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Storage of sperm in the female reproductive tract occurs across species that reproduce
by internal fertilization, modulating availability and preserving fertility. For instance, the
sperm of the insects from the family Drosophilidae are stored in and released from the
seminal receptacle—a long, slender, coiled tube. The sperm flagella, longer than any
straight portion of the tube, must be flexible enough to navigate the twists and turns of
these tightly coiled organs. As a step towards studying the coupled system of fluid, tube
geometry, and flexible flagella, we present here a framework to study flagellar motion in
tubular enclosures. The basic swimmer is modeled as a flexible Kirchhoff rod comprised
of regularized Stokeslet segments, while the rigid surfaces that constitute the enclosure are
represented by regularized Stokeslet surfaces. Swimming kinematics is not prescribed, but
emerges from time-varying preferred curvatures. This approach allows for swimmer-wall
interactions and, in turn, the evolution of swimming behavior near rigid boundaries. We
first investigate the effects of flagellar bending rigidity, beat frequency, and the presence
of inactive flagellar regions on swimming performance in free space. Next, we study the
effect of confinement levels on swimming performance inside straight tubes. We find that
swimming speed increases as the tube diameter decreases, with a more pronounced boost
in speed for stiffer flagella. We also find that the swimmers, whose preferred beat is planar,
drift towards the tube walls if the diameter of the tube is large enough. Finally, our work
demonstrates that the model flagellum can navigate through a curved tube, which will
enable studies aimed at understanding the coevolution of female reproductive tracts and
sperm morphology in different organisms.

DOLI: 10.1103/7t6v-w8sv

I. INTRODUCTION

A classical problem in biological fluid dynamics at the microscale is the motility of a flagellum
undergoing sinusoidal oscillations in an unbounded Newtonian fluid. Beginning with Taylor’s
analysis of the progression of swimming sheets or cylinders in the 1950s [1,2], the study of the
fluid dynamics of micro-organisms, both natural and engineered, has enjoyed much success in
the last decades, through advances in imaging technologies, computational methods, microfluidic
devices, material science, and non-Newtonian fluid dynamics (e.g., [3-8]). Many, if not most, of
the biological examples of microscale propulsion rarely happen in spaces that can be satisfactorily
considered “free-space swimming” in the mathematical sense. Rather, both the swimmers and back-
ground flows are strongly influenced by the surrounding confines established by vessel walls [9],
membranes [10], porous matrices [11], or other fluid-solid [12—-15] and fluid-fluid interfaces [16,17].
Early experimental observations of the effect of boundaries on sperm [18] report that they do
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FIG. 1. Drosophila montana sperm; A identifies the head area. The sperm cell is 3.48 mm long. Image was
taken with a 20x objective, courtesy of Hadlow and Snook, Stockholm University.

accumulate near a surface, and these findings were further detailed in [19]. Mammalian sperm
navigation through the female reproductive tract has been studied experimentally, showing the
presence of both chemotactic and boundary-induced hydrodynamic effects [20,21]. More recent
microfluidic experiments with sperm cells have also explored rheotactic behavior and steering
effects induced by rigid boundaries [13,22].

An intriguing example of long flagella moving through narrow confinements is that of the sperm
of the fruit fly making its journey through the female fly’s reproductive tract [23]. While human
sperm flagella are about 50 microns long, the Drosophila montana shown in Fig. 1 is over three
millimeters long, which is on the order of the fly’s actual body length. Clearly, in order for this
sperm flagellum to traverse the coiled female reproductive tract, it must be flexible enough to bend.
Here we will present a model of this coupled elastohydrodynamic system using a computational
framework that captures the dynamics of the flexible flagellum, its emergent waveform, and the
geometry of the tubular confinement.

Hydrodynamic models of flagellar motility may be classified according to a hierarchy of specifi-
cations of shape dynamics. In the simplest class of models, the flagellar kinematics are prescribed,
and do not deviate from this prescription no matter what forces are felt from the viscous load,
neighboring organisms, or nearby boundaries [24-27]. In the Stokes regime, the total force and
torque exerted by the free swimmer must be zero. These constraints are satisfied by allowing a
rigid translation and rotation of the swimmer. These models may be used to analyze the fluid flow
generated by the given motion and the forces required to achieve the prescribed shape.

In the second class of models, the flagellum is in pursuit of a preferred shape, and exerts forces
on the fluid that are derived from tensile and bending energies. Stiffness constants related to the
bending rigidity of the flagellum determine the extent to which the preferred shape is achieved
(e.g., [28-31]). In these models, the choice of the target shape may come from experimental
observations or may evolve from other features of the model, such as biochemical signaling [32].
Finally, the third class of flagellar models is one in which kinematics are not prescribed, nor a
preferred shape input, but one where the kinematics emerge from the fully coupled system of fluid
environment, passive elastic properties, and the action of the internal dynein motors on the axonemal
structure. Flagellar models of this last class are found in [3,29,33-35]. The model discussed here
will be from the second class, a preferred-curvature model, which does capture the flexibility of the
flagellum and its shape deformations from interaction with the viscous fluid and boundaries.

The effect of boundaries on micro-organism swimming has been the subject of numerous
computational models, using immersed boundary methods, boundary element methods, and reduced
order representations of swimmers [19,36—41]. Within the context of computational models based
upon fundamental solutions of the Stokes equations, such as boundary integral methods or the
method of regularized Stokeslets, a standard approach to model swimmer-surface interactions is
to use the method of images to enforce the zero-velocity condition on a planar rigid wall [42,43].
However, the image-based approach is not suitable for more complex geometries like tubular
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vessels, where fundamental solutions are not analytically available. As in [44], which used a
regularized Stokeslet model of swimming flexible helices within a cylinder, we will explicitly
represent the tubular confinement and enforce the no-slip condition. In this paper, we describe our
mathematical modeling efforts in developing a robust, dynamical model of a filiform flagellum
swimming within a confinement. The flagellum embodies characteristics like flexibility, active, and
passive sections along its length, and modulation of shape amplitude and frequency. The model
builds on the regularized Stokeslet segment [45] formulation in which the flagellum is taken to
be a Kirchhoff elastic rod with collections of piecewise linear distributions of forces and torques
on rod segments. Forces and torques along the rod arise from preferred intrinsic curvatures and
twists that are prescribed along its centerline. This regularized Stokeslet segment approach allows
the resolution of a given sinusoidal wave using many fewer discretization points than the standard
regularized Stokeslet [46] formulation, and hence will allow efficient modeling of very long flagella.
In addition, we present an extension of the regularized Stokeslet method to form solid, no-slip
boundaries [47] that is used to construct both straight and tortuous fluid-filled enclosures. In the
following sections, we first discuss the methodology used to model the flagellar-tubular system.
Then, for a flagellum in free space, we analyze the effects of inhomogeneous activation, variation of
beat frequency, variation of bending rigidity, and flagellar length on hydrodynamic performance. We
then investigate the full elastohydrodynamic coupled system of a flexible flagellum moving through
a straight tube. Finally, we demonstrate that in the case of a curved tube where the flagellum is
considerably longer than any straight portion of the tube, the flagellum cannot meet its preferred
shape, but must curve to traverse the tube. We remark that hydrodynamic flagellar models of the
first class, which prescribe flagellar kinematics, cannot be used in such confined geometries.

II. METHODOLOGY

This section describes the components of the model of a self-propelled flagellum in a tubular
space. The model consists of several elements that affect the dynamics of the flagellum, including
the forces that develop along the length of the flagellum to generate the beat, the fluid motion
generated by the flagellar forces, the forces along the tube surface, and the fluid motion they produce.
It will also be necessary to include a strategy to prevent the flagellum and surface from occupying
the same volume during the numerical updates of the flagellar shape.

A. Actuation of swimming filament

We describe the sperm flagellum as an active filament immersed in a viscous, incompressible
fluid whose motion is described by the Stokes equations. The active filament, with the assumption
that its length is much larger compared to its radius, is modeled as a one-dimensional slender rod
with the freedom to bend and twist. Following [48], we use a modified Kirchhoff rod framework to
approximate the dynamical behavior of the filament as an elastic rod.

The Kirchhoff framework represents the rod’s centerline as a space curve X(s,7) and a set of
local orthonormal reference frames, {D' (s, t), D*(s, ), D3(s, t)} at each point on the curve (Fig. 2).
We set the Lagrangian parameter s as the arclength of the rod of length L and assume a constant
cross-sectional radius along the arclength. The orthonormality of the triads in each set of director
basis is maintained by the constraint D' .D/ = dij;1, j = 1,2, 3. By convention, D3 coincides with
the unit vector tangent to the curve.

For any section of the rod, internal forces F and internal couples N are transmitted through the
cross-sections by averaging the stresses acting across them. These internal forces and couples are
computed from the current geometry of the flagellum. The constitutive relations for internal forces
are

X aX X
Fl=pD'-—, F’=0bD> —, Fl=b(D* ——1), (D)
as as d
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F(s) ! N(s + ds)
\\)T)B T \)ﬁ(sms)
NG

FIG. 2. Lagrangian variables for a typical representation of a swimming micro-organism in the Kirchhoff
rod framework. Distance between points on the organism is tracked with the arclength parameter s, while
orthogonal directors {D', D?, D3} at each of the Lagrangian points are used to track bend and rotation.
We also highlight the linearly varying nature of force (and torque) densities of the regularized Stokeslet
segment framework and the balance of internal and surface forces (and moments) for a standard Kirchhoff
rod. Background image reproduced from [49].

where b; and b, are the shear moduli, and b5 is the extension modulus. Values of these moduli
are chosen to be large enough so that the filament approximately satisfies the unshearability and
inextensibility conditions. Moreover, the penalty formulation for 3 in Eq. (1) also tends to maintain
D? tangent to the centerline of the rod. All Lagrangian variables are expanded in terms of the local
coordinates.

