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Abstract. Let T be a complete, model complete o-minimal theory extending the theory of real closed

ordered fields. An HT -field is a model K of T equipped with a T -derivation ∂ such that the underlying

ordered di↵erential field of (K, ∂) is an H-field. We study HT -fields and their extensions. Our main result is

that if T is power bounded, then every HT -field K has either exactly one or exactly two minimal Liouville

closed HT -field extensions up to K-isomorphism. The assumption of power boundedness can be relaxed to

allow for certain exponential cases, such as T = Th(Ran,exp).
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Introduction

In [1], Aschenbrenner and van den Dries introduced the class of H-fields. This class consists of Hardy fields
containing R as well as various ordered di↵erential fields of formal power series, most notably the field T of
logarithmic-exponential transseries. In [3], Aschenbrenner, van den Dries, and van der Hoeven showed that
the complete theory of T is the model companion of the theory of H-fields with small derivation.

In this article, we consider H-fields equipped with additional o-minimal structure. Let T be a complete,
model complete o-minimal theory which extends the theory RCF of real closed ordered fields, and let K be
a model of T . Let ∂ be a T -derivation on K as defined in [13], and let C := ker(∂) be the constant field of
K (we recall the definition of a T -derivation in Subsection 1.4 below). We say that (K, ∂) is an HT -field if
the following two conditions hold:

(H1) ∂f > 0 for all f 2 K with f > C, and
(H2) O = C + O, where O is the convex hull of C in K and O is the unique maximal ideal of O.

If, moreover, ∂O ✓ O, then (K, ∂) is said to have small derivation. Axioms (H1) and (H2) are the axioms for
H-fields, given in [1], so an HT -field is just a model of T equipped with a T -derivation making it an H-field.
In fact, the class of HRCF-fields coincides with the class of real closed H-fields.

2020 Mathematics Subject Classification. Primary 03C64. Secondary 12H05, 12J10.

1



Our long-term goal is to show that the theory of HT -fields has a model companion (under the assumption
that T is itself model complete). To this end, we examine various extensions of HT -fields, often under
the assumption that T is power bounded. Our investigation is based on the study of H-fields and their
extensions, conducted in [3]. The main results in this article are on the existence and uniqueness of T -
Liouville closures. Before giving an overview of the results, let us discuss two motivating examples: R-Hardy
fields and expansions of the field T.

R-Hardy fields. Perhaps the most natural examples of HT -fields are R-Hardy fields, introduced in [9]. Let
R be an o-minimal expansion of the real field R in an appropriate language LR and let TR be the complete
LR-theory of R. By adding a function symbol to LR for each definable function, we may arrange that TR

has quantifier elimination and a universal axiomatization. For convenience, we will also assume that LR

contains a constant symbol for each r 2 R, so any model of TR contains R as an elementary substructure.

Recall that a Hardy field is an ordered di↵erential field of germs at +1 of unary real-valued functions,
where the germ of a function f : R ! R at +1 is the equivalence class

[f ] :=
�
g : f |(a,+1) = g|(a,+1) for some a 2 R

 
.

An R-Hardy field is a Hardy field H which is closed under all function symbols in LR. That is, H is
an R-Hardy field if for every n-ary function symbol F in LR and all germs [f1], . . . , [fn] 2 H, the germ⇥
F (f1, . . . , fn)

⇤
is in H, where F (f1, . . . , fn) is the composite function x 7! F

�
f1(x), . . . , fn(x)

�
. We view

constant symbols as nullary functions, so we may identify R with a subfield of H by identifying r 2 R with
the germ of the constant function x 7! r.

If H is an R-Hardy field, then we view H as an LR-structure as follows:

• If F is an n-ary function symbol in LR and [f1], . . . , [fn] 2 H, then

F
�
[f1], . . . , [fn]

�
:=

⇥
F (f1, . . . , fn)

⇤
.

• If R is an n-ary predicate in LR and [f1], . . . , [fn] 2 H, then

H |= R
�
[f1], . . . , [fn]

�
:() R |= R

�
f1(x), . . . , fn(x)

�
for all su�ciently large x.

By [9, Lemma 5.8], R is an elementary LR-substructure of H. As a consequence of our assumption on TR,
each LR(;)-definable function F is given piecewise by terms, so the identity

F
�
[f1], . . . , [fn]

�
:=

⇥
F (f1, . . . , fn)

⇤

holds for arbitrary LR(;)-definable functions F , not just for function symbols in LR.

Let H be an R-Hardy field. As a Hardy field, H admits a derivation ∂ : H ! H given by ∂[f ] := [f 0]. Using
the chain rule from elementary calculus, it is easy to see that this is even a TR-derivation. We claim that
with this derivation, H is an HTR -field. Note that the constant field C = ker(∂) of H is equal to R, so (H2)
follows from Dedekind completeness of the reals. For [f ] 2 H, we have

[f ] > R =) lim
x!1

f(x) = 1 =) [f 0] = ∂[f ] > 0,

so (H1) holds as well.

Transseries. Let Ran be the expansion of the real field by restricted analytic functions, and let Ran,exp

be the further expansion of Ran by the unrestricted exponential function. Let Rre be the expansion of the
real field by only the restricted sine, cosine, and exponential functions (collectively, restricted elementary
functions). Let Tre, Tan, and Tan,exp be the elementary theories of Rre, Ran and Ran,exp respectively. By [10,
Corollary 2.8], the field T admits a canonical expansion to a model of Tan,exp, which we denote by Tan,exp.
Let Tan and Tre denote the corresponding reducts of Tan,exp.

We claim that Tan,exp, with its natural derivation, is an Han,exp-field, where we write “Han,exp-field” instead
of “HTan,exp -field” for easier reading. It is well-known that the ordered di↵erential field T is an H-field; the
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axiom (H1) is verified in [11, Proposition 4.3] and the axiom (H2) follows easily since the constant field of T
is isomorphic to R, which is Dedekind complete. Moreover, the derivation on Tan,exp is a Tan,exp-derivation,
since it is compatible with all restricted analytic functions and the exponential function by [11, Corollaries
3.3 and 3.4]; see [13, Lemma 2.9] for why this is su�cient. It follows that Tan is an Han-field, and that Tre

is an Hre-field.

We conjecture that Tan,exp and Tan are both model complete. We also conjecture that the theory of Tan,exp

is the model companion of the theory of Han,exp-fields with small derivation, and that the theory of Tan is
the model companion of the theory of Han-fields with small derivation. These conjectures are, of course,
inspired by the corresponding results for T from [3]. In [16, Chapter 8], we show that Tre is model complete,
and that its theory is the model companion of the theory of Hre-fields with small derivation. The proof of
this result relies heavily on machinery from [3], as well as basic facts about restricted elementary functions.
The methods used to investigate Tre are almost surely too case-specific to handle the richer expansions Tan

and Tan,exp.

Outline and overview of results. In this article, we fix a complete, model complete o-minimal theory T

which extends the theory RCF of real closed ordered fields in some appropriate language L ◆ {0, 1,+,�, ·, <}.
The class of HT -fields is axiomatized in the language LO,∂ := L [ {O, ∂}, where O is a unary predicate
interpreted as in (H2). By [13, Lemma 2.3], the constant field C of an HT -field K is an underlying elementary
L-substructure of K. It follows that the valuation ring O in (H2) is T -convex, in the sense of van den Dries
and Lewenberg [8]. In studying HT -fields, valuation theory plays a key role. Analogs of many classical results
about valued fields have been proven in the o-minimal setting under the assumption of power boundedness
(a generalization of polynomial boundedness introduced in [18]). Accordingly, we will assume at various
times that T is power bounded. Valuation-theoretic background is given in Section 2, along with some new
technical results on T -convex valuation rings in the power bounded setting.

Expansions of models of T by a T -convex valuation ring and a continuous T -derivation were first studied
in [17]. There, the focus was on immediate extensions. Our first result on HT -fields is a corollary of the
main result in [17].

Corollary 4.7. Suppose that T is power bounded. Then every HT -field has a spherically complete immediate
HT -field extension.

In addition to studying HT -fields, we consider the broader class of pre-HT -fields, which arise as substructures
of HT -fields. Most of the study of extensions of HT -fields and pre-HT -fields is carried out in Section 4. Here
is one such extension result from that section, which shows that every pre-HT -field has an “HT -field hull.”

Theorem 4.14. Suppose that T is power bounded and let K be a pre-HT -field. Then K has an HT -
field extension HT (K) such that for any HT -field extension M of K, there is a unique LO,∂(K)-embedding
HT (K) ! M .

The extension theory developed in Section 4 is applied in Section 5 to study T -Liouville closures. An HT -
field K is said to be Liouville closed if every element in K has an integral and an exponential integral in
K, that is, if for all y 2 K, there is f 2 K and g 2 K

⇥ with ∂f = ∂g/g = y. A T -Liouville closure of an
HT -field K is a Liouville closed HT -field extension of K which is built from K by adjoining integrals and
exponential integrals (a precise definition is given in Section 5).

In [1], Aschenbrenner and van den Dries proved that every H-field has at least one and at most two Liouville
closures up to isomorphism. They proved that grounded H-fields have exactly one Liouville closure and that
certain types of ungrounded H-fields have exactly two. Gehret later showed that the precise dividing line
for ungrounded H-fields is the property of l-freeness [15]. The terms “grounded” and “l-free” are defined
in Section 3. In Section 5, we show that when T is power bounded, the number of T -Liouville closures of an
HT -field can likewise be characterized in terms of being grounded or l-free:
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Theorem 5.16. Suppose that T is power bounded and let K be an HT -field. If K is grounded or if K is
ungrounded and l-free, then K has exactly one T -Liouville closure up to LO,∂(K)-isomorphism. If K is
ungrounded and not l-free, then K has exactly two T -Liouville closures up to LO,∂(K)-isomorphism. For
any Liouville closed HT -field extension M of K, there is an LO,∂(K)-embedding of some T -Liouville closure
of K into M .

The assumption of power boundedness excludes some important o-minimal theories, such as Tan,exp. Fortu-
nately, many of our results can be extended to o-minimal theories which are “controlled” by a power bounded
base theory in the same way that Tan,exp is “controlled” by its reduct Tan, as shown in [9]. In formalizing
precisely what we mean, we use the framework from Foster’s thesis [14]. Suppose that T is power bounded,
that T defines a restricted exponential function, and that the field of exponents of T is cofinal in the prime
model of T . Foster axiomatizes an extension T

e of T in the language Llog := L [ {log} whose models are
expansions of models of T by an unrestricted exponential function (which is compatible with the restricted
exponential function and the power functions of T ). This extension is also complete, model complete, and
o-minimal. We give an overview of Foster’s results, as well as some historical context, in Subsection 1.3.

In Section 6 we show that many of the extension results proven in Section 4 under the assumption of
power boundedness also go through for HT e -fields and pre-HT e -fields. Instead of working with (pre)-HT e -
fields directly, we work with a broader class of LO,∂

log -structures, called logarithmic (pre)-HT -fields, where the
logarithm is not assumed to be surjective. In Section 7, we show that Theorem 5.16 generalizes to the class
of logarithmic HT -fields:

Theorem 7.11. Let K be a logarithmic HT -field. If K is l-free, then K has exactly one logarithmic T -
Liouville closure up to LO,∂

log (K)-isomorphism. Otherwise, K has exactly two logarithmic T -Liouville closures

up to LO,∂
log (K)-isomorphism. For any Liouville closed logarithmic HT -field extension M of K, there is an

LO,∂
log (K)-embedding of some logarithmic T -Liouville closure of K into M .

In the statement of Theorem 7.11, a logarithmic T -Liouville closure of K is just a logarithmic HT -field
extension of K which is also a T -Liouville closure of K. The “grounded” case in Theorem 5.16 cannot occur
for logarithmic HT -fields; see Corollary 6.3.

In [1], Aschenbrenner and van den Dries showed that any H-field embedding of a Hardy field H into T
extends to the smallest Liouville closed Hardy field extension of H. As an application of Theorem 7.11, we
prove an analog of this embedding theorem for Ran,exp-Hardy fields.

Theorem 7.12. Let H be an Ran,exp-Hardy field. Then any Han,exp-field embedding H ! Tan,exp extends to
an Han,exp-field embedding Lian,exp(H) ! Tan,exp, where Lian,exp(H) is the minimal Liouville closed Ran,exp-
Hardy field extension of H.

Our final result is that every pre-HT -field has a pre-HT -field extension which satisfies the “order 1 interme-
diate value property.” An analog of this theorem was shown for pre-H-fields in [2] and for R-Hardy fields
in [7]. Unlike many of the other results, this requires no power boundedness assumptions on T .

Theorem 8.1. Let K be a pre-HT -field. Then K has a pre-HT -field extension M with the following property:
for any L(M)-definable continuous function F : M ! M and any b1, b2 2 M with

b
0

1 < F (b1), b
0

2 > F (b2),

there is a 2 M between b1 and b2 with a
0 = F (a).

In Remark 8.4, we discuss whether the pre-HT -field extension M above can be taken to be an HT -field.

Acknowledgements. Research for Sections 2–5 and Section 8 was conducted at the University of Illinois
Urbana-Champaign, and the results in these sections first appeared in my PhD thesis [16]. The material in
Sections 6 and 7 is based upon work conducted at the Fields Institute for Research in Mathematical Sciences
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1. Preliminaries

1.1. Notation and conventions. In this article, k, m, and n always denote elements of N = {0, 1, 2, . . .}.
By “ordered set” we mean “totally ordered set.” Let S be an ordered set, let a 2 S, and let A ✓ S. We put

S
>a := {s 2 S : s > a};

similarly for S>a, S<a, S6a, and S
6=a. We write “a > A” (respectively “a < A”) if a is greater (less) than

each s 2 A, and we let A
# denote the downward closure of A. A cut in S is a downward closed subset

of S, and if A is a cut in S, then an element y in an ordered set extending S is said to realize the cut A if
A < y < S \A. Note that the empty set is a cut which is realized by any element y < S. Likewise, S itself is
a cut realized by any element y > S. If � is an ordered abelian group, then we set �> := �>0, and we define
�>, �<, �6, and � 6= analogously. If R is a ring, then R

⇥ denotes the multiplicative group of units in R. A
well-indexed sequence is a sequence (a⇢) whose terms are indexed by ordinals ⇢ less than some infinite
limit ordinal ⌫.

We always use K, L, and M for models of T (or expansions thereof). Let A ✓ K and let D ✓ K
n. We say

that D is L(A)-definable if
D = '(K) :=

�
y 2 K

n : K |= '(y)
 

for some L(A)-formula '. A function F : D ! K is said to be L(A)-definable if its graph is a definable
subset of Kn+1. Note that the domain of an L(A)-definable function is L(A)-definable.

For A ✓ K, let dclL(A) denote the L-definable closure of A (in K, implicitly, but this doesn’t change if
we pass to elementary extensions of K). If b 2 dclL(A), then b = F (a) for some L(;)-definable function
F and some tuple a from A. It is well-known that (K, dclL) is a pregeometry. A set B ✓ K is said to
be L(A)-independent if b 62 dclL

�
A [ (B \ {b})

�
for all b 2 B. A tuple a = (ai)i2I is said to be L(A)-

independent if its set of components {ai : i 2 I} is L(A)-independent and no components are repeated. Since
T has definable Skolem functions, any definably closed subset A ✓ K is an elementary L-substructure of K.
Together with our assumption that T is complete, this guarantees that T has a prime model, which can be
uniquely identified with dclL(;) in any model of T .

Let M be a T -extension of K, that is, a model of T which contains K as an L-substructure. Given an
L(K)-definable set D ✓ K

n, we let DM denote the subset of Mn defined by the same L(K)-formula as D.
We sometimes refer to D

M as the natural extension of D to M . Since T is assumed to be model complete,
this natural extension does not depend on the choice of defining formula. If F : D ! K is an L(K)-definable
function, then let FM be the L(K)-definable function whose graph is the natural extension of the graph of
F . Then the domain of FM is DM , and we often drop the superscript and just write F : DM ! M

m.

For B ✓ M , let KhBi denote the L-substructure of M with underlying set dclL(K [B). If B = {b1, . . . , bn},
we write Khb1, . . . , bni instead of KhBi. Note that KhBi is an elementary L-substructure of M . If B is
L(K)-independent and M = KhBi, then B is called a basis for M over K. The rank of M over K,
denoted rkL(M |K), is the cardinality of a basis for M over K (this doesn’t depend on the choice of basis).
We say that M is a simple extension of K if rkL(M |K) = 1. If M is a simple extension of K, then
M = Khbi for some b 2 M \K.

Let L⇤ ◆ L, let T
⇤ be an L⇤-theory extending T , and let K |= T

⇤. We use the same conventions for
L⇤-definability as we do for L-definability. A T

⇤-extension of K is a model M |= T
⇤ which contains K as

an L⇤-substructure. If M is an elementary T
⇤-extension of K and D ✓ K

n is L⇤(K)-definable, then let DM

denote the subset of Mn defined by the same formula as D.
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1.2. Power functions and power boundedness. Here we mention some basic facts about power functions
and exponentials. Proofs can be found in [18] or [14, Section 2.2.4]. A power function on K is an L(K)-
definable endomorphism of the multiplicative group K

>. Each power function F is C1 on K
> and uniquely

determined by F
0(1). Set

⇤ :=
�
F

0(1) : F is a power function on K
 
.

Then ⇤ is a subfield of K, and it is called the field of exponents of K. For a 2 K
> and a power function

F , we suggestively write F (a) as a
�, where � = F

0(1). A straightforward computation tells us that the
derivative of the power function x 7! x

� at a is �a��1.

We say that K is power bounded if for each L(K)-definable function F : K> ! K
>, there is � in the

field of exponents of K with |F (x)| < x
� for all su�ciently large positive x. Note that K is polynomially

bounded (any unary L(K)-definable function is eventually bounded by x
n for some n) if and only if K is

power bounded with archimedean field of exponents.

An exponential function on K is an ordered group isomorphism from the additive group K to the
multiplicative group K

>. Any exponential function on K grows more quickly than every power function on
K. By [18], either K is power bounded or K defines an exponential function. Any definable exponential
function on K is everywhere di↵erentiable, and if K defines an exponential function, then it is fairly easy
to see that there is a unique L(;)-definable exponential function which is equal to its own derivative. Thus,
defining an exponential function is a property of the theory T (we say that T defines an exponential),
and so power boundedness is a property of the theory T as well (we say that T is power bounded). If T
is power bounded, then each power function on K is L(;)-definable, so we refer to the field of exponents ⇤
as the field of exponents of T , as ⇤ does not depend on K.

1.3. Exponentials and logarithms. Most of the results in Sections 3, 4, and 5 are proved under the
assumption that T is power bounded. In Sections 6 and 7, we show that many of these results can be
extended to theories which define an exponential, so long as these theories are essentially controlled by a
power bounded reduct. The prototypical example of this is the theory Texp = Th(Rexp). Let Trexp be the
(polynomially bounded) theory of the real field expanded by the restriction of the exponential function to
the interval [�1, 1]. Then Trexp is model complete by Wilkie [23]. In [19], Ressayre demonstrated that Texp

can be axiomatized by extending Trexp by the following axioms:

(E1) exp is an exponential function, as defined above,
(E2) exp agrees with its restricted counterpart on the interval [�1, 1], and
(E3) exp grows su�ciently fast, that is, if x > n

2 then expx > x
n for each n > 0.

Ressayre also showed that if Trexp eliminates quantifiers in some language L⇤, then Texp eliminates quantifiers
in the language L⇤ [ {exp, log}.

Ressayre’s method was expounded on in [9], where the authors took Tan as the polynomially bounded base
theory and showed that Tan,exp can be axiomatized by extending Tan by the axioms (E1), (E2), and (E3)
above. They used this to show that Tan,exp has quantifier elimination and a universal axiomatization in
the language Lan [ {exp, log}, where Lan extends the language of ordered rings by function symbols for all
restricted analytic functions, inversion away from zero, and n

th roots for all n > 1.

In [12], van den Dries and Speissegger further generalized this approach. Let R be a polynomially bounded
expansion of the real field which defines the restriction of the exponential function to [�1, 1] and let LR be
a language in which TR, the theory of R, has quantifier elimination and a universal axiomatization. Then
the expansion of R by the unrestricted exponential function is o-minimal and completely axiomatized by the
theory T

e
R
, which expands TR by axioms (E1), (E2), and (E3) above along with an axiom scheme stating that

exp(rx) = (expx)r whenever the power function x 7! x
r is definable in R [12, Theorem B]. As with Tan,exp,

the theory T
e
R

has quantifier elimination and a universal axiomatization in the language LR [ {exp, log}.
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Note that the axiom expressing compatibility with the power function x 7! x
r is really only necessary when

r is irrational; if r 2 Q, then compatibility follows from (E1).

The most general application of this method is in Foster’s thesis [14], where TR above is replaced by any com-
plete power bounded o-minimal theory, subject to some natural constraints. We will use Foster’s framework
in Sections 6 and 7, and we spend the remainder of this subsection describing his hypotheses and results.

