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A B S T R A C T

Accurate identification of inundated areas is crucial for mitigating the impacts of flooding, which causes

numerous casualties and significant economic losses. While polarimetric synthetic aperture radar (PolSAR) data
have been utilized to detect inundated regions, the information contained within PolSAR features remains

severely underutilized. We introduce a novel approach that involves extracting a large number of PolSAR fea-

tures through various PolSAR decomposition techniques, selecting the most important ones using the decision

tree–recursive feature elimination (DT-RFE) method, and ultimately detecting inundation using a convolutional

neural network (CNN) model. The hybrid DT-RFE–CNN model was trained and tested over a region in south-

eastern North Carolina during Hurricane Florence on September 18, 2018, using PolSAR features derived from

the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). In terms of flood-mapping efficacy, the DT-
RFE–CNN model outperformed a CNN model that used only PolSAR data across all metrics in both the training

and testing stages. The performance of the trained DT-RFE–CNN model was evaluated by testing it over the same

region for four more days (September 19, 20, 22, and 23, 2018); it achieved an average accuracy, precision,

recall, F1 score, and intersection-over-union of 0.9304, 0.9089, 0.9584, 0.9324, and 0.8738, respectively, out-

performing both the classical Otsu method and the FT-Transformer model using features selected by DT-RFE.

Finally, we assessed the model’s generalizability by mapping another significant flood event, caused by Hurri-
cane Harvey in Texas between August and September 2017. Based on the results, the hybrid model can accu-

rately detect flooding, even in regions on which it has not been trained. Thus, the proposed method can facilitate
flood monitoring and response efforts.

1. Introduction

Flooding is one of the deadliest forms of natural disasters globally,

causing numerous casualties and significant economic losses (Liang and
Liu, 2020). Recently, an increasing population density near rivers,

climate change, increasing rainfall, and rising sea levels have height-

ened the threat of flood damage even further (Tellman et al., 2021).

According to a 2021 report by National Oceanic and Atmospheric

Administration (Sweet et al., 2021), the frequency of typical damage-

causing floods is expected to increase more than tenfold by 2050, and
this could be exacerbated by regional factors. The report also highlights

that without the implementation of additional risk-reduction measures,

coastal infrastructure, communities, and ecosystems will become more

vulnerable and be impacted more severely. Thus, the potential economic
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impact on flood-prone communities underscores the urgent need for

adaptive measures to mitigate flood risk and damage.
Hurricane-induced floods have resulted in significant losses in terms

of infrastructure and human life. For instance, in 2017, Hurricane

Harvey caused excessive rainfall in the densely populated Houston

metropolitan area of Texas, flooding over 300,000 buildings and

approximately 500,000 vehicles (Martinaitis et al., 2021). The hurricane

affected 13 million people and destroyed over 100,000 homes, resulting

in economic losses of approximately $125 billion (Blake and Zelinsky,

2018; Shultz and Galea, 2017). In 2018, Hurricane Florence caused

flooding in North Carolina (NC), leading to 22 direct fatalities in the
United States (Stewart and Berg, 2019) and approximately $24 billion in

damages (Callaghan, 2020). In 2024, Hurricane Helene triggered cata-

strophic flooding in the southeastern United States, resulting in 219
fatalities and an estimated $79.5 billion in damages (Smith, 2025).

One of the major challenges when responding to flooding is accu-
rately defining the extent of the affected area to gain an overall

perspective of the incident (Rahman and Thakur, 2018). Accurate

mapping of flood extent provides essential baseline information, facili-
tating informed decision-making and the development of effective plans

for flood mitigation efforts (Mohammadi et al., 2017). In essence, ac-
curate flood inundation mapping over large areas is a critical initial step
in flood disaster management programs and rapid-response operations
post flood disasters, allowing resources to be allocated to affected areas
(Schumann et al., 2018). Additionally, identifying inundated areas is

necessary for generating flood vulnerability, risk, and hazard maps,

which are vital for disaster management authorities (Mahmoud and

Gan, 2018; Swain et al., 2020). The value of this information is realized

when details about the inundated areas are shared in time with the

authorities (Manavalan, 2017). With weather anomalies occurring more

frequently, detecting inundated areas faster and more accurately is

imperative for effective disaster response (Uddin et al., 2021). Inaccu-

rate flood detection leads to unreliable flood vulnerability, risk, and
hazard maps, ultimately impairing the capacity to forecast, prepare for,

respond to, and recover from floods (Razavi-Termeh et al., 2023).

Hence, accurate flood detection methodologies represent a critical ne-
cessity for effectively mitigating the growing risks associated with

floods.
Remote sensing (RS) technology is being increasingly utilized for

flood monitoring as it offers the capability to observe spatial distribution
at high temporal resolutions (Brivio et al., 2002; Lee et al., 2023; Rättich

et al., 2020; Sun et al., 2017). Regarding flood events, RS technology is
crucial, especially during the response phase, as it can provide the in-

formation necessary for mapping and monitoring flood areas in a cost-
effective and timely manner (Amitrano et al., 2018; Martinis et al.,

2015). Studies have utilized various optical satellites for flood detection
(Alganci et al., 2019; Fayne et al., 2017; Güvel et al., 2022; Mehmood

et al., 2021). However, poor weather conditions, such as clouds, rain,

and fog, can impact optical sensors, precluding the production of high-

quality images (Musa et al., 2015). Moreover, optical satellites cannot

detect water in areas covered by vegetation (Musa et al., 2015). Addi-

tionally, optical satellites that utilize visible light can be operated only

during the day as they rely on solar radiation reflection (Manavalan,
2017; Melancon et al., 2021; Musa et al., 2015).

Synthetic aperture radar (SAR) is widely acknowledged as a viable

solution to the aforementioned problems (Manavalan, 2017; Rahman

and Thakur, 2018; Sun et al., 2017). Unlike optical sensors that passively

detect color characteristics based on the absorption and reflection of
visible light, SAR actively emits microwaves and measures the reflected
signals (Sommervold et al., 2023). Additionally, while optical sensors

cannot monitor the land surface in cloudy conditions, SAR can operate

under all weather conditions, penetrating visual obstructions such as

clouds and fog (McNairn and Shang, 2016; Wang et al., 2019). SAR

sensors operate at various frequencies, including the L-, C-, and X-bands

corresponding to wavelengths of 24, 5.66, and 3 cm, respectively (Adeli

et al., 2021). In general, longer wavelengths are more effective in

penetrating vegetation, enabling the detection of floodwaters beneath
forest canopies (Pierdicca et al., 2018). This capability makes SAR

particularly valuable for continuous monitoring and time-sensitive ap-

plications (Edrich, 2004), enabling real-time assessment of flooded areas
regardless of weather conditions or time of day (Chapman et al., 2015;

Clement et al., 2018; Manavalan, 2017; Moreira et al., 2013; Musa et al.,

2015).

Various studies have demonstrated the effectiveness of SAR in

mapping surface water (Kavats et al., 2022; Pham-Duc et al., 2017),

wetlands (Adeli et al., 2020;White et al., 2015), flood extent (Long et al.,
2014; Ouled Sghaier et al., 2018), vegetation (Furtado et al., 2016), land

cover (Waske and Braun, 2009), and snow cover (He et al., 2017; Tsai

et al., 2019). Among various SAR bands, the L-band is known to be

particularly effective in mapping and identifying inundated areas

(Martinis and Rieke, 2015; Ramsey III et al., 2013; Richards et al., 1987;

Wang and Imhoff, 1993). In addition, the Uninhabited Aerial Vehicle

Synthetic Aperture Radar (UAVSAR) provides data with a spatial reso-

lutions finer than 10 m, offering greater detail than open-access optical
satellite data such as Sentinel-2 and Landsat 8 (Fore et al., 2015; Huang

et al., 2021; Phang et al., 2023).

The simplest approach for flood area mapping involves applying a
certain threshold to the SAR backscatter values (Manavalan, 2017).

Various studies have employed SAR data with the threshold method to

map inundated regions across different scales, utilizing the character-

istic low backscatter from open water surfaces (Costa, 2004; Guo, 2000;

Liu et al., 2002; Matgen et al., 2011; Rahman and Thakur, 2018; Schu-

mann et al., 2010; Song et al., 2007; Yamada, 2001). An appropriate

threshold is manually determined through trial and error by visually

inspecting the image histogram in a supervised manner (Manavalan,

2017). However, careful attention is required in flood mapping from
SAR images as some areas, such as high-altitude regions, shadows,

runways, and extensive road networks, may show similar reflectance to
inundated regions (Manavalan, 2017). Furthermore, challenges such as

speckle noise and uneven grayscale distribution in SAR images often

cause traditional methods to fall short of the requirements for large-scale

applications (J. Wang et al., 2022). Thus, the integration of SAR data

with advanced flood inundation mapping algorithms is becoming

increasingly necessary.

Polarimetric synthetic aperture radar (PolSAR) systems transmit

electromagnetic waves in various polarization states, providing more

information than conventional SAR systems (Aghababaee and Sahebi,

2018; Pallotta and Orlando, 2018). To enhance the classification accu-
racy for ground objects, extracting their features from PolSAR data is

crucial (Li et al., 2018; Liu et al., 2022; Zhang et al., 2021). PolSAR

decomposition, also frequently referred to more broadly as polarimetric

decomposition, is a widely used technique for analyzing scattering

mechanisms and extracting features from ground objects (Richards,

2009). The application of features derived from PolSAR decomposition

often leads to superior mapping outcomes compared with those ach-

ieved using conventional SAR data alone. For example, PolSAR de-

compositions have been used for vegetation mapping (Furtado et al.,

2016), urban mapping (Duan et al., 2021), the mapping of plant func-

tional types in wetlands (Morandeira et al., 2016), and land cover

classification (Khosravi et al., 2018; Zhao and Jiang, 2022). The primary
objective of PolSAR decompositions is to distinguish backscattered sig-

nals based on the scattering mechanism. Although PolSAR features (also

referred to more broadly as polarimetric features) have been used in

various applications (Duan et al., 2021; Furtado et al., 2016; Han et al.,

2020; Khosravi et al., 2018; Morandeira et al., 2016; Zhang et al., 2024;

Zhao and Jiang, 2022), the implicit information contained in them has

yet to be utilized for flood mapping. Polarimetric decompositions are
crucial as they can directly enhance flood detection. Numerous polari-
metric decomposition models have been introduced to investigate

scattering parameters (Lee and Pottier, 2017). The outcomes of polari-

metric decomposition have a significant impact on subsequent appli-
cations (Chen et al., 2023). Consequently, employing polarimetric
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decomposition methods that can efficiently and accurately extract fea-
tures from ground objects is crucial.