The constitutive equations for the internal moments are

D? D? D!
N'=q a—-D3—sz1 , N’=a, 8—-D1—Q2 ., N=a a—~D2—Q3 )
as as as

Here, a; and a, are the bending moduli (equal in the case of an isotropic and homogeneous rod
with circular cross-section and constant radius along the arclength), a3 is the twisting modulus,
and (s, 1) = {2}, Q,, Q3} is the driving (preferred) strain bend-twist vector. We refer to its
components as the preferred target curvatures, and they are derived from an idealized time-varying
planar sinusoidal preferred shape for the flagellum. As in [50], a general time-varying preferred
shape X(s, t) = x;(s, 1+ x2(s,1)] + x3(s, Nk parametrized by the arclength can be expressed in
terms of the preferred bend-twist vector {€2;(s, 1), Q2(s, 1), Q3(s, 1)} (see below).
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This leads to the following force and couple balances:

oF
f,+— =0, 3)

as

oN 0X
— — xF| =0, 4
nl+8s+(8sx ) @

where f; and n; are force density per unit length (in s) and torque density per unit length (in s)
applied to the rod segment by the surrounding fluid.
The simulations in this work use the preferred shape

x1(s,t) = Acos (ks — wt) and x,(s,t) =0,

where A, k, and w are the preferred amplitude, wave number, and angular frequency, respectively.
The third component, x3(s, ¢), is computed by solving the ordinary differential equation resulting
from the tangent vector constraint (x> + x7 + x32)'/? = 1. As such, the preferred bend-twist vectors
become

/!
S
9
-
J1—=x]

where we used x; = v/1 — x> and x§ = —x{x]/+/1 — x{. The calculated strain twist vector rep-

resents the time-dependent preferred curvature [(s,?) = v Q% + Q%] and twist Q3 of the rod
centerline.

The balance of force and couple is accomplished by introducing a force per unit length f; and
a torque per unit length n, exerted by the fluid on the flagellum, which result in a flagellum shape
that approximates the curvatures of the preferred bend-twist vector. The curvature and twist that are
actually achieved by the flagellum depend on several factors, including fluid-structure interactions,
structure-structure interactions, as well as mechanical properties of the structure. At any given time
t, at a point s on the flagellum, the achieved bend twist vector component €2; 4ch (s, ¢) is expressed in
terms of the local directors as

7

Qi(s, 1) = xjx; — xjx| = Q(s,1) =0, Q3(s,1)=0,

oD (s, 1)
as

where (i, j, k) is any cyclic permutation of (1, 2, 3). The differences [€2; ,cn(s, #) versus €2;(s, t)]
appear in the constitutive equations for torques [Eq. (2)] and produce the internal moment densities
driving the motion.

In summary, the actuation of the filament is accomplished by computing force and torque
densities along the flagellum based on the difference between the configuration of the flagel-
lum and the time-dependent preferred bend-twist vector, f;(s, ) and n,(s, ), along the flagellum
length. While these force and torque densities produce self-propulsion, the net force and net
torque on the flagellum are zero. Next, we describe how these forces and torques generate fluid
motion.

Qi ach(s, 1) = -D(s, 1), S)

B. Regularized Stokeslet segments and regularized Stokeslet surfaces

In this section, we provide expressions for the fluid motion due to force per unit length f; (s, ) and
a torque per unit length n, (s, ¢) along the Kirchhoff rod. The motion of a viscous, incompressible
flow in three dimensions at zero Reynolds number is modeled with the Stokes equations:

uViu=Vp—f,— 1V xn, (6)

V.u=0, @)

004900-5
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L
£, — / (s, )82 — X(5. 1)) ds, ®)
0

1 L
EV X ny, = / EV x m(s, 1)5(x — X(s, 1)) ds, ©))
0

where w is the dynamic viscosity, u is the fluid velocity, p is the pressure, and f;, and n,, are the force
and torque per unit volume on the fluid. The velocity expression that we develop here is based on
the fluid velocity at an arbitrary point X in the domain due to a single point force concentrated at
the location y. For the derivation, we assume temporarily that there is only one point force F;, with
associated force density f, = F,8(X — y), where ¢ is the three-dimensional Dirac delta function. The
velocity due to this force is the Stokeslet [51,52]:

1 |:Fb 4 (I"Fb)l'j|,

r r

where r(2) = & — y, and r = |r|.The Stokeslet expression has a singularity of the form ~!, which
can present difficulties when the forces are distributed on curves or at scattered points in three di-
mensions. One approach to modeling the forces along the flagellum without producing singularities
in the fluid domain is to mollify the forces so that they are not concentrated in an infinitesimally thin
curve, but are spread over a small surrounding region [53]. This approach replaces the Dirac delta
function in the expression of the force per volume with f, = F,¢. (¥ — y), where ¢, is a radially
symmetric regularizing function (blob) which satisfies [/ ¢.(r)dr = 1. There are many functions,
including Gaussian, exponential, and algebraic, that can be used. A common choice is

4.(0) 15¢*
r)= ———,
‘ 8 (r2 +€2)?

where € is a small regularization parameter that controls the size of the extent of the force. This
leads to an exact solution of the Stokes equations called the regularized Stokeslet,

R 1 1 e (Fp, - r)r
u(x):_[(IT+F>Fb+T]’ (11)

TABLE I. Reference parameters and scales for the swimmer model used throughout this study. The twist
modulus is assumed to have the same magnitude as the bending moduli, while the shear and stretch moduli are
chosen to be large enough to maintain unshearability and inextensibility. We choose water as the fluid medium
in our simulations.

Parameter Interpretation Representative value References
L Flagellar length 100 um [54,55]
El=a =a, Bending moduli 4.95 x 1072 m [56-60]
as Twist modulus 495 x 1072 Jm

by=b,=0b Shear moduli 8.3 x IO_IOkgm s2

by=b Stretch modulus 8.3 x 107 1%kgms—2

f=ow/27 Beat frequency 20Hz [61]
A Preferred beat amplitude 2 um [61]

A Wavelength 33.33 mm [61]

k Wave number k=2m/A

U Fluid viscosity 0.001 kgm~'s~!

004900-6
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where R? = |r|? + €. Similarly, for a regularized point torque n, = Ny@. (£ — y), the velocity is

. 1 (2 3¢
u(x) = % R_g + R_S (Np x 1). (12)

1. A Kirchhoff rod as a continuum of regularized Stokeslets

Returning to the case of the Kirchhoff rod described in Eq. (6), the velocity field produced by
the flagellar forces and torques is given by an integral along the flagellum. We use the method of
regularized Stokeslet segments [45], where the flagellum is represented by a piecewise linear curve
with a linear continuous distribution of regularized forces along each line segment:

. e '/ € [f; (@) - r(a)]r(a)
up (%) = s ) [(R_e + E)f,(a) + IR—S} do, (13)

where r(«) = £ — y(«) is now dependent on the location along the segment as well (0 < o < 1).
Here, y(a) =y, +a(y; —y,), and fj(x) =1, , + a(f, | —f; ;). Similarly, for a linearly varying
continuous distribution of torque density (per unit len;gth) ril (o) on a line segment, the velocity
is evaluated through

1 2 2
ur() = —— [(F + 3i)[nl(a> x r(a)]} dar, (14)

8 Jo R?
where n,(«) = n, ) + a(n, | —n, ;). Analytical expressions for these integrals, derived in [45], are
used to evaluate the fluid izelocit&/ at an arbitrary evaluation point * due to flagellar forces. Since
the forces are a continuous function on the flagellum, the two numerical parameters involved—the
length £ of a segment and the regularization parameter e—are essentially decoupled and can be
selected based on physical arguments.

2. Regularized Stokeslet surfaces

The idea of continuously varying forces and torques along a line segment is extended in Ref. [47],
where the fluid motion is generated by forces distributed over surfaces. Here, a surface embedded
in a three-dimensional flow is discretized with nodes forming the vertices of triangles. The surface
is assumed to be planar in each triangle, where a linear force vector field is considered on each
triangular patch of surface. This is similar to a finite-element method with linear elements over
triangles. However, the velocity is computed by analytically integrating regularized Stokeslets due
to the linear forces over a flat triangular surface patch. Effectively, this velocity is due to a continuum
of linear force on the triangle (of area BH/2) and can be expressed as

o BH e 1 g [£, (o, B) - xIr

where we assume a bilinear distribution of forces on the patch resulting on the force density (per
unit area) f (o, ) =f, o +a(f, ;| —f, )+ B(E,, — 1, ), based on the three vertex forces (0 <
a < land 0 < B < ). As with the Stokeslet segments, here we define the distance r = r(a, ) =
% —y(a, B), and we introduce the surface regularization parameter ¢ in R_ = /|r|> + ¢2. The
regularized forces overlap with neighboring forces regardless of the size of the parameter ¢. In
practice, this allows ¢ to be much smaller than if the force is a discrete set located only at the
nodes. In [47], second-order convergence in the spatial discretization for fixed ¢ was demonstrated.
A key advantage of this method is that it integrates a continuous, linear force exactly over triangular
surface elements. Consequently, the regularization parameter can be reduced significantly while
keeping the surface discretization fixed, without increasing the error [47]. This allows the use of
minimal regularization, which results in very little thickening of the surface.

