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ARTICLE INFO ABSTRACT
Keywords: Many microbial eukaryotes have unicellular life stages, but can also form multicellular colonies. We explored
Choanoflagellates hydrodynamic consequences of colony morphology, which affects swimming and flux of prey-carrying water

Regularized Stokeslets

to cells in a colony, using the choanoflagellate, Choanoeca flexa, which forms cup-like colonies that can
Multicellular microbial colonies

turn inside-out so flagella line the cup’s interior or cover its outside surface. Detailed hydrodynamic models
incorporating cell morphologies are not feasible for colonies with many cells. Therefore, we designed a reduced
model of each cell using regularized-force-dipoles with parameters optimized (by selecting the regularized delta
function from a given class) to match the flow-field of a detailed model of a cell. Calculated swimming speeds
and water flux to flagella-in colonies match those measured for living C. flexa. For a given shape (flat bowls,
hemispheres, spherical cups) of flagella-in colony, models showed that swimming speed and water flux towards
the colony increases with cell density, although flux per cell is independent of density. Denser packing of cells
at the front of flagella-in colonies increases swimming speed and flux to cells at all positions in the colonies.
Flagella-in colonies swim more slowly, but produce higher water flux per cell than do flagella-out colonies of
the same configuration, suggesting that flagella-out colonies are better swimmers, whereas flagella-in colonies
are better feeders. A model flagella-out colony with morphology matched to a real C. flexa requires a flagellar
force 5-10 times greater than that for flagella-in colonies to achieve the measured swimming speed, suggesting
flagella beat differently on flagella-out colonies.

Viscous flow
Reduced hydrodynamic models

1. Introduction food webs, but they are also of great interest evolutionarily (reviewed

by [3,4]). The evolution of animals from protozoan ancestors had a

Microbial eukaryotes that eat bacteria are critical elements in
aquatic food webs (e.g. [1,2]). Their swimming, feeding, and predator
avoidance depend on their hydrodynamics. Although many microbial

profound effect on the history of life on Earth. Molecular phylogenetic
and comparative genomic analyses have shown that choanoflagellates

eukaryotes can form multicellular colonies, the consequences of colony
morphology to their hydrodynamic performance are poorly understood.
Here we focus on choanoflagellate protozoans to explore how aspects
of colony design can affect their swimming and creation of feeding
currents. Species of choanoflagellates that can be unicellular or form
multicellular colonies of different designs by cell division [3], enable
us to study within a single species the effects of colony formation and
design on performance.

1.1. Choanoflagellates
Not only are choanoflagellates abundant in marine and freshwater

habitats where they are important bacteria-consuming components
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and animals shared a common ancestor (e.g. [5-7]). A choanoflagel-
late cell (Fig. 1(a)) swims by waving a single flagellum, which also
creates a water current that carries bacterial prey to a collar of rod-
like microvilli surrounding the flagellum. Sponges (primitive animals)
have “flagellated chambers” lined by cells (“choanocytes”) that have
the same structure as choanoflagellates and that catch bacteria from
the water they pump through the sponge [8,9]. Choanoflagellates are
studied to provide insights about how the protozoan ancestors of ani-
mals might have functioned (e.g. [7,10-12]). By investigating aspects
of the hydrodynamics of choanoflagellates that affect their ecological
interactions, we can make informed inferences about possible selective
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Fig. 1. Frames of videos of choanoflagellates and diagrams of cell and colony morphology. (a) A unicellular choanoflagellate has an ovoid cell body with a single flagellum
surrounded by a collar of 20-40 microvilli. When the flagellum beats, the cell swims to the left and water is drawn past the collar, where bacterial prey are caught. (b) A
flagella-in colony of C. flexa and a diagram of a cross-section of that colony. (c) A flagella-out colony of C. flexa and a diagram of a cross-section of that colony. The green dotted
curves indicate the intake zones that will be used to calculate the flux of prey-carrying water to the colonies.

pressures on their ancestors at the time of animal origins (reviewed
by [12D).

One critical step in the evolution of animals from a choanoflagellate-
like ancestor was becoming multicellular. The choanoflagellates Salp-
ingoeca rosetta and Salpingoeca helianthica, which have complex life
cycles with unicellular and multicellular stages, have been used to
study the molecular mechanisms involved with colony formation and
sensation (reviewed by [7,13]) as well as the hydrodynamic and eco-
logical consequences of being unicellular versus multicellular (reviewed
by [12]). Experiments comparing the performance of unicellular versus
multicellular stages of S. rosetta revealed that single cells are better
swimmers, exploring the water for patches of prey bacteria [12,14],
whereas cells in colonies feed at higher rates [12]. Although there
is no difference between colonies and single cells of S. helianthica in
the danger of being captured by passive protozoan predators [15],
colonies put out larger hydrodynamic signals and are more susceptible
to raptorial protozoan predators than are single cells [16], but are too
large to be engulphed by suspension-feeding protozoan predators that
can eat unicellular choanoflagellates [12].

S. rosetta and S. helianthica form colonies that are chains of cells
or that are rosettes of cells with the flagella pointing outwards. An
important morphological difference between choanoflagellate rosette
colonies and sponges is that the flagella cover the outside surface of
a rosette colony, whereas they point inwards, lining the walls of a
cavity in a sponge flagellated chamber. We studied the choanoflagellate
Choancaeca flexa, which forms cup-shaped colonies that can turn them-
selves inside-out in response to environmental signals such as changes
in light or mechanical stimulation [11,13,17-21]. C. flexa enabled us
to use just one species to compare the hydrodynamic consequences of
having flagella covering a colony’s outer surface versus lining a cavity,
where the same cells could compose colonies of each configuration.
Brunet at al. [11] observed that flagella-out colonies of C. flexa swam
more rapidly than flagella-in colonies, whereas a greater proportion
of the cells in flagella-in colonies ate microbeads than did the cells in
flagella-out colonies. Therefore, they proposed that there is a trade-off

between swimming and feeding performance of C. flexa colonies. By
studying the hydrodynamics of each colony configuration, we can study
the mechanisms responsible for these performance differences.

1.2. Modeling approaches for choanoflagellate hydrodynamics

Various simplifications have been made to model the hydrodynam-
ics of choanoflagellates. Some species of choanoflagellates (including
S. rosetta) have a unicellular life stage that is attached to a surface.
Early approaches to modeling an attached unicellular choanoflagellate
represented the flagellar dynamics by a line or helical arrangement
of Stokeslets, and accounted for the collar of microvilli by prescrib-
ing a pressure drop that depended upon an assumed collar geometry
(e.g. [22-24]). Smith [25] described a regularized Stokeslet method to
simulate the flow produced by a flagellum. Nguyen et al. [26] used
that approach and were the first to include the collar of microvilli
into models of unicellular S. rosetta and to explore the complicated
effects of the collar and flagellar dynamics on swimming and feeding
performance. Similarly, Nielsen et al. [27] presented a detailed model
representing the cell body, the microvilli, and the undulatory flagellum
of the unicellular choanoflagellate Diaphanoeca grandis, which forms a
basket-like structure (“lorica”) that surrounds the cell and collar. They
used the model to explore the effect of the lorica to the flow and forces
on the flagella.

Building models of multicellular choanoflagellates using detailed
models of each cell becomes computationally expensive as the number
of cells in a colony increases, so a variety of simplifying approaches
have been used. Roper et al. [28] measured the flow produced by
a single attached S. rosetta and then represented each flagellum in
their model by a point-force that generated a far-field flow matched
to the measured one. They then constructed free-swimming colonies of
different sizes and configurations, representing the flagellum of each
cell by that point force. Kirkegaard & Goldstein [29] analyzed the flow
produced by chain and rosette colonies of S. rosetta, modeling each cell
with a rod-shaped flagellum and a spherical cell body, but no collar.
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Recently, C. flexa colonies [30] have been modeled by cells distributed
on spherical rafts driven by point-force flagella. Swimming speed and
fluxes into the colony surface for various shapes were calculated, and
colony inversion was modeled by actively changing curvatures of the
colony geometry. Although these models do not incorporate the collars,
they have enabled exploration of the effects of some aspects of colony
design on the swimming and feeding performance of multicellular
choanoflagellates.

