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Storage of sperm in the female reproductive tract occurs across species that reproduce

by internal fertilization, modulating availability and preserving fertility. For instance, the

sperm of the insects from the family Drosophilidae are stored in and released from the

seminal receptacle—a long, slender, coiled tube. The sperm flagella, longer than any

straight portion of the tube, must be flexible enough to navigate the twists and turns of

these tightly coiled organs. As a step towards studying the coupled system of fluid, tube

geometry, and flexible flagella, we present here a framework to study flagellar motion in

tubular enclosures. The basic swimmer is modeled as a flexible Kirchhoff rod comprised

of regularized Stokeslet segments, while the rigid surfaces that constitute the enclosure are

represented by regularized Stokeslet surfaces. Swimming kinematics is not prescribed, but

emerges from time-varying preferred curvatures. This approach allows for swimmer-wall

interactions and, in turn, the evolution of swimming behavior near rigid boundaries. We

first investigate the effects of flagellar bending rigidity, beat frequency, and the presence

of inactive flagellar regions on swimming performance in free space. Next, we study the

effect of confinement levels on swimming performance inside straight tubes. We find that

swimming speed increases as the tube diameter decreases, with a more pronounced boost

in speed for stiffer flagella. We also find that the swimmers, whose preferred beat is planar,

drift towards the tube walls if the diameter of the tube is large enough. Finally, our work

demonstrates that the model flagellum can navigate through a curved tube, which will

enable studies aimed at understanding the coevolution of female reproductive tracts and

sperm morphology in different organisms.
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I. INTRODUCTION27

A classical problem in biological fluid dynamics at the microscale is the motility of a flagellum28

undergoing sinusoidal oscillations in an unbounded Newtonian fluid. Beginning with Taylor’s29

analysis of the progression of swimming sheets or cylinders in the 1950s [1,2], the study of the30

fluid dynamics of micro-organisms, both natural and engineered, has enjoyed much success in31

the last decades, through advances in imaging technologies, computational methods, microfluidic32

devices, material science, and non-Newtonian fluid dynamics (e.g., [3–8]). Many, if not most, of33

the biological examples of microscale propulsion rarely happen in spaces that can be satisfactorily34

considered “free-space swimming” in the mathematical sense. Rather, both the swimmers and back-35

ground flows are strongly influenced by the surrounding confines established by vessel walls [9],36

membranes [10], porous matrices [11], or other fluid-solid [12–15] and fluid-fluid interfaces [16,17].37

Early experimental observations of the effect of boundaries on sperm [18] report that they do38
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FIG. 1. Drosophila montana sperm; A identifies the head area. The sperm cell is 3.48 mm long. Image was

taken with a 20× objective, courtesy of Hadlow and Snook, Stockholm University.1

accumulate near a surface, and these findings were further detailed in [19]. Mammalian sperm39

navigation through the female reproductive tract has been studied experimentally, showing the40

presence of both chemotactic and boundary-induced hydrodynamic effects [20,21]. More recent41

microfluidic experiments with sperm cells have also explored rheotactic behavior and steering42

effects induced by rigid boundaries [13,22].43

An intriguing example of long flagella moving through narrow confinements is that of the sperm44

of the fruit fly making its journey through the female fly’s reproductive tract [23]. While human45

sperm flagella are about 50 microns long, the Drosophila montana shown in Fig. 1 is over three46

millimeters long, which is on the order of the fly’s actual body length. Clearly, in order for this47

sperm flagellum to traverse the coiled female reproductive tract, it must be flexible enough to bend.48

Here we will present a model of this coupled elastohydrodynamic system using a computational49

framework that captures the dynamics of the flexible flagellum, its emergent waveform, and the50

geometry of the tubular confinement.51

Hydrodynamic models of flagellar motility may be classified according to a hierarchy of specifi-52

cations of shape dynamics. In the simplest class of models, the flagellar kinematics are prescribed,53

and do not deviate from this prescription no matter what forces are felt from the viscous load,54

neighboring organisms, or nearby boundaries [24–27]. In the Stokes regime, the total force and55

torque exerted by the free swimmer must be zero. These constraints are satisfied by allowing a56

rigid translation and rotation of the swimmer. These models may be used to analyze the fluid flow57

generated by the given motion and the forces required to achieve the prescribed shape.58

In the second class of models, the flagellum is in pursuit of a preferred shape, and exerts forces59

on the fluid that are derived from tensile and bending energies. Stiffness constants related to the60

bending rigidity of the flagellum determine the extent to which the preferred shape is achieved61

(e.g., [28–31]). In these models, the choice of the target shape may come from experimental62

observations or may evolve from other features of the model, such as biochemical signaling [32].63

Finally, the third class of flagellar models is one in which kinematics are not prescribed, nor a64

preferred shape input, but one where the kinematics emerge from the fully coupled system of fluid65

environment, passive elastic properties, and the action of the internal dynein motors on the axonemal66

structure. Flagellar models of this last class are found in [3,29,33–35]. The model discussed here67

will be from the second class, a preferred-curvature model, which does capture the flexibility of the68

flagellum and its shape deformations from interaction with the viscous fluid and boundaries.69

The effect of boundaries on micro-organism swimming has been the subject of numerous70

computational models, using immersed boundary methods, boundary element methods, and reduced71

order representations of swimmers [19,36–41]. Within the context of computational models based72

upon fundamental solutions of the Stokes equations, such as boundary integral methods or the73

method of regularized Stokeslets, a standard approach to model swimmer-surface interactions is74

to use the method of images to enforce the zero-velocity condition on a planar rigid wall [42,43].75

However, the image-based approach is not suitable for more complex geometries like tubular76
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vessels, where fundamental solutions are not analytically available. As in [44], which used a77

regularized Stokeslet model of swimming flexible helices within a cylinder, we will explicitly78

represent the tubular confinement and enforce the no-slip condition. In this paper, we describe our79

mathematical modeling efforts in developing a robust, dynamical model of a filiform flagellum80

swimming within a confinement. The flagellum embodies characteristics like flexibility, active, and81

passive sections along its length, and modulation of shape amplitude and frequency. The model82

builds on the regularized Stokeslet segment [45] formulation in which the flagellum is taken to83

be a Kirchhoff elastic rod with collections of piecewise linear distributions of forces and torques84

on rod segments. Forces and torques along the rod arise from preferred intrinsic curvatures and85

twists that are prescribed along its centerline. This regularized Stokeslet segment approach allows86

the resolution of a given sinusoidal wave using many fewer discretization points than the standard87

regularized Stokeslet [46] formulation, and hence will allow efficient modeling of very long flagella.88

In addition, we present an extension of the regularized Stokeslet method to form solid, no-slip89

boundaries [47] that is used to construct both straight and tortuous fluid-filled enclosures. In the90

following sections, we first discuss the methodology used to model the flagellar-tubular system.91

