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 A B S T R A C T

Many microbial eukaryotes have unicellular life stages, but can also form multicellular colonies. We explored 
hydrodynamic consequences of colony morphology, which affects swimming and flux of prey-carrying water 
to cells in a colony, using the choanoflagellate, Choanoeca flexa, which forms cup-like colonies that can 
turn inside-out so flagella line the cup’s interior or cover its outside surface. Detailed hydrodynamic models 
incorporating cell morphologies are not feasible for colonies with many cells. Therefore, we designed a reduced 
model of each cell using regularized-force-dipoles with parameters optimized (by selecting the regularized delta 
function from a given class) to match the flow-field of a detailed model of a cell. Calculated swimming speeds 
and water flux to flagella-in colonies match those measured for living C. flexa. For a given shape (flat bowls, 
hemispheres, spherical cups) of flagella-in colony, models showed that swimming speed and water flux towards 
the colony increases with cell density, although flux per cell is independent of density. Denser packing of cells 
at the front of flagella-in colonies increases swimming speed and flux to cells at all positions in the colonies. 
Flagella-in colonies swim more slowly, but produce higher water flux per cell than do flagella-out colonies of 
the same configuration, suggesting that flagella-out colonies are better swimmers, whereas flagella-in colonies 
are better feeders. A model flagella-out colony with morphology matched to a real C. flexa requires a flagellar 
force 5–10 times greater than that for flagella-in colonies to achieve the measured swimming speed, suggesting 
flagella beat differently on flagella-out colonies.

1. Introduction

Microbial eukaryotes that eat bacteria are critical elements in 
aquatic food webs (e.g. [1,2]). Their swimming, feeding, and predator 
avoidance depend on their hydrodynamics. Although many microbial 
eukaryotes can form multicellular colonies, the consequences of colony 
morphology to their hydrodynamic performance are poorly understood. 
Here we focus on choanoflagellate protozoans to explore how aspects 
of colony design can affect their swimming and creation of feeding 
currents. Species of choanoflagellates that can be unicellular or form 
multicellular colonies of different designs by cell division [3], enable 
us to study within a single species the effects of colony formation and 
design on performance.

1.1. Choanoflagellates

Not only are choanoflagellates abundant in marine and freshwater 
habitats where they are important bacteria-consuming components 
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food webs, but they are also of great interest evolutionarily (reviewed 
by [3,4]). The evolution of animals from protozoan ancestors had a 
profound effect on the history of life on Earth. Molecular phylogenetic 
and comparative genomic analyses have shown that choanoflagellates 
and animals shared a common ancestor (e.g. [5–7]). A choanoflagel-
late cell (Fig.  1(a)) swims by waving a single flagellum, which also 
creates a water current that carries bacterial prey to a collar of rod-
like microvilli surrounding the flagellum. Sponges (primitive animals) 
have ‘‘flagellated chambers’’ lined by cells (‘‘choanocytes’’) that have 
the same structure as choanoflagellates and that catch bacteria from 
the water they pump through the sponge [8,9]. Choanoflagellates are 
studied to provide insights about how the protozoan ancestors of ani-
mals might have functioned (e.g. [7,10–12]). By investigating aspects 
of the hydrodynamics of choanoflagellates that affect their ecological 
interactions, we can make informed inferences about possible selective 
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Fig. 1. Frames of videos of choanoflagellates and diagrams of cell and colony morphology. (a) A unicellular choanoflagellate has an ovoid cell body with a single flagellum 
surrounded by a collar of 20–40 microvilli. When the flagellum beats, the cell swims to the left and water is drawn past the collar, where bacterial prey are caught. (b) A 
flagella-in colony of C. flexa and a diagram of a cross-section of that colony. (c) A flagella-out colony of C. flexa and a diagram of a cross-section of that colony. The green dotted 
curves indicate the intake zones that will be used to calculate the flux of prey-carrying water to the colonies.

pressures on their ancestors at the time of animal origins (reviewed 
by [12]).

One critical step in the evolution of animals from a choanoflagellate-
like ancestor was becoming multicellular. The choanoflagellates Salp-
ingoeca rosetta and Salpingoeca helianthica, which have complex life 
cycles with unicellular and multicellular stages, have been used to 
study the molecular mechanisms involved with colony formation and 
sensation (reviewed by [7,13]) as well as the hydrodynamic and eco-
logical consequences of being unicellular versus multicellular (reviewed 
by [12]). Experiments comparing the performance of unicellular versus 
multicellular stages of S. rosetta revealed that single cells are better 
swimmers, exploring the water for patches of prey bacteria [12,14], 
whereas cells in colonies feed at higher rates [12]. Although there 
is no difference between colonies and single cells of S. helianthica in 
the danger of being captured by passive protozoan predators [15], 
colonies put out larger hydrodynamic signals and are more susceptible 
to raptorial protozoan predators than are single cells [16], but are too 
large to be engulphed by suspension-feeding protozoan predators that 
can eat unicellular choanoflagellates [12].

S. rosetta and S. helianthica form colonies that are chains of cells 
or that are rosettes of cells with the flagella pointing outwards. An 
important morphological difference between choanoflagellate rosette 
colonies and sponges is that the flagella cover the outside surface of 
a rosette colony, whereas they point inwards, lining the walls of a 
cavity in a sponge flagellated chamber. We studied the choanoflagellate
Choancaeca flexa, which forms cup-shaped colonies that can turn them-
selves inside-out in response to environmental signals such as changes 
in light or mechanical stimulation [11,13,17–21]. C. flexa enabled us 
to use just one species to compare the hydrodynamic consequences of 
having flagella covering a colony’s outer surface versus lining a cavity, 
where the same cells could compose colonies of each configuration. 
Brunet at al. [11] observed that flagella-out colonies of C. flexa swam 
more rapidly than flagella-in colonies, whereas a greater proportion 
of the cells in flagella-in colonies ate microbeads than did the cells in 
flagella-out colonies. Therefore, they proposed that there is a trade-off 

between swimming and feeding performance of C. flexa colonies. By 
studying the hydrodynamics of each colony configuration, we can study 
the mechanisms responsible for these performance differences.

1.2. Modeling approaches for choanoflagellate hydrodynamics

Various simplifications have been made to model the hydrodynam-
ics of choanoflagellates. Some species of choanoflagellates (including
S. rosetta) have a unicellular life stage that is attached to a surface. 
Early approaches to modeling an attached unicellular choanoflagellate 
represented the flagellar dynamics by a line or helical arrangement 
of Stokeslets, and accounted for the collar of microvilli by prescrib-
ing a pressure drop that depended upon an assumed collar geometry 
(e.g. [22–24]). Smith [25] described a regularized Stokeslet method to 
simulate the flow produced by a flagellum. Nguyen et al. [26] used 
that approach and were the first to include the collar of microvilli 
into models of unicellular S. rosetta and to explore the complicated 
effects of the collar and flagellar dynamics on swimming and feeding 
performance. Similarly, Nielsen et al. [27] presented a detailed model 
representing the cell body, the microvilli, and the undulatory flagellum 
of the unicellular choanoflagellate Diaphanoeca grandis, which forms a 
basket-like structure (‘‘lorica’’) that surrounds the cell and collar. They 
used the model to explore the effect of the lorica to the flow and forces 
on the flagella.

Building models of multicellular choanoflagellates using detailed 
models of each cell becomes computationally expensive as the number 
of cells in a colony increases, so a variety of simplifying approaches 
have been used. Roper et al. [28] measured the flow produced by 
a single attached S. rosetta and then represented each flagellum in 
their model by a point-force that generated a far-field flow matched 
to the measured one. They then constructed free-swimming colonies of 
different sizes and configurations, representing the flagellum of each 
cell by that point force. Kirkegaard & Goldstein [29] analyzed the flow 
produced by chain and rosette colonies of S. rosetta, modeling each cell 
with a rod-shaped flagellum and a spherical cell body, but no collar. 
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Recently, C. flexa colonies [30] have been modeled by cells distributed 
on spherical rafts driven by point-force flagella. Swimming speed and 
fluxes into the colony surface for various shapes were calculated, and 
colony inversion was modeled by actively changing curvatures of the 
colony geometry. Although these models do not incorporate the collars, 
they have enabled exploration of the effects of some aspects of colony 
design on the swimming and feeding performance of multicellular 
choanoflagellates.

In the study presented here, we designed a reduced model of a 
choanoflagellate cell using regularized-force-dipoles with parameters 
optimized to match the flow-field of a detailed model of a cell, and 
then used those force-dipoles to construct large cup-shaped flagella-in 
and flagella-out colonies. We tested this approach by comparing the 
performance of model colonies with that measured for C. flexa colonies. 
Then the models were used to explore the effects of various aspects of 
colony morphology on swimming speed and flux of prey-carrying water 
to the cells in a colony.

