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ARTICLE INFO ABSTRACT

Keywords: Accurate identification of inundated areas is crucial for mitigating the impacts of flooding, which causes
Flood detection numerous casualties and significant economic losses. While polarimetric synthetic aperture radar (PolSAR) data
UAVSAR

have been utilized to detect inundated regions, the information contained within PolSAR features remains
severely underutilized. We introduce a novel approach that involves extracting a large number of PolSAR fea-
tures through various PolSAR decomposition techniques, selecting the most important ones using the decision
tree-recursive feature elimination (DT-RFE) method, and ultimately detecting inundation using a convolutional
neural network (CNN) model. The hybrid DT-RFE-CNN model was trained and tested over a region in south-
eastern North Carolina during Hurricane Florence on September 18, 2018, using PolSAR features derived from
the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). In terms of flood-mapping efficacy, the DT-
RFE-CNN model outperformed a CNN model that used only PolSAR data across all metrics in both the training
and testing stages. The performance of the trained DT-RFE-CNN model was evaluated by testing it over the same
region for four more days (September 19, 20, 22, and 23, 2018); it achieved an average accuracy, precision,
recall, F1 score, and intersection-over-union of 0.9304, 0.9089, 0.9584, 0.9324, and 0.8738, respectively, out-
performing both the classical Otsu method and the FT-Transformer model using features selected by DT-RFE.
Finally, we assessed the model’s generalizability by mapping another significant flood event, caused by Hurri-
cane Harvey in Texas between August and September 2017. Based on the results, the hybrid model can accu-
rately detect flooding, even in regions on which it has not been trained. Thus, the proposed method can facilitate
flood monitoring and response efforts.

Decomposition
Feature selection
Deep learning

1. Introduction According to a 2021 report by National Oceanic and Atmospheric
Administration (Sweet et al., 2021), the frequency of typical damage-

Flooding is one of the deadliest forms of natural disasters globally, causing floods is expected to increase more than tenfold by 2050, and
causing numerous casualties and significant economic losses (Liang and this could be exacerbated by regional factors. The report also highlights
Liu, 2020). Recently, an increasing population density near rivers, that without the implementation of additional risk-reduction measures,
climate change, increasing rainfall, and rising sea levels have height- coastal infrastructure, communities, and ecosystems will become more
ened the threat of flood damage even further (Tellman et al., 2021). vulnerable and be impacted more severely. Thus, the potential economic
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impact on flood-prone communities underscores the urgent need for
adaptive measures to mitigate flood risk and damage.

Hurricane-induced floods have resulted in significant losses in terms
of infrastructure and human life. For instance, in 2017, Hurricane
Harvey caused excessive rainfall in the densely populated Houston
metropolitan area of Texas, flooding over 300,000 buildings and
approximately 500,000 vehicles (Martinaitis et al., 2021). The hurricane
affected 13 million people and destroyed over 100,000 homes, resulting
in economic losses of approximately $125 billion (Blake and Zelinsky,
2018; Shultz and Galea, 2017). In 2018, Hurricane Florence caused
flooding in North Carolina (NC), leading to 22 direct fatalities in the
United States (Stewart and Berg, 2019) and approximately $24 billion in
damages (Callaghan, 2020). In 2024, Hurricane Helene triggered cata-
strophic flooding in the southeastern United States, resulting in 219
fatalities and an estimated $79.5 billion in damages (Smith, 2025).

One of the major challenges when responding to flooding is accu-
rately defining the extent of the affected area to gain an overall
perspective of the incident (Rahman and Thakur, 2018). Accurate
mapping of flood extent provides essential baseline information, facili-
tating informed decision-making and the development of effective plans
for flood mitigation efforts (Mohammadi et al., 2017). In essence, ac-
curate flood inundation mapping over large areas is a critical initial step
in flood disaster management programs and rapid-response operations
post flood disasters, allowing resources to be allocated to affected areas
(Schumann et al., 2018). Additionally, identifying inundated areas is
necessary for generating flood vulnerability, risk, and hazard maps,
which are vital for disaster management authorities (Mahmoud and
Gan, 2018; Swain et al., 2020). The value of this information is realized
when details about the inundated areas are shared in time with the
authorities (Manavalan, 2017). With weather anomalies occurring more
frequently, detecting inundated areas faster and more accurately is
imperative for effective disaster response (Uddin et al., 2021). Inaccu-
rate flood detection leads to unreliable flood vulnerability, risk, and
hazard maps, ultimately impairing the capacity to forecast, prepare for,
respond to, and recover from floods (Razavi-Termeh et al., 2023).
Hence, accurate flood detection methodologies represent a critical ne-
cessity for effectively mitigating the growing risks associated with
floods.

Remote sensing (RS) technology is being increasingly utilized for
flood monitoring as it offers the capability to observe spatial distribution
at high temporal resolutions (Brivio et al., 2002; Lee et al., 2023; Rattich
et al., 2020; Sun et al., 2017). Regarding flood events, RS technology is
crucial, especially during the response phase, as it can provide the in-
formation necessary for mapping and monitoring flood areas in a cost-
effective and timely manner (Amitrano et al., 2018; Martinis et al.,
2015). Studies have utilized various optical satellites for flood detection
(Alganci et al., 2019; Fayne et al., 2017; Giivel et al., 2022; Mehmood
et al., 2021). However, poor weather conditions, such as clouds, rain,
and fog, can impact optical sensors, precluding the production of high-
quality images (Musa et al., 2015). Moreover, optical satellites cannot
detect water in areas covered by vegetation (Musa et al., 2015). Addi-
tionally, optical satellites that utilize visible light can be operated only
during the day as they rely on solar radiation reflection (Manavalan,
2017; Melancon et al., 2021; Musa et al., 2015).

Synthetic aperture radar (SAR) is widely acknowledged as a viable
solution to the aforementioned problems (Manavalan, 2017; Rahman
and Thakur, 2018; Sun et al., 2017). Unlike optical sensors that passively
detect color characteristics based on the absorption and reflection of
visible light, SAR actively emits microwaves and measures the reflected
signals (Sommervold et al., 2023). Additionally, while optical sensors
cannot monitor the land surface in cloudy conditions, SAR can operate
under all weather conditions, penetrating visual obstructions such as
clouds and fog (McNairn and Shang, 2016; Wang et al., 2019). SAR
sensors operate at various frequencies, including the L-, C-, and X-bands
corresponding to wavelengths of 24, 5.66, and 3 cm, respectively (Adeli
et al., 2021). In general, longer wavelengths are more effective in
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penetrating vegetation, enabling the detection of floodwaters beneath
forest canopies (Pierdicca et al., 2018). This capability makes SAR
particularly valuable for continuous monitoring and time-sensitive ap-
plications (Edrich, 2004), enabling real-time assessment of flooded areas
regardless of weather conditions or time of day (Chapman et al., 2015;
Clement et al., 2018; Manavalan, 2017; Moreira et al., 2013; Musa et al.,
2015).

Various studies have demonstrated the effectiveness of SAR in
mapping surface water (Kavats et al., 2022; Pham-Duc et al., 2017),
wetlands (Adeli et al., 2020; White et al., 2015), flood extent (Long et al.,
2014; Ouled Sghaier et al., 2018), vegetation (Furtado et al., 2016), land
cover (Waske and Braun, 2009), and snow cover (He et al., 2017; Tsai
et al., 2019). Among various SAR bands, the L-band is known to be
particularly effective in mapping and identifying inundated areas
(Martinis and Rieke, 2015; Ramsey III et al., 2013; Richards et al., 1987;
Wang and Imhoff, 1993). In addition, the Uninhabited Aerial Vehicle
Synthetic Aperture Radar (UAVSAR) provides data with a spatial reso-
lutions finer than 10 m, offering greater detail than open-access optical
satellite data such as Sentinel-2 and Landsat 8 (Fore et al., 2015; Huang
et al., 2021; Phang et al., 2023).

The simplest approach for flood area mapping involves applying a
certain threshold to the SAR backscatter values (Manavalan, 2017).
Various studies have employed SAR data with the threshold method to
map inundated regions across different scales, utilizing the character-
istic low backscatter from open water surfaces (Costa, 2004; Guo, 2000;
Liu et al., 2002; Matgen et al., 2011; Rahman and Thakur, 2018; Schu-
mann et al., 2010; Song et al., 2007; Yamada, 2001). An appropriate
threshold is manually determined through trial and error by visually
inspecting the image histogram in a supervised manner (Manavalan,
2017). However, careful attention is required in flood mapping from
SAR images as some areas, such as high-altitude regions, shadows,
runways, and extensive road networks, may show similar reflectance to
inundated regions (Manavalan, 2017). Furthermore, challenges such as
speckle noise and uneven grayscale distribution in SAR images often
cause traditional methods to fall short of the requirements for large-scale
applications (J. Wang et al., 2022). Thus, the integration of SAR data
with advanced flood inundation mapping algorithms is becoming
increasingly necessary.

Polarimetric synthetic aperture radar (PolSAR) systems transmit
electromagnetic waves in various polarization states, providing more
information than conventional SAR systems (Aghababaee and Sahebi,
2018; Pallotta and Orlando, 2018). To enhance the classification accu-
racy for ground objects, extracting their features from PolSAR data is
crucial (Li et al., 2018; Liu et al., 2022; Zhang et al., 2021). PolSAR
decomposition, also frequently referred to more broadly as polarimetric
decomposition, is a widely used technique for analyzing scattering
mechanisms and extracting features from ground objects (Richards,
2009). The application of features derived from PolSAR decomposition
often leads to superior mapping outcomes compared with those ach-
ieved using conventional SAR data alone. For example, PolSAR de-
compositions have been used for vegetation mapping (Furtado et al.,
2016), urban mapping (Duan et al., 2021), the mapping of plant func-
tional types in wetlands (Morandeira et al., 2016), and land cover
classification (Khosravi et al., 2018; Zhao and Jiang, 2022). The primary
objective of PolSAR decompositions is to distinguish backscattered sig-
nals based on the scattering mechanism. Although PolSAR features (also
referred to more broadly as polarimetric features) have been used in
various applications (Duan et al., 2021; Furtado et al., 2016; Han et al.,
2020; Khosravi et al., 2018; Morandeira et al., 2016; Zhang et al., 2024;
Zhao and Jiang, 2022), the implicit information contained in them has
yet to be utilized for flood mapping. Polarimetric decompositions are
crucial as they can directly enhance flood detection. Numerous polari-
metric decomposition models have been introduced to investigate
scattering parameters (Lee and Pottier, 2017). The outcomes of polari-
metric decomposition have a significant impact on subsequent appli-
cations (Chen et al., 2023). Consequently, employing polarimetric
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decomposition methods that can efficiently and accurately extract fea-
tures from ground objects is crucial.