004900-7
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FIG. 3. The generation of the tubular confinement begins by (a) defining the centerline of the tube (red
stars), and creating a cylindrical mesh around it; and (b) creating the sleeve as a second set of surface nodes
slightly apart (the gap is 1% of the tube radius) from the cylindrical mesh. A zoomed-in view of the tube and
the sleeve is shown in (c), where normal vectors are also shown. Note that the actual tube will have much
higher point density.

Figure 3(a) shows the construction of a tubular structure with surface elements. We first define
the centerline of the tubular section and subdivide it into equally spaced points. These points are
used as centers to generate circles that form the physical surface of the tube wall. Adjacent surface
points £, are connected to create triangular patches that represent the surface of the tube. Since the
tube wall is stationary and rigid, surface forces must develop to generate a fluid velocity on the tube
nodes X, that cancels the velocity generated by the flagellum at those points. We achieve this by
solving the linear system for the force densities (force per area) in Eq. (15) for a given velocity on
the left-hand side.

There is flexibility in choosing the location of these wall-force densities, which do not have to
be the same set of nodes where the surface velocity boundary condition is enforced. We have found
that if the location of a surface force comes arbitrarily close to a flagellum point, the force that
develops can be very large, affecting the time step in the computation. However, this is not the case
when there is a minimum separation between the surface force location and the flagellar force node.
Therefore, a new set of points slightly offset outward from the tube surface points is created. We
refer to these points as a sleeve and denote them as X, [Figs. 3(b) and 3(c)].

Even with the no-slip condition enforced at the vertices of the triangular patches of the tube
surface, the flagellum can pass through the tube surface for a fixed spatial and temporal discretiza-
tion. Previous numerical studies have approached this issue by introducing a steric repulsion that
only becomes active in the extreme vicinity of a solid wall [40,62,63]. The formulation of the force
density follows the form of colloidal particle-particle electrostatic repulsion [64,65]. We use a slight
variation to account for a finite repulsion at the wall, and we also introduce a cutoff beyond a
threshold distance,

fl,rep = (16)

exp(—p/d) 5
ME e P < d,
otherwise,

where M =20 Nm~! and d = tube radius/40 are magnitude and distance parameters adjusted
for our choice of simulation parameters, p is the distance from a point y(«) on the flagellum to
the nearest tube/wall patch, 71 is the unit normal vector pointing from the wall patch toward the
flagellum, and £ is a small nondimensional parameter to constrain the maximum repulsion force
density. The repulsion force is added as a linear force density to f;(«) on the segments containing
y(a) whenever this flagellum point moves within the cutoff distance from the wall surface.

C. Algorithm summary

In summary, at any given time ¢ = t,, with a flagellum configuration given by X(s;,#,) and
Di(s i»ta), for 0 < j < M, the numerical algorithm to advance the flagellum to the next time level
t,+1 1s described below. The velocity of each flagellum point has contributions from the flagellum

004900-8
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forces and torques, the tube sleeve, and any repulsion forces. The unit vectors Di(s > ty) Totate with
the angular velocity generated by the velocity field.

(1) Update the preferred bend-twist vectors {€2;(s;, 1,), 22(s;, 1), 23(s}, #,)} corresponding to
the preferred flagellum shape at time f,y;. Using the constitutive equations [Eqs. (1) and (2)],
compute the internal force and moments from the Kirchhoff rod.

(2) Check if any portion of the flagellum is in the proximity of the tube surface for repulsion
to be activated, and add the repulsion force density [Eq. (16)] to other forces already computed at
those flagellum points.

(3) Use Eqgs. (3) and (4) to evaluate forces and torques (per unit length) transmitted from the
flagellum points to the fluid.

(4) Next use Egs. (13) and (14) to compute the contribution to the flagellum velocities,
ur(X(sj, t,)) and ur (X(s;, ¢,)), due to repulsion forces and the internal forces and moments.

(5) Use Eqgs. (13) and (14) again, but this time to evaluate fluid velocities u(%,), at the tube/wall
locations, fcp. Solve the linear system in Eq. (15) to calculate force densities (per unit area) f,(%;) at
the sleeve patch vertices that produce the negative velocity field, —u(%,), at the tube/wall nodes.

(6) Use the surface forces just computed and Eq. (15) to compute the contribution to the
flagellum velocity ug(X(s;, #,)) due to surface forces that nullify any slip velocities on the tube
surface.

(7) Add velocity contributions from steps 4 and 6 to compute the final velocity of the flagellum,
u(X(s;, ,)) for 0 < j < M. Update flagellum location as well as the director orientation using

3X§‘;’t) = u(X(s,1). 1), (17a)
aDi(s, 1) ,- .
= = wX(s. ). x D), i =1.2.3, (17b)

where w(X(s, 1)) = %V x u(X(s, t), t). Note that our implementation omits the contribution from
surface forces to the velocity in the expression for w(X(s, ¢), #). This approximation had little effect
on the dynamics of the system.

Figure 4 illustrates the flagellar-tube system at two timepoints in a simulation: first when the
flagellum is just entering the tubular structure [Figs. 4(a)—4(c)], and later when it is fully within the
tube [Figs. 4(d)—4(f)]. The preferred waveform is planar, and the sinusoidal shape of the flagellum
is evident in the “frontal” view in Fig. 4(a), with the corresponding “sagittal” view in Fig. 4(b)
showing just a straight line. However, the flagellum in Fig. 4(e) no longer looks like a straight line,
showing that the tube walls caused it to rotate out of its initial plane. Also depicted in Fig. 4 are
velocity vectors at some chosen Eulerian positions within the tube, using the same locations at each
of the two timepoints. The perspective views in Figs. 4(c) and 4(f) illustrate that the velocity on the
tube walls is zero.

III. MODEL RESULTS

A. Free-space swimming
1. Comparison with Taylor’s waving cylinders

We begin this section by presenting a comparison between the swimming speed of the planar
flagellum from our model and that proposed by Taylor [1]. The asymptotic solution for small
amplitudes considers an infinitely long cylindrical (radius r,) flagellum actuated with waves of
sinusoidal lateral displacements of wavelength A, wave number k = 27 /X, and amplitude A. Taylor
expressed the ratio of the swimming speed (V) to the wavespeed (U,, = 2r f /k) as

Vo 1A2k2{K0(Z1)_1/2}

u, 2 Ky(z1) +1/2

w
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(d) () (®)

FIG. 4. Flagellum-tube system depicting fluid velocity vectors at representative planes [(a), (d) frontal; (b),
(e) sagittal; (c), (f) zoomed-in perspective view of transverse planes] at the time when the swimmer is entering
the tube (top row), and later the swimmer is completely inside the tube. Although our model swimmers are
completely isotropic, the direction of the wave of preferred curvature is specified, and the filament will swim in
the opposite direction. In each of the six panels, the direction of swimming is downward. The front-end (head)
of the swimmer is highlighted in red throughout this paper. Here, the flagellum has a length of 50 um and
carries one and one-half sinusoidal waves of amplitude 2 um. It is discretized with 20 Stokeslet segments, and
the regularization parameter, ¢ = 1.0 mm. The tube of radius 6 um was spatially discretized by circular rings
3.85 mm apart in the axial direction with points on the perimeter of the circles that are separated by 1.8 mm in
the azimuthal direction, and the regularization for the Stokeslet surfaces is ¢ = 0.1 nm. We used a time step of
1076 s for all the cases reported.

where z; = kr, (product of wave number and cylinder radius) and K|, is the modified Bessel function
of the second kind of order n. Note that in our model, we consider the regularization parameter € as
a proxy for flagellar radius.

The differences between our model and the asymptotic approach include (i) finite length, (ii) a
finite bending rigidity, and (iii) representation of the cylinder diameter. While the Taylor flagellum
is infinitely long, we will compare the asymptotic swimming speeds to those computed for finite-
length swimmers of varying length. Also, the theoretical model assumes prescribed kinematics.
We instead chose the bending rigidity of the flagellum to be on the order of 102! Jm based on
measurements reported in the literature for flagellated swimming micro-organisms [59,60]. This
value is large enough so that the achieved amplitude in our preferred curvature model closely
matches the prescribed amplitude chosen in the asymptotic calculation.

004900-10



FG10275

300
301
302
303
304
305
306
307
308
309
310
311
312

313

314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

332

PRFLUIDS October 7, 2025 16:29

FILIFORM MICROSWIMMERS IN TUBULAR ...

60 2 60
----- Asymptotics = -==+= Asymptotics
3 ¢ L =50 um (nWave = 1.5) + E ¢ L =50 um (nWave = 1.5) .
= 40 L = 100 pm (nWave = 3) g 40 L =100 um (nWave =3) . :
= e L =200 um (nWave = 6) ) =. e L =200 pm (anWave =6) .7
\: _____ v D R R °
g204 T4 e v
g e S
AP F— o ¢ (@) e=0dum % e o ’ (b) € = 1.0 pm
e : e — e ; . —
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 25
Wave Amplitude (Lm) Wave Amplitude (Lm)

FIG. 5. Comparison of numerical results for a swimming flagellum of finite length to asymptotic expansion
for an infinitely long cylinder with planar bending waves. The Stokeslet segment regularization parameter is
€ =0.1um in (a) and € = 1.0 um in (b). The segment size for all the cases considered is 2.5 um.