2. Methods

2.1. Measurements of living Choanoeca flexa

We used videomicrography to record the morphology, swimming, 
and water flow produced by flagella-in and flagella-out colonies of
C. flexa, which were cultured as described by [11]. Because C. flexa
stick to glass surfaces, we videotaped colonies in square plastic wells 
(15 × 15mm, height 0.8 mm) fabricated by gluing 3D-printed PLA walls 
to polycarbonate lids (35 mm diameter) of FluoroDishes (FD35-100, 
World Precision Instruments). Aliquots (220 μl) of C. flexa culture 
(taken 24 to 60 h after a culture had been passaged) were transferred 
into these wells using 3ml plastic transfer pipettes. Colonies in culture 
are flagella-in, so to videotape flagella-out colonies we induced colonies 
to turn inside-out by adding caffeine to produce a 10mM solution 
(details in [11]). We visualized water flow in these wells by tracking 
1 μm polystyrene beads. We diluted 800 μl of a stock suspension of 
beads (Thermo Scientific 4009 A) in 10 ml of distilled water and added 
12 μl of this diluted suspension to the culture in a well. We gently mixed 
the fluid in a well by slowly drawing then expelling the mixture three 
times using a 3 ml plastic pipette so that the beads were uniformly 
distributed. The well was then capped with a glass coverslip and was 
immediately viewed in bright field using a Leica DMLS microscope 
illuminated by a fiber-optic light source so that temperature in the well 
was kept at 20 ◦C. Using a magnification of 40x, videos were recorded 
at 30 fps using a HiSpec 1 camera (Fastec Imaging) for durations 
of 7–54 s. To minimize wall effects, all observations of swimming 
colonies were made at least 50 μm away from any surface. Videos 
were only made during the first 15 min after a well was prepared 
to avoid any artifacts that might be caused by the beads that the
C. flexa captured on their collars. These videos were used to make 
morphological measurements of colonies using Image J or MATLAB 
software, to track particle paths and to determine swimming speeds 
using MTracker J software, and to measure water flow fields around 
colonies using Particle Image Velocimetry (PIV) software (DaVis 10.2, 
LaVision). All linear measurements were made to the nearest pixel and 
converted to μm (2.88 pixel∕μm).

2.2. Mathematical model

2.2.1. Detailed model of choanoflagellates
At the small length scales of choanoflagellates, inertia does not play 

a part in their hydrodynamic performance, and, therefore, the flow 
around them is well-described by the incompressible Stokes equations. 
Nguyen et al. [26] presented a three-dimensional computational model 
of a single choanoflagellate in a Stokes fluid that explicitly represented 
the cell body, individual microvilli of the collar, and time-dependent 
flagellar dynamics. They demonstrated that morphological details did, 

Table 1
Geometric and waveform parameters used in the detailed computational model of a
C. flexa cell.

 Feature Value Reference 
 Cell length la 5 μm c  
 Cell width lb 3.7 μm a  
 Microvilli length lmi 8 μm a  
 Number of microvilli 32 b  
 Half angle of collar �mi 27.2◦ a  
 Flagellum tapering parameter c 4 μm a  
 Flagellum wave number k 2�∕16 μm−1 a  
 Flagellum amplitude A 2.5 μm c  
 Flagellum beat frequency ! 30 Hz c  
 Flagellum projected length L 19.2 μm a  
 Flagellum arclength L̃ 22.3 μm a  
a Model parameters for C. flexa measured or estimated from micrographs and TEMs in 
[11].
b Model parameters of S. rosetta from table 1 in [26].
c Measurements from Koehl lab posted at:
https://ib.berkeley.edu/labs/koehl/resint/multicellularity.html.

indeed, affect swimming and feeding performance. Longer microvilli 
reduced speed and cell shape only affected speed when the collar of 
microvilli was very short. Using fluid flux through a capture zone as a 
proxy for bacterial prey capture, they found that models that ignore 
the collar overestimate flux and greatly overestimate the benefit of 
swimming to feeding performance.

While the detailed model in [26] was based upon the solitary S. 
rosetta, here we have adjusted it to incorporate some measured features 
of C. flexa morphology (see Table  1). We make the assumption that 
the flagellum of the relaxed C. flexa cell undergoes a planar, sinusoidal 
motion during its beating and prescribe the kinematics as: 

x(s, t) = s, y(s, t) = A(1− exp(−s∕c)) sin(ks−2�wt), z(s, t) = 0, 0 ≤ s ≤ L,

(1)

where s is arclength and x(⋅, t), y(⋅, t), z(⋅, t) is the curve describing the 
time-dependent shape of the planar flagellum. We also assume that the 
individual microvilli comprising the collar are rigid, and their shape is 
prescribed as 

x(s, t) = s5 lmi cos(�mi), y(s, t) = slmi sin(�mi), z(s, t) = 0, 0 ≤ s ≤ 1.

(2)

Fig.  2 shows the computed streamlines and flow velocity magni-
tudes around three swimmers: one with no collar, one with a short 
collar, and one with a collar length typical for C. flexa. Here the 
streamlines are depicted in the flagellar plane above the centerline, 
and the velocities giving rise to these streamlines have been averaged 
over a flagellar beat period and over twelve half-planes at equally 
spaced angles around the x-axis. In each case, we see streamlines 
characteristic of pushers, where the flow along the axis of the swimmer 
points outwards, in opposite directions, at its front and back, and flow 
points inwards from above and below towards its middle. The vertical 
dashed red lines in each snapshot indicates the cell body centroid, and 
also the location of separatrix in the flow field away from the swimmer. 
We note that the location of this separatrix varies with collar length, 
and marches away from the cell body as the collar grows.

For a prescribed flagellar beat pattern, this detailed model identifies 
features of the fluid motion created by the organism in the immediate 
region around it and in the far field. When analyzing the flow features 
of a colony of choanoflagellates, which may contain dozens or hun-
dreds of organisms, such a detailed model becomes computationally 
expensive as the number of colony members grows. To analyze the 
collective motion of many choanoflagellates, we choose to represent 
each member by a reduced model consisting of a single regularized 
element that approximates the time-averaged far-field flow generated 
by the detailed model, so that there is consistency in the far-field 
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Fig. 2. Streamlines and flow velocity magnitudes above the flagellar axis averaged over one beat period and over twelve half-planes at equally spaced angles around the x-axis, 
for three swimmers: (a) no collar, (b) short collar, and (c) full collar. Dashed red lines indicate position of cell center and separatrix of the pusher flow field. Here the flow was 
computed using a detailed morphological model as in [26].
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Fig. 3. Schematic of the configuration of two equal and opposite regularized Stokeslets 
prior to the limiting process that takes l → 0. The regularization parameters � − Cl
and � + Cl converge to the same value � as l → 0.

fluid velocity produced by the two models. This approach of using 
reduced models of single cells to study the fluid dynamics of colonies 
of choanoflagellates was used in [28] and more recently in [30,31].

2.2.2. Reduced model preliminaries
The basic situation of a flagellum pushing fluid backward while the 

cell body swims forward gives rise to a simple model of a self-propelled 
organism consisting of a force dipole (stresslet) [32,33], which decays 
as r−2 with the distance r from the organism. Other models related to 
the force-dipole model represent an organism by two or a few point 
singularities [30,34–36], as two spheres [37], or as a small sphere with 
prescribed surface velocity (squirmer) [38–40]. In [41,42], the force-
dipole model was extended to include a potential dipole at the same 
location as the stresslet, which breaks the fore-aft symmetry to provide 
propulsion.

Here, we use this formulation [41,42] where the regularized el-
ements are located at a single point. The placement of this point, 
relative to the virtual cell body center, will be selected as part of 
our optimization procedure so that the far-field flow produced by this 
reduced model approximates the fluid flow computed using the detailed 
morphological model. As part of this new approach, the regularizing 
function used in the regularized Stokeslet formulation is not preset, 
rather some parameters of this function are selected in our optimization 
procedure. This will be described in detail below.

In R3, the velocity induced by a single regularized force f applied 
at x0 is the regularized Stokeslet, which can be written in the form 
u(xe) = S(x, �)f = H1(r, �)f + (f ⋅ x)xH2(r, �) (3)

where x = xe − x0 and r = |x|, and xe is the evaluation point. This 
expression is the exact solution of the Stokes equations ∇ ⋅u = 0, ��u−

∇p = −f��(r). Here, u is the fluid velocity, p is the pressure, � is the 
fluid viscosity, f is a force coefficient, and � is a small positive length so 
that ��(r) is a smooth approximation of the Dirac delta function and is 
localized in a small sphere centered at the point x0, where the force is 
applied [43,44]. The regularization parameter � is part of H1(r, �) and 
H2(r, �).

As depicted in Fig.  3, we adapt the model in [37] and place two 
equal but opposite forces at a distance 2l from each other:
S(xe − x0 − l�̂; � + Cl)f − S(xe − x0 + l�̂; � − Cl)f .