Definition 1.1. A restricted exponential on K is a strictly increasing map e: K ! K which is zero
outside of [�1, 1], which satisfies the identity

e(x+ y) = e(x) e(y)

for x, y 2 [�1, 1] with |x+ y| 6 1, and which is di↵erentiable at 0 with derivative 1.

As is the case with total exponential functions, any L(K)-definable restricted exponential on K is actually
L(;)-definable, continuous on the interval [�1, 1], di↵erentiable on the interval (�1, 1), and equal to its own
derivative on that interval. Thus, we say that T defines a restricted exponential to mean that any model
of T admits an L(;)-definable restricted exponential. For the remainder of this subsection, we assume that
T defines a restricted exponential e. We also assume T is power bounded and that ⇤, the field of exponents
of T , is cofinal in the prime model of T .

Lemma 1.2. Let y 2 [�1, 1]. Then y + 1 6 e(y), with equality if and only if y = 0.

Proof. Since e(0) = 1, we may assume that y is nonzero. The o-minimal mean value theorem gives some u

between y and 0 with
e(y)� 1 = e(y)� e(0) = e(u)y.

Treating the cases y > 0 and y < 0 separately, we see that e(u)y > y, so e(y) > y + 1. ⇤

For y 2 K with e(�1) 6 y 6 e(1), let ln(y) be the unique element of [�1, 1] with e(ln y) = y. Then ln is
L(;)-definable and continuous where defined. A straightforward computation gives that ln is di↵erentiable
at y strictly between e(�1) and e(1) with derivative y

�1.

Definition 1.3. A logarithm on K is a function log : K> ! K which satisfies the following axioms for all
a 2 K

> and all � 2 ⇤:
(L1) log is an ordered group embedding of the multiplicative group K

> into the additive group K;
(L2) if e(�1) 6 a 6 e(1), then log a = ln a;
(L3) if � > 1 and a > �2, then a > � log a;
(L4) log(a�) = � log a.

Let log be a logarithm on K. We set Llog := L [ {log}, and we view K as an Llog-structure, where log is
interpreted to be identically zero on K

6. Let exp denote the compositional inverse of log, where it is defined.
Combining (L1) and (L2), we see that log is di↵erentiable at any y > 0 with derivative y

�1. Thus, exp is
also di↵erentiable where defined, and equal to its own derivative.

The axioms (L1)–(L4) are analogs of Foster’s axioms (A1)–(A5) [14, Section 6.5], though they are presented
in terms of logarithms rather than exponentials. Axiom (L1) is an analog of Ressayre’s axiom (E1), axiom
(L2) corresponds to Ressayre’s axiom (E2), and axiom (L3) is a version of (E3) which works for arbitrary
(possibly non-archimedean) fields of exponents. Axiom (L4) is an analog of van den Dries and Speissegger’s
additional axiom.

We prove here a couple of lemmas for later use.

Lemma 1.4. Let log be a logarithm on K, let f, g 2 K with |f � g| 6 1, and suppose that g 2 log(K>).
Then f 2 log(K>).

Proof. Let h := exp(g) e(f � g) 2 K
>. Then f = log h. ⇤
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The inequality in axiom (L3) is not strict (a useful formulation for verifying that it holds in certain
situations). However, the strict version of (L3) follows:

Lemma 1.5. Let log be a logarithm on K, let � 2 ⇤ with � > 1, and let a 2 K with a > �
2. Then

a > � log a.

Proof. Let ⇢ 2 ⇤ with 1 < ⇢
2 6 e(1). For example, we may take ⇢ = 4/3, since e(1) > 2 by Lemma 1.2.

If a > ⇢
2
�
2, then a > ⇢� log a > � log a by (L3), so we may assume that �2 < a < ⇢

2
�
2. Take u 2 K with

�
2
u = a, so 1 < u < e(1). We have

� log a = � log �2 + � lnu 6 �
2 + �

2 lnu,

where the equality uses (L1) and (L2) and the inequality uses (L3) and our assumption that � > 1. Lemma 1.2
gives u� 1 = e(lnu)� 1 > lnu, so � log a < �

2 + �
2(u� 1) = �

2
u = a. ⇤

Let T e be the Llog-theory which extends the axioms (L1)–(L4) by an additional axiom which states that log
is surjective. Foster’s main results on the theory T

e are as follows:

Fact 1.6 ([14], Theorems 6.5.2 and 6.6.9).

(1) T
e is complete, model complete, and o-minimal.

(2) The prime model of T admits a unique expansion to a model of T e.
(3) If T has quantifier elimination and a universal axiomatization, then so does T

e in the language
Llog [ {exp}, where exp is interpreted as the compositional inverse of log.

Corollary 1.7. Any Llog(;)-definable function in any model of T e is given piecewise by a composition of
L(;)-definable functions, log, and exp.

Proof. Let L⇤ be the extension of L by function symbols for each L(;)-definable function. Then T has
quantifier elimination and a universal axiomatization in the language L⇤, since T has definable Skolem
functions. Thus, T e has quantifier elimination and a universal axiomatization in the language L⇤

log [ {exp}
by Fact 1.6 (3) above. It follows that any L⇤

log(;)-definable function in any model of T e is given piecewise by
terms in the language L⇤

log [ {exp}. These terms are exactly compositions of L(;)-definable functions, log,
and exp. ⇤

1.4. T -derivations. Let ∂ : K ! K be a map. For a 2 K, we use a
0 or ∂a in place of ∂(a), and we use a

(r)

in place of ∂r(a). If a 6= 0, then we set a† := a
0
/a. Given a set A ✓ K, we set ∂A := {a0 : a 2 A}. Given a

tuple b = (b1, . . . , bn) 2 K
n, we use ∂b or b0 to denote the tuple (b01, . . . , b

0
n
).

Let F : U ! K be an L(;)-definable C1-function with U ✓ K
n open. Let rF denote the gradient

rF :=

✓
@F

@Y1
, . . . ,

@F

@Yn

◆
,

viewed as an L(K)-definable map from U to K
n. If n = 1, then we write F

0 instead of rF . We say that ∂
is compatible with F if

F (u)0 = rF (u) · u0

for each u 2 U , where a ·b denotes the dot product
P

n

i=1 aibi for a, b 2 K
n. We say that ∂ is a T -derivation

on K if ∂ is compatible with every L(;)-definable C1-function with open domain.

T -derivations were introduced in [13]. Compatibility with the functions (x, y) 7! x+ y and (x, y) 7! xy gives
that any T -derivation on K is a derivation on K, that is, a map satisfying the identities (a + b)0 = a

0 + b
0

and (ab)0 = a
0
b+ ab

0 for a, b 2 K. For the remainder of this subsection, we assume that ∂ is a T -derivation
on K, and we let C := ker(∂) denote the constant field of K. By [13, Lemma 2.3], the constant field C is the
underlying set of an elementary L-substructure of K. We recall two facts from [13] for later use:
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Fact 1.8 ([13], Lemma 2.12). Let U ✓ K
n be open and let F : U ! K be an L(K)-definable C1-function.

Then there is a (necessarily unique) L(K)-definable function F
[∂] : U ! K such that

F (u)0 = F
[∂](u) +rF (u) · u0

for all u 2 U .

Fact 1.9 ([13], Lemma 2.13). Let M be a T -extension of K, let A be a dclL-basis for M over K, and let
s : A ! M be a map. Then there is a unique extension of ∂ to a T -derivation on M such that a0 = s(a) for
all a 2 A.

Let us also note for future use that if x 7! x
� : K> ! K is an L(;)-definable power function on K, then

(y�)0 = �y
��1

y
0 for all y 2 K

>.

Let s 2 K. An element a with a
0 = s is called an integral of s and a nonzero element b with b

† = s is called
an exponential integral of s. If s 6= 0, then an element f with f

0 = s
† is called a d-logarithm of s. In

di↵erential algebra, “d-logarithms” are often just called “logarithms” (this is the case in [3]). We include
the “d” since there may be actual logarithms present. Suppose that T defines an exponential function with
compositional inverse log. Then for s > 0, the d-logarithms of s are exactly the elements log(s) + c for some
c 2 C.

We say that K is closed under integration if every element of K has an integral in K, and we say that K
is closed under exponential integration if every element of K has an exponential integral in K

⇥. We
say that K is Liouville closed if K is closed under both integration and exponential integration. Finally,
we say that K is closed under taking d-logarithms if every element of K⇥ has a d-logarithm in K. Note
that if K is closed under integration, then K is closed under taking d-logarithms. Of course, if T defines an
exponential function, then K is closed under taking d-logarithms.

2. T -convex valuation rings

Following [8], a subset O ✓ K is said to be a T -convex valuation ring of K if O is nonempty and convex
and if F (O) ✓ O for all L(;)-definable continuous functions F : K ! K. Let LO := L[{O} be the extension
of L by a unary predicate O and let TO be the LO-theory which extends T by axioms asserting that O is a
T -convex valuation ring. For the rest of this section, let K = (K,O) |= T

O. Unlike in [8], we allow O = K,
in which case K is said to be trivially valued. The theory T

O is weakly o-minimal—every LO(K)-definable
subset of K is a finite union of convex subsets of K [8, Corollary 3.14].

Any T -convex valuation ring is a valuation ring, so O has a unique maximal ideal, which we denote by O.
We let � denote the value group of K, and we denote the (surjective) Krull valuation by v : K⇥ ! �. If T
is power bounded with field of exponents ⇤, then ⇤ ✓ O since each � 2 ⇤ is L(;)-definable, and the value
group � naturally admits the structure of an ordered ⇤-vector space by

�v(a) := v(a�)

for a 2 K
> (this does not depend on the choice of a). We set �1 := � [ {1} where 1 > �, and we extend

v to all of K by setting v(0) := 1. For a, b 2 K, set

a 4 b :() va > vb, a � b :() va > vb, a ⇣ b :() va = vb, a ⇠ b :() v(a� b) > va.

Note that ⇠ is an equivalence relation on K
⇥, and that if a ⇠ b, then a ⇣ b and a is positive if and only if b

is.

Let res(K) := O/O denote the residue field of K, and for a 2 O, let ā denote the image of a under the
residue map O ! resK. Under this map, resK admits a natural expansion to a T -model; see [8, Remark
2.16] for details. A lift of resK is an elementary L-substructure k of K contained in O such that the map
a 7! ā : k ! resK is an L-isomorphism. By [8, Theorem 2.12], one can always find a lift of resK. For
D ✓ K, set D := {ā : a 2 D \O} ✓ res(K).

9



Let M be a T
O-extension of K with T -convex valuation ring OM and maximal ideal OM . We view � as a

subgroup of �M and resK as an L-substructure of resM in the obvious way. Let v and x 7! x̄ denote their
extensions to functions M

⇥ ! �M and OM ! resM . By [8, Corollary 3.13], the extension of TO by an
axiom stating that O is a proper subring of K is complete and model complete, so if O 6= K, then M is an
elementary T

O-extension of K. If OM = M , then O = K so M is again an elementary T
O-extension of K.

Fact 2.1 ([8], Section 3). Let Khai be a simple T -extension of K. There are at most two T -convex valuation
rings O1 and O2 of Khai which make Khai a T

O-extension of K:

O1 :=
�
y 2 Khai : |y| < u for some u 2 O

 
, O2 :=

�
y 2 Khai : |y| < d for all d 2 K with d > O

 
.

If there is b 2 Khai which realizes the cut O#, then b is contained in O2 but not O1, so O1 ( O2. If there is
no such b, then O1 = O2.

2.1. The Wilkie inequality. In this subsection, we assume that T is power bounded with field of exponents
⇤. The following fact is an analog of the Abhyankar-Zariski inequality, and it is referred to in the literature
as the Wilkie inequality.

Fact 2.2 ([6], Section 5). Let M be a T
O-extension of K and suppose rkL(M |K) is finite. Then

rkL(M |K) > rkL(resM | resK) + dim⇤(�M/�).

We most frequently use the Wilkie inequality when M is a simple extension of K. Here is a consequence of
the Wilkie inequality:

Lemma 2.3. Let S be a cut in �. Then there is a simple T
O-extension Khfi of K where f > 0 and where

vf realizes the cut S. This extension is unique up to LO(K)-isomorphism and is completely described as
follows: f realizes the cut

{y 2 K : y 6 0 or vy > S}
and OKhfi is the convex hull of O in Khfi.

Proof. Let Khfi be a simple extension of K where f realizes the cut

{y 2 K : y 6 0 or vy > S},

and let OKhfi be the convex hull of O in Khfi. Then Khfi with this T -convex valuation ring is indeed a
T

O-extension of K by Fact 2.1, and vf clearly realizes the cut S. It remains to show uniqueness. Let O⇤

be another T -convex valuation ring of Khfi with O⇤ \K = O. If O⇤ 6= OKhfi, then by Fact 2.1, there is
g 2 O⇤ with g > O. Then the residue field of Khfi with respect to O⇤ is strictly bigger than resK, as it
contains the image of g. By the Wilkie inequality, the value group of Khfi with respect to O⇤ is equal to �,
so the valuation of f with respect to O⇤ cannot realize the cut S. ⇤

In Proposition 2.6 below, we use the Wilkie inequality to bound the derivative of a unary L(K)-definable
function. This proposition will be used a number of times in Section 4. First, we need two lemmas.

Lemma 2.4. Let M = Khai be a simple T
O-extension of K with a � 1 and va 62 �. Let F : K ! K be an

L(K)-definable function with F (a) 4 1. Then F
0(a) � a

�1.

Proof. By replacing a with �a if need be, we may assume that a > 0. The Wilkie inequality gives resM =
resK, so we may take u 2 O⇥ with F (a)� u � 1. Replacing F with F � u, we may assume that F (a) � 1.
Note that this does not change F

0.
We first handle the case that O = K, so a > K and |F (a)| < K

>. Phrased in terms of limits, we have

lim
x!1

|F (x)| = 0,

and we want to show that
lim
x!1

x|F 0(x)| = 0.
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Let ", g 2 K
> be given. We need to find d > g with d|F 0(d)| < ". By increasing g, we may assume that

|F (g)| < "/4 and that |F | is decreasing and C1 on a neighborhood of [g,+1). The o-minimal mean value
theorem gives d 2 (g, 2g) with

|F 0(d)| =
���
F (2g)� F (g)

g

��� 6 2|F (g)|
g

.

Since d < 2g and |F (g)| < "/4 we have

d|F 0(d)| 6 d
2|F (g)|

g
< 4|F (g)| < ".

Now suppose O 6= K, so M is an elementary T
O-extension of K. We need to show that a does not belong

to the LO(K)-definable set
�
y 2 M

> : F 0(y) < y
�1
 
. We do this by showing that for any LO(K)-definable

set A ✓ K
> with a 2 A

M , there is y 2 A with F
0(y) � y

�1. Let A be such a set. Since T
O is weakly

o-minimal, we may assume that A is open and convex. By shrinking A, we arrange that F is C1 on A and
that F (y) � 1 for all y 2 A. Since va 62 � and � is densely ordered, the set A contains elements y1, y2 with
y1 � y2. The o-minimal mean value theorem gives

F
0(y) =

F (y2)� F (y1)

y2 � y1
.

for some y 2 A between y1 and y2. Since F (y2)� F (y1) � 1 and y2 � y1 ⇣ y2 < y, we have F
0(y) � y

�1, as
desired. ⇤

Lemma 2.5. Let M = Khai be a simple T
O-extension of K with a ⇣ 1 and ā 62 resK. Let F : K ! K be

an L(K)-definable function with F (a) 4 1. Then F
0(a) 4 1.

Proof. This is trivial if O = K, so we may assume that K is nontrivially valued. Let k ✓ O⇥ be a lift
of resK, so khai is a lift of resM by [8, Lemma 5.1]. Take an L(k)-definable function G : K ! K with
|F (a)| < G(a). The Wilkie inequality gives that �M = �, so since �< has no largest element, it su�ces to
show that |F 0(a)| < d for each d 2 K

> with d � 1. Let d be given and let I be an arbitrary subinterval of
K

> with a 2 I
M . It su�ces to find some y 2 I with |F 0(y)| < d. By shrinking I, we arrange that F is C1

on I and that |F (y)| < G(y) for all y 2 I. As ā 2 I
resM , we see that I must be infinite, so I \ k is infinite.

Take y1, y2 2 I \ k with y1 < y2, so y2 � y1 ⇣ 1. Note that G(yi) 2 k, so |F (yi)| < G(yi) � d for i = 1, 2.
The o-minimal mean value theorem gives

F
0(y) =

F (y2)� F (y1)

y2 � y1
� d

for some y 2 I between y1 and y2. In particular, |F 0(y)| < d. ⇤

Proposition 2.6. Let M = Khai be a simple TO-extension of K with a 6⇠ f for all f 2 K and let F : K ! K

be an L(K)-definable function. Then F
0(a) 4 a

�1
F (a).

Proof. First, suppose a � 1 and va 62 �. The Wilkie inequality gives �M = � � ⇤va, so take d 2 K
> and

� 2 ⇤ with F (a) ⇣ da
�. Then d

�1
a
��

F (a) 4 1 and, applying Lemma 2.4 to the function y 7! d
�1

y
��

F (y),
we get

d
�1

a
��

F
0(a)� �d

�1
a
���1

F (a) � a
�1

.

Since � 4 1 and d
�1

a
��

F (a) ⇣ 1, we have ��d�1
a
���1

F (a) 4 a
�1. It follows that d�1

a
��

F
0(a) 4 a

�1, so

F
0(a) 4 a

�1
da

� ⇣ a
�1

F (a).

Now, suppose a � 1 and va 62 �. Let G : K ! K be the function given by

G(y) =

⇢
F (y�1) if y 6= 0
0 if y = 0.
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Then F (a) = G(a�1). By applying the previous case to G and a
�1 � 1, we get

F
0(a) = �G

0(a�1)a�2 4 aG(a�1)a�2 = a
�1

F (a).

Finally, suppose va 2 � and take b 2 K with b ⇣ a, so b
�1

a ⇣ 1. Note that b�1a 62 resK, for otherwise
we would have a ⇠ bu for some u 2 O⇥, contradicting our assumption on a. The Wilkie inequality gives
�M = �, so take d 2 K

> with F (a) ⇣ d. Applying Lemma 2.5 with b
�1

a in place of a and with the function
y 7! d

�1
F (by) in place of F , we see that

d
�1

bF
0(a) 4 1,

so F
0(a) 4 b

�1
d ⇣ a

�1
F (a). ⇤

Note that our standing assumption of power boundedness is necessary for Proposition 2.6, as the proposition
clearly fails when a is infinite and F is an exponential function with F

0 = F . Our assumption that a 6⇠ f

for all f 2 K is also necessary. To see this, suppose a ⇠ f 2 K and let F (Y ) = Y � f . Then F (a) � a so
a
�1

F (a) � 1, but F 0(a) = 1. Here is an application of Proposition 2.6 for use in the proof of Lemma 4.12.

Corollary 2.7. Suppose O = K, let b 2 K
n be an L(;)-independent tuple, and let Khai be a simple T

O-
extension of K with a � 1. Let G : K1+n ! K be an L(;)-definable function with G(a, b) � 1 and let
d = (d0, . . . , dn) 2 K

1+n. Then rG(a, b) · d � a
�1.

Proof. Viewing G as a function of the variables Y0, . . . , Yn, we have

rG(a, b) · d =
@G

@Y0
(a, b)d0 +

@G

@Y1
(a, b)d1 + · · ·+ @G

@Yn

(a, b)dn.

Since di 2 K = O for each i = 0, . . . n, we have di 4 1 for each i, so it su�ces to show that @G

@Yi
� a

�1 for

each i. For i = 0, we apply Proposition 2.6 to the function y 7! G(y, b) to get @G

@Y0
(a, b) 4 a

�1
G(a, b) � a

�1.
For i > 0, we will again use Proposition 2.6, but doing so requires a bit of an argument. By symmetry, it
su�ces to show that @G

@Y1
(a, b) � a

�1. Let E := dcl(b2, . . . , bn) and view E as an elementary LO-substructure
of K with OE = O \ E = E. Then b1 62 E, so b1 6⇠ f for any f 2 E, since E is trivially valued. Viewing
Ehai as a T

O-extension of E with va 62 �E = {0}, the Wilkie inequality gives resEhai = resE, so b1 6⇠ f

for any f 2 Ehai. Thus, we may apply Proposition 2.6 with Ehai in place of K, with b1 in place of a, and
with the function y 7! G(a, y, b2, . . . , bn) in place of F to get @G

@Y1
(a, b) 4 b

�1
1 G(a, b). Since b

�1
1 2 K and

G(a, b) � 1, this gives @G

@Y1
(a, b) � 1 � a

�1. ⇤

2.2. Immediate extensions and pseudocauchy sequences. In this subsection, let M be a T
O-extension

of K. If �M = � and resM = resK, then M is said to be an immediate extension of K. If M is an
immediate extension of K, then M is an elementary T

O-extension of K. Note that M is an immediate
extension of K if and only if for all a 2 M

⇥ there is b 2 K
⇥ with a ⇠ b. The following fact from [17], is

useful for studying how LO(K)-definable functions behave in immediate extensions.

