LIOUVILLE CLOSED Hr-FIELDS.

ELLIOT KAPLAN

ABSTRACT. Let T be a complete, model complete o-minimal theory extending the theory of real closed
ordered fields. An Hrp-field is a model K of T equipped with a T-derivation o such that the underlying
ordered differential field of (K, 9) is an H-field. We study Hp-fields and their extensions. Our main result is
that if 7" is power bounded, then every Hp-field K has either exactly one or exactly two minimal Liouville
closed Hp-field extensions up to K-isomorphism. The assumption of power boundedness can be relaxed to
allow for certain exponential cases, such as T' = Th(Ran,exp)-
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INTRODUCTION

In [1], Aschenbrenner and van den Dries introduced the class of H-fields. This class consists of Hardy fields
containing R as well as various ordered differential fields of formal power series, most notably the field T of
logarithmic-exponential transseries. In [3], Aschenbrenner, van den Dries, and van der Hoeven showed that
the complete theory of T is the model companion of the theory of H-fields with small derivation.

In this article, we consider H-fields equipped with additional o-minimal structure. Let T' be a complete,
model complete o-minimal theory which extends the theory RCF of real closed ordered fields, and let K be
a model of T. Let 9 be a T-derivation on K as defined in [13], and let C' := ker(d) be the constant field of
K (we recall the definition of a T-derivation in Subsection [L.4] below). We say that (K,9) is an Hp-field if
the following two conditions hold:

(H1) 9f > 0 for all f € K with f > C, and
(H2) O =C + o, where O is the convex hull of C'in K and o is the unique maximal ideal of O.
If, moreover, do C o, then (K, 9) is said to have small derivation. Axioms (H1) and (H2) are the axioms for

H-fields, given in [1], so an Hp-field is just a model of T equipped with a T-derivation making it an H-field.
In fact, the class of Hrcr-fields coincides with the class of real closed H-fields.
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Our long-term goal is to show that the theory of Hp-fields has a model companion (under the assumption
that T is itself model complete). To this end, we examine various extensions of Hp-fields, often under
the assumption that T is power bounded. Our investigation is based on the study of H-fields and their
extensions, conducted in [3]. The main results in this article are on the existence and uniqueness of T'-
Liouwille closures. Before giving an overview of the results, let us discuss two motivating examples: R-Hardy
fields and expansions of the field T.

R-Hardy fields. Perhaps the most natural examples of Hp-fields are R-Hardy fields, introduced in [9]. Let
R be an o-minimal expansion of the real field R in an appropriate language Lr and let Tz be the complete
Lr-theory of R. By adding a function symbol to Lz for each definable function, we may arrange that T
has quantifier elimination and a universal axiomatization. For convenience, we will also assume that Lr
contains a constant symbol for each r € R, so any model of T contains R as an elementary substructure.

Recall that a Hardy field is an ordered differential field of germs at +o0o of unary real-valued functions,
where the germ of a function f: R — R at o0 is the equivalence class

[f] = {g : fl(a,400) = 9l(a,+00) for some a € R}.

An R-Hardy field is a Hardy field H which is closed under all function symbols in Lx. That is, H is
an R-Hardy field if for every n-ary function symbol F' in Lr and all germs [fi],...,[fn] € H, the germ
[F(f1,...,fn)] is in H, where F(fi,..., f,) is the composite function z — F(f1(z),..., fa(z)). We view
constant symbols as nullary functions, so we may identify R with a subfield of H by identifying r € R with
the germ of the constant function = — 7.

If H is an R-Hardy field, then we view H as an Lg-structure as follows:

e If F' is an m-ary function symbol in L and [f1],...,[f.] € H, then
F([Al,-- - [fa]) = [F(fr,--- fa)]-
e If R is an n-ary predicate in L and [f1],...,[fn] € H, then

HER([fi],...,[fn]) = RER(fi(z),..., fa(x)) for all sufficiently large .

By [9, Lemma 5.8], R is an elementary Lg-substructure of #. As a consequence of our assumption on Tg,
each L (0)-definable function F' is given piecewise by terms, so the identity

F([fl]vv[fn]) = [F(f177fn)]

holds for arbitrary Lz ()-definable functions F', not just for function symbols in L.

Let H be an R-Hardy field. As a Hardy field, H admits a derivation a: H — H given by 9[f] := [f’]. Using
the chain rule from elementary calculus, it is easy to see that this is even a Tr-derivation. We claim that
with this derivation, H is an Hrpy,-field. Note that the constant field C' = ker(d) of H is equal to R, so (H2)
follows from Dedekind completeness of the reals. For [f] € H, we have

f1>R = lim f(2) =00 = [f]=alf] >0,
so (H1) holds as well.

Transseries. Let R,, be the expansion of the real field by restricted analytic functions, and let Rap exp
be the further expansion of R,, by the unrestricted exponential function. Let R,. be the expansion of the
real field by only the restricted sine, cosine, and exponential functions (collectively, restricted elementary
functions). Let Tye, Tan, and Ty, exp be the elementary theories of Rye, Ran and Ry, exp respectively. By [10]
Corollary 2.8], the field T admits a canonical expansion to a model of T,y exp, Which we denote by Tan exp-
Let T,n and T, denote the corresponding reducts of Tan exp-

We claim that Tap exp, With its natural derivation, is an Hyy exp-field, where we write “Hay oxp-field” instead
of “Hr, -field” for easier reading. It is well-known that the ordered differential field T is an H-field; the

an,exp
2



axiom (H1) is verified in [I1, Proposition 4.3] and the axiom (H2) follows easily since the constant field of T
is isomorphic to R, which is Dedekind complete. Moreover, the derivation on Tap cxp i & Tyn exp-derivation,
since it is compatible with all restricted analytic functions and the exponential function by [11l Corollaries
3.3 and 3.4]; see [13] Lemma 2.9] for why this is sufficient. It follows that T,, is an H,y,-field, and that T,
is an H.-field.

We conjecture that Tap cxp and T,y are both model complete. We also conjecture that the theory of Tan exp
is the model companion of the theory of H,p cxp-fields with small derivation, and that the theory of T,, is
the model companion of the theory of H,,-fields with small derivation. These conjectures are, of course,
inspired by the corresponding results for T from [3]. In [L6l Chapter 8], we show that T, is model complete,
and that its theory is the model companion of the theory of H,.-fields with small derivation. The proof of
this result relies heavily on machinery from [3], as well as basic facts about restricted elementary functions.
The methods used to investigate T, are almost surely too case-specific to handle the richer expansions T,
and Tan exp-

Outline and overview of results. In this article, we fix a complete, model complete o-minimal theory T
which extends the theory RCF of real closed ordered fields in some appropriate language £ 2 {0,1,+, —, -, <}.
The class of Hp-fields is axiomatized in the language £ := £ U {O,9}, where O is a unary predicate
interpreted as in (H2). By [13l Lemma 2.3], the constant field C' of an Hp-field K is an underlying elementary
L-substructure of K. It follows that the valuation ring O in (H2) is T-convez, in the sense of van den Dries
and Lewenberg [8]. In studying Hp-fields, valuation theory plays a key role. Analogs of many classical results
about valued fields have been proven in the o-minimal setting under the assumption of power boundedness
(a generalization of polynomial boundedness introduced in [18]). Accordingly, we will assume at various
times that T is power bounded. Valuation-theoretic background is given in Section [2| along with some new
technical results on T-convex valuation rings in the power bounded setting.

Expansions of models of T" by a T-convex valuation ring and a continuous T-derivation were first studied
in [I7). There, the focus was on immediate extensions. Our first result on Hp-fields is a corollary of the
main result in [17].

Corollary [4.7] Suppose that T is power bounded. Then every Hrp-field has a spherically complete immediate
Hrp-field extension.

In addition to studying Hp-fields, we consider the broader class of pre-Hr-fields, which arise as substructures
of Hp-fields. Most of the study of extensions of Hp-fields and pre- Hp-fields is carried out in Section 4} Here
is one such extension result from that section, which shows that every pre- Hp-field has an “Hp-field hull.”

Theorem Suppose that T is power bounded and let K be a pre-Hp-field. Then K has an Hp-
field extension Hy(K) such that for any Hr-field extension M of K, there is a unique £LO°(K)-embedding
Hp(K)— M.

The extension theory developed in Section [4|is applied in Section |5| to study T'-Liouville closures. An Hrp-
field K is said to be Liouville closed if every element in K has an integral and an exponential integral in
K, that is, if for all y € K, there is f € K and g € K* with of = dg/g = y. A T-Liouville closure of an
Hyp-field K is a Liouville closed Hp-field extension of K which is built from K by adjoining integrals and
exponential integrals (a precise definition is given in Section .

In [1], Aschenbrenner and van den Dries proved that every H-field has at least one and at most two Liouville
closures up to isomorphism. They proved that grounded H-fields have exactly one Liouville closure and that
certain types of ungrounded H-fields have exactly two. Gehret later showed that the precise dividing line
for ungrounded H-fields is the property of A-freeness [15]. The terms “grounded” and “A-free” are defined
in Section (3| In Section |bl we show that when T is power bounded, the number of T-Liouville closures of an
Hrp-field can likewise be characterized in terms of being grounded or A-free:
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Theorem Suppose that T is power bounded and let K be an Hr-field. If K is grounded or if K is
ungrounded and A-free, then K has ezactly one T-Liouville closure up to LO°(K)-isomorphism. If K is
ungrounded and not A-free, then K has exactly two T-Liouville closures up to LO°(K)-isomorphism. For
any Liowville closed Hr-field extension M of K, there is an LO°(K)-embedding of some T-Liouville closure
of K into M.

The assumption of power boundedness excludes some important o-minimal theories, such as Typ oxp. Fortu-
nately, many of our results can be extended to o-minimal theories which are “controlled” by a power bounded
base theory in the same way that Ton cxp is “controlled” by its reduct T,,, as shown in [9]. In formalizing
precisely what we mean, we use the framework from Foster’s thesis [14]. Suppose that T is power bounded,
that T defines a restricted exponential function, and that the field of exponents of 7' is cofinal in the prime
model of T. Foster axiomatizes an extension T of T in the language Liog = £ U {log} whose models are
expansions of models of T' by an unrestricted exponential function (which is compatible with the restricted
exponential function and the power functions of T'). This extension is also complete, model complete, and
o-minimal. We give an overview of Foster’s results, as well as some historical context, in Subsection [1.3

In Section [§] we show that many of the extension results proven in Section [4 under the assumption of
power boundedness also go through for Hre-fields and pre-Hre-fields. Instead of working with (pre)-Hre-
fields directly, we work with a broader class of El(g’ga—structures, called logarithmic (pre)-Hr-fields, where the
logarithm is not assumed to be surjective. In Section [7] we show that Theorem generalizes to the class
of logarithmic Hp-fields:

Theorem Let K be a logarithmic Hp-field. If K is A-free, then K has exactly one logarithmic T -
Liouwville closure up to L’l(g’ga(K)—isomorphism. Otherwise, K has exactly two logarithmic T -Liouville closures

up to El(g’ga(K)—isomorphism. For any Liowville closed logarithmic Hrp-field extension M of K, there is an

Egg(K)-embeddmg of some logarithmic T-Liouville closure of K into M.

In the statement of Theorem a logarithmic T-Liouwville closure of K is just a logarithmic Hp-field
extension of K which is also a T-Liouville closure of K. The “grounded” case in Theorem [5.16| cannot occur
for logarithmic Hp-fields; see Corollary

In [I], Aschenbrenner and van den Dries showed that any H-field embedding of a Hardy field H into T
extends to the smallest Liouville closed Hardy field extension of H. As an application of Theorem [7.11] we
prove an analog of this embedding theorem for Ry, exp-Hardy fields.

Theorem Let H be an Ran exp-Hardy field. Then any Hap exp-field embedding H — Tap exp extends to
an Han exp-field embedding Liay exp(H) — Tan exp, Where Liay exp(H) is the minimal Liouville closed Rap exp-
Hardy field extension of H.

Our final result is that every pre- Hp-field has a pre- Hp-field extension which satisfies the “order 1 interme-
diate value property.” An analog of this theorem was shown for pre-H-fields in [2] and for R-Hardy fields
in [7]. Unlike many of the other results, this requires no power boundedness assumptions on 7.

Theorem 8.1l Let K be a pre-Hr-field. Then K has a pre-Hrp-field extension M with the following property:
for any L(M)-definable continuous function F': M — M and any by,by € M with

b, < F(b), by > F(by),
there is a € M between by and by with a’ = F(a).
In Remark we discuss whether the pre- Hp-field extension M above can be taken to be an Hp-field.
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1. PRELIMINARIES

1.1. Notation and conventions. In this article, k, m, and n always denote elements of N = {0,1,2,...}.
By “ordered set” we mean “totally ordered set.” Let S be an ordered set, let @ € S, and let A C S. We put

S7* = {se€S:s>a};

similarly for §2¢, §<¢ §<¢ and S7®. We write “a > A” (respectively “a < A”) if a is greater (less) than
each s € A, and we let At denote the downward closure of A. A cut in S is a downward closed subset
of S, and if A is a cut in S, then an element y in an ordered set extending S is said to realize the cut A if
A <y < S\ A. Note that the empty set is a cut which is realized by any element y < S. Likewise, S itself is
a cut realized by any element y > S. If " is an ordered abelian group, then we set I'> := I'>% and we define
I'Z, I'<, TS, and T'# analogously. If R is a ring, then R* denotes the multiplicative group of units in R. A
well-indexed sequence is a sequence (a,) whose terms are indexed by ordinals p less than some infinite
limit ordinal v.

We always use K, L, and M for models of T' (or expansions thereof). Let A C K and let D C K™. We say
that D is L(A)-definable if

D = oK) = {ye K" : K = ¢(y)}
for some L£(A)-formula ¢. A function F': D — K is said to be L£(A)-definable if its graph is a definable
subset of K™*1. Note that the domain of an £(A)-definable function is £(A)-definable.

For A C K, let dclz(A) denote the L-definable closure of A (in K, implicitly, but this doesn’t change if
we pass to elementary extensions of K). If b € dclz(A), then b = F(a) for some L(())-definable function
F and some tuple a from A. It is well-known that (K,dclz) is a pregeometry. A set B C K is said to
be L(A)-independent if b ¢ dclz (AU (B \ {b})) for all b € B. A tuple a = (a;);es is said to be L(A)-
independent if its set of components {a; : ¢ € I'} is L(A)-independent and no components are repeated. Since
T has definable Skolem functions, any definably closed subset A C K is an elementary L£-substructure of K.
Together with our assumption that T is complete, this guarantees that T has a prime model, which can be
uniquely identified with dclz(0) in any model of T'.

Let M be a T-extension of K, that is, a model of 7" which contains K as an L-substructure. Given an
L(K)-definable set D C K", we let D™ denote the subset of M™ defined by the same £(K)-formula as D.
We sometimes refer to DM as the natural extension of D to M. Since T is assumed to be model complete,
this natural extension does not depend on the choice of defining formula. If F': D — K is an £(K)-definable
function, then let FM be the £(K)-definable function whose graph is the natural extension of the graph of
F. Then the domain of FM is DM and we often drop the superscript and just write F': DM — M™.

For B C M, let K(B) denote the L-substructure of M with underlying set dcl, (K UB). If B = {b,...,b,},
we write K (by,...,b,) instead of K(B). Note that K(B) is an elementary L-substructure of M. If B is
L(K)-independent and M = K(B), then B is called a basis for M over K. The rank of M over K,
denoted rk.(M|K), is the cardinality of a basis for M over K (this doesn’t depend on the choice of basis).
We say that M is a simple extension of K if tk,(M|K) = 1. If M is a simple extension of K, then
M = K(b) for some b € M \ K.

Let £* D L, let T* be an L*-theory extending T', and let K = T*. We use the same conventions for
L*-definability as we do for £-definability. A T*-extension of K is a model M = T* which contains K as
an L*-substructure. If M is an elementary T*-extension of K and D C K" is L*(K)-definable, then let DM
denote the subset of M™ defined by the same formula as D.

5



1.2. Power functions and power boundedness. Here we mention some basic facts about power functions
and exponentials. Proofs can be found in [I8] or [14] Section 2.2.4]. A power function on K is an £(K)-
definable endomorphism of the multiplicative group K~. Each power function F is C' on K> and uniquely
determined by F'(1). Set
A = {F'(1): F is a power function on K }.

Then A is a subfield of K, and it is called the field of exponents of K. For a € K~ and a power function
F, we suggestively write F(a) as a*, where A = F’(1). A straightforward computation tells us that the
derivative of the power function z — z* at a is Aa*~ L.

We say that K is power bounded if for each £(K)-definable function F: K~ — K-, there is A in the
field of exponents of K with |F(z)| < z* for all sufficiently large positive x. Note that K is polynomially
bounded (any unary £(K)-definable function is eventually bounded by z™ for some n) if and only if K is
power bounded with archimedean field of exponents.

An exponential function on K is an ordered group isomorphism from the additive group K to the
multiplicative group K~. Any exponential function on K grows more quickly than every power function on
K. By [18], either K is power bounded or K defines an exponential function. Any definable exponential
function on K is everywhere differentiable, and if K defines an exponential function, then it is fairly easy
to see that there is a unique £()-definable exponential function which is equal to its own derivative. Thus,
defining an exponential function is a property of the theory T' (we say that T defines an exponential),
and so power boundedness is a property of the theory T as well (we say that T is power bounded). If T
is power bounded, then each power function on K is £((})-definable, so we refer to the field of exponents A
as the field of exponents of T', as A does not depend on K.

1.3. Exponentials and logarithms. Most of the results in Sections and || are proved under the
assumption that 7' is power bounded. In Sections [6] and [7] we show that many of these results can be
extended to theories which define an exponential, so long as these theories are essentially controlled by a
power bounded reduct. The prototypical example of this is the theory Toxp = Th(Rexp). Let Tiexp be the
(polynomially bounded) theory of the real field expanded by the restriction of the exponential function to
the interval [—1,1]. Then Tiexp is model complete by Wilkie [23]. In [19], Ressayre demonstrated that Texp
can be axiomatized by extending Tiexp by the following axioms:

(E1) exp is an exponential function, as defined above,
(E2) exp agrees with its restricted counterpart on the interval [—1, 1], and
(E3) exp grows sufficiently fast, that is, if z > n? then expx > 2" for each n > 0.

Ressayre also showed that if Tiexp eliminates quantifiers in some language £*, then Tey, eliminates quantifiers
in the language £* U {exp, log}.

Ressayre’s method was expounded on in [9], where the authors took Ty, as the polynomially bounded base
theory and showed that Ty, exp can be axiomatized by extending T,, by the axioms (E1), (E2), and (E3)
above. They used this to show that T, exp has quantifier elimination and a universal axiomatization in
the language L., U {exp,log}, where L,, extends the language of ordered rings by function symbols for all
restricted analytic functions, inversion away from zero, and n'* roots for all n > 1.