Recently, the combination of machine learning (ML) with SAR and

PolSAR data has been gaining increasing attention in the realm of flood
inundation mapping (Bentivoglio et al., 2022; Verma et al., 2023; J.

Wang et al., 2022). Studies have leveraged the advantages of various

ML-based image classification approaches, primarily by integrating

multiple image-processing functions to distinguish inundated pixels

from other pixels with similar reflectance, thereby enhancing mapping
accuracy (Karim et al., 2023). In these methods, ML-based approaches

are trained using available reference flood maps to recognize classifi-
cation parameters. Notably, the development of ML techniques such as

random forest, support vector machine (SVM), and convolutional neural

network (CNN) has significantly facilitated the processing of large vol-
umes of multi-temporal SAR data (Banks et al., 2019; Chen et al., 2018;

Mahdianpari et al., 2017; Nemni et al., 2020; Thanh Noi and Kappas,

2018). AmongML techniques, CNNs are renowned for their performance

in image recognition tasks and are widely used in vegetation mapping

(Sun et al., 2023), flood detection (Andrew et al., 2023), land cover

classification (Wang et al., 2015), and forest monitoring (Brovelli et al.,
2020) based on SAR data. However, the identification of the most

suitable PolSAR features is widely recognized as a crucial prerequisite

for implementing CNNs (Plank et al., 2017).

The derivation of PolSAR features using various decomposition

methods and their optimal selection using a robust ML technique are

significantly advantageous in flood mapping. When combined with a
CNN model, PolSAR features could be valuable for accurate flood
mapping. Accordingly, this study introduces a novel approach for flood
detection using L-band fully polarized PolSAR images obtained from

Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). First,

multiple decomposition techniques, such as Freeman–Durden decom-

position (Freeman and Durden, 1998) and H/A/Alpha decomposition

(Cloude and Pottier, 1997), are utilized to generate 100 PolSAR features

from PolSAR data. Subsequently, the decision tree–recursive feature

elimination (DT-RFE) algorithm is used to select the most important

features, which enhances the model’s efficiency in distinguishing be-
tween flood and non-flood areas. Finally, a CNN model is employed for
high-resolution flood segmentation to intricately map flood inundation.
The model is trained and tested over a flight path across the Lumber
River in the southeastern region of North Carolina during Hurricane

Florence on September 18, 2018. Then, it is evaluated over the same

region on four more dates (September 19, 20, 22, and 23, 2018). Finally,

the model’s generalizability is validated by mapping floods caused by
Hurricane Harvey in Texas on August 31 and September 2, 2017.

2. Study area and data

2.1. Study area

This study focused on Hurricane Florence, which impacted south-

eastern NC in September 2018. Hurricane Florence was an intense, long-

lasting hurricane that triggered substantial devastation in Carolina,

predominantly due to surface water flooding from heavy rains (Feaster

et al., 2018). It began as a robust tropical wave emerging from the west

coast of Africa on August 30, 2018. On September 11, it reached its peak

intensity, with winds of 67 m/s, becoming a Category 4 hurricane on the

Saffir–Simpson scale as it crossed the Atlantic (Stewart and Berg, 2019).
Florence made landfall as a Category 1 hurricane immediately south

of Wrightsville Beach, North Carolina, on September 14 (Feaster et al.,

2018). Thereafter, the forward speed of the hurricane decreased to

about 1.0 m/s, resulting in over 90.0 cm of rain in the southeastern

region of North Carolina for four days, which caused extensive flooding.
Hurricane Florence caused 22 direct fatalities across the United States

(Stewart and Berg, 2019). The National Center for Environmental In-

formation estimates that Florence caused around $24 billion in damage

from flooding and winds, which ranks it as the ninth most destructive

hurricane to strike the United States (Callaghan, 2020).

Fig. 1 shows maps of the study area in North Carolina—including the

annual land use in 2018—generated by the Landscape Change Moni-

toring System (LCMS) (U.S. Department of Agriculture, 2024), along

with an elevation map from the Shuttle Radar Topography Mission

(SRTM) (NASA JPL, 2013). The study area covers a specific UAVSAR
flight path along the Lumber River in southeastern North Carolina. The
area is located in the lower coastal plain; the river traverses the coastal

plain, flowing into the Atlantic Ocean. According to the Köppen climate
classification, the region falls under the humid subtropical climate

category (Rubel and Kottek, 2010). Summers are hot and extremely

humid, while winters are cool, with occasional, brief cold spells (Wang

et al., 2022). During the Atlantic hurricane season, tropical cyclones can

cause extreme rainfall events, potentially triggering severe flooding di-
sasters, particularly during the peak period, i.e., mid-August to mid-

October (Sayemuzzaman and Jha, 2014).

The inner coastal plains of North Carolina are mostly flat, with a
gradual decline in elevation toward the Atlantic Ocean. The local

landscape is characterized by dominant land cover types comprising

agriculture fields and forests (Wang et al., 2022). Considering the

abundant vegetation in the study area, much of the flooding could be
hidden in visible imagery, which may reduce the effectiveness of flood
mapping efforts (Melancon et al., 2021).

2.2. UAVSAR data

UAVSAR comprises a PolSAR unit mounted on an aerial vehicle to

acquire data repetitively over a defined path of interest. The vehicle is a
NASA Gulfstream-III jet featuring an onboard navigation system based

on real-time GPS to ensure the aircraft stays within 10 m of its planned

flight path (Lou, 2022; Melancon et al., 2021). UAVSAR uses a quad-pol
L-band SAR unit operating at a frequency of 1.26 GHz, with viewing

angles of 25–60◦ (Rosen et al., 2007). The SAR sensors operate in the L
(24 cm wavelength), C (5.66 cm wavelength), and X (3 cm wavelength)

bands (Adeli et al., 2021). The relatively longer wavelength of the L-

band enables deeper penetration and better identification of ground

terrain, allowing the sensors to map and identify more inundated areas

than those in the other bands (Martinis and Rieke, 2015; Ramsey III

et al., 2013; Richards et al., 1987; Wang and Imhoff, 1993). Moreover,

PolSAR (or quad-pol SAR) sensors, which can transmit and receive four

types of signals, enable the analysis of diverse scattering mechanisms

generated by interactions of the electromagnetic waves with surface

objects (Babu et al., 2020; Melancon et al., 2021; Tsyganskaya et al.,

2018; Ullmann et al., 2016; White et al., 2015).

NASA conducted UAVSAR flights over several key river basins in
North Carolina from September 17 to 23, 2018, with up to six revisits as

a reaction to Hurricane Florence. The UAVSAR data portal (http

s://uavsar.jpl.nasa.gov/cgi-bin/data.pl) provides access to the gener-

ated dataset (Jet Propulsion Laboratory, 2023). Considering proximity

and observation frequency, we directed our attention to a specific flight
path (ID: lumber_31509) across the Lumber River. The study area is

hereinafter referred to as the “Lumber flight path.”
The PolSAR sensors installed on UAVSAR send and collect signals in

four combinations of horizontal and vertical directions, providing

components for four polarizations. Each pixel contains signal strength

and phase details and is stored in a complex form. These pixels can be

conveniently described using a complex scattering matrix S, which is

expressed as:

S =

[

SHH SHV
SVH SVV

]

(1)

where S is the polarized electromagnetic wave. In the subscript, the first
and second letters represent the polarizations of the transmitted and

received signals, respectively. V and H respectively denote the vertical

and horizontal polarizations of the electromagnetic wave. SHH, SHV , SVH,
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and SVV are referred to as single-look complex (SLC) products and are

not available in most regions, including our study area.

However, multi-look complex (MLC) products and ground range

detected (GRD) products are available for our study area. MLC products

are generated from SLC files by averaging multiple looks to reduce noise
and enhance data quality before classification (Cantalloube and Nahum,
2000; Melancon et al., 2021). GRD products are calibrated complex

cross-products from MLC products that are mapped onto the ground

using basic geographic coordinates (Jet Propulsion Laboratory, 2015).

Both MLC and GRD products include a total of six elements: three real

floating-point files with four bytes per pixel (i.e., SHHS
*
HH, SHVS

*
HV ,

andSVVS
*
VV) and three complex floating-point files with eight bytes per

pixel (i.e., SHHS
*
HV , SHHS

*
VV ,andSHVS

*
VV), where S

* represents a conjugate

complex number. Eventually, GRD products are used to create the

covariance matrix (C3) or coherency matrix (T3) for PolSAR de-

compositions. In this study, we employed GRD products as the PolSAR

data.

2.3. UAVSAR false-color red, green, and blue (RGB) image

To obtain sample flood and non-flood polygons over the study area,
we generated a UAVSAR false-color RGB image of the study area. Fig. 2

shows the location of the Lumber flight path (our study area) within
southeastern North Carolina. Following the technique employed by

Melancon et al. (2021), we created a UAVSAR false-color RGB image for

September 18, 2018, via Freeman–Durden decomposition (Freeman and

Durden, 1998), which is one of the most popular PolSAR decompositions

(Fig. 2) and is widely used for analyzing SAR data (Ballester-Berman and

Lopez-Sanchez, 2010). It helps differentiate the manners in which radar

signals interact with surfaces, simplifying the interpretation of the

scattering patterns seen in radar images (An and Lin, 2019). This tech-

nique plays a key role in understanding how radar waves reflect off

Fig. 1. Study area in North Carolina: (a) land use and (b) elevation.
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various features on the ground, such as buildings, forests, or water.