Fact 2.8 ([17], Corollary 1.6). Suppose M is an immediate extension of K, let F : A ! K be an LO(K)-
definable function, and let a 2 A

M . Then there is an L(K)-definable cell D ✓ A with a 2 D
M such that

either F (y) = 0 for all y 2 D
M or F (y) ⇠ F (a) for all y 2 D

M .

If Khai is a simple immediate TO-extension of K, then v(a�K) :=
�
v(a�y) : y 2 K

 
is a downward closed

subset of � without a greatest element. For each b 2 Khai, the set v(b�K) can be expressed as a translate
of v(a�K):

Lemma 2.9. Let Khai be a simple immediate T
O-extension of K and let b 2 Khai \K. Then

v(b�K) = � + v(a�K)

for some � 2 �.

Proof. Let F : K ! K be an L(K)-definable function with F (a) = b. Take an open interval I ✓ K with
a 2 I

Khai such that F is C1 on I. Since b 62 K, we have F
0(a) 6= 0, so we may use Fact 2.8 to shrink I and
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arrange that F
0(y) ⇠ F

0(a) for all y 2 I
Khai. Set � := vF

0(a) 2 � and let u 2 I. By the o-minimal mean
value theorem, we have

F (a)� F (u) = F
0(c)(a� u)

for some c 2 Khai between a and u. Then vF
0(c) = � since c 2 I

Khai, so

v
�
b� F (u)

�
= v

�
F (a)� F (u)

�
= � + v(a� u).

The set
�
v(a � u) : u 2 I

 
is cofinal in v(a �K) and, since

�
F (u) : u 2 I

 
contains an interval around b,

the set
�
v
�
b� F (u)

�
: u 2 I

 
is cofinal in v(b�K). This gives v(b�K) = � + v(a�K), as desired. ⇤

Recall that a pseudocauchy sequence (pc-sequence) in K is a well-indexed sequence (a⇢) in K such
that

a⌧ � a� � a� � a⇢

for all ⌧ > � > ⇢ greater than some index ⇢0. Let (a⇢) be a pc-sequence. An element a in a T
O-extension

of K is said to be a pseudolimit of (a⇢) if for some index ⇢0, we have

a� a� � a� a⇢

for all � > ⇢ > ⇢0. In this case, we say that (a⇢) pseudoconverges to a, and we write a⇢  a. The
pc-sequence (a⇢) is said to be divergent if it has no pseudolimit in K. Suppose (a⇢) is divergent with
pseudolimit a in some T

O-extension of K. Given y 2 K, we have a� a⇢ � a� y for all su�ciently large ⇢;
otherwise, we would have a⇢  y.

Under the assumption of power boundedness, pc-sequences are related to immediate extensions as follows:

Lemma 2.10. Suppose that T is power bounded and let Khai be a simple T
O-extension of K. The following

are equivalent:

(1) Khai is an immediate extension of K;
(2) v(a�K) has no largest element;
(3) there is a divergent pc-sequence in K which pseudoconverges to a.

Proof. The equivalence of (1) and (2) follows from results in Tyne’s thesis [22]; see [17, Lemma 1.10] for a
full proof (this uses our assumption of power boundedness). Assume (2) holds and let (a⇢) be a well-indexed
sequence in K such that v(a � a⇢) is strictly increasing and cofinal in v(a � K). One easily verifies that
(a⇢) is a divergent pc-sequence in K which pseudoconverges to a. Now, assume (3) holds and let (a⇢) be a
pc-sequence witnessing this. Then for y 2 K, we may take ⇢ with a� a⇢ � a� y, proving (2). ⇤

As a corollary, we get that any divergent pc-sequence in K has a pseudolimit in an immediate extension of
K.

Corollary 2.11. Let T be power bounded and let (a⇢) be a divergent pc-sequence in K. Then there is an
immediate T

O-extension Khai of K with a⇢  a. If b is an element of a T
O-extension M of K with a⇢  b,

then there is a unique LO(K)-embedding Khai ! M sending a to b.

Proof. Let Khai be a simple T
O-extension of K with a⇢  a (such an extension exists by compactness).

Lemma 2.10 gives that Khai is an immediate extension of K. Let b be an element of a T
O-extension M of

K with a⇢  b. We claim that a and b realize the same cut in K. Let y 2 K and take a⇢ with a�a⇢ � a�y

and b� a⇢ � b� y. Then

a� y ⇠ (a� y)� (a� a⇢) = a⇢ � y = (b� y)� (b� a⇢) ⇠ b� y,

so a < y if and only if b < y. This gives us a unique L(K)-embedding ◆ : Khai ! M sending a to b. To get
that ◆ is an LO(K)-embedding, let F : K ! K be L(K)-definable. We need to show that F (a) 2 OKhai if
and only if F (b) 2 OM . We assume that F (a) 6= 0, and we will show that F (a) ⇠ F (b). Using Fact 2.8, take
an interval I ✓ K with a 2 I

Khai such that F (y) ⇠ F (a) for all y 2 I
Khai. Since K has a proper immediate
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extension, it is not trivially valued, so M is an elementary T
O-extension of K. Thus, F (b) ⇠ F (y) ⇠ F (a),

since b 2 I
M . ⇤

3. HT -asymptotic fields

In this section, we introduce the class of HT -asymptotic fields. These fields are o-minimal analogs of the
H-asymptotic fields from [3, Chapter 9]. We will collect a few facts from [3] for later use, and then we will
discuss the immediate extensions of HT -asymptotic fields. As we will see in Section 4, all (pre)-HT -fields
are HT -asymptotic. Before proceeding, let us fix some notation. Set LO,∂ := L [ {O, ∂}, and let T

O,∂ be
the LO,∂-theory which extends T

O by axioms stating that ∂ is a T -derivation. We also make the following
standing assumption:

Assumption 3.1. For the remainder of this article, let K = (K,O, ∂) |= T
O,∂. We will continue to use the

notation introduced in Subsection 1.4 and Section 2. In particular, we write O for the maximal ideal of O, �
for the value group of (K,O), and C for the constant field of (K, ∂).

Definition 3.2. K is an HT -asymptotic field if for all g 2 K with g � 1, we have

(HA1) g
†
> 0,

(HA2) g
† � f

0 for all f 2 O, and
(HA3) g

† < f
0 for all f 2 O⇥.

The definition above di↵ers slightly from the definition of an H-asymptotic field given in [3], though we
claim that every HT -asymptotic field is H-asymptotic. Indeed, (HA2) and (HA3) along with [3, Proposition
9.1.3] imply that every HT -asymptotic field K is asymptotic, that is, f � g () f

0 � g
0 for all f, g 2 K

⇥

with f, g � 1. To see that each HT -asymptotic field K is H-asymptotic in the sense of [3], let f, g 2 K
⇥

with f � g � 1. We need to show that f† < g
†. Applying condition (HA1) to g

�1 and g/f , we have

g
† = �(g�1)† < 0, g

† � f
† = (g/f)† > 0,

so f
†
< g

†
< 0. In particular, f† < g

†, as desired. Conversely, if K is asymptotic, then K satisfies (HA2)
and (HA3) by [3, Proposition 9.1.3]. However, the H-asymptotic fields in [3] are not necessarily ordered,
and even convexly ordered H-asymptotic fields need not satisfy (HA1).

For the remainder of this section, we assume that K is an HT -asymptotic field. Note that if O 6= K, then the
derivation on K is nontrivial by (HA1). Indeed, (HA1) ensures that the constant field of any HT -asymptotic
field is contained in the valuation ring.

Fact 3.3 ([3], Corollary 9.1.4). Let f, g 2 K with g 6⇣ 1. If f � g, then f
0 � g

0. If f 4 g, then
f ⇠ g () f

0 ⇠ g
0.

Let f 2 K
⇥ with f 6⇣ 1. As K is asymptotic, the values v(f 0) and v(f†) only depend on vf , so for � = vf ,

we set
�
† := v(f†), �

0 := v(f 0) = � + �
†
.

This gives us a map
 : � 6= ! �,  (�) := �

†
.

Following Rosenlicht [20], we call the pair (�, ) the asymptotic couple of K. We have the following
important subsets of �:

(�<)0 := {�0 : � 2 �<}, (�>)0 := {�0 : � 2 �>},

(�6=)0 := (�<)0 [ (�>)0,  :=  (�6=) = {�† : � 2 �6=}.

It is always the case that (�<)0 < (�>)0 and that  < (�>)0. If there is � 2 � with  < � < (�>)0, then
we call � a gap in K. There is at most one such �, and if  has a largest element, then there is no such
�. If K has trivial valuation, then the four subsets above are empty and 0 is a gap in K. We say that K is
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grounded if  has a largest element, and we say that K is ungrounded otherwise. Finally, we say that
K has asymptotic integration if � = (� 6=)0. If � is a gap in K or if � = max , then � \ (�6=)0 = {�}.
In [3], the authors prove the following trichotomy for H-asymptotic fields. Of course, this trichotomy holds
for HT -asymptotic fields as well.

Fact 3.4 ([3], Corollary 9.2.16). Exactly one of the following holds:

(1) K has asymptotic integration;
(2) K has a gap;
(3) K is grounded.

It follows that K is ungrounded if and only if  ✓ (�<)0. This allows us to define the contraction map
� : � 6= ! �< for ungrounded K as follows: let � 2 � 6=, so �† 2  ✓ (�<)0. Let �(�) be the unique element
of �< with �(�)0 = �

†. We extend � to a map �! �6 by setting �(0) := 0.

3.1. Spherically complete immediate extensions of HT -asymptotic fields. In this subsection, we
will use the results in [17] to prove the following theorem:

Theorem 3.5. Suppose that T is power bounded. Then K has an immediate HT -asymptotic field extension
which is spherically complete.

The analog of Theorem 3.5 for H-asymptotic fields was established in [4]. Theorem 3.5 is a fairly immediate
consequence of [17, Theorem 6.3], but we will provide some additional detail. It is also worth remarking that
in [17], there is a standing assumption that O 6= K. Of course, if O = K, then Theorem 3.5 holds vacuously
since K itself is spherically complete. Let us begin with a test for whether an immediate extension of K is
HT -asymptotic:

Lemma 3.6. Let M be an immediate T
O,∂-extension of K. If f 0 � g

† for all f 2 OM and all g 2 K with
g � 1, then M is an HT -asymptotic field.

Proof. Let h 2 M with h � 1 and take g 2 K with h ⇠ g. For " 2 OM with h = g(1 + "), we have

h
† � g

† = (h/g)† = (1 + ")† =
"
0

1 + "
⇠ "

0
.

By assumption, "0 � g
†, so h

† ⇠ g
†. As K is HT -asymptotic, we have g† > 0, so h

†
> 0 as well. Additionally,

we have h
† ⇠ g

† � f
0 for all f 2 OM , by assumption. Now let f 2 O⇥

M
. Take u 2 K and � 2 OM with

f = u + �, so f
0 = u

0 + �
0. We have �0 � g

† by assumption and u
0 4 g

†, since K is HT -asymptotic and
u, g 2 K, so f

0 4 g
† ⇠ h

†. ⇤

The main objects of study in [17] are T -convex T -di↵erential fields: models of TO,∂ in which the T -derivation
is continuous with respect to the valuation topology. Thus, the next step for us is to verify that this continuity
assumption holds.

Lemma 3.7. The derivation on K is continuous with respect to the valuation topology.

Proof. If O = K, then the valuation topology on K is the discrete topology, and the derivation on K is
trivially continuous, so we may assume that O 6= K. Take g 2 K with g � 1. Then g

† � f
0 for all f 2 O

by (HA2), so ∂O ✓ g
†O. By [3, Lemma 4.4.7], continuity of the derivation is equivalent to the existence of

� 2 K
⇥ with ∂O ✓ �O, so ∂ is indeed continuous. ⇤

Central in [17] are the following subsets of �, which were first introduced in [4]:

�(∂) :=
�
v� : � 2 K

⇥ and ∂O ✓ �O
 
, S(∂) :=

�
� 2 � : �(∂) + � = �(∂)}.

Using that K is HT -asymptotic, these subsets can be described explicitly:

Lemma 3.8. �(∂) = � \ (�>)0 and S(∂) = {0}.
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Proof. For � 2 K
⇥, we have

v� 62 (�>)0 () v� < (�>)0 () f
0 � � for all f 2 O () v� 2 �(∂),

proving the first equality. For the second, note that S(∂) is a convex subgroup of �, so it su�ces to show
that S(∂) \ �> = ;. Let � 2 �>, so

�
† 2  ✓ � \ (�>)0, �

† + � = �
0 2 (�>)0.

Since �(∂) = � \ (�>)0, this tells us that �† 2 �(∂), but �† + � 62 �(∂), so � 62 S(∂). ⇤

Following [4], we say that a T
O,∂-extension M of K is a strict extension of K if

∂O ✓ �O =) ∂MOM ✓ �OM , ∂O ✓ �O =) ∂MOM ✓ �OM

for each � 2 K
⇥. If M is an immediate strict extension of K, then ∂M is automatically continuous. By [4,

Lemma 1.5], if M is an immediate T
O,∂-extension of K, then M is a strict extension of K if and only if

∂MOM ✓ �OM for each � 2 K
⇥ with v� 2 �(∂).

Corollary 3.9. Let M be an immediate T
O,∂-extension of K. Then M is a strict extension of K if and

only if M is an HT -asymptotic field.

Proof. Suppose that M is a strict extension of K and let f 2 OM . As  ✓ �(∂) by Lemma 3.8, we have
f
0 � � for all � 2 K

⇥ with v� 2  . Thus, M is an HT -asymptotic field by Lemma 3.6. Conversely, suppose
that M is HT -asymptotic, let � 2 K

⇥ with v� 2 �(∂), and let f 2 OM . By [4, Lemma 1.5], we need only
show that f 0 � �. Take g 2 O with f ⇠ g. Then f

0 ⇠ g
0 � � by Fact 3.3. ⇤

Proof of Theorem 3.5. Since S(∂) = {0}, there is an immediate strict T -convex T -di↵erential field extension
M of K which is spherically complete by [17, Theorem 6.3] (this uses that T is power bounded). By
Corollary 3.9, M is an HT -asymptotic field. ⇤

3.2. Simple immediate extensions of HT -asymptotic fields. In this subsection, we turn our focus
to certain types of simple immediate extensions. We assume throughout this subsection that T is power
bounded.

Proposition 3.10. Let G : K ! K be an L(K)-definable function, let (a⇢) be a divergent pc-sequence in K,
and suppose a

0
⇢
� G(a⇢)  0. Then K has an immediate HT -asymptotic field extension Khai with a⇢  a

and a
0 = G(a). If b is a pseudolimit of (a⇢) in an HT -asymptotic field extension M of K with b

0 = G(b),
then there is a unique LO,∂(K)-embedding Khai ! M sending a to b.

Proof. Let a be a pseudolimit of (a⇢) in an immediate T
O-extension of K; such an extension exists by

Corollary 2.11. Using Fact 1.9, extend the derivation on K to a T -derivation on Khai with a
0 = G(a). We

claim that Khai is HT -asymptotic. By Lemma 3.6, it su�ces to show that f
0 � g

† for all f 2 M and all
g 2 K with f � 1 � g. Let F : K ! K be an L(K)-definable function with F (a) � 1, let g 2 K with
g � 1, and suppose towards contradiction that F (a)0 < g

†. Then F (a) 62 K, so F
0(a) 6= 0. Take an open

interval I ✓ K with a 2 I
Khai such that F is C1 on I, and let H : I ! K be the L(K)-definable function

H(Y ) = F
[∂](Y ) + F

0(Y )G(Y ) where F
[∂] is as defined in Fact 1.8. Then

H(a) = F
[∂](a) + F

0(a)G(a) = F (a)0 < g
†
.

Using Fact 2.8, we may shrink I to arrange that

F (y) ⇠ F (a) � 1, H(y) ⇠ H(a) < g
†
, F

0(y) ⇠ F
0(a)

for all y 2 I
Khai. Let ⇢ be a su�ciently large index, so a⇢ 2 I. Since F (a⇢) � 1 and K is HT -asymptotic,

we have F (a⇢)0 � g
† 4 H(a⇢). Thus,

H(a⇢) ⇠ H(a⇢)� F (a⇢)
0 =

�
F

[∂](a⇢) + F
0(a⇢)G(a⇢)

�
�
�
F

[∂](a⇢) + F
0(a⇢)a

0

⇢

�
= F

0(a⇢)
�
G(a⇢)� a

0

⇢

�
.
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Since H(a⇢) ⇠ H(a) and F
0(a⇢) ⇠ F

0(a) 6= 0, we have

G(a⇢)� a
0

⇢
⇠ H(a)

F 0(a)
.

Since this holds for all su�ciently large ⇢, we have G(a⇢) � a
0
⇢
⇠ G(a�) � a

0
�
for �, ⇢ su�ciently large,

contradicting our assumption that a0
⇢
�G(a⇢) 0. Thus, Khai is an HT -asymptotic field, as claimed. The

embedding property follows from Fact 1.9 and Corollary 2.11. ⇤

Corollary 3.11. Let s 2 K with vs 2 (�>)0 and s 62 ∂O, and suppose v(s � ∂O) has no largest element.
Then K has an immediate HT -asymptotic field extension Khai with a � 1 and a

0 = s such that for any
HT -asymptotic field extension M of K with s 2 ∂OM , there is a unique LO,∂(K)-embedding Khai ! M .

Proof. Let (a⇢) be a well-indexed sequence in O such that v(s � a
0
⇢
) is strictly increasing as a function of

⇢ and cofinal in v(s � ∂O). The proof of [3, Lemma 10.2.4] gives that (a⇢) is a divergent pc-sequence in
K. We apply Proposition 3.10 where G is the constant function s to get an immediate HT -asymptotic field
extension Khai of K with a⇢  a and a

0 = s. Let M be an HT -asymptotic field extension of K and let
b 2 OM with b

0 = s. Then for ⇢ < �, we have

(b� a⇢)
0 = s� a

0

⇢
⇠ (a� � a⇢)

0
.

Since b � a⇢, a� � a⇢ � 1, Fact 3.3 gives us that b � a⇢ ⇠ a� � a⇢, so a⇢  b. Proposition 3.10 gives
an LO,∂(K)-embedding ı : Khai ! M sending a to b. For uniqueness, let | : Khai ! M be an arbitrary
LO,∂(K)-embedding. Then |(a) � b 2 CM since |(a)0 = s = b

0. Since |(a), b � 1 and C
⇥

M
✓ O⇥

M
, we must

have |(a) = b. This shows that | = ı. ⇤

Corollary 3.12. Let s 2 K with v(s � ∂K) < (�>)0 and suppose v(s � ∂K) has no largest element. Then
K has an immediate HT -asymptotic field extension Khai with a

0 = s such that for any HT -asymptotic field
extension M of K and b 2 M with b

0 = s, there is a unique LO,∂(K)-embedding Khai ! M sending a to b.

Proof. Let (a⇢) be a well-indexed sequence in K such that v(s� a
0
⇢
) is strictly increasing as a function of ⇢

and cofinal in v(s� ∂K) and such that s� a
0
⇢
� s for each ⇢. The proof of [3, Lemma 10.2.6] gives that (a⇢)

is a divergent pc-sequence in K. We apply Proposition 3.10 where G is the constant function s to get an
immediate HT -asymptotic field extension Khai of K with a⇢  a and a

0 = s. Let M be an HT -asymptotic
field extension of K and let b 2 M with b

0 = s. For ⇢ < �, we have

(b� a⇢)
0 = s� a

0

⇢
⇠ (a� � a⇢)

0
,

so v(b� a⇢)0 2 (�<)0 and b� a⇢ � 1. Fact 3.3 gives b� a⇢ ⇠ a� � a⇢, so a⇢  b and Proposition 3.10 gives
an LO,∂(K)-embedding ı : Khai ! M sending a to b. ⇤

3.3. l-freeness and w-freeness. In this subsection, let K be an ungrounded HT -asymptotic field with
O 6= K. A logarithmic sequence in K is a well-indexed sequence (`⇢) in K such that:

(1) `⇢ � `� � 1 for all � > ⇢ and (v`⇢) is cofinal in �<;
(2) v`⇢+1 = �(v`⇢) for all ⇢.

Logarithmic sequences can be constructed by transfinite recursion; see [3, Section 11.5]. Note that if M
is an HT -asymptotic field extension of K with �< cofinal in �<

M
, then any logarithmic sequence in K is a

logarithmic sequence in M .

