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Abstract

Intron splicing is a critical step that pre-mRNA transcripts undergo to become mature mRNAs. Although long thought to
occur in a single step, introns are now also known to be removed by a multi-step process called recursive splicing. In recur-
sive splicing, the spliceosome removes the intron one segment at a time with segments defined by discreet sequences called
recursive splice sites. As each segment is removed, the remaining downstream intronic sequence is brought into contact with
the upstream exon. Recursive splicing can be detected through RNA-seq analysis because it produces a “sawtooth” pattern
of read depth across intron length with peaks corresponding to sites in the ephemeral partially spliced introns where the
remaining downstream intron segments contact the upstream exon. Recursive splicing can also be detected by RNA lariat
sequencing and real-time imaging of single-cell transcriptional and splicing dynamics. These methods have been applied to
fruit flies, humans, and mice, revealing that recursive splicing 1) increases in prevalence with intron length, and 2) increases
splicing fidelity, particularly in long introns. However, intron lengths in the typically sized genomes of these model organ-
isms fail to represent the diversity that exists across the tree of life. Species with gigantic genomes like salamanders and
lungfishes have introns that are ten- to 50-fold longer. Future studies targeting recursive splicing in gigantic genomes will
provide a unique perspective on its functional significance and will also reveal whether this splicing mechanism plays a role
in overcoming constraints placed on transcriptional capacity and efficiency by enormous introns.
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Introduction

In a typical eukaryotic cell, DNA is transcribed into a pre-
mRNA transcript that must undergo further processing in
order to make a mature mRNA transcript. A cap structure is
added to the 5’ end, a poly-adenylated tail is added to the 3’
end, and the introns are spliced out (Proudfoot, et al. 2002).
In the canonical form of splicing, introns are removed all at
once by two reactions catalyzed by the spliceosome. In the
first reaction, called branching, the intron is cleaved from the
5" exon and a lariat-3’ exon intermediate is formed. In the
second reaction, called exon ligation, the 5’ and 3’ exons are
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ligated together and the lariat intron is released (Wilkinson,
et al. 2020).

An alternative to this canonical splicing mechanism was
later discovered (Gehring and Roignant 2021). This non-
canonical form of splicing — called recursive splicing
(RS) — works by removing introns in multiple sequential
pieces instead of all at once (Hatton, et al. 1998; Burnette,
et al. 2005). The mechanism works by splicing out a sec-
tion of intron flanked by discreet splicing sites, referred
to as recursive splice sites (RSS) (Duff, et al. 2015; Kelly,
et al. 2015; Sibley, et al. 2015). These subsections are still
removed using lariat structures and spliceosomes (Hoppe,
et al. 2023). As each is removed sequentially, the remaining
downstream intronic sequence is brought into contact with
the upstream exon at the RSS (Sibley, et al. 2015; Geor-
gomanolis, et al. 2016).

The ephemeral, partially spliced introns formed as inter-
mediates during recursive splicing can be identified through
deep sequencing of total RNA, or rRNA-depleted RNA-seq
libraries constructed without using poly-A selection (Sibley,
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et al. 2015). Their existence results in uneven RNA-seq read
depths across the entire length of the intron that produce a
characteristic sawtooth pattern of depth of coverage with the
RSS defining the edges of the sawtooth. Based on the identi-
fication of this pattern, recursive splicing has been identified
in several model species: In Drosophila, several hundred
recursive splicing events were identified (Duff, et al. 2015;
Joseph, et al. 2018). In humans, 435 putative RSS were iden-
tified, 9 of which were verified experimentally (Sibley, et al.
2015). In mice, only 19 recursive splice sites were identified
(Moon and Zhao 2022) (Fig. 1).

As analytical methods developed to include intron lariat
sequencing and single-molecule imaging, recursive splic-
ing was revealed in ~30% of human genes, in introns of all
lengths, and in multiple cell types (Wan, et al. 2021; Hoppe,
et al. 2023). Importantly, recursive splicing was found to
occur at intronic positions above and beyond the previously
identified conserved sites; RSS selection was also shown to
be stochastic, removing introns in a variety of different seg-
ments defined not at conserved sites, but rather by random
selection by the spliceosome of one of many possible RSS
(Wan, et al. 2021). This stochastic process produces diverse,
transient intermediate RNA molecules that would not appear
as a sawtooth pattern in RNA-seq datasets. Instead, they
would appear as a pattern of decreasing RNA-seq read depth
across the length of the entire intron, the pattern that is also
predicted under canonical cotranscriptional splicing. These
approaches have not yet been widely applied to species
beyond humans.

Within taxa, the presence of recursive splicing has been
shown to correlate with intron length; most RSS in Dros-
ophila occur in introns longer than 40kb, most RSS in mice
occur in introns longer than 51kb, and recursive splicing
at both conserved and stochastic sites is more prevalent in
longer introns in humans, which also tend to be the first
intron (Bradnam and Korf 2008; Sibley, et al. 2015; Pai,
et al. 2018; Wan, et al. 2021; Moon and Zhao 2022; Hoppe,
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et al. 2023). In Drosophila, several lines of evidence suggest
that recursive splicing is functionally important for intron
splicing. RSS are distributed non-randomly across the long-
est introns, subdividing the longest ones into equal subsec-
tions (Burnette, et al. 2005; Joseph, et al. 2018; Pai, et al.
2018). Additionally, splicing becomes increasingly noisy
and error-prone as intron lengths increase, and recursive
splicing leads to more accurate, albeit slower, splicing of
the longest introns (Pai, et al. 2018). In humans, splicing
also becomes noisier and more error-prone as intron length
increases (Pickrell, et al. 2010). Interestingly, however, ini-
tial estimates of recursive splicing in humans and mice —
which targeted nervous system tissue, as it is characterized
by longer transcript lengths — revealed lower levels than
those seen in flies, despite overall longer intron lengths (Sib-
ley, et al. 2015; Joseph, et al. 2018; Moon and Zhao 2022).
Thus, the general relationship between intron length and reli-
ance on recursive splicing remains unclear.