Freeman–Durden decomposition, can separate these interactions into

three main types of scattering, each linked to different physical pro-

cesses (Han et al., 2018).

The Freeman–Durden method produces three arrays, each corre-

sponding to a specific scattering mechanism that matches the intensity

of the backscatter patterns in the radar image (Freeman and Durden,

1993). In false-color RGB representations of Freeman–Durden de-

compositions, these three scattering mechanisms are typically mapped

to different color channels. The first channel (red) highlights double-
bounce scattering, where radar signals bounce between two surfaces,

such as between the ground and a building or tree trunk. The second

channel (green) represents volume scattering, observed in more com-

plex areas such as forests, where the radar signal bounces around within

trees or vegetation. The third channel (blue) represents single scattering,

which occurs on flat surfaces such as water or smooth terrain (Cui et al.,
2012; Freeman and Durden, 1993; Q. Xie et al., 2018). In Fig. 2, the

black-shaded area in the lower right part of the swath is a lake. The data

from September 18, 2018, were used for both training and testing, while

the data from the remaining dates were reserved exclusively for further

external validation.

3. Methodology

3.1. Model development

The innovative hybrid approach for flood detection introduced in
this study comprises the following five steps (Fig. 3):

(1) Data preprocessing: This involves obtaining PolSAR features

through PolSAR decompositions, reducing speckle noise, and a

Fig. 2. Location of Lumber flight path in North Carolina and corresponding UAVSAR false-color RGB image for September 18, 2018.

Fig. 3. Flowchart illustrating the hybrid PolSAR decomposition and DT-RFE–CNN model for flood mapping.
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multicollinearity analysis of PolSAR features using the variance inflation
factor (VIF). Details on PolSAR decomposition and speckle noise

reduction are provided in Section 3.2, while the use of VIF for addressing

multicollinearity is thoroughly covered in Section 3.3.

(2) Feature selection: The DT-RFE algorithm is used to select the

most important PolSAR features to maximize the accuracy of detecting

inundated regions. These features are then utilized as the input for the

CNN model. Section 3.4 describes the DT-RFE algorithm in detail.

(3) Class definition and sample collection: Sample flood and non-
flood polygons are obtained from visible imagery (namely, Planet

true-color and UAVSAR false-color RGB images) for September 18,

2018. These sample polygons serve as the outputs of the CNN model.

Details about flood and non-flood polygons are provided in Section 3.5.
(4) Training and testing of DT-RFE–CNN model: The input (PolSAR

features from Step 2) and output (flood and non-flood polygons from
Step 3) data for September 18, 2018, are divided into training and

testing sets. The training dataset is utilized to train the DT-RFE–CNN

model, while the testing dataset is used to assess its performance. The

CNN is employed for high-resolution flood segmentation to intricately
depict the extent of flooding, as described in Section 3.6. Furthermore,
manually specified flood and non-flood pixels for the subsequent days
(September 19, 20, 22, and 23, 2018) are employed for validation.

Finally, the generalizability of the trained DT-RFE–CNN model is eval-

uated over a region in Texas for August 31 and September 2, 2017,

during Hurricane Harvey.

(5) Evaluating the DT-RFE–CNN model: The performance of the

hybrid model over different domains and days is evaluated based on five
different metrics, namely accuracy, precision, recall, F1 score, and

intersection-over-union (IoU). The expressions for these metrics are

provided in Section 3.7.

3.2. PolSAR decompositions and speckle noise reduction

We used the PolSARPro v6.0 software to preprocess the PolSAR data

from UAVSAR (Pottier, 2023). This software is equipped with all the

modules needed for preprocessing data and creating PolSAR features. It

is an open-source program created by the European Space Agency. It can

utilize UAVSAR data to generate various PolSAR features using various

PolSAR decomposition techniques.

The UAVSAR data for the study area were available in GRD format.

The PolSAR data from UAVSAR represent calibrated multi-looks and are

purely binary, without any header bytes. They were available in

floating-point format with three 8-byte files (SHHS*HV , SHHS*VV , and
SHHS

*
VV) and three 4-byte files (SHHS*HH, SHVS*HV , and SVVS*VV). These were

used to derive the covariance matrix (C3), which is expressed as

(Woodhouse, 2017):

C3 =




〈SHHS*HH〉
̅̅̅
2

√
〈SHHS*HV〉 〈SHHS*VV〉̅̅̅

2
√

〈|SHH|2〉 2〈SHVS*HV〉
̅̅̅
2

√
〈SHVS*VV〉

〈|SHH|2〉
̅̅̅
2

√
〈SHHS*VV〉 〈SVVS*VV〉


 (2)

The primary objective of PolSAR decomposition is to differentiate

backscatter signals based on their scattering mechanisms (Cloude and

Pottier, 1996). Numerous PolSAR decompositions have been established

to investigate scattering parameters (Lee and Pottier, 2017). These are

generally divided into two categories: coherent and incoherent (Verma

et al., 2023). Coherent decompositions are ideal for analyzing pure

targets that yield complete polarimetric backscatter responses.

Conversely, incoherent decompositions are better suited for examining

distributed targets that produce partially polarized backscatter within a

single SAR cell (Verma et al., 2023).

The Freeman–Durden decomposition (FRE3), introduced by

Freeman and Durden (1998), was the first model-based PolSAR

decomposition. This approach involves calculating three power com-

ponents, which represent surface scattering, double-bounce scattering,

and volume scattering. However, the double-bounce scattering model is

designed specifically for tetrahedrons with a 0◦ orientation angle, which
potentially renders it less effective for urban environments, where larger

orientation angles are common (Chen et al., 2023).

To address the aforementioned issue, several models that fully

characterize the scattering mechanisms of tetrahedrons with varying

orientation angles have been proposed. Most of these models are de-

rivatives of the basic dihedral model suggested for FRE3 (Freeman and

Durden, 1998). Accordingly, the general four-component scattering

power decomposition (SIN4) was suggested, which involves directly

rotating the dihedral scattering model (Singh et al., 2013). Another

approach involves transforming the measured coherency matrix, a

notable example of which is the four-component decomposition (Y4O)

(Yamaguchi et al., 2006). In certain urban areas with specific orientation
angles, this decomposition method can amplify the proportion of

double-bounce energy scattering (Yamaguchi et al., 2011). Building on

the concept of rotating coherence matrices, advanced PolSAR decom-

position techniques such as the six-component scattering decomposition

(6SD) (Singh and Yamaguchi, 2018) and seven-component scattering

decomposition (7SD) (Singh et al., 2019) have been proposed. Addi-

tionally, several recent studies have introduced model-based de-

compositions (M E and Kumar, 2020; Ramya and Kumar, 2021; Shafai

and Kumar, 2020).

In this study, we aimed to extract PolSAR features using as many

methods as possible, obtaining 100 PolSAR features from a total of 18

PolSAR decompositions. Moreover, following the method used by Xu

et al. (2016) and Xie et al. (2018), a 3 × 3 sliding-window boxcar filter
was used to reduce speckle noise. Table 1 details the PolSAR decom-

position methods and the resulting PolSAR features used in this study.

3.3. Multicollinearity analysis

Multicollinearity arises when predictor variables in ML models

exhibit a strong correlation with one another (Vatcheva et al., 2016).

This can produce unstable coefficient estimates, reduce the clarity of
model interpretation, and compromise predictive performance. To

mitigate these challenges, evaluating the extent of multicollinearity

among the 100 PolSAR features calculated in this study is essential. One

widely used metric for assessing multicollinearity is VIF, which quan-

tifies the increase in the variance of a regression coefficient due to
collinearity among the predictors (O’brien, 2007).

A VIF of 1 indicates that no correlation exists between the predictor

variable and other variables, signifying the absence of multicollinearity.

VIF values between 1 and 5 suggest moderate correlation between

variables, which is generally not concerning. A VIF exceeding 5 indicates

strong correlation and potential multicollinearity issues that warrant

further investigation. A VIF greater than 10 is considered a sign of severe

multicollinearity that must be addressed (Kim, 2019; Vatcheva et al.,

2016). Detailed information regarding VIF has been provided by Dor-

mann et al. (2013) and Montgomery et al. (2021). In line with previous

studies (James et al., 2023; Menard, 2001; Vittinghoff et al., 2012), we

eliminated features with VIFs equal to or greater than 10.

3.4. DT-RFE

In ML and data analysis, feature selection is essential for enhancing

model performance and interpretability (Saeys et al., 2007). DT-RFE is

an effective feature selection approach that leverages the inherent

ranking of feature importance based on DTs (Awad and Fraihat, 2023;

Lian et al., 2020). By systematically removing less significant features,
this method refines the feature set, improving the accuracy and effi-
ciency of the model.

RFE is a wrapper-based feature selection technique that iteratively

focuses on smaller subsets of features. The process starts with training a

model on the entire feature set and ranking the features according to

their significance to the model. The least important features are
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subsequently discarded, and the model is then retrained. This cycle re-

peats until the optimal number of features remains (Guyon et al., 2002).

When implementing RFE, DT is used as the baseline model for

evaluating feature importance. DTs are particularly suitable for this task

because they inherently rank features based on their contribution to

reducing impurity (such as Gini impurity or entropy) at each split in the

tree. This ranking provides a straightforward mechanism to identify and

eliminate the least important features (Awad and Fraihat, 2023).

The procedure is initialized with the full set of features in the dataset,

using which a DT is initially trained. The importance of each feature is

evaluated based on the trained model and is typically determined by the

total reduction in a criterion that the feature contributes. The features

are then ranked according to their importance, and the least significant
ones are removed. The model is retrained on the reduced set of features,

whereafter the remaining features are re-ranked. This process is iterated,

with the least important features being eliminated at each step, until the

desired number of features has been achieved (Awad and Fraihat, 2023;

Kuhn and Johnson, 2013).

DT-RFE offers several advantages as DTs can capture complex,

nonlinear relationships and interactions between features; thus, they are

ideal for datasets with such characteristics. They naturally quantify

feature importance, which simplifies the feature selection process. By
eliminating irrelevant or redundant features, DT-RFE can improve a

model’s performance, mitigate overfitting, and reduce computational
costs (Awad and Fraihat, 2023; Lian et al., 2020).

