 Lu et al. (2008)
28 silt loam 0.11 0.70 0.19 − 0.51* −0.3 – 5.0 0.3 – 1.6 Lu et al. (2008)
29 silty clay loam 0.19 0.54 0.27 − 0.51* −1.0 – 5.0 0.2 – 1.4 Lu et al. (2008)
30 silty clay loam 0.08 0.60 0.32 − 0.51* −0.3 – 5.0 0.2 – 1.3 Lu et al. (2008)
31 silt loam 0.02 0.73 0.25 − 0.55* −1.0 – 5.0 0.2 – 1.2 Lu et al. (2008)

Fig. 2. Comparison of fitted θ values with the PDI model using three h0 values versus measured θ values for Soils 1–25 in the calibration dataset. The solid lines are
the 1:1 lines, the dashed lines represent the regression lines and the blue regions indicate 95% prediction intervals. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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nonlinear relationship between the slope of the dry part of a SWRC and
clay content by fixing h0 at 104.8 m. However, recent studies indicate
that h0 is not a constant quantity, but strongly depends on the soil
mineral composition and can vary between 104.7 and 105.1 m (Lu and
Khorshidi, 2015) and be 105.1 m in quartz minerals (Zhang et al., 2017).

4.2. Comparison of vG and PDI model parameters

Fig. 3 presents a comparison of model parameters, fitted under three
distinct scenarios: (1) employing the vG model with limited SWRC data
ranging from 0 to 150 m; (2) utilizing the vG model with a full range of
SWRC data from 0 to 105 m; and (3) applying the PDI model with a full
range of SWRC data. These scenarios are evaluated across 25 different
soils included in our calibration dataset. In all cases, the fitted θs values
are consistently similar, with all data points closely distributed along the
1:1 line. Interestingly, the α and n values in case 1 are closer to those in
case 3 than those in case 2. This suggests two important conclusions:
first, the discrepancy primarily stems from the contrasting abilities of
the vG and PDI models to fit SWRC data, rather than on the range of
SWRC data; second, adopting only the wet part (i.e., 0 to 150 m), rather
than the full SWRC data, for fitting the vG model can potentially
enhance the fitting accuracy in comparison to the PDI model results.
This also justifies previous studies which used h = 150 m as the
boundary between wet and dry ends when developing their models (e.g.,
Fayer and Simmons, 1995; Lu et al., 2008; Jensen et al., 2015). Addi-
tionally, the comparison of results for 1/n tends to be more dispersed for
low n values, which are characteristic of fine-textured soils. Coarse-
textured soils generally have low water content values at h = 150 m
(i.e., permanent wilting point), thus fitting the vG or PDI models to
either full range or limited range SWRC data does not significantly in-
fluence the fitted parameters.

A major discrepancy between vG and PDI model fitted parameters
occurs with respect to θr: for several soils, vG model yields θr = 0,
whereas PDI model fitted θr values can be as large as 0.254m3/m−3(−|-)
(Fig. 3). Such differences can be attributed to divergent interpretations
of θr in the two models. In the vG model, θr is regarded purely as an
adjustable parameter, representing the point at which the slope of the

SWRC approaches zero (i.e., dθ/dh = 0). Consequently, when fitting the
vG model to a full range of SWRC data, which include measurements of
the lowest θ values near zero, it is unsurprising that the vG model ob-
tains θr = 0. As a result, many pedo-transfer functions based on the vG
model assume θr = 0 (Wösten et al., 1999; Zacharias and Wessolek,
2007; Weynants et al., 2009). In contrast, Iden and Durner (2014)
proposed θr as the weighting factor for adsorption saturation (Sads in Eq.
[C4]), thus identical to the adsorption capacity or maximum water
content ascribed to adsorption forces (θmax ads). It can be theoretically
derived as (Revil and Lu, 2013; Lu, 2016):