In [12], van den Dries and Speissegger further generalized this approach. Let R be a polynomially bounded
expansion of the real field which defines the restriction of the exponential function to [—1,1] and let Lz be
a language in which Tk, the theory of R, has quantifier elimination and a universal axiomatization. Then
the expansion of R by the unrestricted exponential function is o-minimal and completely axiomatized by the
theory T%, which expands Tx by axioms (E1), (E2), and (E3) above along with an axiom scheme stating that
exp(rz) = (expx)” whenever the power function x — 2" is definable in R [12] Theorem B]. As with Ty, exp,
the theory T has quantifier elimination and a universal axiomatization in the language Lz U {exp,log}.
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Note that the axiom expressing compatibility with the power function x — x" is really only necessary when
r is irrational; if r € Q, then compatibility follows from (E1).

The most general application of this method is in Foster’s thesis [14], where Tz above is replaced by any com-
plete power bounded o-minimal theory, subject to some natural constraints. We will use Foster’s framework
in Sections [6] and [7} and we spend the remainder of this subsection describing his hypotheses and results.

Definition 1.1. A restricted exponential on K is a strictly increasing map e: K — K which is zero
outside of [—1, 1], which satisfies the identity

e(z+y) = e(z)e(y)
for x,y € [-1,1] with |z + y| < 1, and which is differentiable at 0 with derivative 1.

As is the case with total exponential functions, any £(K)-definable restricted exponential on K is actually
L(())-definable, continuous on the interval [—1, 1], differentiable on the interval (—1, 1), and equal to its own
derivative on that interval. Thus, we say that T" defines a restricted exponential to mean that any model
of T admits an L((})-definable restricted exponential. For the remainder of this subsection, we assume that
T defines a restricted exponential e. We also assume T is power bounded and that A, the field of exponents
of T, is cofinal in the prime model of T

Lemma 1.2. Lety € [-1,1]. Then y+ 1 < e(y), with equality if and only if y = 0.

Proof. Since e(0) = 1, we may assume that y is nonzero. The o-minimal mean value theorem gives some u
between y and 0 with

e(y) =1 = e(y) —e(0) = e(u)y.
Treating the cases y > 0 and y < 0 separately, we see that e(u)y > y, so e(y) >y + 1. O

For y € K with e(—1) < y < (1), let In(y) be the unique element of [-1,1] with e(Iny) = y. Then In is
L(0)-definable and continuous where defined. A straightforward computation gives that In is differentiable
at y strictly between e(—1) and e(1) with derivative y~1.

Definition 1.3. A logarithm on K is a function log: K~ — K which satisfies the following axioms for all

a € K~ and all A € A:

(L1) log is an ordered group embedding of the multiplicative group K~ into the additive group K;
(L2) if e(—1) < a < e(1), then loga = lna;

(L3) if A > 1 and @ > A%, then a > Aloga;

(L4) log(a*) = Aloga.

Let log be a logarithm on K. We set Liog = L U {log}, and we view K as an Lig-structure, where log is
interpreted to be identically zero on KS. Let exp denote the compositional inverse of log, where it is defined.
Combining (L1) and (L2), we see that log is differentiable at any y > 0 with derivative y~—*
also differentiable where defined, and equal to its own derivative.

. Thus, exp is

The axioms (L1)—(L4) are analogs of Foster’s axioms (A1)—(A5) [14, Section 6.5], though they are presented
in terms of logarithms rather than exponentials. Axiom (L1) is an analog of Ressayre’s axiom (E1), axiom
(L2) corresponds to Ressayre’s axiom (E2), and axiom (L3) is a version of (E3) which works for arbitrary
(possibly non-archimedean) fields of exponents. Axiom (L4) is an analog of van den Dries and Speissegger’s
additional axiom.

We prove here a couple of lemmas for later use.

Lemma 1.4. Let log be a logarithm on K, let f,g € K with |f — g| < 1, and suppose that g € log(K~).
Then f € log(K~).

Proof. Let h :=exp(g)e(f —g) € K. Then f = logh. O
7



The inequality in axiom (L3) is not strict (a useful formulation for verifying that it holds in certain
situations). However, the strict version of (L3) follows:

Lemma 1.5. Let log be a logarithm on K, let A € A with A\ > 1, and let a € K with a > \2. Then
a > Mloga.

Proof. Let p € A with 1 < p? < e(1). For example, we may take p = 4/3, since e(1) > 2 by Lemma
If a > p?A\2, then a > pAloga > Aloga by (L3), so we may assume that A2 < a < p?A\2. Take u € K with
ANu=a,s01<u<e(l). We have

Moga = AogA2 +Alnu < A2+ X2lnu,

where the equality uses (L1) and (L2) and the inequality uses (L3) and our assumption that A > 1. Lemmal[.2]
gives u — 1 =e(lnu) — 1 > Inu, so AMoga < A2 + \2(u — 1) = \?u = a. O

Let T° be the L£oe-theory which extends the axioms (L1)—(L4) by an additional axiom which states that log
is surjective. Foster’s main results on the theory T° are as follows:

Fact 1.6 ([14], Theorems 6.5.2 and 6.6.9).

(1) T¢ is complete, model complete, and o-minimal.

(2) The prime model of T admits a unique expansion to a model of T°.

(8) If T has quantifier elimination and a universal aziomatization, then so does T® in the language
Liog U {exp}, where exp is interpreted as the compositional inverse of log.

Corollary 1.7. Any Liog(0)-definable function in any model of T® is given piecewise by a composition of
L(0)-definable functions, log, and exp.

Proof. Let £* be the extension of £ by function symbols for each L£()-definable function. Then T has
quantifier elimination and a universal axiomatization in the language L£*, since T has definable Skolem
functions. Thus, T has quantifier elimination and a universal axiomatization in the language £j,, U {exp}
by Fact [1.6](3) above. It follows that any Cfog(@)—deﬁnable function in any model of T is given piecewise by
terms in the language Lj,, U {exp}. These terms are exactly compositions of £(0})-definable functions, log,
and exp. O

1.4. T-derivations. Let 9: K — K be a map. For a € K, we use a’ or da in place of d(a), and we use a(")
in place of 9"(a). If a # 0, then we set a' := a//a. Given a set A C K, we set dA := {a’' : a € A}. Given a
tuple b = (b1,...,b,) € K™, we use db or b’ to denote the tuple (b],...,b)).

Let F': U — K be an L£(())-definable C!-function with U C K" open. Let VF denote the gradient

oFr oF
F==—,..., —
v (6'Y17 ’3Yn>’

viewed as an L£(K)-definable map from U to K™. If n = 1, then we write F’ instead of VF. We say that o
is compatible with F' if

F(u) = VF(u)-u
for each u € U, where a-b denotes the dot product > ; a;b; for a,b € K™. We say that 9 is a T-derivation
on K if 9 is compatible with every £(0)-definable C!-function with open domain.

T-derivations were introduced in [13]. Compatibility with the functions (z,y) — x4y and (z,y) — xy gives
that any T-derivation on K is a derivation on K, that is, a map satisfying the identities (a + ) = o’ + b’
and (ab)’ = a’b+ ab/ for a,b € K. For the remainder of this subsection, we assume that 9 is a T-derivation
on K, and we let C' = ker(9d) denote the constant field of K. By [13| Lemma 2.3], the constant field C' is the
underlying set of an elementary L-substructure of K. We recall two facts from [13] for later use:
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Fact 1.8 ([13], Lemma 2.12). Let U C K™ be open and let F: U — K be an L(K)-definable C*-function.
Then there is a (necessarily unique) L(K)-definable function FP': U — K such that

F(u) = FO(u)+ VF(@)-u
forallueU.

Fact 1.9 ([13], Lemma 2.13). Let M be a T-extension of K, let A be a dclz-basis for M over K, and let
s: A — M be a map. Then there is a unique extension of d to a T-derivation on M such that o’ = s(a) for
all a € A.

Let us also note for future use that if z + 2*: K> — K is an L£(()-definable power function on K, then
(y*) =My ly forall y € K.

Let s € K. An element a with a’ = s is called an integral of s and a nonzero element b with b = s is called
an exponential integral of s. If s # 0, then an element f with f/ = s is called a d-logarithm of s. In
differential algebra, “d-logarithms” are often just called “logarithms” (this is the case in [3]). We include
the “d” since there may be actual logarithms present. Suppose that T' defines an exponential function with
compositional inverse log. Then for s > 0, the d-logarithms of s are exactly the elements log(s) + ¢ for some
ceC.

We say that K is closed under integration if every element of K has an integral in K, and we say that K
is closed under exponential integration if every element of K has an exponential integral in K*. We
say that K is Liouville closed if K is closed under both integration and exponential integration. Finally,
we say that K is closed under taking d-logarithms if every element of K* has a d-logarithm in K. Note
that if K is closed under integration, then K is closed under taking d-logarithms. Of course, if T' defines an
exponential function, then K is closed under taking d-logarithms.

2. T-CONVEX VALUATION RINGS

Following [8], a subset O C K is said to be a T-convex valuation ring of K if O is nonempty and convex
and if F(O) C O for all L((})-definable continuous functions F': K — K. Let LY := LU{O} be the extension
of £ by a unary predicate O and let T© be the £L®-theory which extends T by axioms asserting that O is a
T-convex valuation ring. For the rest of this section, let K = (K,O) |= T9. Unlike in [§], we allow O = K,
in which case K is said to be trivially valued. The theory T is weakly o-minimal—every £L° (K )-definable
subset of K is a finite union of convex subsets of K [8, Corollary 3.14].

Any T-convex valuation ring is a valuation ring, so O has a unique maximal ideal, which we denote by o.
We let T' denote the value group of K, and we denote the (surjective) Krull valuation by v: K* —T. If T
is power bounded with field of exponents A, then A C O since each A\ € A is £(0)-definable, and the value
group I' naturally admits the structure of an ordered A-vector space by

M(a) = v(at)

for a € K~ (this does not depend on the choice of a). We set 'y, :==I' U {00} where co > T', and we extend
v to all of K by setting v(0) := co. For a,b € K, set

a<b <= va > vb, a<b <= wva > vb, axb <= va=vb, a~b <= v(a—>b)>va.
Note that ~ is an equivalence relation on K>, and that if a ~ b, then a < b and «a is positive if and only if b
is.

Let res(K) := O/o denote the residue field of K, and for a € O, let a denote the image of a under the
residue map O — res K. Under this map, res K admits a natural expansion to a T-model; see [8, Remark
2.16] for details. A lift of res K is an elementary L-substructure k of K contained in O such that the map

a+— a: k — resK is an L-isomorphism. By [8, Theorem 2.12], one can always find a lift of res K. For
DCK,set D:={a:ae€ DnNO} Cres(K).



Let M be a T%-extension of K with T-convex valuation ring O)p; and maximal ideal oy;. We view T' as a
subgroup of I'); and res K as an L-substructure of res M in the obvious way. Let v and x — & denote their
extensions to functions M* — T'y; and Oy — res M. By [8, Corollary 3.13], the extension of T¢ by an
axiom stating that O is a proper subring of K is complete and model complete, so if O # K, then M is an
elementary T©-extension of K. If Oy = M, then O = K so M is again an elementary 7'©-extension of K.

Fact 2.1 ([8], Section 3). Let K ({(a) be a simple T-extension of K. There are at most two T-convez valuation
rings O1 and Oy of K{a) which make K{a) a T -extension of K :

01 = {ye K(a): |yl <u for someu e O}, Oy == {yeK(a): |yl <d for alld € K withd > O}.

If there is b € K{a) which realizes the cut O, then b is contained in Oy but not Oy, so O1 C Oo. If there is
no such b, then O1 = Os.

2.1. The Wilkie inequality. In this subsection, we assume that T is power bounded with field of exponents
A. The following fact is an analog of the Abhyankar-Zariski inequality, and it is referred to in the literature
as the Wilkie inequality.

Fact 2.2 ([6], Section 5). Let M be a TC-extension of K and suppose rkp(M|K) is finite. Then
tkp(M|K) > rke(res M|res K) + dimy (T /T).

We most frequently use the Wilkie inequality when M is a simple extension of K. Here is a consequence of
the Wilkie inequality:

Lemma 2.3. Let S be a cut in T'. Then there is a simple T -extension K(f) of K where f > 0 and where
vf realizes the cut S. This extension is unique up to LO(K)-isomorphism and is completely described as
follows: f realizes the cut

{ye K:y <0 orvy > S}

and Og ) is the conver hull of O in K(f).
Proof. Let K(f) be a simple extension of K where f realizes the cut
{ye K:y<0orvy> S},

and let Ok sy be the convex hull of O in K(f). Then K(f) with this T-convex valuation ring is indeed a
TO-extension of K by Fact [2.1] and vf clearly realizes the cut S. It remains to show uniqueness. Let O*
be another T-convex valuation ring of K(f) with O* N K = O. If O* # Ok yy, then by Fact there is
g € O* with g > O. Then the residue field of K(f) with respect to O* is strictly bigger than res K, as it
contains the image of g. By the Wilkie inequality, the value group of K {f) with respect to O* is equal to T,
so the valuation of f with respect to O* cannot realize the cut S. O

In Proposition below, we use the Wilkie inequality to bound the derivative of a unary L(K)-definable
function. This proposition will be used a number of times in Section 4l First, we need two lemmas.

Lemma 2.4. Let M = K(a) be a simple T® -extension of K with a = 1 and va ¢ T'. Let F: K — K be an
L(K)-definable function with F(a) < 1. Then F'(a) < a™!.

Proof. By replacing a with —a if need be, we may assume that a > 0. The Wilkie inequality gives res M =
res K, so we may take u € O* with F(a) — u < 1. Replacing F with F — u, we may assume that F(a) < 1.
Note that this does not change F”.
We first handle the case that O = K, so a > K and |F(a)| < K~. Phrased in terms of limits, we have
Jim [F(z)] =0,
and we want to show that
lim z|F'(z)] = 0.

T—00
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Let e,g € K~ be given. We need to find d > g with d|F’(d)| < e. By increasing g, we may assume that
|F(g9)| < &/4 and that |F| is decreasing and C! on a neighborhood of [g, +00). The o-minimal mean value
theorem gives d € (g,2g) with

[P0~ Flo)| _ 2F()

F'(d <
[F"(d) 7 p

Since d < 2¢ and |F(g)| < €/4 we have

< 4|F(g9)| < e

Now suppose @ # K, so M is an elementary T'©-extension of K. We need to show that a does not belong
to the £°(K)-definable set {y € M~ : F'(y) = y~'}. We do this by showing that for any £ (K)-definable
set A C K> with a € AM there is y € A with F'(y) < y~'. Let A be such a set. Since T© is weakly
o-minimal, we may assume that A is open and convex. By shrinking A, we arrange that F is C' on A and
that F(y) < 1 for all y € A. Since va ¢ I' and T is densely ordered, the set A contains elements yi,yo2 with
y1 < y2. The o-minimal mean value theorem gives

F —F
F’(y) _ (yZ) (yl)
Y2—UN
for some y € A between y; and ys. Since F(y2) — F(y1) < 1 and y2 — 41 < y2 = y, we have F'(y) < y~1, as
desired. 0

Lemma 2.5. Let M = K{a) be a simple T®-extension of K witha <1 and a ¢ res K. Let F: K — K be
an L(K)-definable function with F(a) < 1. Then F'(a) 5 1.

Proof. This is trivial if O = K, so we may assume that K is nontrivially valued. Let k C O be a lift
of res K, so k(a) is a lift of res M by [8, Lemma 5.1]. Take an L(k)-definable function G: K — K with
|F(a)| < G(a). The Wilkie inequality gives that I'y; = T, so since I' has no largest element, it suffices to
show that |F’(a)| < d for each d € K~ with d > 1. Let d be given and let I be an arbitrary subinterval of
K> with a € I™. Tt suffices to find some y € I with |F'(y)| < d. By shrinking I, we arrange that F is C*
on I and that |F(y)| < G(y) for all y € I. As a € I"**M  we see that I must be infinite, so I Nk is infinite.
Take y1,y2 € I Nk with y; < y2, s0 y2 — y1 < 1. Note that G(y;) € k, so |F(y;)| < G(y;) < d for i = 1,2.
The o-minimal mean value theorem gives

F’(y) _ F(yzz—i(yl) < d

for some y € I between y; and yo. In particular, |F'(y)| < d. O

Proposition 2.6. Let M = K{a) be a simple T® -extension of K witha & f forall f € K andlet F: K — K
be an L(K)-definable function. Then F'(a) < a='F(a).

Proof. First, suppose a = 1 and va € I'. The Wilkie inequality gives I'y; = I" & Awva, so take d € K~ and
A € A with F(a) < da*. Then d"'a=*F(a) < 1 and, applying Lemma to the function y — d~ty=*F(y),
we get
d~'a ™ F'(a) = M ta ™ 'F(a) < a7t
Since A < 1 and d"'a=*F(a) < 1, we have —\d~'a=*"'F(a) < a~!. It follows that d~'a=*F'(a) < a™!, so
F'(a) < a 'da® = a 'F(a).
Now, suppose a < 1 and va € T'. Let G: K — K be the function given by
Fy™') ify#0
G =
) { 0 if 3 = 0.
11



Then F(a) = G(a™!). By applying the previous case to G and a~! = 1, we get
F'(a) = —G'(aHa™? 5 aG(a™Ya™? = a 'F(a).

Finally, suppose va € I' and take b € K with b =< a, so b~'a =< 1. Note that b—la ¢ res K, for otherwise
we would have a ~ bu for some u € O*, contradicting our assumption on a. The Wilkie inequality gives
Ty =T, so take d € K~ with F(a) < d. Applying Lemmawith b~la in place of a and with the function
y +— d"1F(by) in place of F, we see that

d7'F'(a) = 1,
so F'(a) x b~ 'd < a"'F(a). O

Note that our standing assumption of power boundedness is necessary for Proposition [2.6] as the proposition
clearly fails when a is infinite and F' is an exponential function with F’ = F. Our assumption that a ¢ f
for all f € K is also necessary. To see this, suppose a ~ f € K and let F(Y) =Y — f. Then F(a) < a so
a~'F(a) < 1, but F'(a) = 1. Here is an application of Proposition for use in the proof of Lemmam

Corollary 2.7. Suppose O = K, let b € K™ be an L(())-independent tuple, and let K{a) be a simple T°-
extension of K with a < 1. Let G: K" — K be an L(0)-definable function with G(a,b) < 1 and let
d=(do,...,d,) € K}*". Then VG(a,b)-d < a1

Proof. Viewing G as a function of the variables Yy, ...,Y,, we have
oG oG 0G
VG(CL, b) -d = 87}/{)(&’ b)do + TYE(a)b)dl +--- 4+ Tm(a, b)dn

Since d; € K = O for each i = 0,...n, we have d; < 1 for each 14, so it suffices to show that g—g < a1 for
each i. For ¢ = 0, we apply Proposition o the function y — G(y,b) to get g—%(a, b) < a*IG(d, b) <a t.
For ¢ > 0, we will again use Proposition but doing so requires a bit of an argument. By symmetry, it
suffices to show that g—g(a, b) < a~!. Let E :=dcl(by,...,b,) and view E as an elementary £-substructure
of K with Op = ONE =EFE. Then by ¢ E, so by # f for any f € E, since F is trivially valued. Viewing
E{a) as a T%-extension of F with va ¢ I'y = {0}, the Wilkie inequality gives res E{(a) = res E, so by o f
for any f € E{(a). Thus, we may apply Proposition with F(a) in place of K, with b; in place of a, and
with the function y — G(a,y,bs,...,b,) in place of F' to get g—g(a,b) < b;'G(a,b). Since b;* € K and

G(a,b) < 1, this gives g—g(a,b) <1=<a % O

2.2. Immediate extensions and pseudocauchy sequences. In this subsection, let M be a T©-extension
of K. If 'py =T and resM = res K, then M is said to be an immediate extension of K. If M is an
immediate extension of K, then M is an elementary T©-extension of K. Note that M is an immediate
extension of K if and only if for all @ € M* there is b € K* with a ~ b. The following fact from [17], is
useful for studying how £ (K)-definable functions behave in immediate extensions.