The continuous curves in Figs. 5(a) and 5(b) show the swimming speed of Taylor’s infinite
cylindrical flagellum as a function of amplitude for A = 33.33 um, beat frequency f = 20 Hz, with
r, =€ = 0.1 um [panel (a)] and r, = € = 1.0 um [panel (b)]. We note that the curves in each panel
are different because Taylor’s solution is a function of flagellar radius r.. We see that the thicker
flagellum swims more slowly than the thinner one, but even when increasing the radius tenfold, the
speed only decreases by about 18% (at A = 2.0 um). The symbols show the computed swimming
speed for three different values of flagellar length (L = 50, 100, and 200 wm). Increasing flagellar
length for each amplitude moves the swimming speed closer to the theoretical value, which is
evident with the data points for wave amplitude A = 2.0 um. Moreover, the agreement with the
asymptotic solution also decreases with increasing amplitude, as expected. Both panels of Fig. 5
show similar agreement between computed velocities and asymptotic velocities. Based on this
agreement, we chose the regularization parameter € = 1.0 um in subsequent simulations. Although
this is larger than a typical eukaryotic flagellar radius, this larger regularization parameter allows a
larger time step in the computations.

2. Effects of swimmer length and activation on swimming performance

The classical analysis of Taylor that computes a finite swimming velocity for an infinitely
long flagellum demonstrates that increasing the length of a flagellum by adding more and more
wavelengths of the same amplitude and beat frequency will not continually result in higher swim-
ming velocities. How then does flagellar length affect swimming performance in actual swimmers?
Conflicting findings exist in the literature, sometimes correlating them positively [66,67] and
sometimes in a totally opposite manner [68—70]. In a study of published experimental data on 141
animal species, Soulsbury et al. performed a principal component analysis (PCA) for examining
structural clustering of sperm morphology and then compared the model predictions across all
morphologically similar sperm clusters [71]. Four out of five clusters in the data set indicated
no significant effect of variation of length on swimming speed. Of course, from a fluid dynamics
perspective, swimming speed depends upon many factors in addition to flagellar length, including
organism morphology and flagellar wave kinematics.

In the case considered here of a planar, filiform flagellum, we take a closer look at the effects
of flagellar length on speed, power, and efficiency. In the simulations, speed is tracked on each
Stokeslet segment and averaged over a beat period for the values reported. Since the Kirchhoff
rod model can independently actuate in the linear and angular motions, the instantaneous power

consumption is measured as a sum of linear and angular power as Piyim = fOL(fl -u+n; - w)ds.
We follow Lighthill’s definition of Froude efficiency [72] given as

2
_ Pdrag _ $||Lvmean

- 3

Pswim Pswim
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FIG. 6. Free-space swimming performance: Effects of (a) flagellar length and (b) change in active beating
portion on swimming speed, power, and efficiency. The swimming speed and power in each panel are
normalized with respect to those of the 100 um flagellum that is active along its entire length (dimensional
swimming speed: 33.6 um/s, power expenditure: 26.6 fw). Bending rigidity, beat frequency, and target shape
amplitude are fixed, respectively, at 4.95 x 1072 I m, 20 Hz, and 2 ym, respectively, for all the cases presented.

where EH = mg((z)?r% is the parallel resistance coefficient [73], and vpeqn 1S the mean swimming
speed of the flagellum. Starting with a 100 um long flagellum with three full waves [a wave number
of 0.188um~!, top image of the inset in Fig. 6(b)], we examine the swimming performance of
the flagellum as we shorten its length while keeping the wave number and other kinematics fixed.
Figure 6(a) shows the swimming speed, power expenditure, and efficiency computed as a function of
flagellar length. The average speed of the flagellum remains fairly constant as the length is reduced
until the flagellar length falls below two wavelengths. For even shorter flagella, the speed decreases,
with a pronounced drop when it supports less than one wavelength. Calculated power increases
linearly with length, while the swimming efficiency is basically constant for flagella that support
more than two wavelengths.

Experimental studies with particularly long sperm flagella have reported that along the flagellum,
there are sections that are actively beating, interspersed with inactive sections [74]. We examine
the hydrodynamic performance of a model flagellum of fixed length, where only a segment of the
flagellum is active [Fig. 6(b)]. Here we reduce the active beating portion of the flagellum by setting
the preferred curvatures near the head and tail to zero. This results in an “active” middle section with
passive ends on both sides. We see that speed, power, and efficiency increase linearly with active
portion percentage. For species with very long flagella, such “energy saver” passive states may have
evolved to conserve energy for later stages of the fertilization process.

We can also ask, then, what is the cost for a swimmer to carry around inactive sections along its
length? To investigate this, we may directly compare the values of speed, power, and efficiency in
Figs. 6(a) and 6(b), where the normalization for speed and power in each figure is with respect to
the 100 um flagellum that is active along its entire length. For instance, the values corresponding
to the flagellum of length 60 um in Fig. 6(a) should be compared to the values shown for 60%
active portion of the 100 um flagellum in Fig. 6(b). We see that carrying around the inactive portion
at the front and back of the flagellum here gives a swimming speed that is about 60% of the
flagellum unencumbered by inactive segments, requires about the same power, but is about 38%
less efficient. Even for the cases where the flagellum are so short that they cannot accommodate
two full wavelengths [e.g., less than 60 um long cases in Fig. 6(a)], their swimming speeds remain
higher compared to corresponding 100 um long cases with inactive sections in Fig. 6(b).
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FIG. 7. Influence of the bending stiffness on flagellum actuation dynamics and achieved shapes. In both
cases, the flagellum has a length of 100 um, a preferred amplitude of 2 um, and a beat frequency of 20 Hz.
Flagellar envelope corresponding to each stiffness is shown above. (a) EI = 4.95 x 1072 Jm and (b) EI =
2.475 x 1072 I m.

3. Effects of bending stiffness, beat frequency, and the sperm number

In this preferred curvature model, the flagellum is in pursuit of a traveling wave of a chosen
amplitude. The extent to which the preferred kinematics are met depends upon the bending
rigidity of the flagellum, in addition to the fluid environment and nearby boundaries. Figure 7(a)
shows the envelope of shapes achieved by the long, flexible flagellum and the kymograph of
achieved curvature for the model swimmer in free space used as our base case in the previous
section (EI = 4.95 x 1072! Jm). These should be compared to Fig. 7(b), whichshows the same for
a softer flagellum (EJ = 2.475 x 10722 Jm). We see that while both are actuated with the same
frequency of 20 Hz, and each figure shows a traveling wave of curvature over five beat periods
from head to tail, the emergent amplitude and curvatures along the softer flagellum are greatly
diminished.

While eukaryotic flagellar bending rigidity can vary as much as four orders of magnitude
between species [59], beat frequencies vary within one to two orders of magnitude [61]. Figure 7
demonstrates that the achieved amplitude of the flagellum is strongly coupled to its bending rigidity.
We next examine how emergent shape dynamics are influenced by the frequency of actuation.
For instance, for high beat frequencies, the short timescale of actuation could be much smaller
than the timescale of elastic relaxation, not allowing the flagellum to come close to the preferred
amplitude. We explored these relationships by varying both beat frequency and bending stiffness of
the model flagellum over experimentally reported ranges while keeping the geometric parameters of
the flagellum fixed. Specifically, for a preferred amplitude of 2 um, we track the achieved amplitude,
swimming speed, required power, and efficiency as a function of beat frequency (varied from 5 to
50 Hz) and bending stiffness (varied from 4.95 x 10723 Jm to 4.95 x 1072° J m). Figure 8(a) shows
a color plot of the achieved amplitude of the flagellum for different beat frequencies and bending
rigidities. We see that the preferred amplitude is met for the stiffest flagella at all frequencies, but for
midrange stiff flagella, the amplitude is met only for slow actuation. The softest flagella cannot meet
the preferred amplitude, and, at high frequencies, barely support a wave. We remark that for flagella
with prescribed kinematics, swimming speed increases linearly with beat frequency. Here, however,
the kinematics are not prescribed, and as beat frequency increases for a fixed bending rigidity, the
achieved amplitude decreases, which has a pronounced effect on swimming speed and power.

The swimming speeds and power expenditures are shown in Figs. 8(c) and 8(d). We see that
the fastest swimmers and those that require the most power are the stiffest ones, actuated with
the highest beat frequencies. Figure 8(b) shows the resulting hydrodynamic efficiency. The most
inefficient swimmers are soft flagella driven at high beat frequencies. Using this definition of
efficiency, it appears that it would be preferable to be a stiff flagellum with a very small beat
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FIG. 8. Effect of beat frequency and bending rigidity on the swimming performance: (a) achieved ampli-
tude, (b) efficiency, (c) speed, and (d) power, in free space. The flagellum length and wave number are fixed at
100 um and 0.188 um™~!, respectively. The parameter space of bending rigidity and frequency is chosen from
experimental measurements reported in the literature [59,61]. The yellow triangle and circle markers on panel
(a) represent the locations for the kymographs shown in Figs. 7(a), and 7(b) in the EI vs frequency space,
respectively.

frequency [upper left-hand corner of Fig. 8(b)]. Of course, the resulting swimming speed would be
very small [upper left-hand corner of Fig. 8(c)], and this flagellar swimmer may never get wherever
it needs to go. This certainly demonstrates that this hydrodynamic definition is only one measure of
efficiency relevant to a living organism. In a recent related Kirchhoff rod model of gait modulation of
undulatory microswimmers, other measures of efficiency that take into account the cost of transport
and basal metabolic rate were investigated [75].