3.5. Training and testing data

Sample flood and non-flood polygons over the study area were ob-
tained from visible imagery (namely, Planet true-color and UAVSAR

false-color RGB images) for September 18, 2018. The Planet true-color

image was provided by Planet Lab, which is the first private data pro-
vider to contribute to the International Charter on Space and Major

Disasters. Planet Lab shares Planet true-color images (PlanetScope) with

the public during disasters such as Hurricane Florence (Melancon et al.,

2021). By offering timely access to satellite data, Planet facilitates

disaster response efforts, ensuring more efficient coordination and aid
deployment during critical events. The true-color image for the study

area during Hurricane Florence on September 18, 2018, was sourced

through the NASA Commercial Data Buy Pilot for FY19 (https://www.

planet.com/disaster/). This image was captured by digital cameras

installed on NOAA’s King Air turboprop aircraft at altitudes of

500–1,500 m (Melancon et al., 2021; National Oceanic and Atmospheric

Administration, 2024; Office of Marine and Aviation Operations, 2024).
The Planet visible image along with the UAVSAR false-color RGB image

were employed as references to detect sample flood and non-flood
pixels.

To collect ground reference data for training and testing the CNN

model, polygons representing flood and non-flood classes were manu-
ally digitized in ArcGIS 10.5 (Fig. 4). As illustrated, both the true-color

image from Planet and the UAVSAR false-color RGB composite were

used to generate flood and non-flood polygons. In creating these poly-
gons, the scattering intensities for single, double-bounce, and volume

scattering were analyzed across various land cover types. Flood pixels

displayed a distinct color pattern in the false-color Freeman–Durden

RGB composite, showing average RGB values of approximately 160 for

red, 83 for green, and 46 for blue, which produced orange and pink hues.

This color contrast is especially useful for identifying floodwaters,
particularly in forested areas where the double-bounce scattering

signature is more prominent (Martinez and Le Toan, 2007; Melancon

et al., 2021). To generate non-flood polygons, areas with distinct scat-
tering characteristics, such as dry forests, open water, urban areas, and

non-forest regions, were analyzed. Dry forests exhibit strong volume

scattering due to canopy interactions, along with moderate peaks in

single and double-bounce scattering, thereby producing a green hue.

Open water shows extremely low backscatter across all scattering types,

often approaching zero in cases of specular reflection; this distinguishes
it from the other land covers with a black hue. Urban areas are char-

acterized by high double-bounce scattering from building reflections,
which impart them with a distinct hue. Non-forest regions, including

grasslands and barren land, typically display low volume scattering and

minimal single scattering, which creates a blue hue (Melancon et al.,

2021).

We selected about 0.25% of the pixels in the UAVSAR image to train

and test the CNN model, based on recommendations by Colditz (2015),

Table 1

PolSAR decomposition techniques and resulting PolSAR features used in this

study; the features are prefixed with the abbreviated method and feature name.
Decomposition

technique

(abbreviation)

Number

of

features

PolSAR features Reference

Aghababaee

(AGH)

19 Alphap_mean, Alphap_SM1,

Alphap_SM2, Alphap_SM3,

M_SM1, M_SM2, M_SM3,

Orientation_max_mean,

Orientation_max_SM1,

Orientation_max_SM2,

Orientation_max_SM3,

Phip_mean, Phip_SM1,

Phip_SM2, Phip_SM3,

Tawp_mean, Tawp_SM1,

Tawp_SM2, Tawp_SM3

Aghababaee

and Sahebi

(2018)

An & Yang-3

(AN3)

3 AN3_Odd, AN3_Dbl, AN3_Vol An et al. (2010)

An & Yang-4

(AN4)

4 AN4_Odd, AN4_Dbl, AN4_Vol,

AN4_Hlx

An et al. (2011)

Arii-3 ANNED

(ANNED)

3 ANNED_Odd, ANNED_Dbl,

ANNED_Vol

Arii et al.

(2010)

Bhattacharya &

Frery-4

(BF4)

4 BF4_Odd, BF4_Dbl, BF4_Vol,

BF4_Hlx

Bhattacharya

et al. (2015)

Freeman-2

(FRE2)

2 FRE2_Ground, FRE2_Vol Freeman

(2007)

Freeman-3

(FRE3)

3 FRE3_Odd, FRE3_Dbl,

FRE3_Vol

Freeman and

Durden (1998)

H/A/Alpha

(HAA)

7 HAA_Entropy,

HAA_Anisotropy, HAA_Alpha,

HAA_Beta, HAA_Lambda,

HAA_Gamma, HAA_Delta

Cloude and

Pottier (1997)

Krogager

(KRO)

4 KRO_Teta, KRO_Kd, KRO_Kh,

KRO_Ks

Krogager

(1990)

L. Zhang-5

(MCSM)

5 MCSM_Odd, MCSM_Dbl,

MCSM_Vol, MCSM_Hlx,

MCSM_Wire

Zhang et al.

(2008)

Neumann

(NEU)

3 NEU_Tau,

NEU_Delta_NEU_Mod,

NEU_Delta_pha

Neumann

(2009)

Singh-4

(SIN4)

4 SIN4_Odd, SIN4_Dbl,

SIN4_Vol, SIN4_Hlx

Singh et al.

(2013)

Singh-

Yamaguchi-6

(6SD)

6 6SD_Odd, 6SD_Dbl, 6SD_Vol,

6SD_Hlx, 6SD_OD, 6SD_CD

Singh and

Yamaguchi

(2018)

Singh-7

(7SD)

7 7SD_Odd, 7SD_Dbl, 7SD_Vol,

7SD_Hlx, 7SD_OD, 7SD_MD,

7SD_CD

Singh et al.

(2019)

Touzi

(TSVM)

16 TSVM_Alpha_s,

TSVM_Alpha_s1,

TSVM_Alpha_s2,

TSVM_Alpha_s3, TSVM_Phi_s,

TSVM_Phi_s1, TSVM_Phi_s2,

TSVM_Phi_s3, TSVM_Psi,

TSVM_Psi1, TSVM_Psi2,

TSVM_Psi3, TSVM_Tau_m,

TSVM_Tau_m1,

TSVM_Tau_m2, TSVM_Tau_m3

Touzi (2007)

Van Zyl-3

(VZ3)

3 VZ3_Odd, VZ3_Dbl, VZ3_Vol Van Zyl (1993)

Yamaguchi-3

(YAM3)

3 YAM3_Odd, YAM3_Dbl,

YAM3_Vol

Cui et al.

(2012)

Yamaguchi-4

(Y4O)

4 Y4O_Odd, Y4O_Dbl, Y4O_Vol,

Y4O_Hlx

Yamaguchi

et al. (2005)
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Thanh Noi and Kappas (2018), and Melancon et al. (2021). A total of

222,175 pixels were generated to model flood, comprising 115,065

non-flood and 107,110 flood pixels. The entire set of pixels was split into
training and testing sets, with 80% (177,740 pixels) allocated for

training and 20% (44,435 pixels) for testing, following the protocol used

by Elkhrachy (2022).

Fig. 4 shows samples of the flood and non-flood polygons over the
study area on September 18, 2018, based on the Planet true-color and

UAVSAR false-color RGB images.

We also considered a portion of Texas affected by Hurricane Harvey

to evaluate the generalizability of the DT-RFE–CNN model. Only test

data were prepared for this region, which were generated through a

process similar to that described earlier. Specifically, for Hurricane
Harvey, testing samples comprising flood and non-flood polygons were
digitized from high-resolution imagery—including a UAVSAR false-

color RGB composite, Planet true-color images, and NOAA true-color

images acquired during Hurricane Harvey (National Oceanic and At-

mospheric Administration, 2017). The selected polygons comprised

29,232 flood and 30,316 non-flood pixels on August 31, 2017, and

22,272 flood and 24,884 non-flood pixels on September 2, 2017.

3.6. CNN

A CNN is a deep learning architecture designed for handling struc-

tured, grid-like data, such as images. It employs convolutional layers to

automatically identify and extract key features from input images by

applying different filters, thus generating feature maps (LeCun et al.,
2015). These feature maps are then downsampled using pooling layers

to reduce computational complexity and highlight important features.

Finally, fully connected layers are employed to classify the images based

on the features extracted by the preceding layers (Yamashita et al.,

2018).

Each convolutional layer includes a rectified linear unit (ReLU)

activation function to effectively capture nonlinear patterns between the

input and output variables. Let Zj represent the feature map in the j-th

layer. The output for the subsequent (j + 1-th) layer can be expressed as

follows:

Zj+1 = f
(

Wj+1 • Zj + bj+1
)

(3)

where Wj+1 and bj+1 represent the weight matrix and bias vector,

respectively, which are used to relate the feature maps of the j-th and j +

1-th layers to each other; f denotes the ReLU activation function. After

passing through the convolutional layer, the feature map from the final
pooling layer is flattened, which gradually reduces the feature di-

mensions to create a compact feature representation before the output

layer (Byun et al., 2023).

As the dataset used in this work included manually digitized poly-

gons, and as pixel-level labels were not available for the study area, we

adopted a CNN-2D model adapted for tabular-format data to efficiently
utilize the available labeled samples. Fig. 5 shows the structure of the

CNN model developed for inundation mapping. The architecture in-

cludes multiple layers specifically designed to distinguish between

flooded and non-flooded areas. The model comprises two convolutional
layers, two pooling layers, two fully connected layers, and one output

layer. The final layer is crucial for accurately identifying flooded areas.
Table 2 presents the detailed specifications of the CNN model.

3.7. Evaluation metrics

We evaluated the proposed model’s performance in detecting floo-
ded areas based on five indicators: accuracy, precision, recall, F1 score,
and IoU. Accuracy represents the proportion of correctly predicted

pixels among all the pixels. Precision denotes the proportion of correct

positive predictions, while recall reflects the proportion of actual posi-
tive cases that were correctly identified. F1 score is the harmonic mean
of precision and recall, offering a balancedmeasure of these twometrics;

a higher F1 score indicates a better balance between precision and

recall.