A l-sequence in K is a sequence (l⇢) where l⇢ = �`††
⇢

for some logarithmic sequence (`⇢) in K. By [3,
Proposition 11.5.3], any two l-sequences in K are equivalent as pc-sequences (they have the same pseu-
dolimits in every extension of K). We say that K is l-free if no l-sequence in K has a pseudolimit in
K.
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An w-sequence in K is a sequence (w⇢) where w⇢ = �(2l0
⇢
+ l2

⇢
) for some l-sequence (l⇢) in K. We say

that K is w-free if no w-sequence in K has a pseudolimit in K. If l⇢  l 2 K, then the corresponding w-
sequence (w⇢) has pseudolimit �(2l0+l2) 2 K, so w-freeness implies l-freeness. The property of w-freeness
plays a much larger role than l-freeness in [3], but in this article, l-freeness is the more central concept.
Even so, w-freeness makes an appearance in Corollary 4.18 and Proposition 4.21 below, with an eye towards
future work.

Lemma 3.13. If K is an increasing union of l-free HT -asymptotic fields, then K is l-free. If K is an
increasing union of w-free HT -asymptotic fields, then K is w-free.

Proof. By [3, Corollary 11.6.1], K is l-free if and only if for all s 2 K, there is g 2 K with g � 1 and
s� g

†† < g
†. By [3, Corollary 11.7.8], K is w-free if and only if for all f 2 K, there is g 2 K with g � 1 and

f � 2(g††)0 + (g††)2 < (g†)2.

Both of these equivalent conditions are preserved by increasing unions. ⇤

For the remainder of this section, let (`⇢) be a logarithmic sequence in K with corresponding l-sequence
(l⇢). Nothing here will depend on the specific choice of (`⇢). The following facts about l-sequences and
l-freeness are from [3]:

Fact 3.14 ([3], Lemma 11.5.2 and Corollary 11.6.1). If K is l-free, then K has asymptotic integration. If
K is l-free and l is a pseudolimit of (l⇢) in an HT -asymptotic field extension of K, then v(l �K) =  #.

Fact 3.15 ([3], Lemma 11.5.13). Suppose K has asymptotic integration and let l 2 K be a pseudolimit of
(l⇢). Then v

�
l + (K⇥)†

�
is a cofinal subset of  #.

For us, the importance of l-freeness comes from its relation to gaps:

Lemma 3.16. Suppose that T is power bounded with field of exponents ⇤ and that K has asymptotic
integration. Let s 2 K and let M = Khfi be an HT -asymptotic field extension of K with f 6= 0 and f

† = s.
Then vf is a gap in M if and only l⇢  �s.

Proof. One direction is by [3, Lemma 11.5.12]: if vf is a gap in M , then l⇢  �s. For the other direction,
suppose l⇢  �s. We first note that vf 62 �. Indeed, suppose towards contradiction that f ⇣ y for some
y 2 K

⇥ and take u 2 M with f = uy. Then

v(s� y
†) = v(f† � y

†) = v(u†) = v(u0) >  ,

contradicting that v
�
s� (K⇥)†

�
is a cofinal subset of  # by Fact 3.15.

Now we claim that  M ✓  #. We have established that vf 62 �, so the Wilkie inequality gives �M =
� � ⇤vf . Thus, we fix � 2 � and � 2 ⇤ with � 6= 0, and we need to show that  (� + �vf) 2  #. Take
y 2 K

> with vy = � and set z := y
�1/�, so y

† = ��z†. Since v� = 0, we have

 (� + �vf) = v(yf�)† = v(y† + �s) = v(�s� �z
†) = v(s� z

†),

so  (� + �vf) 2  # by Fact 3.15, proving the claim.
Finally, suppose toward contradiction that vf is not a gap in M . Then  M , being a cofinal subset of  #,

has no maximum and so vf 2 (�6=
M
)0. Take � 2 � 6=

M
with �0 = vf and take y 2 K with �†

< vy 2  . Our
assumption that l⇢  �s along with [3, Lemma 11.5.6 (iii)] gives s� y

† � y, so

 (vf � vy) = v(f/y)† = v(s� y
†) > vy,

contradicting [3, Lemma 9.2.2] with ↵ = vf and � = vy. ⇤

In [15], Gehret defines a property—the yardstick property—which allows us to check whether l-freeness is
preserved in various extensions. Let S be a nonempty convex subset of � without a largest element.

(1) We say that S has the yardstick property if there is � 2 S such that ���(�) 2 S for all � 2 S
>� .
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(2) We say that S is jammed if for every nontrivial convex subgroup {0} 6= � ✓ �, there is � 2 S such
that � � � 2 � for all � 2 S

>� .

Note that if S is jammed, then so is � + S for any � 2 �. Both being jammed and having the yardstick
property only depend on the downward closure of S: the set S is jammed if and only if S# is, and S has the
yardstick property if and only if S# does. These properties are incompatible, except in the following case:

Fact 3.17 ([15], Lemma 3.17). Let S be a nonempty convex subset of � without a largest element which has
the yardstick property. Then S is jammed if and only if S# = �<.

The importance of the yardstick property stems from the observation that if K is l-free and Khai is an
immediate extension of K which is not l-free, then the set v(a � K) ✓ � is jammed. Thus, we can use
Fact 3.17 above to show that immediate extensions Khai where v(a � K) has the yardstick property are
l-free. A precise argument is given in the lemma below. This lemma is an analog of [15, Proposition 6.19]
with virtually the same proof; only minor modifications and substitutions are required.

Lemma 3.18. Let Khai be a simple immediate HT -asymptotic field extension of K. Suppose that K is
l-free and that v(a�K) ✓ � has the yardstick property. Then Khai is l-free.

Proof. Suppose toward contradiction that Khai is not l-free and take l 2 Khai with l⇢  l. Since l 62 K,
Lemma 2.9 gives � 2 � with v(l�K) = �+v(a�K). Fact 3.14 gives v(l�K) =  #, so v(l�K) is jammed
by [15, Lemma 3.11]. Thus, v(a � K) is jammed as well, so v(a � K) = �< by Fact 3.17. In particular,
v(a�K) has a supremum in �, so v(l�K) =  # also has a supremum in �. By Fact 3.4, we conclude that
K does not have asymptotic integration, contradicting Fact 3.14. ⇤

4. HT -fields and pre-HT -fields

In this section, we introduce the main objects of study. Recall our standing assumption that K = (K,O, ∂)
is a model of TO,∂.

Definition 4.1. K is a pre-HT -field if for all g 2 K with g � 1, we have

(PH1) g
†
> 0, and

(PH2) g
† � f

0 for all f 2 O.

Every pre-HT -field is HT -asymptotic, and if K is HT -asymptotic and g
† � f

0 for all f, g 2 K with g � f ⇣ 1,
then K is a pre-HT -field. As with HT -asymptotic fields, every pre-HT -field is a pre-H-field, as defined in [3].
In the case of pre-HT -fields, the converse also holds: If K is a pre-H-field, then K is a pre-HT -field. To see
this, use [3, Lemma 10.1.1] and note that (PH1) is equivalent to the condition that g0 > 0 for all g 2 K with
g > O. If K is an LO,∂-substructure of a pre-HT -field, then K is itself a pre-HT -field.

Lemma 4.2. Suppose that K is a pre-HT -field, let a 2 K
⇥, and let b 2 K be a d-logarithm of a.

(i) If a 6⇣ 1, then b � 1 and vb = �(va).
(ii) If a ⇣ 1, then b 4 1.

Proof. If a � 1, then since b
0 = a

†, we must have b � 1 by (PH2). It follows immediately that vb = �(va).
This holds more generally for a 6⇣ 1, since �b

0 = (a�1)†. On the other hand, if a ⇣ 1, then

v(b0) = v(a†) = v(a0) > (�<)0,

so b 4 1. ⇤

Corollary 4.3. Suppose that K is a pre-HT -field. If every element in K
> has a d-logarithm in K, then K

is ungrounded. In particular, if T defines an exponential function, then K is ungrounded.

Proof. Suppose that every element in K
> has a d-logarithm in K, let � 2  , and take a 2 K

> with a 6⇣ 1
and va

† = �. Let b be a d-logarithm of a, so b � 1 by Lemma 4.2 and � = vb
0 2 (�<)0. Thus,  ✓ (�<)0. ⇤

19



Recall from the introduction that K is an HT -field if

(H1) f
0
> 0 for all f 2 K with f > O, and

(H2) O = C + O.

Note that if K is an HT -field, then C is a lift of resK.

Lemma 4.4. The following are equivalent:

(1) K is a pre-HT -field and O = C + O;
(2) K is an HT -asymptotic field and O = C + O;
(3) K is an HT -field.

Proof. It is immediate that (1) implies (2). Suppose (2) holds and let f 2 K with f > O. Then f � 1 so
f
†
> 0 by (HA1). As f > 0, this gives f 0

> 0, so (H1) is satisfied. Of course (H2) is satisfied by assumption,
so (3) holds. To see that (3) implies (1), we assume that K is an HT -field, and we will verify that (PH1)
and (PH2) hold. For (PH1), let f 2 K with f � 1. Then |f | > O, so |f |0 > 0. Since f

† = |f |†, this gives
f
†
> 0. Now for (PH2), let f, g 2 K with g � 1 and f 4 1. We need to show that g† � f

0. This is shown
in [3, Lemma 10.5.1], but we repeat the proof here. First, by replacing g with �g if need be, we may assume
that g > 0. As O = C + O, we may subtract a constant from f to arrange that f � 1. Let c 2 C

>, so
0 < c+f, c�f ⇣ 1. This gives g(c+f), g(c�f) > O, so g

0(c+f)+ gf
0
, g

0(c�f)� gf
0
> 0 by (H1), yielding

g
0(c� f) > gf

0
> �g

0(c+ f).

Dividing by g gives
g
†(c� f) > f

0
> �g

†(c+ f).

As f � 1 and c 2 C
> can be taken to be arbitrarily small, we see that f 0 � g

† as desired. ⇤
Corollary 4.5. Let K be an HT -field and let M be an HT -asymptotic field extension of K with resM =
resK. Then M is an HT -field with CM = C.

Proof. We have C ✓ CM and by (HA1), we have CM ✓ OM . As C is a lift of resK = resM , it is maximal
among the elementary L-substructures of M contained in OM , so C = CM and OM = C + OM ; see [8,
Remark 2.11 and Theorem 2.12]. We conclude that M is an HT -field by Lemma 4.4. ⇤
Lemma 4.6. Let K be a pre-HT -field and let M be an immediate HT -asymptotic field extension of K. Then
M is a pre-HT -field. If K is an HT -field, then M is as well.

Proof. Let f, g 2 M with g � f ⇣ 1. We need to show that g
† � f

0. Using that �M = �, take a 2 K

with g ⇣ a, so g
† ⇣ a

†. Using that resM = resK, take b 2 K with f � b � 1, so (f � b)0 � a
†, as M is

HT -asymptotic. As K is a pre-HT -field, we also have b
0 � a

†, so

f
0 = (f � b)0 + b

0 � a
† ⇣ g

†
.

If K is an HT -field, then Corollary 4.5 gives that M is an HT -field as well. ⇤

Using Lemma 4.6, we have the following consequence of Theorem 3.5:

Corollary 4.7. Suppose that T is power bounded. Then every pre-HT -field has a spherically complete im-
mediate pre-HT -field extension and every HT -field has a spherically complete immediate HT -field extension.

Assumption 4.8. For the remainder of this section, we assume that T is power bounded with field of
exponents ⇤ and that K is a pre-HT -field.

4.1. Adjoining integrals. To begin this subsection, let us use Corollaries 3.11 and 3.12 to say something
about immediate extensions of K by integrals.

Corollary 4.9. Let s 2 K with vs 2 (�>)0 and s 62 ∂O. Then K has an immediate pre-HT -field extension
Khai with a � 1 and a

0 = s such that for any HT -asymptotic field extension M of K with s 2 ∂OM , there is
a unique LO,∂(K)-embedding Khai ! M . If K is ungrounded and l-free, then so is Khai.
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Proof. Let S := v(s� ∂O) ✓ (�>)0. We claim that S has no largest element. Let y 2 O and take b 2 O with
s� y

0 ⇣ b
0. Take u 2 O⇥ with s� y

0 = ub
0. Then (PH2) gives u0 � b

†, so u
0
b � b

0, and

s� (y + ub)0 = s� y
0 � ub

0 � u
0
b = �u

0
b � b

0 ⇣ s� y
0
.

Thus, S has no largest element as claimed, and Corollary 3.11 gives an immediate HT -asymptotic field
extension Khai of K with a � 1, a0 = s, and the desired embedding property. By Lemma 4.6, Khai is itself
a pre-HT -field. By [15, Lemma 8.5], the set v(a�K) has the yardstick property, so if K is ungrounded and
l-free, then Khai is as well by Lemma 3.18. ⇤
Corollary 4.10. Let s 2 K with v(s � ∂K) ✓ (�<)0. Then K has an immediate pre-HT -field extension
Khai with a

0 = s such that for any HT -asymptotic field extension M of K and b 2 M with b
0 = s, there is

a unique LO,∂(K)-embedding Khai ! M sending a to b. If K is ungrounded and l-free, then so is Khai.

Proof. Let S := v(s�∂K) ✓ (�<)0. Again, we claim that S has no largest element. Let y 2 K and take b � 1
and u ⇣ 1 with s� y

0 = ub
0. As in the proof of Corollary 4.9, we see that s� (y + ub)0 � s� y

0, as desired.
Corollary 3.12 gives an immediate HT -asymptotic field extension Khai of K with a

0 = s and the desired
embedding property. By Lemma 4.6, Khai is itself a pre-HT -field. By [15, Lemma 9.6], the set v(a�K) has
the yardstick property, so if K is ungrounded and l-free, then Khai is as well by Lemma 3.18. ⇤

Now we turn to the case that K has a gap. First, we give a useful test for whether a simple extension of K
is a pre-HT -field.

Lemma 4.11. Let K be a pre-HT -field and let M = Khai be a T
O,∂-extension of K with va 62 �. Suppose

that for all g 2 K
⇥ and � 2 ⇤ with ga

� � 1, we have

(i) (ga�)† > 0,
(ii) (ga�)† � f

0 for all f 2 K with f 4 1,
(iii) (ga�)† � F (a)0 for all L(K)-definable functions F : K ! K with F (a) � 1 and F (a) 62 K.

Then M is a pre-HT -field. If K is an HT -field, then so is M .

Proof. Let h 2 M with h � 1 and take g 2 K
⇥ and � 2 ⇤ with h ⇣ ga

�. By the Wilkie inequality, we have
resM = resK, so by multiplying g with an element in O⇥, we may even assume that h ⇠ ga

�. Take " 2 OM

with h = ga
�(1 + "). Then

h
† � (ga�)† = (1 + ")† =

"
0

1 + "
⇠ "

0
.

We have "0 � (ga�)† by (ii) and (iii), so h
† ⇠ (ga�)†. In particular, h†

> 0 by (i), so (PH1) holds. For (PH2),
let f 2 OM . We need to show that h

† � f
0. Since h

† ⇠ (ga�)†, it su�ces to show that (ga�)† � f
0. This

follows from (ii) if f 2 K, so we may assume f 62 K. As resM = resK, we may take u 2 O with f � u � 1.
Take an L(K)-definable function F : K ! K with F (a) = f � u. Then f

0 = u
0 + F (a)0 � (ga�)† by (ii) and

(iii). Finally, if K is an HT -field, then M is as well by Corollary 4.5, since resM = resK. ⇤

The next lemma shows that if K has a gap, then this gap has an integral in some pre-HT -field extension of
K.

Lemma 4.12. Let s 2 K and suppose vs is a gap in K. Then K has a pre-HT -field extension Khai with
a � 1 and a

0 = s such that for any HT -asymptotic field extension M of K with s 2 ∂OM , there is a unique
LO,∂(K)-embedding Khai ! M . The pre-HT -field Khai is grounded with

resKhai = resK, �Khai = �� ⇤va,  Khai =  [ {va†}, va
†

>  .

Proof. By replacing s with �s if need be, we arrange that s < 0. Let Khai be a simple T
O-extension of K

where a > 0 and 0 < va < �>. The Wilkie inequality gives �Khai = � � ⇤va and resKhai = resK. Using
Fact 1.9, we equip Khai with the unique T -derivation that extends the derivation on K and satisfies a0 = s.
We need to show that Khai is a pre-HT -field extension of K. Let g 2 K

⇥ and � 2 ⇤ with ga
� � 1. By

Lemma 4.11, it su�ces to verify the following:
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(i) (ga�)† > 0;
(ii) (ga�)† � f

0 for all f 2 K with f 4 1;
(iii) (ga�)† � F (a)0 for all L(K)-definable functions F : K ! K with F (a) � 1 and F (a) 62 K.

Since v(ga�) = vg + �va is assumed to be negative and since 0 < va < �>, it must be that either g � 1 or
g ⇣ 1 and � < 0. If g � 1, then vg

† 2 (�<)0 and va
† = vs� va > (�<)0, so

(ga�)† = g
† + �a

† ⇠ g
†

> 0.

On the other hand, if g ⇣ 1 and � > 0, then g
† ⇣ g

0 4 s � s/a = a
†. This gives

(ga�)† = g
† + �a

† ⇠ �a
†
,

since � ⇣ 1. Since a
†
< 0, we have �a† > 0. This takes care of (i) and also tells us that (ga�)† < a

†. This
can be used to quickly take care of (ii): if f 2 O, then f

0 4 s � a
† 4 (ga�)†.

Now we turn to (iii). Let F : K ! K with F (a) � 1 and F (a) 62 K. We need to show that F (a)0 � a
† =

s/a. We consider two cases. First, suppose O = K. Take an L(;)-definable function G : K1+n ! K and an
L(;)-independent tuple b = (b1, . . . , bn) 2 K

n with F (a) = G(a, b). Then

F (a)0 = G(a, b)0 = rG(a, b) · (s, b01, . . . , b0n),

so by applying Corollary 2.7 with (s, b01, . . . , b
0
n
) 2 K

1+n in place of d, we get F (a)0 � a
�1. Since s ⇣ 1,

this gives F (a)0 � s/a, as desired. Now suppose O 6= K. We need to show that F
[∂](a) + F

0(a)s � s/a.
Proposition 2.6 gives F

0(a) 4 a
�1

F (a) � a
�1, so F

0(a)s � s/a and it remains to show that F
[∂](a) � s/a.

Since Khai is an elementary T
O-extension of K, it su�ces to show that for each LO(K)-definable set A ✓ K

with a 2 A
Khai, there is y 2 A with F

[∂](y) � s/y. Let A be such a set and, by shrinking A if need be,
assume that F is C1 on A and that y, F (y) � 1 for all y 2 A. Since F 0(a) � a

�1, we can use LO-elementarity
to take y 2 A with F

0(y) � y
�1. Multiplying by y

0 gives F 0(y)y0 � y
† for this y. Since F (y) � 1 and K is a

pre-HT -field, we have F (y)0 � y
†. Thus,

F
[∂](y) = F (y)0 � F

0(y)y0 � y
†
.

Since y � 1 and vs is a gap in K, we have y
0 � s, so F

[∂](y) � y
† � s/y, as desired.

Finally, let M be an HT -asymptotic field extension of K and let b 2 OM with b
0 = s. Then b

† = s/b

must be negative by (HA1), so b is positive since s is negative. Moreover, vb must realize the cut �6 since
vs 2 (�>

M
)0 and vs < (�>)0. Lemma 2.3 gives a unique LO(K)-embedding ı : Khai ! M sending a to b and

Fact 1.9 tells us that ı is an LO,∂(K)-embedding. Let | : Khai ! M be an arbitrary LO,∂(K)-embedding.
Then |(a)� b 2 CM since |(a)0 = s = b

0. Since |(a), b � 1, we see that |(a) = b. This shows that | = ı, so ı

is unique. ⇤

If we further assume that K is an HT -field, then one can find an HT -field extension of K with an infinite
integral for a gap in K.

Lemma 4.13. Let K be an HT -field, let s 2 K, and suppose vs is a gap in K. Then K has an HT -field
extension Khai with a � 1 and a

0 = s such that for any HT -asymptotic field extension M of K and b 2 M

with b � 1 and b
0 = s, there is a unique LO,∂(K)-embedding Khai ! M sending a to b. The HT -field Khai

is grounded with

resKhai = resK, �Khai = �� ⇤va,  Khai =  [ {va†}, va
†

>  .

Proof. We may assume that s > 0. Let Khai be a simple T
O-extension of K where a > 0 and �< < va < 0,

so �Khai = �� ⇤va and resKhai = resK by the Wilkie inequality. Using Fact 1.9, we equip Khai with the
unique T -derivation that extends the derivation on K and satisfies a0 = s. To see that Khai is an HT -field
extension of K, let g 2 K

⇥ and � 2 ⇤ with ga
� � 1. By Lemma 4.11, it su�ces to verify the following:

(i) (ga�)† > 0;
(ii) (ga�)† � f

0 for all f 2 K with f 4 1;
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(iii) (ga�)† � F (a)0 for all L(K)-definable functions F : K ! K with F (a) � 1 and F (a) 62 K.