As in other models of flexible filaments in a viscous fluid (e.g., [76-80]), we make use of a
dimensionless number known as the elastoviscous number or sperm number, Sp, which measures
the relative strength of viscous forces to elastic forces:

1/4
Sp (M) ,
El

Here & is the perpendicular resistance coefficient from resistive force theory defined here based
on Lighthill’s slender body theory [73]. In many cases, the dynamics of the filament-fluid system is
determined by the value of this elastoviscous number. For instance, in the case of a passive filament
in shear flow, whether it undergoes rigid rotations or S-buckling or snaking motion is determined
by the elastoviscous number [77]. Is the hydrodynamic performance of the current flagellar-fluid
system determined by Sp alone? In Figs. 8(a), and 8(b), we plot curves of iso-sperm number in
the beat frequency versus bending rigidity plane. We see that the values of achieved amplitude and
efficiency are determined by this single, nondimensional parameter. However, this is not the case for
either swimming speed or power—two flagella with the same preferred amplitude and wavelength,
swimming in the same fluid, but with different £/ actuated at different frequencies, can have the
same Sp but swim at very different speeds. However, their efficiencies could still be the same.
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FIG. 9. Swimmer interaction with tubular confinement: (a) speed, (b) power, and (c) efficiency variation as
the flagellum enters, swims through, and exits the rigid tubular confinement. Tube length is 400 um while the
fixed flagellar parameters are L = 50 um, k = 0.188 um~', A = 2um, f = 20Hz, and EI = 4.95 x 102! Jm.
(d) Schematic of the position of the swimmer with respect to the tube corresponding to the legend positions
(head in, tail in, head out, and tail out).

B. Swimming performance inside tubes

Previous investigations of micro-organism swimming in tubular confinements using minimal
models of organisms [81-83] have demonstrated that confinement can give rise to enhanced
swimming speed. A model with fully resolved flagella was presented in [84], where an infinitely
long, helical flagellum with prescribed kinematics was axially aligned in an infinitely long tube.
Here, it was found that the speed of the rotating helix increased as the radius of the tube decreased.
More recently, LaGrone et al. [44] used a regularized Stokeslet framework to analyze the swimming
of finite-length, flexible helices in a cylinder and reported speed enhancement with confinement. We
remark that the helical swimmer in [44] was modeled using a surface discretization of the helix, and
not using a Kirchhoff rod representation as in the work discussed here.

While the previous sections discussed the hydrodynamic performance of the flexible flagellum in
free space, we now examine its performance as it enters, swims through, and exits a straight, finite
tube, open at both ends. We analyze the progression of a swimmer that supports one and one-half
wavelengths (L = 50 um), preferred amplitude of A = 2 um, and with the stiffest bending rigidity
used in this work (E1 = 4.95 x 1072! I'm) through tubes of varying radii. Figure 9 shows the (a)
swimming velocity, (b) power expenditure, and (c) efficiency as a function of time for four different
radii of the tube (R = 4, 8, 16, and 32 um). Figure 9(d) shows the schematic of a model swimmer
moving through the tube, along with the symbols used to designate the times when the head enters,
when the tail is fully in the tube, when the head leaves the tube, and then when the tail is finally
out of the tube. All swimmers were initialized in a plane that contained the tube axis. First, we
remark that the speed, power, and efficiency for the swimmer in a tube of radius R = 32 um are
indistinguishable from the free-space values. Figure 9(a) shows that for R = 4, 8, and 16 um, there
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FIG. 10. Effects of sperm number (Sp) on swimming performance (a) speed, (b) power, and (c) efficiency
in different tube radii. Bending rigidity, and hence Sp, was varied, but all other flagellar parameters were as in
Fig. 9. The data fit used a cubic polynomial.

is a dip from free-space velocity as the head nears the tube entrance. However, this is followed by a
rapid boost in swimming speed, which reaches its maximum when the flagellum is partially within
the tube. This boost increases as the radius of the tube decreases. As the flagellum starts to swim
out from the tube, we surprisingly find yet another boost in speed. As with the speed profiles, power
requirements, and swimming efficiency are also elevated inside the confinement. These results are
consistent with results in [44,84]. While inside the tube, the power requirements are significantly
higher than in free space, and they increase with the level of confinement [Fig. 9(b)]. Since the length
is fixed in all cases, the efficiency here is proportional to the ratio of the square of the swimming
speed over the power, reflecting a similar pattern to the swimming speed plot [Fig. 9(c)]. Compared
to its performance in free space, when in a tube whose radius is four times its preferred amplitude,
a 120% rise in power requirement is accompanied by about a 200% boost in speed, which results in
a net positive increase in swimming efficiency inside the confinement.

The resulting swimming motion of the flagellum through the enclosure is a result of forces due
to Kirchhoff rod actuation, boundary forces on the surface elements, as well as the repulsion forces
in Eq. (16). Because the Stokes equations are linear, we can isolate the contribution of each of these
three forces to the velocity of any point on the flagellum. In the simulation in Fig. 11(a) with R =
8 um below, the repulsion contribution to the instantaneous speed of the midpoint of the flagellum is
8-10 orders of magnitude smaller than contributions from the other forces as the swimmer traverses
the tube. We are, therefore, confident that this repulsion does not alter the overall dynamics of the
system.

We now consider the hydrodynamic performance of swimmers of different bending rigidities
(hence different sperm numbers Sp), when their full lengths are within tubes of different radii.
Figure 10(a) shows the swimming speed as a function of Sp for swimmers in all four confinements.
For the stiffest flagellum (Sp = 2.91), when the tube radius is halved, the swimming speed doubles.
For softer swimmers (higher Sp), flagella receive a speed boost with confinement, but the difference
diminishes as Sp increases. Although this Kirchhoff rod formulation can model extensible filaments,
here we choose the shear and stretch moduli (by, b, b3) large enough so that the rod remains
inextensible to within a few percent. With these choices, the arclength parametrization is valid. The
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FIG. 11. Drift of the flagellum toward the tube walls. Top panel shows some representative setup where a
50-um-long flagellum with a preferred beat amplitude of 2 um swims through tubes of different radii ranging
from 4 to 16 um. The middle panel tracks the swimmer’s geometric centroid to wall distance, while the bottom
panel shows the oscillating head distance from the wall for the same swimmers.

power and efficiency follow similar trends [Figs. 10(b) and 10(c)]. We also note that for a given tube
radius, as the flagellar stiffness is lowered (increasing Sp), we observe a steady drop in speed, power,
and efficiencies. Beyond Sp = 8.5, the flagellum is too floppy to achieve an amplitude to swim
inside the confinement, hence the speed boost for tighter confinements at Sp = 8.5 is negligible.

C. Drift toward boundaries and bend navigation

Several experimental works involving microswimmers near boundaries have observed interesting
behavior including accumulation near rigid boundaries, circular trajectories of swimming after
accumulation, and rheotaxis in background flow [18,85-87]. Theoretical models using the method
of images with slender body theory, regularized Stokeslets, and immersed boundary approaches
have reproduced such behavior and offered mechanistic explanations for both planar and helical
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swimmers near a flat boundary [12,37,40,88,89]. Most biological microswimmers have to traverse
narrow, confined, and tortuous fluid-filled passages. For example, a common fruitfly (Drosophila)
sperm inside the female reproductive tract are stored in coiled sperm storage receptacles. The
swimmers must adapt their swimming trajectories to move through the surrounding confinements.
Additionally, experiments with mammalian sperm cells found direct effects of bounding curved
surface on changes in swimming mode [13] as well as boundary following behaviors [90]. Using
regularized Stokeslet surfaces, we extend the framework to simulate such tracts with biologically
relevant geometrical features (e.g., nonuniform radii, wide or narrow bends, etc.) that can predict
the shape deformations and trajectories of the flagellum as it moves through the tubular structure.

Here we examine more closely a flagellum with a preferred planar beat moving in straight
tubes of varying radii (Fig. 11). Several features of swimming behavior are observed. First, as
highlighted previously, narrowing confinements significantly boost swimming speed, as can be seen
in Fig. 11(a). Interestingly, while the flagella are initialized centered on the tube axis, in larger
tubes, we see a drift toward the tube surface. We can quantify this drift by examining the time
evolution of the distance of the centroid of the swimmer to the nearest position on the tube wall
[Fig. 11(b)]. Tubes with small diameters show little drift (e.g., black line for the 4-um-tube case).
Figure 11(c) tracks the bobbing motion of the “head” of the swimmer. Even though the swimmers
in each tube have the same preferred amplitude, here we can see that the achieved amplitude of
the head excursion is diminished in tighter confinements. In the simulations where drift is apparent
in Fig. 11(c), there is a whole-body twist marked by the flattening of the up-down oscillation (for
instance, around the 6-s mark for the pink line of the 12 wm case). This indicates that the beat plane
of the flagellum rotates during the simulation.

This intriguing behavior, where tighter confinement leads to straighter swimmer trajectories
about the central axis of the confinement, has recently been observed in both laboratory experiments
and computational studies. For instance, in tracking swimming paths of E. coli in microfabricated
channels of different cross sections, Vizsnyicai et al. [91] observe, “in large channels, bacteria
always crash onto confining walls, when the cross section falls below a threshold, they leave
the walls to move swiftly on a stable swimming trajectory along the channel axis.” Similarly,
experiments by Jana et al. [92] found that paramecium swimming paths transition from oscillatory,
helical trajectories to straight lines as the diameter of the capillary tube decreased. Experiments
with E. coli confined between two flat boundaries observed circular motion near the bottom in
taller channels (height larger than 3 um), and trajectories that either oscillated between top and
bottom boundaries or straight swimming at the center of the channel for channel heights smaller
than 2.5 wm [93]. This same behavior was demonstrated in silico by a model of a flexible rotating
helix swimming in a tube [44]. That study found that when the helical swimmer’s axis was
initially not aligned with the tube axis, for small enough tube radii, the swimmer centered itself
so that alignment occurred. Another computational model of a helical swimmer between two
parallel plates [94] also demonstrated centering trajectories for small channel heights. Moreover,
this centering behavior for spheroidal squirmers inside a tubular enclosure was also reported
in [82].

