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A B S T R A C T

Soil thermal conductivity (λ) relates directly to heat conduction in soil. Numerous models have been developed
to estimate soil thermal conductivity, but their applicability is often limited to specific types of soils. Recognizing
the similarity between the soil water retention curve and the λ versus water content (θ) curve, Lu and Dong
presented a λ(θ) model, which can provide accurate λ estimates for various soils but does not converge to the
thermal conductivity value of a saturated soil (λsat) at saturation. In this study, we develop a modified form of the
Lu and Dong (MLD) model. Additionally, we present a neural network (NN) approach to estimate parameters of
the MLD model using soil porosity, sand, silt, and clay contents, as well as the thermal conductivity of soil solids
(λs) as input features. The neural network is trained to optimize the hyperparameters, which are used to establish
the NN-MLD model after the hyperparameter tuning process is completed. The NN-MLD model is then tested with
an independent testing dataset and compared with five pre-existing models taken from the literature. Results
show that the NN-MLD model outperforms the other models across four error metrics with a normalized root
mean square error (NRMSE) of 0.049, a mean absolute error (MAE) of 0.098 W m−1 K−1, an Akaike’s information
criterion (AIC) of −1699 and a coefficient of determination (R2) of 0.94. In addition, error analysis across varying
degrees of saturation (S) reveals that the NN-MLD model consistently outperforms the other models across the
entire range of saturation levels and its superiority is most pronounced at medium levels of saturation, where the
other models yield NRMSEs and MAEs values three times larger than those of the NN-MLD model. The NN-MLD
model is available in Python code in the Supplementary Material.

1. Introduction

Soil thermal conductivity (λ) relates to a soil’s ability to transmit heat
by conduction. Soil thermal conductivity is widely used for interpreta-
tion and prediction of heat transfer processes and soil temperature in
many fields including soil science, agronomy, civil engineering, and
agricultural meteorology (Kojima et al., 2021; Al-Shammary et al.,
2022). The magnitude of λ depends on inherent soil properties such as
particle size distribution and mineralogy (Campbell et al., 1994) and
dynamic properties such as soil water content (θ), temperature, porosity
(ϕ), and soil structure (Abu-Hamdeh and Reeder, 2000).

Among these factors, water content (θ) has been shown to play a
particularly important role in determining soil λ. Therefore, many ef-
forts have been made to develop λ(θ) models. Based on empirical fits to

natural soil measured values, many empirical models have been pre-
sented to describe λ(θ) relationships based on easily measurable soil
properties (Johansen, 1975; Lu et al., 2007). These empirical models
used logarithmic, exponential, or power functions with empirical pa-
rameters to fit measured values. Each model was generally only valid for
limited types of soils or limited ranges of saturation, and their param-
eters lacked physical meaning. In addition, theoretical models were
developed by conceptualizing the three-phase soil (i.e., solid, water and
air) as a combination of series and parallel systems in the cubic cell or
representative elementary volume, and mathematical models which
were adopted from models of other physical properties (e.g., electrical
conductivity and dielectric permittivity) (Campbell et al. 1994; Haigh,
2015). However, none of these models included the effects of soil
microstructure (i.e., particle geometry, particle/pore size distribution,
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pore-water arrangement and air–water interfaces) on the λ(θ)
relationship.

There are some attempts to develop λ(θ) models based on the linkage
between soil water retention mechanisms and corresponding thermal
conductivity behaviors (Lu and Dong, 2015). A soil water retention
curve (SWRC) is defined as the relationship between the soil water
matric potential and the soil water content, which has four regimes (i.e.,
hydration, pendular (discontinuous water), funicular (continuous
water) and capillary) based on capillarity and adsorption mechanisms
(Tuller et al., 1999). These four water retention regimes can also be used
to reconcile variations of λ with respect to θ for many types of soil.
Considering these relationships, Lu and Dong (2015) proposed a
sigmoidal λ(θ) function with two fitting parameters (i.e., funicular water
content and a pore fluid network connectivity parameter). He et al.
(2017) showed that among 38 models, the Lu and Dong (2015) model is
among the best for fitting λ(θ), especially for fine-textured soils. How-
ever, the Lu and Dong (2015) model does not provide a proper thermal
conductivity value for the saturated soil condition, meaning λ ∕= λsat
(Sadeghi et al., 2018). Thus, improvements on the model are needed.

There is a growing demand for high-resolution soil parameter esti-
mation, which is essential to improve land surface representations and
predictions. The development of pedotransfer functions (PFTs) allows
for the estimation of model parameters using easily measurable, fast and
cost-effective soil properties. By integrating PTFs with grid-based soil
data into land-surface models, it becomes possible to describe soil pro-
cesses and parameterize them at larger scales (Van Looy et al., 2017).
Many PTFs have been developed to estimate soil physical properties
such as hydraulic properties (Zhang and Schaap, 2017; Navidi et al.,
2022), electrical properties (Xiao et al., 2023; Sodini et al., 2024) and
thermal properties (Li et al., 2022), or chemical properties like cation
exchange capacity (Saadat et al., 2018; Jalali et al., 2019). These PTFs
are designed either to estimate the parameters of the existing mod-
els—known as parametric PTFs—or directly relate predictors with target
values (e.g., θ or λ) using machine learning algorithms, without
assuming any pre-existing λ(θ) or hydraulic functions. Parametric PTFs
provide limited accuracy because the uncertainty in a single PTF to es-
timate each parameter inevitably introduces errors into the final

estimated values (Rudiyanto et al., 2021). In contrast, while machine
learning algorithms may provide improved estimations by directly
relating predictors to target values, their black-box nature often limits
interpretability, hindering broader application (Shen et al., 2023).