In the study presented here, we designed a reduced model of a
choanoflagellate cell using regularized-force-dipoles with parameters
optimized to match the flow-field of a detailed model of a cell, and
then used those force-dipoles to construct large cup-shaped flagella-in
and flagella-out colonies. We tested this approach by comparing the
performance of model colonies with that measured for C. flexa colonies.
Then the models were used to explore the effects of various aspects of
colony morphology on swimming speed and flux of prey-carrying water
to the cells in a colony.

2. Methods
2.1. Measurements of living Choanoeca flexa

We used videomicrography to record the morphology, swimming,
and water flow produced by flagella-in and flagella-out colonies of
C. flexa, which were cultured as described by [11]. Because C. flexa
stick to glass surfaces, we videotaped colonies in square plastic wells
(15 x 15mm, height 0.8 mm) fabricated by gluing 3D-printed PLA walls
to polycarbonate lids (35 mm diameter) of FluoroDishes (FD35-100,
World Precision Instruments). Aliquots (220 pl) of C. flexa culture
(taken 24 to 60 h after a culture had been passaged) were transferred
into these wells using 3ml plastic transfer pipettes. Colonies in culture
are flagella-in, so to videotape flagella-out colonies we induced colonies
to turn inside-out by adding caffeine to produce a 10mM solution
(details in [11]). We visualized water flow in these wells by tracking
1 pm polystyrene beads. We diluted 800 pl of a stock suspension of
beads (Thermo Scientific 4009 A) in 10 ml of distilled water and added
12 pl of this diluted suspension to the culture in a well. We gently mixed
the fluid in a well by slowly drawing then expelling the mixture three
times using a 3 ml plastic pipette so that the beads were uniformly
distributed. The well was then capped with a glass coverslip and was
immediately viewed in bright field using a Leica DMLS microscope
illuminated by a fiber-optic light source so that temperature in the well
was kept at 20 °C. Using a magnification of 40x, videos were recorded
at 30 fps using a HiSpec 1 camera (Fastec Imaging) for durations
of 7-54 s. To minimize wall effects, all observations of swimming
colonies were made at least 50 pm away from any surface. Videos
were only made during the first 15 min after a well was prepared
to avoid any artifacts that might be caused by the beads that the
C. flexa captured on their collars. These videos were used to make
morphological measurements of colonies using Image J or MATLAB
software, to track particle paths and to determine swimming speeds
using MTracker J software, and to measure water flow fields around
colonies using Particle Image Velocimetry (PIV) software (DaVis 10.2,
LaVision). All linear measurements were made to the nearest pixel and
converted to pm (2.88 pixel/pm).

2.2. Mathematical model

2.2.1. Detailed model of choanoflagellates

At the small length scales of choanoflagellates, inertia does not play
a part in their hydrodynamic performance, and, therefore, the flow
around them is well-described by the incompressible Stokes equations.
Nguyen et al. [26] presented a three-dimensional computational model
of a single choanoflagellate in a Stokes fluid that explicitly represented
the cell body, individual microvilli of the collar, and time-dependent
flagellar dynamics. They demonstrated that morphological details did,
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Table 1
Geometric and waveform parameters used in the detailed computational model of a
C. flexa cell.

Feature Value Reference
Cell length [, 5 pm c
Cell width /, 3.7 pm a
Microvilli length 7, ; 8 pm a
Number of microvilli 32 b
Half angle of collar 6,; 27.2° a
Flagellum tapering parameter ¢ 4 pm a
Flagellum wave number k 27/16 pm~! a
Flagellum amplitude A 2.5 pm c
Flagellum beat frequency « 30 Hz c
Flagellum projected length L 19.2 pm a
Flagellum arclength L 22.3 pm a

a Model parameters for C. flexa measured or estimated from micrographs and TEMs in
[11].

b Model parameters of S.rosettafrom table 1 in [26].

¢ Measurements from Koehl lab posted at:
https://ib.berkeley.edu/labs/koehl/resint/multicellularity.html.

indeed, affect swimming and feeding performance. Longer microvilli
reduced speed and cell shape only affected speed when the collar of
microvilli was very short. Using fluid flux through a capture zone as a
proxy for bacterial prey capture, they found that models that ignore
the collar overestimate flux and greatly overestimate the benefit of
swimming to feeding performance.

While the detailed model in [26] was based upon the solitary S.
rosetta, here we have adjusted it to incorporate some measured features
of C. flexa morphology (see Table 1). We make the assumption that
the flagellum of the relaxed C. flexa cell undergoes a planar, sinusoidal
motion during its beating and prescribe the kinematics as:

z(s,1)=0, 0<s<L,

@

where s is arclength and x(-,7), y(-,1), z(-, 1) is the curve describing the
time-dependent shape of the planar flagellum. We also assume that the
individual microvilli comprising the collar are rigid, and their shape is
prescribed as

x(s,0) =5, Y(s,1) = A(l —exp(—s/c)) sin(ks — 2zwwt),

z(s,t)=0, 0<s<1.

(2)

Fig. 2 shows the computed streamlines and flow velocity magni-
tudes around three swimmers: one with no collar, one with a short
collar, and one with a collar length typical for C. flexa. Here the
streamlines are depicted in the flagellar plane above the centerline,
and the velocities giving rise to these streamlines have been averaged
over a flagellar beat period and over twelve half-planes at equally
spaced angles around the x-axis. In each case, we see streamlines
characteristic of pushers, where the flow along the axis of the swimmer
points outwards, in opposite directions, at its front and back, and flow
points inwards from above and below towards its middle. The vertical
dashed red lines in each snapshot indicates the cell body centroid, and
also the location of separatrix in the flow field away from the swimmer.
We note that the location of this separatrix varies with collar length,
and marches away from the cell body as the collar grows.

For a prescribed flagellar beat pattern, this detailed model identifies
features of the fluid motion created by the organism in the immediate
region around it and in the far field. When analyzing the flow features
of a colony of choanoflagellates, which may contain dozens or hun-
dreds of organisms, such a detailed model becomes computationally
expensive as the number of colony members grows. To analyze the
collective motion of many choanoflagellates, we choose to represent
each member by a reduced model consisting of a single regularized
element that approximates the time-averaged far-field flow generated
by the detailed model, so that there is consistency in the far-field

x(5,1) = 8 i c05O),  Y(5,1) = 5 Ly SIN(0,)),
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Fig. 2. Streamlines and flow velocity magnitudes above the flagellar axis averaged over one beat period and over twelve half-planes at equally spaced angles around the x-axis,
for three swimmers: (a) no collar, (b) short collar, and (c) full collar. Dashed red lines indicate position of cell center and separatrix of the pusher flow field. Here the flow was
computed using a detailed morphological model as in [26].
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Fig. 3. Schematic of the configuration of two equal and opposite regularized Stokeslets
prior to the limiting process that takes £ — 0. The regularization parameters ¢ — C¢
and ¢ + CZ converge to the same value € as £ — 0.

fluid velocity produced by the two models. This approach of using
reduced models of single cells to study the fluid dynamics of colonies
of choanoflagellates was used in [28] and more recently in [30,31].

2.2.2. Reduced model preliminaries

The basic situation of a flagellum pushing fluid backward while the
cell body swims forward gives rise to a simple model of a self-propelled
organism consisting of a force dipole (stresslet) [32,33], which decays
as r~2 with the distance r from the organism. Other models related to
the force-dipole model represent an organism by two or a few point
singularities [30,34-36], as two spheres [37], or as a small sphere with
prescribed surface velocity (squirmer) [38-40]. In [41,42], the force-
dipole model was extended to include a potential dipole at the same
location as the stresslet, which breaks the fore-aft symmetry to provide
propulsion.

Here, we use this formulation [41,42] where the regularized el-
ements are located at a single point. The placement of this point,
relative to the virtual cell body center, will be selected as part of
our optimization procedure so that the far-field flow produced by this
reduced model approximates the fluid flow computed using the detailed
morphological model. As part of this new approach, the regularizing
function used in the regularized Stokeslet formulation is not preset,
rather some parameters of this function are selected in our optimization
procedure. This will be described in detail below.