Proving (i) is similar to the proof of Lemma 4.12. This time, either g � 1 or g ⇣ 1 and � > 0. If g � 1, then
g
† � a

†, so (ga�)† ⇠ g
†
> 0. Suppose g ⇣ 1. We need to show that g† � a

†. Using that K is an HT -field,
take c 2 C with g � c 2 O. Then g

† ⇣ g
0 = (g � c)0 2 ∂O, so v(g†) 2 (�>)0. Since va

†
< (�>)0, we have

(ga�)† ⇠ �a
†
> 0. This takes care of (i) and tells us that (ga�)† < a

†. For (ii), let f 2 O and take c 2 C

with f � c 2 O. Then f
0 = (f � c)0, so v(f 0) 2 (�>)0 > va

† > v(ga�)†.
Now we turn to (iii). Let F : K ! K with F (a) � 1 and F (a) 62 K. As in the proof of Lemma 4.12,

we need to show that F (a)0 = F
[∂](a) + F

0(a)s � s/a. Proposition 2.6 gives F
0(a) 4 a

�1
F (a) � a

�1, so
F

0(a)s � s/a and it remains to show that F
[∂](a) � s/a. We claim that |F [∂](a)| < s/a

2 � s/a. Since
F

[∂] is L(K)-definable, it su�ces to show that for each interval I ✓ K with a 2 I
Khai, there is y 2 I with

|F [∂](y)| < s/y
2. Let I be such an interval and, by shrinking I if need be, assume that F is C1 on I and that

|F (y)| < 1 for all y 2 I. Since K is an HT -field and a realizes the cut O#, the interval I contains a constant
c 2 C

>. Since |F (c)| < 1 and s is a gap in K, we have

F (c)0 = F
[∂](c) + F

0(c)c0 = F
[∂](c) � s.

Since c
2 ⇣ 1, we have c

2
F

[∂](c) � s, which yields |F [∂](c)| < s/c
2, as desired.

Finally, let M be an HT -asymptotic field extension of K and let b 2 M with b � 1 and b
0 = s. Then

b
† = s/b must be positive, so b is positive since s is positive. Since vs 2 (�<

M
)0 and vs > (�<)0, we see that

vb must realize the cut �<. Lemma 2.3 gives a unique LO(K)-embedding ı : Khai ! M sending a to b, and
this is even an LO,∂(K)-embedding by Fact 1.9. ⇤

4.2. The HT -field hull. We now show that the pre-HT -field K has a minimal HT -field extension. We say
that � 2 � is a fake gap in K if � is a gap in K and � = v(b0) for some b 2 K. Then necessarily b ⇣ 1,
for otherwise � 2 (�6=)0. Likewise, b 6⇠ c for any c 2 C, for otherwise b

0 = (b� c)0 and � 2 (�>)0. Thus, no
HT -field has a fake gap. Of course, if K is grounded or has asymptotic integration, then K does not have
a fake gap. Suppose K does not have a fake gap and let M be an immediate pre-HT -field extension of K.
We claim that M does not have a fake gap. Let b 2 M with b ⇣ 1 and take a 2 K with b � a � 1. Then
v(b� a)0 2 (�>)0. As K has no fake gap, we also have v(a0) 2 (�>)0, so

v(b0) = v
�
(b� a)0 + a

0
�
> min

�
v(b� a)0, v(a0)

 
2 (�>)0.

Theorem 4.14. K has an HT -field extension HT (K) such that for any HT -field extension M of K, there
is a unique LO,∂(K)-embedding HT (K) ! M . For L := HT (K), we have

L = KhCLi, resL = resK.

Proof. We first construct a pre-HT -field extension K0 of K which does not have a fake gap as follows: if K
does not have a fake gap, then let K0 := K. Suppose that K has a fake gap � = v(b0), and apply Lemma 4.12
with s = b

0 to get a pre-HT -field extension Khai of K with a � 1 and a
0 = b

0. Then Khai does not have a
fake gap as it is grounded, and we set K0 := Khai. We claim that K0 = KhCK0i, that resK0 = resK, and
that for any HT -field extension M of K, there is a unique LO,∂(K)-embedding K0 ! M . This is all trivial
if K0 = K, so we assume that K0 6= K and we let a, b be as above. Then K0 = Khb� ai and b� a 2 CK0 ,
so K0 = KhCK0i, and Lemma 4.12 gives resK0 = resK. For the embedding property, take c 2 CM with
b ⇠ c. Then b

0 = (b� c)0 2 ∂OM , so Lemma 4.12 gives a unique LO,∂(K)-embedding K0 ! M .
Suppose K0 is not an HT -field, so there is b 2 OK0 with b 62 CK0 + OK0 . Then b

0 62 ∂OK0 , for otherwise we
would have b�" 2 CK0 for some " 2 OK0 . Since v(b

0) is not a fake gap, we have v(b0) 2 (�>
K0

)0. Corollary 4.9
gives an immediate pre-HT -field extension K

⇤ := K0hai of K0 with a � 1 and a
0 = b

0. Given an HT -field
extension M of K0, take c 2 CM with b ⇠ c. Then b

0 = (b � c)0 2 ∂OM , so Corollary 4.9 gives a unique
LO,∂(K0)-embedding K

⇤ ! M . Note that K⇤ = K0hb� ai and b� a 2 CK⇤ , so K
⇤ = K0hCK⇤i = KhCK⇤i.

As K
⇤ is an immediate extension of K0, there is no fake gap in K

⇤. Note that for any u 2 OK⇤ with
ū = b̄ 2 resK⇤ = resK, we have u 2 CK⇤ + OK⇤ . Thus, by transfinitely iterating this process (with the
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number of iterations bounded by the cardinality of resK), we build an immediate pre-HT -field extension L

of K0 with L = KhCLi and OL = CL + OL such that for any HT -field extension M of K0, there is a unique
LO,∂(K0)-embedding L ! M . Then L is an HT -field by Lemma 4.4 and resL = resK0 = resK. Using
also the embedding property for K0 over K, we see that there is a unique LO,∂(K)-embedding of L into any
HT -field extension M of K, so we may take HT (K) to be this HT -field extension L. ⇤

The universal property in Theorem 4.14 determines HT (K) uniquely up to unique LO,∂(K)-isomorphism.
We call HT (K) the HT -field hull of K. If K does not have a fake gap, then HT (K) is an immediate
extension of K; in particular, �HT (K) = �. If � is a fake gap in K, then �HT (K) = �� ⇤va for a 2 HT (K)
with 0 < va < �> and v(a0) = �. The following consequence of Theorem 4.14 is not used anywhere, but it
may be worth noting.

Corollary 4.15. The following are equivalent:

(1) every spherically complete immediate HT -asymptotic field extension of K is an HT -field;
(2) K has a spherically complete immediate HT -field extension;
(3) K does not have a fake gap.

Proof. By Theorem 3.5, we know thatK has a spherically complete immediateHT -asymptotic field extension,
so (1) implies (2). Suppose (2) holds and let M be a spherically complete immediate HT -field extension
of K. By the universal property of the HT -field hull, there is a unique LO,∂(K)-embedding HT (K) ! M .
Then HT (K) is an immediate extension of K, so �HT (K) = � and K does not have a fake gap by the
remarks preceding this corollary. Finally, suppose (3) holds and let M be a spherically complete immediate
HT -asymptotic field extension of K. Then M is a pre-HT -field by Lemma 4.6, and the remarks before
Theorem 4.14 tell us that M does not have a fake gap. Thus, HT (M) is an immediate extension of M , so
M = HT (M), as M has no proper immediate extensions. ⇤

4.3. w-free extensions of grounded pre-HT -fields. In this subsection, we show that each grounded pre-
HT -field K has a canonical ungrounded w-free extension, denoted Kw. First, we show how to extend a
grounded pre-HT -field by an integral for the maximum of the set  .

Lemma 4.16. Let s 2 K and suppose vs = max . Then K has a pre-HT -field extension Khai with a
0 = s

such that for any pre-HT -field extension M of K and b 2 M with b
0 = s, there is a unique LO,∂(K)-embedding

Khai ! M sending a to b. The pre-HT -field Khai is grounded with

resKhai = resK, �Khai = �� ⇤va,  Khai =  [ {va†}, va
†

>  .

Proof. Let L = HT (K), so L is an immediate extension of K and vs = max L, since K is grounded. Then
L is an HT -field, and a proof identical to the proof of Lemma 4.13 tells us that L has a grounded HT -field
extension Lhai with a � 1 and a

0 = s, where

resLhai = resL, �Lhai = �L � ⇤va,  Lhai =  L [ {va†}, va
†

>  L.

Then Khai, being an LO,∂-substructure of the HT -field Lhai, is a pre-HT -field. Since L is an immediate
extension of K, we have resL = resK, �L = �, and  L =  , so

resKhai = resK, �Khai = �� ⇤va,  Khai =  [ {va†}, va
†

>  .

Since a � 1, we get that va realizes the cut �< and a
† = s/a is positive. Let M be a pre-HT -field extension

of K and let b 2 M with b
0 = s. Then b � 1 by (PH2), so vb must realize the cut �< and b

† = s/b must
be positive. Lemma 2.3 gives a unique LO(K)-embedding ı : Khai ! M sending a to b, and this is even an
LO,∂(K)-embedding by Fact 1.9. ⇤

Remark 4.17. Our passage through the HT -field hull of K is admittedly circuitous, but we don’t have a
better argument that Khai is a pre-HT -field than the one given above.
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One may wonder whether the assumption that K is an HT -field can be relaxed in Lemma 4.13. That is,
if vs is a gap in the pre-HT -field K with s 2 K, then does K have a pre-HT -field extension Khai with a � 1
and a

0 = s? Arguing as in the proof of Lemma 4.16, we see that this is true so long as vs is not a fake gap
in K. If vs is a fake gap in K, then s cannot have an infinite integral, so there is no such extension.

The version of Lemma 4.16 in the author’s thesis [16, Lemma 7.34] contains a slight error. There, it was
claimed that Khai embeds into any HT -asymptotic field extension of K. It is only true that Khai embeds
into any pre-HT -field extension of K.

We now turn to the construction of Kw.

Corollary 4.18. Let K be a grounded pre-HT -field. Then K has an ungrounded w-free (hence, l-free)
pre-HT -field extension Kw with resKw = resK which embeds over K into any pre-HT -field extension of K
which is closed under taking d-logarithms.

Proof. Let s 2 K with vs
† = max . Using Lemma 4.16, take a pre-HT -field extension Khai where a

0 = s
†.

We have

resKhai = resK, �Khai = �� ⇤va,  Khai =  [ {va†}, va
†

>  .

Repeating this process, we construct for each n a pre-HT -field extension Kn of K with

K0 = K, Kn+1 = Knhani, a0 = a, a
0

n+1 = a
†

n
.

Set Kw :=
S

n
Kn. Then resKw = resK and

�Kw = ��
M

n

⇤van,  Kw =  [ {va†0, va
†

1, . . .},  < va
†

0 < va
†

1 < · · · .

Moreover, Kw is w-free by [3, Corollary 11.7.15], since Kw is ungrounded and each Kn is grounded. Let
M be a pre-HT -field extension of K which is closed under taking d-logarithms. Then there are elements
b0, b1, . . . 2 M with b

0
0 = s

† and b
0
n+1 = b

†
n
for each n. Repeated use of the embedding property in Lemma 4.16

allows us construct an LO,∂(K)-embedding Kw ! M which sends an to bn for each n. ⇤

4.4. Adjoining exponential integrals.

Lemma 4.19. Let s 2 K with vs 2 (�>)0 and suppose that s 6= y
† for all y 2 K

⇥. Then K has an immediate
pre-HT -field extension Khai with a ⇠ 1 and a

† = s such that for any HT -asymptotic field extension M of K
with s 2 (1 + OM )†, there is a unique LO,∂(K)-embedding Khai ! M . If K is ungrounded and l-free, then
so is Khai.

Proof. Let S := v
�
s � (1 + O)†

�
✓ (�>)0. By the proof of [3, Lemma 10.4.3], S has no largest element. Let

(a⇢) be a well-indexed sequence in 1+O such that v(s�a
†
⇢
) is strictly increasing in S as a function of ⇢. Then

(a⇢) is a divergent pc-sequence in K, again by the proof of [3, Lemma 10.4.3]. We apply Proposition 3.10
with G(Y ) = sY to get an immediate pre-HT -field extension Khai of K with a⇢  a and a

0 = sa. Note
that a ⇠ 1, since each a⇢ ⇠ 1. Let M be an HT -asymptotic field extension of K and let b 2 M with b ⇠ 1
and b

† = s. Then a
†
⇢
 b

†, and so a⇢  b by the proof of [3, Lemma 10.4.3]. Proposition 3.10 gives an
LO,∂(K)-embedding ı : Khai ! M that sends a to b. For uniqueness, let | : Khai ! M be an arbitrary
LO,∂(K)-embedding. Then |(a)/b 2 C

⇥

M
since |(a)† = s = b

†. Since |(a) ⇠ 1 ⇠ b, we see that |(a) = b, so
| = ı. By [15, Lemma 7.6], the set v(a �K) has the yardstick property, so if K is ungrounded and l-free,
then Khai is as well by Lemma 3.18. ⇤

Lemma 4.20. Let s 2 K with v
�
s� (K⇥)†

�
✓  #. Then K has a pre-HT -field extension Khai with a > 0

and a
† = s such that for any pre-HT -field extension M of K and b 2 M

> with b
† = s, there is a unique

LO,∂(K)-embedding Khai ! M sending a to b. Moreover, the extension Khai has the following properties:

(1) va 62 � and �Khai = �� ⇤va;
(2) resKhai = resK;
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(3)  is cofinal in  Khai;
(4) a gap in K remains a gap in Khai;
(5) if K is ungrounded and l-free, then so is Khai.

Proof. Suppose that b is an element in a pre-HT -field extension M of K with b > 0 and b
† = s. Then vb 62 �;

otherwise there is f 2 K and u 2 O⇥

M
with b/f = u, so s� f

† = u
† ⇣ u

0 and v(s� f
†) >  , a contradiction.

Let y 2 K
⇥ with y � b. Then y/b � 1 so y

†
< b

† = s. Likewise if y 2 K
⇥ with y � b, then y

†
> s. Thus, vb

realizes the cut
S := {vy : y† > s} ✓ �.

Let Khai be a simple T
O-extension of K where a > 0 and va realizes the cut S. The Wilkie inequality

gives �Khai = � � ⇤va and resKhai = resK. Using Fact 1.9, we equip Khai with the unique T -derivation
which extends the derivation on K and satisfies a

† = s. If we can show that Khai is a pre-HT -field, then
the embedding property of Khai follows from Fact 1.9, Lemma 2.3 and the discussion above.

To see that Khai is a pre-HT -field, let g 2 K
⇥ and � 2 ⇤ with ga

� � 1. By Lemma 4.11, it su�ces to
verify the following:

(i) (ga�)† > 0;
(ii) (ga�)† � f

0 for all f 2 K with f 4 1;
(iii) (ga�)† � F (a)0 for all L(K)-definable functions F : K ! K with F (a) � 1 and F (a) 62 K.

First we deal with (i). If � = 0, then g � 1 and (ga�)† = g
†
> 0. If � > 0, then since ga

� � 1 we have

a � g
��

�1

, so s > (g��
�1

)† = ���1
g
†. This gives ��1

g
† + s > 0, so

(ga�)† = g
† + �s = �(��1

g
† + s) > 0.

On the other hand, if � < 0, then a � g
��

�1

, so ��1
g
† + s < 0 and again,

(ga�)† = �(��1
g
† + s) > 0.

Note that since
(ga�)† = �(��1

g
† + s) = �

�
s� (g��

�1

)†
�

⇣ s� (g��
�1

)†,

we have v(ga�)† 2  #. Thus, for (ii) it su�ces to note that h
† � f

0 for all f, h 2 K, since K is a pre-HT -
field. Likewise, for (iii), it su�ces to show that h† � F (a)0 for all h 2 K with h � 1 and all L(K)-definable
functions F : K ! K with F (a) � 1 and F (a) 62 K. Suppose toward contradiction that there are F , h for
which this does not hold, so F (a) � 1 but

F (a)0 = F
[∂](a) + F

0(a)as < h
†
.

By replacing F with �F if necessary, we may assume that F (a)0 > 0. Since resKhai = resK, we have
F

[∂](a) + F
0(a)as > uh

†
> 0 for some u 2 K with u ⇣ 1. Take an interval I ✓ K

> with a 2 I
Khai such that

|F (y)| < 1, F
[∂](y) + F

0(y)ys > uh
†

for all y 2 I. For y 2 I, we have F (y) 4 1, so F (y)0 = F
[∂](y) +F

0(y)y0 � h
† since K is a pre-HT -field. This

gives
�
F

[∂](y) + F
0(y)ys

�
�
�
F

[∂](y) + F
0(y)y0

�
= F

0(y)y(s� y
†) >

1

2
uh

†
> 0.

In particular, the function F
0(y)y(s� y

†) has constant sign on I. By shrinking I, we may assume that F 0(y)
and y have constant sign on I, so s � y

† has constant sign on I as well. This is a contradiction: if y 2 I is
greater than a, then y � a and y

†
> s and if y 2 I is less than a, then y � a and y

†
< s.

Now that we know that Khai is a pre-HT -field extension of K with the required embedding property,
all that remains is to check that Khai satisfies properties (1)–(5). We have already verified properties (1)
and (2). For (3), let h 2 Khai with h � 1. Then h ⇣ ga

� for some g 2 K and some � 2 ⇤ by (1), so
v(h†) = v(ga�)†, since Khai is HT -asymptotic. We have already shown that v(ga�)† 2  #, so v(h†) 2  #

as well. As for (4), let � be a gap in K. Then � >  , so � >  Khai since  is cofinal in  Khai. Suppose
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toward contradiction that � is not a gap in Khai, so � = ↵
0 for some ↵ 2 �>

Khai
. The universal property in

Lemma 4.12 gives max Khai = ↵
†
>  , contradicting that  is cofinal in  Khai.

Finally, suppose K is ungrounded and let (`⇢) be a logarithmic sequence in K with corresponding l-
sequence (l⇢). Then Khai is ungrounded since  is cofinal in  Khai. It follows that �

< is cofinal in �<
Khai

.

To see this, let f 2 Khai with f � 1 and suppose toward contradiction that f � g for all g 2 K with g � 1.
Then f

† 4 g
† for such g, so v(f†) >  since K is ungrounded, contradicting (3). Therefore, (`⇢) remains

a logarithmic sequence in Khai and (l⇢) remains a l-sequence in Khai. Suppose toward contradiction that
K is l-free and that l⇢  l 2 Khai. Then l 62 K, so a 2 Khli. This is a contradiction, as Khli is an
immediate T

O-extension of K by Lemma 2.10 and va 62 �. This proves (5). ⇤

We can use Lemma 4.20 along with Lemma 3.16 and Corollary 4.7 to prove the following extension result
for pre-HT -fields.

Proposition 4.21. K has an ungrounded w-free HT -field extension.

Proof. By passing to the HT -field hull of K, we may assume that K is an HT -field. First, we will show that
every HT -field with asymptotic integration has an HT -field extension with a gap. Then, we will show that
every HT -field with a gap has a grounded HT -field extension. Finally, we will show that every grounded
HT -field has an ungrounded w-free HT -field extension.

For the first part, suppose K has asymptotic integration. As having asymptotic integration is a property
of the asymptotic couple of K, every immediate extension of K also has asymptotic integration. By applying
Corollary 4.7 we can pass to a spherically complete extension of K, so we may assume that K is spherically
complete. Let (l⇢) be a l-sequence in K, so (l⇢) has a pseudolimit l 2 K by spherical completeness. The
set v

�
l + (K⇥)†

�
is a cofinal subset of  # by Fact 3.15, so Lemma 4.20 gives an HT -field extension Khai of

K with a
† = �l. This extension has a gap, namely va, by Lemma 3.16.

Now, assume that K has a gap � 2 �. Take s 2 K with vs = � and use Lemma 4.12 to get a grounded HT -
field extension Khai of K with a

0 = s. Finally, if K is grounded, apply Corollary 4.18 to get an ungrounded
w-free HT -field extension Kw of K. ⇤

4.5. Constant field extensions. Recall that the constant field C is naturally a model of T . In the following
proposition, we show that if K is an HT -field, then we may take extensions of K by constants corresponding
to T -extensions of C.

Proposition 4.22. Let K be an HT -field and let E be a T -extension of C. Then there is an HT -field
extension L of K where CL is L(C)-isomorphic to E such that for any HT -field extension M of K and any
L(C)-embedding ı : CL ! CM , there is a unique LO,∂(K)-embedding L ! M extending ı.

Proof. It su�ces to consider the case E = Chfi where f 62 C. Let L = Khai be a simple T -extension of K
where a realizes the cut

(C<f + O)# = {y 2 K : y < O} [ {c+ " : c 2 C
<f and " 2 O}.

We expand L to an LO-structure by letting

OL :=
�
y 2 L : |y| < d for all d 2 K with d > O

 
.