For self-propulsion, it is important that the two forces be regularized 
with different parameters, which has been included in the expression 
above by using the regularization parameters � + Cl and � − Cl. This 
breaks the aft-fore symmetry in the model and determines a swimming 
direction.

Setting f = (q0∕2l)�̂ and taking the limit as l → 0 while keeping q0
fixed gives the force-dipole fluid velocity at evaluation point xe:

u
fd (xe) = −q0(�̂ ⋅ ∇)S(x, �)�̂ + Cq0

)

)�
S(x, �)�̂,  where x = xe − x0.

The last term is simplified by writing it in terms of derivatives with 
respect to r= |x| [41,42] and using the decay rates H1(r, �) ∼ r−1 and 
H2(r, �) ∼ r−3 for large r. These imply that H1(r, �) = �−1H1(r∕�, 1)

and H2(r, �) = �−3H2(r∕�, 1), which can be combined into the single 

expression Hk(r, �) = �1−2kHk(r∕�, 1) for k = 1, 2. Then
)

)�
Hk(r, �) = (1 − 2k)�−2kHk(r∕�, 1) + �

1−2k(−
r

�2
)
)

)r
Hk(r∕�, 1)

= −
1

�
((2k − 1)Hk(r, �) + r

)

)r
Hk(r, �))

The result is 
u
fd (xe) = −q0(�̂ ⋅∇)S(xe −x0, �)�̂ − b0

(
J1(r, �)�̂ + (x ⋅ �̂)xJ2(r, �)

)
∕�2 (4)

where b0 = Cq0� and

J1(r, �) = r
)H1(r, �)

)r
+H1(r, �) (5)

J2(r, �) = r
)H2(r, �)

)r
+ 3H2(r, �) (6)

We make the following observations about the model:

1. The regularization function that has been used extensively with 
the method of regularized Stokeslets is:

 �(r) =
15�4

8�(r2 + �2)7∕2
.

There are many choices of regularizing functions. In order for 
the reduced model to have flexibility to adjust some details of its 
near-field velocity to match with the velocity computed by the 
detailed model, we choose to use a regularizing function with 
two undetermined coefficients that can be found as part of an 
optimization procedure. We use: 

��(r) =
15a1�

8 + 15b1�
6r2 + 3(42 − 8a1 − 4b1)�

4r4

16�(r2 + �2)11∕2
(7)

where the coefficients guarantee that the integral of �� is 1. The 
parameters a1 and b1 are to be determined based on desired 
flow properties. Note that this regularizing function has the same 
decay rate as the standard regularization function  � for large 
values of r. With the blob function in Eq. (7), we have
J1(r) =

1

1680�(r2 + �2)9∕2

(
10(−49 + 8a1 + 3b1)r

6�2

− 9(−196 + 44a1 + 27b1)r
4�4−

9(−112 + 33a1 − 6b1)r
2�6 + 2(112 + 37a1 + 6b1)�

8
)

and

J2(r) =
1

112�(r2 + �2)9∕2

(
−2(−49+8a1+3b1)r

4�2+3(4a1+5b1)r
2�4+21a1�

6
)
.

2. We will refer to Eq. (4) as the force-dipole model in this work. 
The expression for ufd (xe) consists of two terms centered at the 
same point x0, which is assumed to represent a point along the 
flagellum. The first term is a regularized stresslet with coeffi-
cient q0 that has units of force-length. The parameter q0 in our 
minimal model, when divided by the regularization length �, can 
be considered as the force generated by a flagellum. The second 
term is a regularized potential dipole with coefficient b0 that has 
units of force-length2. Both terms affect the flow generated by 
the force-dipole model of the choanoflagellate, but the values of 
the coefficients q0 and b0 may be set independently. Note that 
in its derivation, the value C denotes the fore-aft asymmetry 
of the model (Fig.  3). Since we define b0 = Cq0�, the ratio 
b0∕q0 indicates a particular amount of asymmetry, which will 
be explored in Section 3.5. The calibration of these parameters 
is discussed in the next section.

2.2.3. Calibration with the detailed hydrodynamic model
Thus far, the reduced swimmer model described above depends 

upon the choice of the parameters a1, b1, � in the regularization function 
(Eq. (7)), and the force dipole parameters b0 and q0 (Eq. (4)). In 
addition, to align the far-field flow produced by the reduced model 
with that produced by the detailed morphological model (e.g. Fig.  2), 
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Fig. 4. Calibration of reduced model with detailed model: (a) Schematic of force dipole model showing the location of the regularized force dipole (red square) with respect to 
the cell body center (blue dot), the resulting stagnation point (green dot), and the location of Stokeslet forces (green star). (b) Optimized blob functions for cells with different 
collar lengths resulting from matching flows generated by reduced cell model with flows generated by the corresponding detailed model. We observe that the force dipole moves 
further from the cell center (at x = 0) as the collar grows. (c) Optimized blob functions when fixing the regularized force dipole at x = 11.8 μm. Note that peak values of the 
optimized blob increase with collar length. (d) Flow velocities produced by the detailed model averaged over a beating cycle and over twelve equally-spaced half-planes containing 
the x-axis. Parameters used in detailed model are shown in Table  1. (e) Flow velocities produced by the optimized force dipole with q0 = 15.7 pN μm, b0 = 9.5 pN μm2, � = 3.7 μm, 
a1 = 0.5, b1 = −1.1, lh = 11.8 μm.

we will also determine the position of the regularized singularities 
with respect to the cell center along the swimming direction �̂. The 
schematic in Fig.  4(a) shows this offset parameter lh. This parameter, 
along with the three regularization parameters and two force dipole 
parameters, will be chosen to best match the velocity field generated 
by the reduced model to that of the detailed model. Note that once 
this offset parameter lh is determined, the distance between the force 
dipole and the stagnation point, ls, along the direction �̂ is determined 
by solving for ls so that ufd (ls�̂) = 0 (Eq. (4)). In Section 2.2.4, 
we will assemble the optimized force dipole cell models into colonies 
and place Stokeslets on the midpoints (denoted by a green star in 
Fig.  4(a)) between the cell center and the stagnation point of each 
cell to enforce the constraint that colonies move as rigid bodies. The 
colony velocity will be evaluated at the midpoints and we will also 
choose this midpoint as the point where we will evaluate a single cell’s
velocity. 

Our procedure to find optimal reduced model parameters is as 
follows. To get a benchmark far-field velocity, we run the detailed 
morphological model of the C. flexa swimmer for one flagellar beat 
period. We evaluate the fluid velocity field at a set of discrete grid 
nodes around the swimmer, and average these velocities over a beat 
period. For the cell body centered at [0, 0] μm, in the plane of flagellar 
beating z = 0 shown in Fig.  2, this region is the rectangular box 
[−15, 28]μm×[0, 15]μm excluding the near-field box [2.5, 10]μm×[0, 5]μm. 
We rotate this half-planar region about the x-axis, choosing twelve half-
planes at equally spaced angles around the axis, using a mesh size of 
1 μm. For the reduced model, with any choice of the six parameters 
(lh, b0, q0, a1, b1, �), we can quickly evaluate the velocity field induced 
by this regularized singularity at the same discrete set of grid nodes 
using Eq. (4). Then, with respect to these six parameters, we minimize 
the weighted l2 norm of the difference between the benchmark velocity 

field and that of the reduced model. In order to emphasize agreement 
in the far-field, we use the weight y2 + z2.

Fig.  4(d) shows the streamlines and velocity magnitudes, averaged 
over a beat period, around the detailed choanoflagellate model and 
Fig.  4(e) shows the streamlines due to the placement of the optimal 
regularized force dipole. As expected, the flow fields near and inside the 
microvilli collar are quite different, but the flow fields a few microns 
away from the organism agree nicely. We remark that in Fig.  4(e), the 
flow is produced by regularized elements at a single point. Figs.  4(d)
and 4(e), show the calibration of the reduced swimmer with the typical
C. flexa collar morphology and flagellar beat. We also investigate 
how the optimal singularity placement and regularization parameters 
depend upon collar size. The detailed model results shown in Fig.  2 
show that the collar has an effect on where the separatrix lies in the 
far-field. Fig.  4(b) shows the optimal regularized functions in Eq.  (7) 
for five model choanoflagellates, each with the same flagellar wave, 
but different collar lengths, from no collar up to the typical C. flexa
collar length. The distance between the force dipole location and the 
cell center, lh, does indeed increase as the collar length increases (the 
cell body center is at x = 0). In order to isolate how the optimal 
blob function changes with collar length, we fix lh at the optimal 
value found for the largest collar, but otherwise solve for the other 
optimal parameters. In particular, panel Fig.  4(c) shows the optimal 
blob functions �� for different collar lengths.