In R3, the velocity induced by a single regularized force f applied
at x, is the regularized Stokeslet, which can be written in the form

u(x,) =S, e)f = H(r,e)f + (f - x)xH,(r,¢) 3

where x = x, — xy and r = |x|, and x, is the evaluation point. This
expression is the exact solution of the Stokes equations V-u =0, pdu—
Vp = —f¢,(r). Here, u is the fluid velocity, p is the pressure, p is the
fluid viscosity, f is a force coefficient, and ¢ is a small positive length so
that ¢_(r) is a smooth approximation of the Dirac delta function and is
localized in a small sphere centered at the point x,,, where the force is
applied [43,44]. The regularization parameter ¢ is part of H,(r,¢) and
H,(r,¢€).

As depicted in Fig. 3, we adapt the model in [37] and place two
equal but opposite forces at a distance 2¢ from each other:

S(xe—xo—fﬁ;e+Cf)f—S(x(, —x0+ff3;e—Cf)f.

For self-propulsion, it is important that the two forces be regularized
with different parameters, which has been included in the expression
above by using the regularization parameters ¢ + C# and ¢ — C¢. This
breaks the aft-fore symmetry in the model and determines a swimming
direction.

Setting f = (q,/2¢)B and taking the limit as # — 0 while keeping ¢,
fixed gives the force-dipole fluid velocity at evaluation point x,:

w/?(x,) = —qy(B - V)S(x,6)p + cqoaiS(x, €)B, where x = x, — x,.
€

The last term is simplified by writing it in terms of derivatives with
respect to r= |x| [41,42] and using the decay rates H,(r,e) ~ r~! and
Hy(r,e) ~ r=3 for large r. These imply that H,(r,e) = e 'H,(r/e, 1)
and H,(r,e) = e3> H,(r/e, 1), which can be combined into the single
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expression H,(r,e) = ¢!">*H,(r/e,1) for k = 1,2. Then
%Hk(r, €)= (1 -2k *H(r/e, 1) + e'—Zk(—eiz)%Hk(r/e, 1)
= —é((Zk - DH(r,e)+ r%Hk(r, €))
The result is
W/(x) = =o(B- VIS(x, = x0. 0B = bo (41 (. OB+ x- Pxr(r.0)) /€ (4)

where b, = Cqye and

0H(r,€)
Ji(r,e) = rT + H(r,e) 5)
Jr(r,e) = rw +3H,(r,¢€) 6)

We make the following observations about the model:

1. The regularization function that has been used extensively with
the method of regularized Stokeslets is:

15¢*

8m(r +€2)7/2

There are many choices of regularizing functions. In order for
the reduced model to have flexibility to adjust some details of its
near-field velocity to match with the velocity computed by the
detailed model, we choose to use a regularizing function with
two undetermined coefficients that can be found as part of an
optimization procedure. We use:

v (r) =

15a,€® + 15b, €% + 3(42 — 8a; — 4by)e*r*
167(r2 + €2)11/2

where the coefficients guarantee that the integral of ¢, is 1. The

parameters a; and b, are to be determined based on desired

flow properties. Note that this regularizing function has the same

decay rate as the standard regularization function y, for large

values of r. With the blob function in Eq. (7), we have

Pe(r) = @

= —l — 6.2
hO) = e (10-49 + 8a, + 30, )%
—9(—196 + d44a, +27b))re*~
9(=112 +33a, — 6b,)r%¢® +2(112 + 37a, + ébl)e*‘)
and
1
I = m(—z(—wﬂsal +3b)r* 2 +3(4a, +5b,)r2e4+21a1e6).

2. We will refer to Eq. (4) as the force-dipole model in this work.
The expression for u/“(x,) consists of two terms centered at the
same point x,, which is assumed to represent a point along the
flagellum. The first term is a regularized stresslet with coeffi-
cient ¢, that has units of force-length. The parameter ¢, in our
minimal model, when divided by the regularization length ¢, can
be considered as the force generated by a flagellum. The second
term is a regularized potential dipole with coefficient b, that has
units of force-length?. Both terms affect the flow generated by
the force-dipole model of the choanoflagellate, but the values of
the coefficients ¢, and b, may be set independently. Note that
in its derivation, the value C denotes the fore-aft asymmetry
of the model (Fig. 3). Since we define b, = Cgye, the ratio
by/qo indicates a particular amount of asymmetry, which will
be explored in Section 3.5. The calibration of these parameters
is discussed in the next section.

2.2.3. Calibration with the detailed hydrodynamic model

Thus far, the reduced swimmer model described above depends
upon the choice of the parameters a,, b, € in the regularization function
(Eq. (7)), and the force dipole parameters b, and g, (Eq. (4)). In
addition, to align the far-field flow produced by the reduced model
with that produced by the detailed morphological model (e.g. Fig. 2),
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Fig. 4. Calibration of reduced model with detailed model: (a) Schematic of force dipole model showing the location of the regularized force dipole (red square) with respect to
the cell body center (blue dot), the resulting stagnation point (green dot), and the location of Stokeslet forces (green star). (b) Optimized blob functions for cells with different
collar lengths resulting from matching flows generated by reduced cell model with flows generated by the corresponding detailed model. We observe that the force dipole moves
further from the cell center (at x = 0) as the collar grows. (c) Optimized blob functions when fixing the regularized force dipole at x = 11.8 pm. Note that peak values of the
optimized blob increase with collar length. (d) Flow velocities produced by the detailed model averaged over a beating cycle and over twelve equally-spaced half-planes containing
the x-axis. Parameters used in detailed model are shown in Table 1. (e) Flow velocities produced by the optimized force dipole with g, = 15.7pN pm, by = 9.5pN pm?, ¢ = 3.7 pm,

a, =05, by =—L11, £, = 11.8 pm.

we will also determine the position of the regularized singularities
with respect to the cell center along the swimming direction p. The
schematic in Fig. 4(a) shows this offset parameter #}. This parameter,
along with the three regularization parameters and two force dipole
parameters, will be chosen to best match the velocity field generated
by the reduced model to that of the detailed model. Note that once
this offset parameter ¢} is determined, the distance between the force
dipole and the stagnation point, #,, along the direction j is determined
by solving for #, so that w/(#,8) = 0 (Eq. (4)). In Section 2.2.4,
we will assemble the optimized force dipole cell models into colonies
and place Stokeslets on the midpoints (denoted by a green star in
Fig. 4(a)) between the cell center and the stagnation point of each
cell to enforce the constraint that colonies move as rigid bodies. The
colony velocity will be evaluated at the midpoints and we will also
choose this midpoint as the point where we will evaluate a single cell’s
velocity.

Our procedure to find optimal reduced model parameters is as
follows. To get a benchmark far-field velocity, we run the detailed
morphological model of the C. flexa swimmer for one flagellar beat
period. We evaluate the fluid velocity field at a set of discrete grid
nodes around the swimmer, and average these velocities over a beat
period. For the cell body centered at [0,0] pm, in the plane of flagellar
beating z = 0 shown in Fig. 2, this region is the rectangular box
[—15,28]pmX[0, 15]pm excluding the near-field box [2.5, 10]pmx [0, 5]pm.
We rotate this half-planar region about the x-axis, choosing twelve half-
planes at equally spaced angles around the axis, using a mesh size of
1 pm. For the reduced model, with any choice of the six parameters
(@, by, 49-a;, by, €), we can quickly evaluate the velocity field induced
by this regularized singularity at the same discrete set of grid nodes
using Eq. (4). Then, with respect to these six parameters, we minimize
the weighted /> norm of the difference between the benchmark velocity

field and that of the reduced model. In order to emphasize agreement
in the far-field, we use the weight y* + z2.