Finally, we describe observations made when using this framework to model the flexible
flagellum as it moves through a curved tube. Figure 12 shows the progression of a swimmer as
it approaches a 120° bend in the tube. As it moves through bent tubular confinement, the wall
interactions cause it to change its oscillatory motion and curvature to navigate the bend of the tube.
In fact, because the length of this swimmer is greater than the straight portion of the tube, it must
be flexible enough to bend out of its preferred planar shape to make its way through the enclosure.
The orientation of the oscillation plane at points of the flagellum that are near the tube surface
aligns itself with the tangent plane at that location of the tube. Figures 12(a)—12(d) also highlight (in
purple) a patch of the plane where the head of the flagellum oscillates. The wall interactions cause
the flagellum to twist and change its beat-plane orientation to result in a slithering motion along the
tube wall. The wall interactions also affect the rest of the flagellum, even the portions that are not
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(a) (b) (c) (d)

FIG. 12. Flagellum navigating a 120° bend (left-to-right) of a tubular enclosure. The flagellum beats in a
planar sinusoidal shape in free space. The beat plane at the head section is highlighted in purple, and the initial
head section (first Stokeslet segment) is red. Also depicted is the projected view of the flagellum from above.
The tube length is 150 um and its diameter is 16 um. The flagellar parameters are L = 100 yum, k = 0.188 um~!,
A =2um, f =20Hz, and EI = 4.95 x 1072 Jm.

in proximity to the wall. In particular, the swimmer goes through a slight buckling, resulting in an
out-of-plane bend that allows it to traverse the curved tube.

IV. CONCLUSION

Inspired by long flagellated filiform swimmers that must navigate extremely narrow bends in
nature [23,95], here we model a flexible, flagellar swimmer moving through both straight and
bent tubular confinements. Our focus in this paper is to outline how recent improvements to the
regularized Stokeslet framework can be leveraged to describe the coupled system. We use Kirchhoff
rod theory with regularized Stokeslet segments to model the flagellum efficiently by requiring
only the discretization of the flagellum centerline [45] and using analytical formulas for the fluid
velocity due to linearized forces along each segment. This allows us to represent the flagellum with
a relatively small number of segments. The confinement provided by the tubes is modeled with
regularized Stokeslet surfaces [47]. Analogous to the segments, this method requires relatively few
surface patches with linearized forces.

This model does not prescribe flagellar kinematics; rather, the flexible flagellum is in pursuit of a
preferred, time-dependent curvature, and its shape emerges from the coupling with the viscous fluid
and the confinement. Here, for simplicity, we choose a preferred curvature corresponding to a single-
mode flagellar waveform. Models of flagellar beating that predict flagellar shapes due to internally
generated stresses, however, can generate more complex waveforms (e.g., [96]). The computational
framework presented here can readily be extended to include these preferred shapes.

We first explored the hydrodynamic performance of flexible swimmers in free space. We found
that the inclusion of inactive flagellar regions causes the flagellum to swim more slowly than the
corresponding shorter flagellum that is active along its entire length. However, there is little change
in power expenditure when inactive sections are present. We also explored how beat frequency
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and bending rigidity of these actuated flagella affected the achieved amplitude and hydrodynamic
performance. While we found that the achieved amplitude was a function of the nondimensional
sperm number (Sp), the speed and power expenditure were not. For example, while a very flexible
flagellum actuated with a small beat frequency could operate at the same Sp as a stiff flagellum
actuated with a large beat frequency, the stiff swimmer expends more power and swims faster than
the softer swimmer. We do find, however, that the efficiency is, indeed, a function of Sp.

For flagella moving into and out of straight tubular confinements, we found a significant boost
in swimming speed as the confinement narrowed, with this boost declining for floppier flagella.
Our model also demonstrates a clear drift of the flagellum, initialized about the axis of a tube,
toward the tube surface when the tube radius exceeds a threshold value (how this value depends
upon flagellar material properties, length, and wave kinematics remains to be quantified). As the
model swimmers drive towards the tube wall, they exhibit slithering along the surface, a behavior
discovered for mammalian sperm [13]. In the simulation presented with the curved tube, the anterior
part of the flagellum slithers near the surface, while the rest of the flagellum beats in a different plane.
In future work, we will investigate the interplay of tube geometry, flagellar material properties,
preferred-curvature parameters, and fluid properties on the ability of these filiform swimmers to
navigate curved passages and their corresponding hydrodynamic performance.

ACKNOWLEDGMENTS

This research was supported by the Human Frontiers of Science Program Grant No.
RGP0017/2022 [97], the National Science Foundation Grant No. DMS 2054333, and the Simons
Foundation Grant No. SFI- MPS-SFM-00006482. We gratefully acknowledge the many stimulating
discussions with our HFSP group: Rhonda Snook, Stuart Humphries, Carl Soulsbury, Kamil Talar,
Jessica Frith, Jessica Hadlow, and Erin Macartney.

DATA AVAILABILITY

The data that support the findings of this article are openly available [7].

[1] G. L. Taylor, The action of waving cylindrical tails in propelling microscopic organisms, Proc. R. Soc.
London A 211, 225 (1952).

[2] M. Sauzade, G. J. Elfring, and E. Lauga, Taylor’s swimming sheet: Analysis and improvement of the
perturbation series, Physica D 240, 1567 (2011).

[3] L. J. Fauci and R. Dillon, Biofluidmechanics of reproduction, Annu. Rev. Fluid Mech. 38, 371 (2006).

[4] J. S. Guasto, R. Rusconi, and R. Stocker, Fluid mechanics of planktonic microorganisms, Annu. Rev.
Fluid Mech. 44, 373 (2012).

[5] E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Phys. Rev. Fluids 72,
096601 (2009).

[6] E. Lauga, Bacterial hydrodynamics, Annu. Rev. Fluid Mech. 48, 105 (2016).

[7] L. Zhang, J. J. Abbott, L. Dong, K. E. Peyer, B. E. Kratochvil, H. Zhang, C. Bergeles, and B. J. Nelson,
Characterizing the swimming properties of artificial bacterial flagella, Nano Lett. 9, 3663 (2009).

[8] E. Gaffney, H. Gadélha, D. Smith, J. Blake, and J. Kirkman-Brown, Mammalian sperm motility: Obser-
vation and theory, Annu. Rev. Fluid Mech. 43, 501 (2011).

[9] M. Kottgen, A. Hotherr, W. Li, K. Chu, S. Cook, C. Montell, and T. Watnick, Drosophila sperm swim
backwards in the female reproductive tract and are activated via TRPP2 Ion channels, PLoS ONE 6,
€20031 (2011).

004900-20


https://doi.org/10.1098/rspa.1952.0035
https://doi.org/10.1016/j.physd.2011.06.023
https://doi.org/10.1146/annurev.fluid.37.061903.175725
https://doi.org/10.1146/annurev-fluid-120710-101156
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1146/annurev-fluid-122414-034606
https://doi.org/10.1021/nl901869j
https://doi.org/10.1146/annurev-fluid-121108-145442
https://doi.org/10.1371/journal.pone.0020031

FG10275

PRFLUIDS October 7, 2025 16:29

FILIFORM MICROSWIMMERS IN TUBULAR ...

[10] L. Le Nagard, A. T. Brown, A. Dawson, V. A. Martinez, W. C. K. Poon, and M. Staykova, Encapsulated
bacteria deform lipid vesicles into flagellated swimmers, Proc. Natl. Acad. Sci. USA 119, 2206096119
(2022).

[11] T. Bhattacharjee and S. S. Datta, Bacterial hopping and trapping in porous media, Nat. Commun. 10, 2075
(2019).

[12] D. Kim, Y. Kim, and S. Lim, Effects of swimming environment on bacterial motility, Phys. Fluids 34,
031907 (2022).

[13] R. Nosrati, A. Driouchi, C. M. Yip, and D. Sinton, Two-dimensional slither swimming of sperm within a
micrometre of a surface, Nat. Commun. 6, 8703 (2015).

[14] D. Smith, E. Gaffney, H. Shum, H. Gadélha, and J. Kirkman-Brown, Comment on the article by J. Elgeti,
U. B. Kaupp, and G. Gompper: Hydrodynamics of sperm cells near surfaces, Biophys. J. 100, 2318
(2011).

[15] J. Elgeti, U. B. Kaupp, and G. Gompper, Response to comment on article: Hydrodynamics of sperm cells
near surfaces, Biophys. J. 100, 2321 (2011).

[16] M. T. Bryan, J. Garcia-Torres, E. L. Martin, J. K. Hamilton, C. Calero, P. G. Petrov, C. P. Winlove, L.
Pagonabarraga, P. Tierno, F. Sagués, and F. Y. Ogrin, Microscale magneto-elastic composite swimmers at
the air-water and water-solid interfaces under a uniaxial field, Phys. Rev. Appl. 11, 044019 (2019).

[17] M. Morse, A. Huang, G. Li, M. R. Maxey, and J. X. Tang, Molecular adsorption steers bacterial swimming
at the air/water interface, Biophys. J. 105, 21 (2013).

[18] V. Rothschild, Non-random distribution of bull spermatozoa in a drop of sperm suspension, Nature
(London) 198, 1221 (1963).

[19] A. P. Berke, L. Turner, H. C. Berg, and E. Lauga, Hydrodynamic attraction of swimming microorganisms
by surfaces, Phys. Rev. Lett. 101, 038102 (2008).

[20] S. Suarez and A. A. Pacey, Sperm transport in the female reproductive tract, Hum. Reprod. Update. 12,
23 (2006).