Fact 2.8 ([17], Corollary 1.6). Suppose M is an immediate extension of K, let F: A — K be an LO(K)-
definable function, and let a € AM. Then there is an L(K)-definable cell D C A with a € D™ such that
either F(y) =0 for ally € D™ or F(y) ~ F(a) for ally € DM.

If K (a) is a simple immediate T®-extension of K, then v(a — K) := {v(a—y) : y € K} is a downward closed
subset of I" without a greatest element. For each b € K (a), the set v(b— K) can be expressed as a translate
of v(a — K):

Lemma 2.9. Let K(a) be a simple immediate T® -extension of K and let b € K{(a)\ K. Then
vb—K) = y+v(a—K)
for some vy €T.

Proof. Let F: K — K be an L(K)-definable function with F'(a) = b. Take an open interval I C K with
a € I™@ gsuch that F is C' on I. Since b ¢ K, we have F(a) # 0, so we may use Fact to shrink I and
12



arrange that F'(y) ~ F'(a) for all y € I5(%). Set v := vF’(a) € T and let u € I. By the o-minimal mean
value theorem, we have

F(a) = F(u) = F'(c)(a—u)
for some ¢ € K{(a) between a and w. Then vF’(c) =
v(b—F(u)) = v(F(a)— F(u)) = v+v(a—u).

The set {v(a —u) : u € I} is cofinal in v(a — K) and, since {F(u) : u € I'} contains an interval around b,
the set {v(b— F(u)) : u € I} is cofinal in v(b — K). This gives v(b— K) = v+ v(a — K), as desired. O

7 since ¢ € TK(® 5o

Recall that a pseudocauchy sequence (pc-sequence) in K is a well-indexed sequence (a,) in K such
that

ar — 0y < G5 — 0
for all 7 > o > p greater than some index pg. Let (a,) be a pc-sequence. An element a in a T-extension
of K is said to be a pseudolimit of (a,) if for some index py, we have

a—a, < a—a,

for all ¢ > p > po. In this case, we say that (a,) pseudoconverges to a, and we write a, ~» a. The
pc-sequence (a,) is said to be divergent if it has no pseudolimit in K. Suppose (a,) is divergent with
pseudolimit @ in some T©-extension of K. Given y € K, we have a — a, < a — y for all sufficiently large p;
otherwise, we would have a, ~ y.

Under the assumption of power boundedness, pc-sequences are related to immediate extensions as follows:

Lemma 2.10. Suppose that T is power bounded and let K{a) be a simple TO -extension of K. The following
are equivalent:

(1) K{a) is an immediate extension of K ;

(2) v(a — K) has no largest element;

(8) there is a divergent pc-sequence in K which pseudoconverges to a.

Proof. The equivalence of (1) and (2) follows from results in Tyne’s thesis [22]; see [17, Lemma 1.10] for a
full proof (this uses our assumption of power boundedness). Assume (2) holds and let (a,) be a well-indexed
sequence in K such that v(a — a,) is strictly increasing and cofinal in v(a — K). One easily verifies that
(a,) is a divergent pc-sequence in K which pseudoconverges to a. Now, assume (3) holds and let (a,) be a
pc-sequence witnessing this. Then for y € K, we may take p with a —a, < a — y, proving (2). O

As a corollary, we get that any divergent pc-sequence in K has a pseudolimit in an immediate extension of
K.

Corollary 2.11. Let T be power bounded and let (a,) be a divergent pc-sequence in K. Then there is an
immediate TC -extension K (a) of K with a, ~ a. If b is an element of a TC -extension M of K with a, ~~ b,
then there is a unique LO(K)-embedding K (a) — M sending a to b.

Proof. Let K{a) be a simple T%-extension of K with a, ~» a (such an extension exists by compactness).
Lemma m gives that K{a) is an immediate extension of K. Let b be an element of a T®-extension M of
K with a, ~ b. We claim that a and b realize the same cut in K. Let y € K and take a, witha—a, <a—y
and b —a, < b—y. Then

a—y ~ (a-y)=(a—a) = a -y = (b=y)=(b—-ay) ~ b-y,
so a < y if and only if b < y. This gives us a unique £(K)-embedding ¢: K {a) — M sending a to b. To get
that ¢ is an £°(K)-embedding, let F': K — K be L(K)-definable. We need to show that F(a) € O g if
and only if F(b) € Op;. We assume that F(a) # 0, and we will show that F(a) ~ F(b). Using Fact [2.8] take

an interval I C K with a € (%) such that F(y) ~ F(a) for all y € I*{*_ Since K has a proper immediate
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extension, it is not trivially valued, so M is an elementary T-extension of K. Thus, F(b) ~ F(y) ~ F(a),
since b € IM. O

3. Hp-ASYMPTOTIC FIELDS

In this section, we introduce the class of Hr-asymptotic fields. These fields are o-minimal analogs of the
H-asymptotic fields from [3, Chapter 9]. We will collect a few facts from [3] for later use, and then we will
discuss the immediate extensions of Hp-asymptotic fields. As we will see in Section |4, all (pre)-Hp-fields
are Hrp-asymptotic. Before proceeding, let us fix some notation. Set £ := £ U {0,9}, and let T be
the £9-theory which extends 7€ by axioms stating that o is a T-derivation. We also make the following
standing assumption:

Assumption 3.1. For the remainder of this article, let K = (K,0,9) = T®®. We will continue to use the
notation introduced in Subsection[I.] and Section[2. In particular, we write o for the mazimal ideal of O, T
for the value group of (K,O), and C for the constant field of (K, d).

Definition 3.2. K is an Hp-asymptotic field if for all g € K with g > 1, we have
(HA1) ¢ >0,

(HA2) gF = f' for all f € o, and

(HA3) ¢ = f’ for all f € O*.

The definition above differs slightly from the definition of an H-asymptotic field given in [3], though we
claim that every Hp-asymptotic field is H-asymptotic. Indeed, (HA2) and (HA3) along with [3| Proposition
9.1.3] imply that every Hr-asymptotic field K is asymptotic, that is, f < g <= f' < ¢’ for all f,g € K*
with f,g < 1. To see that each Hp-asymptotic field K is H-asymptotic in the sense of [3], let f,g € K*
with f < g < 1. We need to show that fT = g'. Applying condition (HA1) to ¢! and g/f, we have

g = - Ht <0, gt —ft = (/N >0,

so fT < gt < 0. In particular, fT = g7, as desired. Conversely, if K is asymptotic, then K satisfies (HA2)
and (HA3) by [3, Proposition 9.1.3]. However, the H-asymptotic fields in [3] are not necessarily ordered,
and even convexly ordered H-asymptotic fields need not satisfy (HA1).

For the remainder of this section, we assume that K is an Hp-asymptotic field. Note that if O # K, then the
derivation on K is nontrivial by (HA1). Indeed, (HA1) ensures that the constant field of any Hp-asymptotic
field is contained in the valuation ring.

Fact 3.3 ([3], Corollary 9.1.4). Let f,g € K with g # 1. If f < g, then f' < ¢. If f < g, then
frg=1[~4g"
Let f € K* with f % 1. As K is asymptotic, the values v(f’) and v(fT) only depend on vf, so for vy = vf,
we set

7= e(fh), A = () = vt
This gives us a map

Y:T7 =T, Y(vy) = Al

Following Rosenlicht [20], we call the pair (T',1) the asymptotic couple of K. We have the following
important subsets of I':

(=) = {y:yeT™}, (=) = {y:vel”},
(I7) = () u (), vo= (%) = {7l iyer
It is always the case that (I'<)’ < (I'”)’ and that ¥ < (I'”)’. If there is 8 € I' with ¥ < 8 < (I'”)’, then

we call 8 a gap in K. There is at most one such 3, and if ¥ has a largest element, then there is no such

B. If K has trivial valuation, then the four subsets above are empty and 0 is a gap in K. We say that K is
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grounded if ¥ has a largest element, and we say that K is ungrounded otherwise. Finally, we say that
K has asymptotic integration if I' = (I'”)’. If 8 is a gap in K or if 3 = max ¥, then I'\ (I'7)" = {5}.
In [3], the authors prove the following trichotomy for H-asymptotic fields. Of course, this trichotomy holds
for Hp-asymptotic fields as well.

Fact 3.4 (]3], Corollary 9.2.16). Ezactly one of the following holds:
(1) K has asymptotic integration;
(2) K has a gap;
(3) K is grounded.

It follows that K is ungrounded if and only if ¥ C (I'<)’. This allows us to define the contraction map
x: I'” = I'< for ungrounded K as follows: let v € I'7, so v7 € ¥ C (I'<)". Let x(v) be the unique element
of I'< with x(7)’ = 7. We extend x to a map I' = 'S by setting x(0) := 0.

3.1. Spherically complete immediate extensions of Hp-asymptotic fields. In this subsection, we
will use the results in [17] to prove the following theorem:

Theorem 3.5. Suppose that T is power bounded. Then K has an immediate Hr-asymptotic field extension
which is spherically complete.

The analog of Theorem for H-asymptotic fields was established in [4]. Theorem is a fairly immediate
consequence of [17, Theorem 6.3], but we will provide some additional detail. It is also worth remarking that
in [17], there is a standing assumption that O # K. Of course, if O = K, then Theorem holds vacuously
since K itself is spherically complete. Let us begin with a test for whether an immediate extension of K is
Hrp-asymptotic:

Lemma 3.6. Let M be an immediate TO-extension of K. If f' < g' for all f € oy and all g € K with
g =1, then M is an Hp-asymptotic field.

Proof. Let h € M with h > 1 and take g € K with h ~ g. For ¢ € op; with h = g(1 + ¢), we have

!
T t o (1ot = & o o
h' —g (h/g) (1+¢) el

By assumption, ¢’ < gf, so ht ~ ¢gf. As K is Hp-asymptotic, we have g* > 0, so h' > 0 as well. Additionally,
we have hf ~ gt = f’ for all f € o0y, by assumption. Now let f € O3, Take v € K and 6 € oy with
f=u+6,s0f =u +0. We have &' < ¢ by assumption and v’ < ¢f, since K is Hp-asymptotic and
u,g € K,s0 f' < g ~hl. O

The main objects of study in [17] are T-convex T-differential fields: models of T®+ in which the T-derivation
is continuous with respect to the valuation topology. Thus, the next step for us is to verify that this continuity
assumption holds.

Lemma 3.7. The deriwvation on K is continuous with respect to the valuation topology.

Proof. If O = K, then the valuation topology on K is the discrete topology, and the derivation on K is
trivially continuous, so we may assume that O # K. Take g € K with g = 1. Then g' = f/ for all f € o
by (HA2), so 90 C g'o. By [3, Lemma 4.4.7], continuity of the derivation is equivalent to the existence of
¢ € K* with do C ¢o, so 9 is indeed continuous. (|

Central in [17] are the following subsets of I', which were first introduced in [4]:
@) = {vp:¢ e K* and do C ¢o}, S@) = {yel:T(@)+v=T0)}
Using that K is Hp-asymptotic, these subsets can be described explicitly:

Lemma 3.8. T'(d) =T\ (I'”) and S(9) = {0}.
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Proof. For ¢ € K*, we have
vp g (7)) = vp< (I7) < f <¢foral feo < vpel(9),

proving the first equality. For the second, note that S(9) is a convex subgroup of T', so it suffices to show
that S(0) NI~ =0. Let vy € ', so

e w C T\, A4y =4 e @)
Since T'(9) = T'\ ('), this tells us that v € T'(d), but v ++ & T'(3), so v & S(a). O

Following [4], we say that a T9-extension M of K is a strict extension of K if
do C po = dmom < don, 00 C g0 = InOm C doum

for each ¢ € K*. If M is an immediate strict extension of K, then 9, is automatically continuous. By [4]
Lemma 1.5, if M is an immediate T®*-extension of K, then M is a strict extension of K if and only if
dnron C doy for each ¢ € K with vg € T'(9).

Corollary 3.9. Let M be an immediate TC°-extension of K. Then M is a strict extension of K if and
only if M is an Hr-asymptotic field.

Proof. Suppose that M is a strict extension of K and let f € op. As ¥ C I'(9) by Lemma we have
f' < ¢ for all ¢ € K* with v¢ € U. Thus, M is an Hp-asymptotic field by Lemma Conversely, suppose
that M is Hp-asymptotic, let ¢ € K* with vg € I'(9), and let f € op. By 4, Lemma 1.5], we need only
show that f/ < ¢. Take g € o with f ~ g. Then f’ ~ ¢’ < ¢ by Fact O

Proof of Theorem[3.5. Since S(9) = {0}, there is an immediate strict T-convex T-differential field extension
M of K which is spherically complete by [17, Theorem 6.3] (this uses that T is power bounded). By
Corollary M is an Hp-asymptotic field. O

3.2. Simple immediate extensions of Hp-asymptotic fields. In this subsection, we turn our focus
to certain types of simple immediate extensions. We assume throughout this subsection that T is power
bounded.

Proposition 3.10. Let G: K — K be an L(K)-definable function, let (a,) be a divergent pc-sequence in K,
and suppose a;, — G(a,) ~» 0. Then K has an immediate Hr-asymptotic field extension K(a) with a, ~ a
and o' = G(a). If b is a pseudolimit of (a,) in an Hp-asymptotic field extension M of K with b = G(b),
then there is a unique LO°(K)-embedding K {(a) — M sending a to b.

Proof. Let a be a pseudolimit of (a,) in an immediate T O_extension of K; such an extension exists by
Corollary Using Fact extend the derivation on K to a T-derivation on K {a) with o’ = G(a). We
claim that K<{a) is Hp-asymptotic. By Lemma it suffices to show that f’ < gt for all f € M and all
g € K with f <1 <g. Let F: K — K be an L(K)-definable function with F(a) < 1, let ¢ € K with
g = 1, and suppose towards contradiction that F(a)’ = g'. Then F(a) € K, so F’(a) # 0. Take an open
interval I C K with a € I*{® such that F is C' on I, and let H: I — K be the £(K)-definable function
H(Y)=FY)+ F'(Y)G(Y) where FI is as defined in Fact Then

H(a) = FUa) 4 F'(a)G(a) = F(a) = g'.
Using Fact we may shrink I to arrange that
F(y)~F(a) <1, H(y) ~H(a)=g",  F(y)~F(a)

for all y € T5(® . Let p be a sufficiently large index, so a, € I. Since F(a,) < 1 and K is Hp-asymptotic,
we have F(a,) < ¢g' < H(a,). Thus,

H(a,) ~ H(a,) — F(a,) = (F[a] (ap) + F'(a,)G(a,)) — (F[a] (a,) + F’(ap)a;,) = F'(a,)(G(a,) — a’p).
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Since H(a,) ~ H(a) and F'(a,) ~ F'(a) # 0, we have

H(a)
/
G(ap) —a, ~ Fila)’
Since this holds for all sufficiently large p, we have G(a,) — a, ~ G(a,) — a; for o, p sufficiently large,
contradicting our assumption that a), — G(a,) ~» 0. Thus, K(a) is an Hr-asymptotic field, as claimed. The
embedding property follows from Fact and Corollary (]

Corollary 3.11. Let s € K with vs € (I'”) and s & 90, and suppose v(s — d0) has no largest element.
Then K has an immediate Hrp-asymptotic field extension K{(a) with a < 1 and a’ = s such that for any
Hry-asymptotic field extension M of K with s € doyy, there is a unique LO°(K)-embedding K (a) — M.
Proof. Let (a,) be a well-indexed sequence in o such that v(s — a},) is strictly increasing as a function of
p and cofinal in v(s — d0). The proof of [3, Lemma 10.2.4] gives that (a,) is a divergent pc-sequence in
K. We apply Proposition where G is the constant function s to get an immediate Hp-asymptotic field
extension K(a) of K with a, ~» a and o’ = s. Let M be an Hp-asymptotic field extension of K and let
b € oy with b = s. Then for p < o, we have

(b—a,) = s—a, ~ (ac —a,).

Since b — ap,a, — a, < 1, Fact gives us that b —a, ~ a, — a,, so a, ~» b. Proposition gives
an LO9(K)-embedding 1: K(a) — M sending a to b. For uniqueness, let 7: K{(a) — M be an arbitrary
LO?(K)-embedding. Then j(a) — b € Cy since j(a)’ = s = b'. Since j(a), b < 1 and C}; C OF,, we must
have j(a) = b. This shows that j = ». O

Corollary 3.12. Let s € K with v(s —dK) < (I'”)" and suppose v(s — dK) has no largest element. Then
K has an immediate Hp-asymptotic field extension K{a) with a’ = s such that for any Hp-asymptotic field
extension M of K and b € M with b/ = s, there is a unique LO°(K)-embedding K {(a) — M sending a to b.
Proof. Let (a,) be a well-indexed sequence in K such that v(s — aj,) is strictly increasing as a function of p
and cofinal in v(s — dK’) and such that s — aj, < s for each p. The proof of [3, Lemma 10.2.6] gives that (a,)
is a divergent pc-sequence in K. We apply Proposition where G is the constant function s to get an
immediate Hp-asymptotic field extension K (a) of K with a, ~» a and @’ = s. Let M be an Hp-asymptotic
field extension of K and let b € M with ¥ = s. For p < o, we have

(b—a,) = s— a;) ~ (ay —a,)’,
so v(b—ap,)’ € (I'<)" and b — a, > 1. Fact [3.3|gives b — a, ~ a; — a,, s0 a, ~» b and Proposition gives
an L99(K)-embedding +: K(a) — M sending a to b. O

3.3. A-freeness and o-freeness. In this subsection, let K be an ungrounded Hp-asymptotic field with
O # K. A logarithmic sequence in K is a well-indexed sequence (£,) in K such that:

(1) £, = L, >~ 1for all ¢ > p and (v{,) is cofinal in I'<;
(2) vlpt1 = x(vl,) for all p.

Logarithmic sequences can be constructed by transfinite recursion; see [3, Section 11.5]. Note that if M
is an Hrp-asymptotic field extension of K with 'S cofinal in I'y;, then any logarithmic sequence in K is a
logarithmic sequence in M.