Recently, the combination of machine learning (ML) with SAR and
PoISAR data has been gaining increasing attention in the realm of flood
inundation mapping (Bentivoglio et al., 2022; Verma et al., 2023; J.
Wang et al., 2022). Studies have leveraged the advantages of various
ML-based image classification approaches, primarily by integrating
multiple image-processing functions to distinguish inundated pixels
from other pixels with similar reflectance, thereby enhancing mapping
accuracy (Karim et al., 2023). In these methods, ML-based approaches
are trained using available reference flood maps to recognize classifi-
cation parameters. Notably, the development of ML techniques such as
random forest, support vector machine (SVM), and convolutional neural
network (CNN) has significantly facilitated the processing of large vol-
umes of multi-temporal SAR data (Banks et al., 2019; Chen et al., 2018;
Mahdianpari et al., 2017; Nemni et al., 2020; Thanh Noi and Kappas,
2018). Among ML techniques, CNNs are renowned for their performance
in image recognition tasks and are widely used in vegetation mapping
(Sun et al., 2023), flood detection (Andrew et al., 2023), land cover
classification (Wang et al., 2015), and forest monitoring (Brovelli et al.,
2020) based on SAR data. However, the identification of the most
suitable PolSAR features is widely recognized as a crucial prerequisite
for implementing CNNs (Plank et al., 2017).

The derivation of PolSAR features using various decomposition
methods and their optimal selection using a robust ML technique are
significantly advantageous in flood mapping. When combined with a
CNN model, PoISAR features could be valuable for accurate flood
mapping. Accordingly, this study introduces a novel approach for flood
detection using L-band fully polarized PolSAR images obtained from
Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). First,
multiple decomposition techniques, such as Freeman-Durden decom-
position (Freeman and Durden, 1998) and H/A/Alpha decomposition
(Cloude and Pottier, 1997), are utilized to generate 100 PolSAR features
from PolSAR data. Subsequently, the decision tree-recursive feature
elimination (DT-RFE) algorithm is used to select the most important
features, which enhances the model’s efficiency in distinguishing be-
tween flood and non-flood areas. Finally, a CNN model is employed for
high-resolution flood segmentation to intricately map flood inundation.
The model is trained and tested over a flight path across the Lumber
River in the southeastern region of North Carolina during Hurricane
Florence on September 18, 2018. Then, it is evaluated over the same
region on four more dates (September 19, 20, 22, and 23, 2018). Finally,
the model’s generalizability is validated by mapping floods caused by
Hurricane Harvey in Texas on August 31 and September 2, 2017.

2. Study area and data
2.1. Study area

This study focused on Hurricane Florence, which impacted south-
eastern NC in September 2018. Hurricane Florence was an intense, long-
lasting hurricane that triggered substantial devastation in Carolina,
predominantly due to surface water flooding from heavy rains (Feaster
et al., 2018). It began as a robust tropical wave emerging from the west
coast of Africa on August 30, 2018. On September 11, it reached its peak
intensity, with winds of 67 m/s, becoming a Category 4 hurricane on the
Saffir-Simpson scale as it crossed the Atlantic (Stewart and Berg, 2019).

Florence made landfall as a Category 1 hurricane immediately south
of Wrightsville Beach, North Carolina, on September 14 (Feaster et al.,
2018). Thereafter, the forward speed of the hurricane decreased to
about 1.0 m/s, resulting in over 90.0 cm of rain in the southeastern
region of North Carolina for four days, which caused extensive flooding.
Hurricane Florence caused 22 direct fatalities across the United States
(Stewart and Berg, 2019). The National Center for Environmental In-
formation estimates that Florence caused around $24 billion in damage
from flooding and winds, which ranks it as the ninth most destructive
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hurricane to strike the United States (Callaghan, 2020).

Fig. 1 shows maps of the study area in North Carolina—including the
annual land use in 2018—generated by the Landscape Change Moni-
toring System (LCMS) (U.S. Department of Agriculture, 2024), along
with an elevation map from the Shuttle Radar Topography Mission
(SRTM) (NASA JPL, 2013). The study area covers a specific UAVSAR
flight path along the Lumber River in southeastern North Carolina. The
area is located in the lower coastal plain; the river traverses the coastal
plain, flowing into the Atlantic Ocean. According to the Koppen climate
classification, the region falls under the humid subtropical climate
category (Rubel and Kottek, 2010). Summers are hot and extremely
humid, while winters are cool, with occasional, brief cold spells (Wang
et al., 2022). During the Atlantic hurricane season, tropical cyclones can
cause extreme rainfall events, potentially triggering severe flooding di-
sasters, particularly during the peak period, i.e., mid-August to mid-
October (Sayemuzzaman and Jha, 2014).

The inner coastal plains of North Carolina are mostly flat, with a
gradual decline in elevation toward the Atlantic Ocean. The local
landscape is characterized by dominant land cover types comprising
agriculture fields and forests (Wang et al., 2022). Considering the
abundant vegetation in the study area, much of the flooding could be
hidden in visible imagery, which may reduce the effectiveness of flood
mapping efforts (Melancon et al., 2021).

2.2. UAVSAR data

UAVSAR comprises a PolSAR unit mounted on an aerial vehicle to
acquire data repetitively over a defined path of interest. The vehicle is a
NASA Gulfstream-III jet featuring an onboard navigation system based
on real-time GPS to ensure the aircraft stays within 10 m of its planned
flight path (Lou, 2022; Melancon et al., 2021). UAVSAR uses a quad-pol
L-band SAR unit operating at a frequency of 1.26 GHz, with viewing
angles of 25-60° (Rosen et al., 2007). The SAR sensors operate in the L
(24 cm wavelength), C (5.66 cm wavelength), and X (3 cm wavelength)
bands (Adeli et al., 2021). The relatively longer wavelength of the L-
band enables deeper penetration and better identification of ground
terrain, allowing the sensors to map and identify more inundated areas
than those in the other bands (Martinis and Rieke, 2015; Ramsey III
et al., 2013; Richards et al., 1987; Wang and Imhoff, 1993). Moreover,
PolSAR (or quad-pol SAR) sensors, which can transmit and receive four
types of signals, enable the analysis of diverse scattering mechanisms
generated by interactions of the electromagnetic waves with surface
objects (Babu et al., 2020; Melancon et al., 2021; Tsyganskaya et al.,
2018; Ullmann et al., 2016; White et al., 2015).

NASA conducted UAVSAR flights over several key river basins in
North Carolina from September 17 to 23, 2018, with up to six revisits as
a reaction to Hurricane Florence. The UAVSAR data portal (http
s://uavsar.jpl.nasa.gov/cgi-bin/data.pl) provides access to the gener-
ated dataset (Jet Propulsion Laboratory, 2023). Considering proximity
and observation frequency, we directed our attention to a specific flight
path (ID: lumber_31509) across the Lumber River. The study area is
hereinafter referred to as the “Lumber flight path.”

The PolSAR sensors installed on UAVSAR send and collect signals in
four combinations of horizontal and vertical directions, providing
components for four polarizations. Each pixel contains signal strength
and phase details and is stored in a complex form. These pixels can be
conveniently described using a complex scattering matrix S, which is
expressed as:

S — |:SHH SHV:l 'e))

SVH SVV

where S is the polarized electromagnetic wave. In the subscript, the first
and second letters represent the polarizations of the transmitted and
received signals, respectively. V and H respectively denote the vertical
and horizontal polarizations of the electromagnetic wave. Syg, Suv, Sva,
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Fig. 1. Study area in North Carolina: (a) land use and (b) elevation.

and Syy are referred to as single-look complex (SLC) products and are
not available in most regions, including our study area.

However, multi-look complex (MLC) products and ground range
detected (GRD) products are available for our study area. MLC products
are generated from SLC files by averaging multiple looks to reduce noise
and enhance data quality before classification (Cantalloube and Nahum,
2000; Melancon et al., 2021). GRD products are calibrated complex
cross-products from MLC products that are mapped onto the ground
using basic geographic coordinates (Jet Propulsion Laboratory, 2015).
Both MLC and GRD products include a total of six elements: three real
floating-point files with four bytes per pixel (i.e., SuuSgy, SuvShy,
andSyySy,) and three complex floating-point files with eight bytes per
pixel (i.e., SuuSpy, SuuSyy, andSxySy, ), where S™ represents a conjugate
complex number. Eventually, GRD products are used to create the
covariance matrix (C3) or coherency matrix (T3) for PolSAR de-
compositions. In this study, we employed GRD products as the PolSAR

data.

2.3. UAVSAR false-color red, green, and blue (RGB) image

To obtain sample flood and non-flood polygons over the study area,
we generated a UAVSAR false-color RGB image of the study area. Fig. 2
shows the location of the Lumber flight path (our study area) within
southeastern North Carolina. Following the technique employed by
Melancon et al. (2021), we created a UAVSAR false-color RGB image for
September 18, 2018, via Freeman-Durden decomposition (Freeman and
Durden, 1998), which is one of the most popular PolSAR decompositions
(Fig. 2) and is widely used for analyzing SAR data (Ballester-Berman and
Lopez-Sanchez, 2010). It helps differentiate the manners in which radar
signals interact with surfaces, simplifying the interpretation of the
scattering patterns seen in radar images (An and Lin, 2019). This tech-
nique plays a key role in understanding how radar waves reflect off
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Fig. 2. Location of Lumber flight path in North Carolina and corresponding UAVSAR false-color RGB image for September 18, 2018.

various features on the ground, such as buildings, forests, or water.
Freeman-Durden decomposition, can separate these interactions into
three main types of scattering, each linked to different physical pro-
cesses (Han et al., 2018).