[21] M. Zaferani, S. S. Suarez, and A. Abbaspourrad, Mammalian sperm hyperactivation regulates navigation
via physical boundaries and promotes pseudo-chemotaxis, Proc. Natl. Acad. Sci. USA 118, 2107500118
(2021).

[22] Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, Human spermatozoa migration
in microchannels reveals boundary-following navigation, Proc. Natl. Acad. Sci. USA 109, 8007
(2012).

[23] Y. Yang and X. Lu, Drosophila sperm motility in the reproductive tract, Biol. Reprod. 84, 1005 (2011).

[24] M. Curtis, J. Kirkman-Brown, T. Connolly, and E. Gaffney, Modelling a tethered mammalian sperm cell
undergoing hyperactivation, J. Theor. Biol. 309, 1 (2012).

[25] J.J. L. Higdon, The hydrodynamics of flagellar propulsion: Helical waves, J. Fluid Mech. 94, 331 (1979).

[26] N. Ho, S. D. Olson, and K. Leiderman, Swimming speeds of filaments in viscous fluids with resistance,
Phys. Rev. E 93, 043108 (2016).

[27] O. S. Pak, S. E. Spagnolie, and E. Lauga, Hydrodynamics of the double-wave structure of insect
spermatozoa flagella, J. R. Soc. Interface. 9, 1908 (2012).

[28] L. J. Fauci and C. S. Peskin, A computational model of aquatic animal locomotion, J. Comput. Phys. 77,
85 (1988).

[29] K. Ishimoto and E. A. Gaffney, An elastohydrodynamical simulation study of filament and spermatozoan
swimming driven by internal couples, IMA J. Appl. Math. 83, 655 (2018).

[30] J. Simons, L. Fauci, and R. Cortez, A fully three-dimensional model of the interaction of driven elastic
filaments in a stokes flow with applications to sperm motility, J. Biomech. 48, 1639 (2015).

[31] B. Thomases and R. D. Guy, The role of body flexibility in stroke enhancements for finite-length
undulatory swimmers in viscoelastic fluids, J. Fluid Mech. 825, 109 (2017).

[32] S. D. Olson, S. S. Suarez, and L. J. Fauci, Coupling biochemistry and hydrodynamics captures hyperacti-
vated sperm motility in a simple flagellar model, J. Theor. Biol. 283, 203 (2011).

[33] B. Chakrabarti and D. Saintillan, Spontaneous oscillations, beating patterns, and hydrodynamics of active
microfilaments, Phys. Rev. Fluids 4, 043102 (2019).

004900-21


https://doi.org/10.1073/pnas.2206096119
https://doi.org/10.1038/s41467-019-10115-1
https://doi.org/10.1063/5.0082768
https://doi.org/10.1038/ncomms9703
https://doi.org/10.1016/j.bpj.2011.03.014
https://doi.org/10.1016/j.bpj.2011.03.016
https://doi.org/10.1103/PhysRevApplied.11.044019
https://doi.org/10.1016/j.bpj.2013.05.026
https://doi.org/10.1038/1981221a0
https://doi.org/10.1103/PhysRevLett.101.038102
https://doi.org/10.1093/humupd/dmi047
https://doi.org/10.1073/pnas.2107500118
https://doi.org/10.1073/pnas.1202934109
https://doi.org/10.1095/biolreprod.110.088773
https://doi.org/10.1016/j.jtbi.2012.05.035
https://doi.org/10.1017/S0022112079001051
https://doi.org/10.1103/PhysRevE.93.043108
https://doi.org/10.1098/rsif.2011.0841
https://doi.org/10.1016/0021-9991(88)90158-1
https://doi.org/10.1093/imamat/hxy025
https://doi.org/10.1016/j.jbiomech.2015.01.050
https://doi.org/10.1017/jfm.2017.383
https://doi.org/10.1016/j.jtbi.2011.05.036
https://doi.org/10.1103/PhysRevFluids.4.043102

FG10275

11

PRFLUIDS October 7, 2025 16:29

ADNAN MORSHED, RICARDO CORTEZ, AND LISA FAUCI

[34] V. F. Geyer, Sartori, F. Jiilicher, and J. Howard, Computational modeling of dynein activity and the
generation of flagellar beating waveforms, in Dyneins: Structure, Biology and Disease, 2nd ed., edited
by S. M. King (Elsevier, Amsterdam, 2018), Vol. 2, pp. 192-212.

[35] V. Bayly and S. K. Dutcher, Steady dynein forces induce flutter instability and propagating waves in
mathematical models of flagella, J. R. Soc. Interface 13, 20160523 (2016).

[36] M. Ramia, D. Tullock, and N. Phan-Thien, The role of hydrodynamic interaction in the locomotion of
microorganisms, Biophys. J. 65, 755 (1993).

[37] L. J. Fauci and A. McDonald, Sperm motility in the presence of boundaries, Bltn. Mathcal. Biol. 57, 679
(1995).

[38] D. J. Smith, E. A. Gaffney, J. R. Blake, and J. C. Kirkman-Brown, Human sperm accumulation near
surfaces: A simulation study, J. Fluid Mech. 621, 289 (2009).

[39] B. U. Felderhof, Swimming and peristaltic pumping between two plane parallel walls, J. Fluid Mech. 21,
204106 (2009).

[40] S. E. Spagnolie and E. Lauga, Hydrodynamics of self-propulsion near a boundary: Predictions and
accuracy of far-field approximations, J. Fluid Mech. 700, 105 (2012).

[41] A. Bilbao, E. Wajnryb, S. A. Vanapalli, and J. Blawzdziewicz, Nematode locomotion in unconfined and
confined fluids, Phys. Fluids 25, 081902 (2013).

[42] J. Ainley, S. Durkin, R. Embid, Boindala, and R. Cortez, The method of images for regularized stokeslets,
J. Comput. Phys. 227, 4600 (2008).

[43] J. R. Blake, A note on the image system for a stokeslet in a no-slip boundary, Math. Proc. Cambridge
Philos. Soc. 70, 303 (1971).

[44] J. LaGrone, R. Cortez, and L. Fauci, Elastohydrodynamics of swimming helices: Effects of flexibility and
confinement, Phys. Rev. Fluids 4, 033102 (2019).

[45] R. Cortez, Regularized stokeslet segments, J. Comput. Phys. 375, 783 (2018).

[46] S. D. Olson, S. Lim, and R. Cortez, Modeling the dynamics of an elastic rod with intrinsic curvature and
twist using a regularized stokes formulation, J. Comput. Phys. 238, 169 (2013).

[47] D. Ferranti and R. Cortez, Regularized stokeslet surfaces, J. Comput. Phys. 508, 113004 (2024).

[48] S. Lim, A. Ferent, X. S. Wang, and C. S. Peskin, Dynamics of a closed rod with twist and bend in fluid,
SIAM J. Sci. Comput. 31, 273 (2008).

[49] D. M. Phillips, Insect sperm: Their structure and morphogenesis, J. Cell Biol. 44, 243 (1970).

[50] L. Carichino and S. D. Olson, Emergent three-dimensional sperm motility: Coupling calcium dynamics
and preferred curvature in a Kirchhoff rod model, Math. Med. Biol. 36, 439 (2019).

[51] G. J. Hancock, The self-propulsion of microscopic organisms through liquids, Proc. R. Soc. London A
217, 96 (1953).

[52] G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 1967), p. 668.

[53] R. Cortez, The method of regularized stokeslets, SIAM J. Sci. Comput. 23, 1204 (2001).

[54] M. Gomendio and E. R. S. Roldan, Sperm competition influences sperm size in mammals, Proc. R. Soc.
London Ser. B 243, 181 (1991).

[55] R. Snook, Sperm in competition: Not playing by the numbers, Trends Ecol. Evol. 20, 46 (2005).

[56] M. Kumar and A. M. Ardekani, Effect of external shear flow on sperm motility, Soft Matter 15, 6269
(2019).

[57] M. Okuno and Y. Hiramoto, Direct measurements of the stiffness of echinoderm sperm flagella, J. Exp.
Biol. 79, 235 (1979).

[58] G. Xu, K. S. Wilson, R. J. Okamoto, J.-Y. Shao, S. K. Dutcher, and P. V. Bayly, Flexural rigidity
and shear stiffness of flagella estimated from induced bends and counterbends, Biophys. J. 110, 2759
(2016).

[59] S. Ishijima and Y. Hiramoto, Flexural rigidity of echinoderm sperm flagella, Cell Struct. Funct. 19, 349
(1994).

[60] D. W. Pelle, C. J. Brokaw, K. A. Lesich, and C. B. Lindemann, Mechanical properties of the passive sea
urchin sperm flagellum, Cell Motil. Cytoskel. 66, 721 (2009).

[61] M. Werner and L. W. Simmons, Insect sperm motility, Biol. Rev. 83, 191 (2008).