IoU is used to evaluate the overlap between the predicted area and

the ground-truth area. It is calculated as the intersection of the predicted

and actual regions divided by the area of their union. IoU ranges from

Fig. 4. Examples of manually selected flood and non-flood polygons based on Planet true-color and UAVSAR false-color RGB images.
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0 to 1, with 1 representing a perfect match between the prediction and

the ground truth and 0 indicating no overlap. Higher IoU values indicate

better model accuracy in detecting and delineating the flooded area. The
equations for calculating the aforementioned indicators are as follows:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(4)

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

F1 =
2× Precision× Recall

Precision+ Recall
(7)

IoU =
TP

TP+ FN + FP
(8)

where TP refers to true positive (the number of ground-truth flood pixels
correctly predicted by the model), FP represents false positive (the

number of ground-truth non-flood pixels incorrectly classified by the
model as flood pixels), FN indicates false negative (the number of

ground-truth flood pixels mistakenly predicted by the model as non-
flood pixels), and TN denotes true negative (the number of ground-

truth non-flood pixels correctly predicted by the model).

3.8. Different approaches for ood mapping

In this study, two additional approaches were considered for com-

parison with the DT-RFE–CNNmodel. First, we applied the Otsu method

(Otsu, 1979), a classical thresholding technique. Second, we replaced

the CNN with a more recent ML model, i.e., the feature tokenizer and

transformer (FT-Transformer) model (Gorishniy et al., 2023), a state-of-

the-art model designed for tabular data. For this model, the input fea-

tures selected via DT-RFE were used.

3.8.1. Ostu thresholding method

Thresholding is a classical approach for detecting flooded areas using
SAR data (Cao et al., 2019). The thresholds of backscatter data between

flooded and non-flooded areas are typically determined by trial and
error (Rahman and Thakur, 2018), which is subjective and time-

consuming (Tong et al., 2018). To address these limitations and

enhance accuracy, automated binary thresholding methods (Moharrami

et al., 2021) have been developed for image segmentation and pattern

recognition (Sezgin and Sankur, 2004; Wunnava et al., 2020).

Among automated thresholding methods, the Otsu method is

regarded as one of the most effective (Moharrami et al., 2021) for flood
representation using SAR images (Du et al., 2014; Li et al., 2014; Pan

et al., 2020; Zhang et al., 2020). This method iteratively examines all

possible values to determine the optimal threshold. The objective is to

maximize the inter-class variance between two segments and minimize

the intra-class variance (Otsu, 1979).

In the Otsu method, pixels are divided into two classes: Class 1 (C1)

in the range [a, t] and Class 2 (C2) in the range [t, b], where t is the

threshold. The optimal threshold is determined as the value that maxi-

mizes the inter-class variance between C1 (flooded areas) and C2 (non-
flooded areas) as
σ2 = Pc1 • (μc1  μ)2+ Pc2 • (μc2  μ)2 (9)

where σ2 represents the inter-class variance between C1 and C2. Pc1 and
Pc2 are the probabilities of pixel distributions in C1 and C2, respectively.

μc1 and μc2 are the mean values of the pixels in C1 and C2, respectively,
and μ is the mean value of the indexed image. Following Dang et al.
(2024), we used VV polarization, which is known to be the most effec-

tive for distinguishing flooded areas among various types of

backscattering.

3.8.2. FT-transformer

FT-Transformer represents a modified architecture of the Trans-

former model (Vaswani et al., 2017), designed to handle both contin-

uous and categorical features in tabular or time-series data (Gorishniy

et al., 2021). The concept is to convert all continuous and categorical

features into token embeddings and then learn the relationships among

these features using the self-attention mechanism of the Transformer

(Gorishniy et al., 2021).

Fig. 6 illustrates the architecture of FT-Transformer. The feature

tokenizer module encodes numerical and categorical features into to-

kens that can be input to the Transformer. This structure is specifically
designed to adapt tabular data for Transformer-based models. Subse-

quently, the Transformer module captures the inter-feature de-

pendencies through feature-wise self-attention. Lastly, a special

Fig. 5. Structure of the CNN model for flood mapping.

Table 2

Specifications of the CNN model (N: number of input features).

Layer Shape Output size

Input (N, 1, 32) –

Conv2D (3 × 3, 32 filters) (N, 1, 32)

BatchNorm – (N, 1, 32)

MaxPooling2D (2 × 2) (N/2, 1, 32)

Dropout (Rate: 0.25) (N/2, 1, 32)

Conv2D (3 × 3, 64 filters) (N/2, 1, 64)

BatchNorm – (N/2, 1, 64)

MaxPooling2D (2 × 2) (N/4, 1, 64)

Dropout (Rate: 0.25) (N/4, 1, 64)

Flatten – N/4 × 64

Dense (128 units) 128

Dropout (Rate: 0.5) 128

Dense (1 unit) 1
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classification token (CLS) integrates information from all feature em-

beddings to generate the final prediction. Details of the FT-Transformer
model can be found in the work of Gorishniy et al. (2021).

4. Results and discussions

4.1. Flood mapping over Lumber ight path in North Carolina

4.1.1. Multicollinearity analysis

To select independent PolSAR features from the pool of 100 gener-

ated features, we conducted a multicollinearity analysis based on VIF.

Following a previous method (James et al., 2023; Menard, 2001; Vit-

tinghoff et al., 2012), 49 features with a VIF of less than 10 were selected

for flood mapping (Table 3).

4.1.2. Feature selection

Table 4 shows the importance of the features obtained using DT-RFE.

The Alpha_s feature from the Touzi method demonstrated over-

whelmingly high importance. This feature measures the magnitude of

symmetric scattering, ranging from 0◦ to 90◦, where values near

0◦ correspond to surface scattering, those around 45◦ indicate volume
scattering, and those near 90◦ represent double-bounce scattering

(Dabboor and Shokr, 2023). Moreover, the top 7 and 10 features

respectively accounted for approximately 85% and 90% of the total

importance, which indicates that the importance was heavily concen-

trated on only a few features. However, drawing definitive conclusions
on the number of features needed to maximize the CNN model’s accu-

racy is difficult.

4.1.3. Model evaluation

Table 5 summarizes the DT-RFE–CNN model’s performance in

inundation mapping for September 18, 2018, using different numbers of

the most important features listed in Table 4. For example, the first and
second rows in Table 5 present the outcomes of utilizing only the most

important PolSAR feature (i.e., TSVM_Alpha_s) and the top five features
(i.e., TSVM_Alpha_s, ANNED_Odd, 7SD_MD, HAA_Anisotropy, and

AN4_Vol), respectively. When utilizing only the most important feature,

the model achieved accuracy, precision, recall, F1 score, and IoU values

of 0.8909, 0.9155, 0.8527, 0.8830, and 0.7905 for the training phase

and 0.8903, 0.9113, 0.8539, 0.8816, and 0.7884 for the testing phase,

respectively. Expectedly, utilizing more PolSAR features improves the

model’s performance, allowing it to map flooded areas more accurately.
The model performed the best when using the top 40 features (among

the 49 shown in Table 4), demonstrating strong results across all metrics.

On the training data, the model achieved an accuracy of 0.9750, a

precision of 0.9866, a recall of 0.9613, an F1 score of 0.9738, and an IoU

of 0.9489; on the testing data, it maintained robust performance, with

an accuracy of 0.9724, a precision of 0.9823, a recall of 0.9596, an F1

score of 0.9708, and an IoU of 0.9433. The best-performing DT-

RFE–CNN model showed a balance between precision and recall. This

balance means that the model could accurately predict both positive and

negative cases while effectively limiting false positives and false nega-

tives, which enables more reliable decision-making (Saito and

Rehmsmeier, 2015). Additionally, similar precision and recall values

tend to maximize the F1 score (the harmonic average of these two

metrics), indicating strong overall performance, especially on imbal-

anced datasets. This results in a more trustworthy model, capable of

consistent performance across various scenarios.

For a computer equipped with an AMD Ryzen Threadripper PRO

7995WX 96-core CPU, the times required to train and test the DT-

RFE–CNN model with the top 1, 40, and 49 features were about 29, 46,

and 53 min, respectively.

We examined how the number of features affects both accuracy and

the F1 score because accuracymeasures the overall proportion of correct

predictions across all classes while F1 score combines precision and

recall into a single, balanced performance metric. Fig. 7 illustrates the

variation in these metrics with the number of PolSAR features during the

training and testing phases. A sharp rise in the metrics is observed when

the number of features increases from 1 to 10, but the behavior becomes

asymptotic with the addition of further features. This indicates that most

of the information required for mapping inundated areas exists within

the top 10 features and that using more features does not improve the

results significantly. The features generated through Touzi decomposi-
tion (Touzi, 2007) account for four of the top 10 features shown in

Table 4. This highlights the significance of understanding scattering
characteristics through an eigenvector analysis technique, such as Touzi

decomposition.

The evaluation results show that the DT-RFE–CNN model achieved

the highest accuracy (0.9751) and F1 score (0.9738) during the training

stage when utilizing the top 40 PolSAR features. With the same features

in the testing stage, the model again achieved the highest accuracy

(0.9724) and F1 score (0.9708). Overall, three conclusions can be drawn

from the results shown in Table 5 and Fig. 7: (1) using more than 10

Fig. 6. FT-Transformer architecture.

Table 3

PolSAR features selected through VIF-based multicollinearity analysis.