θr = θmaxads =
(1 − ϕ)ρs

ρw
CEC

ξ
(20)

where ρs is particle density (approximately 2.65 Mg/m−3(−|-) for many
soils), ρw is density of water (1 Mg/m−3(−|-)), CEC is cation exchange
capacity (meq g−1) and‾ξ is a sorption parameter (1.6meq g−1 for
Kaolinite and Illite, 2.8meq g−1 for Smectite and Vermiculite). As CEC is
heavily influenced by clay content, it is expected that the fitted θr values
in the PDI model display a strong correlation with clay content, as
depicted in Fig. 4. It is noteworthy that Soils 15–16 are excluded from
the regression between θr and clay content as they are typical dual-
porosity soils which cannot be well described by the unimodal vG
model used in the capillary component of PDI model (i.e., Eq. [C3)).
Peters et al. (2013) suggested that the saturation function, denoted as
Г(h), can be either unimodal or multimodal models (Durner, 1994;
Weber et al., 2017). Thus, it is interesting to explore the application of
multimodal SWRC models, for instance, those proposed by Durner
(1994), in conjunction with multi-region λ(θ) models (e.g., Eqs. [8]-[11]
in Deepagoda et al. (2016)) for heterogeneous soils characterized by a
multi-pore size distribution. However, this is outside the scope of our
study, thus will not be further discussed here.

4.3. Determination of parameters

After setting h0 to 105.0 m, we begin to fit the GD and PDI models to
the measured λ(θ) and SWRC data for the 25 soils in the calibration
dataset. Subsequently, the model parameters, along with θ* hc, are
determined. Variations in 1/n and θ* hc as a function of θc are depicted
in Fig. 5. As expected, both 1/n and θ* hc increased monotonously with
increasing θc. The trend is reasonable as fine-textured soils possess larger
surface area and more meso- or micro- pores than coarse-textured soils.
Consequently, they exhibit larger θc values (i.e., more water needed to
form the water bridges), smaller n values (i.e., wider pore size

Fig. 3. Comparison of the vG model fitted parameters using: (1) SWRC data
from 0 to 150 m; (2) SWRC from 0 to 105 m versus PDI model (using SWRC data
from 0 to 105 m) for Soils 1–25 in the calibration dataset. The solid lines are the
1:1 lines.

Fig. 4. PDI model fitted θr as a function of clay content for Soils 1–25 in the
calibration dataset. The dashed line is the regression line for Soils 1–25 after
excluding Soils 15 and 16.
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distribution) and larger θhc values (i.e., stronger water holding ability
against the force of gravity and viscous dissipation). Additionally, both
1/n and θ* hc increase significantly at relatively low θc values followed
by less steep slopes toward the high θc regime. Fig. 5 illustrates this
transition, where the inflection points for the change in slope occur at
0.05 m3 m−3 for 1/n and 0.09 m3 m−3 for θ* hc in relation to θc. To
model this behavior, we have employed piecewise linear functions with
two segments, developed using the SciPy library in Python. These
functions exhibit high goodness-of-fit values (R2 of 0.83 and 0.96) and
effectively capture the observed 1/n vs θc and θ* hc vs θc relationships as
follows:

1/n = 13.306θc −0.017 θc < 0.050 (21a)

1/n = 0.590θc + 0.618 θc ≥ 0.050 (21b)

θ*hc = 2.902θc + 0.059 θc < 0.094 (22a)

θ*hc = 0.580θc + 0.278 θc ≥ 0.094 (22b)

The parameters in Eq. [16] are determined based on fitting, leading
to the following function (R2 = 0.87):

θs = 0.034+ 0.007fsand + 0.889ϕ (23)

The coefficient of ϕ is less than one, which aligns with the expectation
that θs should not exceed ϕ. Furthermore, it is evident that the sand
content exerts a negligible effect on θs. This agrees with findings from
earlier pedo-transfer functions (e.g., Zacharias and Wessolek, 2007;
Weynants et al., 2009), though these functions focused on estimating θs
of the vG model. The rationale behind this correlation is supported by
the data presented in Fig. 3, which illustrate that the fitted θs values from
both the PDI and vG models are similar.

Next, based on 22 soils in the calibration dataset (Soils 12–14 were
excluded because of unavailable texture information), we established
the following pedo-transfer function to estimate parameter α (R2 =

0.86),

ln(α) = 8.619− 9.279fclay −14.627ϕ −1.951ln(λsat) + 20.348θc (24)

The predictors in Eq. [24] include clay content, porosity, λsat and θc.
Using a combination of differential effective medium theory and the
geometric mean method, Fu et al. (2023d) found that λsat is predomi-
nantly influenced by particle size distribution, particle shape and
porosity, and suggested that λsat can be calculated from sand content and
porosity. The parameter θc of the GD model, as reported in prior studies
(Sadeghi et al., 2018; Fu et al. 2023c), has a demonstrable connection to
porosity and soil texture. As a consequence, Eq. [24] bears a resem-
blance to the SCBD (Sand, Clay, and Bulk Density) based pedo-transfer
functions developed earlier (e.g., Rosetta, Schaap et al., 2001; Zhang
and Schaap, 2017).