Fig. 4(d) shows the streamlines and velocity magnitudes, averaged
over a beat period, around the detailed choanoflagellate model and
Fig. 4(e) shows the streamlines due to the placement of the optimal
regularized force dipole. As expected, the flow fields near and inside the
microvilli collar are quite different, but the flow fields a few microns
away from the organism agree nicely. We remark that in Fig. 4(e), the
flow is produced by regularized elements at a single point. Figs. 4(d)
and 4(e), show the calibration of the reduced swimmer with the typical
C. flexa collar morphology and flagellar beat. We also investigate
how the optimal singularity placement and regularization parameters
depend upon collar size. The detailed model results shown in Fig. 2
show that the collar has an effect on where the separatrix lies in the
far-field. Fig. 4(b) shows the optimal regularized functions in Eq. (7)
for five model choanoflagellates, each with the same flagellar wave,
but different collar lengths, from no collar up to the typical C. flexa
collar length. The distance between the force dipole location and the
cell center, ¢}, does indeed increase as the collar length increases (the
cell body center is at x = 0). In order to isolate how the optimal
blob function changes with collar length, we fix ¢, at the optimal
value found for the largest collar, but otherwise solve for the other
optimal parameters. In particular, panel Fig. 4(c) shows the optimal
blob functions ¢, for different collar lengths.

In [30], resistive force theory was used to estimate the force mag-
nitude exerted by a single C. flexa flagellum as 6.9 pN. In order to
estimate the force magnitude exerted by our reduced model of a single
cell, we go back to its derivation prior to taking the limit as # — 0
(Fig. 3). We choose ¢ to be the length scale of the cell given by
the regularization parameter e. This gives an estimated flagellar force
magnitude of gye~!. For the optimal values of ¢ and ¢, computed as
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above, we find that this model force magnitude is approximately 4 pN.
Additionally, we also note that flow velocities induced by the force-
dipole cell model scale linearly with the parameter ¢, when the ratio
by/4qp is held constant.

2.2.4. A reduced colony model

We will now assemble the optimized force dipole cell models into
colonies. In this work, we make the assumption that cells in colonies
are rigidly held together by regularized Stokeslet forces. As such, given
the flow field generated by each individual force dipole and Stokeslet
force, the colony will translate and rotate as a rigid body. In order
to achieve this, we will solve simultaneously for regularized Stokeslet
forces at each cell location and the rigid body velocities, to satisfy
free-swimming of the colony (total forces and torques generated by
the colony should be zero). The location of these forces will be at the
midpoint between the virtual cell center and the stagnation point.

In building a colony, we specify the position of the cell centers
and the cell directions. Using the calibrated force dipole parameters,
below we write down the equations that require the flow generated
by the regularized force dipoles and the regularized Stokeslets to give
velocities of a rigid body at the location of the Stokeslets. Denote
the cell centers as {x{,i = 1,2,...,N} and cell directions as {Zi,-,i =
1,2,..., N}. Define the location of the Stokeslets by xj."" =x{¢— % ii,-
for i = 1,2,..., N. Based on Eq. (4), the fluid velocity at location xf"i
due to a calibrated force dipole at position x; with direction B ; is

N
Wy = Y —a0(B; - VIS — x;,€)B;
j=1
— by (11 OB + (" = x)) - B = x ) ). ®)

Now we can write the fluid velocities at x;'”' due to the force dipoles
and the Stokeslets as
N
ufd(x:"i)+ZS(x:"i—x;."i,e)fj :U+Qx(x;"i—x0). 9
j=1
Here f; is the unknown Stokeslet force and (S (xlf'”' - x;."i ,e)f ;) denotes
the regularized Stokeslet flow at x{"* due to a regularized force f; at x7".
Entries of S(-,-) are defined in Eq. (3). The right hand side of Eq. (9)
is the velocity at x" of a rigid body translated with velocity U and
rotated with respect to x, with angular velocity . We enforce zero
total force and torque conditions

N N
DFi=0 Y f XM —x)=0 10)
j=1 j=1

to close the system. In this work, we choose x, to be the origin for
simplicity.

In the next section we will discuss our choice of colony surface
geometries and the arrangement of individual cells. Once we have built
the colony, we use the parameters obtained from the calibration as
described in Section 2.2.3 and solve Egs. (9) and (10) simultaneously
for forces f;,i =1,2,..., N and the colony translational velocity U and
rotational velocity Q. The flow velocity at any point x can then be
reconstructed by

N
u(x) =u!(x)+ Y S(x - X" e f;, an

J=1

where u/“(x) is defined in Eq. (8).
3. Results
3.1. Flagella-in colonies: lab and computational experiments

As a touchstone for our reduced model of flagella-in colonies, we
start with video images collected as described in Section 2.1. These

Mathematical Biosciences 389 (2025) 109519

images are two-dimensional video frames, where individual cells in
the colony appear at different resolutions, depending upon their po-
sition in the focal plane (see Fig. 5). Most flagella are not visible. We
approximate the geometry of these spherical cup-shaped colonies by
assuming that the cells are distributed on the surface of a sphere of a
fixed radius. We assume that each image is a cross-section of the colony
that, when rotated about its axis, sweeps out the surface of the colony.
We approximate the colony width W and its length L, and use planar
geometry to extract the radius R and the shape angle a of the spherical
cap:

2 _ 2
L 4W>’ R L 12)

= arccos | ———— = —.
* ( 4W?2 4+ 12 2sina

Fig. 5 shows images of two colonies with superimposed parameter
approximations. We make two further simplifying assumptions (we will
relax these in sections below). First, we assume that each cell direction
(the axis of the equal and opposite forces in our reduced cell model as in
Fig. 3), is perpendicular to the colony surface. Second, we assume that
cells are distributed uniformly on the spherical cap. For a given frame,
we count the number of cells per unit length along the perimeter p, and
square this quantity to approximate the cell density. This information is
used to distribute cells with uniform density on the three-dimensional
surface of the rotationally-symmetric spherical cap. In this work, we
distribute points on a spherical cap approximately 4s = 1/p, apart in
arclength, in both latitudinal and longitudinal directions. Consistent
with [30], our algorithm yields a higher proportion of pentagonal
neighborhoods in colonies with greater curvature.

The frame of the colony in Fig. 5(b) resembles a semicircle with
approximate width W ~ 27.0 um and approximate length L ~ 51.2 pm.
It has an average cell density of 0.17 cells per pm along its perimeter,
corresponding to a surface density of p = .029 cells per pm?. Experi-
ments show that it swims from left to right at a speed of 8.59 pm/s.
Using particle image velocimetry (LaVision PIV software), trajectories
of 1 pm-sized beads were tracked. Given the observed swimming speed,
the particle trajectories relative to the colony can be plotted. These rel-
ative trajectories, moving from right to left, are shown in Fig. 6(a). The
beads whose trajectories cross the yellow line are eventually captured
by the colony (numbers indicate the end of the trajectories).

We test our reduced colony model by comparing its predictions to
measured values for the living flagella-in C. flexa colony shown in Fig.
5(b). In our model, we approximate the colony by a spherical cap with
a radius (R), shape angle (), and cell density (determined from the
number of cells per length in the frame shown in Fig. 5(b)) measured
in the 2D image of the colony in the focal plane of the microscope
in a frame of the video. Because the orientation and position of the
colony in the focal plane can change as it swims, we run four different
simulations of the colony based on R and « measured on different
frames of the video (Table 2).

Our model calculations of swimming speed, particle trajectories,
and water flux towards a colony are good matches for measured values.
The translational velocity computed using our model of the colony in
the video frame in Fig. 5(b) (simulation B, Table 2) in a fluid with
viscosity of water is |U| = 8.36 um/s, which is remarkably close to the
experimental value of 8.59 pm/s. The range of colony speeds calculated
in our four simulations are within 2 pm/s of our measured speed (Table
2). In experiments, we can measure 2D particle trajectories (Fig. 6(a))
and velocities (Fig. 7(a)) in a video frame when the focal plane of the
microscope runs through the middle of a C. flexa colony, and we can
compare them to calculated values for that same 2D plane bisecting our
3D simulation of the colony in that video frame. The paths of particles
in our videos (Fig. 6(a)) are very similar to those calculated by our
model (Fig. 6(b)). PIV measurements of water velocity vectors relative
to a C. flexa colony in a focal plane bisecting the colony (Fig. 7(a))
are used to determine the radial flow velocities towards or away from
the colony across a circular perimeter (radius = 45 pm). This circle
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(a) W=23.6 um, L=52.5um
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(b) W=27.0pum, L=51.2 um

Fig. 5. Video frames of two different flagella-in colonies. The colony width W and length L are approximated, and the spherical cap radius R and shape angle « are determined

from those approximate values.