The objectives of this study are as follows: first, we aim to develop a
modified form of the Lu and Dong (2015) model to address its previously
identified shortcomings; second, we use an artificial neural network to
estimate the parameters of the newly developed modified λ(θ) model
with soil basic properties; finally, we evaluate the performance of the
modified model, with its parameters estimated via the established PTFs,
by comparing its ability to estimate λ-values against values estimated by
five pre-existing λ(θ) models.

2. Model development

2.1. Lu and Dong (2015) model

SWRCs and λ versus degree of saturation (S) curves have sigmoidal
shapes. Based on observations and characteristics of the sigmoid func-
tion, Lu and Dong (2015) proposed a closed-form equation analogous to
the van Genuchten (1980) model to describe the λ(S) curve,

λ − λdry
λsat − λdry

= 1−

[

1+

(
S
Sf

)1/(1−p)
]−p

(1)

where λsat and λdry are thermal conductivity values of saturated soil and
dry soil, respectively. Sf represents the degree of saturation at the onset
of the funicular regime, where the menisci are fully interconnected.
Beyond Sf, any further increases in S will continuously increase λ,
though the contributions from pore water become less significant.
Parameter p (0< p < 1) is defined as the pore fluid network connectivity
parameter for the λ(S) curve. Compared to other empirical models, the
Lu and Dong (2015) model is the only one that captures well the
sigmoidal shape of the λ(S) curve, especially for fine-textured soils
(Sadeghi et al., 2018).

Although the LD model (Eq. [1]) can accurately describe λ(S) curves
for many types of soils and outperforms other empirical models, it still

Fig. 1. Thermal conductivity (λ) versus degree of saturation (S) curves for various values of the shape parameter m and funicular water content Sf fitted with LD and
MLD models, respectively. The default λdry, λsat, Sf and p values are set at 0.2 W m−1 K−1, 1.6 W m−1 K−1, 0.2 and 0.5, respectively.
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has some limitations. First, the LDmodel cannot satisfy the saturated soil
condition (S = 1) where λ should equal λsat. In other words, λ converges
to λsat only when S reaches infinity, which is unrealistic. This limitation
becomes more pronounced with decreasing p or increasing Sf (Fig. 1a
and 1b), particularly for fine-textured soils.

Parameters Sf and p have been reported to be correlated to the re-
sidual degree of saturation and the shape parameter of the van Gen-
uchten (1980) model, respectively (Lu and Dong, 2015; Fu et al., 2021).
However, SWRCs are not readily available for most soils, and this limits
the practical application of the Lu and Dong (2015) model to estimate
the λ(S) curve. Instead, if PTFs can be established to estimate the

parameters in the Lu and Dong model, the usability and accuracy of the
model can be significantly enhanced, allowing for more reliable esti-
mations across various soil types and conditions.

2.2. The modified Lu and Dong model

To address the limitation when S approaches 1, we introduced a
correction term into Eq. [1], leading to the following modified Lu and
Dong (MLD) model:

Fig. 2. (a) λ(S) data of the soils in the dataset used in this study and (b) Dataset soil samples (circles) distributed across U.S. Department of Agriculture (USDA)
textural classes.

Fig. 3. Sampling locations of soil samples included in the dataset used in this study. Note that data points indicate the source countries rather than exact locations
and are scattered for improved visualization.

Y. Fu et al.
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λ − λdry
λsat − λdry

=

1−

[

1+

(
S
Sf

)1/(1−p)
]−p

1−

[

1+

(
1
Sf

)1/(1−p)
]−p (2)

with Eq. [2] fulfilling the dry and saturated soil conditions:

S→0; λ = λdry (3a)

S→1; λ = λsat (3b)

As illustrated in Fig. 1b and 1d, the MLD model mirrors the sigmoid
shape of the λ(S) curves, which effectively capture both the ‘flat tail’ at
the hydration regime and the drastic onset of the pendular regime.

Moreover, the MLD model reliably returns λ = λsat when S = 1,
regardless of the values of p and Sf, ensuring consistent behavior across
different combinations of parameters.

In the following sections, parametric PTFs will be developed using a
neural network (NN) to estimate the parameters of the MLD model from
basic soil properties. Compared to multiple linear regression, NN offers
the advantage of modeling complex, nonlinear relationships between
input and output variables, increasing the estimation accuracy.
Furthermore, NN can continue to improve as more data become avail-
able, continuously learning and adapting to provide better estimations
over various types of soils, making it a powerful tool for developing
robust and reliable PTFs (Ng et al., 2020).

Table 1
Ranges of degree of saturation (S) and thermal conductivity (λ), measurement methods, number of λ(S) pairs, locations, and data sources complied in this study.