The Freeman-Durden method produces three arrays, each corre-
sponding to a specific scattering mechanism that matches the intensity
of the backscatter patterns in the radar image (Freeman and Durden,
1993). In false-color RGB representations of Freeman-Durden de-
compositions, these three scattering mechanisms are typically mapped
to different color channels. The first channel (red) highlights double-
bounce scattering, where radar signals bounce between two surfaces,
such as between the ground and a building or tree trunk. The second
channel (green) represents volume scattering, observed in more com-
plex areas such as forests, where the radar signal bounces around within
trees or vegetation. The third channel (blue) represents single scattering,

2. Feature Selection

which occurs on flat surfaces such as water or smooth terrain (Cui et al.,
2012; Freeman and Durden, 1993; Q. Xie et al., 2018). In Fig. 2, the
black-shaded area in the lower right part of the swath is a lake. The data
from September 18, 2018, were used for both training and testing, while
the data from the remaining dates were reserved exclusively for further

external validation.
3. Methodology

3.1. Model development

The innovative hybrid approach for flood detection introduced in

this study comprises the following five steps (Fig. 3):
(1) Data preprocessing: This involves obtaining PolSAR features

through PolSAR decompositions, reducing speckle noise, and a

PoISAR data from UAVSAR

I
1. Data Preprocessing

PoISAR decompositions
(100 features from 18 methods)

v

Reduce speckle noise
(3 by 3 boxcar filter)

Multicollinearity analysis
to select independent
features using VIF

Select the most important
features using DT-RFE

3. Class Definition & Sample Collectiol

Planet true color &
UAVSAR false-color RGB

v

Flood and Non-flood polygons

Mapping inundated areas
by the DT-RFE-CNN model

5. Evaluating the DT-RFE-CNN Model

Accuracy, Precision, Recall
F1 Score, loU

Fig. 3. Flowchart illustrating the hybrid PolSAR decomposition and DT-RFE-CNN model for flood mapping.
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multicollinearity analysis of PolSAR features using the variance inflation
factor (VIF). Details on PolSAR decomposition and speckle noise
reduction are provided in Section 3.2, while the use of VIF for addressing
multicollinearity is thoroughly covered in Section 3.3.

(2) Feature selection: The DT-RFE algorithm is used to select the
most important PolSAR features to maximize the accuracy of detecting
inundated regions. These features are then utilized as the input for the
CNN model. Section 3.4 describes the DT-RFE algorithm in detail.

(3) Class definition and sample collection: Sample flood and non-
flood polygons are obtained from visible imagery (namely, Planet
true-color and UAVSAR false-color RGB images) for September 18,
2018. These sample polygons serve as the outputs of the CNN model.
Details about flood and non-flood polygons are provided in Section 3.5.

(4) Training and testing of DT-RFE-CNN model: The input (PolSAR
features from Step 2) and output (flood and non-flood polygons from
Step 3) data for September 18, 2018, are divided into training and
testing sets. The training dataset is utilized to train the DT-RFE-CNN
model, while the testing dataset is used to assess its performance. The
CNN is employed for high-resolution flood segmentation to intricately
depict the extent of flooding, as described in Section 3.6. Furthermore,
manually specified flood and non-flood pixels for the subsequent days
(September 19, 20, 22, and 23, 2018) are employed for validation.
Finally, the generalizability of the trained DT-RFE-CNN model is eval-
uated over a region in Texas for August 31 and September 2, 2017,
during Hurricane Harvey.

(5) Evaluating the DT-RFE-CNN model: The performance of the
hybrid model over different domains and days is evaluated based on five
different metrics, namely accuracy, precision, recall, F1 score, and
intersection-over-union (IoU). The expressions for these metrics are
provided in Section 3.7.

3.2. PolSAR decompositions and speckle noise reduction

We used the PolSARPro v6.0 software to preprocess the PolSAR data
from UAVSAR (Pottier, 2023). This software is equipped with all the
modules needed for preprocessing data and creating PolSAR features. It
is an open-source program created by the European Space Agency. It can
utilize UAVSAR data to generate various PolSAR features using various
PolSAR decomposition techniques.

The UAVSAR data for the study area were available in GRD format.
The PolSAR data from UAVSAR represent calibrated multi-looks and are
purely binary, without any header bytes. They were available in
floating-point format with three 8-byte files (SpuSgy, SmuSyy, and
SuuSyy) and three 4-byte files (SuuSpy, SuvSyy, and SyySy,). These were
used to derive the covariance matrix (C3), which is expressed as
(Woodhouse, 2017):

(SunSpr)  V2(SunSy)  (SmnSw)
C3= | V2(Sml’)  2(SwSi)  V2(SwSiy) )
(Seml®)  V2(SmSiy)  (SwSiy)

The primary objective of PolSAR decomposition is to differentiate
backscatter signals based on their scattering mechanisms (Cloude and
Pottier, 1996). Numerous PolSAR decompositions have been established
to investigate scattering parameters (Lee and Pottier, 2017). These are
generally divided into two categories: coherent and incoherent (Verma
et al., 2023). Coherent decompositions are ideal for analyzing pure
targets that yield complete polarimetric backscatter responses.
Conversely, incoherent decompositions are better suited for examining
distributed targets that produce partially polarized backscatter within a
single SAR cell (Verma et al., 2023).

The Freeman-Durden decomposition (FRE3), introduced by
Freeman and Durden (1998), was the first model-based PoISAR
decomposition. This approach involves calculating three power com-
ponents, which represent surface scattering, double-bounce scattering,
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and volume scattering. However, the double-bounce scattering model is
designed specifically for tetrahedrons with a 0° orientation angle, which
potentially renders it less effective for urban environments, where larger
orientation angles are common (Chen et al., 2023).

To address the aforementioned issue, several models that fully
characterize the scattering mechanisms of tetrahedrons with varying
orientation angles have been proposed. Most of these models are de-
rivatives of the basic dihedral model suggested for FRE3 (Freeman and
Durden, 1998). Accordingly, the general four-component scattering
power decomposition (SIN4) was suggested, which involves directly
rotating the dihedral scattering model (Singh et al., 2013). Another
approach involves transforming the measured coherency matrix, a
notable example of which is the four-component decomposition (Y40)
(Yamaguchi et al., 2006). In certain urban areas with specific orientation
angles, this decomposition method can amplify the proportion of
double-bounce energy scattering (Yamaguchi et al., 2011). Building on
the concept of rotating coherence matrices, advanced PolSAR decom-
position techniques such as the six-component scattering decomposition
(6SD) (Singh and Yamaguchi, 2018) and seven-component scattering
decomposition (7SD) (Singh et al., 2019) have been proposed. Addi-
tionally, several recent studies have introduced model-based de-
compositions (M E and Kumar, 2020; Ramya and Kumar, 2021; Shafai
and Kumar, 2020).

In this study, we aimed to extract PolSAR features using as many
methods as possible, obtaining 100 PolSAR features from a total of 18
PolSAR decompositions. Moreover, following the method used by Xu
et al. (2016) and Xie et al. (2018), a 3 x 3 sliding-window boxcar filter
was used to reduce speckle noise. Table 1 details the PolSAR decom-
position methods and the resulting PolSAR features used in this study.

3.3. Multicollinearity analysis

Multicollinearity arises when predictor variables in ML models
exhibit a strong correlation with one another (Vatcheva et al., 2016).
This can produce unstable coefficient estimates, reduce the clarity of
model interpretation, and compromise predictive performance. To
mitigate these challenges, evaluating the extent of multicollinearity
among the 100 PolSAR features calculated in this study is essential. One
widely used metric for assessing multicollinearity is VIF, which quan-
tifies the increase in the variance of a regression coefficient due to
collinearity among the predictors (O brien, 2007).

A VIF of 1 indicates that no correlation exists between the predictor
variable and other variables, signifying the absence of multicollinearity.
VIF values between 1 and 5 suggest moderate correlation between
variables, which is generally not concerning. A VIF exceeding 5 indicates
strong correlation and potential multicollinearity issues that warrant
further investigation. A VIF greater than 10 is considered a sign of severe
multicollinearity that must be addressed (Kim, 2019; Vatcheva et al.,
2016). Detailed information regarding VIF has been provided by Dor-
mann et al. (2013) and Montgomery et al. (2021). In line with previous
studies (James et al., 2023; Menard, 2001; Vittinghoff et al., 2012), we
eliminated features with VIFs equal to or greater than 10.

3.4. DT-RFE

In ML and data analysis, feature selection is essential for enhancing
model performance and interpretability (Saeys et al., 2007). DT-RFE is
an effective feature selection approach that leverages the inherent
ranking of feature importance based on DTs (Awad and Fraihat, 2023;
Lian et al., 2020). By systematically removing less significant features,
this method refines the feature set, improving the accuracy and effi-
ciency of the model.

RFE is a wrapper-based feature selection technique that iteratively
focuses on smaller subsets of features. The process starts with training a
model on the entire feature set and ranking the features according to
their significance to the model. The least important features are
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Table 1
PoISAR decomposition techniques and resulting PolSAR features used in this
study; the features are prefixed with the abbreviated method and feature name.