In [30], resistive force theory was used to estimate the force mag-
nitude exerted by a single C. flexa flagellum as 6.9 pN. In order to 
estimate the force magnitude exerted by our reduced model of a single 
cell, we go back to its derivation prior to taking the limit as l → 0

(Fig.  3). We choose l to be the length scale of the cell given by 
the regularization parameter �. This gives an estimated flagellar force 
magnitude of q0�−1. For the optimal values of � and q0 computed as 
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above, we find that this model force magnitude is approximately 4  pN. 
Additionally, we also note that flow velocities induced by the force-
dipole cell model scale linearly with the parameter q0 when the ratio 
b0∕q0 is held constant. 

2.2.4. A reduced colony model
We will now assemble the optimized force dipole cell models into 

colonies. In this work, we make the assumption that cells in colonies 
are rigidly held together by regularized Stokeslet forces. As such, given 
the flow field generated by each individual force dipole and Stokeslet 
force, the colony will translate and rotate as a rigid body. In order 
to achieve this, we will solve simultaneously for regularized Stokeslet 
forces at each cell location and the rigid body velocities, to satisfy 
free-swimming of the colony (total forces and torques generated by 
the colony should be zero). The location of these forces will be at the 
midpoint between the virtual cell center and the stagnation point.

In building a colony, we specify the position of the cell centers 
and the cell directions. Using the calibrated force dipole parameters, 
below we write down the equations that require the flow generated 
by the regularized force dipoles and the regularized Stokeslets to give 
velocities of a rigid body at the location of the Stokeslets. Denote 
the cell centers as {xcc

i
, i = 1, 2,… , N} and cell directions as {�̂ i, i =

1, 2,… , N}. Define the location of the Stokeslets by xmi
i

= xcc
i
−

lh−ls
2

�̂i
for i = 1, 2,… , N . Based on Eq. (4), the fluid velocity at location xmi

i

due to a calibrated force dipole at position xj with direction �̂j is

ufd (xmi
i
) =

N∑

j=1

−q0(�̂j ⋅ ∇)S(x
mi
i

− xj , �)�̂j

− b0

(
J1(r, �)�̂j + ((xmi

i
− xj ) ⋅ �̂j )(x

mi
i

− xj )J2(r, �)
)
. (8)

Now we can write the fluid velocities at xmi
i
 due to the force dipoles 

and the Stokeslets as 

ufd (xmi
i
) +

N∑

j=1

S(xmi
i

− xmi
j
, �)f j = U +
 × (xmi

i
− x0). (9)

Here f i is the unknown Stokeslet force and (S(xmii − xmi
j
, �)f j ) denotes 

the regularized Stokeslet flow at xmi
i
 due to a regularized force f j at xmij . 

Entries of S(⋅, ⋅) are defined in Eq. (3). The right hand side of Eq. (9) 
is the velocity at xmi

i
 of a rigid body translated with velocity U and 

rotated with respect to x0 with angular velocity 
. We enforce zero 
total force and torque conditions 
N∑

j=1

f j = 0,

N∑

j=1

f j × (xmi
j

− x0) = 0 (10)

to close the system. In this work, we choose x0 to be the origin for 
simplicity.

In the next section we will discuss our choice of colony surface 
geometries and the arrangement of individual cells. Once we have built 
the colony, we use the parameters obtained from the calibration as 
described in Section 2.2.3 and solve Eqs.  (9) and (10) simultaneously 
for forces f i, i = 1, 2,… , N and the colony translational velocity U and 
rotational velocity 
. The flow velocity at any point x can then be 
reconstructed by 

u(x) = ufd (x) +

N∑

j=1

S(x − xmi
j
, �)f j , (11)

where ufd (x) is defined in Eq. (8).

3. Results

3.1. Flagella-in colonies: lab and computational experiments

As a touchstone for our reduced model of flagella-in colonies, we 
start with video images collected as described in Section 2.1. These 

images are two-dimensional video frames, where individual cells in 
the colony appear at different resolutions, depending upon their po-
sition in the focal plane (see Fig.  5). Most flagella are not visible. We 
approximate the geometry of these spherical cup-shaped colonies by 
assuming that the cells are distributed on the surface of a sphere of a 
fixed radius. We assume that each image is a cross-section of the colony 
that, when rotated about its axis, sweeps out the surface of the colony. 
We approximate the colony width W  and its length L, and use planar 
geometry to extract the radius R and the shape angle � of the spherical 
cap: 

� = arccos

(
L2 − 4W 2

4W 2 + L2

)
, R =

L

2 sin �
. (12)

Fig.  5 shows images of two colonies with superimposed parameter 
approximations. We make two further simplifying assumptions (we will 
relax these in sections below). First, we assume that each cell direction 
(the axis of the equal and opposite forces in our reduced cell model as in 
Fig.  3), is perpendicular to the colony surface. Second, we assume that 
cells are distributed uniformly on the spherical cap. For a given frame, 
we count the number of cells per unit length along the perimeter �d and 
square this quantity to approximate the cell density. This information is 
used to distribute cells with uniform density on the three-dimensional 
surface of the rotationally-symmetric spherical cap. In this work, we 
distribute points on a spherical cap approximately �s = 1∕�d apart in 
arclength, in both latitudinal and longitudinal directions. Consistent 
with [30], our algorithm yields a higher proportion of pentagonal 
neighborhoods in colonies with greater curvature.

The frame of the colony in Fig.  5(b) resembles a semicircle with 
approximate width W ≈ 27.0 μm and approximate length L ≈ 51.2 μm. 
It has an average cell density of 0.17 cells per μm along its perimeter, 
corresponding to a surface density of � = .029 cells per μm2. Experi-
ments show that it swims from left to right at a speed of 8.59 μm∕s. 
Using particle image velocimetry (LaVision PIV software), trajectories 
of 1 μm-sized beads were tracked. Given the observed swimming speed, 
the particle trajectories relative to the colony can be plotted. These rel-
ative trajectories, moving from right to left, are shown in Fig.  6(a). The 
beads whose trajectories cross the yellow line are eventually captured 
by the colony (numbers indicate the end of the trajectories).

We test our reduced colony model by comparing its predictions to 
measured values for the living flagella-in C. flexa colony shown in Fig. 
5(b). In our model, we approximate the colony by a spherical cap with 
a radius (R), shape angle (�), and cell density (determined from the 
number of cells per length in the frame shown in Fig.  5(b)) measured 
in the 2D image of the colony in the focal plane of the microscope 
in a frame of the video. Because the orientation and position of the 
colony in the focal plane can change as it swims, we run four different 
simulations of the colony based on R and � measured on different 
frames of the video (Table  2).

Our model calculations of swimming speed, particle trajectories, 
and water flux towards a colony are good matches for measured values. 
The translational velocity computed using our model of the colony in 
the video frame in Fig.  5(b) (simulation B, Table  2) in a fluid with 
viscosity of water is |U | = 8.36 μm∕s, which is remarkably close to the 
experimental value of 8.59 μm∕s. The range of colony speeds calculated 
in our four simulations are within 2 μm∕s of our measured speed (Table 
2). In experiments, we can measure 2D particle trajectories (Fig.  6(a)) 
and velocities (Fig.  7(a)) in a video frame when the focal plane of the 
microscope runs through the middle of a C. flexa colony, and we can 
compare them to calculated values for that same 2D plane bisecting our 
3D simulation of the colony in that video frame. The paths of particles 
in our videos (Fig.  6(a)) are very similar to those calculated by our 
model (Fig.  6(b)). PIV measurements of water velocity vectors relative 
to a C. flexa colony in a focal plane bisecting the colony (Fig.  7(a)) 
are used to determine the radial flow velocities towards or away from 
the colony across a circular perimeter (radius = 45 μm).  This circle 
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Fig. 5. Video frames of two different flagella-in colonies. The colony width W  and length L are approximated, and the spherical cap radius R and shape angle � are determined 
from those approximate values.

Fig. 6. Particle trajectories relative to the C. flexa colony shown in Fig.  5(b). (a) Trajectories of beads measured in a focal plane through the middle of the living C. flexa colony. 
The beads whose trajectories cross the yellow line are eventually captured by the colony. Numbers indicate the end of the trajectories. (b) Streamlines in a plane through the 
middle of our 3D reduced model of that colony in the video frame shown in Fig.  5(b) (radius R = 25.6 μm, shape angle of � = 92.9◦; see simulation B in Table  2). Streamlines 
correspond to particle trajectories in this steady flow. The shaded regions indicate positions of the virtual cell bodies (red) and collars (purple).

Table 2
Model parameters and computed swimming speeds for different frames of a video of one colony (depicted in Fig.  5(b)). Colony length and 
width are measured in each video frame to the nearest pixel and are converted to μm’s (measurement of 100 μm on a frame of a video of 
a stage micrometer gives a calibration factor of 288 pixels∕100 μm). Colony angle and radius were calculated using Eq. (12). The measured 
swimming speed of the colony is 8.59 μm∕s. Our model predicts similar swimming speeds for all the video frames, despite variations in colony 
dimensions.