ID S range λ range Method Number of λ(S) pairs Origin Sources

W m−1 K−1

1 0–1.00 0.18–2.19 Transient heat transfer 140 China, US Lu et al. (2007)
2 0–1.00 0.19–2.63 Transient heat transfer 116 China, US Fu et al. (2021)
3 0–1.00 0.27–2.04 Transient heat transfer 30 Japan Tokoro et al. (2016)
4 0–1.00 0.18–1.49 Transient heat transfer 22 Germany Hailemariam et al. (2017)
5 0–0.62 0.15–1.36 Transient heat transfer 76 US McInnes (1981)
6 0.02–0.71 0.12–1.30 Transient heat transfer 88 US Campbell et al. (1994)
7 0.01–0.85 0.28–1.74 Transient heat transfer 8 US Hopmans and Dane (1986)
8 0–1.00 0.25–3.37 Transient heat transfer 25 Japan Kasubuchi et al. (2007)
9 0–1.00 0.11–2.63 Transient heat transfer 28 Japan Mochizuki et al. (2003)
10 0–1.00 0.15–1.40 Transient heat transfer 40 Japan Tarnawski et al. (2013)
11 0–1.00 0.13–3.17 Transient heat transfer 240 Canada Tarnawski et al. (2015)
12 0–1.00 0.23–3.36 Transient heat transfer 12 Canada Nikolaev et al. (2013)
13 0–1.00 0.19–1.20 Transient heat transfer 12 Italy McCombie et al. (2016)
14 0–0.99 0.08–0.59 Transient heat transfer 204 Japan Tarnawski et al. (2019)
15 0–1.00 0.07–2.95 Transient heat transfer 638 China Zhao et al. (2018)
16 0–1.00 0.14–2.75 Steady state 165 US Kersten (1949)

Fig. 4. Flow chart of the model building, tuning, and testing process.

Y. Fu et al.



Computers and Electronics in Agriculture 235 (2025) 110321

5

3. Materials and methods

3.1. Dataset

To train and test the neural network to estimate MLD model pa-
rameters, a comprehensive dataset was compiled. This dataset includes
211 soils and comprises 1844 pairs of λ(S) data points, sourced from 15
different studies. These data points ensure a broad representation of λ
and S values, providing robust coverage for accurate model training and
testing (Fig. 2a). These studies feature diverse soil samples, such as field
soils (e.g., Campbell et al., 1994; Lu et al., 2007), volcanic ash soils (e.g.,
McCombie et al., 2016; Tarnawski et al., 2019), and arid and semiarid

soils (Zhao et al., 2018), from various locations: 104 Chinese soils, 29
American soils, 2 Italian soils, 2 German soils, 41 Canadian soils, and 33
Japanese soils (as presented in Fig. 3). Table 1 presents detailed infor-
mation about the selected soil samples, in which the majority of the
measurements were performed using a transient heat transfer method,
with the exception of one study by Kersten (1949), which used a steady
state method. The textural information for these soils is summarized in
Fig. 2b. The dataset covers a wide range of soil types, including 11 out of
the 12 USDA textural classes (excluding sandy clay). It predominantly
includes sand, silt loam, loam, and sandy loam soils. For each selected
soil, sand content (fsand), silt content (fsilt), clay content (fclay) and
porosity (ϕ) are known and used in the input layer of the neural network.

Fig. 5. The Pearson correlation matrix between predictors (fsand, fsilt, fclay, ϕ and λs) and parameters of Eq. [2] (λsat, λdry, Sf and p). The upper triangle shows the
Pearson correlation coefficient between variables in which both the marker and number sizes are scaled proportionally to the magnitude of the correlation coef-
ficient. The probability density distribution of each variable is given on the diagonal. The lower panel shows the scatter plots between pairs of variables.

Y. Fu et al.
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3.2. Neural network building and tuning

This section is organized into four parts. The first subsection details
the steps involved in splitting and preprocessing the data for neural
network training. The second subsection explores the correlation be-
tween predictors and model parameters and is followed by the feature
selection. The third subsection describes the detailed architecture of the
neural network. The fourth subsection outlines the procedures for
optimizing the neural network’s hyperparameters. All of these steps are
implemented using PyTorch 2.0.1 (Paszke et al., 2019), leveraging its
modules to define and execute the layers and transformations. Fig. 4
describes the flow chart of the model building, tuning and testing
processes.

3.2.1. Data preprocessing
The dataset is divided into training and testing datasets with a 75–25

% split, which is implemented using the random_split function, with a
random seed assigned to ensure consistency in the split each time it is
performed. This results in a training dataset consisting of 1383 λ(S)
datapoints, used to tune the neural network’s hyperparameters, and a
testing dataset of 461 λ(S) datapoints, used to independently test the
performance of the trained model. Prior to modeling, predictors in both
the training and testing datasets are standardized with the Stand-
ardScaler function, which computes the mean and standard deviation for
each feature and uses these values to transform the data, so that each
individual feature looks like standard normally distributed data, with a
mean of zero and a variance of one. This leads to a fast convergence
during training, improved model performance, and enhanced inter-
pretability of the learned feature weights.