A A-sequence in K is a sequence (A,) where A, = ,g;r)’r for some logarithmic sequence (¢,) in K. By [3|
Proposition 11.5.3], any two A-sequences in K are equivalent as pe-sequences (they have the same pseu-
dolimits in every extension of K). We say that K is A-free if no A-sequence in K has a pseudolimit in
K.
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An o-sequence in K is a sequence (0,) where , = —(2A, + A7) for some A-sequence (A,) in K. We say
that K is o-free if no w-sequence in K has a pseudolimit in K. If A, ~» A € K, then the corresponding -
sequence (®,) has pseudolimit — (21’ +A?) € K, so @-freeness implies A-freeness. The property of @-freeness
plays a much larger role than A-freeness in [3], but in this article, A-freeness is the more central concept.
Even so, o-freeness makes an appearance in Corollary and Proposition below, with an eye towards
future work.

Lemma 3.13. If K is an increasing union of A-free Hp-asymptotic fields, then K is A-free. If K is an
increasing union of W-free Hp-asymptotic fields, then K is ®-free.

Proof. By |3l Corollary 11.6.1], K is A-free if and only if for all s € K, there is ¢ € K with g > 1 and
s — gt = gt. By [3, Corollary 11.7.8], K is o-free if and only if for all f € K, there is g € K with g = 1 and

F=2(g") + (g™ = (4"
Both of these equivalent conditions are preserved by increasing unions. O
For the remainder of this section, let (¢,) be a logarithmic sequence in K with corresponding A-sequence

(Ap). Nothing here will depend on the specific choice of (¢,). The following facts about A-sequences and
A-freeness are from [3]:

Fact 3.14 (3], Lemma 11.5.2 and Corollary 11.6.1). If K is A-free, then K has asymptotic integration. If
K is A-free and ) is a pseudolimit of (A,) in an Hr-asymptotic field extension of K, then v(A — K) = U+,

Fact 3.15 (3], Lemma 11.5.13). Suppose K has asymptotic integration and let L € K be a pseudolimit of
(Ap). Then v(A+ (K*)) is a cofinal subset of U

For us, the importance of A-freeness comes from its relation to gaps:

Lemma 3.16. Suppose that T is power bounded with field of exponents A and that K has asymptotic
integration. Let s € K and let M = K(f) be an Hy-asymptotic field extension of K with f # 0 and f1 = s.
Then vf is a gap in M if and only A, ~> —s.

Proof. One direction is by |3, Lemma 11.5.12]: if vf is a gap in M, then A, ~» —s. For the other direction,
suppose A, ~» —s. We first note that vf ¢ I'. Indeed, suppose towards contradiction that f < y for some
y € K* and take u € M with f = uy. Then

v(s —yh) = o(fT =y = o(l) = o) > ¥,
contradicting that v(s — (K*)T) is a cofinal subset of ¥+ by Fact [3.15
Now we claim that W, C ¥+. We have established that vf ¢ I', so the Wilkie inequality gives I'y; =
I' @ Avf. Thus, we fix v € T and A € A with A\ # 0, and we need to show that (v + A\vf) € ¥+, Take
y € K> with vy =~ and set z ==y~ 1/*
iy +f) = vy = ot +As) = vs = Azh) = w(s - 20,

so (v + M f) € Ut by Fact [3.15, proving the claim.

Finally, suppose toward contradiction that vf is not a gap in M. Then ¥,;, being a cofinal subset of ¥+,
has no maximum and so vf € (I‘?@)’. Take B € I‘ﬁ with 3/ = vf and take y € K with 8T < vy € U. Our
assumption that A, ~> —s along with [3, Lemma 11.5.6 (iii)] gives s — y' <y, so

v(of —vy) = o(f/y)' = v(s—y") > vy,
contradicting 3| Lemma 9.2.2] with o = vf and v = vy. O

,so yf = =zt Since v\ = 0, we have

In [15], Gehret defines a property—the yardstick property—which allows us to check whether A-freeness is
preserved in various extensions. Let S be a nonempty convex subset of I' without a largest element.

(1) We say that S has the yardstick property if there is 3 € S such that v — x(vy) € S for all vy € S>7.
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(2) We say that S is jammed if for every nontrivial convex subgroup {0} # A C T, there is 8 € S such
that v — 3 € A for all y € S>7.
Note that if S is jammed, then so is v 4+ S for any v € I'. Both being jammed and having the yardstick
property only depend on the downward closure of S: the set S is jammed if and only if S* is, and S has the
yardstick property if and only if S* does. These properties are incompatible, except in the following case:

Fact 3.17 ([15], Lemma 3.17). Let S be a nonempty convex subset of I without a largest element which has
the yardstick property. Then S is jammed if and only if St = T'<.

The importance of the yardstick property stems from the observation that if K is A-free and K{a) is an
immediate extension of K which is not A-free, then the set v(a — K) C I' is jammed. Thus, we can use
Fact above to show that immediate extensions K (a) where v(a — K) has the yardstick property are
A-free. A precise argument is given in the lemma below. This lemma is an analog of [15] Proposition 6.19]
with virtually the same proof; only minor modifications and substitutions are required.

Lemma 3.18. Let K({a) be a simple immediate Hr-asymptotic field extension of K. Suppose that K is
A-free and that v(a — K) C T has the yardstick property. Then K{a) is A-free.

Proof. Suppose toward contradiction that K (a) is not A-free and take A € K(a) with A, ~» A. Since A ¢ K,
Lemmagives v € T with v(A— K) = y+v(a— K). Fact|3.14|gives v(A— K) = ¥}, so v(A— K) is jammed
by [15, Lemma 3.11]. Thus, v(a — K) is jammed as well, so v(a — K) = I'< by Fact In particular,
v(a — K) has a supremum in I, so v(A — K) = U+ also has a supremum in I'. By Fact we conclude that
K does not have asymptotic integration, contradicting Fact ([

4. H7-FIELDS AND PRE-H7-FIELDS

In this section, we introduce the main objects of study. Recall our standing assumption that K = (K, O, 9)
is a model of T©.

Definition 4.1. K is a pre-Hp-field if for all g € K with g > 1, we have
(PH1) ¢ >0, and
(PH2) g' = f for all f € O.

Every pre-Hrp-field is Hp-asymptotic, and if K is Hp-asymptotic and gt = f/ for all f,g € K with g = f =<1,
then K is a pre-Hrp-field. As with Hr-asymptotic fields, every pre-Hrp-field is a pre- H-field, as defined in [3].
In the case of pre-Hrp-fields, the converse also holds: If K is a pre-H-field, then K is a pre-Hp-field. To see
this, use [3, Lemma 10.1.1] and note that (PH1) is equivalent to the condition that ¢’ > 0 for all g € K with
g > O. If K is an £L9-substructure of a pre-Hp-field, then K is itself a pre- Hp-field.

Lemma 4.2. Suppose that K is a pre-Hp-field, let a € K*, and let b € K be a d-logarithm of a.
(i) If a £ 1, then b > 1 and vb = x(va).
(i) If a <1, then b < 1.

Proof. If a = 1, then since b’ = af, we must have b = 1 by (PH2). It follows immediately that vb = y(va).
This holds more generally for a # 1, since —b' = (a~!)f. On the other hand, if @ < 1, then

(') = v(a) = v(a) > (7Y,
sob<1. O

Corollary 4.3. Suppose that K is a pre-Hp-field. If every element in K~ has a d-logarithm in K, then K
is ungrounded. In particular, if T defines an exponential function, then K is ungrounded.

Proof. Suppose that every element in K~ has a d-logarithm in K, let v € ¥, and take a € K~ with a % 1
and va' = 7. Let b be a d-logarithm of a, so b = 1 by Lemmaand v=uwvb € (I'<). Thus, ¥ C (I'<). O
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Recall from the introduction that K is an Hp-field if
(H1) f'>0forall f € K with f > O, and
(H2) O=C+o.

Note that if K is an Hp-field, then C is a lift of res K.

Lemma 4.4. The following are equivalent:
(1) K is a pre-Hp-field and O = C + o;
(2) K is an Hr-asymptotic field and O = C + o;
(3) K is an Hp-field.

Proof. Tt is immediate that (1) implies (2). Suppose (2) holds and let f € K with f > O. Then f > 1 so
ff>0by (HA1). As f > 0, this gives f’ > 0, so (H1) is satisfied. Of course (H2) is satisfied by assumption,
so (3) holds. To see that (3) implies (1), we assume that K is an Hp-field, and we will verify that (PHI)
and (PH2) hold. For (PH1), let f € K with f = 1. Then |f| > O, so |f|' > 0. Since fT = |f|T, this gives
fT > 0. Now for (PH2), let f,g € K with g = 1 and f < 1. We need to show that g' = f’. This is shown
in [3 Lemma 10.5.1], but we repeat the proof here. First, by replacing g with —g if need be, we may assume
that ¢ > 0. As O = C + 0, we may subtract a constant from f to arrange that f < 1. Let ¢ € C>, so
0<c+f,e—f=1. Thisgives g(c+ f),g(c—f) > O,s0 ¢ (c+ f)+gf', 9 (c— f)—gf > 0by (H1), yielding
ge=f) > gf > —g'(c+ ).
Dividing by g gives
=) > > —g'c+ 1)
As f <1 and ¢ € C™ can be taken to be arbitrarily small, we see that f’ < ¢! as desired. O

Corollary 4.5. Let K be an Hr-field and let M be an Hrp-asymptotic field extension of K with res M =
res K. Then M is an Hp-field with Cy; = C'.

Proof. We have C' C Cyy and by (HA1), we have Cpy C Opy. As C' is a lift of res K = res M, it is maximal
among the elementary L-substructures of M contained in Oy, so C = Cpy and Oy = C + opy; see [8)
Remark 2.11 and Theorem 2.12]. We conclude that M is an Hp-field by Lemma O

Lemma 4.6. Let K be a pre-Hrp-field and let M be an immediate Hr-asymptotic field extension of K. Then
M is a pre-Hrp-field. If K is an Hp-field, then M is as well.

Proof. Let f,g € M with g = f =< 1. We need to show that g* = f/. Using that I'y; = T, take a € K
with g < a, so g' =< a'. Using that res M = res K, take b € K with f —b < 1, so (f —b) < af, as M is
Hp-asymptotic. As K is a pre-Hp-field, we also have b’ < a', so

Jo= (b 4y < al = gl
If K is an Hp-field, then Corollary gives that M is an Hrp-field as well. O
Using Lemma we have the following consequence of Theorem [3.5

Corollary 4.7. Suppose that T is power bounded. Then every pre-Hrp-field has a spherically complete im-
mediate pre-Hrp-field extension and every Hr-field has a spherically complete immediate Hr-field extension.

Assumption 4.8. For the remainder of this section, we assume that T is power bounded with field of
exponents A and that K is a pre-Hrp-field.

4.1. Adjoining integrals. To begin this subsection, let us use Corollaries and to say something
about immediate extensions of K by integrals.

Corollary 4.9. Let s € K with vs € (I'”)" and s & do. Then K has an immediate pre-Hr-field extension
K{a) with a < 1 and o' = s such that for any Hr-asymptotic field extension M of K with s € doyy, there is
a unique LO°(K)-embedding K (a) — M. If K is ungrounded and A-free, then so is K{a).
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Proof. Let S :=v(s —do) C (I'”)". We claim that S has no largest element. Let y € 0 and take b € o with
s—y =< b. Take u € O* with s —y’ = ub’. Then (PH2) gives u’ < b, so u'b < V', and

/

s—(y+ub) = s—y —ub —u'b = —u'b <V x s—y.

Thus, S has no largest element as claimed, and Corollary gives an immediate Hp-asymptotic field
extension K (a) of K with a < 1, ¢’ = s, and the desired embedding property. By Lemma K{a) is itself
a pre-Hp-field. By [15, Lemma 8.5], the set v(a — K) has the yardstick property, so if K is ungrounded and
A-free, then K (a) is as well by Lemma [3.18] O

Corollary 4.10. Let s € K with v(s —dK) C (I')'. Then K has an immediate pre-Hr-field extension
K{a) with o’ = s such that for any Hp-asymptotic field extension M of K and b € M with b/ = s, there is
a unique LO°(K)-embedding K (a) — M sending a to b. If K is ungrounded and A-free, then so is K{a).

Proof. Let S :=v(s—dK) C (I'<)’. Again, we claim that S has no largest element. Let y € K and take b > 1
and u =< 1 with s —y’ = ub’. As in the proof of Corollary we see that s — (y + ub)’ < s — ¢/, as desired.
Corollary gives an immediate Hp-asymptotic field extension K{a) of K with @’ = s and the desired
embedding property. By Lemma [1.6] K (a) is itself a pre-Hrp-field. By [15, Lemma 9.6], the set v(a — K) has
the yardstick property, so if K is ungrounded and A-free, then K (a) is as well by Lemma O

Now we turn to the case that K has a gap. First, we give a useful test for whether a simple extension of K
is a pre-Hp-field.

Lemma 4.11. Let K be a pre-Hr-field and let M = K {a) be a T®°-extension of K with va & T'. Suppose
that for all g € K* and X\ € A with ga™ = 1, we have
(i) (9a*)t >0,
(ii) (ga™)T = f' for all f € K with f <1,
(iii) (ga*)t = F(a) for all L(K)-definable functions F: K — K with F(a) <1 and F(a) ¢ K.
Then M is a pre-Hrp-field. If K is an Hrp-field, then so is M.

Proof. Let h € M with h = 1 and take g € K* and A € A with h < ga*. By the Wilkie inequality, we have
res M = res K, so by multiplying g with an element in O*, we may even assume that h ~ ga*. Take € € oy
with h = ga*(1 +€). Then
A g /
ht —(ga™M)T = (14 = T~

We have ¢’ < (ga™)T by (ii) and (iii), so hf ~ (ga*)T. In particular, AT > 0 by (i), so (PH1) holds. For (PH2),
let f € Opr. We need to show that A' = f/. Since hf ~ (ga*)T, it suffices to show that (ga*)" = f’. This
follows from (ii) if f € K, so we may assume f & K. As res M =res K, we may take u € O with f —u < 1.
Take an £(K)-definable function F': K — K with F(a) = f —u. Then f' =/ + F(a)’ < (ga™)' by (ii) and
(iii). Finally, if K is an Hp-field, then M is as well by Corollary since res M = res K. O

The next lemma shows that if K has a gap, then this gap has an integral in some pre- Hp-field extension of
K.

Lemma 4.12. Let s € K and suppose vs is a gap in K. Then K has a pre-Hrp-field extension K{a) with
a <1 and o' = s such that for any Hr-asymptotic field extension M of K with s € 0y, there is a unique
LO?(K)-embedding K (a) — M. The pre-Hrp-field K {(a) is grounded with

res K{a) = resK, Ik = I'®Ava, Vi@ = U {va'}, val > 0.

Proof. By replacing s with —s if need be, we arrange that s < 0. Let K (a) be a simple T®-extension of K
where a > 0 and 0 < va < I'”. The Wilkie inequality gives Liay = ' ® Ava and res K(a) = res K. Using
Fact we equip K (a) with the unique T-derivation that extends the derivation on K and satisfies o’ = s.
We need to show that K(a) is a pre-Hp-field extension of K. Let g € K* and A € A with ga* = 1. By
Lemma [4.11} it suffices to verify the following:
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(i) (gat)t > 0;
(i) (ga*)t = f' for all f € K with f < 1;
(iii) (ga*)' = F(a)’ for all £L(K)-definable functions F: K — K with F(a) <1 and F(a) € K.
Since v(ga) = vg + Ava is assumed to be negative and since 0 < va < I'>, it must be that either g = 1 or
g=1land A <0. If g = 1, then vg" € (')’ and va' = vs —va > ('), so

(gaM)t = gT+Xaf ~ gF > 0.
On the other hand, if g < 1 and A > 0, then ¢' < ¢’ < s < s/a = af. This gives
(9" = g"+Aa" ~ Al

since A =< 1. Since af < 0, we have Aa' > 0. This takes care of (i) and also tells us that (ga*)" = af. This
can be used to quickly take care of (ii): if f € O, then f' < s < a' < (ga*)t.

Now we turn to (iii). Let F: K — K with F(a) < 1 and F(a) € K. We need to show that F(a)’ < af =
s/a. We consider two cases. First, suppose O = K. Take an £((})-definable function G: K'** — K and an
L(0)-independent tuple b = (by,...,b,) € K™ with F(a) = G(a,b). Then

F(a) = G(a,b) = VG(a,b)-(s,b},....b}),

so by applying Corollary with (s,b7,...,b,) € K'*" in place of d, we get F(a)’ < a~!. Since s =< 1,
this gives F(a)’ < s/a, as desired. Now suppose O # K. We need to show that FU(a) + F'(a)s < s/a.
Propositiongives F'(a) S a='F(a) < a~', so F'(a)s < s/a and it remains to show that FFl(a) < s/a.
Since K{(a) is an elementary T'®-extension of K, it suffices to show that for each £©(K)-definable set A C K
with a € AK{(®) | there is y € A with FPl(y) < s/y. Let A be such a set and, by shrinking A if need be,
assume that F is C! on A and that y, F(y) < 1 for all y € A. Since F'(a) < a—!, we can use L”-elementarity
to take y € A with F’(y) < y~!. Multiplying by v’ gives F'(y)y’ < y' for this y. Since F(y) < 1 and K is a
pre-Hp-field, we have F(y) < y'. Thus,

FPlty) = F(y) = F'(y)y < y'.
Since y < 1 and vs is a gap in K, we have 4/ < s, so FPl(y) < yT < s/y, as desired.

Finally, let M be an Hrp-asymptotic field extension of K and let b € op; with ¥ = 5. Then bf = s/b
must be negative by (HA1), so b is positive since s is negative. Moreover, vb must realize the cut 'S since
vs € (I'y;) and vs < (I'>)". Lemma gives a unique £ (K )-embedding 1: K{(a) — M sending a to b and
Fact tells us that 2 is an £9(K)-embedding. Let j: K(a) — M be an arbitrary £99(K)-embedding.
Then j(a) — b € Cyy since j(a) = s =b'. Since j(a), b < 1, we see that j(a) = b. This shows that 3 =1, so ¢
is unique. O

If we further assume that K is an Hp-field, then one can find an Hp-field extension of K with an infinite
integral for a gap in K.

Lemma 4.13. Let K be an Hp-field, let s € K, and suppose vs is a gap in K. Then K has an Hp-field
extension K(a) with a > 1 and o’ = s such that for any Hr-asymptotic field extension M of K and b€ M
with b = 1 and b’ = s, there is a unique LO°(K)-embedding K (a) — M sending a to b. The Hr-field K (a)
is grounded with

res K{(a) = resK, Il = '@ Ava, Vi@ = U U {va'}, val > W,

Proof. We may assume that s > 0. Let K (a) be a simple T%-extension of K where a > 0 and I'S < va < 0,
50 I'(q) = I' @ Ava and res K (a) = res K by the Wilkie inequality. Using Fact we equip K (a) with the
unique T-derivation that extends the derivation on K and satisfies ¢’ = s. To see that K(a) is an Hp-field
extension of K, let g € K* and A € A with ga* = 1. By Lemma it suffices to verify the following:
(i) (ga*)T > 0;
(i) (ga*)T = f' for all f € K with f < 1;
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(iii) (ga*)t = F(a) for all L(K)-definable functions F': K — K with F(a) < 1 and F(a) € K.