To date, all of the work on recursive splicing has exam-
ined introns in the typically sized genomes of model organ-
isms. However, natural genome size diversity extends across
a much greater range than is seen across humans, mice, and
Drosophila; salamanders and lungfishes, for example, dem-
onstrate up to a 40-fold increase in genome size relative
to humans (Gregory 2025). As genomes evolve towards
larger sizes, the amount of protein-coding DNA does not
increase in proportion to overall genome size (Aparicio,
et al. 2002). Instead, genomic expansion reflects a relative
increase in transposable elements and intronic sequence
(Smith, et al. 2009; Sun, et al. 2012; Schartl, et al. 2024).
On average, intron length in the model salamander Ambys-
toma mexicanum (genome size = 32 Gb) is 13 times longer
than in humans, and similar intronic expansion is seen in
the Australian lungfish Neoceratodus forsteri (genome size
= ~50 Gb) (Nowoshilow, et al. 2018; Meyer, et al. 2021).
The largest salamander and lungfish genomes are ~120 Gb,
suggesting that intron lengths in these taxa may be ~50 times
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Fig. 1 Example of RSS identification in a human CADM1 intron fol-
lowing the pipeline outlined in (Sibley, et al. 2015). The RNA-seq
dataset comprises ~25.9 Gb of Illumina HiSeq 100 bp paired-end

sequence data from libraries constructed from rRNA-depleted total
RNA extracted from liver tissue (SRX20105218). The edge of the
characteristic “sawtooth” is indicated with a dotted line
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the lengths of human introns. Considering these extraordi-
nary intron lengths, species with expanded genome sizes
provide a powerful system in which to examine the rela-
tionship between intron length and recursive splicing. Over
the last decade, advances in sequencing and assembly have
made gigantic genomes amenable to genomic and transcrip-
tomic analyses (Warren, et al. 2015; Stevens, et al. 2016;
Nowoshilow, et al. 2018; Wang, et al. 2021; Schartl, et al.
2024), opening the door for genomic and RNA-seq-based
studies of recursive splicing that leverage natural diversity
in genome size. More generally, we note that relatively little
research has focused on how extreme genomic expansion
alters the transcriptional processes of the cell (Sessions and
Wake 2021; Taylor, et al. 2024), although increased genome
size has been connected to increased nucleus size, cell size,
and changes at the tissue and organ levels (Gregory 2001;
Marguerat and Béhler 2012; Itgen, et al. 2022).

Based on existing data, one logical hypothesis is that the
long introns in gigantic genomes would experience noisy,
error-prone splicing if excised as single lariats, and that
more widespread reliance on recursive splicing might have
evolved to curb this noise. This hypothesis could be tested
with RNA-seq read depth-based analysis, using the human
genome both as a positive control for validating the RSS
identification pipeline, and as a point of comparison repre-
senting a typically sized vertebrate genome (Sibley, et al.
2015). Although this approach undercounts total recursive
splicing levels, comparing results between the gigantic
genome and the much smaller human genome analyzed
using the same approach would provide a preliminary test
of whether genomic expansion is correlated with increased
reliance on recursive splicing (Sibley, et al. 2015). Lariat
sequencing as well as dynamic real-time imaging of single-
cell transcriptional and splicing dynamics in species with
enormous genomes could also be undertaken, enabling more
exact comparisons between recursive splicing levels in spe-
cies with extremely long introns versus more typical (i.e.
human) vertebrate intron lengths (Wan, et al. 2021; Hoppe,
et al. 2023). Notably, comparative analyses of lungfish and
salamander transcriptomes with those of fish with smaller
genomes suggest that increases in genome size are asso-
ciated with increases in pervasive transcription, suggest-
ing a noisier transcriptional environment overall (Fuselli,
et al. 2023). Thus, the relationship between intron splicing
mechanism, intron length, and tolerable levels of transcrip-
tional error may be complex across evolutionary diversity in
genome size and is an important target for future research.

In addition to the intron length variation that exists
across species with different genome sizes, there is also
intron length variation within genomes. Early zygotic genes
in model organisms with smaller genomes (flies, mosqui-
tos, zebrafish, and mice) typically have relatively short
intron lengths, reflecting the constraints imposed on total
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transcription time by rapid cell division during this period of
development, as transcription is suppressed during mitosis
(Heyn, et al. 2015). In the large genome of the salamander
Ambystoma mexicanum, developmental genes overall have
shorter introns than non-developmental genes, which may
also reflect constraints on transcription time throughout
development (Nowoshilow, et al. 2018). Somewhat surpris-
ingly, Drosophila genes showing evidence for recursive
splicing were enriched for developmental processes based
on Gene Ontology analysis (Joseph, et al. 2018), suggesting
that both speed and accuracy may be especially relevant for
genes active during development. Similar analyses have not
yet been done in gigantic genomes. The relationship between
intron length and recursive splicing may reflect multiple
interacting functional demands that vary across large and
small genome sizes and is another important target for future
research.

Overall, we advocate for the molecular evolutionary biol-
ogy community to engage in research aimed at the transcrip-
tional and splicing dynamics of genomes from phylogeneti-
cally diverse taxa that cover the full range of genome sizes.
These data, in turn, will shine light on whether recursive
splicing plays a role in driving intron evolution, including
accommodating the extraordinary increases in intron size
that have occurred in the largest genomes.
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