Decomposition Number PoISAR features Reference
technique of
(abbreviation) features
Aghababaee 19 Alphap_mean, Alphap_SM1, Aghababaee
(AGH) Alphap_SM2, Alphap_SM3, and Sahebi
M_SM1, M_SM2, M_SM3, (2018)
Orientation_max_mean,
Orientation_max_SM1,
Orientation_max_SM2,
Orientation_max_SM3,
Phip_mean, Phip_SM1,
Phip_SM2, Phip_SM3,
Tawp_mean, Tawp_SM1,
Tawp_SM2, Tawp_SM3
An & Yang-3 3 AN3_0dd, AN3_Dbl, AN3_Vol An et al. (2010)
(AN3)
An & Yang-4 4 AN4_0dd, AN4_Dbl, AN4_Vol, An et al. (2011)
(AN4) AN4_HIx
Arii-3 ANNED 3 ANNED_Odd, ANNED_Dbl, Arii et al.
(ANNED) ANNED _Vol (2010)
Bhattacharya & 4 BF4_0dd, BF4_Dbl, BF4_Vol, Bhattacharya
Frery-4 BF4_HIx et al. (2015)
(BF4)
Freeman-2 2 FRE2_Ground, FRE2_Vol Freeman
(FRE2) (2007)
Freeman-3 3 FRE3_0dd, FRE3_Dbl, Freeman and
(FRE3) FRE3_Vol Durden (1998)
H/A/Alpha 7 HAA _Entropy, Cloude and
(HAA) HAA _Anisotropy, HAA _Alpha, Pottier (1997)
HAA Beta, HAA Lambda,
HAA_Gamma, HAA Delta
Krogager 4 KRO_Teta, KRO_Kd, KRO_Kh, Krogager
(KRO) KRO_Ks (1990)
L. Zhang-5 5 MCSM_0Odd, MCSM_Dbl, Zhang et al.
(MCSM) MCSM_Vol, MCSM_HIx, (2008)
MCSM_Wire
Neumann 3 NEU_Tau, Neumann
(NEU) NEU_Delta NEU_Mod, (2009)
NEU _Delta_pha
Singh-4 4 SIN4_0dd, SIN4_Dbl, Singh et al.
(SIN4) SIN4_Vol, SIN4_HIx (2013)
Singh- 6 6SD_0dd, 6SD_Dbl, 6SD_Vol, Singh and
Yamaguchi-6 6SD_Hlx, 6SD_OD, 6SD_CD Yamaguchi
(6SD) (2018)
Singh-7 7 7SD_0dd, 7SD_Dbl, 7SD_Vol, Singh et al.
(7SD) 7SD_Hlx, 7SD_OD, 7SD_MD, (2019)
7SD_CD
Touzi 16 TSVM _Alpha_s, Touzi (2007)
(TSVM) TSVM_Alpha s1,
TSVM_Alpha s2,
TSVM_Alpha_s3, TSVM_Phi s,
TSVM_Phi_s1, TSVM_Phi s2,
TSVM_Phi_s3, TSVM _Psi,
TSVM_Psil, TSVM_Psi2,
TSVM_Psi3, TSVM_Tau_m,
TSVM_Tau_ml,
TSVM_Tau_m2, TSVM_Tau_m3
Van Zyl-3 3 VZ3_0dd, VZ3_Dbl, VZ3_Vol Van Zyl (1993)
(VZ3)
Yamaguchi-3 3 YAM3_0Odd, YAM3_Dbl, Cui et al.
(YAM3) YAM3 Vol (2012)
Yamaguchi-4 4 Y40_0dd, Y40_Dbl, Y40_Vol, Yamaguchi
(Y40) Y40_HIx et al. (2005)

subsequently discarded, and the model is then retrained. This cycle re-
peats until the optimal number of features remains (Guyon et al., 2002).

When implementing RFE, DT is used as the baseline model for
evaluating feature importance. DTs are particularly suitable for this task
because they inherently rank features based on their contribution to
reducing impurity (such as Gini impurity or entropy) at each split in the
tree. This ranking provides a straightforward mechanism to identify and
eliminate the least important features (Awad and Fraihat, 2023).

The procedure is initialized with the full set of features in the dataset,
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using which a DT is initially trained. The importance of each feature is
evaluated based on the trained model and is typically determined by the
total reduction in a criterion that the feature contributes. The features
are then ranked according to their importance, and the least significant
ones are removed. The model is retrained on the reduced set of features,
whereafter the remaining features are re-ranked. This process is iterated,
with the least important features being eliminated at each step, until the
desired number of features has been achieved (Awad and Fraihat, 2023;
Kuhn and Johnson, 2013).

DT-RFE offers several advantages as DTs can capture complex,
nonlinear relationships and interactions between features; thus, they are
ideal for datasets with such characteristics. They naturally quantify
feature importance, which simplifies the feature selection process. By
eliminating irrelevant or redundant features, DT-RFE can improve a
model’s performance, mitigate overfitting, and reduce computational
costs (Awad and Fraihat, 2023; Lian et al., 2020).

3.5. Training and testing data

Sample flood and non-flood polygons over the study area were ob-
tained from visible imagery (namely, Planet true-color and UAVSAR
false-color RGB images) for September 18, 2018. The Planet true-color
image was provided by Planet Lab, which is the first private data pro-
vider to contribute to the International Charter on Space and Major
Disasters. Planet Lab shares Planet true-color images (PlanetScope) with
the public during disasters such as Hurricane Florence (Melancon et al.,
2021). By offering timely access to satellite data, Planet facilitates
disaster response efforts, ensuring more efficient coordination and aid
deployment during critical events. The true-color image for the study
area during Hurricane Florence on September 18, 2018, was sourced
through the NASA Commercial Data Buy Pilot for FY19 (https://www.
planet.com/disaster/). This image was captured by digital cameras
installed on NOAA’s King Air turboprop aircraft at altitudes of
500-1,500 m (Melancon et al., 2021; National Oceanic and Atmospheric
Administration, 2024; Office of Marine and Aviation Operations, 2024).
The Planet visible image along with the UAVSAR false-color RGB image
were employed as references to detect sample flood and non-flood
pixels.

To collect ground reference data for training and testing the CNN
model, polygons representing flood and non-flood classes were manu-
ally digitized in ArcGIS 10.5 (Fig. 4). As illustrated, both the true-color
image from Planet and the UAVSAR false-color RGB composite were
used to generate flood and non-flood polygons. In creating these poly-
gons, the scattering intensities for single, double-bounce, and volume
scattering were analyzed across various land cover types. Flood pixels
displayed a distinct color pattern in the false-color Freeman-Durden
RGB composite, showing average RGB values of approximately 160 for
red, 83 for green, and 46 for blue, which produced orange and pink hues.
This color contrast is especially useful for identifying floodwaters,
particularly in forested areas where the double-bounce scattering
signature is more prominent (Martinez and Le Toan, 2007; Melancon
et al., 2021). To generate non-flood polygons, areas with distinct scat-
tering characteristics, such as dry forests, open water, urban areas, and
non-forest regions, were analyzed. Dry forests exhibit strong volume
scattering due to canopy interactions, along with moderate peaks in
single and double-bounce scattering, thereby producing a green hue.
Open water shows extremely low backscatter across all scattering types,
often approaching zero in cases of specular reflection; this distinguishes
it from the other land covers with a black hue. Urban areas are char-
acterized by high double-bounce scattering from building reflections,
which impart them with a distinct hue. Non-forest regions, including
grasslands and barren land, typically display low volume scattering and
minimal single scattering, which creates a blue hue (Melancon et al.,
2021).

We selected about 0.25% of the pixels in the UAVSAR image to train
and test the CNN model, based on recommendations by Colditz (2015),
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Fig. 4. Examples of manually selected flood and non-flood polygons based on Planet true-color and UAVSAR false-color RGB images.

Thanh Noi and Kappas (2018), and Melancon et al. (2021). A total of
222,175 pixels were generated to model flood, comprising 115,065
non-flood and 107,110 flood pixels. The entire set of pixels was split into
training and testing sets, with 80% (177,740 pixels) allocated for
training and 20% (44,435 pixels) for testing, following the protocol used
by Elkhrachy (2022).

Fig. 4 shows samples of the flood and non-flood polygons over the
study area on September 18, 2018, based on the Planet true-color and
UAVSAR false-color RGB images.

We also considered a portion of Texas affected by Hurricane Harvey
to evaluate the generalizability of the DT-RFE-CNN model. Only test
data were prepared for this region, which were generated through a
process similar to that described earlier. Specifically, for Hurricane
Harvey, testing samples comprising flood and non-flood polygons were
digitized from high-resolution imagery—including a UAVSAR false-
color RGB composite, Planet true-color images, and NOAA true-color
images acquired during Hurricane Harvey (National Oceanic and At-
mospheric Administration, 2017). The selected polygons comprised
29,232 flood and 30,316 non-flood pixels on August 31, 2017, and
22,272 flood and 24,884 non-flood pixels on September 2, 2017.

3.6. CNN

A CNN is a deep learning architecture designed for handling struc-
tured, grid-like data, such as images. It employs convolutional layers to
automatically identify and extract key features from input images by
applying different filters, thus generating feature maps (LeCun et al.,
2015). These feature maps are then downsampled using pooling layers
to reduce computational complexity and highlight important features.
Finally, fully connected layers are employed to classify the images based
on the features extracted by the preceding layers (Yamashita et al.,
2018).

Each convolutional layer includes a rectified linear unit (ReLU)
activation function to effectively capture nonlinear patterns between the
input and output variables. Let Z represent the feature map in the j-th
layer. The output for the subsequent (j + 1-th) layer can be expressed as

follows:

7t :f(w+1 o7 +bj+1) 3)
where W1 and b*! represent the weight matrix and bias vector,
respectively, which are used to relate the feature maps of the j-th and j +
1-th layers to each other; f denotes the ReLU activation function. After
passing through the convolutional layer, the feature map from the final
pooling layer is flattened, which gradually reduces the feature di-
mensions to create a compact feature representation before the output
layer (Byun et al., 2023).

As the dataset used in this work included manually digitized poly-
gons, and as pixel-level labels were not available for the study area, we
adopted a CNN-2D model adapted for tabular-format data to efficiently
utilize the available labeled samples. Fig. 5 shows the structure of the
CNN model developed for inundation mapping. The architecture in-
cludes multiple layers specifically designed to distinguish between
flooded and non-flooded areas. The model comprises two convolutional
layers, two pooling layers, two fully connected layers, and one output
layer. The final layer is crucial for accurately identifying flooded areas.
Table 2 presents the detailed specifications of the CNN model.