3.2.2. Feature selection
The process of choosing the optimal subset of predictors, known as

feature selection, involves balancing a minimum subset of predictors
with maximum prediction accuracy. It is preferable to select basic and
easily measurable properties as predictors, as this ensures the estab-
lished PTFs are widely applicable and can be seamlessly integrated with
grid-based datasets (e.g., SoilGrids 2.0, Poggio et al. (2021)) for
parameterizing soil processes in land surface models at large spatial
scales. Additionally, the chosen predictors should exhibit strong corre-
lations with the target outputs, as this allows for higher prediction ac-
curacy with fewer predictors. In this study, we first choose fsand, fsilt, fclay
as predictors due to their accessibility and previous use in PTF studies to
estimate thermal, hydraulic, and biogeochemical properties (Van Looy
et al., 2017). We also include ϕ to account for the influence of bulk
density and particle density, of which the former is also affected by
organic matter content (Minasny and McBratney, 2018) and is also one
of the commonly used predictors in PTF development (Van Looy et al.,
2017; Zhang and Schaap, 2017). Soil, as a three-phase mixture, includes

a solid phase (λs) that exhibits substantially higher thermal conductivity
than either water or air. Thus, λs is selected as the final predictor, as it is
expected to greatly influence λ in both saturated and unsaturated soils
(Fu et al., 2023b). Parameter λs can be estimated by a geometric mean
model applied to quartz and other soil minerals:

λs = λ1−fq
q λfq

o (4)

where λq and λo are the thermal conductivity of quartz (7.7 W m−1 K−1)
and other soil minerals, respectively; fq is the volume fraction of quartz
in the soil solids and λo is taken as 2.0 W m−1 K−1 for soils with fq > 0.2,
and 3.0 W m−1 K−1 for soils with fq ≤ 0.2 as suggested by Johansen
(1975). However, fq is typically measured using a combination of X-ray
diffraction/X-ray fluorescence techniques, which is expensive and rarely
implemented. Consequently, quartz content is not commonly known for
most soils. To address this issue, Fu et al. (2023b) developed a novel
DEM-GMM method to estimate λs from ϕ based on a combination of the
differential effective medium (DEM) theory and geometric meanmethod
(GMM), expressed as follows:
(

λs
λw

)1−ϕ

= ϕm

(
1− λs/λw
1− (λs/λw)

ϕ

)m

(5)

where m is the effective cementation exponent, depending on the par-
ticle shape, porosity, and texture. Based on 43 soils, Fu et al. (2023b)
suggested the following m values: 1.66 for soils with fsand < 0.4, 1.62 for
soils with 0.4 ≤ fsand < 0.4 and m = -1.34ϕ + 1.70 for soils with fsand =

1.0.
We further perform a Pearson correlation analysis between the

selected predictors (fsand, fsilt, fclay, ϕ and λs) and parameters of the MLD
model (λsat, λdry, Sf and p) for 212 soils. The results, depicted in Fig. 5,
reveal several significant relationships. The strong negative correlation
between λdry and ϕ (r = -0.69) is consistent with previous studies (Lu
et al., 2007; He et al., 2017). Conversely, λdry shows a positive correla-
tion with λs (r= 0.55). This positive correlation is reasonable since a dry
soil, a mixture of soil solids and air, has its thermal conductivity pre-
dominantly influenced by λs, which is significantly higher than that of
air (0.025 W m−1 K−1). Similar correlations are observed between the
predictors and λsat: there is a strong positive correlation between λs and
λsat (r = 0.74) and a relatively large correlation between fsand and λsat (r
= 0.50). Both Sf and p are negatively correlated with fsand (r = -0.33 and
−0.36, respectively) but positively correlated with fclay (r = 0.31 and
0.33, respectively). This aligns with the results in Fig. 1, where the λ(S)
curves show a more pronounced ‘flat tail’ with increasing Sf and p,
typical characteristics of fine-textured soils.

3.2.3. Neural network architecture
The neural network architecture used in this study is a multi-layer

perceptron designed for regression tasks with specific constraints on

Table 2
Forms and parameters of the models investigated in this study.

Model forms Shape parameters References

Jo λ − λdry
λsat − λdry

= AlogS + 1 λsat = λ1−ϕ
s λϕ

wλdry =

0.135ρb + 0.0647
2.7 − 0.947ρb

A is 0.7 for soils with fclay ≤ 0.05 and 1 soils with fclay > 0.05.
Johansen (1975)

CK λ − λdry
λsat − λdry

=
κS

1+ (κ − 1)S
λsat = λ1−ϕ

s λϕ
wλdry = χ10−ηϕ κ is 3.55 for medium and fine sands and 1.90 for silty and clayey soils.The χ and η values are

0.75 and 1.20 for natural mineral soils, respectively.
Côté and Konrad
(2005)

Lu λ − λdry
λsat − λdry

=

exp
{

α
[
1− S(α−β)

] }

λsat = λ1−ϕ
s λϕ

wλdry =

−0.56ϕ + 0.51
α is 0.96 for soils with fsand ≥ 0.4 and 0.27 for soils with fsand < 0.4 and β is a suggested as
1.33. Lu et al. (2007)

R-CK λ − λdry
λsat − λdry

=
κS

1+ (κ − 1)S
λsat = λ1−ϕ

s λϕ
wλdry = χ10−ηϕ κ is 5.41, 1.64 and 2.17 for sand, soils with fsand < 0.4 and remaining soils, respectively.The

χ and η values are 0.75 and 1.20 for natural mineral soils, respectively. Fu et al. (2023a)

R-Lu λ − λdry
λsat − λdry

=

exp
{

α
[
1− S(α−β)

] }

λsat = λ1−ϕ
s λϕ

wλdry =

−0.56ϕ + 0.51
α and β are 0.94 and 1.23 for sand, 0.59 and 1.35 for soils with fsand < 0.4, and 1.05 and 1.48
for remaining soils, respectively. Fu et al. (2023a)