Then, for a flagellum in free space, we analyze the effects of inhomogeneous activation, variation of92

beat frequency, variation of bending rigidity, and flagellar length on hydrodynamic performance. We93

then investigate the full elastohydrodynamic coupled system of a flexible flagellum moving through94

a straight tube. Finally, we demonstrate that in the case of a curved tube where the flagellum is95

considerably longer than any straight portion of the tube, the flagellum cannot meet its preferred96

shape, but must curve to traverse the tube. We remark that hydrodynamic flagellar models of the97

first class, which prescribe flagellar kinematics, cannot be used in such confined geometries.98

II. METHODOLOGY99

This section describes the components of the model of a self-propelled flagellum in a tubular100

space. The model consists of several elements that affect the dynamics of the flagellum, including101

the forces that develop along the length of the flagellum to generate the beat, the fluid motion102

generated by the flagellar forces, the forces along the tube surface, and the fluid motion they produce.103

It will also be necessary to include a strategy to prevent the flagellum and surface from occupying104

the same volume during the numerical updates of the flagellar shape.105

A. Actuation of swimming filament106

We describe the sperm flagellum as an active filament immersed in a viscous, incompressible107

fluid whose motion is described by the Stokes equations. The active filament, with the assumption108

that its length is much larger compared to its radius, is modeled as a one-dimensional slender rod109

with the freedom to bend and twist. Following [48], we use a modified Kirchhoff rod framework to110

approximate the dynamical behavior of the filament as an elastic rod.111

The Kirchhoff framework represents the rod’s centerline as a space curve X(s, t ) and a set of112

local orthonormal reference frames, {D1(s, t ), D2(s, t ), D3(s, t )} at each point on the curve (Fig. 2).113

We set the Lagrangian parameter s as the arclength of the rod of length L and assume a constant114

cross-sectional radius along the arclength. The orthonormality of the triads in each set of director115

basis is maintained by the constraint Di · D j = δi j ; i, j = 1, 2, 3. By convention, D3 coincides with116

the unit vector tangent to the curve.117

For any section of the rod, internal forces F and internal couples N are transmitted through the118

cross-sections by averaging the stresses acting across them. These internal forces and couples are119

computed from the current geometry of the flagellum. The constitutive relations for internal forces120

are121

F 1 = b1D1 ·
∂X

∂s
, F 2 = b2D2 ·

∂X

∂s
, F 3 = b3

(

D3 ·
∂X

∂s
− 1

)

, (1)
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FIG. 2. Lagrangian variables for a typical representation of a swimming micro-organism in the Kirchhoff

rod framework. Distance between points on the organism is tracked with the arclength parameter s, while

orthogonal directors {D1, D2, D3} at each of the Lagrangian points are used to track bend and rotation.

We also highlight the linearly varying nature of force (and torque) densities of the regularized Stokeslet

segment framework and the balance of internal and surface forces (and moments) for a standard Kirchhoff

rod. Background image reproduced from [49].

where b1 and b2 are the shear moduli, and b3 is the extension modulus. Values of these moduli122

are chosen to be large enough so that the filament approximately satisfies the unshearability and123

inextensibility conditions. Moreover, the penalty formulation for F 3 in Eq. (1) also tends to maintain124

D3 tangent to the centerline of the rod. All Lagrangian variables are expanded in terms of the local125

coordinates.126

The constitutive equations for the internal moments are127

N1 = a1

(

∂D2

∂s
· D3 − #1

)

, N2 = a2

(

∂D3

∂s
· D1 − #2

)

, N3 = a3

(

∂D1

∂s
· D2 − #3

)

. (2)

Here, a1 and a2 are the bending moduli (equal in the case of an isotropic and homogeneous rod128

with circular cross-section and constant radius along the arclength), a3 is the twisting modulus,129

and !(s, t ) = {#1,#2,#3} is the driving (preferred) strain bend-twist vector. We refer to its130

components as the preferred target curvatures, and they are derived from an idealized time-varying131

planar sinusoidal preferred shape for the flagellum. As in [50], a general time-varying preferred132

shape X(s, t ) = x1(s, t )î + x2(s, t ) ĵ + x3(s, t )k̂ parametrized by the arclength can be expressed in133

terms of the preferred bend-twist vector {#1(s, t ),#2(s, t ),#3(s, t )} (see below).134
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This leads to the following force and couple balances:135

fl +
∂F

∂s
= 0, (3)

nl +
∂N

∂s
+

(

∂X

∂s
× F

)

= 0, (4)

where fl and nl are force density per unit length (in s) and torque density per unit length (in s)136

applied to the rod segment by the surrounding fluid.137

The simulations in this work use the preferred shape138

x1(s, t ) = A cos (ks − ωt ) and x2(s, t ) = 0,

where A, k, and ω are the preferred amplitude, wave number, and angular frequency, respectively.139

The third component, x3(s, t ), is computed by solving the ordinary differential equation resulting140

from the tangent vector constraint (x′2
1 + x′2

2 + x′2
3 )1/2 = 1. As such, the preferred bend-twist vectors141

become142

#1(s, t ) = x′
1x′′

3 − x′
3x′′

1 =
x′′

1
√

1 − x′2
1

, #2(s, t ) = 0, #3(s, t ) = 0,

where we used x′
3 =

√
1 − x′2

1 and x′′
3 = −x′

1x′′
1/

√
1 − x′2

1 . The calculated strain twist vector rep-143

resents the time-dependent preferred curvature [(s, t ) =
√

#2
1 + #2

2] and twist #3 of the rod144

centerline.145

The balance of force and couple is accomplished by introducing a force per unit length fl and146

a torque per unit length nl exerted by the fluid on the flagellum, which result in a flagellum shape147

that approximates the curvatures of the preferred bend-twist vector. The curvature and twist that are148

actually achieved by the flagellum depend on several factors, including fluid-structure interactions,149

structure-structure interactions, as well as mechanical properties of the structure. At any given time150

t , at a point s on the flagellum, the achieved bend twist vector component #i,ach(s, t ) is expressed in151

terms of the local directors as152

#i,ach(s, t ) =
∂D j (s, t )

∂s
· Dk (s, t ), (5)

where (i, j, k) is any cyclic permutation of (1, 2, 3). The differences [#i,ach(s, t ) versus #i(s, t )]153

appear in the constitutive equations for torques [Eq. (2)] and produce the internal moment densities154

driving the motion.155

In summary, the actuation of the filament is accomplished by computing force and torque156

densities along the flagellum based on the difference between the configuration of the flagel-157

lum and the time-dependent preferred bend-twist vector, fl (s, t ) and nl (s, t ), along the flagellum158

length. While these force and torque densities produce self-propulsion, the net force and net159

torque on the flagellum are zero. Next, we describe how these forces and torques generate fluid160

motion.161

B. Regularized Stokeslet segments and regularized Stokeslet surfaces162

In this section, we provide expressions for the fluid motion due to force per unit length fl (s, t ) and163

a torque per unit length nl (s, t ) along the Kirchhoff rod. The motion of a viscous, incompressible164

flow in three dimensions at zero Reynolds number is modeled with the Stokes equations:165