Proving (i) is similar to the proof of Lemma This time, either g = 1 or g <1 and A > 0. If g = 1, then
gt = a', so (ga™)T ~ g' > 0. Suppose g < 1. We need to show that g' < af. Using that K is an Hp-field,
take ¢ € C with g —c € 0. Then g' < ¢’ = (g — ¢)’ € 90, so v(g') € (I'*)’. Since val < (I'>)’, we have
(ga*)T ~ Xa' > 0. This takes care of (i) and tells us that (ga*)" = a'. For (ii), let f € O and take ¢ € C
with f —c € 0. Then f' = (f —c)’, so v(f') € (I”) > val > v(ga*)'.

Now we turn to (iii). Let F: K — K with F(a) < 1 and F(a) ¢ K. As in the proof of Lemma [£.12]
we need to show that F(a) = F%(a) + F’(a)s < s/a. Proposition gives F'(a) < a™1F(a) < a™!, so
F'(a)s < s/a and it remains to show that Fl%(a) < s/a. We claim that |Fl(a)| < s/a® < s/a. Since
FUl is £(K)-definable, it suffices to show that for each interval I C K with a € I*{®) there is y € I with
|FPl(y)| < s/y?. Let I be such an interval and, by shrinking T if need be, assume that F is C' on I and that
|F(y)] < 1for all y € I. Since K is an Hp-field and a realizes the cut OV, the interval I contains a constant
¢ € C”. Since |F(c)| < 1 and s is a gap in K, we have

F(e) = FPl(e)+ F'(e)d = FPl(¢) < s.

Since ¢® < 1, we have c2Fl(c) < s, which yields |FI)(c)| < s/c?, as desired.

Finally, let M be an Hp-asymptotic field extension of K and let b € M with b = 1 and ¥ = s. Then
bl = s/b must be positive, so b is positive since s is positive. Since vs € (I'y;)" and vs > (I'<)’, we see that
vb must realize the cut I'<. Lemma gives a unique £ (K )-embedding +: K {(a) — M sending a to b, and
this is even an £9?(K)-embedding by Fact O

4.2. The Hp-field hull. We now show that the pre-Hp-field K has a minimal Hp-field extension. We say
that 8 € T is a fake gap in K if 8 is a gap in K and 8 = v(b) for some b € K. Then necessarily b < 1,
for otherwise 3 € (I'7)’. Likewise, b o ¢ for any ¢ € C, for otherwise b’ = (b — ¢)’ and 8 € (I'>)’. Thus, no
Hp-field has a fake gap. Of course, if K is grounded or has asymptotic integration, then K does not have
a fake gap. Suppose K does not have a fake gap and let M be an immediate pre-Hp-field extension of K.
We claim that M does not have a fake gap. Let b € M with b < 1 and take a € K with b —a < 1. Then
v(b—a)" € (). As K has no fake gap, we also have v(a’) € (T”)’, so

() = v((b—a) +da’) = min{v(b—a), v(a)} € @)

Theorem 4.14. K has an Hrp-field extension Hp(K) such that for any Hr-field extension M of K, there
is a unique LO°(K)-embedding Hy(K) — M. For L == Hyp(K), we have

L = K(CL), res L = res K.

Proof. We first construct a pre-Hrp-field extension Ky of K which does not have a fake gap as follows: if K
does not have a fake gap, then let Ky := K. Suppose that K has a fake gap g = v(V’), and apply Lemmam
with s = b’ to get a pre-Hp-field extension K(a) of K with a < 1 and o’ = b'. Then K (a) does not have a
fake gap as it is grounded, and we set Ky := K{a). We claim that Ky = K(Ck,), that res Ky = res K, and
that for any Hrp-field extension M of K, there is a unique £L9°(K)-embedding Ky — M. This is all trivial
it Ko = K, so we assume that Ko # K and we let a,b be as above. Then Ko = K(b—a) and b — a € Ck,,
so Ky = K{(Cg,), and Lemma m gives res Ko = res K. For the embedding property, take ¢ € Cy; with
b~ c. Then b’ = (b—c)’ € dop, so Lemma gives a unique £9°(K)-embedding Ko — M.

Suppose Ky is not an Hp-field, so there is b € Ok, with b € Ck, + 0k,. Then b’ & dog,, for otherwise we
would have b—e¢ € Cf, for some ¢ € 0g,. Since v(V') is not a fake gap, we have v(V') € (I'z, )’ Corollary
gives an immediate pre-Hp-field extension K* = Ky(a) of Ko with a < 1 and ¢’ = b'. Given an Hp-field
extension M of K, take ¢ € Cpy with b ~ ¢. Then b = (b — ¢)’ € dous, so Corollary gives a unique
LO?(Ky)-embedding K* — M. Note that K* = Ko(b—a) and b —a € Ck+, so K* = Ko(Cg+) = K(Cg~).
As K* is an immediate extension of Ky, there is no fake gap in K*. Note that for any u € Ok~ with
% =0bcresK* =resK, we have u € Cg~ + og~. Thus, by transfinitely iterating this process (with the
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number of iterations bounded by the cardinality of res K'), we build an immediate pre-Hp-field extension L
of Ko with L = K(CL) and Oy, = Cf, + or, such that for any Hr-field extension M of Ky, there is a unique
LO9(Kg)-embedding L — M. Then L is an Hp-field by Lemma and res L = res Ky = res K. Using
also the embedding property for Ky over K, we see that there is a unique £2°(K)-embedding of L into any
Hyp-field extension M of K, so we may take Hy(K) to be this Hp-field extension L. O

The universal property in Theorem determines Hp(K) uniquely up to unique £2°(K)-isomorphism.
We call Hp(K) the Hp-field hull of K. If K does not have a fake gap, then Hp(K) is an immediate
extension of K in particular, I'y,. (k) = T'. If 8 is a fake gap in K, then I'y,.(x) = T'® Ava for a € Hr(K)
with 0 < va < T'” and v(a’) = 8. The following consequence of Theorem is not used anywhere, but it
may be worth noting.

Corollary 4.15. The following are equivalent:

(1) every spherically complete immediate Hr-asymptotic field extension of K is an Hr-field;
(2) K has a spherically complete immediate Hr-field extension;
(8) K does not have a fake gap.

Proof. By Theorem|3.5| we know that K has a spherically complete immediate Hp-asymptotic field extension,
so (1) implies (2). Suppose (2) holds and let M be a spherically complete immediate Hp-field extension
of K. By the universal property of the Hp-field hull, there is a unique £°°(K)-embedding Hr(K) — M.
Then Hp(K) is an immediate extension of K, so 'y, (k) = I' and K does not have a fake gap by the
remarks preceding this corollary. Finally, suppose (3) holds and let M be a spherically complete immediate
Hp-asymptotic field extension of K. Then M is a pre-Hp-field by Lemma [4.6] and the remarks before
Theorem tell us that M does not have a fake gap. Thus, Hp(M) is an immediate extension of M, so
M = Hy(M), as M has no proper immediate extensions. O

4.3. o-free extensions of grounded pre-Hr-fields. In this subsection, we show that each grounded pre-
Hp-field K has a canonical ungrounded ®-free extension, denoted K. First, we show how to extend a
grounded pre-Hp-field by an integral for the maximum of the set W.

Lemma 4.16. Let s € K and suppose vs = maxW. Then K has a pre-Hp-field extension K{a) with a’ = s
such that for any pre-Hp-field extension M of K and b € M with b/ = s, there is a unique LO°(K)-embedding
K{a) — M sending a to b. The pre-Hp-field K{a) is grounded with

res K{a) = resK, L@y = T'@ Ava, Uk = U U {va'}, val > 0.

Proof. Let L = Hy(K), so L is an immediate extension of K and vs = max ¥, since K is grounded. Then
L is an Hp-field, and a proof identical to the proof of Lemma tells us that L has a grounded Hp-field
extension L{a) with a > 1 and o’ = s, where

res L{a) = resL, Lr@y = T'p @ Ava, Vi = YU {va'}, val > Uy,
Then K{a), being an £?-substructure of the Hr-field L{a), is a pre-Hp-field. Since L is an immediate
extension of K, we have resL =res K, 'y, =T, and ¥, = ¥, so
res K{a) = resK, Ik = T'@ Ava, Vg = PU {va'}, val > 0.
Since a = 1, we get that va realizes the cut I'< and a! = s/a is positive. Let M be a pre-Hp-field extension
of K and let b € M with & = s. Then b = 1 by (PH2), so vb must realize the cut I'< and bf = s/b must

be positive. Lemma gives a unique £ (K)-embedding 2: K (a) — M sending a to b, and this is even an
L99(K)-embedding by Fact O

Remark 4.17. Our passage through the Hp-field hull of K is admittedly circuitous, but we don’t have a
better argument that K {(a) is a pre-Hrp-field than the one given above.
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One may wonder whether the assumption that K is an Hp-field can be relaxed in Lemma That is,
if vs is a gap in the pre-Hp-field K with s € K, then does K have a pre-Hr-field extension K {a) with a > 1
and a’ = s? Arguing as in the proof of Lemma we see that this is true so long as vs is not a fake gap
in K. If vs is a fake gap in K, then s cannot have an infinite integral, so there is no such extension.

The version of Lemma in the author’s thesis |16, Lemma 7.34] contains a slight error. There, it was
claimed that K (a) embeds into any Hr-asymptotic field extension of K. It is only true that K{a) embeds
into any pre-Hp-field extension of K.

We now turn to the construction of K.

Corollary 4.18. Let K be a grounded pre-Hr-field. Then K has an ungrounded ®-free (hence, A-free)
pre-Hr-field extension Ky with res Ky = res K which embeds over K into any pre-Hr-field extension of K
which is closed under taking d-logarithms.

Proof. Let s € K with vs" = max ¥. Using Lemma [4.16| take a pre-Hyp-field extension K (a) where a’ = s'.
We have

res K{a) = resK, Ik@y = I'®Ava, Vi@ = YU {va'}, val > .
Repeating this process, we construct for each n a pre-Hp-field extension K, of K with
Ky = K, Kni1 = Kplan), ap = a, ah, = al.
Set Ky =J,, Kn. Then res K, = res K and

Ik, = F@@Avan, Vg, = \PU{vag,vaI,...}, U < va(T) < va]; < -
n

Moreover, K, is o-free by [3, Corollary 11.7.15], since K, is ungrounded and each K, is grounded. Let
M be a pre-Hp-field extension of K which is closed under taking d-logarithms. Then there are elements
bo, b1, ... € M with by = st and by = bi for each n. Repeated use of the embedding property in Lemmam
allows us construct an Eo’a(K )-embedding K, — M which sends a,, to b, for each n. O

4.4. Adjoining exponential integrals.

Lemma 4.19. Let s € K withvs € (') and suppose that s # y' for ally € K*. Then K has an immediate
pre-Hrp-field extension K {a) with a ~ 1 and a' = s such that for any Hp-asymptotic field extension M of K
with s € (1 + op)t, there is a unique LO?(K)-embedding K {a) — M. If K is ungrounded and A-free, then
so is K{a).

Proof. Let S :=wv(s— (1+0)t) C (I'*)". By the proof of [3, Lemma 10.4.3], S has no largest element. Let
(ap) be a well-indexed sequence in 140 such that v(s— a;f)) is strictly increasing in S as a function of p. Then
(ap) is a divergent pc-sequence in K, again by the proof of [3, Lemma 10.4.3]. We apply Proposition
with G(Y') = sY to get an immediate pre-Hp-field extension K(a) of K with a, ~ a and a’ = sa. Note
that a ~ 1, since each a, ~ 1. Let M be an Hr-asymptotic field extension of K and let b € M with b ~ 1
and bt = 5. Then a; ~ bt and so a, ~» b by the proof of [3, Lemma 10.4.3]. Proposition gives an
LO9(K)-embedding 1: K(a) — M that sends a to b. For uniqueness, let 7: K(a) — M be an arbitrary
LO9(K)-embedding. Then 7(a)/b € C}; since j(a)t = s = bT. Since j(a) ~ 1 ~ b, we see that j(a) = b, so
7 =1 By [15] Lemma 7.6], the set v(a — K) has the yardstick property, so if K is ungrounded and A-free,
then K (a) is as well by Lemma [3.18] O

Lemma 4.20. Let s € K with v(s — (K*)") C W+, Then K has a pre-Hrp-field extension K (a) with a > 0
and o' = s such that for any pre-Hrp-field extension M of K and b € M> with b' = s, there is a unique
LO9(K)-embedding K (a) — M sending a to b. Moreover, the extension K {(a) has the following properties:
(1) va €T and Tk gy =T © Ava;
(2) res K{a) =res K;
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(3) W is cofinal in Wi (q);
(4) a gap in K remains a gap in K{a);
(5) if K is ungrounded and A-free, then so is K{a).

Proof. Suppose that b is an element in a pre- Hp-field extension M of K with b > 0 and b = s. Then vb € T';
otherwise there is f € K and u € Oy, with b/f = u, so s — fT = u < v/ and v(s — fT) > U, a contradiction.
Let y € K* with y < b. Then y/b < 1 so y' < b = s. Likewise if y € K* with y = b, then y' > s. Thus, vb
realizes the cut
S = {vy:y' >s} CT.

Let K(a) be a simple T%-extension of K where a > 0 and va realizes the cut S. The Wilkie inequality
gives I'k(qy = I' ® Ava and res K(a) = res K. Using Fact [1.9) we equip K (a) with the unique T-derivation
which extends the derivation on K and satisfies a' = s. If we can show that K(a) is a pre-Hrp-field, then
the embedding property of K {a) follows from Fact Lemma and the discussion above.

To see that K(a) is a pre-Hp-field, let ¢ € K* and A € A with ga* = 1. By Lemma it suffices to
verify the following:

(i) (gat)t > 0;
(i) (ga™)t = f' for all f € K with f < 1;
(iii) (ga*)' = F(a) for all L(K)-definable functions F': K — K with F(a) < 1 and F(a) ¢ K.
First we deal with (i). If A = 0, then g = 1 and (ga™)t = g > 0. If A > 0, then since ga* = 1 we have
A ")t = —A~1gt. This gives A~1gT + s > 0, so

(ga™)T = gT+2xs = MM "Tgl +5) > 0.

a-g- 1,sos>(g’>‘

On the other hand, if A < 0, then a < g’>‘_1, so A 1gt + 5 < 0 and again,
(gaMT = XA 7tgt +5) > 0.

Note that since

(M) = AN +s) = As = (7)) = 5= ()
we have v(ga*)T € W+, Thus, for (ii) it suffices to note that hf = f’ for all f,h € K, since K is a pre-Hr-
field. Likewise, for (iii), it suffices to show that hf = F(a)’ for all h € K with h = 1 and all £(K)-definable
functions F: K — K with F(a) < 1 and F(a) ¢ K. Suppose toward contradiction that there are F, h for
which this does not hold, so F(a) < 1 but

F(a)' = Fa)+ F'(a)as = ht.

By replacing F' with —F if necessary, we may assume that F(a)’ > 0. Since res K{a) = res K, we have
F(a) + F'(a)as > uh’ > 0 for some u € K with u < 1. Take an interval I C K> with a € I*{® such that

IF(y)| < 1,  F¥y)+ F'(y)ys > uhl

for all y € I. For y € I, we have F(y) < 1, s0 F(y)' = FPl(y) 4+ F'(y)y’ < h' since K is a pre-Hp-field. This
gives

(F¥(y) + F'(y)ys) — (F ) + F'(y)y') = Fys—y') > %uhT > 0.

In particular, the function F”(y)y(s —y') has constant sign on I. By shrinking I, we may assume that F”(y)
and y have constant sign on I, so s — y! has constant sign on I as well. This is a contradiction: if y € I is
greater than a, then y = a and y' > s and if y € I is less than a, then y < a and y' < s.

Now that we know that K (a) is a pre-Hp-field extension of K with the required embedding property,
all that remains is to check that K(a) satisfies properties (1)-(5). We have already verified properties (1)
and (2). For (3), let h € K(a) with h = 1. Then h < ga* for some g € K and some A € A by (1), so
v(h') = v(ga*)T, since K(a) is Hr-asymptotic. We have already shown that v(ga*) € WUt so v(h!) € Ut
as well. As for (4), let 3 be a gap in K. Then 8 > V¥, so 8 > Wi, since ¥ is cofinal in W 4. Suppose
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toward contradiction that 8 is not a gap in K{a), so § = o for some « € I‘I>(<a>. The universal property in
Lemma gives max W,y = al > U, contradicting that ¥ is cofinal in Uk (a)-

Finally, suppose K is ungrounded and let (¢,) be a logarithmic sequence in K with corresponding A-
sequence (A,). Then K (a) is ungrounded since ¥ is cofinal in W (4. It follows that I'< is cofinal in Fl<((a>'
To see this, let f € K{a) with f > 1 and suppose toward contradiction that f < g for all g € K with g > 1.
Then fT < g' for such g, so v(ff) > ¥ since K is ungrounded, contradicting (3). Therefore, (£,) remains
a logarithmic sequence in K(a) and (A,) remains a A-sequence in K (a). Suppose toward contradiction that
K is Afree and that A, ~ A € K(a). Then A € K, so a € K(A). This is a contradiction, as K(A) is an
immediate T©-extension of K by Lemma and va ¢ I'. This proves (5). g

We can use Lemma [4.20] along with Lemma and Corollary to prove the following extension result
for pre-Hp-fields.

Proposition 4.21. K has an ungrounded ®-free Hy-field extension.

Proof. By passing to the Hp-field hull of K, we may assume that K is an Hp-field. First, we will show that
every Hp-field with asymptotic integration has an Hp-field extension with a gap. Then, we will show that
every Hrp-field with a gap has a grounded Hrp-field extension. Finally, we will show that every grounded
Hp-field has an ungrounded ®-free Hp-field extension.

For the first part, suppose K has asymptotic integration. As having asymptotic integration is a property
of the asymptotic couple of K, every immediate extension of K also has asymptotic integration. By applying
Corollary we can pass to a spherically complete extension of K, so we may assume that K is spherically
complete. Let (A,) be a A-sequence in K, so (A,) has a pseudolimit A € K by spherical completeness. The
set v(A+ (K*)T) is a cofinal subset of U+ by Fact so Lemma gives an Hyp-field extension K (a) of
K with at = —\. This extension has a gap, namely va, by Lemma

Now, assume that K has a gap § € I'. Take s € K with vs = 8 and use Lemma[4.12]to get a grounded Hp-
field extension K(a) of K with o’ = s. Finally, if K is grounded, apply Corollaryto get an ungrounded
o-free Hp-field extension K of K. O

4.5. Constant field extensions. Recall that the constant field C'is naturally a model of T'. In the following
proposition, we show that if K is an Hp-field, then we may take extensions of K by constants corresponding
to T-extensions of C.