This expansion of L is a T
O-extension of K by Fact 2.1. Note that a 2 OL and ā 62 resK, so the Wilkie

inequality gives �L = �. Using Fact 1.9, we extend ∂ uniquely to a T -derivation on L with a
0 = 0.

We claim that L is an HT -field extension of K. We may assume that O 6= K, since otherwise, K and
L both have trivial valuation and derivation, so L is trivially an HT -field extension of K. To see that L

satisfies (H1), let F : K ! K be an L(K)-definable function with F (a) > OL. We need to show

F (a)0 = F
[∂](a) + F

0(a)a0 = F
[∂](a) > 0.

As F [∂] is L(K)-definable, it su�ces to show that for any subinterval I ✓ K with a 2 I
L, there is y 2 I with

F
[∂](y) > 0. Let I be such a subinterval. Using that �L = � and that �> has no least element, take d 2 K

27



with F (a) > d > OL. By shrinking I, we arrange that F (y) > d for all y 2 I. Since ā 2 I
resL, we see that

I must be infinite. Thus, I \ C is infinite, so take c 2 I \ C. As c 2 C, we have F (c)0 = F
[∂](c). As c 2 I,

we have F (c) > d > O, so F (c)0 = F
[∂](c) > 0, as desired. Now, let us show that (H2) holds. By (H1), we

have CL ✓ OL. Clearly, CL contains Chai. Since Chai is a lift of resL, it is maximal among the elementary
L-substructures of L contained in OL, so Chai = CL and OL = CL + OL; see [8, Remark 2.11 and Theorem
2.12]. This completes the proof that L is an HT -field. It also tells us that CL is L(C)-isomorphic to E.

Given an HT -field extension M of K and an L(C)-embedding ı : CL ! M , there is at most one possible
LO,∂(K)-embedding | : L ! M which extends ı, namely the one which sends a to ı(a). Let us show that this
is actually an LO,∂(K)-embedding. By assumption, a and ı(a) realize the same cut over C. Since a� c 62 OL

and ı(a)�c 62 OM for all c 2 C, this assumption gives that a and ı(a) realize the same cut over O. As a 2 OL

and ı(a) 2 OM , we see that a and ı(a) realize the same cut over K, so | is an L(K)-embedding. Fact 1.9
ensures that | is an L∂(K)-embedding. To see that | is an LO,∂(K)-embedding, let f 2 Khai. If f 2 OL,
then |f | < c for some c 2 CL, so ||(f)| < ı(c) 2 CM , which gives |(f) 2 OM . Conversely, if f 62 OL, then
|f | > d for some d 2 K with d > O, so ||(f)| > d, which gives |(f) 62 OM . ⇤

5. Liouville closed HT -fields

In this section, we assume that K is an HT -field. For now, we drop the assumption that T is power bounded
(though we will re-introduce this assumption at the beginning of Subsection 5.1). Recall that K is Liouville
closed if for each y 2 K, there is f 2 K and g 2 K

⇥ with f
0 = g

† = y.

Definition 5.1. A T -Liouville extension of K is an HT -field extension L of K where

(1) CL = C, and
(2) each a 2 L is contained in an HT -subfield Kht1, . . . , tni ✓ L where for i = 1, . . . , n, either t

0

i
2

Kht1, . . . , ti�1i or ti 6= 0 and t
†

i
2 Kht1, . . . , ti�1i.

Below we list some easily verified facts about T -Liouville extensions of K.

Fact 5.2.

(1) If L is a T -Liouville extension of K and M is a T -Liouville extension of L, then M is a T -Liouville
extension of K.

(2) If M is a T -Liouville extension of K and L is an HT -field extension of K contained in M , then M

is a T -Liouville extension of L.
(3) If (Li)i2I is an increasing chain of T -Liouville extensions of K, then the union

S
i2I

Li is a T -
Liouville extension of K.

(4) Every T -Liouville extension of K has the same cardinality as K.

Lemma 5.3. Suppose K is Liouville closed. Then K has no proper T -Liouville extensions.

Proof. Let L be a T -Liouville extension of K, and let a 2 L. We will show that a 2 K. By definition,
a is contained in an HT -subfield Kht1, . . . , tni ✓ L where for i = 1, . . . , n, either t

0

i
2 Kht1, . . . , ti�1i or

t
†

i
2 Kht1, . . . , ti�1i. We show by induction that Kht1, . . . , tii = K for each i 6 n. Fix i 6 n and suppose

that Kht1, . . . , ti�1i = K. If t0
i
2 K, then since K is Liouville closed, there is f 2 K with f

0 = t
0

i
. Then

ti = f + c for some c 2 CL = C, so ti 2 K as well. Likewise, if t†
i
2 K, then there is g 2 K

⇥ with g
† = t

†

i
,

so ti = cg for some c 2 C
⇥

L
= C

⇥, again giving ti 2 K. ⇤

Definition 5.4. A T -Liouville closure of K is a T -Liouville extension of K which is Liouville closed.

Corollary 5.5. Let L be a Liouville closed HT -field extension of K. If L is a T -Liouville closure of K,
then L has no proper Liouville closed HT -subfields which contain K. If L has no proper Liouville closed
HT -subfields which contain K and CL = C, then L is a T -Liouville closure of K.
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Proof. Suppose that L is a T -Liouville closure of K and let M be a Liouville closed HT -subfield of L

containing K. Then L is a T -Liouville extension of M by Fact 5.2, so M = L by Lemma 5.3. Now suppose
that CL = C and that L is not a T -Liouville closure of K. We will find a proper Liouville closed subfield of
L containing K. Let M be a maximal T -Liouville extension of K contained in L (we know that M exists
by Fact 5.2 and Zorn’s lemma). We claim that M is Liouville closed. Let s 2 M and take a 2 L and b 2 L

⇥

with a
0 = b

† = s. Since CMhai, CMhbi ✓ CL = C, we see that Mhai and Mhbi are both T -Liouville extensions
of M , and therefore equal to M by maximality and Fact 5.2. Thus, every element of M has an integral in
M and an exponential integral in M

⇥. ⇤

5.1. T -Liouville towers.

Assumption 5.6. For the remainder of this section, we assume that T is power bounded.

Definition 5.7. A T -Liouville tower on K is a strictly increasing chain (Kµ)µ6⌫ of HT -fields such that:

(1) K0 = K;
(2) if µ 6 ⌫ is an infinite limit ordinal, then Kµ =

S
⌘<µ

K⌘;
(3) if µ < ⌫, then Kµ+1 = Kµhaµi with aµ 62 Kµ and one of the following holds:

(a) a
0
µ
= sµ 2 Kµ with aµ � 1 and vsµ is a gap in Kµ;

(b) a
0
µ
= sµ 2 Kµ with aµ � 1 and vsµ is a gap in Kµ;

(c) a
0
µ
= sµ 2 Kµ with vsµ = max Kµ ;

(d) a
0
µ
= sµ 2 Kµ with aµ � 1, vsµ 2 (�>

Kµ
)0, and sµ 62 ∂OKµ ;

(e) a
0
µ
= sµ 2 Kµ with v(sµ � ∂Kµ) ✓ (�<

Kµ
)0;

(f) a
†
µ
= sµ 2 Kµ with aµ ⇠ 1, vsµ 2 (�>

Kµ
)0, and sµ 6= y

† for all y 2 K
⇥
µ
;

(g) a
†
µ
= sµ 2 Kµ with aµ > 0 and v

�
sµ � (K⇥

µ
)†
�
✓  #

Kµ
.

The HT -field K⌫ is called the top of the tower (Kµ)µ6⌫ .

Let (Kµ)µ6⌫ be a T -Liouville tower on K. Note that (a), (b), (c), (f), and (g) correspond to Lem-
mas 4.12, 4.13, 4.16, 4.19, and 4.20 and that (d) and (e) correspond to Corollaries 4.9 and 4.10, respectively.
In each of these extensions, we have resKµ+1 = resKµ, so CKµ+1 = CKµ by Corollary 4.5. Thus, Kµ+1 is a
T -Liouville extension ofKµ for each µ 6 ⌫. Using also Fact 5.2, we see that eachKµ is a T -Liouville extension
of K. If (Kµ)µ6⌫ cannot be extended to a larger T -Liouville tower (Kµ)µ6⌫+1 on K, then (Kµ)µ6⌫ is said
to be maximal. Since each T -Liouville extension of K has the same cardinality as K, maximal T -Liouville
towers on K exist by Zorn’s lemma.

Lemma 5.8. Let L be the top of a maximal T -Liouville tower on K. Then L is Liouville closed and,
therefore, L is a T -Liouville closure of K.

Proof. By (a) and (b), L does not have a gap, and by (c), L is not grounded, so L has asymptotic integration
by Fact 3.4. Let s 2 L. We will show that s has an integral in L and an exponential integral in L

⇥. We have
v(s � ∂L) 6✓ (�<

L
)0 by (e), so there is y 2 L with v(s � y

0) > (�<
L
)0. Since L has asymptotic integration, we

have v(s� y
0) 2 (�>

L
)0 so by (d), there is f 2 OL with f

0 = s� y
0. Then s = (f + y)0. Likewise, by (g) there

is b 2 L
⇥ with v(s � b

†) >  #

L
. Asymptotic integration gives v(s � b

†) 2 (�>
L
)0, and we may take g 2 L

⇥

with g ⇠ 1 and g
† = s� b

† by (f). Then s = (bg)†. ⇤

Lemma 5.8 gives the existence of T -Liouville closures under our standing assumption that T is power
bounded. The rest of the section is focused on uniqueness.

Lemma 5.9. Let L be a Liouville closed HT -field extension of K and let (Kµ)µ6⌫ be a T -Liouville tower
on K. Suppose that (Kµ)µ6⌫ is a tower in L, that is, each Kµ is an HT -subfield of L. Suppose also that
(Kµ)µ6⌫ cannot be extended to a T -Liouville tower (Kµ)µ6⌫+1 in L. Then (Kµ)µ6⌫ is a maximal T -Liouville
tower on K.
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Proof. By Fact 5.2 and Lemma 5.3, it su�ces to show that K⌫ is Liouville closed. If vs is a gap in K⌫

for some s 2 K⌫ , then L contains an element a with a
0 = s. By subtracting a constant from a, we may

assume that a 6⇣ 1. By Lemma 4.12 (if a � 1) or Lemma 4.13 (if a � 1), we see that K⌫hai ✓ L is a T -
Liouville extension of K⌫ , contradicting the maximality of (Kµ)µ6⌫ in L. Thus, K⌫ has no gap and likewise,
Lemma 4.16 shows that K⌫ is ungrounded, so K⌫ has asymptotic integration by Fact 3.4.

Fix s 2 K⌫ . If v(s � ∂K⌫) ✓ (�<
K⌫

)0, then Khfi is a T -Liouville extension of K⌫ contained in L for any
f 2 L with f

0 = s by Corollary 4.10, contradicting the maximality of (Kµ)µ6⌫ in L. Therefore, we may
take y 2 K⌫ with v(s � y

0) > (�<
K⌫

)0. As K⌫ has asymptotic integration, we have v(s � y
0) 2 (�>

K⌫
)0. If

s � y
0 62 ∂OK⌫ , then Khgi is a T -Liouville extension of K⌫ contained in L for any g 2 OL with g

0 = s � y
0

by Corollary 4.9, again contradicting the maximality of (Kµ)µ6⌫ in L. Thus, s� y
0 2 ∂OK⌫ , so s 2 ∂K⌫ . A

similar argument, using Lemmas 4.19 and 4.20 shows that s has an exponential integral in K
⇥
⌫
. ⇤

Lemmas 5.8 and 5.9 can be used to remove the assumption “CL = C” from Corollary 5.5 under our current
assumption of power boundedness.

Corollary 5.10. Let L be a Liouville closed HT -field extension of K. Then L is a T -Liouville closure of K
if and only if L has no proper Liouville closed HT -subfields which contain K.

Proof. One implication holds by Corollary 5.5. For the other, suppose that L is not a T -Liouville closure of
K and let (Kµ)µ6⌫ be a maximal T -Liouville tower on K in L. Then K⌫ is a T -Liouville closure of K by
Lemmas 5.8 and 5.9. In particular, K⌫ is a proper Liouville closed HT -subfield of L containing K. ⇤

5.2. l-freeness and the uniqueness of T -Liouville closures. Whether K has a unique T -Liouville
closure up to LO,∂(K)-isomorphism is closely tied to the existence of gaps, which is in turn related to
l-freeness.

Lemma 5.11. Let (Kµ)µ6⌫ be a T -Liouville tower on K and suppose Kµ does not have a gap for all µ < ⌫.
Then K⌫ embeds over K into any Liouville closed HT -field extension of K.

Proof. Let M be a Liouville closed HT -field extension of K. We will construct an increasing chain of
LO,∂(K)-embeddings (ıµ : Kµ ! M)µ6⌫ . Let ı0 : K0 ! M be the identity on K, and take increasing unions
at limits. For successors, fix µ < ⌫ and let ıµ : Kµ ! M be an LO,∂(K)-embedding. Since Kµ has no
gap, Kµ+1 is an extension of type (c), (d), (e), (f), or (g). The embedding properties in Lemmas 4.16, 4.19
and 4.20 and Corollaries 4.9 and 4.10 give an LO,∂(K)-embedding ıµ+1 : Kµ+1 ! M extending ıµ. ⇤

Proposition 5.12. Suppose K is ungrounded and l-free. Then K has a T -Liouville closure L which em-
beds over K into any Liouville closed HT -field extension of K. Any T -Liouville closure of K is LO,∂(K)-
isomorphic to L.

Proof. Let (Kµ)µ6⌫ be a maximal T -Liouville tower on K. We will prove by induction on µ 6 ⌫ that each
Kµ is ungrounded and l-free. This holds when µ = 0 by assumption and if µ 6 ⌫ is an infinite limit ordinal,
then this follows from Lemma 3.13. Let µ < ⌫ and suppose that Kµ is ungrounded and l-free. Then Kµ

has no gap, so Kµ+1 must be an extension of type (d), (e), (f), or (g). Then Kµ+1 is ungrounded and l-free
by Lemmas 4.19 and 4.20 and Corollaries 4.9 and 4.10. Set L := K⌫ , so L is a T -Liouville closure of K,
and let M be a Liouville closed HT -field extension of K. By Lemma 5.11, there is an LO,∂(K)-embedding
ı : L ! M . Moreover, if M is a T -Liouville closure of K, then ı(L) is a Liouville closed HT -subfield of M
containing K, so ı(L) = M by Corollary 5.5. Thus, L is unique up to LO,∂(K)-isomorphism. ⇤

Proposition 5.13. Suppose K is grounded. Then K has a T -Liouville closure L which embeds over K into
any Liouville closed HT -field extension of K. Any T -Liouville closure of K is LO,∂(K)-isomorphic to L.

Proof. Let Kw be as in Corollary 4.18. Then Kw is the union of an increasing chain of T -Liouville extensions
of K, so Kw is a T -Liouville extension of K by Fact 5.2. Moreover, Kw is ungrounded and l-free, so Kw
has a T -Liouville closure L which embeds over Kw into any Liouville closed HT -field extension of Kw by
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Proposition 5.12. Then L is a T -Liouville closure of K as well, since Kw is a T -Liouville extension of
K. Let M be a Liouville closed HT -field extension of K. Then M is closed under taking d-logarithms,
so Corollary 4.18 gives an LO,∂(K)-embedding Kw ! M which further extends to an LO,∂(K)-embedding
L ! M . As in Proposition 5.12, uniqueness follows from this embedding property and Corollary 5.5. ⇤

5.3. Gaps and the nonuniqueness of T -Liouville closures. If K has a gap vs, then we have a choice
to make. Either we can adjoin an integral a of s with a � 1, as is done in Lemma 4.12, or we can adjoin
an integral b of s with b � 1, as in Lemma 4.13. This “fork in the road” prevents K from having a unique
T -Liouville closure, but as we will see below, this is really the only obstruction to uniqueness.

Proposition 5.14. Let � 2 � be a gap in K. Then K has T -Liouville closures L1 and L2 with � 2 (�>
L1
)0

and � 2 (�<
L2
)0. Let M be a Liouville closed HT -field extension of K. If � 2 (�>

M
)0, then there is an

LO,∂(K)-embedding L1 ! M . Likewise, if � 2 (�<
M
)0, then there is an LO,∂(K)-embedding L2 ! M . Any

T -Liouville closure of K is LO,∂(K)-isomorphic to either L1 or L2.

Proof. Let s 2 K with vs = �. Let K1 := Khai be the HT -field extension of K given in Lemma 4.12, so a � 1
and a

0 = s, and let K2 := Khbi be the HT -field extension of K given in Lemma 4.13, so b � 1 and b
0 = s.

Then K1 is grounded, so it has a T -Liouville closure L1 which embeds over K1 into any Liouville closed
HT -field extension of K1 by Proposition 5.13. Likewise, K2 has a T -Liouville closure L2 which embeds over
K2 into any Liouville closed HT -field extension of K2. Now let M be a Liouville closed HT -field extension
of K. If � 2 (�>

M
)0, then the embedding property in Lemma 4.12 gives an LO,∂(K)-embedding K1 ! M ,

which in turn extends to an LO,∂(K)-embedding L1 ! M . If � 2 (�<
M
)0, then using the embedding property

in Lemma 4.13 instead, we get an LO,∂(K)-embedding L2 ! M . If M is a T -Liouville closure of K, then M

is LO,∂(K)-isomorphic to either L1 or L2 by Corollary 5.5 since M contains the LO,∂(K)-isomorphic image
of either L1 or L2 as a Liouville closed HT -subfield. ⇤

We can use Lemma 3.16 to show that HT -fields with asymptotic integration which are not l-free also have
two distinct T -Liouville closures.

Proposition 5.15. Suppose that K has asymptotic integration and is not l-free. Then K has T -Liouville
closures L1 and L2 which are not LO,∂(K)-isomorphic. If M is a Liouville closed HT -field extension of K,
then there is an LO,∂(K)-embedding of either L1 or L2 into M . Any T -Liouville closure of K is LO,∂(K)-
isomorphic to either L1 or L2.

Proof. Let (l⇢) be a l-sequence in K with pseudolimit l 2 K, so v
�
l + (K⇥)†

�
is a cofinal subset of  # by

Fact 3.15. Lemma 4.20 gives an HT -field extension Khai of K with a > 0 and a
† = �l. By Lemma 3.16,

va is a gap in Khai. By Proposition 5.14, Khai has T -Liouville closures L1 and L2 with va 2 (�>
L1
)0 and

va 2 (�<
L2
)0, one of which embeds over Khai into any Liouville closed HT -field extension of Khai. We claim

that there is no LO,∂(K)-embedding L1 ! L2; in particular, L1 and L2 are nonisomorphic over K. To see
this, take b1 2 L1 and b2 2 L2 with b1 � 1, b2 � 1, and b

0
1 = b

0
2 = a. Then (b01)

† = (b02)
† = a

† = �l. Suppose
toward contradiction that ı : L1 ! L2 is an LO,∂(K)-embedding. Then ı(b01)

† = (b02)
† so ı(b1) = c1b2 + c2 for

some c1, c2 2 CL2 with c1 6= 0. Since b2 � 1, this gives ı(b1) � 1, contradicting that b1 � 1.
LetM be a Liouville closedHT -field extension ofK. Lemma 4.20 gives an LO,∂(K)-embeddingKhai ! M

and Proposition 5.14 allows us to extend this embedding to an LO,∂(K)-embedding of either L1 or L2 into
M . As in Proposition 5.14, we may use Corollary 5.5 to see that any T -Liouville closure of K is LO,∂(K)-
isomorphic to either L1 or L2. ⇤

Putting together the above propositions, we can now precisely state our main theorem on the existence and
uniqueness of T -Liouville closures.

Theorem 5.16. If K is grounded or if K is ungrounded and l-free, then K has exactly one T -Liouville
closure up to LO,∂(K)-isomorphism. If K is ungrounded and not l-free, then K has exactly two T -Liouville
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closures up to LO,∂(K)-isomorphism. For any Liouville closed HT -field extension M of K, there is an
LO,∂(K)-embedding of some T -Liouville closure of K into M .

6. Logarithmic HT -fields and logarithmic pre-HT -fields

In this section, we assume that T is power bounded with field of exponents ⇤. We further assume that T

defines a restricted exponential function e and that ⇤ is cofinal in the prime model of T . We let ln denote
the compositional inverse of e.

Recall from Subsection 1.3 the language Llog = L[{log} and the Llog-theory T
e, which extends T by axioms

stating that log is a surjective logarithm. In this section and the next, we study pre-HT e -fields, HT e -fields,
and their extensions. From a valuation-theoretic perspective, it is inconvenient to work with pre-HT e -fields
directly, so we instead work with a broader class of LO,∂

log -structures, called logarithmic pre-HT -fields, where
the logarithm is not assumed to be surjective.

Definition 6.1. Let K be a pre-HT -field and let log be a logarithm on K. We say that K is a logarithmic
pre-HT -field if

(LH1) log(a)0 = a
† for a 2 K

>, and
(LH2) O ✓ log(K>).