µ∇2u = ∇p − fb − 1
2
∇ × nb, (6)

∇ · u = 0, (7)
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fb =

∫ L

0

fl (s, t )δ(x̂ − X(s, t )) ds, (8)

1

2
∇ × nb =

∫ L

0

1

2
∇ × nl (s, t )δ(x̂ − X(s, t )) ds, (9)

where µ is the dynamic viscosity, u is the fluid velocity, p is the pressure, and fb and nb are the force

2

166

and torque per unit volume on the fluid. The velocity expression that we develop here is based on167

the fluid velocity at an arbitrary point x̂ in the domain due to a single point force concentrated at168

the location y. For the derivation, we assume temporarily that there is only one point force Fb with169

associated force density fb = Fbδ(x̂ − y), where δ is the three-dimensional Dirac delta function. The170

velocity due to this force is the Stokeslet [51,52]:171

u(x̂) =
1

8πµ

[

Fb

r
+

(r · Fb)r

r3

]

, (10)

where r(x̂) = x̂ − y, and r = |r|.The Stokeslet expression has a singularity of the form r−1, which172

can present difficulties when the forces are distributed on curves or at scattered points in three di-173

mensions. One approach to modeling the forces along the flagellum without producing singularities174

in the fluid domain is to mollify the forces so that they are not concentrated in an infinitesimally thin175

curve, but are spread over a small surrounding region [53]. This approach replaces the Dirac delta176

function in the expression of the force per volume with fb = Fbφϵ (x̂ − y), where φϵ is a radially177

symmetric regularizing function (blob) which satisfies
∫∫∫

φϵ (r) dr = 1. There are many functions,178

including Gaussian, exponential, and algebraic, that can be used. A common choice is179

φϵ (r) =
15ϵ4

8π (r2 + ϵ2)
7/2

,

where ϵ is a small regularization parameter that controls the size of the extent of the force. This180

leads to an exact solution of the Stokes equations called the regularized Stokeslet,181

u(x̂) =
1

8πµ

[(

1

Rϵ

+
ϵ2

R3
ϵ

)

Fb +
(Fb · r)r

R3
ϵ

]

, (11)

TABLE I. Reference parameters and scales for the swimmer model used throughout this study. The twist

modulus is assumed to have the same magnitude as the bending moduli, while the shear and stretch moduli are

chosen to be large enough to maintain unshearability and inextensibility. We choose water as the fluid medium

in our simulations.

Parameter Interpretation Representative value References

L Flagellar length 100 µm [54,55]

EI = a1 = a2 Bending moduli 4.95 × 10−21J m [56–60]

a3 Twist modulus 4.95 × 10−21 J m

b1 = b2 = b Shear moduli 8.3 × 10−10 kg m s−2

b3 = b Stretch modulus 8.3 × 10−10 kg m s−2

f = ω/2π Beat frequency 20 Hz [61]

A Preferred beat amplitude 2 µm [61]

λ Wavelength 33.33 mm [61]

k Wave number k = 2π/λ

µ Fluid viscosity 0.001 kg m−1 s−1
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where R2
ϵ = |r|2 + ϵ2. Similarly, for a regularized point torque nb = Nbφϵ (x̂ − y), the velocity is182

u(x̂) =
1

8πµ

(

2

R3
ϵ

+
3ϵ2

R5
ϵ

)

(Nb × r). (12)

1. A Kirchhoff rod as a continuum of regularized Stokeslets183

Returning to the case of the Kirchhoff rod described in Eq. (6), the velocity field produced by184

the flagellar forces and torques is given by an integral along the flagellum. We use the method of185

regularized Stokeslet segments [45], where the flagellum is represented by a piecewise linear curve186

with a linear continuous distribution of regularized forces along each line segment:187

uF (x̂) =
ℓ

8πµ

∫ 1

0

[(

1

Rϵ

+
ϵ2

R3
ϵ

)

fl (α) +
[fl (α) · r(α)]r(α)

R3
ϵ

]

dα, (13)

where r(α) = x̂ − y(α) is now dependent on the location along the segment as well (0 ! α ! 1).188

Here, y(α) = y0 + α(y1 − y0), and fl (α) = fl,0 + α(fl,1 − fl,0). Similarly, for a linearly varying189

continuous distribution of torque density (per unit length) nl (α) on a line segment, the velocity190

is evaluated through191

uT (x̂) =
ℓ

8πµ

∫ 1

0

[(

2

R3
ϵ

+
3ϵ2

R5
ϵ

)

[nl (α) × r(α)]

]

dα, (14)

where nl (α) = nl,0 + α(nl,1 − nl,0). Analytical expressions for these integrals, derived in [45], are192

used to evaluate the fluid velocity at an arbitrary evaluation point x̂ due to flagellar forces. Since193

the forces are a continuous function on the flagellum, the two numerical parameters involved—the194

length ℓ of a segment and the regularization parameter ϵ—are essentially decoupled and can be195

selected based on physical arguments.196

2. Regularized Stokeslet surfaces197

The idea of continuously varying forces and torques along a line segment is extended in Ref. [47],198

where the fluid motion is generated by forces distributed over surfaces. Here, a surface embedded199

in a three-dimensional flow is discretized with nodes forming the vertices of triangles. The surface200

is assumed to be planar in each triangle, where a linear force vector field is considered on each201

triangular patch of surface. This is similar to a finite-element method with linear elements over202

triangles. However, the velocity is computed by analytically integrating regularized Stokeslets due203

to the linear forces over a flat triangular surface patch. Effectively, this velocity is due to a continuum204

of linear force on the triangle (of area BH/2) and can be expressed as205

uS (x̂) =
BH

8πµ

∫ 1

0

∫ α

0

[(

1

Rς

+
ς2

R3
ς

)

fa(α,β ) +
[fa(α,β ) · r]r

R3
ς

]

dβ dα, (15)

where we assume a bilinear distribution of forces on the patch resulting on the force density (per206

unit area) fa(α,β ) = fa,0 + α(fa,1 − fa,0) + β(fa,2 − fa,1), based on the three vertex forces (0 !207

α ! 1 and 0 ! β ! α). As with the Stokeslet segments, here we define the distance r = r(α,β ) =208

x̂ − y(α,β ), and we introduce the surface regularization parameter ς in Rς =
√

|r|2 + ς2. The209

regularized forces overlap with neighboring forces regardless of the size of the parameter ς . In210

practice, this allows ς to be much smaller than if the force is a discrete set located only at the211

nodes. In [47], second-order convergence in the spatial discretization for fixed ς was demonstrated.212

A key advantage of this method is that it integrates a continuous, linear force exactly over triangular213

surface elements. Consequently, the regularization parameter can be reduced significantly while214

keeping the surface discretization fixed, without increasing the error [47]. This allows the use of215

minimal regularization, which results in very little thickening of the surface.216
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(a) (b) (c)

FIG. 3. The generation of the tubular confinement begins by (a) defining the centerline of the tube (red

stars), and creating a cylindrical mesh around it; and (b) creating the sleeve as a second set of surface nodes

slightly apart (the gap is 1% of the tube radius) from the cylindrical mesh. A zoomed-in view of the tube and

the sleeve is shown in (c), where normal vectors are also shown. Note that the actual tube will have much

higher point density.