Proposition 4.22. Let K be an Hp-field and let E be a T-extension of C. Then there is an Hrp-field
extension L of K where Cy, is L(C)-isomorphic to E such that for any Hr-field extension M of K and any
L(C)-embedding 1: Cp, — Ciy, there is a unique LO°(K)-embedding L — M extending 1.

Proof. Tt suffices to consider the case E = C(f) where f ¢ C. Let L = K{a) be a simple T-extension of K
where a realizes the cut
(CT o) = {ye K:y<O}U{c+e:cecC<l and ¢ € 0}.
We expand L to an £P-structure by letting
Op = {yeL:|y<dforaldeK withd> O}.

This expansion of L is a T@-extension of K by Fact Note that a € O, and a ¢ res K, so the Wilkie
inequality gives I';, = I'. Using Fact we extend d uniquely to a T-derivation on L with ¢’ = 0.

We claim that L is an Hp-field extension of K. We may assume that O # K, since otherwise, K and
L both have trivial valuation and derivation, so L is trivially an Hp-field extension of K. To see that L
satisfies (H1), let F': K — K be an L(K)-definable function with F'(a) > Or. We need to show

F(a) = F¥(a)+ F'(a)d’ = F9a) > 0.

As Fl is £(K)-definable, it suffices to show that for any subinterval I C K with a € I, there is y € I with
FU(y) > 0. Let I be such a subinterval. Using that I';, = T' and that "> has no least element, take d € K
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with F(a) > d > Op. By shrinking I, we arrange that F(y) > d for all y € I. Since a € I"**L we see that
I must be infinite. Thus, I N C is infinite, so take ¢ € INC. As ¢ € C, we have F(c) = Fl(¢c). As ¢ € I,
we have F(c) > d > O, so F(c) = FPl(¢) > 0, as desired. Now, let us show that (H2) holds. By (H1), we
have Cp, C Oy,. Clearly, C, contains C{a). Since C{a) is a lift of res L, it is maximal among the elementary
L-substructures of L contained in Op, so C{a) = Cr, and Oy, = C, 4+ or; see |8, Remark 2.11 and Theorem
2.12]. This completes the proof that L is an Hp-field. It also tells us that Cp, is £(C)-isomorphic to E.
Given an Hrp-field extension M of K and an £(C)-embedding 2: C, — M, there is at most one possible
L99(K)-embedding 7: L — M which extends 7, namely the one which sends a to 1(a). Let us show that this
is actually an £92(K)-embedding. By assumption, a and 1(a) realize the same cut over C. Since a — ¢ ¢ o,
and 2(a) — ¢ & ops for all ¢ € C, this assumption gives that a and ¢(a) realize the same cut over O. Asa € Of,
and 2(a) € Oy, we see that a and u(a) realize the same cut over K, so 7 is an £(K)-embedding. Fact
ensures that j is an £?(K)-embedding. To see that j is an £99(K)-embedding, let f € K{a). If f € Oy,
then |f| < ¢ for some ¢ € Cp, so |3(f)| < 1(¢) € Cpr, which gives 3(f) € Opr. Conversely, if f ¢ Oy, then
|f] > d for some d € K with d > O, so [3(f)| > d, which gives j(f) & Ou. O

5. LIOUVILLE CLOSED Hp-FIELDS

In this section, we assume that K is an Hp-field. For now, we drop the assumption that 7" is power bounded
(though we will re-introduce this assumption at the beginning of Subsection . Recall that K is Liouwille
closed if for each y € K, there is f € K and g € K* with f' = g7 = .

Definition 5.1. A T-Liouville extension of K is an Hp-field extension L of K where
(1) CpL, =C, and
(2) each a € L is contained in an Hp-subfield K(t1,...,t,) C L where for i = 1,...,n, either t; €
K<t1,. .. ,ti_1> or ti 7é 0 and t:r S K<t1,. N ,ti_1>.

Below we list some easily verified facts about T-Liouville extensions of K.

Fact 5.2.

(1) If L is a T-Liouville extension of K and M is a T-Liouville extension of L, then M is a T-Liouville
extension of K.

(2) If M is a T-Liouville extension of K and L is an Hr-field extension of K contained in M, then M
1s a T-Liouville extension of L.

(3) If (Li)ier is an increasing chain of T-Liouville extensions of K, then the union |J
Liouville extension of K.

ser Li is a T-

(4) Ewvery T-Liouville extension of K has the same cardinality as K.
Lemma 5.3. Suppose K is Liouville closed. Then K has no proper T-Liouville extensions.

Proof. Let L be a T-Liouville extension of K, and let a € L. We will show that a € K. By definition,
a is contained in an Hp-subfield K (t1,...,t,) C L where for ¢ = 1,...,n, either ¢t} € K(t1,...,t;—1) or
t;r € K(ty,...,ti—1). We show by induction that K{t,...,t;) = K for each i < n. Fix ¢ < n and suppose
that K(t1,...,t;—1) = K. If t; € K, then since K is Liouville closed, there is f € K with f’ = t/. Then
ti = f+cforsome ce Cp =C,sot; € K as well. Likewise, if t;f € K, then there is g € K* with ¢t = tj-,
so t; = cg for some c € C; = C*, again giving t; € K. O

Definition 5.4. A T-Liouville closure of K is a T-Liouville extension of K which is Liouville closed.

Corollary 5.5. Let L be a Liouville closed Hr-field extension of K. If L is a T-Liouville closure of K,
then L has no proper Liouville closed Hp-subfields which contain K. If L has no proper Liouville closed
Hrp-subfields which contain K and Cp, = C, then L is a T-Liouville closure of K.
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Proof. Suppose that L is a T-Liouville closure of K and let M be a Liouville closed Hp-subfield of L
containing K. Then L is a T-Liouville extension of M by Fact so M = L by Lemma[5.3] Now suppose
that C, = C and that L is not a T-Liouville closure of K. We will find a proper Liouville closed subfield of
L containing K. Let M be a maximal T-Liouville extension of K contained in L (we know that M exists
by Fact and Zorn’s lemma). We claim that M is Liouville closed. Let s € M and take @ € L and b € L*
with ' = bf = s. Since Cray: Crupy € Cr = C, we see that M(a) and M (b) are both T-Liouville extensions
of M, and therefore equal to M by maximality and Fact Thus, every element of M has an integral in
M and an exponential integral in M *. |

5.1. T-Liouville towers.
Assumption 5.6. For the remainder of this section, we assume that T is power bounded.

Definition 5.7. A T-Liouville tower on K is a strictly increasing chain (K,), <, of Hp-fields such that:
YIS
(1) Ko = K;
(2) if p < v is an infinite limit ordinal, then K, =, _, Ky;
(3) if p < v, then K, = K,(a,) with a, ¢ K, and one of the following holds:
(a) aj, = s, € K, with a, <1 and vs, is a gap in K;
(b) :L =s, € K, with a, > 1 and vs, is a gap in K;;
(¢) aj, = s, € K, with vs, = max Vg, ;
(d) aj, = s, € K, with a, < 1, vs, € (I'z ), and s, & 00, ;
(e) aj, = s, € K, with v(s, —0K,,) C (Ff&)’;
(f) af, = s, € K, with a,, ~ 1, vs, € (I'x,), and s, # y! for all y € KX
(2) aL = s, € K,, with a,, > 0 and v(s, — (Ki)T) C \II%(“.
The Hrp-field K, is called the top of the tower (K,).<..

Let (K,)u<» be a T-Liouville tower on K. Note that (a), (b), (c), (f), and (g) correspond to Lem-
mas [4.12] [4.13] [4.16] [4.19] and [£.20]and that (d) and (e) correspond to Corollaries [4.9] and [4.10} respectively.
In each of these extensions, we have res K11 = res K, so C’Kﬂ+1 = C’KH by Corollary Thus, K, 41 is a
T-Liouville extension of K, for each 1 < v. Using also Fact we see that each K, is a T-Liouville extension
of K. If (K,)u<, cannot be extended to a larger T-Liouville tower (K,),<y+1 on K, then (K )<, is said
to be mazimal. Since each T-Liouville extension of K has the same cardinality as K, maximal T-Liouville
towers on K exist by Zorn’s lemma.

Lemma 5.8. Let L be the top of a mazimal T-Liouville tower on K. Then L is Liouville closed and,
therefore, L is a T-Liouville closure of K.

Proof. By (a) and (b), L does not have a gap, and by (c), L is not grounded, so L has asymptotic integration
by Fact Let s € L. We will show that s has an integral in L and an exponential integral in L*. We have
v(s —dL) Z (') by (e), so there is y € L with v(s —y’) > (I';)’. Since L has asymptotic integration, we
have v(s —y') € (I'7)’ so by (d), there is f € of, with f' = s — . Then s = (f +y)’. Likewise, by (g) there
is b € L* with v(s — b') > \I/f Asymptotic integration gives v(s — bf) € (I'7)’, and we may take g € L
with g ~ 1 and g' = s — b by (f). Then s = (bg)'. d

Lemma [5.8| gives the existence of T-Liouville closures under our standing assumption that 7T is power
bounded. The rest of the section is focused on uniqueness.

Lemma 5.9. Let L be a Liouville closed Hr-field extension of K and let (K,)u.<v be a T-Liowville tower
on K. Suppose that (K,).<v s a tower in L, that is, each K, is an Hp-subfield of L. Suppose also that
(K ) pu<w cannot be extended to a T-Liouville tower (K,,) u<y+1 in L. Then (K,) <y is a mazimal T-Liouville
tower on K.

29



Proof. By Fact and Lemma it suffices to show that K, is Liouville closed. If vs is a gap in K,
for some s € K,, then L contains an element a with ¢’ = s. By subtracting a constant from a, we may
assume that a % 1. By Lemma (if @ < 1) or Lemma (if @ > 1), we see that K,(a) C L is a T-
Liouville extension of K,,, contradicting the maximality of (K,),<, in L. Thus, K, has no gap and likewise,
Lemma shows that K, is ungrounded, so K, has asymptotic integration by Fact

Fix s € K,. If v(s —dK,) C (I'; ), then K(f) is a T-Liouville extension of K, contained in L for any
f € L with f' = s by Corollary contradicting the maximality of (K,)u.<, in L. Therefore, we may
take y € K, with v(s —y') > (T, ). As K, has asymptotic integration, we have v(s —y') € (I'y )'. If
s —1y' & dok,, then K(g) is a T-Liouville extension of K, contained in L for any g € oy, with ¢ = s — ¢/
by Corollary again contradicting the maximality of (K,),<, in L. Thus, s —y' € dog,, so s € dK,,. A
similar argument, using Lemmas and shows that s has an exponential integral in K¥. ([

Lemmas 5.8 and can be used to remove the assumption “Cy, = C” from Corollary under our current
assumption of power boundedness.

Corollary 5.10. Let L be a Liouville closed Hp-field extension of K. Then L is a T-Liouville closure of K
if and only if L has no proper Liouville closed Hp-subfields which contain K.

Proof. One implication holds by Corollary For the other, suppose that L is not a T-Liouville closure of
K and let (K,),.<» be a maximal T-Liouville tower on K in L. Then K, is a T-Liouville closure of K by
Lemmas [5.§ and In particular, K, is a proper Liouville closed Hp-subfield of L containing K. O

5.2. A-freeness and the uniqueness of T-Liouville closures. Whether K has a unique T-Liouville
closure up to L£9?(K)-isomorphism is closely tied to the existence of gaps, which is in turn related to
A-freeness.

Lemma 5.11. Let (K,),<v be a T-Liowville tower on K and suppose K,, does not have a gap for all i1 < v.
Then K, embeds over K into any Liouville closed Hy-field extension of K.

Proof. Let M be a Liouville closed Hp-field extension of K. We will construct an increasing chain of
LO9(K)-embeddings (2,,: K,, — M),<,. Let 19: Ko — M be the identity on K, and take increasing unions
at limits. For successors, fix p < v and let 1,: K, — M be an £Z°(K)-embedding. Since K,, has no

gap, K, 11 is an extension of type (c), (d), (e), (f), or (g). The embedding properties in Lemmas
and and Corollaries 4.9 and give an £L99(K)-embedding #,,1: K, +1 — M extending ,,. O

Proposition 5.12. Suppose K is ungrounded and A-free. Then K has a T-Liouville closure L which em-
beds over K into any Liowville closed Hry-field extension of K. Any T-Liouville closure of K is LO(K)-
isomorphic to L.

Proof. Let (K,,).<v be a maximal T-Liouville tower on K. We will prove by induction on p < v that each
K, is ungrounded and A-free. This holds when p = 0 by assumption and if 4 < v is an infinite limit ordinal,
then this follows from Lemma Let @ < v and suppose that K, is ungrounded and A-free. Then K,
has no gap, so K11 must be an extension of type (d), (e), (f), or (g). Then K, ; is ungrounded and A-free
by Lemmas [4.19] and and Corollaries and Set L :== K, so L is a T-Liouville closure of K,
and let M be a Liouville closed Hp-field extension of K. By Lemma there is an £99(K)-embedding
1: L — M. Moreover, if M is a T-Liouville closure of K, then ¢(L) is a Liouville closed Hp-subfield of M
containing K, so (L) = M by Corollary m Thus, L is unique up to £9(K)-isomorphism. O

Proposition 5.13. Suppose K is grounded. Then K has a T-Liouville closure L which embeds over K into
any Liowville closed Hp-field extension of K. Any T-Liouville closure of K is LO°(K)-isomorphic to L.

Proof. Let K, be as in Corollary [1.18] Then Kj, is the union of an increasing chain of T-Liouville extensions

of K, so K is a T-Liouville extension of K by Fact Moreover, K, is ungrounded and A-free, so K

has a T-Liouville closure L which embeds over K, into any Liouville closed Hp-field extension of K by
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Proposition [5.12l Then L is a T-Liouville closure of K as well, since K is a T-Liouville extension of
K. Let M be a Liouville closed Hp-field extension of K. Then M is closed under taking d-logarithms,
so Corollary gives an £99(K)-embedding K, — M which further extends to an £°°(K)-embedding
L — M. As in Proposition uniqueness follows from this embedding property and Corollary O

5.3. Gaps and the nonuniqueness of T-Liouville closures. If K has a gap vs, then we have a choice
to make. Either we can adjoin an integral a of s with a < 1, as is done in Lemma [4.12] or we can adjoin
an integral b of s with b > 1, as in Lemma [4.13] This “fork in the road” prevents K from having a unique
T-Liouville closure, but as we will see below, this is really the only obstruction to uniqueness.

Proposition 5.14. Let 8 € I" be a gap in K. Then K has T-Liouville closures L1 and Lo with 8 € (Ffl)’
and B € (FEQ)'. Let M be a Liouville closed Hrp-field extension of K. If 8 € (I'y;), then there is an
LOO(K)-embedding L1 — M. Likewise, if B € (I's;)’, then there is an LO°(K)-embedding Ly — M. Any
T-Liouwville closure of K is Eo’a(K)—isomorphic to either L1 or Ls.

Proof. Let s € K with vs = . Let K; := K (a) be the Hy-field extension of K given in Lemma[f.12] so a < 1
and @’ = s, and let K, := K (b) be the Hp-field extension of K given in Lemma [£.13] so b = 1 and b’ = s.
Then K; is grounded, so it has a T-Liouville closure L; which embeds over K; into any Liouville closed
Hrp-field extension of K| by Proposition Likewise, K5 has a T-Liouville closure Ly which embeds over
K> into any Liouville closed Hp-field extension of K. Now let M be a Liouville closed Hp-field extension
of K. If g € (T'y;), then the embedding property in Lemma m gives an £99(K)-embedding K; — M,
which in turn extends to an £9(K)-embedding L; — M. If B € (I'3;), then using the embedding property
in Lemma instead, we get an £L99(K)-embedding Ly — M. If M is a T-Liouville closure of K, then M
is £9(K)-isomorphic to either L; or Ly by Corollary [5.5since M contains the £2(K)-isomorphic image
of either L or L, as a Liouville closed Hr-subfield. O

We can use Lemma to show that Hp-fields with asymptotic integration which are not A-free also have
two distinct T-Liouville closures.

Proposition 5.15. Suppose that K has asymptotic integration and is not A-free. Then K has T-Liouville
closures Ly and Ly which are not LO°(K)-isomorphic. If M is a Liouville closed Hr-field extension of K,
then there is an LO°(K)-embedding of either Ly or Lo into M. Any T-Liouville closure of K is LO°(K)-
isomorphic to either Ly or Ls.

Proof. Let (A,) be a A-sequence in K with pseudolimit A € K, so v(A+ (K*)T) is a cofinal subset of ¥+ by
Fact Lemma gives an Hrp-field extension K (a) of K with a > 0 and al = —A. By Lemma
va is a gap in K{a). By Proposition K(a) has T-Liouville closures L; and Ly with va € (I'7 )’ and
va € (I';,)’, one of which embeds over K (a) into any Liouville closed Hr-field extension of K'(a). We claim
that there is no EO’B(K)—embedding L1 — Lo; in particular, L; and Lo are nonisomorphic over K. To see
this, take by € Ly and by € Loy with by < 1, by = 1, and b} = by, = a. Then (b})" = (b))t = a' = —A. Suppose
toward contradiction that 1: Ly — Ly is an £L99(K)-embedding. Then 1(b})" = (b4)T so 1(by) = c1ba + co for
some c1,co € Cp, with ¢; # 0. Since by > 1, this gives +(by) > 1, contradicting that by < 1.

Let M be a Liouville closed Hp-field extension of K. Lemmagives an L99(K)-embedding K (a) — M
and Proposition allows us to extend this embedding to an £P°(K)-embedding of either L; or Lo into
M. As in Proposition we may use Corollary [5.5]to see that any T-Liouville closure of K is £O9(K)-
isomorphic to either Ly or Ls. O

Putting together the above propositions, we can now precisely state our main theorem on the existence and
uniqueness of T-Liouville closures.

Theorem 5.16. If K is grounded or if K is ungrounded and A-free, then K has exactly one T-Liouville
closure up to LO°(K)-isomorphism. If K is ungrounded and not A-free, then K has exactly two T-Liouwville
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closures up to LO(K)-isomorphism. For any Liowville closed Hp-field evtension M of K, there is an
LO9(K)-embedding of some T-Liouville closure of K into M.

6. LOGARITHMIC Hp-FIELDS AND LOGARITHMIC PRE-Hp-FIELDS

In this section, we assume that T is power bounded with field of exponents A. We further assume that T
defines a restricted exponential function e and that A is cofinal in the prime model of T. We let In denote
the compositional inverse of e.

Recall from Subsectionthe language L1, = LU{log} and the Loe-theory T°, which extends T by axioms
stating that log is a surjective logarithm. In this section and the next, we study pre-Hype-fields, Hp.-fields,
and their extensions. From a valuation-theoretic perspective, it is inconvenient to work with pre- Hpe-fields
directly, so we instead work with a broader class of Ll(g;;—structures, called logarithmic pre-Hrp-fields, where
the logarithm is not assumed to be surjective.