(a)

Fig. 6. Particle trajectories relative to the C. flexa colony shown in Fig. 5(b). (a) Trajectories of beads measured in a focal plane through the middle of the living C. flexa colony.
The beads whose trajectories cross the yellow line are eventually captured by the colony. Numbers indicate the end of the trajectories. (b) Streamlines in a plane through the
middle of our 3D reduced model of that colony in the video frame shown in Fig. 5(b) (radius R = 25.6 pm, shape angle of a = 92.9°; see simulation B in Table 2). Streamlines
correspond to particle trajectories in this steady flow. The shaded regions indicate positions of the virtual cell bodies (red) and collars (purple).

Table 2

Model parameters and computed swimming speeds for different frames of a video of one colony (depicted in Fig. 5(b)). Colony length and
width are measured in each video frame to the nearest pixel and are converted to pm’s (measurement of 100 pm on a frame of a video of
a stage micrometer gives a calibration factor of 288 pixels/100 pm). Colony angle and radius were calculated using Eq. (12). The measured
swimming speed of the colony is 8.59 pm/s. Our model predicts similar swimming speeds for all the video frames, despite variations in colony

dimensions.
Measurements Simulation
Colony width Colony length Colony radius Shape angle # of cells Colony speed
W (um) L(pm) R(pm) a N |U] (pm/s)
Sim. A 31.0 53.8 27.2 98.1° 155 8.10
Sim. B 26.9 51.2 25.6 92.9° 125 8.36
Sim. C 25.9 51.7 25.9 90.0° 109 7.11
Sim. D 24.1 54.4 27.4 83.0° 111 6.55
Mean 27.0 52.8 26.5 91° 125 7.53
SD/Mean 0.11 0.03 0.03 0.07 0.17 0.11

is approximately 15 pm away from the colony surface to assure that
we measure steady flux towards the colony, free of artifacts due to PIV
masking. Note that the total flux into the circle is not zero because fluid
can enter above and below the focal plane. Using our 3D reduced model
of the same colony in the same frame (Fig. 7(b)), we determine the flux
through the same circular perimeter around the colony. For all of our
simulations, our calculated values are a good match with the measured
values (Fig. 7(c)).

Swimming velocity, bead trajectories, and flux towards the colony
will surely vary with cell distributions, irregular geometries and some
details of flagellar dynamics. However, the above comparison gives us
confidence that this reduced colony model captures the fundamental
fluid dynamics of a flagella-in, spherical cup-shaped colony. In the
next section, keeping with spherical cap geometries, we will explore
how variations in colony shape angles and cell densities influence the
hydrodynamic performance.
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Fig. 7. Flux of water towards the C. flexa colony shown in Fig. 5(b). (a) PIV measurements of the water velocity vectors relative to a colony in a focal plane through the middle
of the colony. Water flux in the radial direction at discrete positions across the yellow circle (radius = 45 pm) was determined from the PIV data. (b) Flow in the same plane
relative to a 3D model of the same colony in the video frame shown in Fig. 5(b) (radius R = 25.6 pm, shape angle of a = 92.90°; see simulation B in Table 2). White lines show
streamlines relative to the colony in this plane. Water flux in the radial direction across the circle (radius = 45 pm) indicated by black dots was calculated to compare with
measured values. The red line shows the intake zone of the colony itself in this plane (the region from which particles are captured by the cells in the colony; see yellow line in
Fig. 6(a)). The total 3D colony intake flux across this intake zone was computed by our 3D model and results are shown in figs. 9-13. In (a,b), color scale indicates water velocity.
(c) Inward normal flux at discrete positions around the circles shown in (a) and (b). The black curve indicates experimental measurements, and the other four curves show the
results of simulations using colony dimensions measured in different frames of the video, as the colony changed its orientation and position relative to the focal plane. Positive
values indicate flow into the circle towards the colony, and negative values indicate outward flux away from the colony.

3.2. Swimming and feeding of flagella-in, cup-shaped colonies

In this section we again consider colonies of an idealized spherical
cap geometry, and we use a fixed force-dipole model of each individual
cell in the colony to probe how hydrodynamic performance depends
upon cell density and cap geometry. In particular, we measure both
translational swimming velocity and fluid flux into an intake zone. We
first start with flagella-in configurations, but then flip the direction of
the virtual flagella to point outside the colonies while keeping all other
model features fixed in the next section.

Our experimental observations of flagella-in colonies with shapes
similar to a spherical cap spanned a range of sizes, with lengths
varying from 52.5 to 78.1 pm and widths from 23.6 to 36.2 pm. The
approximated shape angle values («) ranged from 79.1° to 90.7°. When

approximating these colonies by a spherical cap, these parameters give
rise to a radii range from about 29 to 40 pm. The average number of
cells measured along the perimeter of the cross-section of these colonies
ranged from 0.16 to 0.19 cells per pm, corresponding to a surface
density of p = .026 to .04 cells per pm?. As such, we perform parameter
studies of spherical cap colonies with cells distributed on spheres of
radius R = 30 pm and R = 40 pm, sweeping through biologically
relevant cell densities and shape angles.

As an illustration, the first row of Fig. 8 shows snapshots of spherical
cup-shaped colonies, each with a shape angle of a = 90°, but increasing
surface density from left to right. The second row of Fig. 8 depicts three
colonies, each with the same surface density of p = .0324 cells per um?,
but with increasing shape angles from left to right. Also depicted are
the streamlines relative to the colony, and the color intensity indicates
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Fig. 8. Streamlines and flow magnitude, relative to the colony, for different cap geometries and different cell densities. In each snapshot, the sphere radius R =30 pm. (a) a = 90°,
p =.0225 cells per pm?. (b) a = 90°, p = .0324 cells per pm?. (c) @ = 90°, p = .0441 cells per pm?. (d) @ = 54°, p = .0324 cells per pm?. (e) a = 90°, p = .0324 cells per pm? (same
panel as (c)). () a = 126°, p = .0324 cells per pm?. All of these flagella-in colonies swim to the right in the lab frame, and, therefore the streamlines relative to the colony are
pointing towards the left. As cell density increases, the flow velocity strengthens, leading to a higher feeding flux. The non-monotonic trend when the colony surface expands is
due to two competing factors: the intake zone area increases, while the flow magnitude decreases in most areas of the intake zone.

the magnitude of the fluid velocity relative to the colony. All of these
flagella-in colonies swim to the right in the lab frame, and, therefore the
streamlines relative to the colony point towards the left. We observe,
in the first row, that when geometry is fixed, increasing cell density
increases the magnitude of the relative velocity. We observe, in the
second row, that the circulation of flow into the back of the spherical
cup-shaped region is more pronounced for the most shallow colony
(e = 54°), and negligible for the colony that is nearest to a closed
sphere (¢ = 126°). This circulation of flow can enhance fluid flux
into the colony, which is important for feeding. We will quantify these
observations below.

Fig. 9, panels (a) and (c), show computed translational velocities |U|
of spherical cup-shaped, flagella-in colonies, for nine different shape
angles, each at four different densities, with colonies arranged on
spheres of two different radii — representing results from seventy-
two simulations. (Note that while we wish to perform simulations that
vary shape angle while keeping cell density fixed, there will be small
variations in the chosen density due to the discrete nature of cell
placement.) We remark that in the case of R = 40 pum, p = .0625 cells
per ym?, @ = 180° (largest sphere, highest density, fully-closed), the
number of cells exceed 1200. After placing a discrete set of cells on
the spherical surfaces, simulated colonies are almost axially symmetric
with respect to the horizontal axis. As all cell directions are normal
to the spherical surface, the computed translational velocity is almost
entirely along the horizontal axis and the computed rotational velocity
is zero. In panel (a), we plot the seventy-two computed values of colony
speed as a function of surface cell density. Along each curve in this
panel, the same colony shape is maintained. We see that colony speed
increases linearly with density — the more cells that are pushing the
colony, the faster it swims. To illustrate the dependence of swimming
speed on colony shape, in Fig. 9(c) we plot the same set of seventy-two

10

computed values of colony speed as a function of the shape angle a.
Each curve represents colonies with the same radius and cell density.
We see that there is not a monotonic trend between colony speed and
shape angle. There are two local maxima, one at « = 18° when the
colony is nearly flat and another one near the hemisphere value a = 90°
and 108°. There are two factors that contribute to the colony speed: the
drag and the total propulsion force. As the shape angle « increases, the
colony grows larger by adding more cells. For very shallow colonies,
the increased drag from this colony growth outweighs the increased
propulsion force from the new recruits. At some point, before the shape
angle reaches that of a hemisphere, the added propulsive forces then
overcome the added drag, and we see an increase in speed. However, as
the colony grows past a hemisphere, the added cells’ directions become
less aligned with the swimming direction, and speed decreases. In the
extreme case of a = 180°, the colony is a closed sphere and does not
translate.