Figure 3(a) shows the construction of a tubular structure with surface elements. We first define217

the centerline of the tubular section and subdivide it into equally spaced points. These points are218

used as centers to generate circles that form the physical surface of the tube wall. Adjacent surface219

points x̂p are connected to create triangular patches that represent the surface of the tube. Since the220

tube wall is stationary and rigid, surface forces must develop to generate a fluid velocity on the tube221

nodes x̂p that cancels the velocity generated by the flagellum at those points. We achieve this by222

solving the linear system for the force densities (force per area) in Eq. (15) for a given velocity on223

the left-hand side.224

There is flexibility in choosing the location of these wall-force densities, which do not have to225

be the same set of nodes where the surface velocity boundary condition is enforced. We have found226

that if the location of a surface force comes arbitrarily close to a flagellum point, the force that227

develops can be very large, affecting the time step in the computation. However, this is not the case228

when there is a minimum separation between the surface force location and the flagellar force node.229

Therefore, a new set of points slightly offset outward from the tube surface points is created. We230

refer to these points as a sleeve and denote them as x̂s [Figs. 3(b) and 3(c)].231

Even with the no-slip condition enforced at the vertices of the triangular patches of the tube232

surface, the flagellum can pass through the tube surface for a fixed spatial and temporal discretiza-233

tion. Previous numerical studies have approached this issue by introducing a steric repulsion that234

only becomes active in the extreme vicinity of a solid wall [40,62,63]. The formulation of the force235

density follows the form of colloidal particle-particle electrostatic repulsion [64,65]. We use a slight236

variation to account for a finite repulsion at the wall, and we also introduce a cutoff beyond a237

threshold distance,238

fl,rep =

{

Mξ
exp(−ρ/d )

ξ+[1−exp(−ρ/d )]
n̂ if ρ ! d,

0 otherwise,
(16)

where M = 20 N m−1 and d = tube radius/40 are magnitude and distance parameters adjusted239

for our choice of simulation parameters, ρ is the distance from a point y(α) on the flagellum to240

the nearest tube/wall patch, n̂ is the unit normal vector pointing from the wall patch toward the241

flagellum, and ξ is a small nondimensional parameter to constrain the maximum repulsion force242

density. The repulsion force is added as a linear force density to fl (α) on the segments containing243

y(α) whenever this flagellum point moves within the cutoff distance from the wall surface.244

C. Algorithm summary245

In summary, at any given time t = tn, with a flagellum configuration given by X(s j, tn) and246

Di(s j, tn), for 0 ! j ! M, the numerical algorithm to advance the flagellum to the next time level247

tn+1 is described below. The velocity of each flagellum point has contributions from the flagellum248
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forces and torques, the tube sleeve, and any repulsion forces. The unit vectors Di(s j, tn) rotate with249

the angular velocity generated by the velocity field.250

(1) Update the preferred bend-twist vectors {#1(s j, tn),#2(s j, tn),#3(s j, tn)} corresponding to251

the preferred flagellum shape at time tn+1. Using the constitutive equations [Eqs. (1) and (2)],252

compute the internal force and moments from the Kirchhoff rod.253

(2) Check if any portion of the flagellum is in the proximity of the tube surface for repulsion254

to be activated, and add the repulsion force density [Eq. (16)] to other forces already computed at255

those flagellum points.256

(3) Use Eqs. (3) and (4) to evaluate forces and torques (per unit length) transmitted from the257

flagellum points to the fluid.258

(4) Next use Eqs. (13) and (14) to compute the contribution to the flagellum velocities,259

uF (X(s j, tn)) and uT (X(s j, tn)), due to repulsion forces and the internal forces and moments.260

(5) Use Eqs. (13) and (14) again, but this time to evaluate fluid velocities u(x̂p), at the tube/wall261

locations, x̂p. Solve the linear system in Eq. (15) to calculate force densities (per unit area) fa(x̂s) at262

the sleeve patch vertices that produce the negative velocity field, −u(x̂p), at the tube/wall nodes.263

(6) Use the surface forces just computed and Eq. (15) to compute the contribution to the264

flagellum velocity uS (X(s j, tn)) due to surface forces that nullify any slip velocities on the tube265

surface.266

(7) Add velocity contributions from steps 4 and 6 to compute the final velocity of the flagellum,267

u(X(s j, tn)) for 0 ! j ! M. Update flagellum location as well as the director orientation using268

∂X(s, t )

∂t
= u(X(s, t ), t ), (17a)

∂Di(s, t )

∂t
= w(X(s, t ), t ) × Di(s, t ), i = 1, 2, 3, (17b)

where w(X(s, t )) = 1
2
∇ × u(X(s, t ), t ). Note that our implementation omits the contribution from269

surface forces to the velocity in the expression for w(X(s, t ), t ). This approximation had little effect270

on the dynamics of the system.271

Figure 4 illustrates the flagellar-tube system at two timepoints in a simulation: first when the272

flagellum is just entering the tubular structure [Figs. 4(a)–4(c)], and later when it is fully within the273

tube [Figs. 4(d)–4(f)]. The preferred waveform is planar, and the sinusoidal shape of the flagellum274

is evident in the “frontal” view in Fig. 4(a), with the corresponding “sagittal” view in Fig. 4(b)275

showing just a straight line. However, the flagellum in Fig. 4(e) no longer looks like a straight line,276

showing that the tube walls caused it to rotate out of its initial plane. Also depicted in Fig. 4 are277

velocity vectors at some chosen Eulerian positions within the tube, using the same locations at each278

of the two timepoints. The perspective views in Figs. 4(c) and 4(f) illustrate that the velocity on the279

tube walls is zero.280

III. MODEL RESULTS281

A. Free-space swimming282

1. Comparison with Taylor’s waving cylinders283

We begin this section by presenting a comparison between the swimming speed of the planar284

flagellum from our model and that proposed by Taylor [1]. The asymptotic solution for small285

amplitudes considers an infinitely long cylindrical (radius rc) flagellum actuated with waves of286

sinusoidal lateral displacements of wavelength λ, wave number k = 2π/λ, and amplitude A. Taylor287

expressed the ratio of the swimming speed (V ) to the wavespeed (U
w

= 2π f /k) as288

V

U
w

=
1

2
A2k2

{

K0(z1) − 1/2

K0(z1) + 1/2

}

,
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(a) Frontal (b) Sagittal (c) Perspective

(d) Frontal (e) Sagittal (f) Perspective

(a) (b) (c)