PolSAR feature VIF PolSAR feature VIF

AGH_Alphap_SM1 4.44 NEU_Delta_pha 3.02

AGH_Orientation_max_SM2 1.39 NEU_Tau 5.28

AGH_Orientation_max_mean 1.69 SIN4_Hlx < 0.01

AGH_Phip_SM1 1.46 7SD_CD 3.22

AGH_Phip_SM2 2.05 7SD_Hlx 3.70

AGH_Phip_SM3 2.24 7SD_MD 5.39

AGH_Tawp_SM1 3.43 7SD_OD 2.96

AGH_Tawp_SM2 2.51 7SD_Vol 4.59

AGH_Tawp_SM3 1.76 6SD_CD 4.78

AN4_Vol 9.99 6SD_OD 4.40

ANNED_Odd 3.52 6SD_Vol 7.77

BF4_Vol 2.45 TSVM_Alpha_s 4.23

HAA_Alpha 2.43 TSVM_Alpha_s2 3.37

HAA_Anisotropy 2.26 TSVM_Alpha_s3 1.44

HAA_Beta 3.14 TSVM_Phi_s 2.34

HAA_Delta 1.48 TSVM_Phi_s2 2.85

HAA_Entropy 7.81 TSVM_Phi_s3 1.40

HAA_Gamma 1.94 TSVM_Psi1 1.73

KRO_Kd 1.22 TSVM_Psi2 1.65

KRO_Kh 1.07 TSVM_Psi3 2.21

KRO_Ks 1.00 TSVM_Tau_m1 1.32

KRO_Teta 1.16 TSVM_Tau_m2 1.42

MCSM_Hlx < 0.01 TSVM_Tau_m3 1.27

MCSM_Vol < 0.01 Y4O_Hlx 4.94

MCSM_Wire 8.53
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PolSAR features does not improve model performance significantly; (2)
most of the information required for flood mapping is concentrated

within the top 10 features; and (3) the model performs best in terms of

both accuracy and F1 score across the training and testing phases when

using the top 40 PolSAR features.

The confusion matrix in Fig. 8 illustrates the performance of the DT-

RFE–CNN model with the top 40 features. This matrix visualizes the

performance of the model based on the number of correct and incorrect

predictions (Sokolova and Lapalme, 2009). As seen in Fig. 8, among the

177,740 training samples, 97.50% were correctly classified (TP:

46.43%, TN: 51.07%) while only 2.50% were misclassified (FP: 0.63%,
FN: 1.87%). For the testing dataset comprising 44,435 samples, 97.24%

were correctly classified (TP: 45.93%, TN: 51.31%) while 2.76% were

misclassified (FP: 0.83%, FN: 1.94%). The high percentage of correctly
classified flood and non-flood pixels on both the training and testing
data demonstrates that the developed hybrid model can be reliably used

by decision-makers to improve flood management strategies and

disaster response planning.

4.1.4. Mapping of ooded regions
Based on the model evaluation results, the flood map for the Lumber

flight path on September 18, 2018, was generated by providing the DT-
RFE–CNN model with the top 40 PolSAR features. As explained earlier,

the features were used as the inputs while samples of flood and non-
flood pixels across the Lumber flight path on September 18, 2018,

were used as the outputs to train and test the model. The flood map
generated for the entire Lumber flight path is depicted in Fig. 9, where
the blue and green portions represent the flooded and non-flooded re-
gions, respectively. Expectedly, regions along the Lumber River and

those with low elevations (with reference to Fig. 1) were classified as
flooded, whereas areas with higher elevations were categorized as non-
flooded. Overall, a consistency was observed between the flood and
elevation maps, which indicates that the DT-RFE–CNN model can reli-

ably identify flooded regions.
To further evaluate the robustness of the DT-RFE–CNN model, it was

used to estimate the flood maps over the Lumber flight path on

September 19, 20, 22, and 23, 2018 (Fig. 10). As explained in Section

3.5, polygons delineating flooded and non-flooded regions were created
for these days based on the Planet true-color and UAVSAR false-color

RGB composite images. These polygons comprise 22,149 flood and

22,234 non-flood pixels for September 19; 22,255 flood and 22,367 non-
flood pixels for September 20; 22,392 flood and 22,500 non-flood pixels
for September 22; and 22,491 flood and 22,360 non-flood pixels for
September 23 and were used to evaluate the flood maps generated for
these days.

Table 6 summarizes the performance metrics of the DT-RFE–CNN

model for the aforementioned dates. The model performed well,

exhibiting accuracy, precision, recall, F1 Score, and IoU values of

0.9123–0.9552, 0.8643–0.9493, 0.9152–0.9874, 0.9123–0.9556, and

0.8388–0.9150, respectively. On average, the model achieved an accu-

racy of 0.9304, a precision of 0.9089, a recall of 0.9584, an F1 Score of

0.9324, and an IoU of 0.8738 for September 19, 20, 22, and 23,

respectively. These results underscore the model’s accuracy in

Table 4

Feature importance estimated using DT-RFE.

Feature Importance Feature Importance

TSVM_Alpha_s 0.6378 AGH_Alphap_SM1 0.0027

ANNED_Odd 0.0555 AGH_Tawp_SM1 0.0026

7SD_MD 0.0496 6SD_Vol 0.0026

HAA_Anisotropy 0.0301 TSVM_Psi3 0.0026

AN4_Vol 0.0286 6SD_CD 0.0025

MCSM_Wire 0.0263 TSVM_Tau_m2 0.0025

TSVM_Alpha_s2 0.0190 TSVM_Psi2 0.0024

TSVM_Psi1 0.0150 AGH_Tawp_SM3 0.0024

HAA_Entropy 0.0148 TSVM_Phi_s3 0.0023

TSVM_Phi_s 0.0148 AGH_Tawp_SM2 0.0022

BF4_Vol 0.0107 TSVM_Phi_s2 0.0021

HAA_Alpha 0.0073 HAA_Beta 0.0019

NEU_Tau 0.0062 7SD_CD 0.0017

7SD_Hlx 0.0060 TSVM_Alpha_s3 0.0015

NEU_Delta_pha 0.0050 AGH_Orientation_max_SM2 0.0015

HAA_Gamma 0.0046 6SD_OD 0.0014

Y4O_Hlx 0.0045 KRO_Kd 0.0014

AGH_Phip_SM2 0.0037 KRO_Teta 0.0011

HAA_Delta 0.0032 KRO_Ks 0.0010

AGH_Phip_SM1 0.0030 7SD_OD 0.0010

AGH_Orientation_max_mean 0.0029 KRO_Kh 0.0007

AGH_Phip_SM3 0.0029 MCSM_Hlx < 0.0001

TSVM_Tau_m3 0.0028 MCSM_Vol < 0.0001

TSVM_Tau_m1 0.0028 SIN4_Hlx < 0.0001

7SD_Vol 0.0028

Table 5

Performance metrics of the DT-RFE–CNN model for flood mapping with

different numbers of PolSAR features during training and testing phases.

Number of

top features

utilized

Stage Accuracy Precision Recall F1

score

IoU

1 Training 0.8909 0.9155 0.8527 0.8830 0.7905

Testing 0.8903 0.9113 0.8539 0.8816 0.7884

5 Training 0.9541 0.9722 0.9315 0.9515 0.9074

Testing 0.9563 0.9732 0.9344 0.9534 0.9109

10 Training 0.9685 0.9822 0.9520 0.9669 0.9358

Testing 0.9695 0.9812 0.9545 0.9677 0.9373

15 Training 0.9711 0.9841 0.9555 0.9696 0.9410

Testing 0.9710 0.9824 0.9566 0.9693 0.9405

20 Training 0.9728 0.9871 0.9563 0.9714 0.9445

Testing 0.9719 0.9839 0.9569 0.9702 0.9422

25 Training 0.9716 0.9908 0.9501 0.9700 0.9418

Testing 0.9709 0.9889 0.9500 0.9690 0.9399

30 Training 0.9739 0.9842 0.9614 0.9727 0.9468

Testing 0.9723 0.9808 0.9610 0.9706 0.9432

35 Training 0.9747 0.9879 0.9594 0.9734 0.9482

Testing 0.9722 0.9841 0.9574 0.9705 0.9427

40 Training 0.9751 0.9866 0.9613 0.9738 0.9489

Testing 0.9724 0.9823 0.9596 0.9708 0.9433

45 Training 0.9750 0.9842 0.9637 0.9737 0.9490

Testing 0.9716 0.9799 0.9604 0.9700 0.9418

49 Training 0.9748 0.9842 0.9634 0.9737 0.9487

Testing 0.9720 0.9798 0.9613 0.9705 0.9426
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predicting flood maps across different temporal instances.
Notably, the recall was higher than the precision, which indicates

that the model prioritizes capturing as many true positives as possible,

even if it increases the false positive rate (Saito and Rehmsmeier, 2015).

Thus, the model focuses more on minimizing missed positive cases,

which can be beneficial in scenarios where detecting every positive

instance is crucial, even at the expense of slightly lower prediction ac-

curacy. In summary, the proposed model favors completeness over

precision to ensure fewer missed positives with the trade-off being

potentially higher false positive rates.

Table 7 presents the areas (km2) of flooded and non-flooded regions
estimated by the DT-RFE–CNN model for different days. Fig. 11 shows

the daily domain-average precipitation (mm) and flooded area (km2).

The 1-km daily precipitation data for the study domain were obtained

from the Daymet product (Thornton et al., 2022). The rainfall intensity

associated with Hurricane Florence was high on September 14–16 but

significantly decreased on September 17 and 18. Owing to the intense
rainfall, the flooding persisted for an extended duration. As anticipated,
the maximum flooded area (2,692.1 km2) was observed on September

18 (shortly after intense rainfall), and its value decreased to 2,583.8 and

2,378.5 km2 on September 19 and 20, respectively (Table 7 and Fig. 11).

Although no rainfall was recorded over the study domain on

September 22 and 23, the inundated area increased slightly on these

dates. This is likely because of the lower elevation of the study area

(Fig. 12): Flood water flowing downstream from the upper basin caused

repeated inundation in many locations. For instance, Fig. 13 shows the

changes in the water level at two USGS gauges within the study area in

response to Hurricane Florence (https://waterdata.usgs.gov/). The

drainage areas of the Lumber River near Maxton gauge (ID: 02133624)

and at Lumberton gauge (ID: 02134170) are 946 km2 and 1,834 km2,

respectively. At the Lumberton gauge, which is located downstream, the

initial peak in water level on September 18 was attributable to intense

rainfall close to the gauge, while the secondary peak on September 21

was caused by water moving downstream along the Lumber River. In

addition to the lag between rainfall at higher elevations and its resulting

runoff downstream, the slow movement of Florence caused prolonged

rainfall in specific areas, leading to a rise in groundwater levels and
reduced drainage (Humphrey Jr. et al., 2021; Ross, 2018). Hence,

certain areas experienced prolonged or recurring flooding. These find-
ings suggest that comprehensive flood management, including both

Fig. 7. Variation in accuracy and F1 score of the DT-RFE–CNN model with number of PolSAR features during training and testing stages.