3.7. Evaluation metrics

We evaluated the proposed model’s performance in detecting floo-
ded areas based on five indicators: accuracy, precision, recall, F1 score,
and IoU. Accuracy represents the proportion of correctly predicted
pixels among all the pixels. Precision denotes the proportion of correct
positive predictions, while recall reflects the proportion of actual posi-
tive cases that were correctly identified. F1 score is the harmonic mean
of precision and recall, offering a balanced measure of these two metrics;
a higher F1 score indicates a better balance between precision and
recall.

IoU is used to evaluate the overlap between the predicted area and
the ground-truth area. It is calculated as the intersection of the predicted
and actual regions divided by the area of their union. IoU ranges from
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Fig. 5. Structure of the CNN model for flood mapping.

Table 2
Specifications of the CNN model (N: number of input features).

Layer Shape Output size
Input (N, 1, 32) -

Conv2D (3 x 3, 32 filters) (N, 1, 32)
BatchNorm - N, 1, 32)
MaxPooling2D 2x2) (N/2,1, 32)
Dropout (Rate: 0.25) (N/2,1, 32)
Conv2D (3 x 3, 64 filters) (N/2, 1, 64)
BatchNorm - (N/2, 1, 64)
MaxPooling2D 2x2) (N/4, 1, 64)
Dropout (Rate: 0.25) (N/4, 1, 64)
Flatten - N/4 x 64
Dense (128 units) 128
Dropout (Rate: 0.5) 128

Dense (1 unit) 1

0 to 1, with 1 representing a perfect match between the prediction and
the ground truth and 0 indicating no overlap. Higher IoU values indicate
better model accuracy in detecting and delineating the flooded area. The
equations for calculating the aforementioned indicators are as follows:

TP+ TN
Al P N S
CCUraY = p TN+ FP + FN Q)
TP
Precision — — £
recision = = - )
P
l=—r
Reca TP I (6)
Fl— 2 x Pre':c.ision x Recall e
Precision + Recall
IoU = L (8)
TP + FN + FP

where TP refers to true positive (the number of ground-truth flood pixels
correctly predicted by the model), FP represents false positive (the
number of ground-truth non-flood pixels incorrectly classified by the
model as flood pixels), FN indicates false negative (the number of
ground-truth flood pixels mistakenly predicted by the model as non-
flood pixels), and TN denotes true negative (the number of ground-
truth non-flood pixels correctly predicted by the model).

3.8. Different approaches for flood mapping

In this study, two additional approaches were considered for com-
parison with the DT-RFE-CNN model. First, we applied the Otsu method
(Otsu, 1979), a classical thresholding technique. Second, we replaced
the CNN with a more recent ML model, i.e., the feature tokenizer and

transformer (FT-Transformer) model (Gorishniy et al., 2023), a state-of-
the-art model designed for tabular data. For this model, the input fea-
tures selected via DT-RFE were used.

3.8.1. Ostu thresholding method

Thresholding is a classical approach for detecting flooded areas using
SAR data (Cao et al., 2019). The thresholds of backscatter data between
flooded and non-flooded areas are typically determined by trial and
error (Rahman and Thakur, 2018), which is subjective and time-
consuming (Tong et al., 2018). To address these limitations and
enhance accuracy, automated binary thresholding methods (Moharrami
et al., 2021) have been developed for image segmentation and pattern
recognition (Sezgin and Sankur, 2004; Wunnava et al., 2020).

Among automated thresholding methods, the Otsu method is
regarded as one of the most effective (Moharrami et al., 2021) for flood
representation using SAR images (Du et al., 2014; Li et al., 2014; Pan
et al., 2020; Zhang et al., 2020). This method iteratively examines all
possible values to determine the optimal threshold. The objective is to
maximize the inter-class variance between two segments and minimize
the intra-class variance (Otsu, 1979).

In the Otsu method, pixels are divided into two classes: Class 1 (C1)
in the range [a,t] and Class 2 (C2) in the range [t, b], where t is the
threshold. The optimal threshold is determined as the value that maxi-
mizes the inter-class variance between C1 (flooded areas) and C2 (non-
flooded areas) as
0" =P e (4 — )" + P2 @ (Hey — )’ ©
where o2 represents the inter-class variance between C1 and C2. P.; and
P, are the probabilities of pixel distributions in C1 and C2, respectively.
Uq and p ., are the mean values of the pixels in C1 and C2, respectively,
and u is the mean value of the indexed image. Following Dang et al.
(2024), we used VV polarization, which is known to be the most effec-
tive for distinguishing flooded areas among various types of
backscattering.

3.8.2. FT-transformer

FT-Transformer represents a modified architecture of the Trans-
former model (Vaswani et al., 2017), designed to handle both contin-
uous and categorical features in tabular or time-series data (Gorishniy
et al., 2021). The concept is to convert all continuous and categorical
features into token embeddings and then learn the relationships among
these features using the self-attention mechanism of the Transformer
(Gorishniy et al., 2021).

Fig. 6 illustrates the architecture of FT-Transformer. The feature
tokenizer module encodes numerical and categorical features into to-
kens that can be input to the Transformer. This structure is specifically
designed to adapt tabular data for Transformer-based models. Subse-
quently, the Transformer module captures the inter-feature de-
pendencies through feature-wise self-attention. Lastly, a special
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Fig. 6. FT-Transformer architecture.

classification token (CLS) integrates information from all feature em-
beddings to generate the final prediction. Details of the FT-Transformer
model can be found in the work of Gorishniy et al. (2021).

4. Results and discussions
4.1. Flood mapping over Lumber flight path in North Carolina

4.1.1. Multicollinearity analysis

To select independent PolSAR features from the pool of 100 gener-
ated features, we conducted a multicollinearity analysis based on VIF.
Following a previous method (James et al., 2023; Menard, 2001; Vit-
tinghoff et al., 2012), 49 features with a VIF of less than 10 were selected
for flood mapping (Table 3).

4.1.2. Feature selection

Table 4 shows the importance of the features obtained using DT-RFE.
The Alpha_s feature from the Touzi method demonstrated over-
whelmingly high importance. This feature measures the magnitude of
symmetric scattering, ranging from 0° to 90°, where values near
0° correspond to surface scattering, those around 45° indicate volume
scattering, and those near 90° represent double-bounce scattering
(Dabboor and Shokr, 2023). Moreover, the top 7 and 10 features
respectively accounted for approximately 85% and 90% of the total
importance, which indicates that the importance was heavily concen-
trated on only a few features. However, drawing definitive conclusions
on the number of features needed to maximize the CNN model’s accu-
racy is difficult.

Table 3
PoISAR features selected through VIF-based multicollinearity analysis.

PoISAR feature VIF PoISAR feature VIF
AGH_Alphap_SM1 4.44 NEU _Delta_pha 3.02
AGH_Orientation_max_SM2 1.39 NEU_Tau 5.28
AGH_Orientation_max_mean 1.69 SIN4_HIx < 0.01
AGH_Phip_SM1 1.46 7SD_CD 3.22
AGH_Phip_SM2 2.05 7SD_HIx 3.70
AGH_Phip_SM3 2.24 7SD_MD 5.39
AGH_Tawp_SM1 3.43 7SD_OD 2.96
AGH_Tawp_SM2 2.51 7SD_Vol 4.59
AGH_Tawp_SM3 1.76 6SD_CD 4.78
AN4 Vol 9.99 6SD_OD 4.40
ANNED_Odd 3.52 6SD_Vol 7.77
BF4_Vol 2.45 TSVM_Alpha_s 4.23
HAA Alpha 2.43 TSVM_Alpha_s2 3.37
HAA _Anisotropy 2.26 TSVM_Alpha_s3 1.44
HAA Beta 3.14 TSVM_Phi_s 2.34
HAA Delta 1.48 TSVM_Phi_s2 2.85
HAA Entropy 7.81 TSVM_Phi_s3 1.40
HAA_Gamma 1.94 TSVM_Psil 1.73
KRO_Kd 1.22 TSVM_Psi2 1.65
KRO_Kh 1.07 TSVM_Psi3 2.21
KRO_Ks 1.00 TSVM_Tau_ml 1.32
KRO _Teta 1.16 TSVM_Tau_m2 1.42
MCSM_HIx < 0.01 TSVM_Tau_m3 1.27
MCSM_Vol < 0.01 Y40_HIx 4.94
MCSM_Wire 8.53

10

4.1.3. Model evaluation

Table 5 summarizes the DT-RFE-CNN model’s performance in
inundation mapping for September 18, 2018, using different numbers of
the most important features listed in Table 4. For example, the first and
second rows in Table 5 present the outcomes of utilizing only the most
important PolSAR feature (i.e., TSVM_Alpha_s) and the top five features
(i.e., TSVM Alpha_ss, ANNED Odd, 7SD_MD, HAA Anisotropy, and
AN4_Vol), respectively. When utilizing only the most important feature,
the model achieved accuracy, precision, recall, F1 score, and IoU values
of 0.8909, 0.9155, 0.8527, 0.8830, and 0.7905 for the training phase
and 0.8903, 0.9113, 0.8539, 0.8816, and 0.7884 for the testing phase,
respectively. Expectedly, utilizing more PolSAR features improves the
model’s performance, allowing it to map flooded areas more accurately.
The model performed the best when using the top 40 features (among
the 49 shown in Table 4), demonstrating strong results across all metrics.
On the training data, the model achieved an accuracy of 0.9750, a
precision of 0.9866, a recall of 0.9613, an F1 score of 0.9738, and an IoU
of 0.9489; on the testing data, it maintained robust performance, with
an accuracy of 0.9724, a precision of 0.9823, a recall of 0.9596, an F1
score of 0.9708, and an IoU of 0.9433. The best-performing DT-
RFE-CNN model showed a balance between precision and recall. This
balance means that the model could accurately predict both positive and
negative cases while effectively limiting false positives and false nega-
tives, which enables more reliable decision-making (Saito and
Rehmsmeier, 2015). Additionally, similar precision and recall values
tend to maximize the F1 score (the harmonic average of these two
metrics), indicating strong overall performance, especially on imbal-
anced datasets. This results in a more trustworthy model, capable of
consistent performance across various scenarios.