(d) (e) (f)

FIG. 4. Flagellum-tube system depicting fluid velocity vectors at representative planes [(a), (d) frontal; (b),3
(e) sagittal; (c), (f) zoomed-in perspective view of transverse planes] at the time when the swimmer is entering

the tube (top row), and later the swimmer is completely inside the tube. Although our model swimmers are

completely isotropic, the direction of the wave of preferred curvature is specified, and the filament will swim in

the opposite direction. In each of the six panels, the direction of swimming is downward. The front-end (head)

of the swimmer is highlighted in red throughout this paper. Here, the flagellum has a length of 50 µm and

carries one and one-half sinusoidal waves of amplitude 2 µm. It is discretized with 20 Stokeslet segments, and

the regularization parameter, ϵ = 1.0 mm. The tube of radius 6 µm was spatially discretized by circular rings

3.85 mm apart in the axial direction with points on the perimeter of the circles that are separated by 1.8 mm in

the azimuthal direction, and the regularization for the Stokeslet surfaces is ς = 0.1 nm. We used a time step of

10−6 s for all the cases reported.

where z1 = krc (product of wave number and cylinder radius) and Kn is the modified Bessel function289

of the second kind of order n. Note that in our model, we consider the regularization parameter ϵ as290

a proxy for flagellar radius.291

The differences between our model and the asymptotic approach include (i) finite length, (ii) a292

finite bending rigidity, and (iii) representation of the cylinder diameter. While the Taylor flagellum293

is infinitely long, we will compare the asymptotic swimming speeds to those computed for finite-294

length swimmers of varying length. Also, the theoretical model assumes prescribed kinematics.295

We instead chose the bending rigidity of the flagellum to be on the order of 10−21 J m based on296

measurements reported in the literature for flagellated swimming micro-organisms [59,60]. This297

value is large enough so that the achieved amplitude in our preferred curvature model closely298

matches the prescribed amplitude chosen in the asymptotic calculation.299
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FIG. 5. Comparison of numerical results for a swimming flagellum of finite length to asymptotic expansion

for an infinitely long cylinder with planar bending waves. The Stokeslet segment regularization parameter is

ϵ = 0.1 µm in (a) and ϵ = 1.0 µm in (b). The segment size for all the cases considered is 2.5 µm.

The continuous curves in Figs. 5(a) and 5(b) show the swimming speed of Taylor’s infinite300

cylindrical flagellum as a function of amplitude for λ = 33.33 µm, beat frequency f = 20 Hz, with301

rc = ϵ = 0.1 µm [panel (a)] and rc = ϵ = 1.0 µm [panel (b)]. We note that the curves in each panel302

are different because Taylor’s solution is a function of flagellar radius rc. We see that the thicker303

flagellum swims more slowly than the thinner one, but even when increasing the radius tenfold, the304

speed only decreases by about 18% (at A = 2.0 µm). The symbols show the computed swimming305

speed for three different values of flagellar length (L = 50, 100, and 200 µm). Increasing flagellar306

length for each amplitude moves the swimming speed closer to the theoretical value, which is307

evident with the data points for wave amplitude A = 2.0 µm. Moreover, the agreement with the308

asymptotic solution also decreases with increasing amplitude, as expected. Both panels of Fig. 5309

show similar agreement between computed velocities and asymptotic velocities. Based on this310

agreement, we chose the regularization parameter ϵ = 1.0 µm in subsequent simulations. Although311

this is larger than a typical eukaryotic flagellar radius, this larger regularization parameter allows a312

larger time step in the computations.313

2. Effects of swimmer length and activation on swimming performance314

The classical analysis of Taylor that computes a finite swimming velocity for an infinitely315

long flagellum demonstrates that increasing the length of a flagellum by adding more and more316

wavelengths of the same amplitude and beat frequency will not continually result in higher swim-317

ming velocities. How then does flagellar length affect swimming performance in actual swimmers?318

Conflicting findings exist in the literature, sometimes correlating them positively [66,67] and319

sometimes in a totally opposite manner [68–70]. In a study of published experimental data on 141320

animal species, Soulsbury et al. performed a principal component analysis (PCA) for examining321

structural clustering of sperm morphology and then compared the model predictions across all322

morphologically similar sperm clusters [71]. Four out of five clusters in the data set indicated323

no significant effect of variation of length on swimming speed. Of course, from a fluid dynamics324

perspective, swimming speed depends upon many factors in addition to flagellar length, including325

organism morphology and flagellar wave kinematics.326

In the case considered here of a planar, filiform flagellum, we take a closer look at the effects327

of flagellar length on speed, power, and efficiency. In the simulations, speed is tracked on each328

Stokeslet segment and averaged over a beat period for the values reported. Since the Kirchhoff329

rod model can independently actuate in the linear and angular motions, the instantaneous power330

consumption is measured as a sum of linear and angular power as Pswim =
∫ L

0
(fl · u + nl · w) ds.331

We follow Lighthill’s definition of Froude efficiency [72] given as332

η =
Pdrag

Pswim

=
ξ∥Lv

2
mean

Pswim

,

004900-11



FG10275 PRFLUIDS October 7, 2025 16:29

ADNAN MORSHED, RICARDO CORTEZ, AND LISA FAUCI

µ

FIG. 6. Free-space swimming performance: Effects of (a) flagellar length and (b) change in active beating

portion on swimming speed, power, and efficiency. The swimming speed and power in each panel are

normalized with respect to those of the 100 µm flagellum that is active along its entire length (dimensional

swimming speed: 33.6 µm/s, power expenditure: 26.6 fw). Bending rigidity, beat frequency, and target shape

amplitude are fixed, respectively, at 4.95 × 10−21 J m, 20 Hz, and 2 µm, respectively, for all the cases presented.

where ξ∥ =
2πµ

log (0.18λ/ϵ)
is the parallel resistance coefficient [73], and vmean is the mean swimming4 333

speed of the flagellum. Starting with a 100 µm long flagellum with three full waves [a wave number334

of 0.188 µm−1, top image of the inset in Fig. 6(b)], we examine the swimming performance of335

the flagellum as we shorten its length while keeping the wave number and other kinematics fixed.336

Figure 6(a) shows the swimming speed, power expenditure, and efficiency computed as a function of337

flagellar length. The average speed of the flagellum remains fairly constant as the length is reduced338

until the flagellar length falls below two wavelengths. For even shorter flagella, the speed decreases,339

with a pronounced drop when it supports less than one wavelength. Calculated power increases340

linearly with length, while the swimming efficiency is basically constant for flagella that support341

more than two wavelengths.342

Experimental studies with particularly long sperm flagella have reported that along the flagellum,343

there are sections that are actively beating, interspersed with inactive sections [74]. We examine344

the hydrodynamic performance of a model flagellum of fixed length, where only a segment of the345

flagellum is active [Fig. 6(b)]. Here we reduce the active beating portion of the flagellum by setting346

the preferred curvatures near the head and tail to zero. This results in an “active” middle section with347

passive ends on both sides. We see that speed, power, and efficiency increase linearly with active348

portion percentage. For species with very long flagella, such “energy saver” passive states may have349

evolved to conserve energy for later stages of the fertilization process.350

We can also ask, then, what is the cost for a swimmer to carry around inactive sections along its351

length? To investigate this, we may directly compare the values of speed, power, and efficiency in352