Fig. 8. Confusion matrices of the DT-RFE–CNN model with top 40 features during training and testing stages.
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rapid response and systemic improvements to prevent recurrence, is

necessary to mitigate flood damage during large-scale rainfall events.

4.2. Comparison between ood mapping using PolSAR data and PolSAR
features

We established a CNNmodel that utilizes PolSAR data and compared

its performance with that of our innovative hybrid model. For this

purpose, PolSAR data comprising six polarization combinations (i.e.,

SHHS
*
HH, SHVS

*
HV , SVVS

*
VV , SHHS

*
HV , SHHS

*
VV , and SHVS

*
VV) were employed as

the input for the CNNmodel. The flood and non-flood polygons specified
in Section 3.5 (i.e., 115,065 non-flood and 107,110 flood pixels) were
also used as the output for this model. The dataset was split into training

and testing sets, with 80% (177,740 pixels) allocated for training and

20% (44,435 pixels) reserved for testing. The training and testing pixels

were consistent with those used for flood mapping based on PolSAR
features.

The aforementioned CNN model was used to generate the flood map
over the Lumber flight path for September 18, 2018. Fig. 14 displays the
confusion matrix of this model for the training and testing phases,

showing that among the 177,740 training samples, 89.68% were

Fig. 9. Flood map for Lumber flight path on September 18, 2018, generated by
the DT-RFE–CNN model using top 40 PolSAR features.

Fig. 10. Flood maps for Lumber flight path on different days predicted by the DT-RFE–CNN model using top 40 PolSAR features.

Table 6

Performance metrics of the DT-RFE–CNN model for different days.

Date Accuracy Precision Recall F1 score IoU

September 19, 2018 0.9381 0.9124 0.9691 0.9399 0.8866

September 20, 2018 0.9123 0.9095 0.9152 0.9123 0.8388

September 22, 2018 0.9552 0.9493 0.9620 0.9556 0.9150

September 23, 2018 0.9159 0.8643 0.9874 0.9217 0.8548

Table 7

Areas (km2) of flooded and non-flooded regions predicted by the DT-RFE–CNN

model for different days.

Dates Flooded area Non-flooded area Total area

(km2) (%) (km2) (%) (km2) (%)

September 18, 2018 2,692.1 56.5 2,076.4 43.5 4,768.5 100

September 19, 2018 2,583.8 54.2 2,184.7 45.8

September 20, 2018 2,378.5 49.9 2,390.0 50.1

September 22, 2018 2,456.8 51.5 2,311.7 48.5

September 23, 2018 2,472.5 51.9 2,296.0 48.1
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correctly classified (TP: 42.33%, TN: 47.35%) while 10.32% were mis-

classified (FP: 4.35%, FN: 5.97%); these values are worse than the cor-
responding results for the DT-RFE–CNN model (97.50% correctly

classified and 2.50% incorrectly classified pixels in the training step). On
the testing dataset, which comprised 44,435 samples, 89.89% were

correctly classified (TP: 42.17% and TN: 47.72%) while 10.11% were

misclassified (FP: 4.42% and FN: 5.69%) by the CNN model based on

PolSAR data; these values are again worse than the corresponding re-

sults for the DT-RFE–CNNmodel (97.24% correctly classified and 2.76%
misclassified pixels). Thus, the DT-RFE–CNN model based on PolSAR

features clearly outperformed the CNN model based on PolSAR data.

Table 8 summarizes the performance metrics of the CNN model

based on PolSAR data during the training and testing stages; for com-

parison, the corresponding metrics of the DT-RFE–CNN are also shown

in parenthesis. The comparison highlights the improvement in the flood
mapping efficacy achieved when using PolSAR features rather than

PolSAR data. The DT-RFE–CNN model, which utilizes PolSAR features,

demonstrated superior performance across all metrics in both the

training and testing stages. Referring to the testing stage, the improve-

ment in accuracy and precision achieved by the DT-RFE–CNN model

underlines its stronger ability to correctly identify flood areas. Similarly,
the better recall value highlights the model’s capacity to detect more

flood instances. The improvement in F1 score, which represents a

balance between precision and recall, reflects an enhancement in overall
performance. Most notably, the improvement in IoU underscores the

greater overlap between the predicted and actual flood areas. These
results strongly suggest that the use of PolSAR features in the DT-

RFE–CNN model enhances its flood-mapping capabilities, providing

more accurate and reliable predictions than those achievable using

PolSAR data.

4.3. Comparison of ood mappings from different approaches

The Otsu method was used to generate the flood map over the

Lumber flight path for September 19, 20, 22, and 23, 2018, and its re-
sults were compared with those of DT-RFE–CNN. To this end, back-

scatter intensity information from the VV polarization channel was

extracted from the covariance matrix. A 3 × 3 sliding-window boxcar

filter was applied to reduce speckle noise, and the resulting image was
subsequently converted to the decibel (dB) scale. The Otsu method was

then applied to the backscatter data for each date (September 19, 20, 22,

and 23, 2018) to determine the threshold value, classifying pixels below

the threshold as C1 (flooded) and those above the threshold as C2 (non-
flooded).

Fig. 15 presents the thresholding results obtained using the Otsu

method, along with the corresponding histogram of VV backscatter

Fig. 11. Time series of domain-averaged precipitation (mm) and area (km2) of the flooded regions.

Fig. 12. Elevation map of the Lumber flight path and surrounding regions.
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intensity for the entire domain on different dates. The threshold values

for September 19, 20, 22, and 23, 2018 were 9.49, 9.79, 9.78, and
9.96 dB, respectively, showing high consistency across the four days.
Pixels with values below the threshold were classified as flooded areas,
while those above were identified as non-flooded areas.

Based on the Otsu method, approximately 32.9%, 29.6%, 30.2%, and

28.7% of the study area was classified as flooded on September 19, 20,
22, and 23, 2018, respectively. The corresponding values obtained using

the DT-RFE–CNN model were 54.2%, 49.9%, 51.5%, and 51.9%,

significantly higher than those of the Otsu method. Table 9 presents a
comparison of the results based on the validation dataset on September

19, 20, 22, and 23, 2018. The Otsu method yielded poor results, with an

accuracy of 0.1791, a precision of 0.0091, a recall of 0.0057, an F1 score

of 0.0069, and an IoU of 0.0035 on average across the four days.

Calm water surfaces typically appear dark in SAR imagery owing to

specular reflection, as they tend to reflect radar signals away from the

sensor (Tarpanelli et al., 2022; Zhao, 2022). However, when the water

surface becomes rough (owing to wind, current, or rainfall), the

Fig. 13. (top row) Locations of the two USGS gauging stations in the Lumber flight path, and (bottom row) changes in water level at the two USGS stations from

September 12 to 24, 2018.

Fig. 14. Confusion matrices of the CNN model based on PolSAR data during training and testing stages.
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backscatter increases, rendering it challenging to accurately identify

flooded areas. Moreover, global thresholding approaches fail to account
for variations in backscatter intensity caused by topography, sensor

range, or local incidence angle (Liang and Liu, 2020). Features such as

vegetation-covered flooded areas, urban shadows, or wet soil often

exhibit low backscatter values, which can result in their misclassifica-
tion as flooded regions (Tarpanelli et al., 2022). These observations

underscore the limitations of simple intensity-based thresholding and

highlight the necessity of employing PolSAR decompositions as well as

metaheuristic optimization and deep-learning approaches, which can

provide physically interpretable scattering components for more accu-

rate flood mapping.
Subsequently, FT-Transformer was applied using the 40 features

obtained from DT-RFE. Table 10 compares the results of the FT-

Transformer and DT-RFE–CNN models. Despite using the same set of

40 PolSAR features, FT-Transformer exhibited inferior results compared

with DT-RFE–CNN. In the training phase, FT-Transformer achieved ac-

curacy, precision, recall, F1 score, and IoU values of 0.8949, 0.9204,

0.8566, 0.8873, and 0.7975, respectively, which are 8.2%, 6.7%, 10.9%,

8.6%, and 15.9% lower than those achieved by DT-RFE–CNN. Similarly,

in the testing phase, FT-Transformer achieved accuracy, precision,

recall, F1 score, and IoU values of 0.8952, 0.9171, 0.8586, 0.8869, and

0.7967, respectively, which are 7.9%, 6.6%, 10.1%, 8.4%, and 15.6%

lower than those obtained using DT-RFE–CNN. These results demon-

strate the superior performance of DT-RFE–CNN in both the training and

testing phases across all evaluation metrics. Notably, the difference in

IoU was the most pronounced, which highlights the stronger ability of

DT-RFE–CNN to minimize misclassification and improve spatial con-
sistency with the ground observations. This performance discrepancy

can be attributed to differences in model architecture and their suit-

ability to the underlying data structure. Flooded areas typically exhibit

spatial continuity, and the relationship between neighboring pixels

plays a critical role in the accurate detection of inundated regions.

However, the FT-Transformer model lacks the ability to incorporate

such spatial continuity (Azad et al., 2023; Chen et al., 2022), limiting its

capacity to learn the overall patterns of flooded regions. These findings
suggest that models capable of capturing spatial continuity, such as

CNNs, are more suitable for flood detection tasks.

5. Generalizability of DT-RFE–CNN model to other regions

To evaluate the applicability of the trained DT-RFE–CNN model to

other regions, we tested it over a region in Texas during Hurricane

Harvey. In August 2017, Hurricane Harvey—a destructive Category 4

hurricane—struck the coasts of Texas and Louisiana, triggering cata-

strophic flooding and causing at least 68 direct fatalities in Texas alone.
It lingered over southeastern Texas for about four days, producing

record-breaking rainfall with a maximum of over 150 cm near Neder-

land, Texas. This unprecedented rainfall caused extreme flooding (Blake
and Zelinsky, 2018).