For a computer equipped with an AMD Ryzen Threadripper PRO
7995WX 96-core CPU, the times required to train and test the DT-
RFE-CNN model with the top 1, 40, and 49 features were about 29, 46,
and 53 min, respectively.

We examined how the number of features affects both accuracy and
the F1 score because accuracy measures the overall proportion of correct
predictions across all classes while F1 score combines precision and
recall into a single, balanced performance metric. Fig. 7 illustrates the
variation in these metrics with the number of PolSAR features during the
training and testing phases. A sharp rise in the metrics is observed when
the number of features increases from 1 to 10, but the behavior becomes
asymptotic with the addition of further features. This indicates that most
of the information required for mapping inundated areas exists within
the top 10 features and that using more features does not improve the
results significantly. The features generated through Touzi decomposi-
tion (Touzi, 2007) account for four of the top 10 features shown in
Table 4. This highlights the significance of understanding scattering
characteristics through an eigenvector analysis technique, such as Touzi
decomposition.

The evaluation results show that the DT-RFE-CNN model achieved
the highest accuracy (0.9751) and F1 score (0.9738) during the training
stage when utilizing the top 40 PolSAR features. With the same features
in the testing stage, the model again achieved the highest accuracy
(0.9724) and F1 score (0.9708). Overall, three conclusions can be drawn
from the results shown in Table 5 and Fig. 7: (1) using more than 10
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Table 4
Feature importance estimated using DT-RFE.
Feature Importance Feature Importance
TSVM_Alpha_s 0.6378 AGH_Alphap_SM1 0.0027
ANNED_Odd 0.0555 AGH_Tawp_SM1 0.0026
7SD_MD 0.0496 6SD_Vol 0.0026
HAA_Anisotropy 0.0301 TSVM_Psi3 0.0026
AN4 _Vol 0.0286 6SD_CD 0.0025
MCSM_Wire 0.0263 TSVM_Tau_m2 0.0025
TSVM_Alpha_s2 0.0190 TSVM_Psi2 0.0024
TSVM_Psil 0.0150 AGH_Tawp_SM3 0.0024
HAA _Entropy 0.0148 TSVM_Phi_s3 0.0023
TSVM_Phi_s 0.0148 AGH_Tawp_SM2 0.0022
BF4_Vol 0.0107 TSVM_Phi_s2 0.0021
HAA _Alpha 0.0073 HAA Beta 0.0019
NEU_Tau 0.0062 7SD_CD 0.0017
7SD_HIx 0.0060 TSVM_Alpha_s3 0.0015
NEU_Delta_pha 0.0050 AGH_Orientation_max_SM2 0.0015
HAA_Gamma 0.0046 6SD_OD 0.0014
Y40_HIx 0.0045 KRO_Kd 0.0014
AGH_Phip_SM2 0.0037 KRO_Teta 0.0011
HAA Delta 0.0032 KRO_Ks 0.0010
AGH_Phip_SM1 0.0030 7SD_OD 0.0010
AGH_Orientation_max_mean 0.0029 KRO_Kh 0.0007
AGH_Phip_SM3 0.0029 MCSM_HIx < 0.0001
TSVM_Tau_m3 0.0028 MCSM_Vol < 0.0001
TSVM_Tau_m1 0.0028 SIN4_Hlx < 0.0001
7SD_Vol 0.0028
Table 5 misclassified (FP: 0.83%, FN: 1.94%). The high percentage of correctly
able

Performance metrics of the DT-RFE-CNN model for flood mapping with
different numbers of PolSAR features during training and testing phases.

Number of Stage Accuracy  Precision  Recall F1 IoU
top features score
utilized
1 Training  0.8909 0.9155 0.8527  0.8830  0.7905
Testing 0.8903 0.9113 0.8539  0.8816  0.7884
5 Training ~ 0.9541 0.9722 0.9315  0.9515  0.9074
Testing 0.9563 0.9732 0.9344 0.9534 0.9109
10 Training  0.9685 0.9822 0.9520  0.9669  0.9358
Testing 0.9695 0.9812 0.9545  0.9677  0.9373
15 Training 0.9711 0.9841 0.9555 0.9696 0.9410
Testing 0.9710 0.9824 0.9566  0.9693  0.9405
20 Training ~ 0.9728 0.9871 0.9563  0.9714  0.9445
Testing 0.9719 0.9839 0.9569  0.9702  0.9422
25 Training 0.9716 0.9908 0.9501 0.9700 0.9418
Testing 0.9709 0.9889 0.9500  0.9690  0.9399
30 Training ~ 0.9739 0.9842 0.9614  0.9727  0.9468
Testing 0.9723 0.9808 0.9610 0.9706 0.9432
35 Training ~ 0.9747 0.9879 0.9594  0.9734  0.9482
Testing 0.9722 0.9841 0.9574  0.9705  0.9427
40 Training 0.9751 0.9866 0.9613 0.9738 0.9489
Testing 0.9724 0.9823 0.9596 0.9708 0.9433
45 Training ~ 0.9750 0.9842 0.9637  0.9737  0.9490
Testing 0.9716 0.9799 0.9604  0.9700  0.9418
49 Training 0.9748 0.9842 0.9634 0.9737 0.9487
Testing 0.9720 0.9798 0.9613  0.9705  0.9426

PoISAR features does not improve model performance significantly; (2)
most of the information required for flood mapping is concentrated
within the top 10 features; and (3) the model performs best in terms of
both accuracy and F1 score across the training and testing phases when
using the top 40 PolSAR features.

The confusion matrix in Fig. 8 illustrates the performance of the DT-
RFE-CNN model with the top 40 features. This matrix visualizes the
performance of the model based on the number of correct and incorrect
predictions (Sokolova and Lapalme, 2009). As seen in Fig. 8, among the
177,740 training samples, 97.50% were correctly classified (TP:
46.43%, TN: 51.07%) while only 2.50% were misclassified (FP: 0.63%,
FN: 1.87%). For the testing dataset comprising 44,435 samples, 97.24%
were correctly classified (TP: 45.93%, TN: 51.31%) while 2.76% were
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classified flood and non-flood pixels on both the training and testing
data demonstrates that the developed hybrid model can be reliably used
by decision-makers to improve flood management strategies and
disaster response planning.

4.1.4. Mapping of flooded regions

Based on the model evaluation results, the flood map for the Lumber
flight path on September 18, 2018, was generated by providing the DT-
RFE-CNN model with the top 40 PolSAR features. As explained earlier,
the features were used as the inputs while samples of flood and non-
flood pixels across the Lumber flight path on September 18, 2018,
were used as the outputs to train and test the model. The flood map
generated for the entire Lumber flight path is depicted in Fig. 9, where
the blue and green portions represent the flooded and non-flooded re-
gions, respectively. Expectedly, regions along the Lumber River and
those with low elevations (with reference to Fig. 1) were classified as
flooded, whereas areas with higher elevations were categorized as non-
flooded. Overall, a consistency was observed between the flood and
elevation maps, which indicates that the DT-RFE-CNN model can reli-
ably identify flooded regions.

To further evaluate the robustness of the DT-RFE-CNN model, it was
used to estimate the flood maps over the Lumber flight path on
September 19, 20, 22, and 23, 2018 (Fig. 10). As explained in Section
3.5, polygons delineating flooded and non-flooded regions were created
for these days based on the Planet true-color and UAVSAR false-color
RGB composite images. These polygons comprise 22,149 flood and
22,234 non-flood pixels for September 19; 22,255 flood and 22,367 non-
flood pixels for September 20; 22,392 flood and 22,500 non-flood pixels
for September 22; and 22,491 flood and 22,360 non-flood pixels for
September 23 and were used to evaluate the flood maps generated for
these days.

Table 6 summarizes the performance metrics of the DT-RFE-CNN
model for the aforementioned dates. The model performed well,
exhibiting accuracy, precision, recall, F1 Score, and IoU values of
0.9123-0.9552, 0.8643-0.9493, 0.9152-0.9874, 0.9123-0.9556, and
0.8388-0.9150, respectively. On average, the model achieved an accu-
racy of 0.9304, a precision of 0.9089, a recall of 0.9584, an F1 Score of
0.9324, and an IoU of 0.8738 for September 19, 20, 22, and 23,
respectively. These results underscore the model’s accuracy in
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Fig. 7. Variation in accuracy and F1 score of the DT-RFE-CNN model with number of PolSAR features during training and testing stages.
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predicting flood maps across different temporal instances.

Notably, the recall was higher than the precision, which indicates
that the model prioritizes capturing as many true positives as possible,
even if it increases the false positive rate (Saito and Rehmsmeier, 2015).
Thus, the model focuses more on minimizing missed positive cases,
which can be beneficial in scenarios where detecting every positive
instance is crucial, even at the expense of slightly lower prediction ac-
curacy. In summary, the proposed model favors completeness over
precision to ensure fewer missed positives with the trade-off being
potentially higher false positive rates.

Table 7 presents the areas (km?) of flooded and non-flooded regions
estimated by the DT-RFE-CNN model for different days. Fig. 11 shows
the daily domain-average precipitation (mm) and flooded area (km?).
The 1-km daily precipitation data for the study domain were obtained
from the Daymet product (Thornton et al., 2022). The rainfall intensity
associated with Hurricane Florence was high on September 14-16 but
significantly decreased on September 17 and 18. Owing to the intense
rainfall, the flooding persisted for an extended duration. As anticipated,
the maximum flooded area (2,692.1 km2) was observed on September
18 (shortly after intense rainfall), and its value decreased to 2,583.8 and
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2,378.5 km? on September 19 and 20, respectively (Table 7 and Fig. 11).