Figs. 6(a) and 6(b), where the normalization for speed and power in each figure is with respect to353

the 100 µm flagellum that is active along its entire length. For instance, the values corresponding354

to the flagellum of length 60 µm in Fig. 6(a) should be compared to the values shown for 60%355

active portion of the 100 µm flagellum in Fig. 6(b). We see that carrying around the inactive portion356

at the front and back of the flagellum here gives a swimming speed that is about 60% of the357

flagellum unencumbered by inactive segments, requires about the same power, but is about 38%358

less efficient. Even for the cases where the flagellum are so short that they cannot accommodate359

two full wavelengths [e.g., less than 60 µm long cases in Fig. 6(a)], their swimming speeds remain360

higher compared to corresponding 100 µm long cases with inactive sections in Fig. 6(b).361
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FIG. 7. Influence of the bending stiffness on flagellum actuation dynamics and achieved shapes. In both5
cases, the flagellum has a length of 100 µm, a preferred amplitude of 2 µm, and a beat frequency of 20 Hz.

Flagellar envelope corresponding to each stiffness is shown above. (a) EI = 4.95 × 10−21 J m and (b) EI =

2.475 × 10−22 J m.

3. Effects of bending stiffness, beat frequency, and the sperm number362

In this preferred curvature model, the flagellum is in pursuit of a traveling wave of a chosen363

amplitude. The extent to which the preferred kinematics are met depends upon the bending364

rigidity of the flagellum, in addition to the fluid environment and nearby boundaries. Figure 7(a)365

shows the envelope of shapes achieved by the long, flexible flagellum and the kymograph of366

achieved curvature for the model swimmer in free space used as our base case in the previous367

section (EI = 4.95 × 10−21 J m). These should be compared to Fig. 7(b), whichshows the same for368

a softer flagellum (EI = 2.475 × 10−22 J m). We see that while both are actuated with the same369

frequency of 20 Hz, and each figure shows a traveling wave of curvature over five beat periods370

from head to tail, the emergent amplitude and curvatures along the softer flagellum are greatly371

diminished.372

While eukaryotic flagellar bending rigidity can vary as much as four orders of magnitude373

between species [59], beat frequencies vary within one to two orders of magnitude [61]. Figure 7374

demonstrates that the achieved amplitude of the flagellum is strongly coupled to its bending rigidity.375

We next examine how emergent shape dynamics are influenced by the frequency of actuation.376

For instance, for high beat frequencies, the short timescale of actuation could be much smaller377

than the timescale of elastic relaxation, not allowing the flagellum to come close to the preferred378

amplitude. We explored these relationships by varying both beat frequency and bending stiffness of379

the model flagellum over experimentally reported ranges while keeping the geometric parameters of380

the flagellum fixed. Specifically, for a preferred amplitude of 2 µm, we track the achieved amplitude,381

swimming speed, required power, and efficiency as a function of beat frequency (varied from 5 to382

50 Hz) and bending stiffness (varied from 4.95 × 10−23 J m to 4.95 × 10−20 J m). Figure 8(a) shows383

a color plot of the achieved amplitude of the flagellum for different beat frequencies and bending384

rigidities. We see that the preferred amplitude is met for the stiffest flagella at all frequencies, but for385

midrange stiff flagella, the amplitude is met only for slow actuation. The softest flagella cannot meet386

the preferred amplitude, and, at high frequencies, barely support a wave. We remark that for flagella387

with prescribed kinematics, swimming speed increases linearly with beat frequency. Here, however,388

the kinematics are not prescribed, and as beat frequency increases for a fixed bending rigidity, the389

achieved amplitude decreases, which has a pronounced effect on swimming speed and power.390

The swimming speeds and power expenditures are shown in Figs. 8(c) and 8(d). We see that391

the fastest swimmers and those that require the most power are the stiffest ones, actuated with392

the highest beat frequencies. Figure 8(b) shows the resulting hydrodynamic efficiency. The most393

inefficient swimmers are soft flagella driven at high beat frequencies. Using this definition of394

efficiency, it appears that it would be preferable to be a stiff flagellum with a very small beat395
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FIG. 8. Effect of beat frequency and bending rigidity on the swimming performance: (a) achieved ampli-6
tude, (b) efficiency, (c) speed, and (d) power, in free space. The flagellum length and wave number are fixed at

100 µm and 0.188 µm−1, respectively. The parameter space of bending rigidity and frequency is chosen from

experimental measurements reported in the literature [59,61]. The yellow triangle and circle markers on panel

(a) represent the locations for the kymographs shown in Figs. 7(a), and 7(b) in the EI vs frequency space,

respectively.

frequency [upper left-hand corner of Fig. 8(b)]. Of course, the resulting swimming speed would be396

very small [upper left-hand corner of Fig. 8(c)], and this flagellar swimmer may never get wherever397

it needs to go. This certainly demonstrates that this hydrodynamic definition is only one measure of398

efficiency relevant to a living organism. In a recent related Kirchhoff rod model of gait modulation of399

undulatory microswimmers, other measures of efficiency that take into account the cost of transport400

and basal metabolic rate were investigated [75].401

As in other models of flexible filaments in a viscous fluid (e.g., [76–80]), we make use of a402

dimensionless number known as the elastoviscous number or sperm number, Sp, which measures403

the relative strength of viscous forces to elastic forces:404

Sp =

(

ξ⊥ωL4

EI

)1/4

.

Here ξ⊥ is the perpendicular resistance coefficient from resistive force theory defined here based405

on Lighthill’s slender body theory [73]. In many cases, the dynamics of the filament-fluid system is406

determined by the value of this elastoviscous number. For instance, in the case of a passive filament407

in shear flow, whether it undergoes rigid rotations or S-buckling or snaking motion is determined408

by the elastoviscous number [77]. Is the hydrodynamic performance of the current flagellar-fluid409

system determined by Sp alone? In Figs. 8(a), and 8(b), we plot curves of iso-sperm number in410

the beat frequency versus bending rigidity plane. We see that the values of achieved amplitude and411

efficiency are determined by this single, nondimensional parameter. However, this is not the case for412

either swimming speed or power—two flagella with the same preferred amplitude and wavelength,413

swimming in the same fluid, but with different EI actuated at different frequencies, can have the414

same Sp but swim at very different speeds. However, their efficiencies could still be the same.415
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FIG. 9. Swimmer interaction with tubular confinement: (a) speed, (b) power, and (c) efficiency variation as

the flagellum enters, swims through, and exits the rigid tubular confinement. Tube length is 400 µm while the

fixed flagellar parameters are L = 50 µm, k = 0.188 µm−1, A = 2 µm, f = 20 Hz, and EI = 4.95 × 10−21 J m.