4.4. Evaluation of the GD-PDI approach

In the preceding section, we developed an approach to determine the
PDI model parameters: the pore size distribution parameter n was esti-
mated from the critical water content θc, using Eq. [21]; saturated water
content θs was calculated from sand content and porosity, as per Eq.
[23]; α was determined from clay content, porosity, λsat and GD model
parameters ts and θc, according to Eq. [24]; and residual water content θr
was estimated with Eq. [22] once the remaining parameters were
known. Therefore, this new approach is hereafter, denoted as the “GD-
PDI” approach.

Fig. 6 illustrates the estimated SWRCs obtained from the GD-PDI and
GD-vG approaches, in comparison to the measured SWRC values for
Soils 26–31 in the validation dataset. Within the wet range (h ranging
from 0 to 150 m), both approaches generally exhibit patterns that align
with the measured curves. However, their performance differs in the dry
range (i.e., h> 150 m): the vG model estimated SWRCs tend to be flatter
and overestimate the observations. This is because the vG model pre-
dicts θ values that approach θr at high h values, while the dry end of the
SWRC usually decreases linearly toward 0 on a semi-log scale (Campbell
and Shiozawa, 1992). In contrast, the PDI model incorporates a
smoothed piecewise linear function to ensure a gradual linear decrease
in θ for h ≫ 1/α (Iden and Durner, 2014). Thus, the GD-PDI approach
proposed in this study, known as the PDI model-based approach, accu-
rately captures both the SWRC sigmoidal shape in the wet range and the
linear trend at the dry end.

Fig. 7 presents estimated θ as a function of hwith the GD-PDI and GD-
vG approaches compared to the measured θ data. Consistent with the
findings in Fig. 6, the GD-PDI approach exhibits superior performance
over the GD-vG approach in several aspects. The GD-PDI approach
provides a lower average RMSE (0.022 vs 0.028 m3 m−3), lower average
ME (0.017 vs 0.023 m3 m−3), lower average RE (11.4 % vs 22.5 %),
higher slope of regression line (1.00 vs 0.93) and higher R2 (0.98 vs
0.97). Among all the metrics, the most significant difference between the
two approaches is observed in the RE, which proves to be highly sen-
sitive to low θ values. The RE values for the GD-PDI approach range from
7.8 % to 17.4 %, while the GD-vG approach yields REs ranging from
13.6 % to 38.4 % (Table 3).

We also compared results between the estimated and measured
SWRCs for an h range exceeding 150 m. The findings, as depicted in
Fig. 8, clearly demonstrate the consistent accuracy of the GD-PDI
approach, with datapoints from saturation to dry closely distributed
along the 1:1 line. In contrast, the GD-vG approach exhibited a worse
performance in the dry range with average RMSE of 0.027 m3 m−3,
average ME of 0.022 m3 m−3, average RE of 67 % and R2 of 0.64 in
comparison to the GD-PDI approach with average RMSE of 0.007 m3

m−3, average ME of 0.006 m3 m−3, average RE of 15.9 % and R2 of 0.97
for the same validation dataset. For θ values for a h range larger than
150 m H2O, the RE values for six soils by the GD-PDI approach ranges

Fig. 5. The inverse of the pore size distribution parameter (1/n) and the hydraulic continuity water content (θhc) versus θc for Soils 1–25 in the calibration dataset.
The dashed lines represent the fitted relationships in the GD-PDI approaches (Eqs. [21] and [22]).
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from 3 % to 31 %, whereas the GD-vG approach yields REs ranging from
18 % to 208 % (Table 4). Moreover, the majority of data points using the
GD-vG approach exhibited a deviation from the 1:1 line, as evidenced by
a regression line with a slope of merely 0.38. These results, again,
demonstrate the superior performance of the GD-PDI approach over the
GD-vG approach, particularly in the dry range, which is crucially
important for simulating water transport and biochemical processes in
soils.

4.5. Further discussion

Independent validation indicates that the GD-PDI approach performs
well over the entire range of saturation. However, several important
facts regarding this approach must be addressed here.