The waving flagella of choanoflagellate cells comprising a colony
create a flow that brings bacterial prey to their food-capturing col-
lars [45]. As in previous models of choanoflagellate feeding perfor-
mance (e.g. [26,29]), here we use the flux of water through an intake
zone as a proxy for the rate of bacterial prey capture. We choose this
intake zone to be a surface that corresponds to the region around the
colony where our experiments, as in Fig. 6(a), have shown that beads
enter. This intake zone is the rotationally-symmetric surface that covers
the front and the side of the colony, and its one-dimensional slice is
depicted in green in Fig. 1(b). The front part of the intake zone extends
slightly more than a half cell length in front of the virtual cell body
centers. The side part of the intake zone wraps around the regions
where the virtual collars of the boundary cells would be.

For each of the seventy-two simulated flagella-in colonies, we inte-
grate the inward normal component of the fluid velocity field (relative
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Fig. 9. Translational speeds and feeding flux of spherical cup-shaped, flagella-in colonies: effects of colony geometry and cell surface densities. In the lab frame, the colonies swim
towards the right. (a) Colony speed and (b) feeding flux as a function of surface cell density. Each curve reflects the same colony geometry. (c) Colony speed and (d) feeding
flux as a function of shape angle. Each curve reflects the same surface cell density. Note that the data points in panels (a) and (c), panels (b) and (d) are the same, just grouped
differently, Swimming speed and feeding flux increase linearly in cell density but change non-monotonically as the colony surface expands from a narrow plate to a full spherical

shell.

to colony translation) across the rotationally symmetric intake zone to
compute the feeding flux Q, measured in pm?3/s. In Fig. 9(b), we see
that for fixed colony geometries, the flux increases linearly with surface
cell density. We remark that for a closed sphere, the flux is minimal, but
does not vanish, as flow can enter the colony surface through the spaces
between cells. In Fig. 9(d) we plot the same data points as a function
of shape angle. As the shape angle « increases, the colony adds more
cells and the intake zone grows, so one might expect flux to increase
monotonically, but this is not the case. By looking at the flows relative
to the colony in Fig. 8(d,e,f), we see that as the colony grows, its surface
begins to shield the flow generated by the flagella. The shielding effect
is pronounced when the shape angle is larger than a« = 90° (the value
where flux peaks).

3.3. Swimming and feeding of flagella-out, cup-shaped colonies

While hemispherical geometries are commonly observed for
flagella-in C. flexa colonies, the flagella-out colonies are often ovoid
rather than spherical cups. Nevertheless, it is instructive to use this
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reduced computational model to see how hydrodynamic performance
changes when we flip the direction of the flagella in the simulations
presented in the previous section. We keep all other model features the
same except for the directions of each individual force dipole, which
we change from j to —f.

Fig. 10 shows the swimming speed and feeding flux for each of the
seventy-two spherical cup-shaped colonies as in Fig. 9, but here with
flagella pointing out. In the lab frame, the swimming progression of
these colonies would be opposite to the flagella-in colonies. In Fig.
10(a), we see that colony speed increases linearly with surface cell
density. Fig. 10(c) shows the colony speeds plotted as a function of the
shape angle a. As in the flagella-in simulations, here we see that speed
is not monotonic. For each density, the speed achieves a maximum
between « 54° and « = 72°, which is more shallow than the
hemisphere, where flagella-in colonies achieve a local maximum speed.

In order to analyze feeding flux, we choose the intake zone depicted
in Fig. 1(c). Here, the front part again aligns with the virtual cell body
heads (as in the flagella-in case), and the side part extends along the
position of the virtual collars, which are now outside the colony. Fig.
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10(b) shows the total feeding flux as a function of surface cell density.
Unlike the flagella-in case, there is not a strict linear dependence on
density, but beyond the lowest density values, flux increases as more
cells are added to the fixed geometry. Fig. 10(d) shows the total feeding
flux data re-plotted as a function of shape angle a. For each density,
we see that the total feeding flux initially increases with shape angle,
achieves a maximum, but then decreases as the colony approaches a
closed sphere. For all but the most sparsely covered colonies (p = .022
cells pum~2), the maximum value of total flux occurs for the hemisphere.

While total flux is one measure of feeding performance, we should
also consider how much of this flux is achieved per cell. For all of
the simulations, we present this in Fig. 11 for both flagella-in (panel
(a)) and flagella-out (panel (b)) colonies as a function of shape angle
a. There is an interesting collapse of data here — the flux per cell is
independent of the cell density when cells are distributed on the same
geometric surface. Also, as a function of shape angle «a, the flux per
cell decreases as the spherical cap closes, in all cases. In the flagella-in
cases, colonies covering a sphere with a smaller radius show higher flux
per cells than the larger radius (compare R =30 pm to R =40 pm). In
the flagella-out case, the difference is minimal.

In summary, in this idealized geometry, when we compare the
ranges of colony speed and feeding flux in Figs. 9 and 10, we do
see that flagella-in colonies swim more slowly than their flagella-out
counterparts, with all else being the same. In addition, we see that
each flagella-in colony generates more feeding flux than the flagella-out
colony.

3.4. Effects of non-uniform cell distribution on hydrodynamics

In the previous section, we assumed that cells were distributed uni-
formly on the surface of the colony. In this section, we investigate how
swimming velocity and feeding flux is altered when cell distribution,
instead, is non-uniform. To do this, we fix the shape of a flagella-
in colony and fix the number of cells that comprise the colony, but
vary the local cell densities as follows. We divide the colony into
three regions with equal surface area as illustrated in Fig. 12(a). We
label these regions on the colony surface as the back (purple), the
middle (green), and the front (red), and prescribe cell densities by the
triplet (p, p,y» o). The front region is so-designated because, given the
direction that this flagella-in colony swims, it is the leading edge of the
colony. These cell densities, along with the surface area of the region,
determine the number of cells that will be distributed on the region. We
consider flagella-in colonies of five different shapes with a ranging from
60° to 140° with R = 25 pm. For each of these six shapes, we consider
the three cases: (py, p,,. P ) = (.04,.04,.04) cells per pm? (uniform case);
(.02,.04,.06) cells per pm? (front-loaded case); and (.06,.04,.02) cells
per um? (back-loaded case). As in Section 3.2, we will assume that cell
directions are perpendicular to the colony surface.

We will specify the cell surface densities on each region (and, hence,
the number of cells), but will choose different seedings of the cells on
each region. This is achieved by first distributing points on a sphere of
radius R with uniform density, say p,. For this distribution, we then
take a random slice of the sphere that has the same shape as the front
region, and use these positions as a sample of cell center locations in
the front region of the non-uniform colony. This is done also for the
middle and back regions. For each colony geometry, and each density
triplet, we perform three hundred simulations. We remark that because
the cells are not very tightly packed, the different samples may show
variation in performance, as will be discussed below.

As the colony shape is rotationally symmetric about the x axis,
we find that the translational velocity is mostly aligned with the x
axis, with small y, z velocity components. In addition, our simulations
show minimal rotational velocity, with less than 2°/s. In Fig. 12(b), we
present the box plot of colony swimming velocities in the x-direction
as a function of shape angle for the front-loaded, uniform, and back-
loaded cases. Here each box represents the middle 50% swimming
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speeds across the three hundred random realizations of cell center
positions on the colony surface. The medians are marked by the circular
markers and the whiskers extend 1.5 times the interquartile range
from the medians, and the data beyond the range defined by the
whiskers, the outliers, are plotted as dots. For each shape angle, as cells
are redistributed towards the back, the slower the colony swims. The
front-loaded cell distributions result in faster swimming than uniform
distributions, with the back-loaded cell distributions giving the worst
performance. For shallow colonies, the difference is less pronounced,
but as the colony fills out more of the sphere, the disparity widens.
In fact, for the back-loaded case where a = 140°, we see that the
abundance of cells in the back region that push in the normal direction,
actually cause the colony to reverse direction (U, is negative). The
ranges across all of the three hundred replicates are also indicated. We
note that the different cell placements do not have much of an effect
on colony swimming velocity.