(d) Schematic of the position of the swimmer with respect to the tube corresponding to the legend positions

(head in, tail in, head out, and tail out).

B. Swimming performance inside tubes416

Previous investigations of micro-organism swimming in tubular confinements using minimal417

models of organisms [81–83] have demonstrated that confinement can give rise to enhanced418

swimming speed. A model with fully resolved flagella was presented in [84], where an infinitely419

long, helical flagellum with prescribed kinematics was axially aligned in an infinitely long tube.420

Here, it was found that the speed of the rotating helix increased as the radius of the tube decreased.421

More recently, LaGrone et al. [44] used a regularized Stokeslet framework to analyze the swimming422

of finite-length, flexible helices in a cylinder and reported speed enhancement with confinement. We423

remark that the helical swimmer in [44] was modeled using a surface discretization of the helix, and424

not using a Kirchhoff rod representation as in the work discussed here.425

While the previous sections discussed the hydrodynamic performance of the flexible flagellum in426

free space, we now examine its performance as it enters, swims through, and exits a straight, finite427

tube, open at both ends. We analyze the progression of a swimmer that supports one and one-half428

wavelengths (L = 50 µm), preferred amplitude of A = 2 µm, and with the stiffest bending rigidity429

used in this work (EI = 4.95 × 10−21 J m) through tubes of varying radii. Figure 9 shows the (a)430

swimming velocity, (b) power expenditure, and (c) efficiency as a function of time for four different431

radii of the tube (R = 4, 8, 16, and 32 µm). Figure 9(d) shows the schematic of a model swimmer432

moving through the tube, along with the symbols used to designate the times when the head enters,433

when the tail is fully in the tube, when the head leaves the tube, and then when the tail is finally434

out of the tube. All swimmers were initialized in a plane that contained the tube axis. First, we435

remark that the speed, power, and efficiency for the swimmer in a tube of radius R = 32 µm are436

indistinguishable from the free-space values. Figure 9(a) shows that for R = 4, 8, and 16 µm, there437
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FIG. 10. Effects of sperm number (Sp) on swimming performance (a) speed, (b) power, and (c) efficiency

in different tube radii. Bending rigidity, and hence Sp, was varied, but all other flagellar parameters were as in

Fig. 9. The data fit used a cubic polynomial.

is a dip from free-space velocity as the head nears the tube entrance. However, this is followed by a438

rapid boost in swimming speed, which reaches its maximum when the flagellum is partially within439

the tube. This boost increases as the radius of the tube decreases. As the flagellum starts to swim440

out from the tube, we surprisingly find yet another boost in speed. As with the speed profiles, power441

requirements, and swimming efficiency are also elevated inside the confinement. These results are442

consistent with results in [44,84]. While inside the tube, the power requirements are significantly443

higher than in free space, and they increase with the level of confinement [Fig. 9(b)]. Since the length444

is fixed in all cases, the efficiency here is proportional to the ratio of the square of the swimming445

speed over the power, reflecting a similar pattern to the swimming speed plot [Fig. 9(c)]. Compared446

to its performance in free space, when in a tube whose radius is four times its preferred amplitude,447

a 120% rise in power requirement is accompanied by about a 200% boost in speed, which results in448

a net positive increase in swimming efficiency inside the confinement.449

The resulting swimming motion of the flagellum through the enclosure is a result of forces due450

to Kirchhoff rod actuation, boundary forces on the surface elements, as well as the repulsion forces451

in Eq. (16). Because the Stokes equations are linear, we can isolate the contribution of each of these452

three forces to the velocity of any point on the flagellum. In the simulation in Fig. 11(a) with R =453

8 µm below, the repulsion contribution to the instantaneous speed of the midpoint of the flagellum is454

8–10 orders of magnitude smaller than contributions from the other forces as the swimmer traverses455

the tube. We are, therefore, confident that this repulsion does not alter the overall dynamics of the456

system.457

We now consider the hydrodynamic performance of swimmers of different bending rigidities458

(hence different sperm numbers Sp), when their full lengths are within tubes of different radii.459

Figure 10(a) shows the swimming speed as a function of Sp for swimmers in all four confinements.460

For the stiffest flagellum (Sp = 2.91), when the tube radius is halved, the swimming speed doubles.461

For softer swimmers (higher Sp), flagella receive a speed boost with confinement, but the difference7 462

diminishes as Sp increases. Although this Kirchhoff rod formulation can model extensible filaments,
8

463

here we choose the shear and stretch moduli (b1, b2, b3) large enough so that the rod remains464

inextensible to within a few percent. With these choices, the arclength parametrization is valid. The9 465
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FIG. 11. Drift of the flagellum toward the tube walls. Top panel shows some representative setup where a

50-µm-long flagellum with a preferred beat amplitude of 2 µm swims through tubes of different radii ranging

from 4 to 16 µm. The middle panel tracks the swimmer’s geometric centroid to wall distance, while the bottom

panel shows the oscillating head distance from the wall for the same swimmers.

power and efficiency follow similar trends [Figs. 10(b) and 10(c)]. We also note that for a given tube466

radius, as the flagellar stiffness is lowered (increasing Sp), we observe a steady drop in speed, power,467

and efficiencies. Beyond Sp = 8.5, the flagellum is too floppy to achieve an amplitude to swim468

inside the confinement, hence the speed boost for tighter confinements at Sp = 8.5 is negligible.469

C. Drift toward boundaries and bend navigation470

Several experimental works involving microswimmers near boundaries have observed interesting471

behavior including accumulation near rigid boundaries, circular trajectories of swimming after472

accumulation, and rheotaxis in background flow [18,85–87]. Theoretical models using the method473

of images with slender body theory, regularized Stokeslets, and immersed boundary approaches474

have reproduced such behavior and offered mechanistic explanations for both planar and helical475
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swimmers near a flat boundary [12,37,40,88,89]. Most biological microswimmers have to traverse476

narrow, confined, and tortuous fluid-filled passages. For example, a common fruitfly (Drosophila)477

sperm inside the female reproductive tract are stored in coiled sperm storage receptacles. The478

swimmers must adapt their swimming trajectories to move through the surrounding confinements.479

Additionally, experiments with mammalian sperm cells found direct effects of bounding curved480

surface on changes in swimming mode [13] as well as boundary following behaviors [90]. Using481

regularized Stokeslet surfaces, we extend the framework to simulate such tracts with biologically482

relevant geometrical features (e.g., nonuniform radii, wide or narrow bends, etc.) that can predict483

the shape deformations and trajectories of the flagellum as it moves through the tubular structure.484