Although no rainfall was recorded over the study domain on
September 22 and 23, the inundated area increased slightly on these
dates. This is likely because of the lower elevation of the study area
(Fig. 12): Flood water flowing downstream from the upper basin caused
repeated inundation in many locations. For instance, Fig. 13 shows the
changes in the water level at two USGS gauges within the study area in
response to Hurricane Florence (https://waterdata.usgs.gov/). The
drainage areas of the Lumber River near Maxton gauge (ID: 02133624)
and at Lumberton gauge (ID: 02134170) are 946 km? and 1,834 kmz,
respectively. At the Lumberton gauge, which is located downstream, the
initial peak in water level on September 18 was attributable to intense
rainfall close to the gauge, while the secondary peak on September 21
was caused by water moving downstream along the Lumber River. In
addition to the lag between rainfall at higher elevations and its resulting
runoff downstream, the slow movement of Florence caused prolonged
rainfall in specific areas, leading to a rise in groundwater levels and
reduced drainage (Humphrey Jr. et al., 2021; Ross, 2018). Hence,
certain areas experienced prolonged or recurring flooding. These find-
ings suggest that comprehensive flood management, including both
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rapid response and systemic improvements to prevent recurrence, is
necessary to mitigate flood damage during large-scale rainfall events.

4.2. Comparison between flood mapping using PolSAR data and PolSAR
features

We established a CNN model that utilizes PolSAR data and compared
its performance with that of our innovative hybrid model. For this
purpose, PolSAR data comprising six polarization combinations (i.e.,
SHHS;(H; SHVSZV, Sws;‘/, SHHS;-W; SHHSI/V’ and SHVS@V) were employed as
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the input for the CNN model. The flood and non-flood polygons specified
in Section 3.5 (i.e., 115,065 non-flood and 107,110 flood pixels) were
also used as the output for this model. The dataset was split into training
and testing sets, with 80% (177,740 pixels) allocated for training and
20% (44,435 pixels) reserved for testing. The training and testing pixels
were consistent with those used for flood mapping based on PolSAR
features.

The aforementioned CNN model was used to generate the flood map
over the Lumber flight path for September 18, 2018. Fig. 14 displays the
confusion matrix of this model for the training and testing phases,
showing that among the 177,740 training samples, 89.68% were

Table 6

Performance metrics of the DT-RFE-CNN model for different days.
Date Accuracy Precision Recall F1 score IoU
September 19, 2018 0.9381 0.9124 0.9691 0.9399 0.8866
September 20, 2018 0.9123 0.9095 0.9152 0.9123 0.8388
September 22, 2018 0.9552 0.9493 0.9620 0.9556 0.9150
September 23, 2018 0.9159 0.8643 0.9874 0.9217 0.8548

Table 7
Areas (km?) of flooded and non-flooded regions predicted by the DT-RFE-CNN
model for different days.

Dates Flooded area Non-flooded area Total area
(km®) @) km®) %) (km?) (%)

September 18, 2018 2,692.1 56.5 2,076.4 43.5 4,768.5 100

September 19, 2018 2,583.8 54.2 2,184.7 45.8

September 20, 2018 2,378.5 49.9 2,390.0 50.1

September 22, 2018 2,456.8 51.5 2,311.7 48.5

September 23, 2018 2,472.5 51.9 2,296.0 48.1
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correctly classified (TP: 42.33%, TN: 47.35%) while 10.32% were mis-
classified (FP: 4.35%, FN: 5.97%); these values are worse than the cor-
responding results for the DT-RFE-CNN model (97.50% correctly
classified and 2.50% incorrectly classified pixels in the training step). On
the testing dataset, which comprised 44,435 samples, 89.89% were
correctly classified (TP: 42.17% and TN: 47.72%) while 10.11% were
misclassified (FP: 4.42% and FN: 5.69%) by the CNN model based on
PoISAR data; these values are again worse than the corresponding re-
sults for the DT-RFE-CNN model (97.24% correctly classified and 2.76%
misclassified pixels). Thus, the DT-RFE-CNN model based on PolSAR
features clearly outperformed the CNN model based on PolSAR data.
Table 8 summarizes the performance metrics of the CNN model
based on PolSAR data during the training and testing stages; for com-
parison, the corresponding metrics of the DT-RFE-CNN are also shown
in parenthesis. The comparison highlights the improvement in the flood
mapping efficacy achieved when using PolSAR features rather than
PoISAR data. The DT-RFE-CNN model, which utilizes PolSAR features,
demonstrated superior performance across all metrics in both the
training and testing stages. Referring to the testing stage, the improve-
ment in accuracy and precision achieved by the DT-RFE-CNN model
underlines its stronger ability to correctly identify flood areas. Similarly,
the better recall value highlights the model’s capacity to detect more
flood instances. The improvement in F1 score, which represents a
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balance between precision and recall, reflects an enhancement in overall
performance. Most notably, the improvement in IoU underscores the
greater overlap between the predicted and actual flood areas. These
results strongly suggest that the use of PolSAR features in the DT-
RFE-CNN model enhances its flood-mapping capabilities, providing
more accurate and reliable predictions than those achievable using
PoISAR data.

4.3. Comparison of flood mappings from different approaches

The Otsu method was used to generate the flood map over the
Lumber flight path for September 19, 20, 22, and 23, 2018, and its re-
sults were compared with those of DT-RFE-CNN. To this end, back-
scatter intensity information from the VV polarization channel was
extracted from the covariance matrix. A 3 x 3 sliding-window boxcar
filter was applied to reduce speckle noise, and the resulting image was
subsequently converted to the decibel (dB) scale. The Otsu method was
then applied to the backscatter data for each date (September 19, 20, 22,
and 23, 2018) to determine the threshold value, classifying pixels below
the threshold as C1 (flooded) and those above the threshold as C2 (non-
flooded).

Fig. 15 presents the thresholding results obtained using the Otsu
method, along with the corresponding histogram of VV backscatter



J. Lee et al.

Gondwana Research xxx (Xxxx) xxx

Z
&
z
-
pos
Lumber River
near Maxton
z
2 | ™= Non-flooded area
& | = Flooded area
— Rivers
| ake ~Y
0 15 30 60
% Km ~
o
= 79°20'W 79°0"W 78°40"W 78°20"'W
8
=== Lumber River near Maxton (02133624)
? .

—— Lumber River at Lumberton (02134170)

(=2}

Water level (m)
I o

Sep12 Sep13 Sep14 Sep15 Sep16  Sep 17

Sep 18

Sep19 Sep20 Sep21 Sep22 Sep23 Sep24

Date

Fig. 13. (top row) Locations of the two USGS gauging stations in the Lumber flight path, and (bottom row) changes in water level at the two USGS stations from

September 12 to 24, 2018.

Training
80000

=

g

= FP: 7732

= 60000
57
=
=
%]
E -40000

=

g FN: 10608

&= -20000

Non-Flood Flood
Predicted labels

Testing
20000

=

g

= FP: 1964

£ 15000
25
=
=
L
E ) -10000

g FN: 2530 TP: 18737

2 -5000

Non-Flood Flood
Predicted labels

Fig. 14. Confusion matrices of the CNN model based on PolSAR data during training and testing stages.

intensity for the entire domain on different dates. The threshold values
for September 19, 20, 22, and 23, 2018 were —9.49, —9.79, —9.78, and
—9.96 dB, respectively, showing high consistency across the four days.
Pixels with values below the threshold were classified as flooded areas,
while those above were identified as non-flooded areas.

Based on the Otsu method, approximately 32.9%, 29.6%, 30.2%, and
28.7% of the study area was classified as flooded on September 19, 20,
22, and 23, 2018, respectively. The corresponding values obtained using
the DT-RFE-CNN model were 54.2%, 49.9%, 51.5%, and 51.9%,
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significantly higher than those of the Otsu method. Table 9 presents a
comparison of the results based on the validation dataset on September
19, 20, 22, and 23, 2018. The Otsu method yielded poor results, with an
accuracy of 0.1791, a precision of 0.0091, a recall of 0.0057, an F1 score
of 0.0069, and an IoU of 0.0035 on average across the four days.

Calm water surfaces typically appear dark in SAR imagery owing to
specular reflection, as they tend to reflect radar signals away from the
sensor (Tarpanelli et al., 2022; Zhao, 2022). However, when the water
surface becomes rough (owing to wind, current, or rainfall), the
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Table 8

Performance metrics of the CNN model based on PolSAR data during training
and testing stages; corresponding results of DT-RFE-CNN model using PolSAR
features are shown in parentheses for comparison.

Stage Accuracy Precision Recall F1 score ToU

Training ~ 0.8968 0.9068 0.8764 0.8914 0.8040
(0.9751) (0.9866) (0.9613) (0.9738) (0.9489)

Testing 0.8988 0.9051 0.8810 0.8929 0.8065
(0.9724) (0.9823) (0.9596) (0.9708) (0.9433)

backscatter increases, rendering it challenging to accurately identify
flooded areas. Moreover, global thresholding approaches fail to account
for variations in backscatter intensity caused by topography, sensor
range, or local incidence angle (Liang and Liu, 2020). Features such as
vegetation-covered flooded areas, urban shadows, or wet soil often
exhibit low backscatter values, which can result in their misclassifica-
tion as flooded regions (Tarpanelli et al., 2022). These observations
underscore the limitations of simple intensity-based thresholding and
highlight the necessity of employing PolSAR decompositions as well as
metaheuristic optimization and deep-learning approaches, which can
provide physically interpretable scattering components for more accu-
rate flood mapping.

Subsequently, FT-Transformer was applied using the 40 features
obtained from DT-RFE. Table 10 compares the results of the FT-
Transformer and DT-RFE-CNN models. Despite using the same set of
40 PolSAR features, FT-Transformer exhibited inferior results compared
with DT-RFE-CNN. In the training phase, FT-Transformer achieved ac-
curacy, precision, recall, F1 score, and IoU values of 0.8949, 0.9204,
0.8566, 0.8873, and 0.7975, respectively, which are 8.2%, 6.7%, 10.9%,
8.6%, and 15.9% lower than those achieved by DT-RFE-CNN. Similarly,
in the testing phase, FT-Transformer achieved accuracy, precision,
recall, F1 score, and IoU values of 0.8952, 0.9171, 0.8586, 0.8869, and
0.7967, respectively, which are 7.9%, 6.6%, 10.1%, 8.4%, and 15.6%
lower than those obtained using DT-RFE-CNN. These results demon-
strate the superior performance of DT-RFE-CNN in both the training and
testing phases across all evaluation metrics. Notably, the difference in
IoU was the most pronounced, which highlights the stronger ability of
DT-RFE-CNN to minimize misclassification and improve spatial con-
sistency with the ground observations. This performance discrepancy
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can be attributed to differences in model architecture and their suit-
ability to the underlying data structure. Flooded areas typically exhibit
spatial continuity, and the relationship between neighboring pixels
plays a critical role in the accurate detection of inundated regions.
However, the FT-Transformer model lacks the ability to incorporate
such spatial continuity (Azad et al., 2023; Chen et al., 2022), limiting its
capacity to learn the overall patterns of flooded regions. These findings
suggest that models capable of capturing spatial continuity, such as
CNNs, are more suitable for flood detection tasks.