 Measurements Simulation

 Colony width Colony length Colony radius Shape angle # of cells Colony speed 
 W (μm) L(μm) R(μm) � N |U | (μm∕s)  
 Sim. A 31.0 53.8 27.2 98.1◦ 155 8.10  
 Sim. B 26.9 51.2 25.6 92.9◦ 125 8.36  
 Sim. C 25.9 51.7 25.9 90.0◦ 109 7.11  
 Sim. D 24.1 54.4 27.4 83.0◦ 111 6.55  
 Mean 27.0 52.8 26.5 91◦ 125 7.53  
 SD/Mean 0.11 0.03 0.03 0.07 0.17 0.11  

is approximately 15 μm away from the colony surface to assure that 
we measure steady flux towards the colony, free of artifacts due to PIV 
masking. Note that the total flux into the circle is not zero because fluid 
can enter above and below the focal plane. Using our 3D reduced model 
of the same colony in the same frame (Fig.  7(b)), we determine the flux 
through the same circular perimeter around the colony. For all of our 
simulations, our calculated values are a good match with the measured 
values (Fig.  7(c)). 

Swimming velocity, bead trajectories, and flux towards the colony 
will surely vary with cell distributions, irregular geometries and some 
details of flagellar dynamics. However, the above comparison gives us 
confidence that this reduced colony model captures the fundamental 
fluid dynamics of a flagella-in, spherical cup-shaped colony. In the 
next section, keeping with spherical cap geometries, we will explore 
how variations in colony shape angles and cell densities influence the 
hydrodynamic performance.
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Fig. 7. Flux of water towards the C. flexa colony shown in Fig.  5(b). (a) PIV measurements of the water velocity vectors relative to a colony in a focal plane through the middle 
of the colony. Water flux in the radial direction at discrete positions across the yellow circle (radius = 45 μm) was determined from the PIV data. (b) Flow in the same plane 
relative to a 3D model of the same colony in the video frame shown in Fig.  5(b) (radius R = 25.6 μm, shape angle of � = 92.90◦; see simulation B in Table  2). White lines show 
streamlines relative to the colony in this plane. Water flux in the radial direction across the circle (radius = 45 μm) indicated by black dots was calculated to compare with 
measured values. The red line shows the intake zone of the colony itself in this plane (the region from which particles are captured by the cells in the colony; see yellow line in 
Fig.  6(a)). The total 3D colony intake flux across this intake zone was computed by our 3D model and results are shown in figs. 9–13. In (a,b), color scale indicates water velocity. 
(c) Inward normal flux at discrete positions around the circles shown in (a) and (b). The black curve indicates experimental measurements, and the other four curves show the 
results of simulations using colony dimensions measured in different frames of the video, as the colony changed its orientation and position relative to the focal plane. Positive 
values indicate flow into the circle towards the colony, and negative values indicate outward flux away from the colony.

3.2. Swimming and feeding of flagella-in, cup-shaped colonies

In this section we again consider colonies of an idealized spherical 
cap geometry, and we use a fixed force-dipole model of each individual 
cell in the colony to probe how hydrodynamic performance depends 
upon cell density and cap geometry. In particular, we measure both 
translational swimming velocity and fluid flux into an intake zone. We 
first start with flagella-in configurations, but then flip the direction of 
the virtual flagella to point outside the colonies while keeping all other 
model features fixed in the next section.

Our experimental observations of flagella-in colonies with shapes 
similar to a spherical cap spanned a range of sizes, with lengths 
varying from 52.5 to 78.1 μm and widths from 23.6 to 36.2 μm. The 
approximated shape angle values (�) ranged from 79.1◦ to 90.7◦. When 

approximating these colonies by a spherical cap, these parameters give 
rise to a radii range from about 29 to 40 μm. The average number of 
cells measured along the perimeter of the cross-section of these colonies 
ranged from 0.16 to 0.19 cells per μm, corresponding to a surface 
density of � = .026 to .04 cells per μm2. As such, we perform parameter 
studies of spherical cap colonies with cells distributed on spheres of 
radius R = 30 μm and R = 40 μm, sweeping through biologically 
relevant cell densities and shape angles.

As an illustration, the first row of Fig.  8 shows snapshots of spherical 
cup-shaped colonies, each with a shape angle of � = 90◦, but increasing 
surface density from left to right. The second row of Fig.  8 depicts three 
colonies, each with the same surface density of � = .0324 cells per μm2, 
but with increasing shape angles from left to right. Also depicted are 
the streamlines relative to the colony, and the color intensity indicates 
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Fig. 8. Streamlines and flow magnitude, relative to the colony, for different cap geometries and different cell densities. In each snapshot, the sphere radius R = 30 μm. (a) � = 90◦, 
� = .0225 cells per μm2. (b) � = 90◦, � = .0324 cells per μm2. (c) � = 90◦, � = .0441 cells per μm2. (d) � = 54◦, � = .0324 cells per μm2. (e) � = 90◦, � = .0324 cells per μm2 (same 
panel as (c)). (f) � = 126◦, � = .0324 cells per μm2. All of these flagella-in colonies swim to the right in the lab frame, and, therefore the streamlines relative to the colony are 
pointing towards the left. As cell density increases, the flow velocity strengthens, leading to a higher feeding flux. The non-monotonic trend when the colony surface expands is 
due to two competing factors: the intake zone area increases, while the flow magnitude decreases in most areas of the intake zone.

the magnitude of the fluid velocity relative to the colony. All of these 
flagella-in colonies swim to the right in the lab frame, and, therefore the 
streamlines relative to the colony point towards the left. We observe, 
in the first row, that when geometry is fixed, increasing cell density 
increases the magnitude of the relative velocity. We observe, in the 
second row, that the circulation of flow into the back of the spherical 
cup-shaped region is more pronounced for the most shallow colony 
(� = 54◦), and negligible for the colony that is nearest to a closed 
sphere (� = 126◦). This circulation of flow can enhance fluid flux 
into the colony, which is important for feeding. We will quantify these 
observations below.

Fig.  9, panels (a) and (c), show computed translational velocities |U|
of spherical cup-shaped, flagella-in colonies, for nine different shape 
angles, each at four different densities, with colonies arranged on 
spheres of two different radii — representing results from seventy-
two simulations. (Note that while we wish to perform simulations that 
vary shape angle while keeping cell density fixed, there will be small 
variations in the chosen density due to the discrete nature of cell 
placement.)  We remark that in the case of R = 40 μm, � = .0625 cells 
per μm2, � = 180◦ (largest sphere, highest density, fully-closed), the 
number of cells exceed 1200. After placing a discrete set of cells on 
the spherical surfaces, simulated colonies are almost axially symmetric 
with respect to the horizontal axis. As all cell directions are normal 
to the spherical surface, the computed translational velocity is almost 
entirely along the horizontal axis and the computed rotational velocity 
is zero. In panel (a), we plot the seventy-two computed values of colony 
speed as a function of surface cell density. Along each curve in this 
panel, the same colony shape is maintained. We see that colony speed 
increases linearly with density — the more cells that are pushing the 
colony, the faster it swims. To illustrate the dependence of swimming 
speed on colony shape, in Fig.  9(c) we plot the same set of seventy-two 

computed values of colony speed as a function of the shape angle �. 
Each curve represents colonies with the same radius and cell density. 
We see that there is not a monotonic trend between colony speed and 
shape angle. There are two local maxima, one at � = 18◦ when the 
colony is nearly flat and another one near the hemisphere value � = 90◦

and 108◦. There are two factors that contribute to the colony speed: the 
drag and the total propulsion force. As the shape angle � increases, the 
colony grows larger by adding more cells. For very shallow colonies, 
the increased drag from this colony growth outweighs the increased 
propulsion force from the new recruits. At some point, before the shape 
angle reaches that of a hemisphere, the added propulsive forces then 
overcome the added drag, and we see an increase in speed. However, as 
the colony grows past a hemisphere, the added cells’ directions become 
less aligned with the swimming direction, and speed decreases. In the 
extreme case of � = 180◦, the colony is a closed sphere and does not 
translate.

The waving flagella of choanoflagellate cells comprising a colony 
create a flow that brings bacterial prey to their food-capturing col-
lars [45]. As in previous models of choanoflagellate feeding perfor-
mance (e.g. [26,29]), here we use the flux of water through an intake 
zone as a proxy for the rate of bacterial prey capture. We choose this 
intake zone to be a surface that corresponds to the region around the 
colony where our experiments, as in Fig.  6(a), have shown that beads 
enter. This intake zone is the rotationally-symmetric surface that covers 
the front and the side of the colony, and its one-dimensional slice is 
depicted in green in Fig.  1(b). The front part of the intake zone extends 
slightly more than a half cell length in front of the virtual cell body 
centers. The side part of the intake zone wraps around the regions 
where the virtual collars of the boundary cells would be.