Y. Fu et al.
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the output. It begins with an input layer that takes in features of
dimension 5: fsand, fsilt, fclay, ϕ and λs. The hidden layers are fully con-
nected and use ReLU activation functions followed by dropout layers
with a dropout probability of 0.2 to prevent overfitting. The final layer
outputs four values, which are subsequently transformed using sigmoid
activation to ensure they lie within the range [0, 1]. These outputs are
then scaled and shifted with the torch.matmul function, resulting in the
final outputs meeting specific constraints: 0.01 ≤ Sf ≤ 0.95; 0.01 ≤ p ≤

0.95; 0.07≤ λdry ≤ 0.35; 0.27≤ λsat ≤ 3.37. During the training loop, the
neural network is initialized with the Adam optimizer and a learning
rate scheduler, StepLR, is set up to reduce the learning rate by a factor of
0.2 every 50 epochs, which helps in fine-tuning the learning process over
time.

3.2.4. Hyperparameter tuning
Hyperparameter tuning is crucial to optimize the performance of the

neural network. The hyperparameters being tuned include the learning
rate, the number of hidden layers, and the number of neurons in each
hidden layer. The learning rate is sampled from a log-uniform distri-
bution within the range [10−6, 10−1], allowing for the exploration of a
wide range of potential learning rates. The number of hidden layers is an
integer of 1, 2, or 3, while the number of neurons in each hidden layer is
sampled from an integer uniform distribution of 2 to 128.

In this study, we employ Optuna (Akiba et al., 2019), a powerful
hyperparameter optimization framework, to identify the optimal set of
hyperparameters for the neural network. Different methods have been
developed to efficiently search for the best combination of hyper-
parameters, such as grid search, random search and Bayesian optimi-
zation. Because grid search does not apply to continuous values like
learning rate, we design a two-step sampling strategy to leverage the
strengths of two sampling methods: Tree-structured Parzen Estimator
(TPE) Sampler based on Bayesian optimization and Random Sampler
based on random search. In the first 100 trials, we combine these two
methods into an ensemble sampler and use it in a randomized manner.
For the subsequent 100 trials, we exclusively use the TPE Sampler. This
approach benefits from the exploration capabilities of the Random
Sampler in the early stages while utilizing the TPE Sampler’s more
refined search capabilities in the latter stages to fine-tune and optimize
the results. More details about this ensemble sampler can be found in
section 4.2.

The tuning process uses K-Fold cross-validation with five splits to
ensure the model’s robustness and generalization capability. In each
fold, one subset serves as the validation dataset while the remaining four
subsets are used for training. During each trial, the neural network
model is initialized with the suggested hyperparameters, and the model

undergoes training for a maximum of 5000 epochs with early stopping
implemented to halt training if no improvement is observed over 300
consecutive epochs (Prechelt, 1998). The validation losses across five
folds are averaged to determine the trial’s performance. The loss is
computed as the Smooth L1 loss (also known as Huber loss):

Smooth L1 loss =
1
N

∑N

i=1
L

(
λi, λ̂

i)
(6)

where N is the number of data points, and λ and λ̂i are the measured and

modeled estimates at the ith data point, respectively. L
(
λi, λ̂

i)
is defined

as:

L
(
λi, λ̂

i)
=

{
0.5

(
λi − λ̂

i)2

⃒
⃒λi − λ̂

i⃒
⃒ − 0.5

if
⃒
⃒λi − λ̂

i⃒
⃒ < 1

otherwise
(7)

The Smooth L1 loss function offers several advantages over the
commonly used Mean Square Error (MSE) loss function. In contrast to
MSE that emphasizes large errors due to its quadratic nature, the Smooth
L1 loss transitions to a linear behavior for large errors, reducing the
impact of outliers on the overall loss, making it more stable and less
sensitive to anomalies in the data. Additionally, for small errors, the
Smooth L1 loss behaves similarly to MSE, maintaining the benefit of
smooth optimization.

After the completion of all 200 trials, the best model, characterized
by the lowest average validation loss, is saved, alongside the hyper-
parameter settings and the model’s weights that produced it. This en-
sures that the exact state of the best performing model can be retrieved
for future use without needing to retrain it from scratch.

3.3. Comparison with other λ(S) models

To rigorously assess the performance of the modified Lu and Dong
model (MLD), we perform a comparative analysis against five estab-
lished models, including the Johansen (1975) model (J75), the Côté and
Konrad (2005) model (CK05), the Lu et al. (2007) model (L07), and
recalibrated versions of the CK05 (R-CK05) and L07 (R-L07) models. Fu
et al. (2023a) used a more extensive calibration dataset to refine CK05
and L07 models, proposing alternate empirical values for shape pa-
rameters in their forms. A noteworthy limitation in both the J75 and
CK05 models lies in the ambiguous boundary between the categories of
“medium and fine sands” and “silty and clayey soils.” This absence of
explicit boundary definitions can result in an incorrect selection of the
λ(S) relationship. To mitigate this issue, we employ classifications based
on coarse-textured soils (fsand ≥ 0.4) and fine-textured soils (fsand < 0.4),

Fig. 6. Comparison of fitted LD and MLD model soil thermal conductivity (λ) values versus measured λ values for soils in the complete dataset. The insets show λ
values in the saturation S range greater than 0.8. The solid lines, the dashed lines and the gray region are the 1:1 line, the regression lines and 95% predic-
tion interval.
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as suggested by Lu et al. (2007), to represent “medium and fine sands”
and “silty and clayey soils” in the J75 and CK05 models, respectively.
Detailed forms and shape parameters of these models are provided in
Table 2.