Figs. 12(c) and 12(d) show the box plot of total feeding flux and flux
per cell for each colony as a function of shape angle « for front-loaded,
uniform, and back-loaded cell distributions. To show the median curves
clearly, we excluded a few extreme outliers from both plots. Unlike
colony velocity calculations which exhibited a small variation, we note
that flux calculations have a few outliers that can be as 40 times higher.
As the shape begins to exceed a hemisphere (a ~ 120°), we see that the
back-loaded colonies actually surpass the uniform colonies in feeding
flux. However, for all shapes, the front-loaded colonies do the best job
of bringing fluid into the intake zone of the colony. The feeding flux
reported in Fig. 12(c) reports the integral over the entire intake zone
of the colony. Similarly, the feeding flux per cell reported in Fig. 12(d)
is computed by dividing the total flux by the total number of cells in
the colony.

Now we will look more closely at the feeding flux into each of
the three regions separately, as well as the flux per cell, computed
separately for cells in each region. Here we focus on the single colony
shape with « = 80°, and the same density triplets as above. Again,
we note that each of the three regions have the same surface areas.
In Fig. 13(a), we show the medians of feeding flux into the back,
middle and front region over 300 runs. We already noted that the
front-loaded colonies have the highest total flux, while the back-loaded
colonies have the lowest (as in Figs. 12(c) and 12(d)). In particular, Fig.
13(a) indicates that, when comparing flux into the front regions, the
front-loaded colonies have roughly twice that of the uniform colonies
and about five times that of the back-loaded colonies. This can be
explained from the streamlines relative to the colony in Fig. 13(c,d,e).
By examining the color indicating the flow speed, we see that the flow
relative to the colony is significantly higher near the colony surface in
the front-loaded case.

We have now observed that packing cells at the front of the colony
enhances both colony swimming velocity and total flux into the colony.
How, then, is the feeding of the cells that are not up front? Fig. 13(b)
shows the flux per cell in each region, for the three density arrange-
ments. We see that individual cells up in the front enjoy moderately
more flux than the uniform case, and considerably more than the back-
loaded case. However, what is very striking is the flux per cell for the
cells in the back. There is more than a two-fold increase in feeding
for these cells in the front-loaded case compared to the back-loaded
case. The cells up front are helping their colony members in the back!
A front-loaded cell arrangement can, therefore, promote cell division
and colony growth, even for cells on the periphery.

3.5. Swimming of a complex-shaped, flagella-out colony

Our experimental data includes videos of flagella-out colonies trans-
lating and rotating as the flagella beat. These flagella-out colonies are
not cup-shaped, but are typically “football-shaped”, with a chunk of the
football cut out. One frame of a representative movie is shown in Fig.
14(a), which depicts a cross-section of the colony. In this experimental
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video, the colony swims along the horizontal axis (see the black line
segment in Fig. 14(a)) at 58.2 pm/s and rotates around its swimming
direction at 145°/s.

Here we use the same reduced modeling approach as before, but use
cell position data from the experimental images to build the computa-
tional colonies. We assume that the cells are distributed on a portion of
an ellipsoidal surface rather than a sphere. Figs. 14(a) and 14(b) show
two frames of the same movie at times when the colony has rotated
90°. These two frames are arranged together in the 3D image shown
in Fig. 14(c). We use this geometric data to estimate the dimensions
of the ellipsoidal surface (here semi-axes a,b,c are calculated to be
a =18.1 pm, b = 14.6 pm in Fig. 14(a), and ¢ = 14.5 pm in Fig. 14(b)).
Next we need to use the 2D images to distribute cells on the surface
of the computational colony. Although not shown here, we utilize an
additional experimental image where the colony has rotated 270 ° from
its position in Fig. 14(a), giving us two horizontal planar images of the
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colony in Fig. 14(c). We project the cells from one of these two planar
images to the upper half of the ellipsoidal surface, and project the cells
from the other planar image to the lower half. The resulting colony
model is depicted in Fig. 14(d), and we see that there is a section of
the ellipsoid surface devoid of cells, reflecting the fact that the colony
is not a closed surface.

Using this colony geometry with realistic cell distributions, the opti-
mized parameters used in the previous sections for flagella-in colonies,
and the assumption that the virtual flagella are perpendicular to the
surface — can we predict the observed translational and rotational
speeds of the colony? With these choices we find that the computational
colony’s swimming speed is 7.5um/s and the rotation is at 14°/s. We
see that the computational colony swims about eight times more slowly
than the living colony, and rotates about ten times more slowly. We
note that although both translational and rotational velocities of the
colony are linear in g, (provided b,/qj is held constant), merely scaling
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near the intake zone.

up this swimming strength ¢, in the model to match the observed
translational velocity will not result in a match of observed rotational
velocity.

Perhaps the assumption that flagellar directions are always per-
pendicular to the surface is leading to the discrepancy between ex-
perimental and model velocities? We will first relax this assumption,
and take a closer look at the experimental images. As shown in Fig.
15(a), we measure the angles made by N, = 27 flagella based on
one frame of the movie. The 27 angles are tabulated in the histogram
shown in Fig. 15(b). Using statistics from this histogram, we perform
300 trials that vary flagellar orientation, assuming that this orientation
of individual cells are independent from each other. Each trial assigns
force dipole directions of each cell in the colony as follows: We ran-
domly select an integer j between 1 and N,, and then assign the jth
tabulated angle 6; as the angle between the force dipole direction and
the vector orthogonal to the plane tangent to the colony at the cell
location. Since there are infinite many directions (forming a cone) that
meet the angle requirement, we select one of them from a uniform
distribution.
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We repeat this process 300 times and compute the linear and
angular velocities for each trial. The distributions of |U| and |Q| are
approximately Gaussian with mean 7pm/s and 14°/s and standard
deviations 1.7 pm/s and 5° /s, with maximum speeds 11 pm/s and 26° /s.
This result is similar to the case of flagella perpendicular to the ellip-
soid, which is not surprising since the histogram of angles indicates
that the mean is near 90°. However, this procedure can also be used to
investigate the effect of a bias in the flagellar orientations that favors a
counter-clockwise rotation about the x-axis. After reassigning all force
dipole directions with this bias and running 300 simulations, |U| and
|| have means 7.9pm/s and 60°/s, standard deviations 0.1 pum/s and
4°/s, and maximum speeds 11um/s and 75°/s. Similarly, reassigning
all force dipole directions with a bias that favors higher swimming
speed along x-axis and running 300 simulations, |U| and |Q| have
means 16.5pm/s and 8°/s, standard deviations 1.5pm/s and 3°/s, and
maximum speeds 21.8um/s and 17°/s. This shows that a bias in the
flagellar orientation can significantly affect the rotation rate of the
colony. However, although the rotation rate is higher, both linear
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(©) (d)

Fig. 14. Approximation of the colony as an ellipsoidal surface in (a) x—y plane and (b) along z dimension. (¢) The relationship between the two selected frames in (a,b). Semi-axes
a,b are measured from (a) and ¢ is measured from (b). (d) Reconstructed colony in 3D where cell centers in (a) are mapped on or close to the ellipsoidal surface with a,b,c
measured from Fig. 14. The flagellar orientations are the same as the colony in Fig. 16(b).

0.3

0.25

0.2

0.15

0.1

Percentage of flagella

0.05

0

50 60 70 80 90
Angle between flagellar direction and colony surface

(a) (b)

Fig. 15. (a) Measured flagellar orientations and the colony surface tangents. (b) Histogram of the flagellar angles shown as a percentage of the 27 measured. The range is [50°,90°]
with 90° referring to flagellar orientations being perpendicular to the colony surface.
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Fig. 16. (a) Colony trajectory and bead trajectories of a complex-shaped flagella-out colony in lab frame. (b) Bead trajectories relative to the flagella-out colony with a calibrated
set of force dipole directions. (c) Histogram of the flagellar angles shown as a percentage of the 137 cells within the 3D colony in panel (b). The colony has |U| = 58.2 pm/s and
|Q| =148°/s. gy = 126 pN pm, b, = 457 pN pm?, ¢, = 8.2 um. Here g, is 8 times bigger than that in Fig. 4(e).

and angular velocities remain well below the experimentally measured
values.