For each of the seventy-two simulated flagella-in colonies, we inte-
grate the inward normal component of the fluid velocity field (relative 
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Fig. 9. Translational speeds and feeding flux of spherical cup-shaped, flagella-in colonies: effects of colony geometry and cell surface densities. In the lab frame, the colonies swim 
towards the right. (a) Colony speed and (b) feeding flux as a function of surface cell density. Each curve reflects the same colony geometry. (c) Colony speed and (d) feeding 
flux as a function of shape angle. Each curve reflects the same surface cell density. Note that the data points in panels (a) and (c), panels (b) and (d) are the same, just grouped 
differently, Swimming speed and feeding flux increase linearly in cell density but change non-monotonically as the colony surface expands from a narrow plate to a full spherical 
shell.

to colony translation) across the rotationally symmetric intake zone to 
compute the feeding flux Q, measured in μm3/s. In Fig.  9(b), we see 
that for fixed colony geometries, the flux increases linearly with surface 
cell density. We remark that for a closed sphere, the flux is minimal, but 
does not vanish, as flow can enter the colony surface through the spaces 
between cells. In Fig.  9(d) we plot the same data points as a function 
of shape angle. As the shape angle � increases, the colony adds more 
cells and the intake zone grows, so one might expect flux to increase 
monotonically, but this is not the case. By looking at the flows relative 
to the colony in Fig.  8(d,e,f), we see that as the colony grows, its surface 
begins to shield the flow generated by the flagella. The shielding effect 
is pronounced when the shape angle is larger than � = 90◦ (the value 
where flux peaks).

3.3. Swimming and feeding of flagella-out, cup-shaped colonies

While hemispherical geometries are commonly observed for
flagella-in C. flexa colonies, the flagella-out colonies are often ovoid 
rather than spherical cups. Nevertheless, it is instructive to use this 

reduced computational model to see how hydrodynamic performance 
changes when we flip the direction of the flagella in the simulations 
presented in the previous section. We keep all other model features the 
same except for the directions of each individual force dipole, which 
we change from �̂ to −�̂.

Fig.  10 shows the swimming speed and feeding flux for each of the 
seventy-two spherical cup-shaped colonies as in Fig.  9, but here with 
flagella pointing out. In the lab frame, the swimming progression of 
these colonies would be opposite to the flagella-in colonies. In Fig. 
10(a), we see that colony speed increases linearly with surface cell 
density. Fig.  10(c) shows the colony speeds plotted as a function of the 
shape angle �. As in the flagella-in simulations, here we see that speed 
is not monotonic. For each density, the speed achieves a maximum 
between � = 54◦ and � = 72◦, which is more shallow than the 
hemisphere, where flagella-in colonies achieve a local maximum speed.

In order to analyze feeding flux, we choose the intake zone depicted 
in Fig.  1(c). Here, the front part again aligns with the virtual cell body 
heads (as in the flagella-in case), and the side part extends along the 
position of the virtual collars, which are now outside the colony. Fig. 
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10(b) shows the total feeding flux as a function of surface cell density. 
Unlike the flagella-in case, there is not a strict linear dependence on 
density, but beyond the lowest density values, flux increases as more 
cells are added to the fixed geometry. Fig.  10(d) shows the total feeding 
flux data re-plotted as a function of shape angle �. For each density, 
we see that the total feeding flux initially increases with shape angle, 
achieves a maximum, but then decreases as the colony approaches a 
closed sphere. For all but the most sparsely covered colonies (� = .022

cells μm−2), the maximum value of total flux occurs for the hemisphere.
While total flux is one measure of feeding performance, we should 

also consider how much of this flux is achieved per cell. For all of 
the simulations, we present this in Fig.  11 for both flagella-in (panel 
(a)) and flagella-out (panel (b)) colonies as a function of shape angle 
�. There is an interesting collapse of data here — the flux per cell is 
independent of the cell density when cells are distributed on the same 
geometric surface. Also, as a function of shape angle �, the flux per 
cell decreases as the spherical cap closes, in all cases. In the flagella-in 
cases, colonies covering a sphere with a smaller radius show higher flux 
per cells than the larger radius (compare R = 30 μm to R = 40 μm). In 
the flagella-out case, the difference is minimal.

In summary, in this idealized geometry, when we compare the 
ranges of colony speed and feeding flux in Figs.  9 and 10, we do 
see that flagella-in colonies swim more slowly than their flagella-out 
counterparts, with all else being the same. In addition, we see that 
each flagella-in colony generates more feeding flux than the flagella-out 
colony.

3.4. Effects of non-uniform cell distribution on hydrodynamics

In the previous section, we assumed that cells were distributed uni-
formly on the surface of the colony. In this section, we investigate how 
swimming velocity and feeding flux is altered when cell distribution, 
instead, is non-uniform. To do this, we fix the shape of a flagella-
in colony and fix the number of cells that comprise the colony, but 
vary the local cell densities as follows. We divide the colony into 
three regions with equal surface area as illustrated in Fig.  12(a). We 
label these regions on the colony surface as the back  (purple), the
middle  (green), and the front  (red), and prescribe cell densities by the 
triplet (�b, �m, �f ). The front region is so-designated because, given the 
direction that this flagella-in colony swims, it is the leading edge of the 
colony.  These cell densities, along with the surface area of the region, 
determine the number of cells that will be distributed on the region. We 
consider flagella-in colonies of five different shapes with � ranging from 
60◦ to 140◦ with R = 25 μm. For each of these six shapes, we consider 
the three cases: (�b, �m, �f ) = (.04, .04, .04) cells per μm2 (uniform case); 
(.02,.04,.06) cells per μm2 (front-loaded case); and (.06,.04,.02) cells 
per μm2 (back-loaded case). As in Section 3.2, we will assume that cell 
directions are perpendicular to the colony surface.

We will specify the cell surface densities on each region (and, hence, 
the number of cells), but will choose different seedings of the cells on 
each region. This is achieved by first distributing points on a sphere of 
radius R with uniform density, say �f . For this distribution, we then 
take a random slice of the sphere that has the same shape as the front 
region, and use these positions as a sample of cell center locations in 
the front region of the non-uniform colony. This is done also for the 
middle and back regions. For each colony geometry, and each density 
triplet, we perform three hundred simulations. We remark that because 
the cells are not very tightly packed, the different samples may show 
variation in performance, as will be discussed below.

As the colony shape is rotationally symmetric about the x axis, 
we find that the translational velocity is mostly aligned with the x
axis, with small y, z velocity components. In addition, our simulations 
show minimal rotational velocity, with less than 2◦∕s. In Fig.  12(b), we 
present the box plot of colony swimming velocities in the x-direction 
as a function of shape angle for the front-loaded, uniform, and back-
loaded cases. Here each box represents the middle 50% swimming 

speeds across the three hundred random realizations of cell center 
positions on the colony surface. The medians are marked by the circular 
markers and the whiskers extend 1.5 times the interquartile range 
from the medians, and the data beyond the range defined by the 
whiskers, the outliers, are plotted as dots.  For each shape angle, as cells 
are redistributed towards the back, the slower the colony swims. The 
front-loaded cell distributions result in faster swimming than uniform 
distributions, with the back-loaded cell distributions giving the worst 
performance. For shallow colonies, the difference is less pronounced, 
but as the colony fills out more of the sphere, the disparity widens. 
In fact, for the back-loaded case where � = 140◦, we see that the 
abundance of cells in the back region that push in the normal direction, 
actually cause the colony to reverse direction (Ux is negative). The 
ranges across all of the three hundred replicates are also indicated. We 
note that the different cell placements do not have much of an effect 
on colony swimming velocity.

Figs.  12(c) and 12(d) show the box plot of total feeding flux and flux 
per cell for each colony as a function of shape angle � for front-loaded, 
uniform, and back-loaded cell distributions. To show the median curves 
clearly, we excluded a few extreme outliers from both plots. Unlike 
colony velocity calculations which exhibited a small variation, we note 
that flux calculations have a few outliers that can be as 40 times higher. 
As the shape begins to exceed a hemisphere (� ≈ 120◦), we see that the 
back-loaded colonies actually surpass the uniform colonies in feeding 
flux. However, for all shapes, the front-loaded colonies do the best job 
of bringing fluid into the intake zone of the colony. The feeding flux 
reported in Fig.  12(c) reports the integral over the entire intake zone 
of the colony. Similarly, the feeding flux per cell reported in Fig.  12(d) 
is computed by dividing the total flux by the total number of cells in 
the colony.