We say that K is a logarithmic HT -field if K is a logarithmic pre-HT -field which is also an HT -field.

Clearly, every pre-HT e -field is a logarithmic pre-HT -field and, likewise, every HT e -field is a logarithmic HT -
field. After proving some basic results, we will show in Proposition 6.6 below that a logarithmic (pre)-HT -field
is a (pre)-HT e -field if and only if the logarithm is surjective.

Assumption 6.2. For the remainder of this section, let K = (K, log,O, ∂) be a logarithmic pre-HT -field.

For a 2 K
>, axiom (LH1) tells us that log a is a d-logarithm of a. Thus, we have the following consequence

of Corollary 4.3:

Corollary 6.3. Any logarithmic pre-HT -field is ungrounded.

We now investigate the induced logarithms on the residue field and the constant field of K.

Lemma 6.4. The logarithm on K induces a well-defined logarithm on resK (also denoted by log). With
this induced logarithm, resK is a model of T e.

Proof. Let a 2 O with ā > 0. Then a ⇣ 1, so Lemma 4.2 gives log a 2 O. Since O is T -convex and ln is
L(;)-definable and continuous at 1, we have ln(1+O) ✓ O by [8, Lemma 1.13]. Since a+O = a(1+O), axioms
(L1) and (L2) give

log(a+ O) = log a+ log(1 + O) = log a+ ln(1 + O) ✓ log a+ O.

Thus, log induces a well-defined map on resK. It is routine to verify that this induced map is a logarithm
on resK, and it remains to show that this induced logarithm is surjective. To see this, let a 2 O and, using
(LH2), take b 2 K

> with log b = a. Since log b 2 O is a d-logarithm of b, Lemma 4.2 tells us that b ⇣ 1.
Then b̄ > 0 and log b̄ = ā. ⇤

Lemma 6.5. The restriction of the logarithm on K to C is a logarithm on C. With this restricted logarithm,
C is a model of T e.

Proof. For c 2 C
>, we have log(c)0 = c

† = 0, so log c 2 C as well. Thus, log(C>) ✓ C, and it follows
immediately that log |C is a logarithm on C. To see that log(C>) = C, let a 2 C and, using that C ✓ O ✓
log(K>), take f 2 K

> with log f = a. Then f
† = a

0 = 0, so f 2 C
>. ⇤
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The natural L-embedding C ! resK is even an Llog-embedding, where resK and C are equipped with the
logarithms from Lemmas 6.4 and 6.5, respectively. Now, we can say more about the relationship between
logarithmic pre-HT -fields and pre-HT e -fields.

Proposition 6.6. The logarithmic pre-HT -field K is a pre-HT e-field if and only if log(K>) = K. Moreover,
if K is a logarithmic HT -field, then K is an HT e-field if and only if log(K>) = K.

Proof. One direction is immediate. For the other, suppose that log(K>) = K. Then the Llog-reduct of K
is a model of T e. By Lemma 6.4, the residue field resK with the induced logarithm models T

e as well. It
follows that O is T e-convex, and it remains to show that ∂ is a T

e-derivation. By Corollary 1.7, any Llog(;)-
definable function on K is given piecewise by a composition of L(;)-definable functions, log, and exp. By [13,
Lemma 2.6], ∂ is compatible with a composition of functions so long as it is compatible with each constituent
function. Since ∂ is compatible with log and with all L(;)-definable C1-functions by assumption, it remains
to show that ∂ is compatible with exp. For u 2 K, we have u = log(expu), so taking derivatives gives

u
0 = log(expu)0 = (expu)�1 exp(u)0.

Thus, exp(u)0 = exp(u)u0, as desired. ⇤

Next, we provide a short test for checking whether an LO,∂-embedding of logarithmic pre-HT -fields is also an
LO,∂
log -embedding, along with a longer proposition on extending the logarithm on K to certain pre-HT -field

extensions of K.

Lemma 6.7. Let M be a logarithmic pre-HT -field and let ı : K ! M be an LO,∂-embedding. Let f, g 2 K
>

with f ⇠ g. If ı(log g) = log
M

ı(g), then ı(log f) = log
M

ı(f).

Proof. Take " 2 O such that f = g(1 + "). Then

log f = log g + log(1 + ") = log g + ln(1 + ").

As ı is an L-embedding, we have ı
�
ln(1 + ")

�
= ln ı(1 + "). We have ı(log g) = log

M
ı(g) by assumption, so

ı(log f) = log
M

ı(f). ⇤
Proposition 6.8. Let L be a pre-HT -field extension of K with resL = resK. Let (ai)i2I be a family of
elements in L

> with ai 6⇣ 1 for each i such that

�L = ��
M

i2I

⇤vai,

and let (bi)i2I be a family of elements in L such that b
0

i
= a

†

i
for each i 2 I. Then there is a unique

logarithm on L extending the logarithm on K such that log
L
ai = bi for each i 2 I. With this logarithm, L

is a logarithmic pre-HT -field extension of K. If M is also a logarithmic pre-HT -field extension of K and if
ı : L ! M is an LO,∂(K)-embedding, then ı is an LO,∂

log (K)-embedding if and only if ı(bi) = log
M

ı(ai) for
each i 2 I.

Proof. Let f 2 L
>. Our assumption on �L and resL gives

f = g(1 + ")
Y

i2I

a
�i
i

for some g 2 K
>, some " 2 OL, and some family (�i)i2I of exponents in ⇤ where only finitely many �i are

nonzero. Set
log

L
f := log g + ln(1 + ") +

X

i2I

�ibi.

It is routine to show that this does not depend on the choice of g. Before we show that log
L
is a logarithm

on L, we first note that

(log
L
f)0 = (log g)0 + ln(1 + ")0 +

X

i2I

�ib
0

i
= g

† + (1 + ")† +
X

i2I

�ia
†

i
= f

†
,
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so (LH1) holds. We now turn to verifying (L1)–(L4). A straightforward computation gives log
L
(f1f2) =

log
L
f1 + log

L
f2 for all f1, f2 2 L

>, so log
L

is a group homomorphism. To see that log
L

is even an
ordered group embedding, we assume that f > 1, and we need to show that log

L
f > 0. If f � 1, then

(log
L
f)0 = f

†
> 0 by (PH1). Since log

L
f is a d-logarithm of f , Lemma 4.2 gives v(log

L
f) = �(vf) < 0.

Thus, (log
L
f)† > 0 as well, so log

L
f = (log

L
f)0/(log

L
f)† > 0. Now, assume that f ⇣ 1, so each �i = 0

and f = g(1 + "). If f 6⇠ 1, then ḡ = f̄ > 1, so log ḡ > 0 by Lemma 6.4. Thus, log g > OL, and since
ln(1 + ") 2 OL, we have

log
L
f = log g + ln(1 + ") ⇠ log g > 0.

If f ⇠ 1, then we may assume that g = 1, so " > 0 and log
L
f = ln(1 + ") > 0.

For (L2), we assume that e(�1) 6 f 6 e(1), and we need to show that log
L
f = ln f . Our assumption on

f gives that each �i = 0 and e(�1) 6 g 6 e(1). Then

log
L
f = log g + ln(1 + ") = ln g + ln(1 + ") = ln f.

For (L3), let � 2 ⇤ with � > 1, and assume that f > �
2. We need to show that f > � log

L
f . If

f � 1, then v(log
L
f) = �(vf) > vf by [3, Lemma 9.2.18], so f � log

L
f . In particular, f > � log

L
f .

Thus, we may assume that f ⇣ 1, so each �i = 0 and f = g(1 + "), where g ⇣ 1. Lemma 1.2 gives
" = e(ln(1 + "))� 1 > ln(1 + "), so

� log
L
f = � log g + � ln(1 + ") 6 � log g + �". (6.1)

If f ⇠ �
2, then we may arrange that g = �

2 and " > 0. Thus, � log g = � log �2 6 �
2 and �" 6 �

2
".

Combined with (6.1), this gives � log
L
f 6 �2 +�

2
" = �

2(1+ ") = f , as desired. If f 6⇠ �
2, then ḡ = f̄ > �

2,
so Lemmas 1.5 and 6.4 give ḡ > � log ḡ. Thus, g + (g � �)" > � log g since (g � �)" � 1. Again, (6.1) gives

� log
L
f < g + (g � �)"+ �" = g(1 + ") = f.

For (L4) let ⇢ 2 ⇤. Then f
⇢ = g

⇢(1 + ")⇢
Q

i2I
a
⇢�i
i

, so

log
L
f
⇢ = log g⇢ + ln

�
(1 + ")⇢

�
+
X

i2I

⇢�ibi = ⇢ log g + ⇢ ln(1 + ") + ⇢

X

i2I

�ibi = ⇢ log
L
f,

where the equality ln
�
(1 + ")⇢

�
= ⇢ ln(1 + ") holds by [14, Lemma 6.4.1].

Finally, for (LH2), let a 2 OL and, using that resL = resK, take b 2 O with a � b � 1. Then
b 2 log(K>) ✓ log(L>), so a 2 log(L>) by Lemma 1.4.

Now let M be a logarithmic pre-HT -field extension of K and let ı : L ! M be an LO,∂(K)-embedding.
Clearly, if ı is an LO,∂

log (K)-embedding, then ı(bi) = log
M

ı(ai) for each i 2 I. For the other implication, we
assume that ı(bi) = log

M
ı(ai) for each i 2 I, and we need to show that ı(log

L
f) = log

M
ı(f), where f is as

above. Using Lemma 6.7 and the fact that f ⇠ g
Q

i2I
a
�i
i
, we may assume that f = g

Q
i2I

a
�i
i
. Since

log
L

⇣
g

Y

i2I

a
�i
i

⌘
= log

L
g +

X

i2I

�i logL(ai)

and since g 2 K, this further reduces to showing that ı(log
L
ai) = log

M
ı(ai) for each i 2 I. This holds by

our assumption, since log
L
ai = bi for each i. Uniqueness of log

L
follows from this embedding property by

taking ı : L ! L to be the identity map. ⇤

For the remainder of this article, we will just write log instead of log
L
when the logarithmic pre-HT -field L

is clear from context. The conditions on resL and �L in the above proposition are always satisfied when L

is an immediate pre-HT -field extension of K.

Corollary 6.9. Let L be an immediate pre-HT -field extension of K. Then there is a unique logarithm on
L extending the logarithm on K, and with this logarithm, L is a logarithmic pre-HT -field extension of K. If
M is also a logarithmic pre-HT -field extension of K, then any LO,∂(K)-embedding L ! M is necessarily an
LO,∂
log (K)-embedding.
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6.1. The exponential closure. In this subsection, we prove that every logarithmic pre-HT -field has a
minimal logarithmic pre-HT -field extension with a surjective logarithm. Below is the key Lemma.

Lemma 6.10. Let f 2 K \ log(K>). Then K has a logarithmic pre-HT -field extension Khai with a > 0 and
log a = f such that for any logarithmic pre-HT -field extension M of K with f 2 log(M>), there is a unique
LO,∂
log (K)-embedding Khai ! M . Moreover, the extension Khai has the following properties:

(1) va 62 � and �Khai = �� ⇤va;
(2) resKhai = resK;
(3)  is cofinal in  Khai;
(4) a gap in K remains a gap in Khai;
(5) if K is l-free, then so is Khai.

Proof. We claim that v
�
f
0� (K⇥)†

�
✓  #. Suppose not and take g 2 K

⇥ with v(f 0�g
†) >  . By replacing

g with �g if necessary, we may assume that g > 0, so v(f 0 � g
†) = v(f � log g)0 >  . Since  is cofinal

in (�<)0, we have f � log g 2 O ✓ log(K>). Take h 2 K
> with f � log g = log h. Then f = log(gh), a

contradiction.
With this claim out of the way, we apply Lemma 4.20 with f

0 in place of s to get a pre-HT -field Khai
extending K with a

† = f
0 which has properties (1)–(5) above. By property (1) and Proposition 6.8, there is

a unique logarithm on Khai with log a = f making Khai a logarithmic pre-HT -field extension of K. Now let
M be a logarithmic pre-HT -field extension of K with f 2 log(M>) and set b := exp f 2 M . Then b

† = f
0,

so Lemma 4.20 gives a unique LO,∂(K)-embedding Khai ! M that sends a to b. By the uniqueness part of
Proposition 6.8, this is even an LO,∂

log (K)-embedding. Since any LO,∂
log (K)-embedding Khai ! M must send

a to b = exp f , this embedding is unique, even without the requirement that a be sent to b. ⇤

Theorem 6.11 below follows by iterating Lemma 6.10 (we also use that an increasing union of l-free loga-
rithmic HT -fields is l-free; see Lemma 3.13).

Theorem 6.11. K has a logarithmic pre-HT -field extension K
e with a surjective logarithm such that for any

logarithmic pre-HT -field extension M of K with a surjective logarithm, there is a unique LO,∂
log (K)-embedding

K
e ! M . The extension K

e has the following properties:

(1) resKe = resK;
(2)  is cofinal in  Ke ;
(3) a gap in K remains a gap in K

e;
(4) if K is l-free, then so is K

e.

We refer to K
e as the exponential closure of K. By Proposition 6.6, the extension K

e is a pre-HT e -field.
If K is a logarithmic HT -field, then K

e is an HT e -field by (1) and Corollary 4.5. The universal property in
Theorem 6.11 gives that Ke is unique up to unique LO,∂

log (K)-isomorphism. This also gives the aforementioned
minimality: if M is a logarithmic pre-HT -subfield of Ke containing K with M = log(M>), then M = K

e.

6.2. Adjoining integrals and the logarithmic HT -field hull. In this subsection, we prove variants of
the results in Subsection 4.1. We begin with the following immediate consequences of Corollaries 4.9, 4.10,
and 6.9:

Corollary 6.12. Let s 2 K with vs 2 (�>)0 and s 62 ∂O. Then K has an immediate logarithmic pre-HT -field
extension Khai with a � 1 and a

0 = s such that for any logarithmic pre-HT -field extension M of K with
s 2 ∂OM , there is a unique LO,∂

log (K)-embedding Khai ! M . If K is l-free, then so is Khai.

Corollary 6.13. Let s 2 K with v(s � ∂K) ✓ (�<)0. Then K has an immediate logarithmic pre-HT -field
extension Khai with a

0 = s such that for any logarithmic pre-HT -field extension M of K and b 2 M with
b
0 = s, there is a unique LO,∂

log (K)-embedding Khai ! M sending a to b. If K is l-free, then so is Khai.
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Now we show how to find an integral for s 2 K when vs is a gap. We can’t use Lemma 4.12 directly, as the
pre-HT -field extension constructed in that lemma is grounded, so it does not admit a logarithm. We rectify
this issue by invoking the extension in Corollary 4.18.

Lemma 6.14. Let s 2 K and suppose vs is a gap in K. Then K has a logarithmic pre-HT -field extension
Khaiw with a � 1 and a

0 = s such that for any logarithmic pre-HT -field extension M of K with s 2 ∂OM ,
there is a unique LO,∂

log (K)-embedding Khaiw ! M . The logarithmic pre-HT -field Khaiw is w-free with
resKhaiw = resK.

Proof. Lemma 4.12 provides a grounded pre-HT -field extensionKhai ofK with a � 1, a0 = s, and resKhai =
resK. Applying Corollary 4.18 with |a|�1 in place of s, we further extend Khai to an w-free pre-HT -field
Khaiw with resKhaiw = resK. Lemma 4.12 and the proof of Corollary 4.18 tell us that

�Kw = ��
M

n

⇤van,  Kw =  [ {va†0, va
†

1, . . .},  < va
†

0 < va
†

1 < · · · ,

where a0 = |a|�1 and a
0
n+1 = a

†
n
for each n. Using the pre-HT -field axioms, one can easily check that each

an is positive and infinite, so by Proposition 6.8, there is a unique logarithm on Khaiw which extends the
logarithm on K such that log an = an+1 for each n. Let M be a logarithmic pre-HT -field extension of K with
s 2 ∂OM . By Lemma 4.12, there is a unique LO,∂(K)-embedding ı : Khai ! M . Let b0 := ı(a0) 2 M and for
each n, let bn+1 := log bn. By the proof of Corollary 4.18, the embedding ı extends to an LO,∂(K)-embedding
Khaiw ! M which sends an to bn for each n. By Proposition 6.8, this is even an LO,∂

log -embedding and, as

an LO,∂
log -embedding, it is unique. ⇤

If K is a logarithmic HT -field with a gap, then we can instead use Lemma 4.13 and apply Corollary 4.18
with |a| in place of s to show the following:

Lemma 6.15. Let K be a logarithmic HT -field, let s 2 K, and suppose vs is a gap in K. Then K has
a logarithmic HT -field extension Khaiw with a � 1 and a

0 = s such that for any logarithmic pre-HT -field
extension M of K and b 2 M with b � 1 and b

0 = s, there is a unique LO,∂
log (K)-embedding Khai ! M

sending a to b. The logarithmic HT -field Khai is w-free with resKhaiw = resK.

The following proposition has the same proof as Theorem 4.14, except we use Lemma 6.14 in place of
Lemma 4.12, and we use Corollary 6.12 in place of Corollary 4.9.

Proposition 6.16. K has a logarithmic HT -field extension H
log
T

(K) with resH log
T

(K) = resK such that for

any logarithmic HT -field extension M of K, there is a unique LO,∂
log (K)-embedding H

log
T

(K) ! M .

6.3. Constant field extensions. We end this section with a proposition on extending logarithmicHT -fields
by constants.

Proposition 6.17. Let K be a logarithmic HT -field and let E be a T
e-extension of C. Then there is a

logarithmic HT -field extension L of K where CL is Llog(C)-isomorphic to E such that for any logarithmic

HT -field extension M of K and any Llog(C)-embedding ı : CL ! CM , there is a unique LO,∂
log (K)-embedding

L ! M extending ı.

Proof. Let L be the HT -field extension of K given by Proposition 4.22, so CL is L(C)-isomorphic to E. By
the proof of Proposition 4.22, we also have �L = �. Using the L(C)-isomorphism CL ! E, we pull the
logarithm on E back to a logarithm on CL, and we view CL as a model of T e with this logarithm. We need
to extend this logarithm on CL to a logarithm on L. Let f 2 L

> and take g 2 K
> with f ⇣ g. Take c 2 C

>

L

with f/g ⇠ c, and take " 2 OL with f = cg(1 + "). Set

log f := log g + log c+ ln(1 + "),

where log g is evaluated in K and log c is evaluated in CL. It is routine to check that this assignment
doesn’t depend on the choice of g. Checking that this map is a logarithm is also quite straightforward; for
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convenience, we may assume that g = 1 in the case that f ⇣ 1. For (LH1), we have

log(f)0 = log(g)0 + log(c)0 + ln(1 + ")0 = g
† + c

† + (1 + ")† = f
†
,

where the second equality uses that log(c)0 = c
† = 0 for c 2 C

>

L
. Since for each a 2 OL, there is d 2 CL with

|a� d| 6 1 and since the logarithm on CL is surjective, (LH2) follows from Lemma 1.4.
Now let M be a logarithmic HT -field extension of K and let ı : CL ! CM be an Llog(C)-embedding.

Using the embedding property of L, we uniquely extend ı to an LO,∂(K)-embedding | : L ! M . We will
show that | is even an LO,∂

log (K)-embedding. For c 2 C
>

L
and g 2 K

>, we have

log |(cg) = log ı(c) + log g = ı(log c) + log g = |
�
log(cg)

�
.

Let f 2 L
>. Since we can find c 2 C

>

L
and g 2 K

> with f ⇠ cg, Lemma 6.7 and the above computation
allow us to conclude that log |(f) = |(log f). ⇤

7. Liouville closed logarithmic HT -fields

In this section, we keep the same assumptions as in the previous section (T is power bounded, T defines a
restricted exponential function, ⇤ is cofinal in the prime model of T ). Let K be a logarithmic HT -field. As
in Section 5, we investigate Liouville closed extensions of K. Now that we have a logarithm present, we can
relate exponential integrals to actual exponentials:

Lemma 7.1. The following are equivalent:

(i) log(K>) = K and every element in K has an integral in K;
(ii) K is Liouville closed.

Proof. Suppose (i) holds and let f 2 K. We need to find an exponential integral for f in K
6=. Take g 2 K

with g
0 = f . Then (exp g)† = g

0 = f . Now, suppose (ii) holds and let a 2 K. We need to show that
a 2 log(K>). Take b 2 K

> with b
† = a

0. Then log(b)0 = a
0 so a � log b 2 C. Since C = log(C>) by

Lemma 6.5, we may take c 2 C
> with a� log b = log c. Then a = log(bc). ⇤

Definition 7.2. A logarithmic T -Liouville extension of K is a logarithmic HT -field extension L of K
which is also a T -Liouville extension of K, as defined in Section 5. A logarithmic T -Liouville closure of
K is a logarithmic T -Liouville extension of K which is Liouville closed.