While changes to the orientation of the flagella have an effect on the
translational and rotational speeds of the colony, these changes cannot
account for the differences between experimentally observed speeds
in this flagella-out configuration. Therefore, we now hypothesize that
the flagella-out beat itself must be different from the flagella-in beat.
In our model, this amounts to revisiting the parameter values used in
the minimal force dipole model. To test this hypothesis, we first assess
the sensitivity of the resulting translational and angular velocities to
the model parameters. This is done by varying ¢, by, and the offset
¢,—the three force dipole parameters that affect the far field—and
use the simulannealbnd package of the software MATLAB to find a
direction profile that matches the measured velocities. Note keeping
by/4qo constant corresponds to a fixed amount of front-rear asymmetry
in the force dipole model, as reflected in Eq. (4). We test values
of parameters g, by/q, and ¢, that are lower and higher than their
values for the flagella-in case. The results indicate that ¢, is the most
influential parameter. As discussed above, ¢, has units of force-length,
and the value ¢, divided by the regularization length ¢ is interpreted as
the force exerted by the flagellum of the force-dipole model. When ¢,
is small, no direction profile is found to yield colony velocities close to
the measured values, regardless of b,/q, and #),. Once g, is increased
by a factor of 5, a suitable direction profile is found for most values of
the other parameters. At a tenfold increase in ¢, a directional profile
is found for all tested combinations of b,/¢, and ¢},. These tests suggest
that cells in a flagella-out colony may beat in a manner that can be
modeled by a force dipole with ¢, 5 to 10 times larger than the flagella-
in case. As an illustration, Fig. 16(b) we show the trajectories of passive
fluid markers and a colony whose 137 cells had optimized flagellar
directions depicted in the histogram in Fig. 16(c). The bead trajectories
in Fig. 16(a) agree qualitatively with those in Fig. 16(b), and the angle
distribution in Fig. 16(c) is close to that in Fig. 15(b).

In summary, we find that increasing the flagella-in force-dipole
swimming strength ¢, (force-length) by a factor of 5 to 10, and that
having flagellar orientations that are not strictly perpendicular to
the colony surface are needed to match the experimentally measured
flagella-out translational and rotational velocities.

4. Discussion
4.1. Novel modeling approach

At the microscale, single cells with ciliated surfaces, or multicellular
protozoans such as the choanoflagellate colonies discussed here, use
tens to hundreds of beating cilia or flagella to swim through fluid
and to produce water currents for feeding. Hydrodynamic models that
capture detailed morphology and time-dependent wave kinematics of
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all structures would be ideal, but not feasible. The model that we
present here lies within a class of models that choose a minimal
depiction of flagellar force generation. These reduced models include
squirmer models of ciliated cells (e.g.[46]) and rower/rotor models of
beating cilia (e.g [47]). Here we develop a force-dipole model in the
spirit of the previous work on choanoflagellate colonies [28,30]. In this
model, we examine how the swimming and feeding performance of a
C. flexa colony depends upon its morphology, its flagellar arrangement
and flagellar forces. This reduced model is derived by a novel approach
that uses the flow-field produced by a detailed computational model
of a single choanoflagellate. Optimal parameters for a regularized
force dipole model that best fits the flow of the detailed model are
computed. This procedure selects the optimal regularized delta function
from a given class. We find that this optimal function depends upon
morphological features of the detailed cell model, like the presence of
a color of microvilli.

We tested our reduced colony model by comparing measurements
made for living C. flexa colonies with predictions calculated for model
colonies of the same morphology. We found that the measured swim-
ming speeds, particle trajectories, and radial flux of water produced
by living flagella-in colonies match those calculated by our reduced
model. For flagella-out colonies, model and measured particle trajec-
tories also matched. However, we found that for model flagella-out
colonies to swim at the same speeds that we measured for living C.
flexa colonies, the force exerted by each flagellum of the force-dipole
model (g, divided by the regularization length ¢) had to be increased
five to tenfold from those used for the flagella-in colonies. This suggests
that flagella beat differently on flagella-out colonies than they do in
flagella-in colonies.

4.2. Aspects of colony morphology that affect performance

Our modeling approach enables us to modify specific aspects of
colony morphology that cannot be done experimentally with living pro-
tozoans to study the effects of each structural feature on hydrodynamic
performance. To explore the selective advantages of different colony
designs, we focused on aspects of performance likely to affect growth
and survival: swimming (to escape predators or travel to patches of re-
sources) and production of feeding currents. In this study, we examined
how swimming and water flux of a C. flexa colony depends on flagellar
orientation and forces, colony shape, and cell density.

Animals and choanoflagellates evolved from a common ancestor, so
choanoflagellates are studied to gain insights about how the protozoan
ancestors of animals might have functioned. Here we used C. flexa to
determine the hydrodynamic consequences of having flagella covering
the outer surface of a colony (as seen in many species of choanoflagel-
lates) versus lining the inside of a cavity (a seen in sponges, primitive
animals). We found that flagella-in colonies swim more slowly, but
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produce higher water flux per cell than do flagella-out colonies of
the same configuration (compare Figs. 9 and 10). This suggests that
flagella-out colonies are better swimmers, whereas flagella-in colonies
are better feeders. Indeed, both our measurements and earlier ex-
periments by Brunet et al. showed that flagella-out colonies swam
faster than flagella-in colonies, whereas flagella-in colonies captured
more fluorescent beads per time [11]. In addition, these findings are
consistent with those in the recent minimal hydrodynamic model of C.
flexa in Fung et al. [30].

We used our modeling approach to determine the effect of colony
shape. We discovered that flagella-in colonies shaped like bowls or
hemispheres swim faster than colonies that are nearly-closed spheres,
while flux is greatest towards hemispheres (Fig. 9). For flagella-out
colonies, shallow bowls swim faster than other shapes, and flux to a
colony is greatest for hemispheres, except at low cell densities where
deep cups (a = 108°, Fig. 10(d)) produce the greatest flux.

For each shape of colony, we examined the effects of cell density on
performance. We found that for a given shape, flagella-in colonies with
high cell densities swim faster and produce greater water flux towards
the colony (Fig. 9), although flux per cell is independent of density (Fig.
11). For flagella-in colonies shaped like hemispherical bowls, denser
packing of cells at the front of a colony increases swimming speed and
raises water flux to cells at all positions in the colony (Figs. 12 and
13). Higher cell density also increases the swimming speed of flagella-
out colonies (Fig. 10), but only raises flux towards the colony for
shallow bowls and hemispheres. Flux per cell for flagella-out colonies
is independent of cell density (Fig. 11).

Flagella-out colonies rotate as they swim. While the magnitude of
the flagellar forces has the biggest effect on rotation rate, we found that
the orientations of the flagella (angle between the axis of the force-
dipole and the colony surface) also affect rotation rate. Colonies with
all flagella perpendicular to the colony surface rotate more slowly than
those with a bias in flagellar orientations. When the arrangement of
cells and the distribution of flagellar angles in a model colony are
similar to those of real C. flexa flagella-out colonies and the flagellar
forces are large enough to produce measured swimming speeds, then
calculated and measured rotation rates also match (Figs. 15 and 16).

4.3. Future uses of the reduced model

While our current model assumes a static colony morphology with
static flagellar arrangements, its foundation is the method of regular-
ized Stokeslets, which is a framework for capturing dynamic morpho-
logical changes of flexible, actuated structures in a viscous fluid. An
intriguing aspect of C. flexa colonies is their ability to rapidly change
their structure from flagella-in to flagella-out by active actinomyosin-
mediated contraction in response to environmental signals [11,13,17-
21]. Our modeling approach can be used to include the incorporation of
contractile forces and flexible cell attachments in a colony to study the
dynamics of this process as well as the hydrodynamic consequences.
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