Definition 6.1. Let K be a pre-Hp-field and let log be a logarithm on K. We say that K is a logarithmic
pre-Hp-field if

(LH1) log(a)’ = af for a € K>, and

(LH2) O Clog(K~).

We say that K is a logarithmic Hp-field if K is a logarithmic pre- Hp-field which is also an Hp-field.

Clearly, every pre-Hre-field is a logarithmic pre- Hp-field and, likewise, every Hrpe-field is a logarithmic Hp-
field. After proving some basic results, we will show in Propositionbelow that a logarithmic (pre)- Hp-field
is a (pre)-Hre-field if and only if the logarithm is surjective.

Assumption 6.2. For the remainder of this section, let K = (K, log, 0,d) be a logarithmic pre-Hrp-field.

For a € K~, axiom (LH1) tells us that log a is a d-logarithm of a. Thus, we have the following consequence
of Corollary

Corollary 6.3. Any logarithmic pre-Hr-field is ungrounded.
We now investigate the induced logarithms on the residue field and the constant field of K.

Lemma 6.4. The logarithm on K induces a well-defined logarithm on res K (also denoted by log). With
this induced logarithm, res K is a model of T*.

Proof. Let a € O with @ > 0. Then a < 1, so Lemma [4.2] gives loga € O. Since O is T-convex and In is
L(0)-definable and continuous at 1, we have In(1+0) C o by [8| Lemma 1.13]. Since a+o0 = a(1+0), axioms
(L1) and (L2) give

log(a+0) = loga+log(l+0) = loga+In(l+0) C loga+ o.

Thus, log induces a well-defined map on res K. It is routine to verify that this induced map is a logarithm
on res K, and it remains to show that this induced logarithm is surjective. To see this, let a € O and, using
(LH2), take b € K~ with logh = a. Since logb € O is a d-logarithm of b, Lemma tells us that b =< 1.
Then b > 0 and logb = a. O

Lemma 6.5. The restriction of the logarithm on K to C is a logarithm on C. With this restricted logarithm,
C is a model of T®.

Proof. For ¢ € C>, we have log(c)’ = ¢/ = 0, so logc € C as well. Thus, log(C>) C C, and it follows

immediately that log |¢ is a logarithm on C. To see that log(C~) = C, let a € C and, using that C C O C

log(K>), take f € K~ with log f = a. Then fT =a’ =0,s0 f € C>. O
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The natural £-embedding C' — res K is even an Ljyz-embedding, where res K and C' are equipped with the
logarithms from Lemmas [6.4] and respectively. Now, we can say more about the relationship between
logarithmic pre- Hp-fields and pre- Hpe-fields.

Proposition 6.6. The logarithmic pre-Hp-field K is a pre-Hre-field if and only if log(K~) = K. Moreover,
if K is a logarithmic Hr-field, then K is an Hrye-field if and only if log(K~) = K.

Proof. One direction is immediate. For the other, suppose that log(K~) = K. Then the Liog-reduct of K
is a model of T°. By Lemma the residue field res K with the induced logarithm models T° as well. It
follows that O is T°-convex, and it remains to show that d is a T"°-derivation. By Corollary any Liog(0)-
definable function on K is given piecewise by a composition of £((})-definable functions, log, and exp. By [13]
Lemma 2.6], 9 is compatible with a composition of functions so long as it is compatible with each constituent
function. Since 9 is compatible with log and with all £((})-definable C'-functions by assumption, it remains
to show that 0 is compatible with exp. For u € K, we have u = log(exp u), so taking derivatives gives

!’

u' = loglexpu) = (expu) *exp(u).
Thus, exp(u)’ = exp(u)u’, as desired. O

Next, we provide a short test for checking whether an £©?-embedding of logarithmic pre- Hy-fields is also an

El(zg—embedding, along with a longer proposition on extending the logarithm on K to certain pre- Hp-field

extensions of K.

Lemma 6.7. Let M be a logarithmic pre-Hrp-field and let v: K — M be an LO°-embedding. Let f,g € K~
with f ~ g. If1(log g) = logy; u(g), then 1(log f) = logy, o(f).
Proof. Take ¢ € o such that f = g(1 +¢). Then

log f = logg+log(l4+¢) = logg+1In(1+e).

As 1 is an L-embedding, we have 1(In(1 +¢)) =In(1 4 €). We have 1(logg) = log,, ¢(g) by assumption, so
v(log f) = logp, o(f). O
Proposition 6.8. Let L be a pre-Hr-field extension of K with resL = res K. Let (a;)ics be a family of
elements in L~ with a; % 1 for each i such that
T';, =To @Avai,
il

and let (b;)ier be a family of elements in L such that b; = a;r for each i € I. Then there is a unique
logarithm on L extending the logarithm on K such that log; a; = b; for each i € 1. With this logarithm, L
is a logarithmic pre-Hrp-field extension of K. If M is also a logarithmic pre-Hp-field extension of K and if
12 L — M is an LOP(K)-embedding, then 1 is an Eg;(K)—embeddmg if and only if 1(b;) = logs2(a;) for
eachi € I.

Proof. Let f € L”. Our assumption on 'y, and res L gives
f=g0+e]]a"
iel
for some g € K~, some ¢ € o, and some family ()\;);c; of exponents in A where only finitely many \; are
nonzero. Set
log; f = logg+In(l1+¢)+ Z Aib;.
iel
It is routine to show that this does not depend on the choice of g. Before we show that log; is a logarithm
on L, we first note that
(log, f) = (logg) +In(1+e) + > Ab = g+ (1 +2)"+) Nal = /T,
iel i€l
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so (LH1) holds. We now turn to verifying (L1)—(L4). A straightforward computation gives log; (f1f2) =
log; f1 + logy fo for all fi,fo € L, so log; is a group homomorphism. To see that log; is even an
ordered group embedding, we assume that f > 1, and we need to show that log, f > 0. If f > 1, then
(log; f)' = fT > 0 by (PH1). Since log; f is a d-logarithm of f, Lemmagives v(logy f) = x(vf) < 0.
Thus, (log;, f)T > 0 as well, so log; f = (log;, f)'/(log;, f)! > 0. Now, assume that f < 1, so each \; = 0
and f = g(1+¢). If f £ 1, then g = f > 1, s0 logg > 0 by Lemma Thus, logg > or, and since
In(1+¢) € o, we have
log;, f = logg+In(1+¢) ~ logg > 0.

If f ~ 1, then we may assume that g =1, s0 e >0 and log; f =In(1+¢) > 0.

For (L2), we assume that e(—1) < f < e(1), and we need to show that log; f = In f. Our assumption on
f gives that each A\; =0 and e(—1) < g < ¢(1). Then

log;, f = logg+In(l+¢) = lng+In(l+¢) = Inf.

For (L3), let A € A with A > 1, and assume that f > A2, We need to show that f > Mlog, f. If
f > 1, then v(log;, f) = x(vf) > vf by [3, Lemma 9.2.18], so f > log, f. In particular, f > Alog, f.
Thus, we may assume that f =< 1, so each A; = 0 and f = g(1 + ¢), where ¢ < 1. Lemma gives
e=e(ln(l+¢))—1>1In(l1+¢),so

AMog, f = Alogg+AIn(1+¢) < Alogg+ Ae. (6.1)

If f ~ A2, then we may arrange that ¢ = A2 and € > 0. Thus, Alogg = AlogA? < A% and \e < \%e.
Combined with (6.1)), this gives AMlog; f < A2+ A2e = A\2(1+¢) = f, as desired. If f 6 A%, then g = f > )2,
so Lemmas and give g > Alogg. Thus, g+ (g — M)e > Alogg since (g — A\)e < 1. Again, (6.1) gives

AMog, f < g+(g—Ne+Ae = g(1+¢) = f.

For (L4) let p € A. Then f? = g?(1 +¢)” [[;c; al_ﬂ>\¢7 o
log, f* = logg” +In((1+€)?) + Y phbi = plogg+pl(l+e)+pY A\bi = plogy f,
el el

where the equality In ((1+ ¢)?) = pIn(1 + €) holds by [14, Lemma 6.4.1].

Finally, for (LH2), let a € O and, using that resL = resK, take b € O with a — b < 1. Then
b € log(K>) Clog(L>), so a € log(L>) by Lemmal[1.4]

Now let M be a logarithmic pre-Hrp-field extension of K and let :: L — M be an £L°?(K)-embedding.
Clearly, if ¢ is an El(zg(K)—embedding, then +(b;) = log,2(a;) for each i € I. For the other implication, we
assume that +(b;) = log,, t(a;) for each i € I, and we need to show that «(log; f) = log,, ¢(f), where f is as

above. Using Lemma and the fact that f ~ g[[,c; ag\i, we may assume that f = g[[;c; ag\". Since

tog; (][ ) = logLg+ Y Ailogy(ai)
iel el
and since g € K, this further reduces to showing that 2(log; a;) = log,, ¢(a;) for each ¢ € I. This holds by

our assumption, since log; a; = b; for each i. Uniqueness of log; follows from this embedding property by
taking +: L — L to be the identity map. O

For the remainder of this article, we will just write log instead of log; when the logarithmic pre-Hp-field L
is clear from context. The conditions on res L and I';, in the above proposition are always satisfied when L
is an immediate pre- Hp-field extension of K.

Corollary 6.9. Let L be an immediate pre-Hrp-field extension of K. Then there is a unique logarithm on
L extending the logarithm on K, and with this logarithm, L is a logarithmic pre-Hp-field extension of K. If
M is also a logarithmic pre-Hrp-field extension of K, then any LO°(K)-embedding L — M is necessarily an
0, ,
L,y (K)-embedding.
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6.1. The exponential closure. In this subsection, we prove that every logarithmic pre-Hp-field has a
minimal logarithmic pre- Hp-field extension with a surjective logarithm. Below is the key Lemma.

Lemma 6.10. Let f € K\log(K~). Then K has a logarithmic pre-Hr-field extension K{a) with a > 0 and
loga = f such that for any logarithmic pre-Hr-field extension M of K with f € log(M~), there is a unique

L:l(zéa(K)—embeddmg K({a) — M. Moreover, the extension K{a) has the following properties:

(1) va ¢ T and I'g gy = T @ Ava;

(2) res K{a) =res K ;

(3) W is cofinal in Wi (q);

(4) a gap in K remains a gap in K{a);
(5) if K is A-free, then so is K{a).

Proof. We claim that v(f’ — (KX)T) C Wt. Suppose not and take g € K* with v(f’ —g') > ¥. By replacing
g with —g if necessary, we may assume that g > 0, so v(f’ — ¢g') = v(f —logg)’ > ¥. Since ¥ is cofinal
in (I'<)’, we have f —logg € O C log(K~). Take h € K~ with f —logg = logh. Then f = log(gh), a
contradiction.

With this claim out of the way, we apply Lemma with f’ in place of s to get a pre-Hrp-field K (a)
extending K with a' = f’ which has properties (1)-(5) above. By property (1) and Proposition there is
a unique logarithm on K(a) with loga = f making K (a) a logarithmic pre- Hp-field extension of K. Now let
M be a logarithmic pre- Hp-field extension of K with f € log(M>) and set b := exp f € M. Then bf = f,
so Lemma gives a unique £9(K)-embedding K (a) — M that sends a to b. By the uniqueness part of
Proposition m this is even an Eg’;(K )-embedding. Since any Elooéa(K )-embedding K(a) — M must send
a to b = exp f, this embedding is unique, even without the requirement that a be sent to b. O

Theorem below follows by iterating Lemma (we also use that an increasing union of A-free loga-
rithmic Hp-fields is A-free; see Lemma [3.13]).

Theorem 6.11. K has a logarithmic pre-Hrp-field extension K° with a surjective logarithm such that for any
logarithmic pre-Hp-field extension M of K with a surjective logarithm, there is a unique El(z;(K )-embedding
K¢ — M. The extension K° has the following properties:

(1) resK® =res K;

(2) W is cofinal in Uge;

(8) a gap in K remains a gap in K°;

(4) if K is A-free, then so is K°.

We refer to K¢ as the exponential closure of K. By Proposition [6.6] the extension K° is a pre-Hr.-field.
If K is a logarithmic Hp-field, then K*® is an Hrpe-field by (1) and Corollary The universal property in
Theoremgives that K€ is unique up to unique Eg’ga(K )-isomorphism. This also gives the aforementioned
minimality: if M is a logarithmic pre- Hr-subfield of K® containing K with M = log(M~), then M = K°.

6.2. Adjoining integrals and the logarithmic Hp-field hull. In this subsection, we prove variants of
the results in Subsection We begin with the following immediate consequences of Corollaries
and [6.9t

Corollary 6.12. Let s € K with vs € (I'”)" and s &€ do. Then K has an immediate logarithmic pre-Hr-field
extension K{a) with a < 1 and a’ = s such that for any logarithmic pre-Hr-field extension M of K with
s € dopr, there is a unique E%;(K)—embedding K{a) - M. If K is h-free, then so is K{a).

Corollary 6.13. Let s € K with v(s — oK) C (I'<)'. Then K has an immediate logarithmic pre-Hr-field
extension K{a) with a’ = s such that for any logarithmic pre-Hp-field extension M of K and b € M with

b = s, there is a unique Eg’ga(K)-embedding K({a) — M sending a to b. If K is A-free, then so is K{(a).
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Now we show how to find an integral for s € K when vs is a gap. We can’t use Lemma directly, as the
pre-Hp-field extension constructed in that lemma is grounded, so it does not admit a logarithm. We rectify
this issue by invoking the extension in Corollary

Lemma 6.14. Let s € K and suppose vs is a gap in K. Then K has a logarithmic pre-Hr-field extension
K{a)p with a < 1 and @’ = s such that for any logarithmic pre-Hr-field extension M of K with s € doyy,
there is a unique E%:(K)—embedding K{a)y — M. The logarithmic pre-Hp-field K{a)y is ®-free with
res K{a)y =res K.

Proof. LemmaMprovides a grounded pre- Hp-field extension K {a) of K witha < 1, a’ = s, and res K {a) =
res K. Applying Corollary with |a|~! in place of s, we further extend K{a) to an w-free pre-Hrp-field
K{a)e with res K(a)y = res K. Lemma and the proof of Corollary tell us that

Ik, = F@@Avan, U, = WU {val,val,.. }, U < wa) < wval < -,
n
where ag = |a|~! and a,,; = a}, for each n. Using the pre-Hp-field axioms, one can easily check that each
a, is positive and infinite, so by Proposition there is a unique logarithm on K (a), which extends the
logarithm on K such that log a,, = a, 41 for each n. Let M be a logarithmic pre- Hp-field extension of K with
s € dopr. By Lemma there is a unique £9°(K)-embedding 1: K {a) — M. Let by := 1(ag) € M and for
each n, let b, 1 == logb,,. By the proof of Corollary the embedding 2 extends to an £9(K)-embedding
K{a)y — M which sends a,, to b, for each n. By Proposition this is even an Eg;—embedding and, as

an L’fg’ga—embedding, it is unique. O

If K is a logarithmic Hp-field with a gap, then we can instead use Lemma and apply Corollary
with |a| in place of s to show the following:

Lemma 6.15. Let K be a logarithmic Hp-field, let s € K, and suppose vs is a gap in K. Then K has
a logarithmic Hy-field extension K({a)e with a = 1 and o' = s such that for any logarithmic pre-Hp-field
extension M of K and b € M with b = 1 and b’ = s, there is a unique Elooé;a(K)-embedding K{a) - M
sending a to b. The logarithmic Hr-field K{a) is ®-free with res K{a), = res K.

The following proposition has the same proof as Theorem except we use Lemma, in place of
Lemma [£.12] and we use Corollary in place of Corollary

Proposition 6.16. K has a logarithmic Hy-field extension ngog(K) with Tes Hépog(K) = res K such that for

any logarithmic Hr-field extension M of K, there is a unique Ll(gj;(K)—embedding H?g(K) — M.

6.3. Constant field extensions. We end this section with a proposition on extending logarithmic Hp-fields
by constants.

Proposition 6.17. Let K be a logarithmic Hp-field and let E be a T°-extension of C. Then there is a
logarithmic Hp-field extension L of K where Cy, is Liog(C)-isomorphic to E such that for any logarithmic
Hr-field extension M of K and any Liog(C)-embedding v: Cr, — Cir, there is a unique £8’£(K)-embedding
L — M extending 1.

Proof. Let L be the Hp-field extension of K given by Proposition so Cr, is L(C)-isomorphic to E. By
the proof of Proposition we also have I'y = I'. Using the £(C)-isomorphism Cp — E, we pull the
logarithm on E back to a logarithm on C, and we view Cf, as a model of T° with this logarithm. We need
to extend this logarithm on Cf, to a logarithm on L. Let f € L~ and take g € K~ with f =< g. Take c € C}
with f/g ~ ¢, and take € € o, with f = cg(1+¢€). Set

log f = logg+loge+1In(1+e¢),

where log g is evaluated in K and logc is evaluated in Cp. It is routine to check that this assignment
doesn’t depend on the choice of g. Checking that this map is a logarithm is also quite straightforward; for
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convenience, we may assume that g = 1 in the case that f < 1. For (LH1), we have
log(f)' = log(g)' +log(c) + (1 +¢) = g'+cl +(1+2)f = [T,

where the second equality uses that log(c)’ = ¢’ = 0 for ¢ € C7. Since for each a € O, there is d € C}, with
|a — d| < 1 and since the logarithm on Cy, is surjective, (LH2) follows from Lemma

Now let M be a logarithmic Hp-field extension of K and let 1: Cf, — Ch be an Liog(C)-embedding.
Using the embedding property of L, we uniquely extend 2 to an £9?(K)-embedding 7: L — M. We will
show that 7 is even an Eg’ga(K)—embedding. For ¢ € C7 and g € K~, we have

log j(cg) = logu(c) +logg = 1(logc) +logg = j(log(cy)).

Let f € L”. Since we can find ¢ € C7 and g € K~ with f ~ c¢g, Lemma and the above computation
allow us to conclude that log j(f) = y(log f). |

7. LIOUVILLE CLOSED LOGARITHMIC Hp-FIELDS

In this section, we keep the same assumptions as in the previous section (7" is power bounded, T' defines a
restricted exponential function, A is cofinal in the prime model of T'). Let K be a logarithmic Hp-field. As
in Section [5] we investigate Liouville closed extensions of K. Now that we have a logarithm present, we can
relate exponential integrals to actual exponentials:

Lemma 7.1. The following are equivalent:

(i) log(K~) = K and every element in K has an integral in K;
(i) K is Liouville closed.

Proof. Suppose (i) holds and let f € K. We need to find an exponential integral for f in K7. Take g € K
with ¢ = f. Then (expg)’ = ¢’ = f. Now, suppose (ii) holds and let a € K. We need to show that
a € log(K>). Take b € K> with b = a/. Then log(h)’ = @’ so a —logb € C. Since C = log(C™) by
Lemma we may take ¢ € C~ with a — logb = log c. Then a = log(bc). O

Definition 7.2. A logarithmic T-Liouville extension of K is a logarithmic Hp-field extension L of K
which is also a T-Liouville extension of K, as defined in Section [5} A logarithmic T-Liouville closure of
K is a logarithmic T-Liouville extension of K which is Liouville closed.