First, the GD-PDI approach is primarily developed using mineral soils
collected from the field and repacked in the lab, which differ signifi-
cantly from peat soils with high organic matter content or undisturbed
soils with strong structure. It is well known that mineral soils typically
have lower organic matter content, whereas peat soils are rich in organic
matter, which significantly affects their thermal properties. For
example, Zhao et al. (2019) found that λ values as a function of θ for peat
soils are less than 20 % of those for sandy soils. More importantly, the
λ(θ) curves for peat soils exhibit a concave downward shape, lacking the
“flat tail” characteristic of most fine-textured soils. Similarly, Schjønning
(2021) reported that undisturbed soils have a much wider range of λsat
and λdry than those typically found in the literature. These differences
will inevitably affect the fitted θc and ts values, thereby challenging the
validity of the established relationships. Additionally, the well-

Fig. 6. Measured and estimated soil water retention curves (SWRC) with the GD-PDI and GD-vG approaches for Soils 26–31.

Fig. 7. θ values estimated by the GD-PDI and GD-vG approaches versus measured θ values at suction values from 0 to 105 m for Soils 26–31 in this study. The solid
lines are the 1:1 lines, the dashed lines represent the regression lines and the blue regions indicate 95 % prediction intervals. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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developed structure of undisturbed soils often leads to bimodal or tri-
modal pore size distributions, which means that the unimodal vG model
used for capillary water in this study may not apply to them. This will
influence the fitted PDI model parameters, further affecting the validity
of the established relationships. Therefore, it is crucial to further
investigate and develop the relationships between λ(θ) and SWRC using
a broader range of soils, including organic and structured soils, to
improve the model’s applicability and robustness.

Second, the approach was calibrated and validated using a limited
dataset—25 soils for calibration and 6 for validation. This limitation
stems from the difficulty of obtaining concurrent measurements of both
λ(θ) and SWRC. Previous studies often relied on a custom-built appa-
ratus (e.g., Smits et al., 2013; Lu et al., 2019) to measure these properties
simultaneously. However, these devices are challenging to build and
prone to variability, and have thus not been widely adopted, which has
led to a scarcity of soils in the literature with both λ(θ) and SWRC data.
Recently, the development of commercial equipment, such as the

VARIOS/HYPROP connector (METER, Pullman, WA), enables the
simultaneous measurement of thermal and hydraulic properties in a
more reliable and accessible manner. This advancement is expected to
increase the availability of λ(θ) and SWRC data for soil samples,
providing an excellent opportunity to derive more robust and general
relationships between λ(θ) and SWRC using machine learning algo-
rithms, which are powerful but require large datasets to function
effectively.

Finally, the GD-PDI approach is parametric, relying on four equa-
tions (Eqs. [21]-[24]) to estimate the PDI model parameters. This
approach is designed to minimize the sum of squared errors (SSE) be-
tween fitted and estimated parameters. However, errors in the estima-
tion of each parameter inevitably propagate into the final estimation of
soil θ, which can explain the variability observed in the GD-PDI model
results shown in Figs. 6-8. We choose to estimate each parameter
independently rather than develop all equations simultaneously because
the latter will introduce more unknown coefficients that need to be

Table 3
The root mean square error (RMSE), mean error (ME), relative error (RE) and coefficient of determination (R2) between measured and estimated water content values
from the GD-PDI and GD-vG approaches for Soils 26–31.

Soils ID Soil name or texture GD-PDI GD-vG

RMSE ME RE R2 RMSE ME RE R2

m3 m−3 m3 m-3 % m3 m−3 m3 m-3 %

21 sand 0.023 0.018 17.4 0.98 0.039 0.031 38.4 0.94
22 silt loam 0.016 0.012 9.4 0.99 0.024 0.020 27.8 0.99
23 silty clay loam 0.039 0.028 11.3 0.97 0.024 0.018 13.6 0.98
24 silt loam 0.016 0.014 14.8 0.99 0.021 0.015 26.2 0.98
25 silty clay loam 0.023 0.017 7.8 0.98 0.032 0.028 14.9 0.98
26 silt loam 0.015 0.011 7.8 0.99 0.029 0.025 14.1 0.98

Average ​ 0.022 0.016 11.4 0.98 0.028 0.023 22.5 0.97

Fig. 8. Estimated θ values by the GD-PDI and GD-vG approaches versus measured θ values at suction values higher than 150 m for Soils 26–31 in this study. The solid
lines are the 1:1 lines, the dashed lines represent the regression lines and the blue regions indicate 95 % prediction intervals. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
The root mean square error (RMSE), mean error (ME), relative error (RE) and coefficient of determination (R2) between measured and estimated water content values
at suction values higher than 150 m from the GD-PDI and GD-vG approaches for Soils 26–31.