5. Generalizability of DT-RFE-CNN model to other regions

To evaluate the applicability of the trained DT-RFE-CNN model to
other regions, we tested it over a region in Texas during Hurricane
Harvey. In August 2017, Hurricane Harvey—a destructive Category 4
hurricane—struck the coasts of Texas and Louisiana, triggering cata-
strophic flooding and causing at least 68 direct fatalities in Texas alone.
It lingered over southeastern Texas for about four days, producing
record-breaking rainfall with a maximum of over 150 cm near Neder-
land, Texas. This unprecedented rainfall caused extreme flooding (Blake
and Zelinsky, 2018).

UAVSAR collected data over the Houston area on August 31 and
September 1-2, 2017, during the flooding caused by Hurricane Harvey.
Fig. 16 shows the flight path (ID: brazos_14937) of UAVSAR passing
through the Brazos River region, which was one of the regions affected

Table 9

Performance metrics of the Otsu method for September 19, 20, 22, and 23, 2018.
Results of DT-RFE-CNN model using the best 40 features are shown in paren-
theses for comparison.

Date Accuracy  Precision  Recall F1 score ToU
September 19, 2018  0.2187 0.0073 0.0042 0.0053 0.0027
(0.9381) (0.9124) (0.9691)  (0.9399)  (0.8866)
September 20, 2018 0.0571 0.0034 0.0031 0.0032 0.0016
(0.9123) (0.9095) (0.9152)  (0.9123)  (0.8388)
September 22, 2018  0.1803 0.0170 0.0112 0.0135 0.0068
(0.9552) (0.9493) (0.9620)  (0.9556)  (0.9150)
September 23, 2018 0.2602 0.0085 0.0041 0.0055 0.0028
(0.9159) (0.8643) (0.9874)  (0.9217)  (0.8548)
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Table 10
Performance metrics of the FT-Transformer and the DT-RFE-CNN models during training and testing, using the same set of top 40 features.
Stage Approach Accuracy Precision Recall F1 score ToU
Training FT-Transformer 0.8949 0.9204 0.8566 0.8873 0.7975
DT-RFE-CNN 0.9751 0.9866 0.9613 0.9738 0.9489
Testing FT-Transformer 0.8952 0.9171 0.8586 0.8869 0.7967
DT-RFE-CNN 0.9724 0.9823 0.9596 0.9708 0.9433

by Hurricane Harvey. This area is referred to hereinafter as the “Brazos
flight path.” Fig. 16 illustrates the annual land use in the area for 2017,
generated by the LCMS (U.S. Department of Agriculture, 2024), along
with an elevation map from SRTM (NASA JPL, 2013). Many areas are
rangelands, and developed regions are concentrated in the central part,
with some also observed in the southern part. The elevation decreases
progressively toward the coast.

on September 18, 2018, was used to generate flood maps for the Brazos
flight path. Specifically, the top 40 PolSAR features (as input) from
Table 4 and the samples of flood and non-flood pixels across the Brazos
flight path on September 18, 2018 (as output) were used to test the pre-
trained DT-RFE-CNN model. Fig. 17 shows the predicted flood map for
the Brazos flight path on August 31 and September 2, 2017; notably, the

data for September 2 constitute only a subset of the swaths for August

The DT-RFE-CNN model trained on data over the Lumber flight path 31. Expectedly, most urban areas and low-lying regions were predicted
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to be flooded.

Table 11 summarizes the performance metrics of the DT-RFE-CNN
model when used to predict the flood map over the Brazos flight path,
using the top 40 PolSAR features. For August 31, 2017, the model ach-
ieved an accuracy of 0.8279, a precision of 0.8295, and a recall of
0.8176; the F1 score and IoU were 0.8235 and 0.7000, respectively,
reflecting a moderate overlap between the predicted and actual flooded
areas. For September 2, 2017, the model performed better, exhibiting an
accuracy of 0.8518, a precision of 0.8565, and a recall of 0.8244; its F1
score and IoU also improved to 0.8401 and 0.7244, respectively, indi-
cating a closer agreement between the predictions and the actual ob-
servations. These test results demonstrate that the model can detect
flooded areas satisfactorily, with an average accuracy, precision, recall,
F1 score, and IoU of 0.8399, 0.8430, 0.8210, 0.8318, and 0.7122,
respectively. Overall, the model could accurately and reliably predict
flooded and non-flooded areas, showing consistently strong perfor-
mance across both dates.

However, the performance metrics of the DT-RFE-CNN model for the
Brazos flight path were expectedly not as strong as those for the Lumber
flight path. This suggests that unless the model is tested in the same
region as that on which it was trained, a certain degree of performance
degradation is inevitable. This seems to be largely due to the differences
in land cover between Texas and North Carolina. Texas is covered pre-
dominantly by rangeland and urban areas, whereas North Carolina is
characterized by extensive forests and agricultural fields. With its
widespread distribution of pine and deciduous forests, North Carolina
experiences more backscattering in flood-prone areas beneath the forest
canopy. This ultimately alters the characteristics of the PolSAR features,
reducing the effectiveness of the DT-RFE-CNN model when trained on
North Carolina and tested on a different region such as Texas.

The aforementioned discrepancy highlights the need to improve the
model’s robustness. This could potentially be achieved by incorporating
supplementary data, such as land use, elevation, and proximity to water
resources, which could improve the generalizability of the model to
other regions. Additionally, further analyses involving a comparison of
error rates across different land cover types, particularly in the Houston
area, could be conducted to determine the land cover types contributing
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Table 11
Performance metrics of the DT-RFE-CNN model when predicting flood map over
Brazos flight path.

Date Accuracy Precision Recall F1 Score IoU
August 31, 2017 0.8279 0.8295 0.8176 0.8235 0.7000
September 2, 2017 0.8518 0.8565 0.8244 0.8401 0.7244

most to the model’s inaccuracies. Such enhancements should be pursued
in future work to refine the proposed DT-RFE-CNN model.

6. Conclusion

In this study, we introduced an innovative hybrid approach for flood
detection. This approach involves extracting PolSAR features through
various PolSAR decompositions, selecting independent features via
multicollinearity analysis, ranking the features based on their impor-
tance using the DT-RFE method, and finally detecting flooded areas
using a CNN model. The DT-RFE-CNN model was trained and tested
over the Lumber flight path in North Carolina during Hurricane Flor-
ence, using sample flood and non-flood polygons over the study area
obtained from visible imagery (Planet true-color and UAVSAR false-
color RGB images) for September 18, 2018.

Different numbers of PolSAR features were used as input for the DT-
RFE-CNN model to examine the dependence of the model’s performance
on the number of features. The results highlighted a considerable
improvement in the evaluation metrics upon increasing the number of
features from 1 to 10 but no significant enhancement with a further
addition of features. The model achieved the best performance when
utilizing the top 40 PolSAR features, exhibiting an accuracy of 0.9724, a
precision of 0.9823, a recall of 0.9596, an F1 score of 0.9708, and an IoU
of 0.9433 in the testing stage.

To further evaluate the DT-RFE-CNN model, it was tested over the
Lumber flight path in North Carolina for the remaining four days of
Hurricane Florence (September 19, 20, 22, and 23, 2018). The results
demonstrated that the model could reliably map flooded regions even
for dates on which it had not been trained. The corresponding average
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Fig. 17. Flood maps predicted by the trained DT-RFE-CNN model during Hurricane Harvey: (a) August 31, 2017, and (b) September 2, 2017.
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test metrics were as follows: an accuracy of 0.9304, a precision of
0.9089, a recall of 0.9584, an F1 score of 0.9324, and an IoU of 0.8738.
These results underscore the model’s strong capability to accurately
predict flood maps across different temporal instances.

The performance of the DT-RFE-CNN model, which uses the optimal
PoISAR features, was compared with that of a CNN model utilizing
PoISAR data. In the test stage, the PolSAR data-based CNN model
exhibited an accuracy of 0.8988, a precision of 0.9051, a recall of
0.8810, an F1 score of 0.8929, and an IoU of 0.8065, thus being out-
performed by the DT-RFE-CNN model across all metrics. These results
indicate that the use of PolSAR features in the DT-RFE-CNN model
substantially enhanced flood mapping accuracy and reliability
compared with using PolSAR data alone. In addition, the DT-RFE-CNN
model significantly outperformed both the classical Otsu thresholding
method and state-of-the-art FT-Transformer model, even when using
identical features (selected by DT-RFE). Additionally, the DT-RFE-CNN
model’s generalizability was assessed by using it to predict the flood
map over the Brazos flight path in Texas for two dates during Hurricane
Harvey. The test results showed that the model could detect flooded
areas satisfactorily, with an accuracy of 0.8399, a precision of 0.8430, a
recall of 0.8210, an F1 score of 0.8318, and an IoU of 0.7122 on average.
However, as anticipated, the performance for the Brazos flight path was
weaker. This seems to be largely due to the differences in land cover
between Texas and North Carolina.

The proposed DT-RFE-CNN model integrates various components
into a cohesive framework, achieving promising performance in flood
detection. Particularly noteworthy are the novel aspects of using a wide
range of decompositions to extract PolSAR features, addressing multi-
collinearity, and employing feature selection techniques to utilize the
extracted features effectively—approaches not typically undertaken in
previous research. Additionally, while the proposed model requires
improvements to overcome the challenges posed by regional differences,
the application of an ML model trained in one region to a completely
different region without prior information still holds significant poten-
tial. The findings of this study are expected to facilitate flood monitoring
and response efforts.
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