Now we will look more closely at the feeding flux into each of 
the three regions separately, as well as the flux per cell, computed 
separately for cells in each region. Here we focus on the single colony 
shape with � = 80◦, and the same density triplets as above. Again, 
we note that each of the three regions have the same surface areas. 
In Fig.  13(a), we show the medians of feeding flux into the back, 
middle and front region over 300 runs. We already noted that the 
front-loaded colonies have the highest total flux, while the back-loaded 
colonies have the lowest (as in Figs.  12(c) and 12(d)). In particular, Fig. 
13(a) indicates that, when comparing flux into the front regions, the 
front-loaded colonies have roughly twice that of the uniform colonies 
and about five times that of the back-loaded colonies. This can be 
explained from the streamlines relative to the colony in Fig.  13(c,d,e). 
By examining the color indicating the flow speed, we see that the flow 
relative to the colony is significantly higher near the colony surface in 
the front-loaded case.

We have now observed that packing cells at the front of the colony 
enhances both colony swimming velocity and total flux into the colony. 
How, then, is the feeding of the cells that are not up front? Fig.  13(b) 
shows the flux per cell in each region, for the three density arrange-
ments. We see that individual cells up in the front enjoy moderately 
more flux than the uniform case, and considerably more than the back-
loaded case. However, what is very striking is the flux per cell for the 
cells in the back. There is more than a two-fold increase in feeding 
for these cells in the front-loaded case compared to the back-loaded 
case. The cells up front are helping their colony members in the back! 
A front-loaded cell arrangement can, therefore, promote cell division 
and colony growth, even for cells on the periphery.

3.5. Swimming of a complex-shaped, flagella-out colony

Our experimental data includes videos of flagella-out colonies trans-
lating and rotating as the flagella beat. These flagella-out colonies are 
not cup-shaped, but are typically ‘‘football-shaped’’, with a chunk of the 
football cut out. One frame of a representative movie is shown in Fig. 
14(a), which depicts a cross-section of the colony. In this experimental 
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Fig. 10. Translational speeds and feeding flux of spherical cup-shaped, flagella-out colonies: effects of colony geometry and cell surface densities. In the lab frame, the colonies 
swim towards the left. (a) Colony speed and (b) feeding flux as a function of surface cell density. Each curve reflects the same colony geometry. (c) Colony speed and (d) feeding 
flux as a function of shape angle. Each curve reflects the same surface cell density. Note that the data points in panels (a) and (c), panels (b) and (d) are the same, just grouped 
differently. Similar effects of cell density and colony shape are observed. Comparing with Fig.  9, for a fixed colony shape and cell density, a flagella-out colony swims faster and 
has a lower feeding flux compared to its flagella-in counterpart.

Fig. 11. Feeding flux per cell for (a) flagella-in and (b) flagella-out colonies. For each fixed colony shape and cell density, each flagella-out colony has lower flux per cell than 
its flagella-in counterpart.
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Fig. 12. (a) Schematic of a front-loaded flagella-in colony with higher density at the front. The three regions are seeded with cell surface densities (�b , �m , �f ) for back, middle and 
front regions respectively. (b) Box plot of colony velocities in the x-direction as a function of shape angle for spherical-cup-shaped, flagella-in colonies with R = 25 μm. Each box, 
based on 300 random cell seedings, shows the swimming speed of the central 50% of runs, with the median marked by a hollow circle. Whiskers extend 1.5 times the interquartile 
range from the medians, and outliers beyond this range are plotted as dots. The three curves connecting the medians correspond to colonies with cell surface densities that are 
either front-loaded (�b = 0.02 cells per μm2, �m = 0.04 cells per μm2, �f = 0.06 cells per μm2), uniform (�b = �m = �f = 0.04 cells per μm2), or back-loaded (�b = 0.06 cells per μm2, 
�m = 0.04 cells per μm2, �f = 0.02 cells per μm2). (c) Box plots of feeding flux and (d) feeding flux per cell for the same set of colonies in (a). Variations in swimming speed 
and flux due to random cell seeding are small, but flux can have 40 times higher outliers. Those outliers are not shown in (c,d). Front-loaded colonies swim faster than uniform 
colonies, with both outperforming back-loaded colonies. In terms of flux, front-loaded colonies outperform both uniform and back-loaded colonies, while back-loaded colonies 
surpass uniform colonies at larger shape angles.

video, the colony swims along the horizontal axis (see the black line 
segment in Fig.  14(a)) at 58.2 μm∕s and rotates around its swimming 
direction at 145◦∕s.

Here we use the same reduced modeling approach as before, but use 
cell position data from the experimental images to build the computa-
tional colonies. We assume that the cells are distributed on a portion of 
an ellipsoidal surface rather than a sphere. Figs.  14(a) and 14(b) show 
two frames of the same movie at times when the colony has rotated 
90◦. These two frames are arranged together in the 3D image shown 
in Fig.  14(c). We use this geometric data to estimate the dimensions 
of the ellipsoidal surface (here semi-axes a, b, c are calculated to be 
a = 18.1 μm, b = 14.6 μm in Fig.  14(a), and c = 14.5 μm in Fig.  14(b)). 
Next we need to use the 2D images to distribute cells on the surface 
of the computational colony. Although not shown here, we utilize an 
additional experimental image where the colony has rotated 270 ◦ from 
its position in Fig.  14(a), giving us two horizontal planar images of the 

colony in Fig.  14(c). We project the cells from one of these two planar 
images to the upper half of the ellipsoidal surface, and project the cells 
from the other planar image to the lower half. The resulting colony 
model is depicted in Fig.  14(d), and we see that there is a section of 
the ellipsoid surface devoid of cells, reflecting the fact that the colony 
is not a closed surface.

Using this colony geometry with realistic cell distributions, the opti-
mized parameters used in the previous sections for flagella-in colonies, 
and the assumption that the virtual flagella are perpendicular to the 
surface — can we predict the observed translational and rotational 
speeds of the colony? With these choices we find that the computational 
colony’s swimming speed is 7.5μm∕s and the rotation is at 14◦∕s. We 
see that the computational colony swims about eight times more slowly 
than the living colony, and rotates about ten times more slowly. We 
note that although both translational and rotational velocities of the 
colony are linear in q0 (provided b0∕q0 is held constant), merely scaling 
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Fig. 13. (a) Median of feeding flux and (b) box plot of flux per cell in front, middle and back region as shown in Fig.  12(a). The same set of colonies of � = 80◦ in Fig.  12 is 
used. We show flow velocity relative to one realization of a (c) front-loaded, (d) uniform, and (e) back-loaded colony. The front-loaded colony in (c) has the highest flow speed 
near the intake zone.

up this swimming strength q0 in the model to match the observed
translational velocity will not result in a match of observed rotational
velocity.

Perhaps the assumption that flagellar directions are always per-
pendicular to the surface is leading to the discrepancy between ex-
perimental and model velocities? We will first relax this assumption, 
and take a closer look at the experimental images. As shown in Fig. 
15(a), we measure the angles made by Na = 27 flagella based on 
one frame of the movie. The 27 angles are tabulated in the histogram 
shown in Fig.  15(b). Using statistics from this histogram, we perform 
300 trials that vary flagellar orientation, assuming that this orientation 
of individual cells are independent from each other. Each trial assigns 
force dipole directions of each cell in the colony as follows: We ran-
domly select an integer j between 1 and Na, and then assign the jth 
tabulated angle �j as the angle between the force dipole direction and 
the vector orthogonal to the plane tangent to the colony at the cell 
location. Since there are infinite many directions (forming a cone) that 
meet the angle requirement, we select one of them from a uniform
distribution.

We repeat this process 300 times and compute the linear and 
angular velocities for each trial. The distributions of |U | and |
| are 
approximately Gaussian with mean 7μm∕s and 14◦∕s and standard 
deviations 1.7μm∕s and 5◦∕s, with maximum speeds 11μm∕s and 26◦∕s. 
This result is similar to the case of flagella perpendicular to the ellip-
soid, which is not surprising since the histogram of angles indicates 
that the mean is near 90◦. However, this procedure can also be used to 
investigate the effect of a bias in the flagellar orientations that favors a 
counter-clockwise rotation about the x-axis. After reassigning all force 
dipole directions with this bias and running 300 simulations, |U | and 
|
| have means 7.9μm∕s and 60◦∕s, standard deviations 0.1μm∕s and 
4◦∕s, and maximum speeds 11μm∕s and 75◦∕s. Similarly, reassigning 
all force dipole directions with a bias that favors higher swimming 
speed along x-axis and running 300 simulations, |U | and |
| have 
means 16.5μm∕s and 8◦∕s, standard deviations 1.5μm∕s and 3◦∕s, and 
maximum speeds 21.8μm∕s and 17◦∕s. This shows that a bias in the 
flagellar orientation can significantly affect the rotation rate of the 
colony. However, although the rotation rate is higher, both linear 
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Fig. 14. Approximation of the colony as an ellipsoidal surface in (a) x–y plane and (b) along z dimension. (c) The relationship between the two selected frames in (a,b). Semi-axes 
a, b are measured from (a) and c is measured from (b). (d) Reconstructed colony in 3D where cell centers in (a) are mapped on or close to the ellipsoidal surface with a, b, c
measured from Fig.  14. The flagellar orientations are the same as the colony in Fig.  16(b).