Soils ID Soil name or texture GD-PDI GD-vG

RMSE ME RE R2 RMSE ME RE R2

m3 m−3 m3 m-3 % m3 m−3 m3 m-3 %

21 sand 0.003 0.003 30.6 1.00 0.016 0.015 207.9 1.00
22 silt loam 0.007 0.006 14.3 0.98 0.033 0.028 62.4 0.85
23 silty clay loam 0.005 0.003 3.4 1.00 0.029 0.022 28.6 0.90
24 silt loam 0.011 0.010 25.5 0.98 0.031 0.025 59.1 0.83
25 silty clay loam 0.005 0.004 6.6 0.99 0.024 0.019 17.8 0.93
26 silt loam 0.013 0.011 15.2 1.00 0.029 0.024 24.2 0.95

Average ​ 0.007 0.006 15.9 0.97 0.027 0.022 66.7 0.64

Y. Fu et al. Journal of Hydrology 645 (2024) 132138 

9 



fitted. Given the small dataset used in this study, fitting all parameters
together will likely lead to overfitting issues. As mentioned earlier, once
more comprehensive λ(θ) and SWRC data become available, neural
networks can be employed to develop a novel method to estimate the
SWRC from λ(θ) measurements. In this approach, the objective function
minimizes the SSE between fitted and estimated θ without relying on
pre-assumed relationships (e.g., Eqs. [14]–[17]), potentially leading to
more accurate predictions and a more robust overall performance
(Rudiyanto et al., 2021).

5. Summary and conclusions

Based on the inherent connection between soil water retention and
λ(θ) curves, Fu et al. (2023a) proposed a method to estimate the vG
model parameters from measured λ(θ) data. However, the method in-
herits the constraints of the vGmodel, primarily its ineffectiveness in the
dry segment of the SWRC, notably in the adsorption region. In this study,
we formed correlations between GD model parameters and SWRCs
modeled by the PDI model, which was selected because of its ability to
describe a SWRC over the complete moisture range and distinguish the
capillary and adsorption water components.

We first proposed linearization procedures to determine the hy-
draulic continuity water content (θ* hc), below which hydraulic conti-
nuity for capillary flow is interrupted, based on the capillary component
of the PDI model. Two piecewise linear functions were then formulated
to relate θ* hc and the pore size distribution parameter n with the GD
model parameter θc. In conjunction with the pedo-transfer functions to
estimate the vG model parameters θs and α from sand content, clay
content, porosity and GD parameters, a novel approach was developed
to estimate the PDI model parameters from λ(θ) measurements. The GD-
PDI approach was tested using six independent soils and GD-PDI results

were compared to results from the GD-vG approach. The GD-PDI
approach outperformed the GD-vG approach, particularly in the dry
end of the SWRC, i.e., when h > 150 m. The superior performance
observed in the dry range has particular importance for simulations of
the intricate dynamics of water transport and biochemical processes in
arid soils. We also acknowledge the need for user-friendly tools to
simplify the application of the GD-PDI approach. To this end, an Excel
file (.xlsm) is provided as Supplemental Material in Appendix D, which
automates the calculation of PDI model parameters and the plotting of
the SWRC using the GD-PDI approach.
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Appendix A

The Ghanbarian and Daigle (GD) model

Using a combination of percolation theory and an effective-medium approximation (GD), Ghanbarian and Daigle (2016) presented a model to
describe the λ(θ) curve for unsaturated soils. Sadeghi et al. (2018) derived its explicit form as follows:

λ =

[

a1 + a2θ + sgn(ts)a2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a3 + 2a1a−1
2 θ + θ2

√ ]ts
(A1)

where ts is a scaling exponent. Theoretically, ts > 0, and thus, the sign function (i.e., sgn(x> 0)= 1, sgn(x< 0) = -1) can be eliminated. The coefficients
are given by:

a1 =
−θcλ1/ts

sat + (θs − θc)λ1/ts
dry

2(θs − θc)
(A2)

a2 =
λ1/ts
sat − λ1/ts

dry

2(θs − θc)
(A3)

a3 =

[
θcλ1/ts

sat − (θs − θc)λ1/ts
dry

]2
+ 4θc(θs − θc)λ1/ts

sat λ1/ts
dry

(
λ1/ts
sat − λ1/ts

dry

)2 (A4)

where θc is the critical water content at which water first forms a continuous path through the medium (i.e., ‘water bridges’ between solid particles).