004900-22


https://doi.org/10.1098/rsif.2016.0523
https://doi.org/10.1016/S0006-3495(93)81129-9
https://doi.org/10.1007/BF02461846
https://doi.org/10.1017/S0022112008004953
https://doi.org/10.1088/0953-8984/21/20/204106
https://doi.org/10.1017/jfm.2012.101
https://doi.org/10.1063/1.4816718
https://doi.org/10.1016/j.jcp.2008.01.032
https://doi.org/10.1017/S0305004100049902
https://doi.org/10.1103/PhysRevFluids.4.033102
https://doi.org/10.1016/j.jcp.2018.08.055
https://doi.org/10.1016/j.jcp.2012.12.026
https://doi.org/10.1016/j.jcp.2024.113004
https://doi.org/10.1137/070699780
https://doi.org/10.1083/jcb.44.2.243
https://doi.org/10.1093/imammb/dqy015
https://doi.org/10.1098/rspa.1953.0048
https://doi.org/10.1137/S106482750038146X
https://doi.org/10.1098/rspb.1991.0029
https://doi.org/10.1016/j.tree.2004.10.011
https://doi.org/10.1039/C9SM00717B
https://doi.org/10.1242/jeb.79.1.235
https://doi.org/10.1016/j.bpj.2016.05.017
https://doi.org/10.1247/csf.19.349
https://doi.org/10.1002/cm.20401
https://doi.org/10.1111/j.1469-185X.2008.00039.x

FG10275

PRFLUIDS October 7, 2025 16:29

FILIFORM MICROSWIMMERS IN TUBULAR ...

[62] K. Ishimoto and E. A. Gaffney, Boundary element methods for particles and microswimmers in a linear
viscoelastic fluid, J. Fluid Mech. 831, 228 (2017).

[63] G.-J. Li and A. M. Ardekani, Hydrodynamic interaction of microswimmers near a wall, Phys. Rev. E 90,
013010 (2014).

[64] J. E. Brady and G. Bossis, The rheology of concentrated suspensions of spheres in simple shear flow by
numerical simulation, J. Fluid Mech. 155, 105 (1985).

[65] T. Ishikawa and T. J. Pedley, Diffusion of swimming model micro-organisms in a semi-dilute suspension,
J. Fluid Mech. 588, 437 (2007).

[66] M. Tourmente, M. Gomendio, and E. R. Roldan, Sperm competition and the evolution of sperm design in
mammals, BMC Evol. Biol. 11, 12 (2011).

[67] S. Liipold, S. Calhim, S. Immler, and T. R. Birkhead, Sperm morphology and sperm velocity in passerine
birds, Proc. R. Soc. B. 276, 1175 (2009).

[68] E. R. A. Cramer, E. Garcia-del Rey, L. E. Johannessen, T. Laskemoen, G. Marthinsen, A. Johnsen, and
J. T. Lifjeld, Longer sperm swim more slowly in the canary islands chiffchaff, Cells 10, 1358 (2021).

[69] A. Rojas Mora, M. Meniri, S. Ciprietti, and F. Helfenstein, Is sperm morphology functionally related to
sperm swimming ability? A case study in a wild passerine bird with male hierarchies, BMC Evol. Biol.
18, 142 (2018).

[70] Y. Yang, H. Zhang, S. Wang, W. Yang, J. Ding, and Y. Zhang, Variation in sperm morphology and
performance in tree sparrow (Passer montanus) under long-term environmental heavy metal pollution,
Ecotoxicol. Environ. Saf. 197, 110622 (2020).

[71] C. D. Soulsbury and S. Humphries, Biophysical determinants and constraints on sperm swimming
velocity, Cells 11, 3360 (2022).

[72] S. Childress, A thermodynamic efficiency for stokesian swimming, J. Fluid Mech. 705, 77 (2012).

[73] J. Lighthill, Flagellar hydrodynamics, SIAM Rev. 18, 161 (1976).

[74] R. Rikmenspoel, The equation of motion for sperm flagella, Biophys. J. 23, 177 (1978).

[75] L. Deutz, Gait modulation of undulatory microswimmers through the lens of optimality, Ph.D. thesis,
University of Leeds, 2024.

[76] A.-K. Tornberg and M. J. Shelley, Simulating the dynamics and interactions of flexible fibers in stokes
flows, J. Comput. Phys. 196, 8 (2004).

[77] Y. Liu, B. Chakrabarti, D. Saintillan, A. Lindner, and O. Du Roure, Morphological transitions of elastic
filaments in shear flow, Proc. Natl. Acad. Sci. USA 115, 9438 (2018).

[78] B. Chakrabarti, Y. Liu, J. LaGrone, R. Cortez, L. Fauci, O. Du Roure, D. Saintillan, and A. Lindner,
Flexible filaments buckle into helicoidal shapes in strong compressional flows, Nat. Phys. 16, 689 (2020).

[79] M. T. Gallagher, J. C. Kirkman-Brown, and D. J. Smith, Axonemal regulation by curvature explains sperm
flagellar waveform modulation, PNAS Nexus 2, pgad072 (2023).

[80] E. Lauga, Floppy swimming: Viscous locomotion of actuated elastica, Phys. Rev. E 75, 041916 (2007).

[81] A. Zottl and H. Stark, Periodic and quasiperiodic motion of an elongated microswimmer in poiseuille
flow, Eur. Phys. J. E 36, 4 (2013).

[82] L. Zhu, E. Lauga, and L. Brandt, Low-Reynolds-number swimming in a capillary tube, J. Fluid Mech.
726, 285 (2013).

[83] R. Ledesma-Aguilar and J. M. Yeomans, Enhanced motility of a microswimmer in rigid and elastic
confinement, Phys. Rev. Lett. 111, 138101 (2013).

[84] B. Liu, K. S. Breuer, and T. R. Powers, Propulsion by a helical flagellum in a capillary tube, Phys. Fluids
26, 011701 (2014).

[85] H. Winet, Wall drag on free-moving ciliated micro-organisms, J. Exp. Biol. §9, 753 (1973).

[86] D. Woolley, Motility of spermatozoa at surfaces, Reproduction 126, 259 (2003).

[87] E. Lauga, W. R. DiLuzio, G. M. Whitesides, and H. A. Stone, Swimming in circles: Motion of bacteria
near solid boundaries, Biophys. J. 90, 400 (2006).

[88] K. Ishimoto and E. A. Gaffney, Fluid flow and sperm guidance: A simulation study of hydrodynamic
sperm rheotaxis, J. R. Soc. Interface. 12, 20150172 (2015).

[89] Y. Park, Y. Kim, and S. Lim, Flagellated bacteria swim in circles near a rigid wall, Phys. Rev. E 100,
063112 (2019).

004900-23


https://doi.org/10.1017/jfm.2017.636
https://doi.org/10.1103/PhysRevE.90.013010
https://doi.org/10.1017/S0022112085001732
https://doi.org/10.1017/S0022112007007847
https://doi.org/10.1186/1471-2148-11-12
https://doi.org/10.1098/rspb.2008.1645
https://doi.org/10.3390/cells10061358
https://doi.org/10.1186/s12862-018-1260-8
https://doi.org/10.1016/j.ecoenv.2020.110622
https://doi.org/10.3390/cells11213360
https://doi.org/10.1017/jfm.2011.561
https://doi.org/10.1137/1018040
https://doi.org/10.1016/S0006-3495(78)85442-3
https://doi.org/10.1016/j.jcp.2003.10.017
https://doi.org/10.1073/pnas.1805399115
https://doi.org/10.1038/s41567-020-0843-7
https://doi.org/10.1093/pnasnexus/pgad072
https://doi.org/10.1103/PhysRevE.75.041916
https://doi.org/10.1140/epje/i2013-13004-5
https://doi.org/10.1017/jfm.2013.225
https://doi.org/10.1103/PhysRevLett.111.138101
https://doi.org/10.1063/1.4861026
https://doi.org/10.1242/jeb.59.3.753
https://doi.org/10.1530/rep.0.1260259
https://doi.org/10.1529/biophysj.105.069401
https://doi.org/10.1098/rsif.2015.0172
https://doi.org/10.1103/PhysRevE.100.063112

FG10275

PRFLUIDS October 7, 2025 16:29

ADNAN MORSHED, RICARDO CORTEZ, AND LISA FAUCI

[90] M. R. Raveshi, M. S. A. Halim, S. N. Agnihotri, M. K. O’Bryan, A. Neild, and R. Nosrati, Curvature in
the reproductive tract alters sperm—surface interactions, Nat. Commun. 12, 3446 (2021).

[91] G. Vizsnyiczai, G. Frangipane, S. Bianchi, F. Saglimbeni, D. Dell’ Arciprete, and R. Di Leonardo, A
transition to stable one-dimensional swimming enhances E. Coli motility through narrow channels, Nat.
Commun. 11, 2340 (2020).

[92] S.Jana, S. H. Um, and S. Jung, Paramecium swimming in capillary tube, Phys. Fluids 24, 041901 (2012).

[93] J.-M. Swiecicki, O. Sliusarenko, and D. B. Weibel, From swimming to swarming: Escherichia coli cell
motility in two-dimensions, Integr. Biol. 5, 1490 (2013).

[94] H. Shum and E. A. Gaftney, Hydrodynamic analysis of flagellated bacteria swimming near one and
between two no-slip plane boundaries, Phys. Rev. E 91, 033012 (2015).

[95] M. K. Manier, J. M. Belote, K. S. Berben, D. Novikov, W. T. Stuart, and S. Pitnick, Resolving mechanisms
of competitive fertilization success in drosophila melanogaster, Science 328, 354 (2010).

[96] S. Camalet, F. Jiilicher, and J. Prost, Self-organized beating and swimming of internally driven filaments,
Phys. Rev. Lett. 82, 1590 (1999).

[97] https://doi.org/10.52044/HFSP.RGP00172022.pc.gr.153610.

004900-24


https://doi.org/10.1038/s41467-021-23773-x
https://doi.org/10.1038/s41467-020-15711-0
https://doi.org/10.1063/1.4704792
https://doi.org/10.1039/c3ib40130h
https://doi.org/10.1103/PhysRevE.91.033012
https://doi.org/10.1126/science.1187096
https://doi.org/10.1103/PhysRevLett.82.1590
https://doi.org/10.52044/HFSP.RGP00172022.pc.gr.153610