Fig. 15. (a) Measured flagellar orientations and the colony surface tangents. (b) Histogram of the flagellar angles shown as a percentage of the 27 measured. The range is [50◦ , 90◦]
with 90◦ referring to flagellar orientations being perpendicular to the colony surface.
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Fig. 16. (a) Colony trajectory and bead trajectories of a complex-shaped flagella-out colony in lab frame. (b) Bead trajectories relative to the flagella-out colony with a calibrated 
set of force dipole directions. (c) Histogram of the flagellar angles shown as a percentage of the 137 cells within the 3D colony in panel (b). The colony has |U | = 58.2 μm∕s and 
|
| =148◦∕s. q0 = 126 pN μm, b0 = 457 pN μm2, lh = 8.2 μm. Here q0 is 8 times bigger than that in Fig.  4(e).

and angular velocities remain well below the experimentally measured 
values.

While changes to the orientation of the flagella have an effect on the 
translational and rotational speeds of the colony, these changes cannot 
account for the differences between experimentally observed speeds 
in this flagella-out configuration. Therefore, we now hypothesize that 
the flagella-out beat itself must be different from the flagella-in beat. 
In our model, this amounts to revisiting the parameter values used in 
the minimal force dipole model. To test this hypothesis, we first assess 
the sensitivity of the resulting translational and angular velocities to 
the model parameters. This is done by varying q0, b0, and the offset 
lh–the three force dipole parameters that affect the far field—and 
use the simulannealbnd package of the software MATLAB to find a 
direction profile that matches the measured velocities. Note keeping 
b0∕q0 constant corresponds to a fixed amount of front-rear asymmetry 
in the force dipole model, as reflected in Eq. (4). We test values 
of parameters q0, b0∕q0 and lh that are lower and higher than their 
values for the flagella-in case. The results indicate that q0 is the most 
influential parameter. As discussed above, q0 has units of force-length, 
and the value q0 divided by the regularization length � is interpreted as 
the force exerted by the flagellum of the force-dipole model. When q0
is small, no direction profile is found to yield colony velocities close to 
the measured values, regardless of b0∕q0 and lh. Once q0 is increased 
by a factor of 5, a suitable direction profile is found for most values of 
the other parameters. At a tenfold increase in q0, a directional profile 
is found for all tested combinations of b0∕q0 and lh. These tests suggest 
that cells in a flagella-out colony may beat in a manner that can be 
modeled by a force dipole with q0 5 to 10 times larger than the flagella-
in case. As an illustration, Fig.  16(b) we show the trajectories of passive 
fluid markers and a colony whose 137 cells had optimized flagellar 
directions depicted in the histogram in Fig.  16(c). The bead trajectories 
in Fig.  16(a) agree qualitatively with those in Fig.  16(b), and the angle 
distribution in Fig.  16(c) is close to that in Fig.  15(b).

In summary, we find that increasing the flagella-in force-dipole 
swimming strength q0 (force-length) by a factor of 5 to 10, and that 
having flagellar orientations that are not strictly perpendicular to 
the colony surface are needed to match the experimentally measured 
flagella-out translational and rotational velocities.

4. Discussion

4.1. Novel modeling approach

At the microscale, single cells with ciliated surfaces, or multicellular 
protozoans such as the choanoflagellate colonies discussed here, use 
tens to hundreds of beating cilia or flagella to swim through fluid 
and to produce water currents for feeding. Hydrodynamic models that 
capture detailed morphology and time-dependent wave kinematics of 

all structures would be ideal, but not feasible. The model that we 
present here lies within a class of models that choose a minimal 
depiction of flagellar force generation. These reduced models include 
squirmer models of ciliated cells (e.g.[46]) and rower/rotor models of 
beating cilia (e.g [47]). Here we develop a force-dipole model in the 
spirit of the previous work on choanoflagellate colonies [28,30]. In this 
model, we examine how the swimming and feeding performance of a
C. flexa colony depends upon its morphology, its flagellar arrangement 
and flagellar forces. This reduced model is derived by a novel approach 
that uses the flow-field produced by a detailed computational model 
of a single choanoflagellate. Optimal parameters for a regularized 
force dipole model that best fits the flow of the detailed model are 
computed. This procedure selects the optimal regularized delta function 
from a given class. We find that this optimal function depends upon 
morphological features of the detailed cell model, like the presence of 
a color of microvilli.

We tested our reduced colony model by comparing measurements 
made for living C. flexa colonies with predictions calculated for model 
colonies of the same morphology. We found that the measured swim-
ming speeds, particle trajectories, and radial flux of water produced 
by living flagella-in colonies match those calculated by our reduced 
model. For flagella-out colonies, model and measured particle trajec-
tories also matched. However, we found that for model flagella-out 
colonies to swim at the same speeds that we measured for living C. 
flexa colonies, the force exerted by each flagellum of the force-dipole 
model (q0 divided by the regularization length �) had to be increased 
five to tenfold from those used for the flagella-in colonies. This suggests 
that flagella beat differently on flagella-out colonies than they do in 
flagella-in colonies.

4.2. Aspects of colony morphology that affect performance

Our modeling approach enables us to modify specific aspects of 
colony morphology that cannot be done experimentally with living pro-
tozoans to study the effects of each structural feature on hydrodynamic 
performance. To explore the selective advantages of different colony 
designs, we focused on aspects of performance likely to affect growth 
and survival: swimming (to escape predators or travel to patches of re-
sources) and production of feeding currents. In this study, we examined 
how swimming and water flux of a C. flexa colony depends on flagellar 
orientation and forces, colony shape, and cell density.

Animals and choanoflagellates evolved from a common ancestor, so 
choanoflagellates are studied to gain insights about how the protozoan 
ancestors of animals might have functioned. Here we used C. flexa to 
determine the hydrodynamic consequences of having flagella covering 
the outer surface of a colony (as seen in many species of choanoflagel-
lates) versus lining the inside of a cavity (a seen in sponges, primitive 
animals). We found that flagella-in colonies swim more slowly, but 
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produce higher water flux per cell than do flagella-out colonies of 
the same configuration (compare Figs.  9 and 10). This suggests that 
flagella-out colonies are better swimmers, whereas flagella-in colonies 
are better feeders. Indeed, both our measurements and earlier ex-
periments by Brunet et al. showed that flagella-out colonies swam 
faster than flagella-in colonies, whereas flagella-in colonies captured 
more fluorescent beads per time [11]. In addition, these findings are 
consistent with those in the recent minimal hydrodynamic model of C. 
flexa in Fung et al. [30].

We used our modeling approach to determine the effect of colony 
shape. We discovered that flagella-in colonies shaped like bowls or 
hemispheres swim faster than colonies that are nearly-closed spheres, 
while flux is greatest towards hemispheres (Fig.  9). For flagella-out 
colonies, shallow bowls swim faster than other shapes, and flux to a 
colony is greatest for hemispheres, except at low cell densities where 
deep cups (� = 108◦, Fig.  10(d)) produce the greatest flux.

For each shape of colony, we examined the effects of cell density on 
performance. We found that for a given shape, flagella-in colonies with 
high cell densities swim faster and produce greater water flux towards 
the colony (Fig.  9), although flux per cell is independent of density (Fig. 
11). For flagella-in colonies shaped like hemispherical bowls, denser 
packing of cells at the front of a colony increases swimming speed and 
raises water flux to cells at all positions in the colony (Figs.  12 and
13). Higher cell density also increases the swimming speed of flagella-
out colonies (Fig.  10), but only raises flux towards the colony for 
shallow bowls and hemispheres. Flux per cell for flagella-out colonies 
is independent of cell density (Fig.  11).

Flagella-out colonies rotate as they swim. While the magnitude of 
the flagellar forces has the biggest effect on rotation rate, we found that 
the orientations of the flagella (angle between the axis of the force-
dipole and the colony surface) also affect rotation rate. Colonies with 
all flagella perpendicular to the colony surface rotate more slowly than 
those with a bias in flagellar orientations. When the arrangement of 
cells and the distribution of flagellar angles in a model colony are 
similar to those of real C. flexa flagella-out colonies and the flagellar 
forces are large enough to produce measured swimming speeds, then 
calculated and measured rotation rates also match (Figs.  15 and 16).

4.3. Future uses of the reduced model

While our current model assumes a static colony morphology with 
static flagellar arrangements, its foundation is the method of regular-
ized Stokeslets, which is a framework for capturing dynamic morpho-
logical changes of flexible, actuated structures in a viscous fluid. An 
intriguing aspect of C. flexa colonies is their ability to rapidly change 
their structure from flagella-in to flagella-out by active actinomyosin-
mediated contraction in response to environmental signals [11,13,17–
21]. Our modeling approach can be used to include the incorporation of 
contractile forces and flexible cell attachments in a colony to study the 
dynamics of this process as well as the hydrodynamic consequences.
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