Appendix B

Hydraulic continuity water content estimated from the van Genuchten model.
The first and second derivatives of Eq. [1] are computed as

dθ
dh

= (θs − θr)( − n+ 1)αnhn−1[1 + (α h)
n

]
(−2+1/n) (B1)
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d2θ
dh2

= (θs − θr)(n− 1)αnhn−2[1 + (α h)
n

]
(−3+1/n)

{1 + n[(α h)
n

− 1 ] } (B2)

By setting d2θ
dh2 = 0, we determine the suction at the inflection point (hi) as

hi =
1
α

(

1 −
1
n

)1/n

(B3)

Substituting Eq. [B3] into Eq. [1] gives the water content at the inflection point (θi) as

θi = (θs − θr)
(

2 −
1
n

)−1+1/n

+ θr (B4)

The slope at the inflection point is thus obtained by substituting Eq. [A4] into Eq. [A1], which gives,
[
dθ
dh

]

h=hi

= (θs − θr)α( − n+ 1)

(

1 −
1
n

)(1−1/n)(

2 −
1
n

)(−2+1/n)

(B5)

Eq. [B5] is similar to the “soil physical quality index (S)” proposed by Dexter (2004) but their expressions are different: the former is derived for θ vs h
curve whereas S was defined based on SWRC plotted as θ vs ln(h).

Following the linearization method presented in Fig. 1a (Lehmann et al., 2008; Assouline and Or, 2014), the suction at which hydraulic continuity
for capillary flow is interrupted (hhc) is given by

hhc =
1
α

(

1 −
1
n

)1/n−2

(B6)

Substituting Eq. [B6] into Eq. [1] leads to the following expression for hydraulic continuity water content (θhc):

θhc = (θs − θr)

[

1 +

(
n− 1
n

)1−2n
]1−n

n

+ θr (B7)

Appendix C

The Peters-Durner-Iden (PDI) retention model

For a fixed suction, the equilibriumwater content can be divided into two components: capillary water and adsorbed water. The total water content
in soil is thus described by the following superposition of a capillary term (θcap) and an adsorptive term (θads) (Iden and Durner, 2014):

θ = θcap + θads = (θs − θr)Scap + θrSads (C1)

where Scap and Sads are relative saturation of capillary and adsorbed water, respectively; θs is saturated water content; and θr is residual water content
and maximum adsorbed water content (also denoted as “adsorption capacity” in Lu (2016)).

To meet the physical requirement that the capillary term reaches zero at oven dryness, Scap must be expressed as a scale function in terms of a water
retention function Г(h),

Scap =
Γ(h) − Γ(h0)

1 − Γ(h0)
(C2)

where h0 is the suction at oven dryness. Г(h) can be any unimodal, multimodal water retention models or their combinations (e.g., Brooks and Corey,
1964; van Genuchten, 1980; Kosugi, 1994). In this study, the four-parameter unimodal model introduced by van Genuchten (1980) will be used,

Γ(h) = [1 + (α h)
n

]
(1/n−1) (C3)

where α is related to inverse of the air-entry suction (ha) and n is pore size distribution parameter.
The relative saturation of adsorbed water Sads is given by a smoothed piecewise linear function (Iden and Durner, 2014; Peters et al., 2021):

Sads =
ln(h/h0) − bln

[
1 + (ha/h)

1/b
]

ln(h0/ha)
(C4)

where ha reflects the suction where Sa shifts smoothly towards a value of unity and is set to α–1 (Peters, 2013). b is a smoothing parameter expressed as
follows:

b = b0
(

1+ 2
1 − e−b1

n2

)

(C5)

b0 = 0.1ln10 (C6)
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b1 =

(
θr

θr − θs

)2

(C7)

Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2024.132138.

Data availability

Data will be made available on request.
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