Any logarithmic T -Liouville extension of K has the same cardinality as K, and an increasing union of
logarithmic T -Liouville extensions is itself a logarithmic T -Liouville extension. The logarithmic HT -field
extension K

e in Theorem 6.11 is a logarithmic T -Liouville extension, as are the extensions considered in
Corollaries 6.12 and 6.13 and in Lemmas 6.14 and 6.15.

Definition 7.3. A logarithmic T -Liouville tower on K is a strictly increasing chain (Kµ)µ6⌫ of loga-
rithmic HT -fields such that:

(1) K0 = K;
(2) if µ 6 ⌫ is an infinite limit ordinal, then Kµ =

S
⌘<µ

K⌘;
(3) if µ < ⌫ and Kµ 6= log(K>

µ
), then Kµ+1 = K

e
µ
;

(4) if µ < ⌫ and Kµ = log(K>

µ
), then Kµ+1 is one of the following extensions of Kµ:

(a) Kµ+1 = Kµhaµiw, where a
0
µ
= sµ 2 Kµ with aµ � 1 and vsµ is a gap in Kµ;

(b) Kµ+1 = Kµhaµiw, where a
0
µ
= sµ 2 Kµ with aµ � 1 and vsµ is a gap in Kµ;

(c) Kµ+1 = Kµhaµi, where a
0
µ
= sµ 2 Kµ with aµ � 1, vsµ 2 (�>

Kµ
)0, and sµ 62 ∂OKµ ;

(d) Kµ+1 = Kµhaµi, where a
0
µ
= sµ 2 Kµ with v(sµ � ∂Kµ) ✓ (�<

Kµ
)0.

The logarithmic HT -field K⌫ is called the top of the tower (Kµ)µ6⌫ .

The extensions in (a) and (b) correspond to Lemmas 6.14 and 6.15, respectively, and the logarithm in
these extensions is the logarithm defined in those Lemmas. The extensions in (c) and (d) correspond to
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Corollaries 6.12 and 6.13. If (Kµ)µ6⌫ is a logarithmic T -Liouville tower on K, then each Kµ is a logarithmic
T -Liouville extension of K. Maximal logarithmic T -Liouville towers on K (that is, logarithmic T -Liouville
towers on K which cannot be properly extended) exist by Zorn’s lemma, and we briefly verify below that
the analogs of Lemmas 5.8 and 5.9 hold in this setting.

Lemma 7.4. Let L be the top of a maximal logarithmic T -Liouville tower on K. Then L is Liouville closed
and, therefore, L is a logarithmic T -Liouville closure of K.

Proof. As in the proof of Lemma 5.8, maximality tells us each element in L has an integral in L. Maximality
also tells us that L = log(L>), so L is Liouville closed by Lemma 7.1. ⇤

Lemma 7.5. Let L be a Liouville closed logarithmic HT -field extension of K and let (Kµ)µ6⌫ be a logarithmic
T -Liouville tower on K. Suppose that (Kµ)µ6⌫ is a tower in L which cannot be extended to a logarithmic
T -Liouville tower (Kµ)µ6⌫+1 in L. Then (Kµ)µ6⌫ is a maximal logarithmic T -Liouville tower on K.

Proof. By Fact 5.2 and Lemma 5.3, it su�ces to show that K⌫ is Liouville closed. The proof that each
element in K⌫ has an integral in K⌫ is essentially the same as the proof of Lemma 5.9. Since L is Liouville
closed, we have L = log(L>) by Lemma 7.1, so Theorem 6.11 allows us to identify K

e
⌫
with a logarithmic

HT -subfield of L. Since K
e
⌫
is a logarithmic T -Liouville extension of K⌫ , we have K⌫ = K

e
⌫
. Thus, K⌫ is

Liouville closed, again by Lemma 7.1. ⇤

We have the following analog of Corollary 5.10, where Lemmas 7.4 and 7.5 are used in place of Lemmas 5.8
and 5.9.

Corollary 7.6. Let L be a Liouville closed logarithmic HT -field extension of K. Then L is a logarithmic T -
Liouville closure of K if and only if L has no proper Liouville closed logarithmic HT -subfields which contain
K.

An analog of Lemma 5.11 also goes through with the obvious changes to the proof.

Lemma 7.7. Let (Kµ)µ6⌫ be a logarithmic T -Liouville tower on K and suppose Kµ does not have a gap for

all µ < ⌫. Then K⌫ admits an LO,∂
log (K)-embedding into any Liouville closed logarithmic HT -field extension

of K.

7.1. Uniqueness and nonuniqueness of logarithmic T -Liouville closures.

Proposition 7.8. Suppose K is l-free. Then K has a logarithmic T -Liouville closure L which embeds over
K into any Liouville closed logarithmic HT -field extension of K. Any logarithmic T -Liouville closure of K
is LO,∂

log (K)-isomorphic to L.

Proof. Let (Kµ)µ6⌫ be a maximal logarithmic T -Liouville tower on K. We will prove by induction on µ 6 ⌫
that each Kµ is l-free. This holds when µ = 0 by assumption and if µ 6 ⌫ is an infinite limit ordinal, then
this follows from Lemma 3.13. Let µ < ⌫ and suppose that Kµ is l-free. If Kµ 6= log(K>

µ
), then Kµ+1 = K

e
µ

is l-free by Theorem 6.11. Suppose that Kµ = log(K>

µ
). Since Kµ is l-free, it has no gap, so Kµ+1 must be

an extension of type (c) or (d). Then Kµ+1 is l-free by Corollaries 6.12 and 6.13.
Set L := K⌫ , so L is a logarithmic T -Liouville closure of K. Let M be a Liouville closed logarithmic

HT -field extension of K. By Lemma 7.7, there is an LO,∂
log (K)-embedding ı : L ! M . Moreover, if M is

a logarithmic T -Liouville closure of K, then in particular, M is a T -Liouville closure of K and ı(L) is a
Liouville closed HT -subfield of M containing K, so ı(L) = M by Corollary 5.5. Thus, L is unique up to
LO,∂
log (K)-isomorphism. ⇤

If K is not l-free, then K has two distinct logarithmic T -Liouville closures. As in the case of HT -fields, it
is helpful to handle the case that K has a gap and the case that K has asymptotic integration separately.
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Proposition 7.9. Let � 2 � be a gap in K. Then K has logarithmic T -Liouville closures L1 and L2 with
� 2 (�>

L1
)0 and � 2 (�<

L2
)0. Let M be a Liouville closed logarithmic HT -field extension of K. If � 2 (�>

M
)0,

then there is an LO,∂
log (K)-embedding L1 ! M . Likewise, if � 2 (�<

M
)0, then there is an LO,∂

log (K)-embedding

L2 ! M . Any logarithmic T -Liouville closure of K is LO,∂
log (K)-isomorphic to either L1 or L2.

Proof. Let s 2 K with vs = �. Let K1 := Khaiw be the logarithmic HT -field extension of K given in
Lemma 6.14, so a � 1 and a

0 = s, and let K2 := Khbiw be the logarithmic HT -field extension of K given in
Lemma 6.15, so b � 1 and b

0 = s. Then K1 is l-free, so it has a logarithmic T -Liouville closure L1 which
embeds over K1 into any Liouville closed logarithmic HT -field extension of K1 by Proposition 7.8. Likewise,
K2 has a logarithmic T -Liouville closure L2 which embeds over K2 into any Liouville closed logarithmic HT -
field extension of K2. Now let M be a Liouville closed logarithmic HT -field extension of K. If � 2 (�>

M
)0,

then the embedding property in Lemma 6.14 gives an LO,∂
log (K)-embedding K1 ! M , which in turn extends

to an LO,∂
log (K)-embedding L1 ! M . If � 2 (�<

M
)0, then using the embedding property in Lemma 6.15

instead, we get an LO,∂
log (K)-embedding L2 ! M . If M is a logarithmic T -Liouville closure of K, then M is

LO,∂
log (K)-isomorphic to either L1 or L2 by Corollary 5.5, since M contains the LO,∂

log (K)-isomorphic image of
either L1 or L2 as a Liouville closed logarithmic HT -subfield. ⇤

Proposition 7.10. Suppose that K has asymptotic integration and is not l-free. Then K has logarithmic
T -Liouville closures L1 and L2 which are not LO,∂

log (K)-isomorphic. If M is a Liouville closed logarithmic

HT -field extension of K, then there is an LO,∂
log (K)-embedding of either L1 or L2 into M . Any logarithmic

T -Liouville closure of K is LO,∂
log (K)-isomorphic to either L1 or L2.

Proof. Let (l⇢) be a l-sequence in K with pseudolimit l 2 K. First, we consider the case that �l has an
integral f 2 K. If there were a 2 K

> with log a = f , then we would have a
† = f

0 = �l, contradicting
that v

�
l + (K⇥)†

�
is a cofinal subset of  # by Fact 3.15. Thus, f has no exponential in K

>, so we use
Lemma 6.10 to extend K to a logarithmic HT -field Khai with log a = f . Then a

† = �l, so va is a gap
in Khai by Lemma 3.16. By Proposition 7.9, Khai has logarithmic T -Liouville closures L1 and L2 with
va 2 (�>

L1
)0 and va 2 (�<

L2
)0, one of which embeds over Khai into any Liouville closed logarithmic HT -field

extension of Khai. Using Lemma 7.1 and the universal property of Lemma 6.10, we see that either L1 or L2

embeds over K into any Liouville closed logarithmic HT -field extension of K.
Now, consider the case that �l has no integral in K. Since K has asymptotic integration, we may use

either Corollary 6.12 or Corollary 6.13 to extend K to an immediate logarithmic HT -field Khfi where f 0 = s.
Since Khfi is an immediate extension of K, the l-sequence (l⇢) remains a l-sequence in Khfi and Khfi
has asymptotic integration, so by the previous case, Khfi has logarithmic T -Liouville closures L1 and L2

with v(exp f) 2 (�>
L1
)0 and v(exp f) 2 (�<

L2
)0, one of which embeds over Khfi into any Liouville closed

logarithmic HT -field extension of Khfi. The embedding properties in Corollaries 6.12 and 6.13 ensure either
L1 or L2 embeds over K into any Liouville closed logarithmic HT -field extension of K.

The embedding properties of L1 and L2, together with Corollary 5.5, ensure that any logarithmic T -
Liouville closure of K is LO,∂

log (K)-isomorphic to either L1 or L2. The proof that L1 and L2 are not isomorphic
to each other is exactly the same as in the proof of Proposition 5.15. ⇤

Let us combine the above propositions into one theorem.

Theorem 7.11. If K is l-free, then K has exactly one logarithmic T -Liouville closure up to LO,∂
log (K)-

isomorphism. Otherwise, K has exactly two logarithmic T -Liouville closures up to LO,∂
log (K)-isomorphism.

For any Liouville closed logarithmic HT -field extension M of K, there is an LO,∂
log (K)-embedding of some

logarithmic T -Liouville closure of K into M .

7.2. An application to Ran,exp-Hardy fields. In this subsection, let R, LR, and TR be as in the intro-
duction, that is, R is an o-minimal expansion of the real field, TR is the LR-theory of R, LR is assumed
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to include a constant symbol for each r 2 R, and TR is assumed to have quantifier elimination and a uni-
versal axiomatization. Let H be an R-Hardy field and let [f ] be a germ of a real-valued unary function
at +1. Then [f ] is said to be comparable to H if for each [g] 2 H, either g(x) < f(x) eventually, or
g(x) > f(x) eventually, or g(x) = f(x) eventually (where eventually means for all su�ciently large x). If [f ]
is comparable to H, then set

Hh[f ]i :=
�
t([f ]) : t is a unary LR(H)-term

 
.

If, in addition to being comparable with H, the function f is eventually C1 and [f 0] 2 Hh[f ]i, then Hh[f ]i is
an R-Hardy field; see [9, Lemma 5.12] and the remarks at the end of [9]. If f 0 = g or f = exp(g) for some
[g] 2 H, then [f ] is comparable to H by Boshernitzan [5, Theorem 5.3]; see also [21]. In both cases, f is
eventually C1 and [f 0] 2 Hh[f ]i, so it follows that

• Hh[exp g]i is an R-Hardy field for [g] 2 H, and
• Hh[f ]i is an R-Hardy field if [f 0] 2 H.

Since any increasing union of R-Hardy fields is an R-Hardy field and since Hardy fields are bounded in size,
Zorn’s lemma and the remarks above give us a Liouville closed R-Hardy field extension of H where every
germ has an integral and an exponential (thus, every germ also has a nonzero exponential integral). We
denote by LiR(H) the intersection of all Liouville closed R-Hardy field extensions of H. Then LiR(H) is a
TR-Liouville closure of H by Corollary 5.5, since the constant field of any R-Hardy field is R.

Here is an application when R = Ran,exp. The appropriate language here is Lan,exp, which includes a function
symbol for each restricted analytic function, as well as function symbols for exp and log. By [9, Corollary
4.6], Ran,exp has quantifier elimination and a universal axiomatization in this language. Since each constant
function is analytic, our assumptions at the beginning of the subsection hold for this expansion. For an
Ran,exp-Hardy field H, let us write Lian,exp(H) instead of LiRan,exp(H). Recall that Tan,exp is the canonical
expansion of the field T of logarithmic-exponential transseries to an Han,exp-field. The following theorem is
an analog of a theorem on Hardy fields from [1].

Theorem 7.12. Let H be an Ran,exp-Hardy field and let ı : H ! Tan,exp be an LO,∂
an,exp-embedding. Then ı

extends to an LO,∂
an,exp-embedding Lian,exp(H) ! Tan,exp.

Proof. If H = Ran,exp, then we extend ı to an LO,∂
an,exp-embedding of

H(Ran,exp) :=
�
[t] : t is a unary Lan,exp(;)-term

 

by sending [t] 2 H(Ran,exp) to t(x) 2 Tan,exp where x 2 Tan,exp is the distinguished positive infinite element
with derivative x

0 = 1. One can easily verify that this is an LO,∂
an,exp-embedding. Thus, by replacing H by

H(Ran,exp) if need be, we may assume that H is a proper extension of Ran,exp. Let K := ı(H) ✓ Tan,exp and
let (Kµ)µ6⌫ be a maximal logarithmic Tan-Liouville tower on K in Tan,exp. Lemma 7.5 tells us that K⌫ is a
logarithmic Tan-Liouville closure of K. Moreover, none of the HT -fields Kµ have a gap by [1, Lemma 6.6],
so Lemma 7.7 gives an LO,∂

an,exp-embedding | : K⌫ ! Lian,exp(H) which extends ı
�1. Since Lian,exp(H) is a

logarithmic Tan-Liouville closure of H, we have |(K⌫) = Lian,exp(H) by Corollary 5.5. Thus, we may take
|
�1 : Lian,exp(H) ! Tan,exp to be our LO,∂

an,exp-embedding. ⇤

Remark 7.13. Using Trexp, the theory of the reals with the restricted exponential function, in place of Tan

in the proof above, one can also show that any LO,∂
exp-embedding of an Rexp-Hardy field H ◆ R into Texp can

be extended to Liexp(H). Here, Texp is the expansion of T by just the exponential function.
Using Lemmas 5.9 and 5.11 in place of Lemmas 7.5 and 7.7 in the proof above, one can show that any

LO,∂
an -embedding of an Ran-Hardy field H into Tan can be extended to Lian(H). The same holds for any

polynomially bounded reduct R of Ran,exp, so long as R satisfies the assumptions at the beginning of this
subsection.
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8. The order 1 intermediate value property

In this section, let K be a pre-HT -field. We do not assume that T is power bounded. Our goal is to prove
the following extension result:

Theorem 8.1. K has a pre-HT -field extension M with the following property: for every L(M)-definable
continuous function F : M ! M and every b1, b2 2 M with

b
0

1 < F (b1), b
0

2 > F (b2),

there is a 2 M between b1 and b2 with a
0 = F (a).

Before proving this theorem, we need a lemma about extensions of pre-HT -fields:

Lemma 8.2. Suppose K is ungrounded, let M be a T
O,∂-extension of K, and suppose that

OM =
�
y 2 M : |y| < d for all d 2 K with d > O

 
,

and that g0 > 0 for all g 2 M with g > OM . Then M is a pre-HT -field extension of K.

Proof. Let g 2 M with g � 1. Then |g|0 > 0 by assumption, so g
† = |g|† > 0, proving (PH1). For (PH2),

let f 2 OM . We need to show that f 0 � g
†. We will do this by showing that v(f 0) >  and that vg† 2  #.

To see that vf
0
>  , let � 2  and, using that K is ungrounded, take d 2 K with d > O and vd

0
> �.

Then d + f, d � f > OM , so d
0 + f

0
, d

0 � f
0
> 0. This gives �d

0
< f

0
< d

0, so vf
0 > vd

0
> �. To see that

vg
† 2  #, take d 2 K with |g| > d > O. Then |g|d�1/2

> d
1/2

> O so
�
|g|d�1/2

�†
= g

† � d
†
/2 > 0, which

gives g† > d
†
/2. As d† > 0, we have vg

† 6 vd
† 2  , so vg

† 2  #. ⇤

Theorem 8.1 follows by iterating the following proposition; an analog of [2, Theorem 4.3]. See also [7], where
van den Dries proves this for R-Hardy fields.

Proposition 8.3. Let F : K ! K be an L(K)-definable continuous function and let b1, b2 2 K with

b
0

1 < F (b1), b
0

2 > F (b2).

Then there is a pre-HT -field extension M of K and a 2 M between b1 and b2 with a
0 = F (a).

Proof. If O = K, then let M := Khai be a simple T -extension of K where a lies between b1 and b2. Using
Fact 1.9, extend the T -derivation on K uniquely to a T -derivation on M by so that a

0 = F (a). Then M ,
with this derivation and the T -convex valuation ring OM := M , is the desired pre-HT -field extension of K.
Having handled this case, we assume for the remainder of the proof that O 6= K (so ∂ is continuous by
Lemma 3.7).

Next, we arrange that K is ungrounded. If T is not power bounded, then T defines an exponential
function [18], so K is necessarily ungrounded by Corollary 4.3. If T is power bounded and K is grounded,
then we use Corollary 4.18 to replace K with an ungrounded pre-HT -field extension.

Now, let us handle the case that b1 < b2. Let I be the interval (b1, b2) and set

A :=
�
y 2 I : y0 < F (y)

 
.

Since b
0
1 < F (b1) and since F and ∂ are continuous, we have y

0
< F (y) for all y 2 I su�ciently close to b1.

Thus, A is nonempty. Likewise, y0 > F (y) for all y 2 I su�ciently close to b2, so A is not cofinal in I. If
A has a supremum b 2 I, then b

0 = F (b) by continuity, and we may take M = K. Thus, we may assume
that A has no supremum in I. Let M := Khai be a simple T -extension of K where a realizes the cut A

#.
Using Fact 1.9, we extend the T -derivation on K uniquely to a T -derivation on M by with a

0 = F (a). We
also equip M with the T -convex valuation ring

OM :=
�
y 2 M : |y| < d for all d 2 K with d > O

 
.

We claim that M is a pre-HT -field extension of K. By Lemma 8.2, it is enough to show that g0 > 0 for all
g 2 M with g > OM . Let G : K ! K be an L(K)-definable function with G(a) > OM . We may assume
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G(a) 62 K. Suppose toward contradiction that

G(a)0 = G
[∂](a) +G

0(a)F (a) 6 0.

Take d 2 K with G(a) > d and take a subinterval J ✓ I with a 2 J
M such that G is C1 on J and such that

for all y 2 J , we have
G(y) > d, G

[∂](y) +G
0(y)F (y) 6 0.

Let y 2 J . Since G(y) > d > O and K is a pre-HT -field, we have G(y)0 = G
[∂](y) +G

0(y)y0 > 0, so
�
G

[∂](y) +G
0(y)y0

�
�
�
G

[∂](y) +G
0(y)F (y)

�
= G

0(y)
�
y
0 � F (y)

�
> 0.

By shrinking J , we may assume that G0(y) has constant sign on J , so y
0 � F (y) has constant sign on J as

well. This is a contradiction, as J contains elements of A as well as elements of I \A. The case that b1 > b2

is virtually identical; we instead let I be the interval (b2, b1) and let

A :=
�
y 2 I : y0 > F (y)

 
. ⇤

Remark 8.4. Note that in Proposition 8.3, the residue field of the M may be strictly larger than the residue
field of K, so even if K is an HT -field, M may only be a pre-HT -field. Accordingly, we do not know if in
Theorem 8.1, the pre-HT -field extension M of K can be taken to be an HT -field in general. However, if
we assume that T is power bounded, then M can be taken to be an HT -field: simply use Theorem 4.14 to
replace the pre-HT -field extension in Proposition 8.3 with its HT -field hull. We can also take M to be an
HT -field if T is an exponential theory of the form considered in Subsection 1.3 (for example, if T = Tan,exp).
For this, we use Proposition 6.16 to pass to the logarithmic HT -field hull, followed by Theorem 6.11 to pass
to the exponential closure.
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