UAVSAR collected data over the Houston area on August 31 and

September 1–2, 2017, during the flooding caused by Hurricane Harvey.
Fig. 16 shows the flight path (ID: brazos_14937) of UAVSAR passing

through the Brazos River region, which was one of the regions affected

Table 8

Performance metrics of the CNN model based on PolSAR data during training

and testing stages; corresponding results of DT-RFE–CNN model using PolSAR

features are shown in parentheses for comparison.

Stage Accuracy Precision Recall F1 score IoU

Training 0.8968

(0.9751)

0.9068

(0.9866)

0.8764

(0.9613)

0.8914

(0.9738)

0.8040

(0.9489)

Testing 0.8988

(0.9724)

0.9051

(0.9823)

0.8810

(0.9596)

0.8929

(0.9708)

0.8065

(0.9433)

Fig. 15. Histograms of VV backscatter data and threshold values obtained using the Otsu method for September 19, 20, 22, and 23, 2018.

Table 9

Performance metrics of the Otsu method for September 19, 20, 22, and 23, 2018.

Results of DT-RFE–CNN model using the best 40 features are shown in paren-

theses for comparison.

Date Accuracy Precision Recall F1 score IoU

September 19, 2018 0.2187

(0.9381)

0.0073

(0.9124)

0.0042

(0.9691)

0.0053

(0.9399)

0.0027

(0.8866)

September 20, 2018 0.0571

(0.9123)

0.0034

(0.9095)

0.0031

(0.9152)

0.0032

(0.9123)

0.0016

(0.8388)

September 22, 2018 0.1803

(0.9552)

0.0170

(0.9493)

0.0112

(0.9620)

0.0135

(0.9556)

0.0068

(0.9150)

September 23, 2018 0.2602

(0.9159)

0.0085

(0.8643)

0.0041

(0.9874)

0.0055

(0.9217)

0.0028

(0.8548)

J. Lee et al. Gondwana Research xxx (xxxx) xxx

16



by Hurricane Harvey. This area is referred to hereinafter as the “Brazos

flight path.” Fig. 16 illustrates the annual land use in the area for 2017,

generated by the LCMS (U.S. Department of Agriculture, 2024), along

with an elevation map from SRTM (NASA JPL, 2013). Many areas are

rangelands, and developed regions are concentrated in the central part,

with some also observed in the southern part. The elevation decreases

progressively toward the coast.

The DT-RFE–CNN model trained on data over the Lumber flight path

on September 18, 2018, was used to generate flood maps for the Brazos
flight path. Specifically, the top 40 PolSAR features (as input) from

Table 4 and the samples of flood and non-flood pixels across the Brazos
flight path on September 18, 2018 (as output) were used to test the pre-
trained DT-RFE–CNN model. Fig. 17 shows the predicted flood map for
the Brazos flight path on August 31 and September 2, 2017; notably, the
data for September 2 constitute only a subset of the swaths for August

31. Expectedly, most urban areas and low-lying regions were predicted

Table 10

Performance metrics of the FT-Transformer and the DT-RFE–CNN models during training and testing, using the same set of top 40 features.

Stage Approach Accuracy Precision Recall F1 score IoU

Training FT-Transformer 0.8949 0.9204 0.8566 0.8873 0.7975

DT-RFE–CNN 0.9751 0.9866 0.9613 0.9738 0.9489

Testing FT-Transformer 0.8952 0.9171 0.8586 0.8869 0.7967

DT-RFE–CNN 0.9724 0.9823 0.9596 0.9708 0.9433

Fig. 16. Location of Brazos flight path in Texas: (a) land use and (b) elevation.

J. Lee et al. Gondwana Research xxx (xxxx) xxx

17



to be flooded.
Table 11 summarizes the performance metrics of the DT-RFE–CNN

model when used to predict the flood map over the Brazos flight path,
using the top 40 PolSAR features. For August 31, 2017, the model ach-

ieved an accuracy of 0.8279, a precision of 0.8295, and a recall of

0.8176; the F1 score and IoU were 0.8235 and 0.7000, respectively,

reflecting a moderate overlap between the predicted and actual flooded
areas. For September 2, 2017, the model performed better, exhibiting an

accuracy of 0.8518, a precision of 0.8565, and a recall of 0.8244; its F1

score and IoU also improved to 0.8401 and 0.7244, respectively, indi-

cating a closer agreement between the predictions and the actual ob-

servations. These test results demonstrate that the model can detect

flooded areas satisfactorily, with an average accuracy, precision, recall,
F1 score, and IoU of 0.8399, 0.8430, 0.8210, 0.8318, and 0.7122,

respectively. Overall, the model could accurately and reliably predict

flooded and non-flooded areas, showing consistently strong perfor-

mance across both dates.

However, the performance metrics of the DT-RFE–CNNmodel for the

Brazos flight path were expectedly not as strong as those for the Lumber
flight path. This suggests that unless the model is tested in the same
region as that on which it was trained, a certain degree of performance

degradation is inevitable. This seems to be largely due to the differences

in land cover between Texas and North Carolina. Texas is covered pre-

dominantly by rangeland and urban areas, whereas North Carolina is

characterized by extensive forests and agricultural fields. With its

widespread distribution of pine and deciduous forests, North Carolina

experiences more backscattering in flood-prone areas beneath the forest
canopy. This ultimately alters the characteristics of the PolSAR features,

reducing the effectiveness of the DT-RFE–CNN model when trained on

North Carolina and tested on a different region such as Texas.

The aforementioned discrepancy highlights the need to improve the

model’s robustness. This could potentially be achieved by incorporating

supplementary data, such as land use, elevation, and proximity to water

resources, which could improve the generalizability of the model to

other regions. Additionally, further analyses involving a comparison of

error rates across different land cover types, particularly in the Houston

area, could be conducted to determine the land cover types contributing

most to the model’s inaccuracies. Such enhancements should be pursued

in future work to refine the proposed DT-RFE–CNN model.

6. Conclusion

In this study, we introduced an innovative hybrid approach for flood
detection. This approach involves extracting PolSAR features through

various PolSAR decompositions, selecting independent features via

multicollinearity analysis, ranking the features based on their impor-

tance using the DT-RFE method, and finally detecting flooded areas

using a CNN model. The DT-RFE–CNN model was trained and tested

over the Lumber flight path in North Carolina during Hurricane Flor-
ence, using sample flood and non-flood polygons over the study area
obtained from visible imagery (Planet true-color and UAVSAR false-

color RGB images) for September 18, 2018.

Different numbers of PolSAR features were used as input for the DT-

RFE–CNNmodel to examine the dependence of themodel’s performance

on the number of features. The results highlighted a considerable

improvement in the evaluation metrics upon increasing the number of

features from 1 to 10 but no significant enhancement with a further
addition of features. The model achieved the best performance when

utilizing the top 40 PolSAR features, exhibiting an accuracy of 0.9724, a

precision of 0.9823, a recall of 0.9596, an F1 score of 0.9708, and an IoU

of 0.9433 in the testing stage.

To further evaluate the DT-RFE–CNN model, it was tested over the

Lumber flight path in North Carolina for the remaining four days of
Hurricane Florence (September 19, 20, 22, and 23, 2018). The results

demonstrated that the model could reliably map flooded regions even
for dates on which it had not been trained. The corresponding average

Fig. 17. Flood maps predicted by the trained DT-RFE–CNN model during Hurricane Harvey: (a) August 31, 2017, and (b) September 2, 2017.

Table 11

Performance metrics of the DT-RFE–CNNmodel when predicting flood map over
Brazos flight path.
Date Accuracy Precision Recall F1 Score IoU

August 31, 2017 0.8279 0.8295 0.8176 0.8235 0.7000

September 2, 2017 0.8518 0.8565 0.8244 0.8401 0.7244
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test metrics were as follows: an accuracy of 0.9304, a precision of

0.9089, a recall of 0.9584, an F1 score of 0.9324, and an IoU of 0.8738.

These results underscore the model’s strong capability to accurately

predict flood maps across different temporal instances.
The performance of the DT-RFE–CNN model, which uses the optimal

PolSAR features, was compared with that of a CNN model utilizing

PolSAR data. In the test stage, the PolSAR data–based CNN model

exhibited an accuracy of 0.8988, a precision of 0.9051, a recall of

0.8810, an F1 score of 0.8929, and an IoU of 0.8065, thus being out-

performed by the DT-RFE–CNN model across all metrics. These results

indicate that the use of PolSAR features in the DT-RFE–CNN model

substantially enhanced flood mapping accuracy and reliability

compared with using PolSAR data alone. In addition, the DT-RFE–CNN

model significantly outperformed both the classical Otsu thresholding
method and state-of-the-art FT-Transformer model, even when using

identical features (selected by DT-RFE). Additionally, the DT-RFE–CNN

model’s generalizability was assessed by using it to predict the flood
map over the Brazos flight path in Texas for two dates during Hurricane
Harvey. The test results showed that the model could detect flooded
areas satisfactorily, with an accuracy of 0.8399, a precision of 0.8430, a

recall of 0.8210, an F1 score of 0.8318, and an IoU of 0.7122 on average.

However, as anticipated, the performance for the Brazos flight path was
weaker. This seems to be largely due to the differences in land cover

between Texas and North Carolina.

The proposed DT-RFE–CNN model integrates various components

into a cohesive framework, achieving promising performance in flood
detection. Particularly noteworthy are the novel aspects of using a wide

range of decompositions to extract PolSAR features, addressing multi-

collinearity, and employing feature selection techniques to utilize the

extracted features effectively—approaches not typically undertaken in

previous research. Additionally, while the proposed model requires

improvements to overcome the challenges posed by regional differences,

the application of an ML model trained in one region to a completely

different region without prior information still holds significant poten-
tial. The findings of this study are expected to facilitate flood monitoring
and response efforts.
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