3.4. Model assessment

In this study, we compare λ estimates with different models (λ̂
(i)
) to

directly measured λ values (λ(i)). The model performances are evaluated
using four metrics: normalized root mean square error (NRMSE), mean
absolute error (MAE), Akaike’s information criterion (AIC) and the co-
efficient of determination (R2):

NRMSE =
1

λi
max − λimin

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
λi − λ̂

i)2

N

√
√
√
√
√

(8)

MAE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

⃒
⃒λi − λ̂

i⃒
⃒

N

√
√
√
√
√

(9)

AIC = Nln

(∑N
i=1

(
λi − λ̂

i)2

N

)

+2p (10)

Fig. 7. (a) Hyperparameter tuning results for 200 trials with Optuna, and Lr and Vl are learning rate and validation loss, respectively. (b)-(g) Histograms of the
hyperparameters during the training.
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R2 = 1−

∑N
i=1

(
λi − λ̂

i)2

∑N
i=1

(

λi − 1
Nλ̂

i
)2 (11)

4. Results and Discussion

4.1. Fitting the MLD model to λ(S) observations

Fig. 6 compares the LD and MLD model fitted λ values versus the
measured λ values for the whole dataset. Overall, compared to the LD
model, measured and fitted values by the MLD model distribute more
closely along the 1:1 line, the slope of the regression line is closer to one,
and the intercept is closer to zero. Error analysis also shows that
compared to the measured values, the NRMSE, MAE, AIC and R2 values
of the fitted results by the MLD model are 0.014, 0.031 W m−1 K−1,

−10208 and 0.99, respectively and the corresponding values of the LD
model are 0.019, 0.041 W m−1 K−1, −9291 and 0.99, respectively.
Except for R2, all metrics indicate that the MLD model performs better
than the LD model. The improved performance of the MLD model is
particularly evident in the capillary regime, where the data fitted by the
LD model are much more scattered, as shown in the inset in Fig. 6. In the

Fig. 8. Neural network architecture with optimized hyperparameters. Red and green colors indicate positive and negative weights for each neuron, respectively, for
better visualization purposes. Note that these colors do not represent the actual weights.

Fig. 9. Comparison of soil thermal conductivity (λ) values estimated with the NN-MLD model versus measured λ values for the training dataset and the testing
dataset. The solid lines, the dashed lines and the gray region are the 1:1 line, the regression lines and the 95% prediction interval.

Table 3
NRMSE, MAE, r and R2 for the MLD model parameters (Sf, p, λdry and λsat)
comparing fitted and predicted values using the trained neural network.

NRMSE MAE r R2

Sf 0.183 0.102 0.77 0.59
p 0.248 0.187 0.17 0.03
λdry 0.114 0.041 0.77 0.59
λsat 0.074 0.171 0.94 0.88
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near saturation range (S > 0.8), the NRMSEs for λ are 0.036 for the LD
model and 0.013 for the MLD model; the MAEs are 0.085 and 0.020 W
m−1 K−1, respectively; the AICs are −794.0 and −1161.0, respectively;
and R2 values are 0.99 and 1.00, respectively. Error analysis near
saturation indicates that the MLD model performs consistently well
across the full range of saturation levels, in contrast to the LD model,
which shows poor performance near saturation.

4.2. Determination of optimized hyperparameters

This study uses Optuna for hyperparameter optimization, which

automates the process of exploring hyperparameter spaces within the
suggested range to find the optimal configuration to minimize the
average validation loss. In this Optuna study, we initially use a custom
ensemble sampler that integrates two different samplers: TPE Sampler
and Random Sampler. This method leverages the strengths of both
sampling strategies during the first 100 trials, aiming to balance
exploitation and exploration in the optimization process. After the initial
100 trials, a set of provisional hyperparameters is identified. These
provisional values are then used as initial values for further exploration
via the study.enqueue_trial function. The study continues with another
100 trials, now using only the TPE Sampler to refine and optimize the
hyperparameters. The results in Fig. 7 support the effectiveness of this
strategy, where the tuning process explores the search space broadly for
all hyperparameters, while emphasizing specific ranges, such as a
learning rate between 10−2 and 10−3 (Fig. 7b), three hidden layers
(Fig. 7c), the number of neurons in hidden layer 1 between 92 and 128
(Fig. 7d), the number of neurons in hidden layer 2 between 92 and 128
(Fig. 7e), and the number of neurons in hidden layer 3 between 56 and
74 (Fig. 7f). This broad exploration can be attributed to the Random
Sampler, which is useful to cover the search space comprehensively.
Most trials are centered on learning rates between 10−2 and 10−3,
because the TPE Sampler focuses on regions of the hyperparameter
space that yielded good results in the past to suggest new hyper-
parameters (Fig. 7a and 7 g).

After the completion of all 200 trials, results demonstrate that the
network with a learning rate of 2.62 × 10−3, 128 neurons in hidden
layer 1, 97 neurons in hidden layer 2, and 73 neurons in hidden layer 3
converges to the lowest smooth L1 loss. Subsequently, the model ar-
chitecture with the optimized hyperparameters is saved as the final
trained model, named the NN-MLD model, which is illustrated in Fig. 8.