Any logarithmic T-Liouville extension of K has the same cardinality as K, and an increasing union of
logarithmic T-Liouville extensions is itself a logarithmic T-Liouville extension. The logarithmic Hp-field
extension K¢ in Theorem is a logarithmic T-Liouville extension, as are the extensions considered in

Corollaries [6.12] and [6.13] and in Lemmas [6.14] and [6.15]

Definition 7.3. A logarithmic T-Liouville tower on K is a strictly increasing chain (K, )<, of loga-

rithmic Hp-fields such that:

(2) if p < v is an infinite limit ordinal, then K, =, ., Ky;

(3) if p <vand K, #log(K), then K, 11 = K§;

(4) if p < v and K, =log(K ), then K, is one of the following extensions of K,
(a) K41 = Ku<a#>m, where a, =
(b) K1 = K,(au)e, where a; =s, € K, with a, > 1 and vs, is a gap in K;;
(c) K1 = Ku(a,), where aj, = s, € K, with a, <1, vs, € (F;u) , and s, € 90k, ;
(d) K,+1 = K (a,), where a =s, € K, with v(s, — oK) C (Ff(u’)’.

The logarithmic Hp-field K, is called the top of the tower (K,).<..

=s, € K, with a, <1 and vs, is a gap in K,;;

The extensions in (a) and (b) correspond to Lemmas and respectively, and the logarithm in
these extensions is the logarithm defined in those Lemmas. The extensions in (¢) and (d) correspond to
37



Corollaries and If (K,) <o is a logarithmic T-Liouville tower on K, then each K, is a logarithmic
T-Liouville extension of K. Maximal logarithmic T-Liouville towers on K (that is, logarithmic T-Liouville
towers on K which cannot be properly extended) exist by Zorn’s lemma, and we briefly verify below that
the analogs of Lemmas and hold in this setting.

Lemma 7.4. Let L be the top of a mazximal logarithmic T-Liouville tower on K. Then L is Liouville closed
and, therefore, L is a logarithmic T-Liouville closure of K.

Proof. As in the proof of Lemma [5.8] maximality tells us each element in L has an integral in L. Maximality
also tells us that L = log(L>), so L is Liouville closed by Lemma |7.1] O

Lemma 7.5. Let L be a Liouville closed logarithmic Hp-field extension of K and let (K,,) <. be a logarithmic
T-Liowville tower on K. Suppose that (K, )< s a tower in L which cannot be extended to a logarithmic
T-Liouville tower (K,)u<v+1 i L. Then (K,)u<o is @ mazimal logarithmic T-Liowville tower on K.

Proof. By Fact and Lemma [5.3} it suffices to show that K, is Liouville closed. The proof that each
element in K, has an integral in K, is essentially the same as the proof of Lemma Since L is Liouville
closed, we have L = log(L”) by Lemma so Theorem allows us to identify K| with a logarithmic
Hrp-subfield of L. Since K¢ is a logarithmic T-Liouville extension of K, we have K, = K. Thus, K, is
Liouville closed, again by Lemma |7.1 (]

We have the following analog of Corollary where Lemmas [7.4] and [7.5] are used in place of Lemmas [5.8
and 5.9

Corollary 7.6. Let L be a Liouville closed logarithmic Hp-field extension of K. Then L is a logarithmic T -
Liowville closure of K if and only if L has no proper Liouville closed logarithmic Hr-subfields which contain
K.

An analog of Lemma also goes through with the obvious changes to the proof.

Lemma 7.7. Let (K,),u<y be a logarithmic T-Liouville tower on K and suppose K,, does not have a gap for
all w < v. Then K, admits an Egg(K)-embedding into any Liouville closed logarithmic Hy-field extension
of K.

7.1. Uniqueness and nonuniqueness of logarithmic T-Liouville closures.

Proposition 7.8. Suppose K is A-free. Then K has a logarithmic T-Liouville closure L which embeds over
K into any Liouville closed logarithmic Hp-field extension of K. Any logarithmic T-Liouville closure of K

is ES’gB(K)—isomorphic to L.

Proof. Let (K,)u<, be a maximal logarithmic T-Liouville tower on K. We will prove by induction on p < v
that each K, is A-free. This holds when p = 0 by assumption and if ¢ < v is an infinite limit ordinal, then
this follows from Lem Let p# < v and suppose that K, is A-free. If K, # log(K7), then K, 1 = K,
is A-free by Theorem Suppose that K, = log(K ;). Since K, is A-free, it has no gap, so K1 must be
an extension of type (c) or (d). Then K, is A-free by Corollaries and

Set L == K, so L is a logarithmic T-Liouville closure of K. Let M be a Liouville closed logarithmic
Hyp-field extension of K. By Lemma there is an sz’ga(K)—embedding 12 L — M. Moreover, if M is
a logarithmic T-Liouville closure of K, then in particular, M is a T-Liouville closure of K and ¢(L) is a
Liouville closed Hr-subfield of M containing K, so (L) = M by Corollary Thus, L is unique up to

El(g’ga (K)-isomorphism. O

If K is not A-free, then K has two distinct logarithmic T-Liouville closures. As in the case of Hp-fields, it
is helpful to handle the case that K has a gap and the case that K has asymptotic integration separately.
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Proposition 7.9. Let € T be a gap in K. Then K has logarithmic T-Liouville closures L1 and Lo with
Be(Tz,) and B € (Tg,). Let M be a Liouville closed logarithmic Hr-field extension of K. If B € (Uy;),
then there is an Lfloojga(K)-embeddmg Ly — M. Likewise, if 8 € (I'y;)’, then there is an Egg(K)-embedding

Lo — M. Any logarithmic T-Liouville closure of K s Egj:(K)—isomorphic to either Ly or Ls.

Proof. Let s € K with vs = 5. Let K; := K{a)y be the logarithmic Hp-field extension of K given in
Lemma soa <1and @’ = s, and let Ky := K(b)y, be the logarithmic Hp-field extension of K given in
Lemma, so b= 1and ¥ = s. Then K; is A-free, so it has a logarithmic T-Liouville closure L; which
embeds over K7 into any Liouville closed logarithmic Hp-field extension of Ky by Proposition[7.8] Likewise,
K5 has a logarithmic T-Liouville closure Ly which embeds over K5 into any Liouville closed logarithmic Hp-
field extension of K». Now let M be a Liouville closed logarithmic Hp-field extension of K. If 8 € (I'y,)/,
then the embedding property in Lemma gives an ﬁg’;(K )-embedding K7 — M, which in turn extends
to an El(g’ga(K)—embedding Ly — M. If B € (T'y;)’, then using the embedding property in Lemma

instead, we get an CI(Z;(K )-embedding Lo — M. If M is a logarithmic T-Liouville closure of K, then M is

ES;(K )-isomorphic to either Ly or Ly by Corollary since M contains the Lg’;(K )-isomorphic image of

either Ly or Lo as a Liouville closed logarithmic Hp-subfield. O

Proposition 7.10. Suppose that K has asymptotic integration and is not A-free. Then K has logarithmic
T-Liouville closures L1 and Lo which are not Egéa(K)—isomorphic. If M is a Liouville closed logarithmic
Hrp-field extension of K, then there is an Egjga(K)-embedding of either Ly or Lo into M. Any logarithmic

T-Liouwville closure of K is El(gg(K)-isomorphic to either Ly or Ls.

Proof. Let (A,) be a A-sequence in K with pseudolimit A € K. First, we consider the case that —A has an
integral f € K. If there were a € K~ with loga = f, then we would have a = f = —A, contradicting
that v(l + (KX)T) is a cofinal subset of Wt by Fact [3.15| Thus, f has no exponential in K>, so we use
Lemma to extend K to a logarithmic Hp-field K (a) with loga = f. Then af = —\, so va is a gap
in K(a) by Lemma By Proposition K (a) has logarithmic T-Liouville closures L; and Lo with
va € (T'7,)" and va € (I'},)’, one of which embeds over K(a) into any Liouville closed logarithmic Hr-field
extension of K(a). Using Lemma and the universal property of Lemma we see that either Ly or Lo
embeds over K into any Liouville closed logarithmic Hp-field extension of K.

Now, consider the case that —A has no integral in K. Since K has asymptotic integration, we may use
either Corollary [6.12] or Corollary [6.13|to extend K to an immediate logarithmic Hp-field K (f) where f/ = s.
Since K(f) is an immediate extension of K, the A-sequence (A,) remains a A-sequence in K(f) and K (f)
has asymptotic integration, so by the previous case, K{f) has logarithmic T-Liouville closures L; and Lo
with v(exp f) € (I'z,)" and v(exp f) € (T'5,)’, one of which embeds over K(f) into any Liouville closed
logarithmic Hp-field extension of K (f). The embedding properties in Corollaries and ensure either
L, or Ls embeds over K into any Liouville closed logarithmic Hp-field extension of K.

The embedding properties of L; and Lo, together with Corollary ensure that any logarithmic T-
Liouville closure of K is Eo’a(K )-isomorphic to either L1 or L. The proof that L; and Ly are not isomorphic

log
to each other is exactly the same as in the proof of Proposition |5.15 (|

Let us combine the above propositions into one theorem.

Theorem 7.11. If K is A-free, then K has exactly one logarithmic T-Liouville closure up to CS;(K)—
O,
log

For any Liouville closed logarithmic Hp-field extension M of K, there is an Eg;([()—embeddmg of some
logarithmic T-Liouville closure of K into M.

isomorphism. Otherwise, K has exactly two logarithmic T-Liowville closures up to L, °(K)-isomorphism.

7.2. An application to Ry, xp-Hardy fields. In this subsection, let R, Lz, and Tz be as in the intro-
duction, that is, R is an o-minimal expansion of the real field, Tk is the Lr-theory of R, Lz is assumed
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to include a constant symbol for each r € R, and Tk is assumed to have quantifier elimination and a uni-
versal axiomatization. Let H be an R-Hardy field and let [f] be a germ of a real-valued unary function
at +oo. Then [f] is said to be comparable to H if for each [g] € H, either g(z) < f(x) eventually, or
g(x) > f(zx) eventually, or g(x) = f(z) eventually (where eventually means for all sufficiently large x). If [f]
is comparable to H, then set

H{[f]) = {t([f]) : t is a unary Lr(H)-term}.

If, in addition to being comparable with H, the function f is eventually C* and [f'] € H([f]), then H{[f]) is
an R-Hardy field; see [9, Lemma 5.12] and the remarks at the end of [9]. If f/ = g or f = exp(g) for some
l[g] € H, then [f] is comparable to H by Boshernitzan [5, Theorem 5.3]; see also [21]. In both cases, f is
eventually C! and [f'] € H([f]), so it follows that

e H{[expg]) is an R-Hardy field for [g] € H, and
o H{[f]) is an R-Hardy field if [f'] € H.

Since any increasing union of R-Hardy fields is an R-Hardy field and since Hardy fields are bounded in size,
Zorn’s lemma and the remarks above give us a Liouwville closed R-Hardy field extension of H where every
germ has an integral and an exponential (thus, every germ also has a nonzero exponential integral). We
denote by Lig (#) the intersection of all Liouville closed R-Hardy field extensions of H. Then Lig () is a
Tr-Liouville closure of H by Corollary since the constant field of any R-Hardy field is R.

Here is an application when R = Ray, exp. The appropriate language here is Lap oxp, which includes a function
symbol for each restricted analytic function, as well as function symbols for exp and log. By [9, Corollary
4.6], Rap exp has quantifier elimination and a universal axiomatization in this language. Since each constant
function is analytic, our assumptions at the beginning of the subsection hold for this expansion. For an
Ran exp-Hardy field H, let us write Lia, exp(?) instead of Lig (H). Recall that T,y exp is the canonical
expansion of the field T of logarithmic-exponential transseries to an Hyy, exp-field. The following theorem is
an analog of a theorem on Hardy fields from [1].

an,exp

Theorem 7.12. Let H be an Ruy exp-Hardy field and let v: H — Tanexp be an L£O:9 -embedding. Then 1

an,exp
extends to an ,Cg;?exp—embedding Lian,exp(H) = Tan exp-

Proof. If H = Ran exp, then we extend 2 to an £ -embedding of

an,exp
H(Ranexp) = {[t] s a unary Lap exp(0)-term}

by sending [t] € H(Ran,exp) t0 t(x) € Tan,exp Where & € Tap exp is the distinguished positive infinite element
with derivative 2/ = 1. One can easily verify that this is an £,%, -embedding. Thus, by replacing H by
H(Ran,exp) if need be, we may assume that H is a proper extension of Ray exp. Let K = 2(H) C Tap,exp and
let (K,)u<v be a maximal logarithmic T,,-Liouville tower on K in Tapn exp. Lemmatells us that K, is a
logarithmic T,,-Liouville closure of K. Moreover, none of the Hp-fields K, have a gap by [I, Lemma 6.6],

so Lemma gives an £9° _embedding j: K, — Lian exp(H) which extends ¢!, Since Lian exp(H) is a

an,exp
logarithmic T,,-Liouville closure of H, we have 5(K,) = Lian exp(H) by Corollary Thus, we may take
77" Lian,exp(H) = Tan,exp to be our Eg;?exp—embedding. O

Remark 7.13. Using T}exp, the theory of the reals with the restricted exponential function, in place of T},
in the proof above, one can also show that any Eggg—embedding of an Reyp-Hardy field H O R into Teyp, can
be extended to Liexp (7). Here, Texp, is the expansion of T by just the exponential function.

Using Lemmas and in place of Lemmas [7.5| and in the proof above, one can show that any
Eg;a—embedding of an R,,-Hardy field H into T,, can be extended to Li,,(#). The same holds for any
polynomially bounded reduct R of Rap, cxp, S0 long as R satisfies the assumptions at the beginning of this
subsection.
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8. THE ORDER 1 INTERMEDIATE VALUE PROPERTY

In this section, let K be a pre-Hp-field. We do not assume that T is power bounded. Our goal is to prove
the following extension result:

Theorem 8.1. K has a pre-Hr-field extension M with the following property: for every L(M)-definable
continuous function F: M — M and every by,bs € M with

by < F(b), by > F(by),
there is a € M between by and by with o’ = F(a).
Before proving this theorem, we need a lemma about extensions of pre- Hp-fields:
Lemma 8.2. Suppose K is ungrounded, let M be a TO?-extension of K, and suppose that
On = {yEM:|y|<df0ralld€Kwithd>O},
and that ¢' > 0 for all g € M with g > Op;. Then M is a pre-Hr-field extension of K.

Proof. Let g € M with g = 1. Then |g|’ > 0 by assumption, so g' = |g|T > 0, proving (PH1). For (PH2),
let f € Opr. We need to show that f’ < gf. We will do this by showing that v(f’) > ¥ and that vg' € ¥+,
To see that vf’ > W, let v € ¥ and, using that K is ungrounded, take d € K with d > O and vd > 7.
Then d+ f,d— f > Op,s0d + f/,d — f/ > 0. This gives —d’ < f' < d', so vf" > vd > ~. To see that
vgt € U, take d € K with |g| > d > O. Then |gld~'/? > d'/? > O so (|g|d’1/2)T = g' —d/2 > 0, which
gives gT > d7/2. As d' > 0, we have vg" < vd' € ¥, so vgt € Ut (|

Theorem [8.1|follows by iterating the following proposition; an analog of [2, Theorem 4.3]. See also [7], where
van den Dries proves this for R-Hardy fields.

Proposition 8.3. Let F: K — K be an L(K)-definable continuous function and let by,bs € K with
by < F(b), by > F(by).
Then there is a pre-Hp-field extension M of K and a € M between by and by with o’ = F(a).

Proof. It O = K, then let M := K(a) be a simple T-extension of K where a lies between b; and by. Using
Fact extend the T-derivation on K uniquely to a T-derivation on M by so that a’ = F(a). Then M,
with this derivation and the T-convex valuation ring Op; = M, is the desired pre-Hp-field extension of K.
Having handled this case, we assume for the remainder of the proof that O # K (so 9 is continuous by
Lemma [3.7)).

Next, we arrange that K is ungrounded. If T is not power bounded, then T defines an exponential
function [18], so K is necessarily ungrounded by Corollary If T is power bounded and K is grounded,
then we use Corollary to replace K with an ungrounded pre- Hp-field extension.

Now, let us handle the case that by < ba. Let I be the interval (b1, by) and set

A= {yel:y <F(y}

Since b} < F(b1) and since F' and 9 are continuous, we have y' < F(y) for all y € I sufficiently close to b;.
Thus, A is nonempty. Likewise, ¢y’ > F(y) for all y € I sufficiently close to ba, so A is not cofinal in I. If
A has a supremum b € I, then b’ = F(b) by continuity, and we may take M = K. Thus, we may assume
that A has no supremum in I. Let M = K(a) be a simple T-extension of K where a realizes the cut A¥.
Using Fact we extend the T-derivation on K uniquely to a T-derivation on M by with o’ = F(a). We
also equip M with the T-convex valuation ring

Oy = {yeM: |y <dforaldeK withd > O}.

We claim that M is a pre-Hp-field extension of K. By Lemma it is enough to show that ¢’ > 0 for all

g € M with g > Op. Let G: K — K be an L(K)-definable function with G(a) > Op;. We may assume
a1



G(a) € K. Suppose toward contradiction that
G(a) = G¥a)+G'(a)F(a) < 0.

Take d € K with G(a) > d and take a subinterval J C I with a € JM guch that G is C* on J and such that
for all y € J, we have

Gly) > d, Gy + & (y)F(y) < 0.
Let y € J. Since G(y) > d > O and K is a pre-Hrp-field, we have G(y)’ = GUl(y) + G'(y)y’ > 0, so

(G ) + G (y)y) — (GNy) + G (WF(y)) = G (¥ - Fly) > o.

By shrinking J, we may assume that G’(y) has constant sign on J, so y’ — F(y) has constant sign on J as
well. This is a contradiction, as J contains elements of A as well as elements of I\ A. The case that b; > by
is virtually identical; we instead let I be the interval (bs,b1) and let

A= {yel:y>Fy} O

Remark 8.4. Note that in Proposition [8.3] the residue field of the M may be strictly larger than the residue
field of K, so even if K is an Hp-field, M may only be a pre-Hrp-field. Accordingly, we do not know if in
Theorem the pre-Hp-field extension M of K can be taken to be an Hp-field in general. However, if
we assume that 7' is power bounded, then M can be taken to be an Hp-field: simply use Theorem to
replace the pre- Hp-field extension in Proposition with its Hp-field hull. We can also take M to be an
Hrp-field if T is an exponential theory of the form considered in Subsection (for example, if T' = Top exp)-
For this, we use Proposition to pass to the logarithmic Hp-field hull, followed by Theorem to pass
to the exponential closure.
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