Here we examine more closely a flagellum with a preferred planar beat moving in straight485

tubes of varying radii (Fig. 11). Several features of swimming behavior are observed. First, as486

highlighted previously, narrowing confinements significantly boost swimming speed, as can be seen487

in Fig. 11(a). Interestingly, while the flagella are initialized centered on the tube axis, in larger488

tubes, we see a drift toward the tube surface. We can quantify this drift by examining the time489

evolution of the distance of the centroid of the swimmer to the nearest position on the tube wall490

[Fig. 11(b)]. Tubes with small diameters show little drift (e.g., black line for the 4-µm-tube case).491

Figure 11(c) tracks the bobbing motion of the “head” of the swimmer. Even though the swimmers492

in each tube have the same preferred amplitude, here we can see that the achieved amplitude of493

the head excursion is diminished in tighter confinements. In the simulations where drift is apparent494

in Fig. 11(c), there is a whole-body twist marked by the flattening of the up-down oscillation (for495

instance, around the 6-s mark for the pink line of the 12 µm case). This indicates that the beat plane496

of the flagellum rotates during the simulation.497

This intriguing behavior, where tighter confinement leads to straighter swimmer trajectories498

about the central axis of the confinement, has recently been observed in both laboratory experiments499

and computational studies. For instance, in tracking swimming paths of E. coli in microfabricated500

channels of different cross sections, Vizsnyicai et al. [91] observe, “in large channels, bacteria501

always crash onto confining walls, when the cross section falls below a threshold, they leave502

the walls to move swiftly on a stable swimming trajectory along the channel axis.” Similarly,503

experiments by Jana et al. [92] found that paramecium swimming paths transition from oscillatory,504

helical trajectories to straight lines as the diameter of the capillary tube decreased. Experiments505

with E. coli confined between two flat boundaries observed circular motion near the bottom in506

taller channels (height larger than 3 µm), and trajectories that either oscillated between top and507

bottom boundaries or straight swimming at the center of the channel for channel heights smaller508

than 2.5 µm [93]. This same behavior was demonstrated in silico by a model of a flexible rotating509

helix swimming in a tube [44]. That study found that when the helical swimmer’s axis was510

initially not aligned with the tube axis, for small enough tube radii, the swimmer centered itself511

so that alignment occurred. Another computational model of a helical swimmer between two512

parallel plates [94] also demonstrated centering trajectories for small channel heights. Moreover,513

this centering behavior for spheroidal squirmers inside a tubular enclosure was also reported514

in [82].515

Finally, we describe observations made when using this framework to model the flexible516

flagellum as it moves through a curved tube. Figure 12 shows the progression of a swimmer as517

it approaches a 120◦ bend in the tube. As it moves through bent tubular confinement, the wall518

interactions cause it to change its oscillatory motion and curvature to navigate the bend of the tube.519

In fact, because the length of this swimmer is greater than the straight portion of the tube, it must520

be flexible enough to bend out of its preferred planar shape to make its way through the enclosure.521

The orientation of the oscillation plane at points of the flagellum that are near the tube surface522

aligns itself with the tangent plane at that location of the tube. Figures 12(a)–12(d) also highlight (in523

purple) a patch of the plane where the head of the flagellum oscillates. The wall interactions cause524

the flagellum to twist and change its beat-plane orientation to result in a slithering motion along the525

tube wall. The wall interactions also affect the rest of the flagellum, even the portions that are not526
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(a) (b) (c) (d)

FIG. 12. Flagellum navigating a 120◦ bend (left-to-right) of a tubular enclosure. The flagellum beats in a

planar sinusoidal shape in free space. The beat plane at the head section is highlighted in purple, and the initial

head section (first Stokeslet segment) is red. Also depicted is the projected view of the flagellum from above.

The tube length is 150 µm and its diameter is 16 µm. The flagellar parameters are L = 100 µm, k = 0.188 µm−1,

A = 2 µm, f = 20 Hz, and EI = 4.95 × 10−21 J m.

in proximity to the wall. In particular, the swimmer goes through a slight buckling, resulting in an527

out-of-plane bend that allows it to traverse the curved tube.528

IV. CONCLUSION529

Inspired by long flagellated filiform swimmers that must navigate extremely narrow bends in530

nature [23,95], here we model a flexible, flagellar swimmer moving through both straight and531

bent tubular confinements. Our focus in this paper is to outline how recent improvements to the532

regularized Stokeslet framework can be leveraged to describe the coupled system. We use Kirchhoff533

rod theory with regularized Stokeslet segments to model the flagellum efficiently by requiring534

only the discretization of the flagellum centerline [45] and using analytical formulas for the fluid535

velocity due to linearized forces along each segment. This allows us to represent the flagellum with536

a relatively small number of segments. The confinement provided by the tubes is modeled with537

regularized Stokeslet surfaces [47]. Analogous to the segments, this method requires relatively few538

surface patches with linearized forces.539

This model does not prescribe flagellar kinematics; rather, the flexible flagellum is in pursuit of a540

preferred, time-dependent curvature, and its shape emerges from the coupling with the viscous fluid541

and the confinement. Here, for simplicity, we choose a preferred curvature corresponding to a single-542

mode flagellar waveform. Models of flagellar beating that predict flagellar shapes due to internally543

generated stresses, however, can generate more complex waveforms (e.g., [96]). The computational544

framework presented here can readily be extended to include these preferred shapes.545

We first explored the hydrodynamic performance of flexible swimmers in free space. We found546

that the inclusion of inactive flagellar regions causes the flagellum to swim more slowly than the547

corresponding shorter flagellum that is active along its entire length. However, there is little change548

in power expenditure when inactive sections are present. We also explored how beat frequency549
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and bending rigidity of these actuated flagella affected the achieved amplitude and hydrodynamic550

performance. While we found that the achieved amplitude was a function of the nondimensional551

sperm number (Sp), the speed and power expenditure were not. For example, while a very flexible552

flagellum actuated with a small beat frequency could operate at the same Sp as a stiff flagellum553

actuated with a large beat frequency, the stiff swimmer expends more power and swims faster than554

the softer swimmer. We do find, however, that the efficiency is, indeed, a function of Sp.555

For flagella moving into and out of straight tubular confinements, we found a significant boost556

in swimming speed as the confinement narrowed, with this boost declining for floppier flagella.557

Our model also demonstrates a clear drift of the flagellum, initialized about the axis of a tube,558

toward the tube surface when the tube radius exceeds a threshold value (how this value depends559

upon flagellar material properties, length, and wave kinematics remains to be quantified). As the560

model swimmers drive towards the tube wall, they exhibit slithering along the surface, a behavior561

discovered for mammalian sperm [13]. In the simulation presented with the curved tube, the anterior562

part of the flagellum slithers near the surface, while the rest of the flagellum beats in a different plane.563

In future work, we will investigate the interplay of tube geometry, flagellar material properties,564

preferred-curvature parameters, and fluid properties on the ability of these filiform swimmers to565

navigate curved passages and their corresponding hydrodynamic performance.566
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