Fig. 10. Fitted NN-MLD model thermal conductivity (λ) versus degree of
saturation (S) curves for three representative soils with distinct textures.

Fig. 11. Comparison of soil thermal conductivity (λ) estimated with the NN-MLD model as well as five pre-existing models versus measured λ values for the testing
dataset. The solid lines, the dashed lines and the gray region are the 1:1 line, the regression lines and the 95% prediction interval.
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4.3. Estimating the MLD model parameters

The MLD parameters, represented by the four neurons in the output
layer, are predicted using the predictors in the input layer with the NN-
MLDmodel, as shown in Fig. 9. Table 3 presents the NRMSE, MAE, r and
R2 for the directly fitted parameters and the estimated parameters of the
MLD model: λsat, λdry, Sf and p. The NN-MLD model accurately estimates
λsat with an NRMSE of 0.074, MAE of 0.171 Wm−1 K−1, r of 0.94 and R2

of 0.85. This high accuracy is due to the inclusion of λs and ϕ as inputs,
which are highly correlated with λsat, as illustrated in Fig. 5. Because
saturated soils can be regarded as a mixture of soil solids and water, it is
unsurprising that λs and ϕ are essential inputs to compute λsat. Addi-
tionally, the NN-MLD model produces satisfactory results for λdry and Sf
as shown in Table 3, with NRMSE values of 0.114 and 0.183, MAE values
of 0.041Wm−1 K−1 and 0.102, r values of 0.77, R2 values of 0.59 for λdry
and Sf, respectively. The lowest agreement between fitted and estimated
parameters occurs for parameter p, indicating a high uncertainty. The
predicted p values with the NN-MLD model have a limited range: the
median is 0.30 with a standard deviation (SD) of 0.09. In contrast,
directly fitting the MLD model to data results in p values with a median
of 0.37 and a much larger SD of 0.23. However, this does not necessarily

mean that the NN-MLD model cannot make accurate estimations. As
parameters of the MLD model are correlated (Fig. 5), they should not be
assessed individually for the overall performance. Instead, a holistic
evaluation considering the interactions and combined estimation power
of all parameters provides a more accurate assessment of the model’s
efficacy (see section 4.4).

4.4. Model evaluation

Fig. 9 presents the performance of the NN-MLDmodel on the training
and testing dataset. Overall, the developed model provides accurate
estimates for both datasets, with NRMSEs of 0.044 and 0.049, MAEs of
0.097 and 0.098 W m−1 K−1, AICs of −5342 and −1699, and R2 of 0.95.
The slightly better performance on the training dataset is unsurprising,
as the training process is designed to minimize the smooth L1 loss on the
training dataset. More importantly, the close performance of the model
on both training and testing datasets can be attributed to the procedures
implemented to prevent overfitting during the training process,
including k-fold cross validation, early stopping and dropout. It is
noteworthy that for both datasets, the NN-MLD model shows a slight
overestimation at high λ values. This arises from the errors in estimating

Fig. 12. (a) NRMSE, MAE, AIC and R2 values of six models for the testing dataset; (b) NRMSE, MAE, AIC and R2 variations for ten saturation S classes.
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the predictor λs with the DEM-GMM method (Eq. [5]), which combines
the differential effective medium theory and geometric mean method.
The differential effective medium theory assumes zero grain contact,
which is particularly problematic for soils with low porosity. This is
especially relevant for semi-arid soils, such as those from Zhao et al.
(2018), which have ϕ values as low as 0.2.

Fig. 10 shows estimated λ(S) curves with the NN-MLD model for
three representative soils: Stable Island sand with 100% sand and 100%
quartz from Tarnawski et al. (2015), E01 loam with 45 % sand and 9 %
clay from Zhao et al. (2018), and FS#1 silty clay with 0 % sand, 42 %
clay and 21 % quartz from Tarnawski et al. (2015). These soils represent
sand, loam, and silty clay, with porosities of 0.36, 0.55 and 0.51. The
estimated λsat and λdry values are 3.497 and 0.217 W m−1 K−1 for sand,
1.806 and 0.256 W m−1 K−1 for loam, and 1.319 and 0.174 W m−1 K−1

for silty clay, respectively. The Sf and p values are also calculated from
predictors, yielding Sf = 0.013, 0.138 and 0.410, and p = 0.025, 0.289
and 0.332 for sand, loam, and silty clay, respectively. The three esti-
mated λ(S) curves show typical characteristics: within the hydration
regime, the λ(S) curve of the silty clay soil has the most pronounced ‘flat
tail’, behaving like fine-textured soils. The λ(S) curve of the sand soil
shows the most drastic increase in the pendular regime and the largest
magnitude of λ over the entire S range, typical of coarse soils. As S ap-
proaches 1, all three curves converge to λ = λsat, indicating that the MLD
model (Eq. [2]) effectively overcomes the limitation of the LD model
near saturation.

4.5. Comparison with pre-existing λ(S) models

We perform a comparative analysis of the NN-MLD model with five
pre-existing λ(S) models (i.e., three model types, with two of them
subject to two types of calibration) using the testing dataset. The results
presented in Fig. 11 demonstrate that the NN-MLD model stands out as
the only model providing reliable estimates, with observed and esti-
mated values closely aligned. In contrast, the other models exhibit sig-
nificant scatter, deviating from the 1:1 line, and they show a clear
tendency to overestimate λ in the lower λ range (< 0.7 W m−1 K−1).
Fig. 12 presents the four error metrics for these models to estimate λ.
Among the evaluated models, the NN-MLDmodel demonstrates superior
performance across all four metrics: it achieves the lowest NRMSE of
0.049, the lowest MAE of 0.098 W m−1 K−1, the lowest AIC score of
−1699, and the highest R2 of 0.94. In comparison, the other models
yield NRMSEs ranging from 0.092 to 0.100, MAEs ranging from 0.193 to
0.210 W m−1 K−1, AICs scores ranging from −1111 to −1038, and R2

values from 0.76 to 0.78. These results indicate that the NN-MLD model
developed in this study is the most accurate and reliable model among
those assessed.

Fig. 12 also shows the error metrics obtained for six models across
ten S classes, detailing the error analysis results for each class. The re-
sults clearly demonstrate that the NN-MLD model substantially out-
performs the pre-existing models across all S ranges. This improved
performance is particularly evident in the intermediate S range. For
example, for S values ranging from 0.6 to 0.7, the NN-MLD model has a

Fig. 13. The Sf and p maps estimated with the NN-MLD model using the data points at surficial horizon within WoSIS Soil Profile Database.
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NRMSE of 0.033 and an MAE of 0.079 W m−1 K−1. In contrast, the other
models exhibit limited accuracy with NRMSEs ranging from 0.108 to
0.120 and MAEs ranging from 0.245 to 0.256 W m−1 K−1, which are
approximately three times larger than those of the NN-MLD model.
Additionally, for S values from 0.3 to 0.4, the NN-MLD model attains a
much higher R2 value of 0.91, compared to R2 values of only 0.27 to 0.34
for the other models. Our analysis shows that the performances of the R-
L07 and R-CK05 models rank in second and third place for most S
ranges. In comparison, the original versions of the J75, CK05, and L07
models demonstrate inferior performances based on the four metrics
considered.

In recent years, there has been significant progress in applying neural
networks to estimate the values of soil λ (Zhang et al., 2020a; Zhang
et al., 2020b; Li et al., 2022). However, a key limitation in these studies
is the lack of publicly available raw codes for implementing these

models, which has hindered direct comparisons against them both
within this study and with others in the field. To address this gap, we
have made both the dataset used in this study and the trained NN-MLD
model publicly accessible through Mendeley Data (Fu, 2024), allowing
future researchers to replicate the results and facilitate comparisons
more easily.

5. Conclusions and outlook

In this study, we first develop the MLD model which accurately de-
scribes λ(S) data across the full range of saturation levels. The NN model
is then used to establish PTFs to estimate the MLD model parameters
(λsat, λdry, Sf and p) using soil basic properties. The hyperparameters of
the NNmodel are tuned with Optuna using a calibration dataset, and the
final model architecture, incorporating the optimized hyperparameters,

Fig. 14. The λsat and λdry maps estimated with the NN-MLD model using the data points at surficial horizon within WoSIS Soil Profile Database.
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is identified and saved as the NN-MLD model. Evaluation on an inde-
pendent testing dataset shows that, compared to pre-existing models,
the new NN-MLD model is the best model to describe the λ(S) rela-
tionship accurately over the entire range of saturation for various types
of soils. The NN-MLD model is implemented in Python code under an
open-source license which can be found in Supplementary Material. It
can make thermal property estimations for a variety of scenarios and
scales. An example using soil properties from the WoSIS Soil Profile
Database by Batjes et al. (2024) as inputs into the NN-MLD model to
generate a global distribution of parameters λsat, λdry, Sf and p is also
presented (Figs. 13 and 14). This highlights the potential of the NN-MLD
model to be incorporated into land surface models, enabling the
description and parameterization of soil processes at large spatial scales.

While the NN-MLD model shows promising performance, several
potential improvements and avenues for future research remain. First,
the established PTF (NN-MLD) is primarily based on mineral and
repacked soils, which may limit its applicability to organic and well-
structured soils. Organic soils, such as peat, and undisturbed soils with
microaggregated structures can exhibit significantly different thermal
properties due to their unique composition and structure (Abu-Hamdeh
and Reeder, 2000; Zhao et al., 2019; Schjønning, 2021). These differ-
ences will inevitably affect the fitted MLDmodel parameters, potentially
challenging the validity of the NN-MLD model. Therefore, a more
comprehensive database should further increase the capabilities of the
established PTF. Second, predictors for the PTF should be both spatially
specific and easily identifiable, requiring minimal time and experi-
mental effort while still providing relevant information. To capture soil
diversity and spatial heterogeneity, environmental variables such as
topography, climate, and land cover must be integrated into the devel-
opment of PTFs, particularly when considering global model applica-
tions (Van Looy et al., 2017). Finally, since both θ and ϕ, which
significantly influence λ, can vary over time due to factors such as soil
wetting- drying cycles, freezing-thawing cycles, or land management
practices, developing a temporal PTF would be a valuable next step
(Vereecken et al., 2022). This could allow the model to account for the
dynamic nature of soil properties and improve its capabilities for time-
varying scenarios.
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